

 asn1

 v5.4.2

 [image: Logo]

 Table of contents

 	asn1 Release Notes

 	User's Guides

 	Introduction

 	ASN.1

 	Getting Started

 	Specialized Decodes

 	
 Modules

 	asn1ct

 asn1 Release Notes

This document describes the changes made to the asn1 application.
Asn1 5.4.2
Fixed Bugs and Malfunctions
	Decoding a constrained BIT STRING using JER was broken.
Own Id: OTP-19681 Aux Id: PR-9949

	NIFs and linked-in drivers are now loadable when running in an Erlang source tree on Windows.
Own Id: OTP-19686 Aux Id: PR-9969

Asn1 5.4.1
Fixed Bugs and Malfunctions
	The ASN.1 compiler could generate code that would cause Dialyzer with the unmatched_returns option to emit warnings.
Own Id: OTP-19638 Aux Id: GH-9841, PR-9846

Asn1 5.4
Fixed Bugs and Malfunctions
	The undec_rest option would be ignored in generated functions for exclusive decode. The option is now respected, meaning that the return value from such functions are now three-tuples instead of a two-tuples.
 POTENTIAL INCOMPATIBILITY
Own Id: OTP-19290 Aux Id: PR-8798

Improvements and New Features
	The license and copyright header has changed format to include an SPDX-License-Identifier. At the same time, most files have been updated to follow a uniform standard for license headers.
Own Id: OTP-19575 Aux Id: PR-9670

	The ancient ASN.1 modules used in public_key has been replaced with more modern versions, but we have strived to keep the documented Erlang API for the public_key application compatible.
 POTENTIAL INCOMPATIBILITY
Own Id: OTP-19612 Aux Id: PR-9774

Asn1 5.3.4.2
Fixed Bugs and Malfunctions
	Decoding a constrained BIT STRING using JER was broken.
Own Id: OTP-19681 Aux Id: PR-9949

Asn1 5.3.4.1
Fixed Bugs and Malfunctions
	The ASN.1 compiler could generate code that would cause Dialyzer with the unmatched_returns option to emit warnings.
Own Id: OTP-19638 Aux Id: GH-9841, PR-9846

Asn1 5.3.4
Fixed Bugs and Malfunctions
	Negative REAL numbers greater than -1 would be incorrectly encoded (the minus sign would be lost).
Own Id: OTP-19567 Aux Id: ERIERL-1214, PR-9658

Asn1 5.3.3
Fixed Bugs and Malfunctions
	The JER backend will now include the SIZE constraint in the type info for OCTET STRINGs, and a SIZE constraint with a range will now be included for BIT STRINGs. This does not change the actual encoding or decoding of JER, but can be useful for tools.
Own Id: OTP-19542 Aux Id: ERIERL-1204, PR-9588

Improvements and New Features
	When using the JSON encoding rules, it is now possible to call the decode/2 function in the following way with data that has already been decoded by json:decode/1:
SomeModule:decode(Type, {json_decoded, Decoded}).
Own Id: OTP-19547 Aux Id: ERIERL-1206, PR-9611

Asn1 5.3.2
Fixed Bugs and Malfunctions
	Multiple bugs in decoding of the REAL type has been eliminated. Also, the documentation for REAL has been updated to mention the special values 0, PLUS-INFINITY, and MINUS-INFINITY.
Own Id: OTP-19504 Aux Id: GH-9096, PR-9469

Asn1 5.3.1
Fixed Bugs and Malfunctions
	Fixed a cosmetic but harmless issue with the ASN.1 compiler passing on the undec_rest option to the Erlang compiler.
Own Id: OTP-19218 Aux Id: GH-8779, PR-8781

Asn1 5.3
Fixed Bugs and Malfunctions
	Multiple bugs has been eliminated in the specialized decode feature.
Own Id: OTP-18813 Aux Id: PR-7790

Improvements and New Features
	Specs have been added to all asn1ct API functions.
Own Id: OTP-18804 Aux Id: PR-7738

	The documentation has been migrated to use Markdown and ExDoc.
Own Id: OTP-18955 Aux Id: PR-8026

	The jer (JSON Encoding Rules) for ASN.1 now use the new json module for encoding and decoding JSON. Thus, there is no longer any need for an external JSON library.
Own Id: OTP-19018 Aux Id: PR-8241

Asn1 5.2.2.1
Fixed Bugs and Malfunctions
	The ASN.1 compiler could generate code that would cause Dialyzer with the unmatched_returns option to emit warnings.
Own Id: OTP-19638 Aux Id: GH-9841, PR-9846

Asn1 5.2.2
Fixed Bugs and Malfunctions
	An ASN.1 module that contains named BIT STRING values would fail to compiled if both the BER and JER back-ends were enabled.
Own Id: OTP-19039 Aux Id: GH-8291, PR-8297

Asn1 5.2.1
Fixed Bugs and Malfunctions
	Fix benign warning from gcc 11 about mismatching call to free().
Own Id: OTP-18844

Asn1 5.2
Fixed Bugs and Malfunctions
	The ASN.1 compiler would ignore a constraint such as (SIZE (1..4), ...),
causing incorrect behavior of the encoding and decoding function for the PER
and UPER backends. Corrected to handle the constraint in the same way as
(SIZE (1..4, ...)).
Own Id: OTP-18729 Aux Id: PR-7575

Improvements and New Features
	The JER backend has been internally refactored in a way that is compatible for
applications that use the documented API. However, for a group of ASN.1
modules that depend on each other (for example, S1AP-PDU-Descriptions,
S1AP-Contents, and so on), all modules in the group must be recompiled if on
of the group members is recompiled.
Own Id: OTP-18748 Aux Id: ERIERL-957, PR-7637

Asn1 5.1
Fixed Bugs and Malfunctions
	The ASN.1 compiler used to reject correctly specified RELATIVE-OID values
containing other RELATIVE-OID values. This is now corrected.
Own Id: OTP-18534 Aux Id: ERIERL-737, PR-7039

Improvements and New Features
	Minor code improvements.
Own Id: OTP-18441

	Handling of on_load modules during boot has been improved by adding an extra
step in the boot order for embedded mode that runs all on_load handlers,
instead of relying on explicit invocation of them, later, when the kernel
supervision tree starts.
This is mostly a code improvement and OTP internal simplification to avoid
future bugs and to simplify code maintenance.
Own Id: OTP-18447

Asn1 5.0.21.1
Fixed Bugs and Malfunctions
	Fix benign warning from gcc 11 about mismatching call to free().
Own Id: OTP-18844

Asn1 5.0.21
Fixed Bugs and Malfunctions
	For the per and uper ASN.1 encoding rules, encoding and decoding the
SEQUENCE OF and SET OF constructs with 16384 items or more is now
supported.
Own Id: OTP-18245 Aux Id: ERIERL-859

Asn1 5.0.20
Improvements and New Features
	There is a new configure option, --enable-deterministic-build, which will
apply the deterministic compiler option when building Erlang/OTP. The
deterministic option has been improved to eliminate more sources of
non-determinism in several applications.
Own Id: OTP-18165 Aux Id: PR-5965

Asn1 5.0.19
Fixed Bugs and Malfunctions
	The atom maybe has been quoted in the source code.
Own Id: OTP-17980

Asn1 5.0.18.2
Fixed Bugs and Malfunctions
	Fix benign warning from gcc 11 about mismatching call to free().
Own Id: OTP-18844

Asn1 5.0.18.1
Fixed Bugs and Malfunctions
	For the per and uper ASN.1 encoding rules, encoding and decoding the
SEQUENCE OF and SET OF constructs with 16384 items or more is now
supported.
Own Id: OTP-18245 Aux Id: ERIERL-859

Asn1 5.0.18
Fixed Bugs and Malfunctions
	Add support for the maps option in combination with the jer backend.
Own Id: OTP-17959 Aux Id: GH-5757

Asn1 5.0.17
Fixed Bugs and Malfunctions
	A parameterized type with a SEQUENCE with extension ("...") made the compiler
backend to crash. The previous fix for this in GH-4514 was not complete.
Own Id: OTP-17522 Aux Id: GH-4902

Asn1 5.0.16
Fixed Bugs and Malfunctions
	Fixed a bug in the asn1 compiler that potentially could cause it to fail to
open a file.
Own Id: OTP-17387 Aux Id: OTP-17123

Asn1 5.0.15.1
Fixed Bugs and Malfunctions
	A parameterized type with a SEQUENCE with extension ("...") made the compiler
backend to crash. The previous fix for this in GH-4514 was not complete.
Own Id: OTP-17522 Aux Id: GH-4902

Asn1 5.0.15
Fixed Bugs and Malfunctions
	A parameterized type with a SEQUENCE with extension ("...") made the compiler
backend to crash.
Own Id: OTP-17227 Aux Id: GH-4514

	For JER encoding rules an INTEGER value outside the declared range is now
reported as error during decode.
Own Id: OTP-17306 Aux Id: ERIERL-506

Improvements and New Features
	For the JER encoding rules, the declared order of the fields in a SEQUENCE is
now maintained in the resulting JSON object. Previously a map was used which
caused an undefined order of the fields which was not friendly for debugging.
Own Id: OTP-17297 Aux Id: ERIERL-607

Asn1 5.0.14
Improvements and New Features
	Changes in order to build on the Haiku operating system.
Thanks to Calvin Buckley
Own Id: OTP-16707 Aux Id: PR-2638

Asn1 5.0.13
Fixed Bugs and Malfunctions
	Adhere to the ASN.1 specification for hstring & bstring lexical items. That is
they may include white space.
Own Id: OTP-16490

Improvements and New Features
	Refactored the internal handling of deprecated and removed functions.
Own Id: OTP-16469

	Improve handling of ellipsis in a CHOICE
Own Id: OTP-16554 Aux Id: ERL-1189

Asn1 5.0.12
Improvements and New Features
	Dialyzer warnings of type no_match are now suppressed in the generated
files.
Own Id: OTP-16636 Aux Id: ERIERL-145

Asn1 5.0.11
Improvements and New Features
	The compiler now has limited support for the JSON encoding rules (ITU-T X.697
ASN.1 encoding rules: Specification of JavaScript Object Notation Encoding
Rules).
Own Id: OTP-16030

Asn1 5.0.10
Improvements and New Features
	Fix 'DEFAULT' with 'OCTET STRING' and 'SEQUENCE OF CHOICE' with extensions.
Own Id: OTP-16542 Aux Id: PR-2159

Asn1 5.0.9
Fixed Bugs and Malfunctions
	All incorrect (that is, all) uses of "can not" has been corrected to "cannot"
in source code comments, documentation, examples, and so on.
Own Id: OTP-14282 Aux Id: PR-1891

	Corrected problems with the following value definitions:
	value of SEQUENCE OF CHOICE with extensions
	value of CHOICE with extensions
	DEFAULT used with OCTET STRING

Own Id: OTP-15697 Aux Id: PR-2159

Asn1 5.0.8
Fixed Bugs and Malfunctions
	Handle erroneous length during decode (BER only) without crashing.
Own Id: OTP-15470 Aux Id: ERIERL-278

Asn1 5.0.7
Fixed Bugs and Malfunctions
	A bug in ASN.1 BER decoding has been fixed. When decoding a recursively
enclosed term the length was not propagated to that term decoding, so if the
length of the enclosed term was longer than the enclosing that error was not
detected.
A hard coded C stack limitation for decoding recursive ASN.1 terms has been
introduced. This is currently set to 8 kWords giving a nesting depth of about
1000 levels. Deeper terms can not be decoded, which should not be much of a
real world limitation.
Own Id: OTP-14440 Aux Id: ERIERL-220

Asn1 5.0.6
Improvements and New Features
	Update to use the new string api instead of the old.
Own Id: OTP-15036

Asn1 5.0.5.2
Fixed Bugs and Malfunctions
	Handle erroneous length during decode (BER only) without crashing.
Own Id: OTP-15470 Aux Id: ERIERL-278

Asn1 5.0.5.1
Known Bugs and Problems
	A bug in ASN.1 BER decoding has been fixed. When decoding a recursively
enclosed term the length was not propagated to that term decoding, so if the
length of the enclosed term was longer than the enclosing that error was not
detected
A hard coded C stack limitation for decoding recursive ASN.1 terms has been
introduced. This is currently set to 8 kWords giving a nesting depth of about
1000 levels. Deeper terms can not be decoded, which should not be much of a
real world limitation.
Own Id: OTP-14440 Aux Id: ERIERL-220

Asn1 5.0.5
Fixed Bugs and Malfunctions
	Dialyzer suppression has been added for the generated ASN.1 helper function
to_bitstring/1 that previously created irrelevant warnings.
Own Id: OTP-13882 Aux Id: ERIERL-144

Asn1 5.0.4
Fixed Bugs and Malfunctions
	There was a issue with BER encoding and the undec_rest option in generated
decoders. An exception could be thrown instead of returning an error tuple.
Own Id: OTP-14786 Aux Id: ERL-518

	The asn1ct:test functions crashed on decoders generated with options
no_ok_wrapper, undec_rest.
Own Id: OTP-14787 Aux Id: ERL-518

Asn1 5.0.3
Fixed Bugs and Malfunctions
	Compiling an ASN.1 module using the option {n2n, EnumTypeName} when
EnumTypeName contains a hyphen like for example Cause-Misc caused syntax
errors when compiling the generated Erlang code. This is now corrected.
Own Id: OTP-14495 Aux Id: ERL-437

Asn1 5.0.2
Fixed Bugs and Malfunctions
	Default values now work in extension for PER, so if you give the atom
asn1_DEFAULT instead of a value it will become the default value.
Own Id: OTP-13011 Aux Id: ERIERL-60

Asn1 5.0.1
Fixed Bugs and Malfunctions
	Fixed compilation error of generated code caused by a missing quotation of
function names as part of an external call for encoding.
Own Id: OTP-14519 Aux Id: ERIERL-49

Asn1 5.0
Fixed Bugs and Malfunctions
	Add compile option -compile(no_native) in modules with on_load directive
which is not yet supported by HiPE.
Own Id: OTP-14316 Aux Id: PR-1390

Improvements and New Features
	The error tuple returned from the encode and decode functions will now
include the stack backtrace to make it easier to understand what went wrong.
Own Id: OTP-13961

	The deprecated module asn1rt has been removed. The deprecated functions
asn1ct:encode/3 and asn1ct:decode/3 have been removed. The undocumented
function asn1ct:encode/2 has been removed.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-14146

	The new 'maps' option changes the representation of the types SEQUENCE and
SET to be maps (instead of records).
Own Id: OTP-14219

Asn1 4.0.4
Fixed Bugs and Malfunctions
	Compiling multiple ASN.1 modules in the same directory with parallel make
(make -j) should now be safe.
Own Id: OTP-13624

Asn1 4.0.3
Improvements and New Features
	Internal changes
Own Id: OTP-13551

Asn1 4.0.2
Fixed Bugs and Malfunctions
	When compiling to the PER format, the ASN.1 compiler would crash when
attempting to compile an ASN.1 module with a constrained INTEGER with more
than 65536 values and named values. (Thanks to Ingars for reporting this bug.)
Own Id: OTP-13257

	The ASN.1 compiler will now emit Dialyzer suppressions for improper lists.
Thus, there is no longer any need to use --Wno_improper_lists when analyzing
modules generated by the ASN.1 compiler.
Own Id: OTP-13324

Asn1 4.0.1
Fixed Bugs and Malfunctions
	Trying to encode an empty named BIT STRING in BER would fail with a
function_clause exception. (Thanks to Svilen Ivanov for reporting this bug.)
Own Id: OTP-13149

Asn1 4.0
Fixed Bugs and Malfunctions
	Many bugs have been eliminated in the ASN.1 compiler so that it can now
successfully compile many more ASN.1 specifications. Error messages have also
been improved.
Own Id: OTP-12395

Improvements and New Features
	The documentation for asn1ct:test/1,2,3 and asn1ct:value/2 has been
updated with information about the limitations of the functions.
Own Id: OTP-12765 Aux Id: seq12866, seq12867

Asn1 3.0.4
Fixed Bugs and Malfunctions
	The ASN.1 compiler would crash if a SEQUENCE ended with a double set of
ellipses (...).
Own Id: OTP-12546 Aux Id: seq12815

Asn1 3.0.3
Fixed Bugs and Malfunctions
	When decoding BER, primitives with an indefinite length will be immediately
rejected. (Thanks to Simon Cornish for reporting this bug.)
Own Id: OTP-12205

	BER: A bug with compliance to X.680 (200811) s31.2.7 has been fixed.
Basically, when TagDefault is AUTOMATIC then tags are IMPLICIT unless EXPLICIT
is given.
Own Id: OTP-12318

	Usage of the EXTERNAL 1994 variant type was broken.
Own Id: OTP-12326

Asn1 3.0.2
Fixed Bugs and Malfunctions
	Several problems where the ASN.1 compiler would crash when attempting to
compile correct specifications have been corrected.
Own Id: OTP-12125

	Robustness when decoding incorrect BER messages has been improved.
Own Id: OTP-12145

Asn1 3.0.1
Fixed Bugs and Malfunctions
	The ASN.1 compiler now generates code that don't trigger Dialyzer warnings.
Along the way, a few minor bugs were fixed.
Own Id: OTP-11372 Aux Id: seq12397

Asn1 3.0
Fixed Bugs and Malfunctions
	Subtyping an extensible ENUMERATED would cause an compilation error. (Thanks
to Morten Nygaard Åsnes for reporting this bug.)
Own Id: OTP-11700

	When specifying the value for an OCTET STRING in a specification, the ASN.1
standard clearly states that the value must be either a bstring or an hstring,
but NOT a cstring. The ASN.1 compiler will now generate a compilation error if
the value of an OCTET STRING is given as a character string.
That is, the following example is now illegal:
string OCTET STRING ::= "Now illegal"
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-11727

	Application upgrade (appup) files are corrected for the following
applications:
asn1, common_test, compiler, crypto, debugger, dialyzer, edoc, eldap, erl_docgen, et, eunit, gs, hipe, inets, observer, odbc, os_mon, otp_mibs, parsetools, percept, public_key, reltool, runtime_tools, ssh, syntax_tools, test_server, tools, typer, webtool, wx, xmerl
A new test utility for testing appup files is added to test_server. This is
now used by most applications in OTP.
(Thanks to Tobias Schlager)
Own Id: OTP-11744

Improvements and New Features
	By giving --enable-static-{nifs,drivers} to configure it is now possible to
statically linking of nifs and drivers to the main Erlang VM binary. At the
moment only the asn1 and crypto nifs of the Erlang/OTP nifs and drivers have
been prepared to be statically linked. For more details see the Installation
Guide in the System documentation.
Own Id: OTP-11258

	Code generation for the per and uper backends has been somewhat improved.
Own Id: OTP-11573

	The OCTET STRING and BIT STRING types now have a more natural mapping to
Erlang types (binary and bitstring, respectively), which is more efficient and
will avoid useless conversions between lists and binaries/bitstrings.
This is an incompatible change. To revert to the old mapping to support
existing applications, use the legacy_erlang_types option.
Impact: There is a potential for better performance, as it is now possible to
avoid conversions between lists and binaries both in the generated ASN.1
encode/decode code and in the application itself.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-11594

	All functions in the asn1rt module, as well as asn1ct:decode/3 and
asn1ct:encode/3, are now deprecated.
Own Id: OTP-11731

	Generated .hrl files are now protected from being included more than once.
Own Id: OTP-11804

Asn1 2.0.4
Fixed Bugs and Malfunctions
	The default value for a BIT STRING would not always be recognized, causing
the encoding to be incorrect for the DER/PER/UPER encodings.
Own Id: OTP-11319

	The ASN.1 application would fail to build if the .erlang file printed
something to standard output.
Own Id: OTP-11360

	An union of integer ranges in an INTEGER constraint could sometimes be
interpreted as the intersection of the range.
Own Id: OTP-11411 Aux Id: seq12443

	Extensible, multiple single value constraints (such as INTEGER (1|17, ...))
would be incorrectly encoded.
Own Id: OTP-11415

	The ASN.1 compiler would fail to compile a constraint with values given for
the extension part (such as INTEGER (1..10, ..., 11..20)).
Own Id: OTP-11504

Improvements and New Features
	The new option 'no_ok_wrapper' generates M:encode/2 and M:decode/2 functions
that don't wrap the return value in an {ok,...} tuple.
Own Id: OTP-11314

Asn1 2.0.3
Fixed Bugs and Malfunctions
	Open types greater than 16383 bytes will now be correctly encoded and decoded.
Own Id: OTP-11262 Aux Id: seq12386, OTP-11223

Improvements and New Features
	For the PER and UPER formats, code generation especially for encoding has been
improved.
When encoding BIT STRINGs, values longer than the maximum size for the BIT
STRING type would be truncated silently - they now cause an exception.
Open types greater than 16383 bytes will now be correctly encoded and decoded.
IMPORTANT NOTE: For ASN.1 specifications that depend on each other, such as
the S1AP-* specifications, it is important to recompile all specifications
(compiling some with this version of the compiler and some with an older
version will not work).
Own Id: OTP-11300

Asn1 2.0.2
Fixed Bugs and Malfunctions
	Fix some Makefile rules that didn't support silent rules. Thanks to Anthony
Ramine.
Own Id: OTP-11111

	PER/UPER: A semi-constrained INTEGER with a non-zero lower bound would be
incorrectly decoded. This bug was introduced in R16.
PER/UPER: Given INTEGER (10..MAX, ...), attempting to decode any integer
below 10 would cause the encoder to enter an infinite loop.
PER/UPER: For a type with an extensible SIZE constraint, sizes outside of the
root range were incorrectly encoded.
Given a constraint such as (SIZE (5, ...)), encoding a size less than 5
would fail (PER/UPER). Similarly, for BER decoding would fail.
PER: The encoder did not align a known multiplier string (such as IA5String)
of length 16 bits (exactly) to an octet boundary.
In rare circumstances, DEFAULT values for the UPER backend could be wrongly
encoded.
Own Id: OTP-11134

	UPER: The compiler would crash when compiling an ENUMERATED having more than
63 extended values.
PER/UPER: A SEQUENCE with more 64 extended values could not be decoded.
Own Id: OTP-11153

	When decoding a SEQUENCE defined inline inside a an extension addition group,
the record named generated by the decoding code would not match the name in
the generated .hrl file.
Own Id: OTP-11154 Aux Id: seq12339

Improvements and New Features
	Postscript files no longer needed for the generation of PDF files have been
removed.
Own Id: OTP-11016

Asn1 2.0.1.2
Fixed Bugs and Malfunctions
	When an object set is an actual parameter, the extension marker for the object
set could get lost (which would cause the decoding of unknown values to fail).
Own Id: OTP-10995 Aux Id: seq12290

Asn1 2.0.1.1
Fixed Bugs and Malfunctions
	The generated decoder for the 'per' and 'uper' backends did not correctly
decode ENUMERATEDs with a single value.
The generated encoder for the 'per' and 'uper' backends generated an empty
binary for a top-level type that did not need to be encoded (such as an
ENUMERATED with a single value). The correct result should be a binary
containing a 0 byte.
Own Id: OTP-10916 Aux Id: seq12270

Asn1 2.0.1
Fixed Bugs and Malfunctions
	Fixed broken table constraints within a SET OF or SEQUENCE OF for the BER
backend.
Own Id: OTP-10853 Aux Id: seq12245

Asn1 2.0
Fixed Bugs and Malfunctions
	Encoding SEQUENCEs with multiple extension addition groups with optional
values could fail (depending both on the specification and whether all values
were provided).
Own Id: OTP-10664

Improvements and New Features
	The options for the ASN.1 compiler has been drastically simplified. The
backend is chosen by using ber, per, or uper. The options optimize,
nif, and driver are no longer needed. The old options will still work, but
will issue a warning.
Another change is that generated encode/2 function will always return a
binary (some backends used to return an iolist).
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-10410 Aux Id: kunagi-254 [165]

	The ASN.1 compiler generates faster decode functions for PER and UPER. Some
minor improvements have also been made for PER/UPER encoding, and to the BER
backend.
Own Id: OTP-10519 Aux Id: kunagi-322 [233]

	The ASN.1 compiler will now always include necessary run-time functions in the
generated Erlang modules (except for asn1rt_nif which is still needed). If
the option 'inline' is used the ASN.1 compiler will generate a warning. But
if '{inline,OutputFile}' is use, the ASN.1 compiler will refuse to compile
the file. (Use a .set.asn file if you need to remove the output file.)
The 'BIT STRING' type will now be decoded as Erlang bitstrings by default.
Use the new legacy_bit_string option to encode as lists of ones and zeroes.
(The compact_bit_string option still works as before.)
Open types are now always returned as binaries (when there is no information
allowing them to be decoded).
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-10588 Aux Id: kunagi-341 [252]

Asn1 1.8.1
Fixed Bugs and Malfunctions
	ASN.1 decoders generated with the options -bber_bin +optimize +nif would
decode open types with a size larger than 511 incorrectly. That bug could
cause decoding by public_key to fail. The bug was in the NIF library
asn1_erl_nif.so; therefore there is no need re-compile ASN.1 specifications
that had the problem.
Own Id: OTP-10805 Aux Id: seq12244

	Encoding SEQUENCEs with multiple extension addition groups with optional
values could fail (depending both on the specification and whether all values
were provided).
Own Id: OTP-10811 Aux Id: OTP-10664

Asn1 1.8
Fixed Bugs and Malfunctions
	Encoding and decoding of integer ranges can now be done with an upper bound
larger than the previous limit of 16^10. The new upper bound in per encoding
and decodings for constrained whole numbers is 2^2040 (close to 16^508)
Own Id: OTP-10128

	Per encoding/decoding now works correctly for single value subtyping of an
integer type where a subtype is a predefined value. Previously a predefined
value could cause a non-valid range-check in the generated Erlang code for per
encoding/decoding due to a bug in the constraint checking.
Own Id: OTP-10139

	Fix typo error in selected decode function (Thanks to Artem Teslenko)
Own Id: OTP-10152

	Better error indication when detecting unexpected tags during decoding of BER
encoded data.
Own Id: OTP-10186

	asn1rt_check: Fix transform_to_EXTERNAL1990 for binary input (Thanks to Harald
Welte)
Own Id: OTP-10233

Improvements and New Features
	Add support for multiple ExtensionAdditionGroups
Own Id: OTP-10058

	Add support for extensible enumeration types in n2n generated functions.
Own Id: OTP-10144

Asn1 1.7
Improvements and New Features
	Some ASN.1 INTEGER type and SEQUENCE constructor variants previously not
handled by the ASN.1 compiler are now correctly handled
Own Id: OTP-9688

	An INTEGER with a value constraint where unions are used e.g. X1 ::= INTEGER
(1..4 | 6 | 8 | 10 | 20) is not handled correctly. For PER the value is
encoded in wrong number of bits.
Own Id: OTP-9946

Asn1 1.6.19
Improvements and New Features
	The linked-in driver used for ber decode and per encode has been replaced with
nifs. To enable the usage of nifs pass the nif option to erlc or
asn1rt:compile when compiling. If you previously used the linked-in driver,
you have to recompile your ASN1 modules with the current version of asn1
application as the linked-in driver modules have been removed.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-9419

	A few of the heavy calculations which are done for encoding and decoding
operations when dealing with SEQUENCE OF and DEFAULT in runtime have been
moved to be done in compile time instead.
Own Id: OTP-9440

	When compiling an ASN.1 ber module with the +nif option, the module will use a
new nif for ber encoding, increasing performance by about 5%.
Own Id: OTP-9441

	Tuple funs (a two-element tuple with a module name and a function) are now
officially deprecated and will be removed in R16. Use 'fun M:F/A' instead.
To make you aware that your system uses tuple funs, the very first time a
tuple fun is applied, a warning will be sent to the error logger.
Own Id: OTP-9649

Asn1 1.6.18
Fixed Bugs and Malfunctions
	Implement or fix -Werror option
If -Werror is enabled and there are warnings no output file is written. Also
make sure that error/warning reporting is consistent. (Thanks to Tuncer Ayaz)
Own Id: OTP-9536

Asn1 1.6.17
Fixed Bugs and Malfunctions
	Test cases which started failing when timer:tc was changed to not catch are
corrected.
Own Id: OTP-9286

	The bounds checking in the asn1_erl_driver when the length value of a TLV is a
Long Definite Length is corrected. Thanks to Vance Shipley.
Own Id: OTP-9303

Asn1 1.6.16
Fixed Bugs and Malfunctions
	asn1ct: Make formatting of errors and warnings consistent
Consistently format warning and error reports. Warning and error options from
erlc now also work in asnc1ct. (thanks to Tuncer Ayaz)
Own Id: OTP-9062

	Shut off some dialyzer warnings
Own Id: OTP-9063

Improvements and New Features
	Crash in asn1ct_check, componentrelation_leadingattr fixed. (Thanks to
Stephane Pamelard for finding the bug)
Own Id: OTP-9092

Asn1 1.6.15
Fixed Bugs and Malfunctions
	The encoding of ExtensionAdditionGroup (for PER and UPER) is corrected.
Own Id: OTP-8866 Aux Id: OTP-8797, SEQ-11557

	A race condition when several processes in parallel start to do encode/decode
using the driver could cause an error log regarding crashing port owner
process. This race is now eliminated.
Own Id: OTP-8948 Aux Id: seq11733

Asn1 1.6.14.1
Fixed Bugs and Malfunctions
	Extension Addition Groups are now supported by the parser and in all backends.
Own Id: OTP-8598 Aux Id: seq-11557

	Extension Addition Groups are now supported in nested types within a SEQUENCE
and CHOICE as well (missed that in previous fix)
Own Id: OTP-8797 Aux Id: seq-11557

Improvements and New Features
	Bug in UNALIGNED PER regarding encoding and decoding of constrained numbers
with a valuerange > 1024. (Thanks to Vincent de Phily)
Own Id: OTP-8779

	Minor corrections in the User Guide.
Own Id: OTP-8829

Asn1 1.6.14
Improvements and New Features
	By default, the ASN.1 compiler is now silent in the absence of warnings or
errors. The new 'verbose' option or the '-v' option for erlc can be
given to show extra information (for instance, about the files that are
generated). (Thanks to Tuncer Ayaz.)
Own Id: OTP-8565

Asn1 1.6.13
Fixed Bugs and Malfunctions
	Harmless buffer overflow by one byte in asn1 and ram_file_drv.
Own Id: OTP-8451

Improvements and New Features
	Cross compilation improvements and other build system improvements.
Most notable:
	Lots of cross compilation improvements. The old cross compilation support
was more or less non-existing as well as broken. Please, note that the cross
compilation support should still be considered as experimental. Also note
that old cross compilation configurations cannot be used without
modifications. For more information on cross compiling Erlang/OTP see the
$ERL_TOP/INSTALL-CROSS.md file.
	Support for staged install using
DESTDIR. The old
broken INSTALL_PREFIX has also been fixed. For more information see the
$ERL_TOP/INSTALL.md file.
	Documentation of the release target of the top Makefile. For more
information see the $ERL_TOP/INSTALL.md file.
	make install now by default creates relative symbolic links instead of
absolute ones. For more information see the $ERL_TOP/INSTALL.md file.
	$ERL_TOP/configure --help=recursive now works and prints help for all
applications with configure scripts.
	Doing make install, or make release directly after make all no longer
triggers miscellaneous rebuilds.
	Existing bootstrap system is now used when doing make install, or
make release without a preceding make all.
	The crypto and ssl applications use the same runtime library path when
dynamically linking against libssl.so and libcrypto.so. The runtime
library search path has also been extended.
	The configure scripts of erl_interface and odbc now search for thread
libraries and thread library quirks the same way as ERTS do.
	The configure script of the odbc application now also looks for odbc
libraries in lib64 and lib/64 directories when building on a 64-bit
system.
	The config.h.in file in the erl_interface application is now
automatically generated in instead of statically updated which reduces the
risk of configure tests without any effect.

(Thanks to Henrik Riomar for suggestions and testing)
(Thanks to Winston Smith for the AVR32-Linux cross configuration and testing)
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-8323

	Add support for prefixing macro names generated by the compiler
This is useful when multiple protocols that contains macros with identical
names are included in a single module.
Add the missing record_name_prefix compiler option to the documentation.
Own Id: OTP-8453

	Cleanups suggested by tidier and modernization of types and specs.
Own Id: OTP-8455

	Support for EXTENSIBILITY IMPLIED and SET/SEQ OF NamedType is added.
Own Id: OTP-8463

Asn1 1.6.12
Improvements and New Features
	The documentation is now built with open source tools (xsltproc and fop) that
exists on most platforms. One visible change is that the frames are removed.
Own Id: OTP-8256

Asn1 1.6.11
Improvements and New Features
	A new option {n2n,TypeName} can be used to enable generation of conversion
functions from name to number and vice versa for selected ENUMERATION types.
The option can be repeated many times in order to specify several types in the
same file.
If the TypeName specified does not exists or is not an ENUMERATION type, the
compilation will be terminated with an error code.
Below follows an example on how to use the option from the command line with
erlc:
erlc -bper+"{n2n,'CauseMisc'}" +"{n2n,'CausePcl'}" MyModyle.asn
Own Id: OTP-8136 Aux Id: seq11347

	Range checks added for BIT STRING with fixed SIZE constraint.
Own Id: OTP-7972 Aux Id: seq11280

	Now support multiple-line comments in asn1-specs as specified in ASN1 X.680
(07/2002), section 11.6.4
Own Id: OTP-8043

	Now parses and adds abstract syntax for PATTERN subtype constraint. No other
action is taken on this type of constraint.
Own Id: OTP-8046

	The ASN1 subtype constraint CONTAINING Type,
CONTAINING Type ENCODED BY Value and ENCODED BY Value now is parsed.
Abstract syntax is added but no further action in generated code is taken.
Own Id: OTP-8047

Asn1 1.6.10
Fixed Bugs and Malfunctions
	A faulty receive case that catch-ed all messages in the initialization of the
driver has been removed, the initialization has been restructured.
Own Id: OTP-7954 Aux Id: seq11220

Improvements and New Features
	The anonymous part of the decode that splits the ASN1 TLV into Tag Value
tuples has been optimized.
Own Id: OTP-7953

Asn1 1.6.9
Fixed Bugs and Malfunctions
	Error that caused crash when drivers were loaded is now corrected. Parallel
driver for asn1 now enabled.
Own Id: OTP-7904 Aux Id: seq11220

Improvements and New Features
	Optimized code for ENUMERATION type in encoder/decoder.
Own Id: OTP-7909

Asn1 1.6.8.1
Fixed Bugs and Malfunctions
	Removed parallel-driver functionality due to failure when loading the driver.
Own Id: OTP-7900 Aux Id: seq11220

Improvements and New Features
	Generated code now uses guards that is not obsolete, e.g.
is_integer/1 instead of integer/1.
Own Id: OTP-7910

Asn1 1.6.8
Fixed Bugs and Malfunctions
	A BIT STRING with a size constraint that has a single value and an extension
as in BIT STRING (SIZE (16,...)) was erroneous encoded/decoded. This is now
corrected and follows X.691 Section 15.6.
Own Id: OTP-7876 Aux Id: seq11220

Asn1 1.6.7
Improvements and New Features
	Now asn1 starts multiple drivers to enable simultaneous encode/decode in
different processes for the asn1-backends using linked-in driver.
Own Id: OTP-7801

Asn1 1.6.6
Fixed Bugs and Malfunctions
	Decode of an open_type when the value was empty tagged type encoded with
indefinite length failed. This is now corrected.
Own Id: OTP-7759 Aux Id: seq11166

	Encode of BIT STRING with size of exact length, on compact_bit_string format
in UNALIGNED PER failed when value had the right size, i.e. no padding needed.
Own Id: OTP-7763 Aux Id: seq11182

Asn1 1.6.5
Fixed Bugs and Malfunctions
	For a BIT STRING with SIZE constraint higher than 255 compiled with
[per_bin,optimize, compact_bit_string] an improper io-list was created and
sent to the c-driver for complete encoding. This error has been resolved.
Own Id: OTP-7734 Aux Id: seq11170

Asn1 1.6.4
Fixed Bugs and Malfunctions
	A a SEQUENCE OF with a type that is a CHOICE with ellipses occurred falsely a
compile error. The error causing that is now removed.
Own Id: OTP-7708 Aux Id: seq11136

Asn1 1.6.3
Fixed Bugs and Malfunctions
	constrained number with a value-range greater than 512 now has the proper
interpretation of the values that causes shift to the next number of units
(bits), According to limit condition 2^m < "range" =< 2^(m + 1) then the
number of bits are m + 1.
Own Id: OTP-7681 Aux Id: seq11114

Improvements and New Features
	Can now handle default values of simple types that is provided on its own
format, i.e. not just as asn1_DEFAULT.
Own Id: OTP-7678 Aux Id: seq11114

Asn1 1.6.2
Fixed Bugs and Malfunctions
	comparison of two value definitions failed due to new module name field in
valuedef record. It is now corrected.
Own Id: OTP-7608

Asn1 1.6.1
Fixed Bugs and Malfunctions
	Bug regarding propagation of parameters of parameterized type fixed.
Own Id: OTP-7174 Aux Id: seq10864

	A bug, related to instantiation of a parameterized type with a type definition
in the parameter-list, has been removed. The definition of the parameter type
was in another module than the instance definition causing limited module
info.
Own Id: OTP-7299 Aux Id: seq10864

	Removed hard-coded name that may cause name collision.
Own Id: OTP-7322 Aux Id: seq10864

	Object set of a class with id with properties UNIQUE OPTIONAL and the id field
is lacking in the object is for now treated as a object without a unique
identifier, i.e. no table is generated for this object.
Own Id: OTP-7332 Aux Id: seq10864

	Compiler crashed when failed to handle a OID as ValueFromObject.
Own Id: OTP-7476 Aux Id: seq10999

	A corrupted encoding may cause a loop when a buffer of at least two bytes of
zero matches tag and length of a SET component. This behavior occurred only
with decoder generated with ber or ber_bin options. Now a control breaks
the loop.
Own Id: OTP-7533

	Encode of BIT STRING longer than 255 bits with a SIZE(integer()) constraint
caused a crash when spec was compiled with per_bin, optimize options.
Own Id: OTP-7602 Aux Id: seq11079

Improvements and New Features
	Now supports REAL type of base 2 and 10
Own Id: OTP-7166 Aux Id: seq10864

	By the asn1 compiler option {record_name_prefix Name} a prefix is chosen to
the name of the record generated in the .hrl and used in the generated .erl
files.
Own Id: OTP-7204 Aux Id: seq10853

	The TypeFromObject production now covered
Own Id: OTP-7295 Aux Id: seq10468

	Extended support for ObjectSetFromObjects. Production occurred as a part of
the RootElementSetSpec of the ObjectSetSpec. Added also support for Exclusion
of Element in ObjectSetSpec.
Own Id: OTP-7306 Aux Id: seq10864

	Now implements RELATIVE-OID
Own Id: OTP-7334 Aux Id: seq10864

Asn1 1.6
Fixed Bugs and Malfunctions
	Now is ordering, according to the canonical order, of components in a SET
added. Canonical order is described in X.691 9.2 and X.680 8.6
Own Id: OTP-7375 Aux Id: unaligned PER

	The precedence rules for extended constraints have been misinterpreted. The
rule says for instance that if there are more than one constraint on a type
that have extension-mark, only the last of the extension-marks would be kept.
This affects the encoding of PER and is now corrected.
Own Id: OTP-7400 Aux Id: OTP-7335

	A constrained number with a single-value constraint that is extensible was
falsely encoded/decoded in aligned/unaligned PER. This is now corrected.
Own Id: OTP-7403

Improvements and New Features
	The ASN.1 compiler has got a new backend supporting PER UNALIGNED. Previously
it was only support for PER ALIGNED.
Own Id: OTP-7335

	Now the asn1-compiler handles unions and intersections of PermittedAlphabet
constraints.
Own Id: OTP-7374 Aux Id: unaligned PER

	With the undocumented option no_final_padding the whole encoded message is
not padded to a border of a byte. Thus the returned encoded message is a
bitstring.
Own Id: OTP-7407

Asn1 1.5.2
Fixed Bugs and Malfunctions
	When duplicates of object fields were removed only one table access function
for each unique identifier value was generated. This can occur when several
object sets are merged by use of ObjectSetFromObjects.
Own Id: OTP-7263 Aux Id: seq10864

	DER: For some complex types and components with reference to type in several
steps the default value check function was not generated. This is now fixed.
Own Id: OTP-7268 Aux Id: seq10684

	Now is the tag in a tagged type as parameter propagated to the instance.
Own Id: OTP-7273 Aux Id: seq10864

Improvements and New Features
	Added type T61String that is similar to TeletexString
Own Id: OTP-7264 Aux Id: seq10864

Asn1 1.5.1
Fixed Bugs and Malfunctions
	A bug related to renaming of types has been fixed.This occurred using the
.set.asn functionality.
Own Id: OTP-7149 Aux Id: seq10853

	syntax error in ASN1 value now correctly shown
Own Id: OTP-7154 Aux Id: seq10864

	Now a COMPONENTS OF construct in a parameterized type is expanded correctly
Own Id: OTP-7155 Aux Id: seq10864

	Now the asn1-compiler also handles empty SEQUENCE DEFAULT values as {}.
Own Id: OTP-7169 Aux Id: seq10864

	Now SelectionType gets the tag of the selected type.
Own Id: OTP-7171 Aux Id: seq10864

	Correction of generated code for decode of an open type in a SEQUECNE OF/ SET
OF
Own Id: OTP-7193 Aux Id: seq10875

Improvements and New Features
	Misc improvements and bug corrections regarding default values.
Own Id: OTP-7199 Aux Id: seq10864

Asn1 1.5
Improvements and New Features
	Now generating records in .hrl file for instances of parameterized SEQUENCE or
SET.
Own Id: OTP-6835

	Optimization using bitstr in encode/decode functions. Active with
[per_bin, optimize] options.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-6882

Asn1 1.4.6
Fixed Bugs and Malfunctions
	Parsing and encoding/decoding of type constrained with SIZE with extension is
now recovered.
Own Id: OTP-6763

	inline failed because trying to use a removed module.
Own Id: OTP-6769

	Fixed problem with a reference to a type from an object. The failure was
caused bye change of type name when using inline option.
Own Id: OTP-6770

	Handling of decode pattern for exclusive decode was false in the case when an
un-decoded component had more than one following elements that should be
decoded.
Own Id: OTP-6786

Improvements and New Features
	Now the asn1-compiler supports two root lists in SEQUENCE and SET according to
alternative three in ComponentTypeLists (X.680 07/2002 section 24.1), i.e.
with an extension list between two ellipses.
Own Id: OTP-5067 Aux Id: seq8452

Asn1 1.4.5
Fixed Bugs and Malfunctions
	Merging modules by inline earlier disabled the driver (used in modules
generated with [optimized]/[optimized,driver] options). Now this is
repaired.
Own Id: OTP-6601

	Checking phase now aware of which module an INSTANCE OF is declared in.
Own Id: OTP-6702

Improvements and New Features
	The compiler now handle all forms of ObjectSetSpec according to ITU-T
recommendation X.681 (ISO/IEC 8824-2:2002).
Own Id: OTP-6698

	Enhanced support of referencing object sets by ObjectSetFromObjects.
Own Id: OTP-6707

	Support for parameterized object in an object set.
Own Id: OTP-6717

 Introduction

The asn1 application provides the following:
	An ASN.1 compiler for Erlang, which generates encode and decode functions to
be used by Erlang programs sending and receiving ASN.1-specified data.
	Runtime functions used by the generated code.
	Support for the following encoding rules:	Basic Encoding Rules (BER)
	Distinguished Encoding Rules (DER), a specialized form of BER that is used
in security-conscious applications
	Packed Encoding Rules (PER), both the aligned and unaligned variant
	JSON Encoding Rules (JER)

Scope
This application covers all features of ASN.1 up to the 1997 edition of the
specification. In the 2002 edition, new features were introduced. The following
features of the 2002 edition are fully or partly supported:
	Decimal notation (for example, "1.5e3) for REAL values. The NR1, NR2, and
NR3 formats as explained in ISO 6093 are supported.
	The RELATIVE-OID type for relative object identifiers is fully supported.
	The subtype constraint (CONTAINING/ENCODED BY) to constrain the content of
an octet string or a bit string is parsed when compiling, but no further
action is taken. This constraint is not a PER-visible constraint.
	The subtype constraint by regular expressions (PATTERN) for character string
types is parsed when compiling, but no further action is taken. This
constraint is not a PER-visible constraint.
	Multiple-line comments as in C, /* ... */, are supported.

Prerequisites
It is assumed that the reader is familiar with the Erlang programming language,
concepts of OTP, and is familiar with the ASN.1 notation. The ASN.1 notation is
documented in the standard definition X.680, which is the primary text. It can
also be helpful, but not necessary, to read the standard definitions X.681,
X.682, X.683, X.690, and X.691.
A good book explaining those reference texts is Dubuisson: ASN.1 - Communication
Between Heterogeneous Systems, is free to download at
http://www.oss.com/asn1/dubuisson.html.

 ASN.1

Introduction
ASN.1 is a formal language for describing data structures to be exchanged
between distributed computer systems. The purpose of ASN.1 is to have a platform
and programming language independent notation to express types using a
standardized set of rules for the transformation of values of a defined type
into a stream of bytes. This stream of bytes can then be sent on any type of
communication channel. This way, two applications written in different
programming languages running on different computers, and with different
internal representation of data, can exchange instances of structured data
types.

 Getting Started

Example
The following example demonstrates the basic functionality used to run the
Erlang ASN.1 compiler.
Create a file named People.asn containing the following:
People DEFINITIONS AUTOMATIC TAGS ::=
BEGIN
 Person ::= SEQUENCE {
 name PrintableString,
 location INTEGER {home(0),field(1),roving(2)},
 age INTEGER OPTIONAL
 }
END
This file must be compiled before it can be used. The ASN.1 compiler checks that
the syntax is correct and that the text represents proper ASN.1 code before
generating an abstract syntax tree. The code generator then uses the abstract
syntax tree to generate code.
The generated Erlang files are placed in the current directory or in the
directory specified with option {outdir,Dir}.
The compiler can be called from the Erlang shell like this:
1> asn1ct:compile("People", [ber]).
ok
Option verbose can be added to get information about the generated files:
2> asn1ct:compile("People", [ber,verbose]).
Erlang ASN.1 compiling "People.asn"
--{generated,"People.asn1db"}--
--{generated,"People.hrl"}--
--{generated,"People.erl"}--
ok
ASN.1 module People is now accepted and the abstract syntax tree is saved in
file People.asn1db. The generated Erlang code is compiled using the Erlang
compiler and loaded into the Erlang runtime system. There is now an API for
encode/2 and decode/2 in module People, which is called like this:
'People':encode(<Type name>, <Value>)
or:
'People':decode(<Type name>, <Value>)
Assume that there is a network application that receives instances of the ASN.1
defined type Person, modifies, and sends them back again:
receive
 {Port,{data,Bytes}} ->
 case 'People':decode('Person',Bytes) of
 {ok,P} ->
 {ok,Answer} = 'People':encode('Person',mk_answer(P)),
 Port ! {self(),{command,Answer}};
 {error,Reason} ->
 exit({error,Reason})
 end
 end,
In this example, a series of bytes is received from an external source and the
bytes are then decoded into a valid Erlang term. This was achieved with the call
'People':decode('Person',Bytes), which returned an Erlang value of the ASN.1
type Person. Then an answer was constructed and encoded using
'People':encode('Person',Answer), which takes an instance of a defined ASN.1
type and transforms it to a binary according to the BER or PER encoding rules.
The encoder and decoder can also be run from the shell:
2> Rockstar = {'Person',"Some Name",roving,50}.
{'Person',"Some Name",roving,50}
3> {ok,Bin} = 'People':encode('Person',Rockstar).
{ok,<<243,17,19,9,83,111,109,101,32,78,97,109,101,2,1,2,
 2,1,50>>}
4> {ok,Person} = 'People':decode('Person',Bin).
{ok,{'Person',"Some Name",roving,50}}
Module Dependencies
It is common that ASN.1 modules import defined types, values, and other entities
from another ASN.1 module.
Earlier versions of the ASN.1 compiler required that modules that were imported
from had to be compiled before the module that imported. This caused problems
when ASN.1 modules had circular dependencies.
Referenced modules are now parsed when the compiler finds an entity that is
imported. No code is generated for the referenced module. However, the compiled
modules rely on that the referenced modules are also compiled.
ASN.1 Application User Interface
The ASN.1 application provides the following two separate user interfaces:
	The module asn1ct, which provides the compile-time functions (including the
compiler)
	The module asn1rt_nif, which provides the runtime functions for the ASN.1
decoder for the BER back end

The reason for this division of the interfaces into compile-time and runtime is
that only runtime modules (asn1rt_nif) need to be loaded in an embedded system.
Compile-Time Functions
The ASN.1 compiler can be started directly from the command line by the erlc
program. This is convenient when compiling many ASN.1 files from the command
line or when using Makefiles. Here some examples showing of how erlc can
compile ASN.1 modules:
erlc Person.asn
erlc -bper Person.asn
erlc -bber ../Example.asn
erlc -o ../asnfiles -I ../asnfiles -I /usr/local/standards/asn1 Person.asn
Useful options for the ASN.1 compiler:
	-b[ber | per | uper | jer] - Choice of encoding rules. If omitted, ber
is the default.

	-o OutDirectory - Where to put the generated files. Default is the
current directory.

	-I IncludeDir - Where to search for .asn1db files and ASN.1 source
specs to resolve references to other modules. This option can be repeated many
times if there are several places to search in. The compiler searches the
current directory first.

	+der - DER encoding rule. Only when using option -bber.

	+jer - Functions jer_encode/2 and jer_decode/2 for JSON encoding
rules are generated together with functions for ber or per. Only to be
used when the main encoding option is -bber, -bper or -buper.

	+maps - Use maps instead of records to represent the SEQUENCE and
SET types. No .hrl files will be generated. See the section
Map representation for SEQUENCE and SET
for more information.

	+asn1config - This functionality works together with option ber. It
enables the specialized decodes, see section
Specialized Decode.

	+undec_rest - A buffer that holds a message being decoded can also have
trailing bytes. If those trailing bytes are important, they can be returned
along with the decoded value by compiling the ASN.1 specification with option
+undec_rest. The return value from the decoder is {ok,Value,Rest} where
Rest is a binary containing the trailing bytes.

	+'Any Erlc Option' - Any option can be added to the Erlang compiler when
compiling the generated Erlang files. Any option unrecognized by the ASN.1
compiler is passed to the Erlang compiler.

For a complete description of erlc, see ERTS Reference Manual.
The compiler and other compile-time functions can also be started from the
Erlang shell. Here follows a brief description of the primary functions. For a
complete description of each function, see module asn1ct in the
ASN.1 Reference Manual.
The compiler is started by asn1ct:compile/1 with default options, or
asn1ct:compile/2 if explicit options are given.
Example:
asn1ct:compile("H323-MESSAGES").
This is equivalent to:
asn1ct:compile("H323-MESSAGES", [ber]).
If PER encoding is wanted:
asn1ct:compile("H323-MESSAGES", [per]).
The generic encode and decode functions can be called as follows:
'H323-MESSAGES':encode('SomeChoiceType', {call,<<"octetstring">>}).
'H323-MESSAGES':decode('SomeChoiceType', Bytes).
Runtime Functions
When an ASN.1 specification is compiled with option ber, the asn1rt_nif
module and the NIF library in asn1/priv_dir are needed at runtime.
By calling function info/0 in a generated module, you get information about
which compiler options were used.
Special Decode Functionality for JSON Encoding Rules (JER)
When using the JSON encoding rules, it is possible to call the
decode/2 function in the following way with data that has already
been decoded by json:decode/1:
SomeModule:decode(Type, {json_decoded, Decoded}).
Example:
1> asn1ct:compile("People", [jer]).
ok
2> Rockstar = {'Person',"Vince Eclipse",roving,50}.
{'Person',"Vince Eclipse",roving,50}
3> {ok,Bin} = 'People':encode('Person', Rockstar).
{ok,<<"{\"name\":\"Vince Eclipse\",\"location\":2,\"age\":50}">>}
4> 'People':decode('Person', Bin).
{ok,{'Person',"Vince Eclipse",roving,50}}
5> 'People':decode('Person', {json_decoded,json:decode(Bin)}).
{ok,{'Person',"Vince Eclipse",roving,50}}

Errors
Errors detected at compile-time are displayed on the screen together with line
numbers indicating where in the source file the respective error was detected.
If no errors are found, an Erlang ASN.1 module is created.
The runtime encoders and decoders execute within a catch and return {ok, Data}
or {error, {asn1, Description}} where Description is an Erlang term
describing the error.
Currently, Description looks like this: {ErrorDescription, StackTrace}.
Applications should not depend on the exact contents of Description as it
could change in the future.
Multi-File Compilation
There are various reasons for using multi-file compilation:
	To choose the name for the generated module, for example, because you need to
compile the same specs for different encoding rules.
	You want only one resulting module.

Specify which ASN.1 specs to compile in a module with extension .set.asn.
Choose a module name and provide the names of the ASN.1 specs. For example, if
you have the specs File1.asn, File2.asn, and File3.asn, your module
MyModule.set.asn looks as follows:
File1.asn
File2.asn
File3.asn
If you compile with the following, the result is one merged module
MyModule.erl with the generated code from the three ASN.1 specs:
% erlc MyModule.set.asn
Note about tags
Tags used to be important for all users of ASN.1, because it was necessary to
to manually add tags to certain constructs in order for the ASN.1 specification to
be valid. Example of an old-style specification:
Tags DEFINITIONS ::=
BEGIN
 Afters ::= CHOICE { cheese [0] IA5String,
 dessert [1] IA5String }
END
Without the tags (the numbers in square brackets) the ASN.1 compiler refused to
compile the file.
In 1994 the global tagging mode AUTOMATIC TAGS was introduced. By putting
AUTOMATIC TAGS in the module header, the ASN.1 compiler automatically adds
tags when needed. The following is the same specification in AUTOMATIC TAGS
mode:
Tags DEFINITIONS AUTOMATIC TAGS ::=
BEGIN
 Afters ::= CHOICE { cheese IA5String,
 dessert IA5String }
END

ASN.1 Types
This section describes the ASN.1 types including their functionality, purpose,
and how values are assigned in Erlang.
ASN.1 has both primitive and constructed types:
	Primitive Types	Constructed Types
	BOOLEAN	SEQUENCE
	INTEGER	SET
	REAL	CHOICE
	NULL	SET OF and SEQUENCE OF
	ENUMERATED	ANY
	BIT STRING	ANY DEFINED BY
	OCTET STRING	EXTERNAL
	Character Strings	EMBEDDED PDV
	OBJECT IDENTIFIER	CHARACTER STRING
	Object Descriptor	
	TIME Types	

Table: Supported ASN.1 Types

Note
The values of each ASN.1 type have their own representation in Erlang, as
described in the following sections. Users must provide these values for
encoding according to the representation, as shown in the following example:
Operational ::= BOOLEAN --ASN.1 definition
In Erlang code it can look as follows:
Val = true,
{ok,Bytes} = MyModule:encode('Operational', Val),
BOOLEAN
Booleans in ASN.1 express values that can be either TRUE or FALSE. The
meanings assigned to TRUE and FALSE are outside the scope of this text.
In ASN.1 it is possible to have:
Operational ::= BOOLEAN
Assigning a value to type Operational in Erlang is possible by using the
following Erlang code:
Myvar1 = true,
Thus, in Erlang the atoms true and false are used to encode a boolean value.
INTEGER
An ASN.1 INTEGER is represented by an integer in Erlang.
The concept of subtyping can be applied to integers and to other ASN.1 types.
The details of subtyping are not explained here; for more information, see
X.680. Various syntaxes are allowed when defining a type as an integer:
T1 ::= INTEGER
T2 ::= INTEGER (-2..7)
T3 ::= INTEGER (0..MAX)
T4 ::= INTEGER (0<..MAX)
T5 ::= INTEGER (MIN<..-99)
T6 ::= INTEGER {red(0),blue(1),white(2)}
The Erlang representation of an ASN.1 INTEGER is an integer or an atom if a
Named Number List (see T6 in the previous list) is specified.
The following is an example of Erlang code that assigns values for the types in
the previous list:
T1value = 0,
T2value = 6,
T6value1 = blue,
T6value2 = 0,
T6value3 = white
These Erlang variables are now bound to valid instances of ASN.1 defined types.
This style of value can be passed directly to the encoder for transformation
into a series of bytes.
The decoder returns an atom if the value corresponds to a symbol in the
Named Number List.
REAL
The following ASN.1 type is used for real numbers:
R1 ::= REAL
It is assigned a value in Erlang as follows:
R1value1 = "2.14",
R1value2 = {256,10,-2}
In the last line, notice that the tuple {256,10,-2} is the real number 2.56 in
a special notation, which encodes faster than simply stating the number as
"2.56". The arity three tuple is {Mantissa,Base,Exponent}, that is,
Mantissa * Base^Exponent.
The following special values are also recognized:
R1value3 = 0,
R1value4 = 'PLUS-INFINITY',
R1value5 = 'MINUS-INFINITY'
NULL
The type NULL is suitable where supply and recognition of a value is important
but the actual value is not.
Notype ::= NULL
This type is assigned in Erlang as follows:
N1 = 'NULL',
The actual value is the quoted atom 'NULL'.
ENUMERATED
The type ENUMERATED can be used when the value you want to describe can only
take one of a set of predefined values. Example:
DaysOfTheWeek ::= ENUMERATED {
 sunday(1),monday(2),tuesday(3),
 wednesday(4),thursday(5),friday(6),saturday(7) }
For example, to assign a weekday value in Erlang, use the same atom as in the
Enumerations of the type definition:
Day1 = saturday,
The enumerated type is similar to an integer type, when defined with a set of
predefined values. The difference is that an enumerated type can only have
specified values, whereas an integer can have any value.
BIT STRING
The type BIT STRING can be used to model information that is made up of
arbitrary length series of bits. It is intended to be used for selection of
flags, not for binary files.
In ASN.1, BIT STRING definitions can look as follows:
Bits1 ::= BIT STRING
Bits2 ::= BIT STRING {foo(0),bar(1),gnu(2),gnome(3),punk(14)}
The following two notations are available for representation of BIT STRING
values in Erlang and as input to the encode functions:
	A bitstring. By default, a BIT STRING with no symbolic names is decoded to
an Erlang bitstring.
	A list of atoms corresponding to atoms in the NamedBitList in the
BIT STRING definition. A BIT STRING with symbolic names is always decoded
to the format shown in the following example:

Bits1Val1 = <<0:1,1:1,0:1,1:1,1:1>>,
Bits2Val1 = [gnu,punk],
Bits2Val2 = <<2#1110:4>>,
Bits2Val3 = [bar,gnu,gnome],
Bits2Val2 and Bits2Val3 denote the same value.
Bits2Val1 is assigned symbolic values. The assignment means that the bits
corresponding to gnu and punk, that is, bits 2 and 14 are set to 1, and the
rest are set to 0. The symbolic values are shown as a list of values. If a named
value, which is not specified in the type definition, is shown, a runtime error
occurs.
BIT STRINGs can also be subtyped with, for example, a SIZE specification:
Bits3 ::= BIT STRING (SIZE(0..31))
This means that no bit higher than 31 can be set.
Deprecated Representations for BIT STRING
In addition to the representations described earlier, the following deprecated
representations are available if the specification has been compiled with option
legacy_erlang_types:
	Aa a list of binary digits (0 or 1). This format is accepted as input to the
encode functions, and a BIT STRING is decoded to this format if option
legacy_bit_string is given.
	As {Unused,Binary} where Unused denotes how many trailing zero-bits 0-7
that are unused in the least significant byte in Binary. This format is
accepted as input to the encode functions, and a BIT STRING is decoded to
this format if compact_bit_string has been given.
	As a hexadecimal number (or an integer). Avoid this as it is easy to
misinterpret a BIT STRING value in this format.

OCTET STRING
OCTET STRING is the simplest of all ASN.1 types. OCTET STRING only moves or
transfers, for example, binary files or other unstructured information complying
with two rules: the bytes consist of octets and encoding is not required.
It is possible to have the following ASN.1 type definitions:
O1 ::= OCTET STRING
O2 ::= OCTET STRING (SIZE(28))
With the following example assignments in Erlang:
O1Val = <<17,13,19,20,0,0,255,254>>,
O2Val = <<"must be exactly 28 chars....">>,
By default, an OCTET STRING is always represented as an Erlang binary. If the
specification has been compiled with option legacy_erlang_types, the encode
functions accept both lists and binaries, and the decode functions decode an
OCTET STRING to a list.
Character Strings
ASN.1 supports a wide variety of character sets. The main difference between an
OCTET STRING and a character string is that the OCTET STRING has no imposed
semantics on the bytes delivered.
However, when using, for example, IA5String (which closely resembles ASCII),
byte 65 (in decimal notation) means character 'A'.
For example, if a defined type is to be a VideotexString and an octet is
received with the unsigned integer value X, the octet is to be interpreted as
specified in standard ITU-T T.100, T.101.
The ASN.1 compiler does not determine the correct interpretation of
each BER string octet value with different character strings. The application is
responsible for interpretation of octets. Therefore, from the BER string point
of view, octets are very similar to character strings and are compiled in the
same way.
When PER is used, there is a significant difference in the encoding scheme
for OCTET STRINGs and other strings. The constraints specified for a type
are especially important for PER, because they affect the encoding.
Examples:
Digs ::= NumericString (SIZE(1..3))
TextFile ::= IA5String (SIZE(0..64000))
The corresponding Erlang assignments:
DigsVal1 = "456",
DigsVal2 = "123",
TextFileVal1 = "abc...xyz...",
TextFileVal2 = [88,76,55,44,99,121 a lot of characters here]
The Erlang representation for BMPString and UniversalString is either a list
of ASCII values or a list of quadruples. The quadruple representation associates
to the Unicode standard representation of characters. The ASCII characters are
all represented by quadruples beginning with three zeros like {0,0,0,65} for
character 'A'. When decoding a value for these strings, the result is a list of
quadruples, or integers when the value is an ASCII character.
The following example shows how it works. Assume the following specification is
in file PrimStrings.asn1:
PrimStrings DEFINITIONS AUTOMATIC TAGS ::=
BEGIN
 BMP ::= BMPString
END
Encoding and decoding some strings:
1> asn1ct:compile('PrimStrings', [ber]).
ok
2> {ok,Bytes1} = 'PrimStrings':encode('BMP', [{0,0,53,53},{0,0,45,56}]).
{ok,<<30,4,53,54,45,56>>}
3> 'PrimStrings':decode('BMP', Bytes1).
{ok,[{0,0,53,53},{0,0,45,56}]}
4> {ok,Bytes2} = 'PrimStrings':encode('BMP', [{0,0,53,53},{0,0,0,65}]).
{ok,<<30,4,53,53,0,65>>}
5> 'PrimStrings':decode('BMP', Bytes2).
{ok,[{0,0,53,53},65]}
6> {ok,Bytes3} = 'PrimStrings':encode('BMP', "BMP string").
{ok,<<30,20,0,66,0,77,0,80,0,32,0,115,0,116,0,114,0,105,0,110,0,103>>}
7> 'PrimStrings':decode('BMP', Bytes3).
{ok,"BMP string"}
Type UTF8String is represented as a UTF-8 encoded binary in Erlang. Such
binaries can be created directly using the binary syntax or by converting from a
list of Unicode code points using function unicode:characters_to_binary/1.
The following shows examples of how UTF-8 encoded binaries can be created and
manipulated:
1> Gs = "Мой маленький Гном".
[1052,1086,1081,32,1084,1072,1083,1077,1085,1100,1082,1080,
 1081,32,1043,1085,1086,1084]
2> Gbin = unicode:characters_to_binary(Gs).
<<208,156,208,190,208,185,32,208,188,208,176,208,187,208,
 181,208,189,209,140,208,186,208,184,208,185,32,208,147,
 208,...>>
3> Gbin = <<"Мой маленький Гном"/utf8>>.
<<208,156,208,190,208,185,32,208,188,208,176,208,187,208,
 181,208,189,209,140,208,186,208,184,208,185,32,208,147,
 208,...>>
4> Gs = unicode:characters_to_list(Gbin).
[1052,1086,1081,32,1084,1072,1083,1077,1085,1100,1082,1080,
 1081,32,1043,1085,1086,1084]
For details, see the unicode module in STDLIB.
In the following example, this ASN.1 specification is used:
UTF DEFINITIONS AUTOMATIC TAGS ::=
BEGIN
 UTF ::= UTF8String
END
Encoding and decoding a string with Unicode characters:
5> asn1ct:compile('UTF', [ber]).
ok
6> {ok,Bytes1} = 'UTF':encode('UTF', <<"Гном"/utf8>>).
{ok,<<12,8,208,147,208,189,208,190,208,188>>}
7> {ok,Bin1} = 'UTF':decode('UTF', Bytes1).
{ok,<<208,147,208,189,208,190,208,188>>}
8> io:format("~ts\n", [Bin1]).
Гном
ok
9> unicode:characters_to_list(Bin1).
[1043,1085,1086,1084]
OBJECT IDENTIFIER
The type OBJECT IDENTIFIER is used whenever a unique identity is required. An
ASN.1 module, a transfer syntax, and so on, is identified with an
OBJECT IDENTIFIER. Assume the following example:
Oid ::= OBJECT IDENTIFIER
Therefore, the following example is a valid Erlang instance of type Oid:
OidVal1 = {1,2,55},
The OBJECT IDENTIFIER value is a tuple with the consecutive integer values.
The first value is limited to the values 0, 1, or 2. The second value must be in
the range 0 through 39 when the first value is 0 or 1.
The OBJECT IDENTIFIER is an important type and it is widely used within
different standards to identify various objects uniquely. Dubuisson: ASN.1 -
Communication Between Heterogeneous Systems includes an easy-to-understand
description of the use of OBJECT IDENTIFIER.
Object Descriptor
Values of this type can be assigned a value as an ordinary string as follows:
"This is the value of an Object descriptor"

TIME Types
Two time types are defined within ASN.1: Generalized Time and Universal Time
Coordinated (UTC). Both are assigned a value as an ordinary string within double
quotes, for example, "19820102070533.8".
For DER encoding, the compiler does not check the validity of the time values.
The DER requirements upon those strings are regarded as a matter for the
application to fulfill.
SEQUENCE
The structured types of ASN.1 are constructed from other types in a manner
similar to the concepts of arrays and structs in C.
A SEQUENCE in ASN.1 is comparable with a struct in C and a record in Erlang. A
SEQUENCE can be defined as follows:
Pdu ::= SEQUENCE {
 a INTEGER,
 b REAL,
 c OBJECT IDENTIFIER,
 d NULL }
This is a 4-component structure called Pdu. By default, a SEQUENCE is
represented by a record in Erlang. It can also be represented as a map; see
Map representation for SEQUENCE and SET.
For each SEQUENCE and SET in an ASN.1 module an Erlang record declaration is
generated. For Pdu, a record like the following is defined:
-record('Pdu', {a, b, c, d}).
The record declarations for a module M are placed in a separate M.hrl file.
Values can be assigned in Erlang as follows:
MyPdu = #'Pdu'{a=22,b=77.99,c={0,1,2,3,4},d='NULL'}.
The decode functions return a record as result when decoding a SEQUENCE or a
SET.
A SEQUENCE and a SET can contain a component with a DEFAULT keyword
followed by the actual value, which is the default value. The DEFAULT keyword
means that the application doing the encoding can omit encoding of the value,
which results in fewer bytes to send to the receiving application.
An application can use the atom asn1_DEFAULT to indicate that the encoding is
to be omitted for that position in the SEQUENCE.
Depending on the encoding rules, the encoder can also compare the given value to
the default value and automatically omit the encoding if the values are equal.
How much effort the encoder makes to compare the values depends on the encoding
rules. The DER encoding rules forbid encoding a value equal to the default
value, so it has a more thorough and time-consuming comparison than the encoders
for the other encoding rules.
In the following example, this ASN.1 specification is used:
File DEFINITIONS AUTOMATIC TAGS ::=
BEGIN
Seq1 ::= SEQUENCE {
 a INTEGER DEFAULT 1,
 b Seq2 DEFAULT {aa TRUE, bb 15}
}

Seq2 ::= SEQUENCE {
 aa BOOLEAN,
 bb INTEGER
}

Seq3 ::= SEQUENCE {
 bs BIT STRING {a(0), b(1), c(2)} DEFAULT {a, c}
}
END
Example where the BER encoder is able to omit encoding of the default values:
1> asn1ct:compile('File', [ber]).
ok
2> 'File':encode('Seq1', {'Seq1',asn1_DEFAULT,asn1_DEFAULT}).
{ok,<<48,0>>}
3> 'File':encode('Seq1', {'Seq1',1,{'Seq2',true,15}}).
{ok,<<48,0>>}
Example with a named BIT STRING where the BER encoder does not omit the
encoding:
4> 'File':encode('Seq3', {'Seq3',asn1_DEFAULT).
{ok,<<48,0>>}
5> 'File':encode('Seq3', {'Seq3',<<16#101:3>>).
{ok,<<48,4,128,2,5,160>>}
The DER encoder omits the encoding for the same BIT STRING:
6> asn1ct:compile('File', [ber,der]).
ok
7> 'File':encode('Seq3', {'Seq3',asn1_DEFAULT).
{ok,<<48,0>>}
8> 'File':encode('Seq3', {'Seq3',<<16#101:3>>).
{ok,<<48,0>>}
SET
In Erlang, the SET type is used exactly as SEQUENCE. Notice that if BER or
DER encoding rules are used, decoding a SET is slower than decoding a
SEQUENCE because the components must be sorted.
Extensibility for SEQUENCE and SET
When a SEQUENCE or SET contains an extension marker and extension components
as the following, the type can get more components in newer versions of the
ASN.1 spec:
SExt ::= SEQUENCE {
 a INTEGER,
 ...,
 b BOOLEAN }
In this case it has got a new component b. Thus, incoming messages that are
decoded can have more or fever components than this one.
The component b is treated as an original component when encoding a message.
In this case, as it is not an optional element, it must be encoded.
During decoding, the b field of the record gets the decoded value of the b
component, if present, otherwise the value asn1_NOVALUE.

Map representation for SEQUENCE and SET
If the ASN.1 module has been compiled with option maps, the types SEQUENCE
and SET are represented as maps.
In the following example, this ASN.1 specification is used:
File DEFINITIONS AUTOMATIC TAGS ::=
BEGIN
Seq1 ::= SEQUENCE {
 a INTEGER DEFAULT 42,
 b BOOLEAN OPTIONAL,
 c IA5String
}
END
Optional fields are to be omitted from the map if they have no value:
1> asn1ct:compile('File', [per,maps]).
ok
2> {ok,E} = 'File':encode('Seq1', #{a=>0,c=>"string"}).
{ok,<<128,1,0,6,115,116,114,105,110,103>>}
When decoding, optional fields will be omitted from the map:
3> 'File':decode('Seq1', E).
{ok,#{a => 0,c => "string"}}
Default values can be omitted from the map:
4> {ok,E2} = 'File':encode('Seq1', #{c=>"string"}).
{ok,<<0,6,115,116,114,105,110,103>>}
5> 'File':decode('Seq1', E2).
{ok,#{a => 42,c => "string"}}
Note
It is not allowed to use the atoms asn1_VALUE and asn1_DEFAULT with maps.
CHOICE
The type CHOICE is a space saver and is similar to the concept of union in
C.
Assume the following:
SomeModuleName DEFINITIONS AUTOMATIC TAGS ::=
BEGIN
T ::= CHOICE {
 x REAL,
 y INTEGER,
 z OBJECT IDENTIFIER }
END
It is then possible to assign values as follows:
TVal1 = {y,17},
TVal2 = {z,{0,1,2}},
A CHOICE value is always represented as the tuple {ChoiceAlternative, Val}
where ChoiceAlternative is an atom denoting the selected choice alternative.
Extensible CHOICE
When a CHOICE contains an extension marker and the decoder detects an unknown
alternative of the CHOICE, the value is represented as follows:
{asn1_ExtAlt, BytesForOpenType}
Here BytesForOpenType is a list of bytes constituting the encoding of the
"unknown" CHOICE alternative.

SET OF and SEQUENCE OF
The types SET OF and SEQUENCE OF correspond to the concept of an array in
several programming languages. The Erlang syntax for both types is
straightforward, for example:
Arr1 ::= SET SIZE (5) OF INTEGER (4..9)
Arr2 ::= SEQUENCE OF OCTET STRING
In Erlang the following can apply:
Arr1Val = [4,5,6,7,8],
Arr2Val = ["abc",[14,34,54],"Octets"],
Notice that the definition of type SET OF implies that the order of the
components is undefined, but in practice there is no difference between SET OF
and SEQUENCE OF. The ASN.1 compiler for Erlang does not randomize the order of
the SET OF components before encoding.
However, for a value of type SET OF, the DER encoding format requires the
elements to be sent in ascending order of their encoding, which implies an
expensive sorting procedure in runtime. Therefore it is recommended to use
SEQUENCE OF instead of SET OF if possible.

ANY and ANY DEFINED BY
The types ANY and ANY DEFINED BY have been removed from the standard
since 1994. It is recommended not to use these types any more. They can,
however, exist in some old ASN.1 modules. The idea with this type was to leave a
"hole" in a definition where it was possible to put unspecified data of any
kind, even non-ASN.1 data.
A value of this type is encoded as an open type.
Instead of ANY and ANY DEFINED BY, it is recommended to use
information object classes, table constraints, and parameterization. In
particular the construct TYPE-IDENTIFIER.@Type accomplishes the same as the
deprecated ANY.
Also see Information objects.

EXTERNAL, EMBEDDED PDV, and CHARACTER STRING
The types EXTERNAL, EMBEDDED PDV, and CHARACTER STRING are used in
presentation layer negotiation. They are encoded according to their associated
type, see X.680.
The type EXTERNAL had a slightly different associated type before 1994. X.691
states that encoding must follow the older associated type. So, generated
encode/decode functions convert values of the newer format to the older format
before encoding. This implies that it is allowed to use EXTERNAL type values
of either format for encoding. Decoded values are always returned in the newer
format.
Embedded Named Types
The structured types previously described can have other named types as their
components. The general syntax to assign a value to component C of a named
ASN.1 type T in Erlang is the record syntax #'T'{'C'=Value}. Here Value
can be a value of yet another type T2, for example:
EmbeddedExample DEFINITIONS AUTOMATIC TAGS ::=
BEGIN
B ::= SEQUENCE {
 a Arr1,
 b T }

Arr1 ::= SET SIZE (5) OF INTEGER (4..9)

T ::= CHOICE {
 x REAL,
 y INTEGER,
 z OBJECT IDENTIFIER }
 END
SEQUENCE b can be encoded as follows in Erlang:
1> 'EmbeddedExample':encode('B', {'B',[4,5,6,7,8],{x,"7.77"}}).
{ok,<<5,56,0,8,3,55,55,55,46,69,45,50>>}
Naming of Records in .hrl Files
When the option maps is given, no .hrl files will be generated. The rest of
this section describes the behavior of the compiler when maps is not used.
When an ASN.1 specification is compiled, all defined types of type SET or
SEQUENCE result in a corresponding record in the generated .hrl file. This
is because the values for SET and SEQUENCE are represented as records by
default.
Some special cases of this functionality are presented in the next section.
Embedded Structured Types
In ASN.1 it is also possible to have components that are themselves structured
types. For example, it is possible to have the following:
Emb ::= SEQUENCE {
 a SEQUENCE OF OCTET STRING,
 b SET {
 a INTEGER,
 b INTEGER DEFAULT 66},
 c CHOICE {
 a INTEGER,
 b FooType } }

FooType ::= [3] VisibleString
The following records are generated because of type Emb:
-record('Emb,{a, b, c}).
-record('Emb_b',{a, b = asn1_DEFAULT}). % the embedded SET type
Values of type Emb can be assigned as follows:
V = #'Emb'{a=["qqqq",[1,2,255]],
 b = #'Emb_b'{a=99},
 c ={b,"Can you see this"}}.
For an embedded type of type SEQUENCE/SET in a SEQUENCE/SET, the record
name is extended with an underscore and the component name. If the embedded
structure is deeper with the SEQUENCE, SET, or CHOICE types in the line,
each component name/alternative name is added to the record name.
Example:
Seq ::= SEQUENCE{
 a CHOICE{
 b SEQUENCE {
 c INTEGER
 }
 }
}
This results in the following record:
-record('Seq_a_b',{c}).
If the structured type has a component with an embedded SEQUENCE OF/SET OF
which embedded type in turn is a SEQUENCE/SET, it gives a record with the
SEQUENCE OF/SET OF addition as in the following example:
Seq ::= SEQUENCE {
 a SEQUENCE OF SEQUENCE {
 b
 }
 c SET OF SEQUENCE {
 d
 }
}
This results in the following records:
-record('Seq_a_SEQOF'{b}).
-record('Seq_c_SETOF'{d}).
A parameterized type is to be considered as an embedded type. Each time such a
type is referenced, an instance of it is defined. Thus, in the following example
a record with name 'Seq_b' is generated in the .hrl file and is used to hold
values:
Seq ::= SEQUENCE {
 b PType{INTEGER}
}

PType{T} ::= SEQUENCE{
 id T
}
Recursive Types
Types that refer to themselves are called recursive types. Example:
Rec ::= CHOICE {
 nothing NULL,
 something SEQUENCE {
 a INTEGER,
 b OCTET STRING,
 c Rec }}
This is allowed in ASN.1 and the ASN.1-to-Erlang compiler supports this
recursive type. A value for this type is assigned in Erlang as follows:
V = {something,#'Rec_something'{a = 77,
 b = "some octets here",
 c = {nothing,'NULL'}}}.
ASN.1 Values
Values can be assigned to an ASN.1 type within the ASN.1 code itself, as opposed
to the actions in the previous section where a value was assigned to an ASN.1
type in Erlang. The full value syntax of ASN.1 is supported and X.680 describes
in detail how to assign values in ASN.1. A short example:
TT ::= SEQUENCE {
 a INTEGER,
 b SET OF OCTET STRING }

tt TT ::= {a 77,b {"kalle","kula"}}
The value defined here can be used in several ways. It can, for example, be used
as the value in some DEFAULT component:
SS ::= SET {
 s OBJECT IDENTIFIER,
 val TT DEFAULT tt }
It can also be used from inside an Erlang program. If this ASN.1 code is defined
in ASN.1 module Values, the ASN.1 value tt can be reached from Erlang as a
function call to 'Values':tt() as in the following example:
1> Val = 'Values':tt().
{'TT',77,["kalle","kula"]}
2> {ok,Bytes} = 'Values':encode('TT',Val).
{ok,<<48,18,128,1,77,161,13,4,5,107,97,108,108,101,4,4,
 107,117,108,97>>}
4> 'Values':decode('TT',Bytes).
{ok,{'TT',77,["kalle","kula"]}}
5>
This example shows that a function is generated by the compiler that returns a
valid Erlang representation of the value, although the value is of a complex
type.
Furthermore, if the option maps is not used, a macro is generated for each
value in the .hrl file. So, the defined value tt can also be extracted by
?tt in application code.
Macros
The type MACRO is not supported. It is no longer part of the ASN.1 standard.

ASN.1 Information Objects (X.681)
Information Object Classes, Information Objects, and Information Object Sets (in
the following called classes, objects, and object sets, respectively) are
defined in the standard definition X.681. Only a brief explanation is given
here.
These constructs makes it possible to define open types, that is, values of that
type can be of any ASN.1 type. Also, relationships can be defined between
different types and values, as classes can hold types, values, objects, object
sets, and other classes in their fields. A class can be defined in ASN.1 as
follows:
GENERAL-PROCEDURE ::= CLASS {
 &Message,
 &Reply OPTIONAL,
 &Error OPTIONAL,
 &id PrintableString UNIQUE
}
WITH SYNTAX {
 NEW MESSAGE &Message
 [REPLY &Reply]
 [ERROR &Error]
 ADDRESS &id
}
An object is an instance of a class. An object set is a set containing objects
of a specified class. A definition can look as follows:
object1 GENERAL-PROCEDURE ::= {
 NEW MESSAGE PrintableString
 ADDRESS "home"
}

object2 GENERAL-PROCEDURE ::= {
 NEW MESSAGE INTEGER
 ERROR INTEGER
 ADDRESS "remote"
}
The object object1 is an instance of the class GENERAL-PROCEDURE and has one
type field and one fixed type value field. The object object2 has also an
optional field ERROR, which is a type field. The field ADDRESS is a UNIQUE
field. Objects in an object set must have unique values in their UNIQUE field,
as in GENERAL-PROCEDURES:
GENERAL-PROCEDURES GENERAL-PROCEDURE ::= {
 object1 | object2}
You cannot encode a class, object, or object set, only refer to it when defining
other ASN.1 entities. Typically you refer to a class as well as to object sets
by table constraints and component relation constraints (X.682) in ASN.1 types,
as in the following:
StartMessage ::= SEQUENCE {
 msgId GENERAL-PROCEDURE.&id ({GENERAL-PROCEDURES}),
 content GENERAL-PROCEDURE.&Message ({GENERAL-PROCEDURES}{@msgId}),
 }
In type StartMessage, the constraint following field content tells that in a
value of type StartMessage the value in field content must come from the
same object that is chosen by field msgId.
So, the value #'StartMessage'{msgId="home",content="Any Printable String"} is
legal to encode as a StartMessage value. However, the value
#'StartMessage'{msgId="remote", content="Some String"} is illegal as the
constraint in StartMessage tells that when you have chosen a value from a
specific object in object set GENERAL-PROCEDURES in field msgId, you must
choose a value from that same object in the content field too. In this second
case, it is to be any INTEGER value.
StartMessage can in field content be encoded with a value of any type that
an object in object set GENERAL-PROCEDURES has in its NEW MESSAGE field.
This field refers to a type field &Message in the class. Field msgId is
always encoded as a PrintableString, as the field refers to a fixed type in
the class.
In practice, object sets are usually declared to be extensible so that more
objects can be added to the set later. Extensibility is indicated as follows:
GENERAL-PROCEDURES GENERAL-PROCEDURE ::= {
 object1 | object2, ...}
When decoding a type that uses an extensible set constraint, it is always
possible that the value in field UNIQUE is unknown (that is, the type has been
encoded with a later version of the ASN.1 specification). The unencoded data is
then returned wrapped in a tuple as follows:
{asn1_OPENTYPE,Binary}
Here Binary is an Erlang binary that contains the encoded data. (If option
legacy_erlang_types has been given, only the binary is returned.)
Parameterization (X.683)
Parameterization, which is defined in X.683, can be used when defining types,
values, value sets, classes, objects, or object sets. A part of a definition can
be supplied as a parameter. For example, if a Type is used in a definition
with a certain purpose, you want the type name to express the intention. This
can be done with parameterization.
When many types (or another ASN.1 entity) only differ in some minor cases, but
the structure of the types is similar, only one general type can be defined and
the differences can be supplied through parameters.
Example of use of parameterization:
General{Type} ::= SEQUENCE
{
 number INTEGER,
 string Type
}

T1 ::= General{PrintableString}

T2 ::= General{BIT STRING}
An example of a value that can be encoded as type T1 is {12,"hello"}.
Notice that the compiler does not generate encode/decode functions for
parameterized types, only for the instances of the parameterized types.
Therefore, if a file contains the types General{}, T1, and T2 as in the
previous example, encode/decode functions are only generated for T1 and T2.

 Specialized Decodes

When performance is of highest priority and one is interested in a limited part
of the ASN.1 encoded message before deciding what to do with the rest of it, an
option is to decode only a part of the message. This situation can be a server
that has to decide the addressee of a message. The addressee can be interested
in the entire message, but the server can be a bottleneck that you want to spare
any unnecessary load.
Instead of making two complete decodes (the normal case of decode), one in the
server and one in the addressee, it is only necessary to make one specialized
decode (in the server) and another complete decode (in the addressee). This
section describes the following specialized decode functionality:
	Exclusive decode
	Selected decode

This functionality is only provided when using BER (option ber).
Exclusive Decode
The basic idea with exclusive decode is to specify which parts of the message
you want to exclude from being decoded. These parts remain encoded and are
returned in the value structure as binaries. The undecoded parts can be decoded
later by calling the decode_part/2 function.
Procedure
To perform an exclusive decode:
	Step 1: Decide the name of the function for the exclusive decode.

	Step 2: Include the following instructions in a configuration file:
	The name of the exclusive decode function
	The name of the ASN.1 specification
	A notation that tells which parts of the message structure to be excluded
from decode

	Step 3 Compile with the additional option asn1config. The compiler
searches for a configuration file with the same name as the ASN.1
specification but with extension .asn1config. This configuration file is not
the same as used for compilation of a set of files. See section
Writing an Exclusive Decode Instruction.

User Interface
The runtime user interface for exclusive decode comprises the following two
functions:
	A function for an exclusive decode, whose name the user decides in the
configuration file
	A decode_part/2 function generated by the ASN.1 compiler when
exclusive decode is enabled. This function decodes the parts that
were left undecoded during the exclusive decode.

Both functions are described in the following.
If the exclusive decode function has, for example, the name decode_exclusive
and an ASN.1 encoded message Bin is to be exclusive decoded, the call is as
follows:
{ok,ExclMessage} = 'MyModule':decode_exclusive(Bin)
 The result ExclMessage has the same structure as a
complete decode would have, except for the parts of the top type that were not
decoded. The undecoded parts are on their places in the structure on format
{TypeKey,UndecodedValue}.
Each undecoded part that is to be decoded must be fed into function
decode_part/2 as follows:
{ok,PartMessage} = 'MyModule':decode_part(TypeKey, UndecodedValue)

Writing an Exclusive Decode Instruction
This instruction is written in the configuration file in the following format:
ExclusiveDecodeInstruction = {exclusive_decode,{ModuleName,DecodeInstructions}}.

ModuleName = atom()

DecodeInstructions = [DecodeInstruction]+

DecodeInstruction = {ExclusiveDecodeFunctionName,TypeList}

ExclusiveDecodeFunctionName = atom()

TypeList = [TopType,ElementList]

ElementList = [Element]+

Element = {Name,parts} |
 {Name,undecoded} |
 {Name,ElementList}

TopType = atom()

Name = atom()
The instruction must be a valid Erlang term terminated by a dot.
In TypeList the path from the top type to each undecoded subcomponent is
described. TopType is the name of a top-level type in the ASN.1 specification.
The action for each component in ElementList is described by one of:
	{Name,parts}
	{Name,undecoded}
	{Name,ElementList}

The use and effect of the actions are as follows:
	{Name,undecoded} - Leaves the element undecoded. The type of Name can
be any ASN.1 type. The value of element Name is returned as a tuple (as
mentioned in the previous section) in the value structure of the top type.

	{Name,parts} - The type of Name must be either SEQUENCE OF or
SET OF. The action implies that the different components of Name are left
undecoded. The value of Name is returned as a tuple (as mentioned in the
previous section) where the second element is a list of binaries. This is
because the representation of a SEQUENCE OF or a SET OF in Erlang is a
list of its internal type. Any of the elements in this list or the entire list
can be decoded by function decodepart.

	{Name,ElementList} - This action is used when one or more of the
subtypes of Name is exclusively decoded.

Name in these actions can be a component name of a SEQUENCE OF or a
SET OF, or a name of an alternative in a CHOICE.
Example
In this examples, the definitions from the following ASN.1 specification are
used:

GUI DEFINITIONS AUTOMATIC TAGS ::= BEGIN

 Action ::= SEQUENCE {
 number INTEGER DEFAULT 15,
 handle Handle DEFAULT {number 12, on TRUE}
 }

 Key ::= Button
 Handle ::= Key

 Button ::= SEQUENCE {
 number INTEGER,
 on BOOLEAN
 }

 Window ::= CHOICE {
 vsn INTEGER,
 status Status
 }

 Status ::= SEQUENCE {
 state INTEGER,
 buttonList SEQUENCE OF Button,
 enabled BOOLEAN OPTIONAL,
 actions CHOICE {
 possibleActions SEQUENCE OF Action,
 noOfActions INTEGER
 }
 }

END
If Button is a top type and it is needed to exclude component number from
decode, TypeList in the instruction in the configuration file is
['Button',[{number,undecoded}]]. If you call the decode function
decode_Button_exclusive, DecodeInstruction is
{decode_Button_exclusive,['Button',[{number,undecoded}]]}.
Another top type is Window whose subcomponent actions in type Status and the
parts of component buttonList are to be left undecoded. For this type, the
function is named decode__Window_exclusive. The complete
Exclusive_Decode_Instruction configuration is as follows:

{exclusive_decode,
 {'GUI',
 [{decode_Window_exclusive,
 ['Window',[{status,[{buttonList,parts},{actions,undecoded}]}]]},
 {decode_Button_exclusive,
 ['Button',[{number,undecoded}]]}]}}.
The following figure shows the bytes of a Window:status message. The
components buttonList and actions are excluded from decode. Only state and
enabled are decoded when decode__Window_exclusive is called.
[image: Bytes of a Window:status Message]
Here follows an example of how the module. Note that option no_ok_wrapper is
used to make the example more concise.
1> asn1ct:compile('GUI', [ber,asn1config,no_ok_wrapper]).
ok
2> rr('GUI').
['Action','Button','Status']
3> ButtonMsg = #'Button'{number=123,on=true}.
#'Button'{number = 123,on = true}
4> ButtonBytes = 'GUI':encode('Button', ButtonMsg).
<<48,6,128,1,123,129,1,255>>
5> ExclusiveMsgButton = 'GUI':decode_Button_exclusive(ButtonBytes).
#'Button'{number = {'Button_number',<<128,1,123>>},
 on = true}
6> {UndecKey,UndecBytes} = ExclusiveMsgButton#'Button'.number.
{'Button_number',<<128,1,123>>}
7> 'GUI':decode_part(UndecKey, UndecBytes).
123
8> WindowMsg =
{status,{'Status',35,
 [{'Button',3,true},
 {'Button',4,false},
 {'Button',5,true},
 {'Button',6,true},
 {'Button',7,false}],
 false,
 {possibleActions,[{'Action',16,{'Button',17,true}}]}}}.
{status,#'Status'{state = 35,
 buttonList = [#'Button'{number = 3,on = true},
 #'Button'{number = 4,on = false},
 #'Button'{number = 5,on = true},
 #'Button'{number = 6,on = true},
 #'Button'{number = 7,on = false}],
 enabled = false,
 actions = {possibleActions,[#'Action'{number = 16,
 handle = #'Button'{number = 17,on = true}}]}}}
9> WindowBytes = 'GUI':encode('Window', WindowMsg).
<<161,65,128,1,35,161,40,48,6,128,1,3,129,1,255,48,6,128,
 1,4,129,1,0,48,6,128,1,5,129,...>>
10> {status,#'Status'{buttonList={UndecWindowKey,UndecWindowParts}}} =
'GUI':decode_Window_exclusive(WindowBytes).
{status,#'Status'{state = 35,
 buttonList = {'Status_buttonList',[<<48,6,128,1,3,129,1,
 255>>,
 <<48,6,128,1,4,129,1,0>>,
 <<48,6,128,1,5,129,1,255>>,
 <<48,6,128,1,6,129,1,255>>,
 <<48,6,128,1,7,129,1,0>>]},
 enabled = false,
 actions = {'Status_actions',<<163,15,160,13,48,11,128,
 1,16,161,6,128,1,17,129,
 1,255>>}}}
11> 'GUI':decode_part(UndecWindowKey, UndecWindowParts).
[#'Button'{number = 3,on = true},
 #'Button'{number = 4,on = false},
 #'Button'{number = 5,on = true},
 #'Button'{number = 6,on = true},
 #'Button'{number = 7,on = false}]
12> 'GUI':decode_part(UndecWindowKey, hd(UndecWindowParts)).
#'Button'{number = 3,on = true}
13> {status,#'Status'{actions={ChoiceKey,ChoiceUndec}}} = v(10).
{status,#'Status'{state = 35,
 buttonList = {'Status_buttonList',[<<48,6,128,1,3,129,1,
 255>>,
 <<48,6,128,1,4,129,1,0>>,
 <<48,6,128,1,5,129,1,255>>,
 <<48,6,128,1,6,129,1,255>>,
 <<48,6,128,1,7,129,1,0>>]},
 enabled = false,
 actions = {'Status_actions',<<163,15,160,13,48,11,128,
 1,16,161,6,128,1,17,129,
 1,255>>}}}
14> 'GUI':decode_part(ChoiceKey, ChoiceUndec).
{possibleActions,[#'Action'{number = 16,
 handle = #'Button'{number = 17,on = true}}]}
Selective Decode
Selective decode decodes a single subtype of a constructed value. This is the
fastest method to extract a subvalue. Selective decode is typically used when
one want to inspect, for example, a version number to be able to decide how to
handle the entire value.
Procedure
To perform a selective decode:
	Step 1: Include the following instructions in the configuration file:
	The name of the user function
	The name of the ASN.1 specification
	A notation that tells which part of the type to be decoded

	Step 2: Compile with the additional option asn1config. The compiler
searches for a configuration file with the same name as the ASN.1
specification, but with extension .asn1config. In the same file you can also
provide configuration specifications for exclusive decode. The generated
Erlang module has the usual functionality for encode/decode preserved and the
specialized decode functionality added.

User Interface
The only new user interface function is the one provided by the user in the
configuration file.
For example, if the configuration file includes the specification
{selective_decode,{'ModuleName',[{selected_decode_Window,TypeList}]}} do the
selective decode by
{ok,Result} = 'ModuleName':selected_decode_Window(EncodedBinary).

Writing a Selective Decode Instruction
One or more selective decode functions can be described in a configuration file.
Use the following notation:
SelectiveDecodeInstruction = {selective_decode,{ModuleName,DecodeInstructions}}.

ModuleName = atom()

DecodeInstructions = [DecodeInstruction]+

DecodeInstruction = {SelectiveDecodeFunctionName,TypeList}

SelectiveDecodeFunctionName = atom()

TypeList = [TopType|ElementList]

ElementList = Name|ListSelector

Name = atom()

ListSelector = [integer()]
The instruction must be a valid Erlang term terminated by a dot.
	ModuleName is the same as the name of the ASN.1 specification, but without
the extension.
	DecodeInstruction is a tuple with your chosen function name and the
components from the top type that leads to the single type you want to decode.
Make sure to choose a name of your function that is not the same as any of the
generated functions.
	The first element of TypeList is the top type of the encoded message. In
ElementList, it is followed by each of the component names that leads to
selected type.
	Each name in ElementList must be a constructed type except the last name,
which can be any type.
	ListSelector makes it possible to choose one of the encoded components in a
SEQUENCE OF or a SET OF. It is also possible to go further in that
component and pick a subtype of that to decode. So, in the TypeList:
['Window',status,buttonList,[1],number], component buttonList must be of
type SEQUENCE OF or SET OF.

In the example, component number of the first of the encoded elements in the
SEQUENCE OF buttonList is selected. This applies on the ASN.1 specification
in section Writing an Exclusive Decode Instruction.
Example
In this example, the same ASN.1 specification as in section
Writing an Exclusive Decode Instruction is used. The
following is a valid selective decode instruction:
{selective_decode,
 {'GUI',
 [{selected_decode_Window1,
 ['Window',status,buttonList,
 [1],
 number]},
 {selected_decode_Action,
 ['Action',handle,number]},
 {selected_decode_Window2,
 ['Window',
 status,
 actions,
 possibleActions,
 [1],
 handle,number]}]}}.
The first instruction,
{selected_decode_Window1,['Window',status,buttonList,[1],number]} is described
in the previous section.
The second instruction, {selected_decode_Action,['Action',handle,number]},
takes component number in the handle component of type Action. If the
value is ValAction = {'Action',17,{'Button',4711,false}}, the internal value
4711 is to be picked by selected_decode_Action. In an Erlang terminal it looks
as follows:
1> asn1ct:compile('GUI', [ber,asn1config,no_ok_wrapper]).
ok
2> ValAction = {'Action',17,{'Button',4711,false}}.
{'Action',17,{'Button',4711,false}}
3> Bytes = 'GUI':encode('Action',ValAction).
<<48,18,2,1,17,160,13,172,11,171,9,48,7,128,2,18,103,129,1,0>>
4> 'GUI':selected_decode_Action(Bytes).
4711
The third instruction,
['Window',status,actions,possibleActions,[1],handle,number], works as follows:
	Step 1: Starts with type Window.
	Step 2: Takes component status of Window that is of type Status.
	Step 3: Takes actions of type Status.
	Step 4: Takes possibleActions of the internally defined CHOICE type.
	Step 5: Goes into the first component of SEQUENCE OF by [1]. That
component is of type Action.
	Step 6: Takes component handle.
	Step 7: Takes component number of type Button.

The following figure shows which components are in TypeList
['Window',status,actions,possibleActions,[1],handle,number]:
[image: Elements Specified in Configuration File for Selective Decode of a Subvalue in a Window Message]
In the following figure, only the marked element is decoded by
selected_decode_Window2:
[image: Bytes of a Window:status Message]
With the following example, you can examine that both selected_decode_Window2
and selected_decode_Window1 decodes the intended subvalue of value Val:
1> Val = {status,{'Status',12,
 [{'Button',13,true},
 {'Button',14,false},
 {'Button',15,true},
 {'Button',16,false}],
 true,
 {possibleActions,[{'Action',17,{'Button',18,false}},
 {'Action',19,{'Button',20,true}},
 {'Action',21,{'Button',22,false}}]}}}.
2> Bin = 'GUI':encode('Window',Val).
<<161,89,128,1,12,161,32,48,6,128,1,13,129,1,255,48,6,128,
 1,14,129,1,0,48,6,128,1,15,129,...>>
4> 'GUI':selected_decode_Window1(Bin).
13
5> 'GUI':selected_decode_Window2(Bin).
18

asn1ct

ASN.1 compiler and compile-time support functions
The ASN.1 compiler takes an ASN.1 module as input and generates a corresponding
Erlang module, which can encode and decode the specified data types.
Alternatively, the compiler takes a specification module specifying all input
modules, and generates a module with encode/decode functions. In addition, some
generic functions can be used during development of applications that handles
ASN.1 data (encoded as BER or PER).
Note
By default in Erlang/OTP 17, the representation of the BIT STRING and
OCTET STRING types as Erlang terms were changed. BIT STRING values are now
Erlang bit strings and OCTET STRING values are binaries. Also, an undecoded
open type is now wrapped in an asn1_OPENTYPE tuple. For details, see
BIT STRING,
OCTET STRING, and
ASN.1 Information Objects in the
User's Guide.
To revert to the old representation of the types, use option
legacy_erlang_types.

 Summary

 Functions

 compile(Asn1Module)

 Equivalent to compile(Asn1Module, []).

 compile(Asn1Module, Options)

 Compiles the ASN.1 module Asn1Module and generates an Erlang module
Asn1Module.erl with encode and decode functions for all types defined in
the ASN.1 module.

 test(Module)

 Tests encoding and decoding of all types in Module.

 test/2

 Tests encoding and decoding of Module.

 test/3

 Performs a test of encode and decode of types in Module.

 value(Module, Type)

 Returns an Erlang term that is an example of a valid Erlang representation of a
value of the ASN.1 type Type.

 Functions

 compile(Asn1Module)

 -spec compile(Asn1Module) -> ok | {error, Reason} when Asn1Module :: atom() | string(), Reason :: term().

Equivalent to compile(Asn1Module, []).

 compile(Asn1Module, Options)

 -spec compile(Asn1Module, Options) -> ok | {error, Reason}
 when
 Asn1Module :: atom() | string(),
 Options :: [Option | OldOption],
 Option ::
 ber | per | uper | jer | der | compact_bit_string | legacy_bit_string |
 legacy_erlang_types | noobj |
 {n2n, EnumTypeName :: term()} |
 {outdir, Dir :: term()} |
 {i, IncludeDir :: term()} |
 asn1config | undec_rest | no_ok_wrapper |
 {macro_name_prefix, Prefix} |
 {record_name_prefix, Prefix} |
 verbose | warnings_as_errors | deterministic,
 OldOption :: ber | per,
 Reason :: term(),
 Prefix :: string().

Compiles the ASN.1 module Asn1Module and generates an Erlang module
Asn1Module.erl with encode and decode functions for all types defined in
the ASN.1 module.
For each ASN.1 value defined in the module, an Erlang function that
returns the value in Erlang representation is generated.
If Asn1Module is a filename without extension, first ".asn1" is assumed,
then ".asn", and finally ".py" (to be compatible with the old ASN.1
compiler). Asn1Module can be a full pathname (relative or absolute) including
filename with (or without) extension.
If it is needed to compile a set of ASN.1 modules into an Erlang
file with encode/decode functions, list all involved files in a
configuration file, one line per file. This configuration file must
have a double extension ".set.asn1" (".asn1" can alternatively be
".asn" or ".py"). If the input files are File1.asn1,
File2.asn1, and File3.asn1, the configuration file should look as
follows:
File1.asn1
File2.asn1
File3.asn1
The output files in this case get their names from the configuration file. If
the configuration file is named SetOfFiles.set.asn1, the names of the output
files are SetOfFiles.hrl, SetOfFiles.erl, and SetOfFiles.asn1db.
Sometimes in a system of ASN.1 modules, different modules can have
different default tag modes, for example, one uses AUTOMATIC and
another IMPLICIT. The multi-file compilation resolves the default
tagging as if the modules were compiled separately.
Name collisions is an unwanted effect that can occur in multi-file
compilation. The compiler solves this problem in one of two ways:
	If the definitions are identical, the output module keeps only one definition
with the original name.
	If the definitions have the same name and differs in the definition, they are
renamed. The new names are the definition name and the original module name
concatenated.

If a name collision occurs, the compiler reports a "NOTICE: ..." message that
tells if a definition was renamed, and the new name that must be used to
encode/decode data.
Options is a list with options specific for the ASN.1 compiler and options
that are applied to the Erlang compiler. The ASN.1 compiler passes on any
unrecognized options to the Erlang compiler. The available options are as follows:
	ber | per | uper | jer - The encoding rule to be used. The
supported encoding rules are Basic Encoding Rules (ber), Packed
Encoding Rules (per) aligned, PER unaligned (uper), and JSON
Encoding Rules (jer). The jer option can be used by itself to
generate a module that only supports encoding/decoding of JER, or it
can be used as a supplementary option to ber, per, and uper,
in which case a module that handles both the main encoding rules and
JER will be generated. In that case, the exported functions for JER
will be jer_encode(Type, Value) and jer_decode(Type, Bytes).
JER (ITU-T X.697) are experimental in OTP 22. There is support for a
subset of the X.697 standard, for example there is no support for:
	JER encoding instructions
	the REAL type

Change
In Erlang/OTP 27 and later, module json in STDLIB is used for
encoding and decoding JSON. Before Erlang/OTP 27, it was necessary
to provide an external JSON library.
If the encoding rule option is omitted, ber is the default.
The generated Erlang module always gets the same name as the ASN.1 module.
Therefore, only one encoding rule per ASN.1 module can be used at runtime.

	der - With this option the Distinguished Encoding Rules (der) is
chosen. DER is regarded as a specialized variant of the BER encoding rule.
Therefore, this option only makes sense together with option ber. This
option sometimes adds sorting and value checks when encoding, which implies
slower encoding. The decoding routines are the same as for ber.

	maps - This option changes the representation of the types SEQUENCE
and SET to use maps (instead of records). This option also suppresses the
generation of .hrl files.
For details, see section
Map representation for SEQUENCE and SET
in the User's Guide.

	compact_bit_string - The BIT STRING type is decoded to "compact
notation".
This option is not recommended for new code.
For details, see section BIT STRING in
the User's Guide.
This option implies option legacy_erlang_types, and it cannot be combined
with option maps.

	legacy_bit_string - The BIT STRING type is decoded to the legacy
format, that is, a list of zeroes and ones.
This option is not recommended for new code.
For details, see section BIT STRING in
the User's Guide
This option implies option legacy_erlang_types, and it cannot be combined
with option maps.

	legacy_erlang_types - Use the same Erlang types to represent
BIT STRING and OCTET STRING as in Erlang/OTP R16.
This option is not recommended for new code.
For details, see section BIT STRING and
section OCTET STRING in the User's
Guide.
This option cannot be combined with option maps.

	{n2n, EnumTypeName} - Tells the compiler to generate functions for
conversion between names (as atoms) and numbers and conversely for the
specified EnumTypeName. There can be multiple occurrences of this option to
specify several type names. The type names must be declared as ENUMERATIONS
in the ASN.1 specification.
If EnumTypeName does not exist in the ASN.1 specification, the compilation
stops with an error code.
The generated conversion functions are named name2num_EnumTypeName/1 and
num2name_EnumTypeName/1.

	noobj - Do not compile (that is, do not produce object code) the
generated .erl file. If this option is omitted, the generated Erlang module
is compiled.

	{i, IncludeDir} - Adds IncludeDir to the search-path for .asn1db and
ASN.1 source files. The compiler tries to open an .asn1db file when a
module imports definitions from another ASN.1 module. If no .asn1db file
is found, the ASN.1 source file is parsed. Several {i, IncludeDir} can be
given.

	{outdir, Dir} - Specifies directory Dir where all generated files are
to be placed. If this option is omitted, the files are placed in the current
directory.

	asn1config - When using one of the specialized decodes, exclusive or
selective decode, instructions must be given in a configuration file. Option
asn1config enables specialized decodes and takes the configuration file in
concern. The configuration file has the same name as the ASN.1 specification,
but with extension .asn1config.
For instructions for exclusive decode, see section
Exclusive Decode in the User's Guide.
For instructions for selective decode, see section
Selective Decode in the User's Guide.

	undec_rest - By default when decoding, any bytes following the
end of an ASN.1 data structure are discarded. If an ASN.1 module is
compiled with option undec_rest, the decode function returns a
tuple {ok, Value, Rest}, where Rest is the bytes following the ASN.1
data structure. Rest can be a list or a binary.

	no_ok_wrapper - With this option, the generated encode/2 and
decode/2 functions do not wrap a successful return value in an {ok,...}
tuple. If any error occurs, an exception will be raised.

	{macro_name_prefix, Prefix} - All macro names generated by the compiler
are prefixed with Prefix. This is useful when multiple protocols that
contain macros with identical names are included in a single module.

	{record_name_prefix, Prefix} - All record names generated by the
compiler are prefixed with Prefix. This is useful when multiple protocols
that contain records with identical names are included in a single module.

	verbose - Causes more verbose information from the compiler describing
what it is doing.

	warnings_as_errors - Causes warnings to be treated as errors.

	deterministic - Causes all non-deterministic options to be stripped from
the -asn1_info() attribute.

Unrecognized options are passed on to the Erlang compiler when the generated
.erl file is compiled.
The compiler generates the following files:
	Asn1Module.hrl (if any SET or SEQUENCE is defined)
	Asn1Module.erl - Erlang module with encode, decode, and value functions
	Asn1Module.asn1db - Intermediate format used by the compiler when modules
IMPORT definitions from each other.

 test(Module)

 -spec test(Module) -> ok | {error, Reason} when Module :: module(), Reason :: term().

Tests encoding and decoding of all types in Module.
For more details, see test/3.

 test/2

 -spec test(Module, Type | Options) -> ok | {error, Reason}
 when
 Module :: module(),
 Type :: atom(),
 Options :: [{i, IncludeDir :: term()}],
 Reason :: term().

Tests encoding and decoding of Module.
If the second argument is given as atom Type, that type is tested.
If the second argument is given as list Options, that are the options
that are used for testing all types in the module.
For more details, see test/3.

 test/3

 -spec test(Module, Type, Value | Options) -> ok | {error, Reason}
 when
 Module :: module(),
 Type :: atom(),
 Value :: term(),
 Options :: [{i, IncludeDir :: term()}],
 Reason :: term().

Performs a test of encode and decode of types in Module.
The generated functions are called by this function. This function is
useful for testing to ensure that the generated encode and decode
functions as well as the general runtime support work as expected.
Note
Currently, the test functions have many limitations. Essentially, they will
mostly work for old specifications based on the 1997 standard for ASN.1, but
not for most modern-style applications. Another limitation is that the test
functions may not work if options that change code generations strategies such
as the options macro_name_prefix and record_name_prefix have been used.
	test/1 iterates over all types in Module.
	test/2 tests type Type with a random value.
	test/3 tests type Type with Value.

Schematically, the following occurs for each type in the module:
{ok, Value} = asn1ct:value(Module, Type),
{ok, Bytes} = Module:encode(Type, Value),
{ok, Value} = Module:decode(Type, Bytes).
The test functions use the *.asn1db files for all included modules. If they
are located in a different directory than the current working directory, use the
include option to add paths. This is only needed when automatically generating
values. For static values using Value no options are needed.

 value(Module, Type)

 -spec value(Module, Type) -> {ok, Value} | {error, Reason}
 when Module :: module(), Type :: atom(), Value :: term(), Reason :: term().

Returns an Erlang term that is an example of a valid Erlang representation of a
value of the ASN.1 type Type.
The value is a random value and subsequent calls to this function will
for most types return different values.
Note
Currently, the value function has many limitations. Essentially, it will
mostly work for old specifications based on the 1997 standard for ASN.1, but
not for most modern-style applications. Another limitation is that the value
function may not work if options that change code generations strategies such
as the options macro_name_prefix and record_name_prefix have been used.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

OEBPS/assets/selective_Window2.gif
Tt e -_- W

state butonList enapidl

[E———

OEBPS/assets/selective_TypeList.gif
5
Action = SEQUENCE
| <
nuucpél INTEGER DEFAULT 3y,

handle 0] Handle DEFAULT | numibest:
1.

Key =[11] BXQUICIT Bution
Handle Keh
Button = SEQUENCE,
|
noicber INTEGER,
on BOOLEAN

von INTEGER,
» status g
1

Statos = SEQUENCE
|
state INTEGER, /
butentist SEQUENCE OF Bution,
enabied BOOLEAN OFTIONAL,

* actionsCHOICE

3 possibleAction SEQUENCE OF Action
neDfctons INTEGER
)
)

on TRUE]

OEBPS/assets/exclusive_Win_But.gif
T

buttonList [E———y—"

OEBPS/assets/logo.png
EEEEEE

