

    

        crypto

        v5.7


          [image: Logo]



    


  

    Table of contents

    
      



      	Crypto Application


      	Crypto Release Notes





    	User's Guides
      


      	FIPS mode


      	Engine Load


      	Engine Stored Keys


      	Algorithm Details


      	New and Old API



      

    




        	
          Modules
          


      	crypto





        



      

    

  

    Crypto Application

Description
The purpose of the Crypto application is to provide an Erlang API to
cryptographic functions, see crypto. Note that the API is on a fairly low
level and there are some corresponding API functions available in
public_key, on a higher abstraction level, that uses the crypto application
in its implementation.
DEPENDENCIES
The current crypto implementation uses nifs to interface OpenSSLs crypto library
and may work with limited functionality with as old versions as OpenSSL
0.9.8c. FIPS mode support requires at least version 1.0.1 and a FIPS capable
OpenSSL installation. We recommend using a version that is officially supported
by the OpenSSL project. API compatible backends like LibreSSL should also work.
The crypto app is tested daily with at least one version of each of the OpenSSL
1.0.1, 1.0.2, 1.1.0, 1.1.1 and 3.0. FIPS mode is also tested for 1.0.1, 1.0.2
and 3.0.
Using OpenSSL 3.0 with Engines is supported since OTP 26.2.
Source releases of OpenSSL can be downloaded from the
OpenSSL project home page, or mirror sites listed
there.
CONFIGURATION
The following configuration parameters are defined for the crypto application.
See app(3) for more information about configuration
parameters.

	fips_mode = boolean() - Specifies whether to run crypto in FIPS mode.
This setting will take effect when the nif module is loaded. If FIPS mode is
requested but not available at run time the nif module and thus the crypto
module will fail to load. This mechanism prevents the accidental use of
non-validated algorithms.

	rand_cache_size = integer() - Sets the cache size in bytes to use by
crypto:rand_seed_alg(crypto_cache) and
crypto:rand_seed_alg_s(crypto_cache) . This
parameter is read when a seed function is called, and then kept in generators
state object. It has a rather small default value that causes reads of strong
random bytes about once per hundred calls for a random value. The set value is
rounded up to an integral number of words of the size these seed functions
use.


SEE ALSO
application(3)


  

    Crypto Release Notes

This document describes the changes made to the Crypto application.
Crypto 5.7
Fixed Bugs and Malfunctions
	NIFs and linked-in drivers are now loadable when running in an Erlang source tree on Windows.
Own Id: OTP-19686 Aux Id: PR-9969

	Fixed bug seen to cause beam crash when doing init:restart() with crypto statically linked to OpenSSL (--disable-dynamic-ssl-lib). Bug exists since OTP 28.0.
Own Id: OTP-19721 Aux Id: GH-10061, PR-10076

	Fixed crypto:strong_rand_bytes failing after init:restart on MacOS with statically linked OpenSSL.
Own Id: OTP-19725 Aux Id: GH-10079, PR-10085

	Fixed crypto:hash(shake128 | shake256) for OpenSSL 3.4 and newer.
Own Id: OTP-19733 Aux Id: GH-9901, PR-9982

	Rendering of some tables in the documentation has been improved.
Own Id: OTP-19752 Aux Id: PR-10142


Improvements and New Features
	Support for ML-DSA and ML-KEM provided by OpenSSL 3.5.
Algorithms mldsa44, mldsa65 and mldsa87 can be passed to crypto:sign/4 and crypto:verify/5.
New functions crypto:encapsulate_key/2 and crypto:decapsulate_key/3 can be used with mlkem512, mlkem768 and mlkem1024 to safely generate and communicate an encapsulated shared secret.
Own Id: OTP-19657 Aux Id: PR-9900

	Added support for SHA2 512/224 and SHA2 512/256 truncated hashes.
Own Id: OTP-19666 Aux Id: PR-9721


Crypto 5.6
Fixed Bugs and Malfunctions
	Fixed minor potential leak of EVP_MAC when crypto module is unloaded.
Own Id: OTP-19500 Aux Id: PR-9119

	Added copyright and license to crypto_ec_curves.erl
Own Id: OTP-19554


Improvements and New Features
	The crypto:start/0, crypto:stop/0, and crypto:enable_fips_mode/1 functions have been deprecated.
Own Id: OTP-19155 Aux Id: PR-8592

	Warnings are now logged if module crypto with FIPS-supported OpenSSL is loaded without application crypto being loaded. In this case FIPS will be disabled even if the user had set application parameter fips_mode.
Own Id: OTP-19156 Aux Id: PR-8590

	The functionality of crypto:crypto_one_time_aead/6 is now also available in the new functions crypto:crypto_one_time_aead_init/4 and
crypto:crypto_one_time_aead/4, which makes it possible to reuse initialization.
Own Id: OTP-19426 Aux Id: PR-9289

	Added support for compiling Erlang/OTP for Windows on ARM64.
Own Id: OTP-19480 Aux Id: PR-8734

	New key fips_provider_buildinfo in map returned by crypto:info/0. If present, it contains the version of the FIPS provider which may be different than the version of the rest of OpenSSL.
Own Id: OTP-19487 Aux Id: GH-9366, PR-9410

	Exported crypto types sha3(), hmac_hash_algorithm() and cmac_cipher_algorithm().
Own Id: OTP-19510 Aux Id: PR-9448

	When compiling C/C++ code on Unix systems, the compiler hardening flags suggested by the Open Source Security Foundation are now enabled by default. To disable them, pass --disable-security-hardening-flags to configure.
Own Id: OTP-19519 Aux Id: PR-9441

	The license and copyright header has changed format to include an SPDX-License-Identifier. At the same time, most files have been updated to follow a uniform standard for license headers.
Own Id: OTP-19575 Aux Id: PR-9670


Crypto 5.5.3
Fixed Bugs and Malfunctions
	crypto will now work when ED25519 and X25519 are available while ED448 and X448 are not, which is the case in LibreSSL. This is necessary for supporting TLS1.3 using LibreSSL.
Own Id: OTP-19399 Aux Id: GH-9000, PR-9136


Crypto 5.5.2
Fixed Bugs and Malfunctions
	crypto:strong_rand_bytes/2 fixed to work on Ubuntu pro with installed FIPS support.
Own Id: OTP-19223 Aux Id: PR-8800, GH-8769

	Fixed crypto:hash_final/1 for digest types shake128 and shake256 when using OpenSSL 3.4 or newer.
Own Id: OTP-19329 Aux Id: GH-8997, PR-9002


Crypto 5.5.1
Fixed Bugs and Malfunctions
	crypto built with --enable-fips will now accept an OpenSSL 3 lib without fips provider as long as fips mode is not enabled.
Own Id: OTP-19212 Aux Id: GH-8562


Improvements and New Features
	Added a warning in the documentation to avoid calling crypto:start/0 as it does not work for FIPS mode. Use application:start(crypto) instead.
Own Id: OTP-19143

	Deprecation of RSA encryption functions has been reverted, as there still exists legitimate use cases with other padding modes than PKCS-1.
While use PCKS-1 padding with some versions of cryptolib could be considered secure, we still recommend using other algorithms that are less sensitive to oracle attacks.
Own Id: OTP-19163

	Compiler warnings for some removed functions have been corrected to point out the correct replacement functions.
Own Id: OTP-19186 Aux Id: PR-8709


Crypto 5.5
Improvements and New Features
	The documentation has been migrated to use Markdown and ExDoc.
Own Id: OTP-18955 Aux Id: PR-8026

	Removed functions crypto_dyn_iv_init/3 and crypto_dyn_iv_update/3 which were marked as deprecated since OTP 25.
Own Id: OTP-18973

	Add support for sm3 hash and hmac.
Own Id: OTP-18975 Aux Id: PR-6658

	OPENSSL_thread_stop  is called when crypto is purged to not leak thread specific data.
Own Id: OTP-18978 Aux Id: PR-7809

	Add SM4 block cipher implemented according to GB/T 32907-2016.
Own Id: OTP-19005 Aux Id: PR-8168

	The existing function ssl:key_exporter_materials/4 is now documented and supported.
 POTENTIAL INCOMPATIBILITY 
Own Id: OTP-19016 Aux Id: PR-8233

	Due to another attack on PKCS #1 v1.5 padding, known as the Marvin attack, about which we were alerted by Hubert Kario from Red Hat. You can find more details about the attack at
https://people.redhat.com/~hkario/marvin/
Functions that may be vulnerable are now deprecated. 
Note that you might mitigate the problem 
by using appropriate versions of OpenSSL together with our software, but we recommend not using them at all. 
Also avoid using TLS versions prior to TLS-1.2 (not supported by default) and
do not enable RSA-key exchange cipher suites (not supported by default).
 POTENTIAL INCOMPATIBILITY 
Own Id: OTP-19075


Crypto 5.4.2.3
Fixed Bugs and Malfunctions
	Fixed bug that could cause blocking scheduler threads in crypto:supports(curves) if called the first time by more than one Erlang process. Bug exists only in OTP-26.2.5.4.
Own Id: OTP-19316 Aux Id: GH-8971, PR-8979

	Fixed crypto:hash_final/1 for digest types shake128 and shake256 when using OpenSSL 3.4 or newer.
Own Id: OTP-19329 Aux Id: GH-8997, PR-9002


Crypto 5.4.2.2
Fixed Bugs and Malfunctions
	crypto built with --enable-fips will now accept an OpenSSL 3 lib without fips provider as long as fips mode is not enabled.
Own Id: OTP-19212 Aux Id: GH-8562, PR-8762

	crypto:strong_rand_bytes/2 fixed to work on Ubuntu pro with installed FIPS support.
Own Id: OTP-19223 Aux Id: PR-8800, GH-8769


Crypto 5.4.2.1
Improvements and New Features
	Add warning in documentation to avoid crypto:start/0 as it does not work for FIPS mode. Use application:start(crypto) instead.
Own Id: OTP-19143


Crypto 5.4.2
Fixed Bugs and Malfunctions
	Fix building with --enable-fips with OpenSSL 3 on MacOS.
Own Id: OTP-19038 Aux Id: GH-8271, PR-8277


Crypto 5.4.1
Fixed Bugs and Malfunctions
	Fix compile error when OPENSSL_NO_DES is defined.
Own Id: OTP-18921

	The function crypto:pbkdf2_hmac will no longer block the main schedulers. If the iteration count or block size parameters are such that the function is likely to take a long time to execute, the function will be scheduled to run on a dirty CPU scheduler.
Own Id: OTP-18996 Aux Id: PR-8173, PR-8174


Crypto 5.4
Fixed Bugs and Malfunctions
	Fixed some benign compile warnings on Windows.
Own Id: OTP-18895


Improvements and New Features
	Enable engine support for OpenSSL versions 3.
Own Id: OTP-18832 Aux Id: PR-7763


Crypto 5.3
Fixed Bugs and Malfunctions
	Fix VM crash caused by crypto being purged and reloaded (by init:restart for
example) on OS with musl libc (such as Alpine linux).
Own Id: OTP-18670 Aux Id: GH-7436, PR-7450

	Improved understanding of LibreSSL versions. Support chacha20 and
chacha20_poly1305 for LibreSSL 3.7. Reflect removal of support for the DSS/DSA
algorithm which was done in LibreSSL 2.6.1.
Own Id: OTP-18758 Aux Id: PR-7209


Improvements and New Features
	FIPS supported by crypto for OpenSSL 3.0. and 3.1..
Own Id: OTP-18666 Aux Id: PR-7392


Crypto 5.2
Fixed Bugs and Malfunctions
	Fix cmac_update aes_128_cbc for LibreSSL.
Own Id: OTP-18571


Improvements and New Features
	Add support for SHAKE128 and SHAKE256.
Own Id: OTP-18204 Aux Id: PR-6203

	Make the -DOPENSSL_API_COMPAT flag work without warnings.
Own Id: OTP-18206 Aux Id: PR-6167

	Replace size/1 with either tuple_size/1 or byte_size/1
The size/1 BIF is not optimized by the JIT, and its use can
result in worse types for Dialyzer.
When one knows that the value being tested must be a tuple,
tuple_size/1 should always be preferred.
When one knows that the value being tested must be a binary,
byte_size/1 should be preferred. However,
byte_size/1 also accepts a bitstring (rounding up size to a
whole number of bytes), so one must make sure that the call to byte_size/ is
preceded by a call to is_binary/1 to ensure that bitstrings
are rejected. Note that the compiler removes redundant calls to
is_binary/1, so if one is not sure whether previous code
had made sure that the argument is a binary, it does not harm to add an
is_binary/1 test immediately before the call to
byte_size/1.
Own Id: OTP-18405 Aux Id:
GH-6672,PR-6702,PR-6768,PR-6700,PR-6769,PR-6812,PR-6814

	Handling of on_load modules during boot has been improved by adding an extra
step in the boot order for embedded mode that runs all on_load handlers,
instead of relying on explicit invocation of them, later, when the kernel
supervision tree starts.
This is mostly a code improvement and OTP internal simplification to avoid
future bugs and to simplify code maintenance.
Own Id: OTP-18447


Crypto 5.1.4.3
Fixed Bugs and Malfunctions
	Fix building with --enable-fips with OpenSSL 3 on MacOS.
Own Id: OTP-19038 Aux Id: GH-8271, PR-8277


Crypto 5.1.4.2
Fixed Bugs and Malfunctions
	The function crypto:pbkdf2_hmac will no longer block the main schedulers. If the iteration count or block size parameters are such that the function is likely to take a long time to execute, the function will be scheduled to run on a dirty CPU scheduler.
Own Id: OTP-18996 Aux Id: PR-8173, PR-8174


Crypto 5.1.4.1
Fixed Bugs and Malfunctions
	Fix VM crash caused by crypto being purged and reloaded (by init:restart for
example) on OS with musl libc (such as Alpine linux).
Own Id: OTP-18670 Aux Id: GH-7436, PR-7450


Crypto 5.1.4
Fixed Bugs and Malfunctions
	With this change, random errors are fixed for crypto:generate_key calls with
OpenSSL 3.
Own Id: OTP-18555


Crypto 5.1.3
Fixed Bugs and Malfunctions
	A user defined runtime library path configured using
--with-ssl-rpath=<PATHS> could fail to be enabled.
Own Id: OTP-18384 Aux Id: PR-6596

	Ensure that configure fails if a user defined runtime library path has been
passed by the user, but cannot set.
Own Id: OTP-18408


Crypto 5.1.2
Fixed Bugs and Malfunctions
	Fix configure with --with-ssl and --disable-dynamic-ssl-lib on Windows.
Own Id: OTP-18147 Aux Id: GH-6024, PR-6056

	Remove all references correctly in the garbage collection if an engine handle
was not explicit unloaded.
Own Id: OTP-18152

	Changed the behaviour of the engine load/unload functions
The engine load/unload functions have got changed semantics to get a more
consistent behaviour and work correct when variables are garbage collected.
The load functions now don't register the methods for the engine to replace.
That will now be handled with the new functions
engine_register/engine_unregister if needed.
Some functions are removed from the documentation and therefor the API, but
they are left in the code for compatibility.
	engine_load/4: is now the same as engine_load/3
	engine_unload/2: is now the same as engine_unload/1
	ensure_engine_loaded/3: is now the same as ensure_engine_loaded/2
	ensure_engine_unloaded/1, ensure_engine_unloaded/2: is now the same as
engine_unload/1

* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18172 Aux Id: ERIERL-826

	Fixed a naming bug for AES-CFB and Blowfish-CFB/OFB when linked with OpenSSL
3.0 cryptolib.
Own Id: OTP-18200

	Sign/verify does now behave as in OTP-24 and earlier for eddsa.
Own Id: OTP-18205 Aux Id: GH-6219


Improvements and New Features
	Pass elliptic curve names from crypto.erl to crypto's nif.
Own Id: OTP-18037

	The configure option --disable-deprecated-warnings is removed. It was used
for some releases when the support for OpenSSL 3.0 was not completed. It is
not needed in OTP 25.
Own Id: OTP-18133

	Crypto is now considered to be usable with the OpenSSL 3.0 cryptolib for
production code.
ENGINE and FIPS are not yet fully functional.
Own Id: OTP-18153

	Do not exit if the legacy provider is missing in libcrypto 3.0.
Own Id: OTP-18217


Crypto 5.1.1
Fixed Bugs and Malfunctions
	Note in the documentation that MODP (rfc3526) groups and OpenSSL 3.0 can give
an error if a call to crypto:generate_key/2 specifies a key length, and that
length is to small.
Own Id: OTP-18046


Improvements and New Features
	The cmac now uses only the 3.0 API
Own Id: OTP-18010

	Documentation is now updated with which OpenSSL cryptolib versions that OTP
currently is tested.
Own Id: OTP-18132


Crypto 5.1
Fixed Bugs and Malfunctions
	Fix timing bug in ensure_engine_loaded
When two ensure_engine_loaded() calls were done in parallel there was a
possibility that a crypto lib function was called by both instead of just one
of them which resulted in an error. This is solved by moving the
implementation from erlang down into a NIF function that uses a mutex to
protect the sensitive part.
Own Id: OTP-17858 Aux Id: ERIERL-728

	Remove faulty types run_time_error() and descriptive_error().
Own Id: OTP-17984


Improvements and New Features
	Input for configure scripts adapted to autoconf 2.71.
Own Id: OTP-17414 Aux Id: PR-4967

	Add crypto:hash_equals/2
Own Id: OTP-17471 Aux Id: PR-4750

	Add /opt/homebrew/opt/openssl to standard locations to search for OpenSSL
cryptolib.
Own Id: OTP-17561

	crypto_dyn_iv_init/3 and crypto_dyn_iv_update/3 are deprecated.
Own Id: OTP-17870

	The information in error messages are increased.
Previously the error was signaled with en error class exception badarg,
notsup or error, and also in some more ways like an other exception or a
return value in a non-standardized format.
Now it is an error-class exception
{notsup|badarg|error, InfoFromCfile, Description::string()}.
The InfoFromCfile is a term with name and line number of the C-file where
the error was found. This is primarily intended for a crypto maintainer or an
advanced user to find the cause of complicated errors - maybe in crypto
itself. The contents of that term might be changed in the future.
The Description is a clear text string that describes the error. In case of
badarg and notsup the intention is that it should help the user to find
the cause ("Bad key size" as an example). Specially for some error that are
unlikely, the string may not be possible to understand without deep knowledge
of the underlying cryptolib. Such messages are intended for a crypto
maintainer.
The first element on call stack (the S in
try ... catch error:E:S .... end) gives more information like the actual
argument list in the call of crypto and the argument number (if possible) in
the call to the NIF inside crypto.
The functions in crypto affected by this change are:
sign/4, sign/5, verify/5, verify/6,
generate_key/2, generate_key/3, compute_key/4,
hash/2, hash/4, hash_init/1, hash_update/4, hash_final/1,
mac/3,4, mac_init/3, mac_update/2, mac_final/2,
pbkdf2_hmac/5,
public_encrypt/4, private_decrypt/4, private_encrypt/4, public_decrypt/4
This schema was introduced earlier in:
crypto_init/3, crypto_init/4, crypto_update/2, crypto_final/1,
crypto_get_data/1,
crypto_one_time/4, crypto_one_time/5, crypto_one_time_aead/6,
crypto_one_time_aead/7
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-17965

	Add Output Feedback mode (OFB) support for AES encryption / decryption for key
sizes of 128, 192 and 256 bits.
Own Id: OTP-18067 Aux Id: PR-5866

	The cryptolib API deprecated in OpenSSL 3.0 is now no longer used with a few
exceptions listed below.
Although OpenSSL 3.0.x itself is stable, its usage in OTP/crypto should still
not be considered suitable for production code.
The use of ENGINEs is still disabled by default when using 3.0.
Deprecated functions are still called in the otp_test_engine.c (only used in
tests), in mac.c (EVP_PKEY_new_CMAC_key) and five function calls in ec.c
(EVP_PKEY_assign, EC_KEY_get_conv_form, EVP_PKEY_get1_EC_KEY,
EC_KEY_get0_group and EC_KEY_set_public_key).
Own Id: OTP-18086 Aux Id: OTP-16282, OTP-16643, OTP-16644, OTP-17701,
OTP-17702, OTP-17704


Crypto 5.0.6.5
Fixed Bugs and Malfunctions
	The function crypto:pbkdf2_hmac will no longer block the main schedulers. If the iteration count or block size parameters are such that the function is likely to take a long time to execute, the function will be scheduled to run on a dirty CPU scheduler.
Own Id: OTP-18996 Aux Id: PR-8173, PR-8174


Crypto 5.0.6.4
Fixed Bugs and Malfunctions
	Fix VM crash caused by crypto being purged and reloaded (by init:restart for
example) on OS with musl libc (such as Alpine linux).
Own Id: OTP-18670 Aux Id: GH-7436, PR-7450


Crypto 5.0.6.3
Fixed Bugs and Malfunctions
	Changed the behaviour of the engine load/unload functions
The engine load/unload functions have got changed semantics to get a more
consistent behaviour and work correct when variables are garbage collected.
The load functions now don't register the methods for the engine to replace.
That will now be handled with the new functions
engine_register/engine_unregister if needed.
Some functions functions are removed from the documentation and therefor the
API, but they are left in the code for compatibility.
	engine_load/4: is now the same as engine_load/3
	engine_unload/2: is now the same as engine_unload/1
	ensure_engine_loaded/3: is now the same as ensure_engine_loaded/2
	ensure_engine_unloaded/1, ensure_engine_unloaded/2: is now the same as
engine_unload/1

* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18172 Aux Id: ERIERL-826


Crypto 5.0.6.2
Fixed Bugs and Malfunctions
	Fix configure with --with-ssl and --disable-dynamic-ssl-lib on Windows.
Own Id: OTP-18147 Aux Id: GH-6024, PR-6056


Crypto 5.0.6.1
Fixed Bugs and Malfunctions
	Fix timing bug in ensure_engine_loaded
When two ensure_engine_loaded() calls were done in parallel there was a
possibility that a crypto lib function was called by both instead of just one
of them which resulted in an error. This is solved by moving the
implementation from erlang down into a NIF function that uses a mutex to
protect the sensitive part.
Own Id: OTP-17858 Aux Id: ERIERL-728


Crypto 5.0.6
Improvements and New Features
	The crypto app in OTP can since OTP-24.2 be compiled, linked and used with the
new OpenSSL 3.0 cryptolib.
The crypto app has 3.0 support has been improved, but is still **not
recommended** for other usages than experiments and alpha testing. There are
not yet any guaranties that it works, not even together with other OTP
applications like for example SSL and SSH, although there are no known errors.
Since the previous release, OTP-24.2, the following improvements have been
done:
- It has been tested during nearly every nightly test on the OTP lab
- The hash algorithms md4 and ripemd160 have been enabled with OpenSSL
3.0.
- The ciphers blowfish_cbc, blowfish_ecb, des_cbc, des_cfb,
des_ecb, rc2_cbc and rc4 have been enabled with OpenSSL 3.0.
Disabled or unsupported with OpenSSL 3.0 are still:
- ENGINE support
- FIPS mode
- Other providers than the built-in ones
- Compiling and linking with OpenSSL 3.0 cryptolib in compatibility modes
(for example to behave as 1.1.1)
and, the ciphers blowfish_cfb64 and blowfish_ofb64 are not supported and
will not be either.
Deprecated functions in the OpenSSL 3.0 cryptolib must not be disabled as
OTP/crypto still uses some of the deprecated API functions. The gcc flag
-Wno-deprecated-declarations is set to prevent deprecation warnings to be
printed when compiling.
Own Id: OTP-17812 Aux Id: OTP-16646, OTP-16282

	Crypto is adapted to LibreSSL 3.5.0 on OpenBSD.
Own Id: OTP-17941 Aux Id: OTP-17942

	New configure option ( --disable-otp-test-engine) to prohibit the build of
the OTP test engine used in some test suites.
The reason is that the test engine could be hard to compile on for instance
LibreSSL 3.5.0. For that particular cryptolib version (or higher), this
configure option is set automatically.
Own Id: OTP-17942 Aux Id: OTP-17941


Crypto 5.0.5
Fixed Bugs and Malfunctions
	Fixed the C-warning "implicit declaration of function 'OpenSSL_version_num'"
if compiling with an early LibreSSL version.
Own Id: OTP-17637

	FIPS availability was not checked correctly for AEAD ciphers.
Own Id: OTP-17740

	Fixed that cipher aliases (like aes_cbc etc) could be present even if the
aliased cipher(s) (like aes_128_cbc, aes_256_cbc,... etc) was missing.
Own Id: OTP-17741


Improvements and New Features
	The crypto app in OTP can now be compiled, linked and used with the new
OpenSSL 3.0 cryptolib.
It has not yet been extensively tested and is in this release **not
recommended** for other usages than experiments and alpha testing. There are
not yet any guaranties that it works, not even together with other OTP
applications like for example SSL and SSH, although there are no known errors.
Compiling and linking with OpenSSL 3.0 cryptolib in compatibility modes (for
example to behave as 1.1.1) are not tested. It is not tested with external
providers.
The support for FIPS mode does not yet work, and is disabled when compiled
with OpenSSL 3.0.
Deprecated functions in the OpenSSL 3.0 cryptolib must not be disabled as
OTP/crypto still uses some of the deprecated API functions. The gcc flag
-Wno-deprecated-declarations is set to prevent deprecation warnings to be
printed when compiling.
The hash algorithms md4 and ripemd160 are disabled temporarily when
compiled with OpenSSL 3.0.
The ciphers blowfish_cbc, blowfish_cfb64, blowfish_ecb,
blowfish_ofb64, des_cbc, des_cfb, des_ecb, rc2_cbc and rc4 are
disabled temporarily when compiled with OpenSSL 3.0.
Own Id: OTP-16646 Aux Id: OTP-16282

	The error handling in crypto is partly refactored using the new error
reporting support. Errors earlier propagated like exceptions are still so, but
when the failing function is called from the terminal - for example during
failure hunting - a more descriptive text is produced.
Own Id: OTP-17241

	A new function crypto:info/0 which presents some data about the compilation
and linkage of the crypto nif is added.
Own Id: OTP-17603

	Added the pbkdf2_hmac/5 function to the crypto module.
It calls the PKCS5_PBKDF2_HMAC function which implements PBKD2 with HMAC in
an efficient way.
Own Id: OTP-17808 Aux Id: PR-5421


Crypto 5.0.4
Fixed Bugs and Malfunctions
	Fixed minor memory leak at crypto module purge.
Own Id: OTP-17668 Aux Id: PR-5245

	Fix possible inconsistency in fips mode when linking with some cryptolibs.
Own Id: OTP-17672


Crypto 5.0.3
Fixed Bugs and Malfunctions
	Fix bug in crypto:ensure_engine_unloaded. Also fixed minor memory leak
related to engine unloading.
Own Id: OTP-17593 Aux Id: ERIERL-679

	Fixes that FIPS enable and disable (or vice versa) on Windows sometimes leads
to core dump at the time of process exit.
Own Id: OTP-17618 Aux Id: PR-5126, GH-4920


Improvements and New Features
	Disable fips if cryptolib < 1.0.1 and OTP/crypto is configured with
--enable-fips
If not, there could be compiling or loading problems with antique OpenSSL
versions.
Own Id: OTP-17389


Crypto 5.0.2
Fixed Bugs and Malfunctions
	EC keys are now zero-padded to the expected length if needed.
Own Id: OTP-17442 Aux Id: GH-4861


Crypto 5.0.1
Fixed Bugs and Malfunctions
	Removed a risk for coredump.
Own Id: OTP-17391 Aux Id: GH-4810

	Fixed and documented the DED_LDFLAGS_CONFTEST configuration variable in
$ERL_TOP/HOWTO/INSTALL.md.
Own Id: OTP-17419 Aux Id: GH-4821

	Commit of generated configure script.
Own Id: OTP-17420 Aux Id: OTP-17398, GH-4821


Crypto 5.0
Fixed Bugs and Malfunctions
	Add /usr/local/opt/openssl to the openssl configure search path. This path
is where some tools on OS X place openssl.
Own Id: OTP-16882

	Fix compiler warnings produced by the clang compiler.
Own Id: OTP-17105 Aux Id: PR-2872

	The configure scripts in crypto and erts now fail if a requested feature
cannot be enabled.
Large parts of the configure script of crypto have been rewritten with
various improvements and bug fixes. It is now better at finding usable OpenSSL
libraries, but will in the following cases fail to detect OpenSSL libraries
where it previously sometimes detected the libraries by chance:
	OpenSSL installations with include directory and lib directory parts
installed in different base directories. In order to detect such
installations after this change, the user must explicitly specify the
locations using the
--with-ssl=<path>
and the
--with-ssl-incl=<path>
configure command line arguments.
	When building with old gcc compilers or other compilers on Debian
derivatives with multiarch directories under the lib directory. In order
to detect such installations after this change, the user must explicitly
specify the multiarch directory name using the
--with-ssl-lib-subdir=lib/<multiarch-dir>
configure command line argument.

Own Id: OTP-17254 Aux Id: ERIERL-618, GH-4230

	The value 'none' was missing in the specs of crypto:sign/4 and
crypto:verify/6.
Own Id: OTP-17312 Aux Id: PR-4723


Improvements and New Features
	The functions and cipher names that were deprecated in OTP-23.0 are now
removed.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-16656

	Removed installed directory priv/obj/ containing superfluous object files.
Own Id: OTP-17001 Aux Id: PR-2852

	TLS connections now support EdDSA certificates.
Own Id: OTP-17142 Aux Id: PR-4756, GH-4637, GH-4650

	Add prop_aead attribute to map from crypto:cipher_info/1.
Own Id: OTP-17313 Aux Id: PR-4686


Crypto 4.9.0.4
Fixed Bugs and Malfunctions
	Changed the behaviour of the engine load/unload functions
The engine load/unload functions have got changed semantics to get a more
consistent behaviour and work correct when variables are garbage collected.
The load functions now don't register the methods for the engine to replace.
That will now be handled with the new functions
engine_register/engine_unregister if needed.
Some functions functions are removed from the documentation and therefor the
API, but they are left in the code for compatibility.
	engine_load/4: is now the same as engine_load/3
	engine_unload/2: is now the same as engine_unload/1
	ensure_engine_loaded/3: is now the same as ensure_engine_loaded/2
	ensure_engine_unloaded/1, ensure_engine_unloaded/2: is now the same as
engine_unload/1

* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18172 Aux Id: ERIERL-826


Crypto 4.9.0.3
Fixed Bugs and Malfunctions
	Fix timing bug in ensure_engine_loaded
When two ensure_engine_loaded() calls were done in parallel there was a
possibility that a crypto lib function was called by both instead of just one
of them which resulted in an error. This is solved by moving the
implementation from erlang down into a NIF function that uses a mutex to
protect the sensitive part.
Own Id: OTP-17858 Aux Id: ERIERL-728

	Remove all references correctly in the garbage collection if an engine handle
was not explicit unloaded.
Own Id: OTP-18152


Crypto 4.9.0.2
Fixed Bugs and Malfunctions
	EC keys are now zero-padded to the expected length if needed.
Own Id: OTP-17442 Aux Id: GH-4861


Crypto 4.9.0.1
Fixed Bugs and Malfunctions
	Removed a risk for coredump.
Own Id: OTP-17391 Aux Id: GH-4810

	Commit of generated configure script.
Own Id: OTP-17420 Aux Id: OTP-17398, GH-4821


Crypto 4.9
Fixed Bugs and Malfunctions
	Fix minor memory leaks in crypto ENGINE and robustify the code.
Own Id: OTP-17212

	The otp_test_engine no longer fails if NO_EC* is set in the OpenSSL
configuration.
Own Id: OTP-17256 Aux Id: PR-4580, GH-4573


Improvements and New Features
	Various address sanitizer support.
Own Id: OTP-16959 Aux Id: PR-2965

	EVP is now disabled for OpenSSL cryptolib versions up to and including 1.0.2
Own Id: OTP-17116 Aux Id: PR-2972

	Warning for unused C function removed
Own Id: OTP-17145 Aux Id: OTP-17105, PR-2872


Crypto 4.8.3
Fixed Bugs and Malfunctions
	Adding missing flag in BN-calls in SRP.
Own Id: OTP-17107


Crypto 4.8.2
Fixed Bugs and Malfunctions
	Fixed usage of AC_CONFIG_AUX_DIRS() macros in configure script sources.
Own Id: OTP-17093 Aux Id: ERL-1447, PR-2948


Crypto 4.8.1
Fixed Bugs and Malfunctions
	Build the supported curves cache in the NIF when crypto is loaded, no matter
how it is loaded.
This prevents a possible problem with different processes starting the crypto
application concurrently.
Own Id: OTP-16819 Aux Id: PR-2720

	It is now possible to build with crypto and openssl gprof-enabled and
statically link them into the VM.
Own Id: OTP-17029


Improvements and New Features
	Fixed performance loss in HMAC when using older OpenSSL due to mutex issues.
A workaround is implemented to allow fallback from using the EVP API for HMAC
operations. On some architectures this may improve the performance, especially
with old OpenSSL versions. This fallback to low-level functions is always
enabled for openssl versions before 1.0.2.
Own Id: OTP-17025 Aux Id: ERL-1400, PR-2877


Crypto 4.8
Fixed Bugs and Malfunctions
	Fix type spec bug in crypto for crypto_init and crypto:one_time
Own Id: OTP-16658 Aux Id: OTP-15884, ERL-1257

	The deprecation message for crypto:rand_uniform/2 indicated a non-existent
function. The correct one (rand:uniform/1) is now suggested.
Own Id: OTP-16846 Aux Id: PR-2741


Improvements and New Features
	Implemented a workaround to allow fallback from using the EVP API for
Diffie-Hellman key generation
Own Id: OTP-16771 Aux Id: ERIERL-509

	The internal Diffie-Hellman high level API for key generation was slow in old
and by OpenSSL now unsupported cryptolib versions (1.0.1 and earlier).
If such a cryptolib is used anyhow, the low-level API is used internally in
the crypto application.
Own Id: OTP-16774


Crypto 4.7
Fixed Bugs and Malfunctions
	Crypto reported unsupported elliptic curves as supported on e.g Fedora
distros.
Own Id: OTP-16579 Aux Id: ERL-825


Improvements and New Features
	Support for ed25519 and ed448 added to crypto:generate_key.
Own Id: OTP-15967 Aux Id: PR-2329

	The new crypto functions api (crypto_init,
crypto_update and crypto_one_time) has been updated.
There is now a function crypto_final/1 and a
possibility to set options in crypto_init/3 and
crypto_init/4. See the manual for details.
Own Id: OTP-16160

	As announced in OTP 22.0, a New API was introduced in
CRYPTO. See the New and Old API chapter in the CRYPTO User's
Guide for more information and suggested replacement functions.
The Old API is now deprecated in OTP-23.0 and will
be removed in OTP-24.0.
This deprecation includes cipher names. See the section
Retired cipher names in the crypto User's
Guide, chapter The Old API.
Own Id: OTP-16232

	Fix C-compilation without deprecated OpenSSL cryptolib APIs
Own Id: OTP-16369 Aux Id: PR-2474

	Refactored the internal handling of deprecated and removed functions.
Own Id: OTP-16469

	Added missing 'eddh' to crypto:supports(public_keys).
Own Id: OTP-16583


Crypto 4.6.5.4
Fixed Bugs and Malfunctions
	EC keys are now zero-padded to the expected length if needed.
Own Id: OTP-17442 Aux Id: GH-4861


Crypto 4.6.5.3
Fixed Bugs and Malfunctions
	Removed a risk for coredump.
Own Id: OTP-17391 Aux Id: GH-4810

	Commit of generated configure script.
Own Id: OTP-17420 Aux Id: OTP-17398, GH-4821


Crypto 4.6.5.2
Fixed Bugs and Malfunctions
	Adding missing flag in BN-calls in SRP.
Own Id: OTP-17107


Crypto 4.6.5.1
Improvements and New Features
	Implemented a workaround to allow fallback from using the EVP API for
Diffie-Hellman key generation
Own Id: OTP-16771 Aux Id: ERIERL-509


Crypto 4.6.5
Fixed Bugs and Malfunctions
	Fixed potential memory leaks involving calls to the crypto ng_api.
Own Id: OTP-16428 Aux Id: PR-2511


Crypto 4.6.4
Fixed Bugs and Malfunctions
	Constant time comparisons added.
Own Id: OTP-16376


Crypto 4.6.3
Improvements and New Features
	The ciphers aes_cfb8 and aes_cfb128 are now using the EVP interface. The
supported key lengths are 128, 192 and 256 bits.
Own Id: OTP-16133 Aux Id: PR-2407

	The ciphers aes_cfb8 and aes_cfb128 are now available in FIPS enabled mode.
Own Id: OTP-16134 Aux Id: PR-2407


Crypto 4.6.2
Fixed Bugs and Malfunctions
	The AEAD tag was not previously checked on decrypt with chacha20_poly1305
Own Id: OTP-16242 Aux Id: ERL-1078


Crypto 4.6.1
Fixed Bugs and Malfunctions
	FIxed a bug if the erlang emulator was linked with a very old cryptolib
version (1.0.1 or earlier).
The bug now fixed could have triggered a core dump if an unknown cipher name
was used in crypto functions.
Own Id: OTP-16202


Crypto 4.6
Fixed Bugs and Malfunctions
	The implementation of crypto_one_time/4 is adjusted to match the type
specification. The spec and the black-box behaviour of the function are
unchanged.
Some details: Both the spec and the implementation were correct seen
separately. But with both of them combined simultaneously with
crypto_one_time/5 which was called by the implementation of
crypto_one_time/4, an (obvious) error was detected by a Dialyzer with more
thorough checking than usual.
Own Id: OTP-15884 Aux Id: ERL-974

	When using crypto with FIPS mode enabled, the digests were not correctly
handled.
Own Id: OTP-15911

	A memory leak in error handling code in ng_crypto_init_nif is fixed.
Own Id: OTP-15924

	Fixed the broken static build of the crypto nifs
Own Id: OTP-15928 Aux Id: PR-2296


Improvements and New Features
	The Message Authentication Codes (MAC) CMAC, HMAC and Poly1305 are unified
into common functions in the New Crypto API. See the manual for CRYPTO.
Own Id: OTP-13872


Crypto 4.5.1
Fixed Bugs and Malfunctions
	The cipher aes-ctr was disabled by mistake in crypto:supports for cryptolibs
before 1.0.1. It worked however in the encrypt and decrypt functions.
Own Id: OTP-15829


Crypto 4.5
Fixed Bugs and Malfunctions
	Fixed a bug in error return for crypto:poly1305/2. It returned the atom
notsup instead of the exception notsup.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-15677

	The cipher chacha20 was introduced in OpenSSL 1.1.0. However, it could in a
very odd situation, fail for versions less than OpenSSL 1.1.0d. It is
therefore disabled for those versions.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-15678


Improvements and New Features
	A new rand module algorithm, exro928ss (Xoroshiro928**), has been
implemented. It has got a really long period and good statistical quality for
all output bits, while still being only about 50% slower than the default
algorithm.
The same generator is also used as a long period counter in a new crypto
plugin for the rand module, algorithm crypto_aes. This plugin uses AES-256
to scramble the counter which buries any detectable statistical artifacts.
Scrambling is done in chunks which are cached to get good amortized speed
(about half of the default algorithm).
Own Id: OTP-14461 Aux Id: PR-1857

	Crypto's single C-file is split into multiple files. The different coding
styles in the different parts are unified into a single style.
Own Id: OTP-14732 Aux Id: PR-2068, PR-2095

	Build configuration of the crypto application has been moved from the erts
application into the crypto application.
Own Id: OTP-15129

	Adds two hash functions blake2b and blake2s (64 bit hash and 32 bit hash
respectively). These are modern and standard hash functions used in
blockchains and encrypted communication protocols. The hash functions are
available in OpenSSL since version 1.1.1.
Own Id: OTP-15564 Aux Id: PR-2129

	A new API is implemented in crypto. See the CRYPTO user's guide, chapter New
and Old API for more information.
The old api with the crypto:block_* and crypto:stream_* interfaces are
kept for compatibility, but implemented with the new api. Please note that
since the error checking is more thorough, there might be arguments with for
example faulty lengths that are no longer accepted.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-15644 Aux Id: OTP-14732 , OTP-15451, PR-1857 , PR-2068, PR-2095

	The new hash_info/1 and cipher_info/1 functions returns maps with information
about the hash or cipher in the argument.
Own Id: OTP-15655 Aux Id: PR-2173, ERL-864, PR-2186

	Obey additional OpenSSL configure flags when compiling the C-part of the
CRYPTO application: no-bf, no-blake2, no-chacha, no-cmac, no-dh,
no-dsa, no-md4, no-poly1305, no-rc2, no-rc4 and no-rmd160.
Own Id: OTP-15683

	A new function crypto:supports/1 is introduced. The single argument takes an
atom as argument: hashes, public_keys, ciphers, macs, curves or
rsa_opts. The return value is a list of supported algorithms.
The difference with the existing crypto:supports/0 is, apart from the
argument and the return value, that the old function reports what is supported
by the old api, and the new function reports algorithms in the new api.
Own Id: OTP-15771


Crypto 4.4.2.3
Fixed Bugs and Malfunctions
	Adding missing flag in BN-calls in SRP.
Own Id: OTP-17107


Crypto 4.4.2.2
Fixed Bugs and Malfunctions
	Constant time comparisons added.
Own Id: OTP-16376


Crypto 4.4.2.1
Improvements and New Features
	The ciphers aes_cfb8 and aes_cfb128 are now using the EVP interface. The
supported key lengths are 128, 192 and 256 bits.
Own Id: OTP-16133 Aux Id: PR-2407

	The ciphers aes_cfb8 and aes_cfb128 are now available in FIPS enabled mode.
Own Id: OTP-16134 Aux Id: PR-2407


Crypto 4.4.2
Fixed Bugs and Malfunctions
	Fixed build link error on Windows. Unresolved symbol 'bcmp'.
Own Id: OTP-15750 Aux Id: ERL-905


Crypto 4.4.1
Fixed Bugs and Malfunctions
	Fixes a bug that caused crypto:sign and crypto:verify to return the error
message badarg instead of notsup in one case. That case was when signing
or verifying with eddsa keys (that is, ed15519 or ed448), but only when FIPS
was supported and enabled.
Own Id: OTP-15634


Improvements and New Features
	Added a crypto benchmark test suite.
Own Id: OTP-15447


Crypto 4.4
Fixed Bugs and Malfunctions
	Updated the RSA options part in the crypto application's C-code, documentation
and tests.
Own Id: OTP-15302


Improvements and New Features
	Added ed25519 and ed448 sign/verify.
Requires OpenSSL 1.1.1 or higher as cryptolib under the OTP application
crypto.
Own Id: OTP-15419 Aux Id: OTP-15094

	Fixed valgrind warnings.
Own Id: OTP-15467


Crypto 4.3.3
Fixed Bugs and Malfunctions
	The RSA options rsa_mgf1_md, rsa_oaep_md, and rsa_oaep_label were always
disabled. They will now be enabled when a suitable cryptolib is used.
They are still experimental and may change without prior notice.
Own Id: OTP-15212 Aux Id: ERL-675, PR1899, PR838

	The ciphers aes_ige256 and blowfish_cbc had naming issues in
crypto:next_iv/2.
Own Id: OTP-15283

	the RSA_SSLV23_PADDING is disabled if LibreSSL is used as cryptlib. This is
due to compilation problems.
This will be investigated further in the future.
Own Id: OTP-15303


Improvements and New Features
	The supported named elliptic curves are now reported in crypto:supports/0 in
a new entry tagged by 'curves'.
The function crypto:ec_curves/0 is kept for compatibility.
Own Id: OTP-14717 Aux Id: OTP-15244

	The typing in the CRYPTO and PUBLIC_KEY applications are reworked and a few
mistakes are corrected.
The documentation is now generated from the typing and some clarifications are
made.
A new chapter on Algorithm Details such as key sizes and availability is added
to the CRYPTO User's Guide.
Own Id: OTP-15134

	Support for SHA3 both as a separate hash and in HMAC is now available if
OpenSSL 1.1.1 or higher is used as cryptolib.
Available lengths are reported in the 'hashs' entry in crypto:supports/0
as sha3_*.
Own Id: OTP-15153

	The mac algorithm poly1305 and the cipher algorithm chacha20 are now
supported if OpenSSL 1.1.1 or higher is used as cryptolib.
Own Id: OTP-15164 Aux Id: OTP-15209

	The key exchange Edward curves x25519 and x448 are now supported if
OpenSSL 1.1.1 or higher is used as cryptolib.
Own Id: OTP-15240 Aux Id: OTP-15133

	The supported RSA options for sign/verify and encrypt/decrypt are now reported
in crypto:supports/0 in a new entry tagged by 'rsa_opts'.
The exakt set is still experimental and may change without prior notice.
Own Id: OTP-15260

	The cipher aes_ccm is added.
Own Id: OTP-15286


Crypto 4.3.2
Fixed Bugs and Malfunctions
	Update the crypto engine functions to handle multiple loads of an engine.
engine_load/3/4 is updated so it doesn't add the engine ID to OpenSSLs
internal list of engines which makes it possible to run the engine_load more
than once if it doesn't contain global data.
Added ensure_engine_loaded/2/3 which guarantees that the engine just is
loaded once and the following calls just returns a reference to it. This is
done by add the ID to the internal OpenSSL list and check if it is already
registered when the function is called.
Added ensure_engine_unloaded/1/2 to unload engines loaded with
ensure_engine_loaded.
Then some more utility functions are added.
engine_add/1, adds the engine to OpenSSL internal list
engine_remove/1, remove the engine from OpenSSL internal list
engine_get_id/1, fetch the engines id
engine_get_name/1, fetch the engine name
Own Id: OTP-15233


Crypto 4.3.1
Fixed Bugs and Malfunctions
	Fixed a node crash in crypto:compute_key(ecdh, ...) when passing a wrongly
typed Others argument.
Own Id: OTP-15194 Aux Id: ERL-673


Crypto 4.3
Fixed Bugs and Malfunctions
	Removed two undocumented and erroneous functions
(crypto:dh_generate_parameters/2 and crypto:dh_check/1).
Own Id: OTP-14956 Aux Id: ERL-579

	Fixed bug causing VM crash if doing runtime upgrade of a crypto module built
against OpenSSL older than 0.9.8h. Bug exists since OTP-20.2.
Own Id: OTP-15088


Improvements and New Features
	A new rand plugin algorithm has been implemented in crypto, that is:
crypto_cache. It uses strong random bytes as randomness source and caches
them to get good speed. See crypto:rand_seed_alg/1.
Own Id: OTP-13370 Aux Id: PR-1573

	Diffie-Hellman key functions are re-written with the EVP_PKEY api.
Own Id: OTP-14864


Crypto 4.2.2.4
Fixed Bugs and Malfunctions
	Constant time comparisons added.
Own Id: OTP-16376


Crypto 4.2.2.3
Improvements and New Features
	The ciphers aes_cfb8 and aes_cfb128 are now using the EVP interface. The
supported key lengths are 128, 192 and 256 bits.
Own Id: OTP-16133 Aux Id: PR-2407


Crypto 4.2.2.1
Fixed Bugs and Malfunctions
	Fixed a node crash in crypto:compute_key(ecdh, ...) when passing a wrongly
typed Others argument.
Own Id: OTP-15194 Aux Id: ERL-673


Crypto 4.2.2
Fixed Bugs and Malfunctions
	If OPENSSL_NO_EC was set, the compilation of the crypto nifs failed.
Own Id: OTP-15073

	C-compile errors for LibreSSL 2.7.0 - 2.7.2 fixed
Own Id: OTP-15074 Aux Id: ERL-618


Crypto 4.2.1
Fixed Bugs and Malfunctions
	Fix build error caused by removed RSA padding functions in LibreSSL >= 2.6.1
Own Id: OTP-14873


Crypto 4.2
Fixed Bugs and Malfunctions
	The compatibility function void HMAC_CTX_free in crypto.c erroneously
tried to return a value.
Own Id: OTP-14720


Improvements and New Features
	Rewrite public and private key encode/decode with EVP api. New RSA padding
options added. This is a modified half of PR-838.
Own Id: OTP-14446

	The crypto API is extended to use private/public keys stored in an Engine for
sign/verify or encrypt/decrypt operations.
The ssl application provides an API to use this new engine concept in TLS.
Own Id: OTP-14448

	Add support to plug in alternative implementations for some or all of the
cryptographic operations supported by the OpenSSL Engine API. When configured
appropriately, OpenSSL calls the engine's implementation of these operations
instead of its own.
Own Id: OTP-14567

	Replaced a call of the OpenSSL deprecated function DH_generate_parameters in
crypto.c.
Own Id: OTP-14639

	Documentation added about how to use keys stored in an Engine.
Own Id: OTP-14735 Aux Id: OTP-14448

	Add engine_ ctrl_cmd_string/3,4 the OpenSSL Engine support in crypto.
Own Id: OTP-14801


Crypto 4.1
Fixed Bugs and Malfunctions
	On macOS, crypto would crash if observer had been started before crypto.
On the beta for macOS 10.13 (High Sierra), crypto would crash. Both of those
bugs have been fixed.
Own Id: OTP-14499 Aux Id: ERL-251 ERL-439


Improvements and New Features
	Extend crypto:sign, crypto:verify, public_key:sign and public_key:verify with:
* support for RSASSA-PS padding for signatures and for saltlength setting
* X9.31 RSA padding.
* sha, sha224, sha256, sha384, and sha512 for dss signatures as mentioned in
NIST SP 800-57 Part 1.
* ripemd160 to be used for rsa signatures.
This is a manual merge of half of the pull request 838 by potatosalad from
Sept 2015.
Own Id: OTP-13704 Aux Id: PR838

	A new tuple in crypto:supports/0 reports supported MAC algorithms.
Own Id: OTP-14504


Crypto 4.0
Fixed Bugs and Malfunctions
	LibreSSL can now be used by the modernized crypto app.
Own Id: OTP-14247

	Add compile option -compile(no_native) in modules with on_load directive
which is not yet supported by HiPE.
Own Id: OTP-14316 Aux Id: PR-1390

	Fix a bug in aes cfb128 function introduced by the bug fix in GitHub pull
request #1393.
Own Id: OTP-14435 Aux Id: PR-1462, PR-1393, OTP-14313


Improvements and New Features
	Add basic support for CMAC
Own Id: OTP-13779 Aux Id: ERL-82 PR-1138

	Removed functions deprecated in crypto-3.0 first released in OTP-R16B01
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-13873

	The crypto application now supports OpenSSL 1.1.
Own Id: OTP-13900

	Allow Erlang/OTP to use OpenSSL in FIPS-140 mode, in order to satisfy specific
security requirements (mostly by different parts of the US federal
government).
See the new crypto users guide "FIPS mode" chapter about building and using
the FIPS support which is disabled by default.
(Thanks to dszoboszlay and legoscia)
Own Id: OTP-13921 Aux Id: PR-1180

	Crypto chacha20-poly1305 as in RFC 7539 enabled for OpenSSL >= 1.1.
Thanks to mururu.
Own Id: OTP-14092 Aux Id: PR-1291

	RSA key generation added to crypto:generate_key/2. Thanks to wiml.
An interface is also added to public_key:generate_key/1.
Own Id: OTP-14140 Aux Id: ERL-165, PR-1299

	Raised minimum requirement for OpenSSL version to OpenSSL-0.9.8.c although we
recommend a much higher version, that is a version that is still maintained
officially by the OpenSSL project. Note that using such an old version may
restrict the crypto algorithms supported.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-14171

	Deprecate crypto:rand_uniform/2 as it is not cryptographically strong
Own Id: OTP-14274

	The Crypto application now supports generation of cryptographically strong
random numbers (floats < 1.0 and integer arbitrary ranges) as a plugin to the
'rand' module.
Own Id: OTP-14317 Aux Id: PR-1372

	This replaces the hard coded test values for AES, CMAC and GCM ciphers with
the full validation set from NIST's CAVP program.
Own Id: OTP-14436 Aux Id: PR-1396


Crypto 3.7.4
Fixed Bugs and Malfunctions
	Fix a bug with AES CFB 128 for 192 and 256 bit keys. Thanks to kellymclaughlin
!
Own Id: OTP-14313 Aux Id: PR-1393


Crypto 3.7.3
Improvements and New Features
	The implementation of the key exchange algorithms
diffie-hellman-group-exchange-sha* are optimized, up to a factor of 11 for
the slowest ( = biggest and safest) group size.
Own Id: OTP-14169 Aux Id: seq-13261


Crypto 3.7.2
Fixed Bugs and Malfunctions
	The crypto application has been fixed to not use RC2 against OpenSSL built
with RC2 disabled.
Own Id: OTP-13895 Aux Id: PR-1163

	The crypto application has been fixed to not use RC4 against OpenSSL built
with RC4 disabled.
Own Id: OTP-13896 Aux Id: PR-1169


Improvements and New Features
	To ease troubleshooting, erlang:load_nif/2 now includes the return value
from a failed call to load/reload/upgrade in the text part of the error tuple.
The crypto NIF makes use of this feature by returning the source line
where/if the initialization fails.
Own Id: OTP-13951


Crypto 3.7.1
Fixed Bugs and Malfunctions
	Crypto has been fixed to work against OpenSSL versions with disabled DES
ciphers. Correct spelling of cipher algorithm 'des3_cfb' has been introduced;
the previous misspeling still works.
Own Id: OTP-13783 Aux Id: ERL-203

	The size of an internal array in crypto has been fixed to not segfault when
having all possible ciphers. Bug fix by Duncan Overbruck.
Own Id: OTP-13789 Aux Id: PR-1140


Crypto 3.7
Improvements and New Features
	Refactor crypto to use the EVP interface of OpenSSL, which is the
recommended interface that also enables access to hardware acceleration for
some operations.
Own Id: OTP-12217

	Add support for 192-bit keys for the aes_cbc cipher.
Own Id: OTP-13206 Aux Id: pr 832

	Add support for 192-bit keys for aes_ecb.
Own Id: OTP-13207 Aux Id: pr829

	Deprecate the function crypto:rand_bytes and make sure that
crypto:strong_rand_bytes is used in all places that are cryptographically
significant.
Own Id: OTP-13214

	Enable AES-GCM encryption/decryption to change the tag length between 1 to 16
bytes.
Own Id: OTP-13483 Aux Id: PR-998


Crypto 3.6.3
Fixed Bugs and Malfunctions
	Fix bug for aes_ecb block crypto when data is larger than 16 bytes.
Own Id: OTP-13249

	Improve portability of ECC tests in Crypto and SSL for "exotic" OpenSSL
versions.
Own Id: OTP-13311


Crypto 3.6.2
Fixed Bugs and Malfunctions
	Small documentation fixes
Own Id: OTP-13017


Crypto 3.6.1
Fixed Bugs and Malfunctions
	Make crypto:ec_curves/0 return empty list if elliptic curve is not supported
at all.
Own Id: OTP-12944


Crypto 3.6
Fixed Bugs and Malfunctions
	Enhance crypto:generate_key to calculate ECC public keys from private key.
Own Id: OTP-12394

	Fix bug in crypto:generate_key for ecdh that could cause VM crash for
faulty input.
Own Id: OTP-12733


Improvements and New Features
	Use the EVP API for AES-CBC crypto to enables the use of hardware acceleration
for AES-CBC crypto on newer Intel CPUs (AES-NI), among other platforms.
Own Id: OTP-12380

	Add AES ECB block encryption.
Own Id: OTP-12403


Crypto 3.5
Improvements and New Features
	Extend block_encrypt/decrypt for aes_cfb8 and aes_cfb128 to accept keys of
length 128, 192 and 256 bits. Before only 128 bit keys were accepted.
Own Id: OTP-12467


Crypto 3.4.2
Improvements and New Features
	Add configure option --with-ssl-incl=PATH to support OpenSSL installations
with headers and libraries at different places.
Own Id: OTP-12215 Aux Id: seq12700

	Add configure option --with-ssl-rpath to control which runtime library path to
use for dynamic linkage toward OpenSSL.
Own Id: OTP-12316 Aux Id: seq12753


Crypto 3.4.1
Fixed Bugs and Malfunctions
	Make crypto verify major version number of OpenSSL header files and runtime
library. Loading of crypto will fail if there is a version mismatch.
Own Id: OTP-12146 Aux Id: seq12700


Crypto 3.4
Fixed Bugs and Malfunctions
	Fix memory leak in crypto:hmac_init/upgrade/final functions for all data and
in crypto:hmac/3/4 for data larger than 20000 bytes. Bug exists since OTP
17.0.
Own Id: OTP-11953

	Fix memory leak in crypto for elliptic curve.
Own Id: OTP-11999


Improvements and New Features
	Add aes_cfb8 cypher to crypto:block_encrypt and block_decrypt.
Own Id: OTP-11911


Crypto 3.3
Fixed Bugs and Malfunctions
	Fix memory leaks and invalid deallocations in mod_pow, mod_exp and
generate_key(srp,...) when bad arguments are passed. (Thanks to Florian
Zumbiehi)
Own Id: OTP-11550

	Correction of the word 'ChipherText' throughout the documentation (Thanks to
Andrew Tunnell-Jones)
Own Id: OTP-11609

	Fix fatal bug when using a hmac context variable in more than one call to
hmac_update or hmac_final. The reuse of hmac contexts has never worked as
the underlying OpenSSL implementation does not support it. It is now
documented as having undefined behaviour, but it does not crash or corrupt the
VM anymore.
Own Id: OTP-11724

	Crypto handles out-of-memory with a controlled abort instead of
crash/corruption. (Thanks to Florian Zumbiehi)
Own Id: OTP-11725

	Application upgrade (appup) files are corrected for the following
applications:
asn1, common_test, compiler, crypto, debugger, dialyzer, edoc, eldap, erl_docgen, et, eunit, gs, hipe, inets, observer, odbc, os_mon, otp_mibs, parsetools, percept, public_key, reltool, runtime_tools, ssh, syntax_tools, test_server, tools, typer, webtool, wx, xmerl
A new test utility for testing appup files is added to test_server. This is
now used by most applications in OTP.
(Thanks to Tobias Schlager)
Own Id: OTP-11744


Improvements and New Features
	By giving --enable-static-{nifs,drivers} to configure it is now possible to
statically linking of nifs and drivers to the main Erlang VM binary. At the
moment only the asn1 and crypto nifs of the Erlang/OTP nifs and drivers have
been prepared to be statically linked. For more details see the Installation
Guide in the System documentation.
Own Id: OTP-11258

	Add IGE mode for AES cipher in crypto (Thanks to Yura Beznos).
Own Id: OTP-11522

	Moved elliptic curve definition from the crypto NIF/OpenSSL into Erlang code,
adds the RFC-5639 brainpool curves and makes TLS use them (RFC-7027).
Thanks to Andreas Schultz
Own Id: OTP-11578

	Remove all obsolete application processes from crypto and make it into a pure
library application.
Own Id: OTP-11619


Crypto 3.2
Fixed Bugs and Malfunctions
	Fix uninitialized pointers in crypto (Thanks to Anthony Ramine)
Own Id: OTP-11510


Crypto 3.1
Improvements and New Features
	Refactor ecdsa cipher to simplify code and improve performance.
Own Id: OTP-11320


Crypto 3.0
Improvements and New Features
	Integrate elliptic curve contribution from Andreas Schultz
In order to be able to support elliptic curve cipher suites in SSL/TLS,
additions to handle elliptic curve infrastructure has been added to public_key
and crypto.
This also has resulted in a rewrite of the crypto API to gain consistency and
remove unnecessary overhead. All OTP applications using crypto has been
updated to use the new API.
Impact: Elliptic curve cryptography (ECC) offers equivalent security with
smaller key sizes than other public key algorithms. Smaller key sizes result
in savings for power, memory, bandwidth, and computational cost that make ECC
especially attractive for constrained environments.
Own Id: OTP-11009

	Fixed a spelling mistake in crypto docs. Thanks to Klaus Trainer
Own Id: OTP-11058


Known Bugs and Problems
	Make the crypto functions interruptible by chunking input when it is very
large and bumping reductions in the nifs.
Not yet implemented for block_encrypt|decrypt/4
Impact: Individual calls to crypto functions may take longer time but over all
system performance should improve as crypto calls will not become throughput
bottlenecks.
Own Id: OTP-11142


Crypto 2.3
Improvements and New Features
	Enable runtime upgrade of crypto including the OpenSSL library used by crypto.
Own Id: OTP-10596

	Improve documentation and tests for hmac functions in crypto. Thanks to Daniel
White
Own Id: OTP-10640

	Added ripemd160 support to crypto. Thanks to Michael Loftis
Own Id: OTP-10667


Crypto 2.2
Fixed Bugs and Malfunctions
	Remove unnecessary dependency to libssl from crypto NIF library. This
dependency was introduced by accident in R14B04.
Own Id: OTP-10064


Improvements and New Features
	Add crypto and public_key support for the hash functions SHA224, SHA256,
SHA384 and SHA512 and also hmac and rsa_sign/verify support using these hash
functions. Thanks to Andreas Schultz for making a prototype.
Own Id: OTP-9908

	Optimize RSA private key handling in crypto and public_key.
Own Id: OTP-10065

	Make crypto:aes_cfb_128_encrypt and crypto:aes_cfb_128_decrypt handle data
and cipher with arbitrary length. (Thanks to Stefan Zegenhagen)
Own Id: OTP-10136


Crypto 2.1
Improvements and New Features
	public_key, ssl and crypto now supports PKCS-8
Own Id: OTP-9312

	Erlang/OTP can now be built using parallel make if you limit the number of
jobs, for instance using 'make -j6' or 'make -j10'. 'make -j' does not
work at the moment because of some missing dependencies.
Own Id: OTP-9451

	Add DES and Triple DES cipher feedback (CFB) mode functions to crypto.
(Thanks to Paul Guyot)
Own Id: OTP-9640

	Add sha256, sha384 and sha512 support for crypto:rsa_verify.
Own Id: OTP-9778


Crypto 2.0.4
Fixed Bugs and Malfunctions
	crypto:rand_uniform works correctly for negative integers. Fails with
badarg exception for invalid ranges (when Hi =< Lo) instead of returning
incorrect output.
Own Id: OTP-9526

	Fix win32 OpenSSL static linking (Thanks to Dave Cottlehuber)
Own Id: OTP-9532


Crypto 2.0.3
Fixed Bugs and Malfunctions
	Various small documentation fixes (Thanks to Bernard Duggan)
Own Id: OTP-9172


Improvements and New Features
	New crypto support for streaming of AES CTR and HMAC. (Thanks to Travis
Jensen)
Own Id: OTP-9275

	Due to standard library DLL mismatches between versions of OpenSSL and
Erlang/OTP, OpenSSL is now linked statically to the crypto driver on Windows.
This fixes problems starting crypto when running Erlang as a service on all
Windows versions.
Own Id: OTP-9280


Crypto 2.0.2.2
Improvements and New Features
	Strengthened random number generation. (Thanks to Geoff Cant)
Own Id: OTP-9225


Crypto 2.0.2.1
Improvements and New Features
	Misc. Updates.
Own Id: OTP-9132


Crypto 2.0.2
Improvements and New Features
	AES CTR encryption support in crypto.
Own Id: OTP-8752 Aux Id: seq11642


Crypto 2.0.1
Fixed Bugs and Malfunctions
	Crypto dialyzer type error in md5_mac and sha_mac.
Own Id: OTP-8718

	RC4 stream cipher didn't work. This since the new NIF implementation of
crypto:rc4_encrypt_with_state/2 introduced in crypto-2.0 didn't return an
updated state. (Thanks to Paul Guyot)
Own Id: OTP-8781

	A number of memory leaks in the crypto NIF library have been fixed.
Own Id: OTP-8810


Improvements and New Features
	Added erlang:system_info(build_type) which makes it easier to chose drivers,
NIF libraries, etc based on build type of the runtime system.
The NIF library for crypto can now be built for valgrind and/or debug as
separate NIF libraries that will be automatically loaded if the runtime system
has been built with a matching build type.
Own Id: OTP-8760


Crypto 2.0
Improvements and New Features
	crypto application changed to use NIFs instead of driver.
Own Id: OTP-8333

	des_ecb_encrypt/2 and des_ecb_decrypt/2 has been added to the crypto module.
The crypto:md4/1 function has been documented.
Own Id: OTP-8551

	The undocumented, unsupported, and deprecated function lists:flat_length/1
has been removed.
Own Id: OTP-8584

	New variants of crypto:dss_sign and crypto:dss_verify with an extra
argument to control how the digest is calculated.
Own Id: OTP-8700


Crypto 1.6.4
Improvements and New Features
	Cross compilation improvements and other build system improvements.
Most notable:
	Lots of cross compilation improvements. The old cross compilation support
was more or less non-existing as well as broken. Please, note that the cross
compilation support should still be considered as experimental. Also note
that old cross compilation configurations cannot be used without
modifications. For more information on cross compiling Erlang/OTP see the
$ERL_TOP/INSTALL-CROSS.md file.
	Support for staged install using
DESTDIR. The old
broken INSTALL_PREFIX has also been fixed. For more information see the
$ERL_TOP/INSTALL.md file.
	Documentation of the release target of the top Makefile. For more
information see the $ERL_TOP/INSTALL.md file.
	make install now by default creates relative symbolic links instead of
absolute ones. For more information see the $ERL_TOP/INSTALL.md file.
	$ERL_TOP/configure --help=recursive now works and prints help for all
applications with configure scripts.
	Doing make install, or make release directly after make all no longer
triggers miscellaneous rebuilds.
	Existing bootstrap system is now used when doing make install, or
make release without a preceding make all.
	The crypto and ssl applications use the same runtime library path when
dynamically linking against libssl.so and libcrypto.so. The runtime
library search path has also been extended.
	The configure scripts of erl_interface and odbc now search for thread
libraries and thread library quirks the same way as ERTS do.
	The configure script of the odbc application now also looks for odbc
libraries in lib64 and lib/64 directories when building on a 64-bit
system.
	The config.h.in file in the erl_interface application is now
automatically generated in instead of statically updated which reduces the
risk of configure tests without any effect.

(Thanks to Henrik Riomar for suggestions and testing)
(Thanks to Winston Smith for the AVR32-Linux cross configuration and testing)
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-8323

	The crypto module now supports Blowfish in ECB, CBC and OFB modes. (Thanks to
Paul Oliver.)
Own Id: OTP-8331

	The documentation is now possible to build in an open source environment after
a number of bugs are fixed and some features are added in the documentation
build process.
- The arity calculation is updated.
- The module prefix used in the function names for bif's are removed in the
generated links so the links will look like
"http://www.erlang.org/doc/man/erlang.html#append_element-2" instead of
"http://www.erlang.org/doc/man/erlang.html#erlang:append_element-2".
- Enhanced the menu positioning in the html documentation when a new page is
loaded.
- A number of corrections in the generation of man pages (thanks to Sergei
Golovan)
- The legal notice is taken from the xml book file so OTP's build process can
be used for non OTP applications.
Own Id: OTP-8343


Crypto 1.6.3
Fixed Bugs and Malfunctions
	Suppressed false valgrind errors caused by libcrypto using uninitialized data
as entropy.
Own Id: OTP-8200


Improvements and New Features
	The documentation is now built with open source tools (xsltproc and fop) that
exists on most platforms. One visible change is that the frames are removed.
Own Id: OTP-8201

	When the crypto application failed to load the OpenSSL/LibEAY shared object,
error indication was sparse. Now a more specific error message is sent to the
error logger.
Own Id: OTP-8281


Crypto 1.6.2
Fixed Bugs and Malfunctions
	Fixed emulator crash caused by crypto using an old openssl version that did
not cope with large file descriptors.
Own Id: OTP-8261 Aux Id: seq11434


Crypto 1.6.1
Fixed Bugs and Malfunctions
	Makefile.in has been updated to use the LDFLAGS environment variable (if
set). (Thanks to Davide Pesavento.)
Own Id: OTP-8157


Improvements and New Features
	Support for Blowfish cfb64 added to crypto.
Own Id: OTP-8096

	New function crypto:aes_cbc_ivec
Own Id: OTP-8141


Crypto 1.6
Fixed Bugs and Malfunctions
	The dh_compute_key sometimes returned a SharedSecret of incorrect size.
Own Id: OTP-7674


Improvements and New Features
	Optimization for drivers by creating small binaries direct on process heap.
Own Id: OTP-7762


Crypto 1.5.3
Improvements and New Features
	Added new functions: dss_verify/3, rsa_verify/3, rsa_verify/4, dss_sign/2,
rsa_sign/2, rsa_sign/3, rsa_public_encrypt, rsa_private_decrypt/3,
rsa_private_encrypt/3, rsa_public_decrypt/3, dh_generate_key/1,
dh_generate_key/2, dh_compute_key/3.
Own Id: OTP-7545


Crypto 1.5.2.1
Improvements and New Features
	Minor performance optimization.
Own Id: OTP-7521


Crypto 1.5.2
Fixed Bugs and Malfunctions
	./configure has been improved to find 64-bit OpenSSL libraries.
Own Id: OTP-7270


Improvements and New Features
	crypto and zlib drivers improved to allow concurrent smp access.
Own Id: OTP-7262


Crypto 1.5.1.1
Improvements and New Features
	The linked in driver for the crypto application is now linked statically
against the OpenSSL libraries, to avoid installation and runtime problems in
connection to the OpenSSL library locations.
Own Id: OTP-6680

	Minor Makefile changes.
Own Id: OTP-6689


Crypto 1.5
Improvements and New Features
	It is now explicitly checked at start-up that the crypto driver is properly
loaded (Thanks to Claes Wikstrom).
Own Id: OTP-6109


Crypto 1.4
Improvements and New Features
	The previously undocumented and UNSUPPORTED ssh application has been updated
and documented. This release of the ssh application is still considered to
be a beta release and (if necessary) there could still be changes in its API
before it reaches 1.0.
Also, more cryptographic algorithms have been added to the crypto
application.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-5631


Crypto 1.3
Improvements and New Features
	Added support for RFC 3826 - The Advanced Encryption Standard (AES) Cipher
Algorithm in the SNMP User-based Security Model.
Martin Björklund

Crypto 1.2.3
Fixed Bugs and Malfunctions
	Linked in drivers in the crypto, and asn1 applications are now compiled with
the -D_THREAD_SAFE and -D_REENTRANT switches on unix when the emulator has
thread support enabled.
Linked in drivers on MacOSX are not compiled with the undocumented -lbundle1.o
switch anymore. Thanks to Sean Hinde who sent us a patch.
Linked in driver in crypto, and port programs in ssl, now compiles on OSF1.
Minor makefile improvements in runtime_tools.
Own Id: OTP-5346


Crypto 1.2.2
Improvements and New Features
	Corrected error handling. If the port to the driver that crypto uses is
unexpectedly closed (which should not happen during normal operation of
crypto), crypto will terminate immediately (rather than crashing the next time
crypto is used). Also corrected build problems on Mac OS X.
Own Id: OTP-5279


Crypto 1.2.1
Fixed Bugs and Malfunctions
	It was not possible in R9 to relink the crypto driver. The object file was
missing as well as an example makefile. The crypto driver object file is now
released with the application (installed in priv/obj). An example makefile has
also been added to the priv/obj directory. The makefile serves as an example
of how to relink the driver on Unix (crypto_drv.so) or Windows
(crypto_drv.dll).
Own Id: OTP-4828 Aux Id: seq8193


Crypto 1.2
Improvements and New Features
	Previous versions of Crypto where delivered with statically linked binaries
based on SSLeay. That is not longer the case. The current version of Crypto
requires dynamically linked OpenSSL libraries that the user has to install.
The library needed is libcrypto.so (Unix) or libeay32.[lib|dll] (Win32).
For further details see the crypto(6) application manual page.
	This version of Crypto uses the new DES interface of OpenSSL 0.9.7, which is
not backward compatible with earlier versions of OpenSSL.
	The functions des_ede3_cbc_encrypt/5 and des_ede3_cbc_decrypt/5 have been
renamed to des3_cbc_encrypt/5 and des3_cbc_decrypt/5, respectively. The
old functions have been retained (they are deprecated and not listed in the
crypto(3) manual page).

Reported Fixed Bugs and Malfunctions
	The start of crypto failed on Windows, due to erroneous addition of a DES3
algorithm.
Own Id: OTP-4684
Aux Id: seq7864


Crypto 1.1.3
Reported Fixed Bugs and Malfunctions
	To obtain backward compatibility with the old SSLeay package, and with earlier
versions of OpenSSL, the macro OPENSSL_DES_LIBDES_COMPATIBILITY has been added
to crypto_drv.c. This is of importance only for the open source version of
Crypto.

Crypto 1.1.2
Reported Fixed Bugs and Malfunctions
	In the manual page crypto the function names md5_finish and sha_finish
have been changed to md5_final and sha_final to correctly document the
implementation.
Own Id: OTP-3409


Crypto 1.1.1
Code replacement in runtime is supported. Upgrade can be done from from version
1.1 and downgrade to version 1.1.
Improvements and New Features
	The driver part of the Crypto application has been updated to use the
erl_driver header file. Version 1.1.1 requires emulator version 4.9.1 or
later.

Crypto 1.1
Reported Fixed Bugs and Malfunctions
	On Windows the crypto_drv was incorrectly linked to static run-time libraries
instead of dynamic ones.
Own Id: OTP-3240


Crypto 1.0
New application.


  

    FIPS mode

 This chapter describes FIPS mode support in the crypto
application.
Background
OpenSSL can be built to provide FIPS 140-2 validated cryptographic services. It
is not the OpenSSL application that is validated, but a special software
component called the OpenSSL FIPS Object Module. However applications do not use
this Object Module directly, but through the regular API of the OpenSSL library.
The crypto application supports using OpenSSL in FIPS mode. In this scenario
only the validated algorithms provided by the Object Module are accessible,
other algorithms usually available in OpenSSL (like md5) or implemented in the
Erlang code (like SRP) are disabled.
Enabling FIPS mode
	Build or install the FIPS Object Module and a FIPS enabled OpenSSL library.

You should read and precisely follow the instructions of the
Security Policy
and User Guide.
Warning
It is very easy to build a working OpenSSL FIPS Object Module and library from
the source. However it does not qualify as FIPS 140-2 validated if the
numerous restrictions in the Security Policy are not properly followed.
	Configure and build Erlang/OTP with FIPS support:

$ cd $ERL_TOP
$ ./otp_build configure --enable-fips
...
checking for FIPS_mode_set... yes
...
$ make
If FIPS_mode_set returns no the OpenSSL library is not FIPS enabled and
crypto won't support FIPS mode either.
	Set the fips_mode configuration setting of the crypto application to true
before loading the crypto module.

The best place is in the sys.config system configuration file of the release.
	Start and use the crypto application as usual. However take care to avoid the
non-FIPS validated algorithms, they will all throw exception not_supported.

Entering and leaving FIPS mode on a node already running crypto is not
supported. The reason is that OpenSSL is designed to prevent an application
requesting FIPS mode to end up accidentally running in non-FIPS mode. If
entering FIPS mode fails (e.g. the Object Module is not found or is compromised)
any subsequent use of the OpenSSL API would terminate the emulator.
An on-the-fly FIPS mode change would thus have to be performed in a critical
section protected from any concurrently running crypto operations. Furthermore
in case of failure all crypto calls would have to be disabled from the Erlang or
nif code. This would be too much effort put into this not too important feature.
Incompatibilities with regular builds
The Erlang API of the crypto application is identical regardless of building
with or without FIPS support. However the nif code internally uses a different
OpenSSL API.
This means that the context (an opaque type) returned from streaming crypto
functions (hash_(init|update|final), hmac_(init|update|final) and
stream_(init|encrypt|decrypt)) is different and incompatible with regular
builds when compiling crypto with FIPS support.
Common caveats
In FIPS mode non-validated algorithms are disabled. This may cause some
unexpected problems in application relying on crypto.
Warning
Do not try to work around these problems by using alternative implementations
of the missing algorithms! An application can only claim to be using a FIPS
140-2 validated cryptographic module if it uses it exclusively for every
cryptographic operation.
Restrictions on key sizes
Although public key algorithms are supported in FIPS mode they can only be used
with secure key sizes. The Security Policy requires the following minimum
values:
	RSA - 1024 bit

	DSS - 1024 bit

	EC algorithms - 160 bit


Restrictions on elliptic curves
The Erlang API allows using arbitrary curve parameters, but in FIPS mode only
those allowed by the Security Policy shall be used.
Avoid md5 for hashing
Md5 is a popular choice as a hash function, but it is not secure enough to be
validated. Try to use sha instead wherever possible.
For exceptional, non-cryptographic use cases one may consider switching to
erlang:md5/1 as well.
Certificates and encrypted keys
As md5 is not available in FIPS mode it is only possible to use certificates
that were signed using sha hashing. When validating an entire certificate chain
all certificates (including the root CA's) must comply with this rule.
For similar dependency on the md5 and des algorithms most encrypted private keys
in PEM format do not work either. However, the PBES2 encryption scheme allows
the use of stronger FIPS verified algorithms which is a viable alternative.
SNMP v3 limitations
It is only possible to use usmHMACSHAAuthProtocol and usmAesCfb128Protocol
for authentication and privacy respectively in FIPS mode. The snmp application
however won't restrict selecting disabled protocols in any way, and using them
would result in run time crashes.
TLS 1.2 is required
All SSL and TLS versions prior to TLS 1.2 use a combination of md5 and sha1
hashes in the handshake for various purposes:
	Authenticating the integrity of the handshake messages.
	In the exchange of DH parameters in cipher suites providing non-anonymous PFS
(perfect forward secrecy).
	In the PRF (pseud-random function) to generate keying materials in cipher
suites not using PFS.

OpenSSL handles these corner cases in FIPS mode, however the Erlang crypto and
ssl applications are not prepared for them and therefore you are limited to TLS
1.2 in FIPS mode.
On the other hand it worth mentioning that at least all cipher suites that would
rely on non-validated algorithms are automatically disabled in FIPS mode.
Note
Certificates using weak (md5) digests may also cause problems in TLS. Although
TLS 1.2 has an extension for specifying which type of signatures are accepted,
and in FIPS mode the ssl application will use it properly, most TLS
implementations ignore this extension and simply send whatever certificates
they were configured with.


  

    Engine Load

 This chapter describes the support for loading encryption
engines in the crypto application.
Background
OpenSSL exposes an Engine API, which makes it possible to plug in alternative
implementations for some or all of the cryptographic operations implemented by
OpenSSL. When configured appropriately, OpenSSL calls the engine's
implementation of these operations instead of its own.
Typically, OpenSSL engines provide a hardware implementation of specific
cryptographic operations. The hardware implementation usually offers improved
performance over its software-based counterpart, which is known as cryptographic
acceleration.
Note
The file name requirement on the engine dynamic library can differ between SSL
versions.
Use Cases
Dynamically load an engine from default directory
If the engine is located in the OpenSSL/LibreSSL installation engines
directory.
1> {ok, Engine} = crypto:engine_load(<<"otp_test_engine">>, [], []).
 {ok, #Ref}
Load an engine with the dynamic engine
Load an engine with the help of the dynamic engine by giving the path to the
library.
 2> {ok, Engine} = crypto:engine_load(<<"dynamic">>,
                                      [{<<"SO_PATH">>,
                                        <<"/some/path/otp_test_engine.so">>},
                                       {<<"ID">>, <<"MD5">>},
                                       <<"LOAD">>],
                                      []).
 {ok, #Ref}
Load an engine and replace some methods
Load an engine with the help of the dynamic engine and just replace some engine
methods.
 3> {ok, Engine} = crypto:engine_load(<<"dynamic">>,
                                      [{<<"SO_PATH">>,
                                        <<"/some/path/otp_test_engine.so">>},
                                       {<<"ID">>, <<"MD5">>},
                                       <<"LOAD">>],
                                      []).
{ok, #Ref}
4> ok = crypto:engine_register(Engine, [engine_method_digests]).
ok
Load with the ensure loaded function
This function makes sure the engine is loaded just once and the ID is added to
the internal engine list of OpenSSL. The following calls to the function will
check if the ID is loaded and then just get a new reference to the engine.
 5> {ok, Engine} = crypto:ensure_engine_loaded(<<"MD5">>,
                                               <<"/some/path/otp_test_engine.so">>).
 {ok, #Ref}
To remove the tag from the OpenSSL engine list use crypto:engine_remove/1.
 6> crypto:engine_remove(Engine).
 ok
To unload it use crypto:engine_unload/1 which removes the references to the
engine.
 6> crypto:engine_unload(Engine).
 ok
List all engines currently loaded
 8> crypto:engine_list().
[<<"dynamic">>, <<"MD5">>]


  

    Engine Stored Keys

 This chapter describes the support in the crypto
application for using public and private keys stored in encryption engines.
Background
OpenSSL exposes an Engine API, which makes it
possible to plug in alternative implementations for some of the cryptographic
operations implemented by OpenSSL. See the chapter
Engine Load for details and how to load an Engine.
An engine could among other tasks provide a storage for private or public keys.
Such a storage could be made safer than the normal file system. Those techniques
are not described in this User's Guide. Here we concentrate on how to use
private or public keys stored in such an engine.
The storage engine must call ENGINE_set_load_privkey_function and
ENGINE_set_load_pubkey_function. See the OpenSSL cryptolib's
manpages.
OTP/Crypto requires that the user provides two or three items of information
about the key. The application used by the user is usually on a higher level,
for example in SSL. If using the crypto application directly,
it is required that:
	an Engine is loaded, see the chapter on
Engine Load or the
Reference Manual
	a reference to a key in the Engine is available. This should be an Erlang
string or binary and depends on the Engine loaded
	an Erlang map is constructed with the Engine reference, the key reference and
possibly a key passphrase if needed by the Engine. See the
Reference Manual for details of the map.

Use Cases
Sign with an engine stored private key
This example shows how to construct a key reference that is used in a sign
operation. The actual key is stored in the engine that is loaded at prompt 1.
1> {ok, EngineRef} = crypto:engine_load(....).
...
{ok,#Ref<0.2399045421.3028942852.173962>}
2> PrivKey = #{engine => EngineRef,
               key_id => "id of the private key in Engine"}.
...
3> Signature = crypto:sign(rsa, sha, <<"The message">>, PrivKey).
<<65,6,125,254,54,233,84,77,83,63,168,28,169,214,121,76,
  207,177,124,183,156,185,160,243,36,79,125,230,231,...>>
Verify with an engine stored public key
Here the signature and message in the last example is verifyed using the public
key. The public key is stored in an engine, only to exemplify that it is
possible. The public key could of course be handled openly as usual.
4> PublicKey = #{engine => EngineRef,
                 key_id => "id of the public key in Engine"}.
...
5> crypto:verify(rsa, sha, <<"The message">>, Signature, PublicKey).
true
6>
Using a password protected private key
The same example as the first sign example, except that a password protects the
key down in the Engine.
6> PrivKeyPwd = #{engine => EngineRef,
                  key_id => "id of the pwd protected private key in Engine",
		  password => "password"}.
...
7> crypto:sign(rsa, sha, <<"The message">>, PrivKeyPwd).
<<140,80,168,101,234,211,146,183,231,190,160,82,85,163,
  175,106,77,241,141,120,72,149,181,181,194,154,175,76,
  223,...>>
8>


  

    Algorithm Details

This chapter describes details of algorithms in the crypto application.
The tables only documents the supported cryptos and key lengths. The user should
not draw any conclusion on security from the supplied tables.
Ciphers
A cipher in the new api is
categorized as either cipher_no_iv(),
cipher_iv() or
cipher_aead(). The letters IV are short for
Initialization Vector and AEAD is an abbreviation of Authenticated Encryption
with Associated Data.
Due to irregular naming conventions, some cipher names in the old api are
substituted by new names in the new api. For a list of retired names, see
Retired cipher names.
To dynamically check availability, check that the name in the Cipher and Mode
column is present in the list returned by
crypto:supports(ciphers).
Ciphers without an IV - cipher_no_iv()
To be used with:
	crypto_one_time/4
	crypto_init/3

The ciphers are:
	Cipher and Mode	Key length [bytes]	Block size [bytes]
	aes_128_ecb	16	16
	aes_192_ecb	24	16
	aes_256_ecb	32	16
	blowfish_ecb	16	8
	des_ecb	8	8
	rc4	16	1
	sm4_ecb	16	16

Table: Ciphers without IV
Ciphers with an IV - cipher_iv()
To be used with:
	crypto_one_time/5
	crypto_init/4

The ciphers are:
	Cipher and Mode	Key length [bytes]	IV length [bytes]	Block size [bytes]	Limited to OpenSSL versions
	aes_128_cbc	16	16	16	
	aes_192_cbc	24	16	16	
	aes_256_cbc	32	16	16	
	aes_128_cfb8	16	16	1	
	aes_192_cfb8	24	16	1	
	aes_256_cfb8	32	16	1	
	aes_128_cfb128	16	16	1	
	aes_192_cfb128	24	16	1	
	aes_256_cfb128	32	16	1	
	aes_128_ctr	16	16	1	
	aes_192_ctr	24	16	1	
	aes_256_ctr	32	16	1	
	aes_128_ofb	16	16	1	
	aes_192_ofb	24	16	1	
	aes_256_ofb	32	16	1	
	blowfish_cbc	16	8	8	
	blowfish_cfb64	16	8	1	
	blowfish_ofb64	16	8	1	
	chacha20	32	16	1	≥1.1.0d
	des_cbc	8	8	8	
	des_ede3_cbc	24	8	8	
	des_cfb	8	8	1	
	des_ede3_cfb	24	8	1	
	rc2_cbc	16	8	8	
	sm4_cbc	16	16	16	≥1.1.1
	sm4_cfb	16	16	16	≥1.1.1
	sm4_ofb	16	16	16	≥1.1.1
	sm4_ctr	16	16	16	≥1.1.1

Table: Ciphers with IV
Ciphers with AEAD - cipher_aead()
To be used with:
	crypto_one_time_aead/6
	crypto_one_time_aead/7

The ciphers are:
	Cipher and Mode	Key length [bytes]	IV length [bytes]	AAD length [bytes]	Tag length [bytes]	Block size [bytes]	Limited to OpenSSL versions
	aes_128_ccm	16	7-13	any	even 4-16 default: 12	any	≥1.0.1
	aes_192_ccm	24	7-13	any	even 4-16 default: 12	any	≥1.0.1
	aes_256_ccm	32	7-13	any	even 4-16 default: 12	any	≥1.0.1
	aes_128_gcm	16	≥1	any	1-16 default: 16	any	≥1.0.1
	aes_192_gcm	24	≥1	any	1-16 default: 16	any	≥1.0.1
	aes_256_gcm	32	≥1	any	1-16 default: 16	any	≥1.0.1
	chacha20_poly1305	32	1-16	any	16	any	≥1.1.0
	sm4_gcm	16	12	any	16	any	≥3.1.0
	sm4_ccm	16	12	any	16	any	≥3.1.0

Table: AEAD ciphers
Message Authentication Codes (MACs)
To be used in mac/4 and
related functions.
CMAC
CMAC with the following ciphers are available with OpenSSL 1.0.1 or later if not
disabled by configuration.
To dynamically check availability, check that the name cmac is present in the
list returned by crypto:supports(macs). Also check that
the name in the Cipher and Mode column is present in the list returned by
crypto:supports(ciphers).
	Cipher and Mode	Key length [bytes]	Max Mac Length (= default length) [bytes]
	aes_128_cbc	16	16
	aes_192_cbc	24	16
	aes_256_cbc	32	16
	aes_128_ecb	16	16
	aes_192_ecb	24	16
	aes_256_ecb	32	16
	blowfish_cbc	16	8
	blowfish_ecb	16	8
	des_cbc	8	8
	des_ecb	8	8
	des_ede3_cbc	24	8
	rc2_cbc	16	8

Table: CMAC cipher key lengths
HMAC
Available in all OpenSSL compatible with Erlang CRYPTO if not disabled by
configuration.
To dynamically check availability, check that the name hmac is present in the
list returned by crypto:supports(macs) and that the hash
name is present in the list returned by
crypto:supports(hashs).
	Hash	Max Mac Length (= default length) [bytes]
	sha	20
	sha224	28
	sha256	32
	sha384	48
	sha512	64
	sha512_224	28
	sha512_256	32
	sha3_224	28
	sha3_256	32
	sha3_384	48
	sha3_512	64
	shake128	64
	shake256	64
	blake2b	64
	blake2s	32
	md4	16
	md5	16
	ripemd160	20

Table: HMAC output sizes
POLY1305
POLY1305 is available with OpenSSL 1.1.1 or later if not disabled by
configuration.
To dynamically check availability, check that the name poly1305 is present in
the list returned by crypto:supports(macs).
The poly1305 mac wants an 32 bytes key and produces a 16 byte MAC by default.
Hash
To dynamically check availability, check that the wanted name in the Names
column is present in the list returned by
crypto:supports(hashs).
	Type	Names	Limited to OpenSSL versions
	SHA1	sha	
	SHA2	sha224, sha256, sha384, sha512, sha512_224, sha512_256	
	SHA3	sha3_224, sha3_256, sha3_384, sha3_512, shake128, shake256	≥1.1.1
	SM3	sm3	≥1.1.1
	MD4	md4	
	MD5	md5	
	RIPEMD	ripemd160	

Public Key Cryptography
RSA
RSA is available with all OpenSSL versions compatible with Erlang CRYPTO if not
disabled by configuration. To dynamically check availability, check that the
atom rsa is present in the list returned by
crypto:supports(public_keys).
Warning
The RSA options are experimental.
The exact set of options and there syntax may be changed without prior
notice.
	Option	sign/verify	public encrypt	private encrypt
			private decrypt	public decrypt
	{rsa_padding,rsa_x931_padding}	x		x
				
	{rsa_padding,rsa_pkcs1_padding}	x	x	x
				
	{rsa_padding,rsa_pkcs1_pss_padding}	x (2)		
	{rsa_pss_saltlen, -2..}	x (2)		
	{rsa_mgf1_md, atom()}	x (2)		
				
	{rsa_padding,rsa_pkcs1_oaep_padding}		x (2)	
	{rsa_mgf1_md, atom()}		x (2)	
	{rsa_oaep_label, binary()}}		x (3)	
	{rsa_oaep_md, atom()}		x (3)	
				
	{rsa_padding,rsa_no_padding}	x (1)		

Notes:
	OpenSSL ≤ 1.0.0
	OpenSSL ≥ 1.0.1
	OpenSSL ≥ 1.1.0

DSS
DSS is available with OpenSSL versions compatible with Erlang CRYPTO if not
disabled by configuration. To dynamically check availability, check that the
atom dss is present in the list returned by
crypto:supports(public_keys).
ECDSA
ECDSA is available with OpenSSL 0.9.8o or later if not disabled by
configuration. To dynamically check availability, check that the atom ecdsa is
present in the list returned by
crypto:supports(public_keys). If the atom ec_gf2m also
is present, the characteristic two field curves are available.
The actual supported named curves could be checked by examining the list
returned by crypto:supports(curves).
EdDSA
EdDSA is available with OpenSSL 1.1.1 or later if not disabled by configuration.
To dynamically check availability, check that the atom eddsa is present in the
list returned by crypto:supports(public_keys).
Support for the curves ed25519 and ed448 is implemented. The actual supported
named curves could be checked by examining the list with the list returned by
crypto:supports(curves).
Diffie-Hellman
Diffie-Hellman computations are available with OpenSSL versions compatible with
Erlang CRYPTO if not disabled by configuration. To dynamically check
availability, check that the atom dh is present in the list returned by
crypto:supports(public_keys).
Elliptic Curve Diffie-Hellman
Elliptic Curve Diffie-Hellman is available with OpenSSL 0.9.8o or later if not
disabled by configuration. To dynamically check availability, check that the
atom ecdh is present in the list returned by
crypto:supports(public_keys).
The Edward curves x25519 and x448 are supported with OpenSSL 1.1.1 or later
if not disabled by configuration.
The actual supported named curves could be checked by examining the list
returned by crypto:supports(curves).


  

    New and Old API

This chapter describes the new api to encryption and decryption.
Background
The CRYPTO app has evolved during its lifetime. Since also the OpenSSL cryptolib
has changed the API several times, there are parts of the CRYPTO app that uses a
very old one internally and other parts that uses the latest one. The internal
definitions of e.g cipher names was a bit hard to maintain.
It turned out that using the old api in the new way (more about that later), and
still keep it backwards compatible, was not possible. Specially as more
precision in the error messages is desired it could not be combined with the old
standard.
Therefore the old api (see next section) is kept for now but internally
implemented with new primitives.
The old API
The old functions - deprecated from 23.0 and removed from OTP 24.0 - are for
ciphers:
	block_encrypt/3
	block_encrypt/4
	block_decrypt/3
	block_decrypt/4
	stream_init/2
	stream_init/3
	stream_encrypt/2
	stream_decrypt/2
	next_iv/2
	next_iv/3

for lists of supported algorithms:
	supports/0

and for MACs (Message Authentication Codes):
	cmac/3
	cmac/4
	hmac/3
	hmac/4
	hmac_init/2
	hmac_update/2
	hmac_final/1
	hmac_final_n/2
	poly1305/2

The new API
Encryption and decryption
The new functions for encrypting or decrypting one single binary are:
	crypto_one_time/4
	crypto_one_time/5
	crypto_one_time_aead/6
	crypto_one_time_aead/7

In those functions the internal crypto state is first created and initialized
with the cipher type, the key and possibly other data. Then the single binary is
encrypted or decrypted, the crypto state is de-allocated and the result of the
crypto operation is returned.
The crypto_one_time_aead functions are for the ciphers of mode ccm or gcm,
and for the cipher chacha20-poly1305.
For repeated encryption or decryption of a text divided in parts, where the
internal crypto state is initialized once, and then many binaries are encrypted
or decrypted with the same state, the functions are:
	crypto_init/4
	crypto_init/3
	crypto_update/2
	crypto_final/1

The crypto_init initialies an internal cipher state, and one or more calls of
crypto_update does the actual encryption or decryption. Note that AEAD ciphers
can't be handled this way due to their nature.
An example of where those functions are needed, is when handling the TLS
protocol.
If padding was not enabled, the call to
crypto_final/1 may be excluded.
For information about available algorithms, use:
	supports/1
	hash_info/1
	cipher_info/1

The next_iv/2 and next_iv/3 are not needed since the crypto_init and
crypto_update includes this functionality.
MACs (Message Authentication Codes)
The new functions for calculating a MAC of a single piece of text are:
	mac/3
	mac/4
	macN/4
	macN/5

For calculating a MAC of a text divided in parts use:
	mac_init/2
	mac_init/3
	mac_update/2
	mac_final/1
	mac_finalN/2

Examples of the new api
Examples of crypto_init/4 and crypto_update/2
The functions crypto_init/4 and
crypto_update/2 are intended to be used for
encrypting or decrypting a sequence of blocks. First one call of crypto_init/4
initialises the crypto context. One or more calls crypto_update/2 does the
actual encryption or decryption for each block.
This example shows first the encryption of two blocks and then decryptions of
the cipher text, but divided into three blocks just to show that it is possible
to divide the plain text and cipher text differently for some ciphers:
	1> application:start(crypto).
	ok
	2> Key = <<1:128>>.
	<<0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1>>
	3> IV = <<0:128>>.
	<<0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0>>
	4> StateEnc = crypto:crypto_init(aes_128_ctr, Key, IV, true). % encrypt -> true
	#Ref<0.3768901617.1128660993.124047>
	5> crypto:crypto_update(StateEnc, <<"First bytes">>).
	<<67,44,216,166,25,130,203,5,66,6,162>>
	6> crypto:crypto_update(StateEnc, <<"Second bytes">>).
	<<16,79,94,115,234,197,94,253,16,144,151,41>>
	7>
	7> StateDec = crypto:crypto_init(aes_128_ctr, Key, IV, false). % decrypt -> false
	#Ref<0.3768901617.1128660994.124255>
	8> crypto:crypto_update(StateDec, <<67,44,216,166,25,130,203>>).
	<<"First b">>
	9> crypto:crypto_update(StateDec, <<5,66,6,162,16,79,94,115,234,197,
        94,253,16,144,151>>).
	<<"ytesSecond byte">>
	10> crypto:crypto_update(StateDec, <<41>>).
	<<"s">>
	11>
Note that the internal data that the StateEnc and StateDec references are
destructivly updated by the calls to
crypto_update/2. This is to gain time in the calls
of the nifs interfacing the cryptolib. In a loop where the state is saved in the
loop's state, it also saves one update of the loop state per crypto operation.
For example, a simple server receiving text parts to encrypt and send the result
back to the one who sent them (the Requester):
	encode(Crypto, Key, IV) ->
	crypto_loop(crypto:crypto_init(Crypto, Key, IV, true)).

	crypto_loop(State) ->
	receive
        {Text, Requester} ->
        Requester ! crypto:crypto_update(State, Text),
	loop(State)
	end.
Example of crypto_one_time/5
The same example as in the
previous section,
but now with one call to crypto_one_time/5:
	1> Key = <<1:128>>.
	<<0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1>>
	2> IV = <<0:128>>.
	<<0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0>>
	3> Txt = [<<"First bytes">>,<<"Second bytes">>].
	[<<"First bytes">>,<<"Second bytes">>]
	4> crypto:crypto_one_time(aes_128_ctr, Key, IV, Txt, true).
	<<67,44,216,166,25,130,203,5,66,6,162,16,79,94,115,234,
	197,94,253,16,144,151,41>>
	5>
The [<<"First bytes">>,<<"Second bytes">>] could of course have been one
single binary: <<"First bytesSecond bytes">>.
Example of crypto_one_time_aead/6
The same example as in the
previous section, but now with one
call to crypto_one_time_aead/6:
	1> Key = <<1:128>>.
	<<0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1>>
	2> IV = <<0:128>>.
	<<0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0>>
	3> Txt = [<<"First bytes">>,<<"Second bytes">>].
	[<<"First bytes">>,<<"Second bytes">>]
	4> AAD = <<"Some additional auth data">>.
	<<"Some additional auth data">>
	5> crypto:crypto_one_time_aead(aes_128_gcm, Key, IV, Txt, AAD, true).
	{<<240,130,38,96,130,241,189,52,3,190,179,213,132,1,72,
	192,103,176,90,104,15,71,158>>,
	<<131,47,45,91,142,85,9,244,21,141,214,71,31,135,2,155>>}
	6>
The [<<"First bytes">>,<<"Second bytes">>] could of course have been one
single binary: <<"First bytesSecond bytes">>.
Example of mac_init mac_update and mac_final
	1> Key = <<1:128>>.
	<<0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1>>
	2> StateMac = crypto:mac_init(cmac, aes_128_cbc, Key).
	#Ref<0.2424664121.2781478916.232610>
	3> crypto:mac_update(StateMac, <<"First bytes">>).
	#Ref<0.2424664121.2781478916.232610>
	4> crypto:mac_update(StateMac, " ").
	#Ref<0.2424664121.2781478916.232610>
	5> crypto:mac_update(StateMac, <<"last bytes">>).
	#Ref<0.2424664121.2781478916.232610>
	6> crypto:mac_final(StateMac).
	<<68,191,219,128,84,77,11,193,197,238,107,6,214,141,160,
	249>>
	7>
and compare the result with a single calculation just for this example:
	7> crypto:mac(cmac, aes_128_cbc, Key, "First bytes last bytes").
	<<68,191,219,128,84,77,11,193,197,238,107,6,214,141,160,
	249>>
	8> v(7) == v(6).
	true
	9>
Retired cipher names
This table lists the retired cipher names in the first column and suggests names
to replace them with in the second column.
The new names follows the OpenSSL libcrypto names. The format is
ALGORITM_KEYSIZE_MODE.
Examples of algorithms are aes, chacha20 and des. The keysize is the number of
bits and examples of the mode are cbc, ctr and gcm. The mode may be followed by
a number depending on the mode. An example is the ccm mode which has a variant
called ccm8 where the so called tag has a length of eight bits.
The old names had by time lost any common naming convention which the new names
now introduces. The new names include the key length which improves the error
checking in the lower levels of the crypto application.
	Instead of:	Use:
	aes_cbc128	aes_128_cbc
	aes_cbc256	aes_256_cbc
	aes_cbc	aes_128_cbc, aes_192_cbc, aes_256_cbc
	aes_ccm	aes_128_ccm, aes_192_ccm, aes_256_ccm
	aes_cfb128	aes_128_cfb128, aes_192_cfb128, aes_256_cfb128
	aes_cfb8	aes_128_cfb8, aes_192_cfb8, aes_256_cfb8
	aes_ctr	aes_128_ctr, aes_192_ctr, aes_256_ctr
	aes_gcm	aes_128_gcm, aes_192_gcm, aes_256_gcm
	des3_cbc	des_ede3_cbc
	des3_cbf	des_ede3_cfb
	des3_cfb	des_ede3_cfb
	des_ede3	des_ede3_cbc
	des_ede3_cbf	des_ede3_cfb



  

    
crypto 
    



      
Crypto Functions
This module provides a set of cryptographic functions.
	Hash functions -
	SHA1, SHA2 - Secure Hash Standard (FIPS PUB180-4)

	SHA3 - SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions (FIPS PUB 202)

	BLAKE2 - BLAKE2 — fast secure hashing

	SM3 - The SM3 Hash Function (GM/T 0004-2012)

	MD5 - The MD5 Message Digest Algorithm (RFC 1321)

	MD4 - The MD4 Message Digest Algorithm (RFC 1320)



	MACs - Message Authentication Codes -
	Hmac functions - Keyed-Hashing for Message Authentication (RFC 2104)

	Cmac functions - The AES-CMAC Algorithm (RFC 4493)

	POLY1305 - ChaCha20 and Poly1305 for IETF Protocols (RFC 7539)



	Symmetric Ciphers - 
	DES, 3DES and AES - Block Cipher Techniques (NIST)

	Blowfish -
Fast Software Encryption, Cambridge Security Workshop Proceedings (December 1993), Springer-Verlag, 1994, pp. 191-204.

	Chacha20 - ChaCha20 and Poly1305 for IETF Protocols (RFC 7539)

	Chacha20_poly1305 - ChaCha20 and Poly1305 for IETF Protocols (RFC 7539)

	SM4 - The SM4 Block Cipher Algorithm



	Modes -
	ECB, CBC, CFB, OFB and CTR - Recommendation for Block Cipher Modes of
Operation: Methods and Techniques (NIST SP 800-38A)

	GCM - Recommendation for Block Cipher Modes of Operation:
Galois/Counter Mode (GCM) and GMAC (NIST SP 800-38D)

	CCM - Recommendation for Block Cipher Modes of Operation: The CCM Mode
for Authentication and Confidentiality (NIST SP 800-38C)



	Asymmetric Ciphers - Public Key Techniques -
	RSA - PKCS #1: RSA Cryptography Specifications (RFC 3447)

	DSS - Digital Signature Standard (DSS) (FIPS 186-4)

	ECDSA - Elliptic Curve Digital Signature Algorithm (ECDSA)

	SRP - The SRP Authentication and Key Exchange System (RFC 2945)




Note
The actual supported algorithms and features depends on their availability in
the actual libcrypto used. See the crypto (App) about
dependencies.
Enabling FIPS mode will also disable algorithms and features.
The CRYPTO User's Guide has more information on FIPS, Engines and
Algorithm Details like key lengths.
Exceptions

Atoms - the older style
The exception error:badarg signifies that one or more arguments are of wrong
data type, or are otherwise badly formed.
The exception error:notsup signifies that the algorithm is known but is not
supported by current underlying libcrypto or explicitly disabled when building
that.
For a list of supported algorithms, see supports(ciphers).

3-tuples - the new style
The exception is:
error:{Tag, C_FileInfo, Description}

Tag = badarg | notsup | error
C_FileInfo = term()    % Usually only useful for the OTP maintainer
Description = string() % Clear text, sometimes only useful for the OTP maintainer
The exception tags are:
	badarg - Signifies that one or more arguments are of wrong data type or
are otherwise badly formed.

	notsup - Signifies that the algorithm is known but is not supported by
current underlying libcrypto or explicitly disabled when building that one.

	error - An error condition that should not occur, for example a memory
allocation failed or the underlying cryptolib returned an error code, for
example "Can't initialize context, step 1". Those text usually needs
searching the C-code to be understood.


Usually there are more information in the call stack about which argument caused
the exception and what the values where.
To catch the exception, use for example:
try crypto:crypto_init(Ciph, Key, IV, true)
    catch
        error:{Tag, _C_FileInfo, Description} ->
            do_something(......)
         .....
end

      


      
        Summary


  
    Types: Ciphers
  


    
      
        cipher()

      


    


    
      
        cipher_aead()

      


        Ciphers known by the CRYPTO application.



    


    
      
        cipher_iv()

      


    


    
      
        cipher_no_iv()

      


    


    
      
        crypto_opt()

      


        Selects encryption ({encrypt,true}) or decryption ({encrypt,false}).



    


    
      
        crypto_opts()

      


        Equivalent to crypto_opt().



    


    
      
        cryptolib_padding()

      


        The cryptolib_padding are paddings that may be present in the underlying
cryptolib linked to the Erlang/OTP crypto app.



    


    
      
        otp_padding()

      


        Erlang/OTP adds a either padding of zeroes or padding with random bytes.



    


    
      
        padding()

      


        This option handles padding in the last block. If not set, no padding is done
and any bytes in the last unfilled block is silently discarded.



    





  
    Types: Diffie-Hellman Keys and parameters
  


    
      
        dh_params()

      


        


    


    
      
        dh_private()

      


    


    
      
        dh_public()

      


        Equivalent to dh_private().



    


    
      
        ecdh_params()

      


    


    
      
        ecdh_private()

      


        Equivalent to ecdh_params().



    


    
      
        ecdh_public()

      


        Equivalent to ecdh_params().



    





  
    Types: Digests and hash
  


    
      
        blake2()

      


    


    
      
        cmac_cipher_algorithm()

      


    


    
      
        compatibility_only_hash()

      


        The compatibility_only_hash/0 algorithms are recommended only for
compatibility with existing applications.



    


    
      
        dss_digest_type()

      


    


    
      
        ecdsa_digest_type()

      


    


    
      
        hash_algorithm()

      


    


    
      
        hash_xof_algorithm()

      


    


    
      
        hmac_hash_algorithm()

      


    


    
      
        rsa_digest_type()

      


    


    
      
        sha1()

      


        Equivalent to blake2().



    


    
      
        sha2()

      


        Equivalent to blake2().



    


    
      
        sha3()

      


        Equivalent to blake2().



    


    
      
        sha3_xof()

      


        Equivalent to blake2().



    





  
    Types: Elliptic Curves
  


    
      
        ec_basis()

      


        Curve definition details.



    


    
      
        ec_characteristic_two_field()

      


        Equivalent to ec_basis().



    


    
      
        ec_curve()

      


        Parametric curve definition.



    


    
      
        ec_explicit_curve()

      


        Equivalent to ec_curve().



    


    
      
        ec_field()

      


        Equivalent to ec_curve().



    


    
      
        ec_named_curve()

      


        Equivalent to edwards_curve_ed().



    


    
      
        ec_prime_field()

      


        Equivalent to ec_basis().



    


    
      
        edwards_curve_dh()

      


        Equivalent to edwards_curve_ed().



    


    
      
        edwards_curve_ed()

      


        Note that some curves are disabled if FIPS is enabled.



    





  
    Types: Internal data types
  


    
      
        crypto_state()

      


        Equivalent to mac_state().



    


    
      
        hash_state()

      


        Equivalent to mac_state().



    


    
      
        mac_state()

      


        Contexts with an internal state that should not be manipulated but passed
between function calls.



    





  
    Types: Key Encapsulation Mechanism
  


    
      
        kem()

      


        Key encapsulation mechanisms.



    





  
    Types: Keys
  


    
      
        key_integer()

      


        Always binary/0 when used as return value



    





  
    Types: Public Key Ciphers
  


    
      
        pk_encrypt_decrypt_algs()

      


        Algorithms for public key encrypt/decrypt. Only RSA is supported.



    


    
      
        pk_encrypt_decrypt_opts()

      


        Equivalent to rsa_padding().



    


    
      
        rsa_compat_opts()

      


        Those option forms are kept only for compatibility and should not be used in new
code.



    


    
      
        rsa_opt()

      


        Equivalent to rsa_padding().



    


    
      
        rsa_padding()

      


        Options for public key encrypt/decrypt. Only RSA is supported.



    





  
    Types: Public Key Sign and Verify
  


    
      
        pk_sign_verify_algs()

      


        Algorithms for sign and verify.



    


    
      
        pk_sign_verify_opts()

      


        Equivalent to rsa_sign_verify_padding().



    


    
      
        rsa_sign_verify_opt()

      


        Equivalent to rsa_sign_verify_padding().



    


    
      
        rsa_sign_verify_padding()

      


        Options for sign and verify.



    





  
    Types: Public/Private Keys
  


    
      
        dss_private()

      


        


    


    
      
        dss_public()

      


        Equivalent to dss_private().



    


    
      
        ecdsa_params()

      


    


    
      
        ecdsa_private()

      


        Equivalent to ecdsa_params().



    


    
      
        ecdsa_public()

      


        Equivalent to ecdsa_params().



    


    
      
        eddsa_params()

      


    


    
      
        eddsa_private()

      


        Equivalent to eddsa_params().



    


    
      
        eddsa_public()

      


        Equivalent to eddsa_params().



    


    
      
        rsa_params()

      


        


    


    
      
        rsa_private()

      


        Equivalent to rsa_params().



    


    
      
        rsa_public()

      


        Equivalent to rsa_params().



    


    
      
        srp_comp_params()

      


        Equivalent to srp_host_comp_params().



    


    
      
        srp_gen_params()

      


        Equivalent to srp_host_comp_params().



    


    
      
        srp_host_comp_params()

      


        Where Verifier is v, Generator is g and Prime isN, DerivedKey is X, and
Scrambler is u (optional will be generated if not provided) from
SRP design Version = '3' | '6' | '6a'



    


    
      
        srp_host_gen_params()

      


        Equivalent to srp_host_comp_params().



    


    
      
        srp_private()

      


        


    


    
      
        srp_public()

      


        Equivalent to srp_private().



    


    
      
        srp_user_comp_params()

      


        Equivalent to srp_host_comp_params().



    


    
      
        srp_user_gen_params()

      


        Equivalent to srp_host_comp_params().



    





  
    Types: Types for Engines
  


    
      
        engine_cmnd()

      


        Pre and Post commands for engine_load/3 and /4.



    


    
      
        engine_key_ref()

      


        Equivalent to engine_ref().



    


    
      
        engine_method_type()

      


    


    
      
        engine_ref()

      


        The result of a call to engine_load/3.



    


    
      
        key_id()

      


        Identifies the key to be used. The format depends on the loaded engine. It is
passed to the ENGINE_load_(private|public)_key functions in libcrypto.



    


    
      
        password()

      


        The password of the key stored in an engine.



    





  
    Types
  


    
      
        crypto_integer()

      


    


    
      
        mldsa()

      


    


    
      
        mldsa_private()

      


    


    
      
        mldsa_public()

      


    


    
      
        rand_cache_seed()

      


    





  
    Cipher API
  


    
      
        crypto_final(State)

      


        Finalize a streaming encryptions or decryptions operation and delivers the final
bytes of the final block.



    


    
      
        crypto_get_data(State)

      


        Return information about a crypto_state/0.



    


    
      
        crypto_init(Cipher, Key, FlagOrOptions)

      


        Initialize the state for a streaming encryption or decryption
operation.



    


    
      
        crypto_init(Cipher, Key, IV, FlagOrOptions)

      


        Initialize the state for a streaming encryptions or decryptions operation.



    


    
      
        crypto_one_time(Cipher, Key, Data, FlagOrOptions)

      


        Do a complete encrypt or decrypt of the full text.



    


    
      
        crypto_one_time(Cipher, Key, IV, Data, FlagOrOptions)

      


        Do a complete encrypt or decrypt of the full text.



    


    
      
        crypto_one_time_aead(State, IV, InText, AAD)

      


        Do a complete encrypt or decrypt with an AEAD cipher of the full text.



    


    
      
        crypto_one_time_aead(Cipher, Key, IV, InText, AAD, EncFlag)

      


        Do a complete encrypt with an AEAD cipher of the full text
with the default tag length.



    


    
      
        crypto_one_time_aead(Cipher, Key, IV, InText, AAD, TagOrTagLength, EncFlag)

      


        Do a complete encrypt or decrypt with an AEAD cipher of the full text.



    


    
      
        crypto_one_time_aead_init(Cipher, Key, TagLength, EncFlag)

      


        Initializes AEAD cipher.



    


    
      
        crypto_update(State, Data)

      


        Add data to a streaming encryption or decryption operation.



    





  
    Deprecated API
  


    
      
        enable_fips_mode(Enable)

          deprecated

      


        Enable or disable FIPs mode.



    


    
      
        start()

          deprecated

      


        Use application:start(crypto) instead.



    


    
      
        stop()

          deprecated

      


        Use application:stop(crypto) instead.



    





  
    Engine API
  


    
      
        engine_add(Engine)

      


        Add the engine to OpenSSL's internal list.



    


    
      
        engine_by_id(EngineId)

      


        Get a reference to an already loaded engine with EngineId. An error tuple is
returned if the engine can't be unloaded.



    


    
      
        engine_ctrl_cmd_string(Engine, CmdName, CmdArg)

      


        Send ctrl commands to an OpenSSL engine.



    


    
      
        engine_ctrl_cmd_string(Engine, CmdName, CmdArg, Optional)

      


        Send ctrl commands to an OpenSSL engine.



    


    
      
        engine_get_all_methods()

      


        Return a list of all possible engine methods.



    


    
      
        engine_get_id(Engine)

      


        Return the ID for the engine, or an empty binary if there is no id set.



    


    
      
        engine_get_name(Engine)

      


        Return the name (eg a description) for the engine, or an empty binary if there
is no name set.



    


    
      
        engine_list()

      


        List the id's of all engines in OpenSSL's internal list.



    


    
      
        engine_load(EngineId, PreCmds, PostCmds)

      


        Load an OpenSSL engine.



    


    
      
        engine_register(Engine, EngineMethods)

      


        Register engine to handle some type of methods, for example
engine_method_digests.



    


    
      
        engine_remove(Engine)

      


        Remove the engine from OpenSSL's internal list.



    


    
      
        engine_unload(Engine)

      


        Unload an OpenSSL engine.



    


    
      
        engine_unregister(Engine, EngineMethods)

      


        Unregister engine so it don't handle some type of methods.



    


    
      
        ensure_engine_loaded(EngineId, LibPath)

      


        Load a dynamic engine if not already done.



    


    
      
        pbkdf2_hmac(Digest, Pass, Salt, Iter, KeyLen)

      


        PKCS #5 PBKDF2 (Password-Based Key Derivation Function 2) in combination with
HMAC.



    


    
      
        privkey_to_pubkey(Type, EnginePrivateKeyRef)

      


        Fetch public key from a private key stored in an Engine.



    





  
    Hash API
  


    
      
        hash(Type, Data)

      


        Compute a message digest.



    


    
      
        hash_final(State)

      


        Finalize a streaming hash calculation.



    


    
      
        hash_init(Type)

      


        Initialize the state for a streaming hash digest calculation.



    


    
      
        hash_update(State, Data)

      


        Add data to a streaming digest calculation.



    


    
      
        hash_xof(Type, Data, Length)

      


        Compute a message digest for an xof_algorithm.



    





  
    Key API
  


    
      
        compute_key(Type, OthersPublicKey, MyPrivateKey, Params)

      


        Compute the shared secret from the private key and the other party's public
key.



    


    
      
        decapsulate_key(Type, MyPrivKey, EncapSecret)

      


        Regenerate shared secret from encapsulated secret and private key.



    


    
      
        encapsulate_key(Type, OthersPublicKey)

      


        Generate encapsulated shared secret from the other party's public key.



    


    
      
        generate_key(Type, Params)

      


        Equivalent to generate_key/3.



    


    
      
        generate_key(Type, Params, PrivKeyIn)

      


        Generate a public key.



    





  
    Legacy RSA Encryption API
  


    
      
        private_decrypt(Algorithm, CipherText, PrivateKey, Options)

      


        Decrypt using a private key.



    


    
      
        private_encrypt(Algorithm, PlainText, PrivateKey, Options)

      


        Encrypt using a private key.



    


    
      
        public_decrypt(Algorithm, CipherText, PublicKey, Options)

      


        Decrypt using a public key.



    


    
      
        public_encrypt(Algorithm, PlainText, PublicKey, Options)

      


        Encrypt using a public key.



    





  
    MAC API
  


    
      
        mac(Type, Key, Data)

      


        Compute a poly1305 MAC (Message Authentication Code).



    


    
      
        mac(Type, SubType, Key, Data)

      


        Compute a MAC (Message Authentication Code).



    


    
      
        mac_final(State)

      


        Finalize a streaming MAC operation.



    


    
      
        mac_finalN(State, MacLength)

      


        Finalize a MAC operation with a custom length.



    


    
      
        mac_init(Type, Key)

      


        Initialize a state for streaming poly1305 MAC calculation.



    


    
      
        mac_init(Type, SubType, Key)

      


        Initialize the state for streaming MAC calculation.



    


    
      
        mac_update(State0, Data)

      


        Add data to a streaming MAC calculation.



    


    
      
        macN(Type, Key, Data, MacLength)

      


        Compute a poly1305 MAC (Message Authentication Code) with a limited length.



    


    
      
        macN(Type, SubType, Key, Data, MacLength)

      


        Compute a MAC (Message Authentication Code) with a limited length.



    





  
    Random API
  


    
      
        rand_seed()

      


        Create a state object for random number generation, in order to
generate cryptographically strong random numbers (based on OpenSSL's
BN_rand_range).



    


    
      
        rand_seed(Seed)

      


        Set the seed for PRNG to the given binary.



    


    
      
        rand_seed_alg(Alg)

      


        Create a state object for random number generation, in order to
generate cryptographically strong random numbers.



    


    
      
        rand_seed_alg(Alg, Seed)

      


        Creates a state object for random number generation, in order to
generate cryptographically unpredictable random numbers.



    


    
      
        rand_seed_alg_s(Alg)

      


        Create a state object for random number generation, in order to
generate cryptographically strongly random numbers.



    


    
      
        rand_seed_alg_s(Alg, Seed)

      


        Create a state object for random number generation, in order to
generate cryptographically unpredictable random numbers.



    


    
      
        rand_seed_s()

      


        Create a state object for random number generation, in order to
generate cryptographically strongly random numbers (based on OpenSSL's
BN_rand_range). See also rand:seed_s/1.



    


    
      
        rand_uniform/2

          deprecated

      


        Generate a random integer number.



    


    
      
        strong_rand_bytes(N)

      


        Generate bytes with randomly uniform values 0..255.



    





  
    Sign/Verify API
  


    
      
        sign(Algorithm, DigestType, Msg, Key)

      


        Equivalent to sign/5.



    


    
      
        sign(Algorithm, DigestType, Msg, Key, Options)

      


        Create a digital signature.



    


    
      
        verify(Algorithm, DigestType, Msg, Signature, Key)

      


        Equivalent to verify/6.



    


    
      
        verify(Algorithm, DigestType, Msg, Signature, Key, Options)

      


        Verify a digital signature.



    





  
    Utility Functions
  


    
      
        bytes_to_integer(Bin)

      


        Convert binary representation, of an integer, to an Erlang integer.



    


    
      
        cipher_info(Type)

      


        Get information about a cipher algorithm.



    


    
      
        ec_curve(CurveName)

      


        Return the defining parameters of a elliptic curve.



    


    
      
        ec_curves()

      


        Return all supported named elliptic curves.



    


    
      
        exor(Bin1, Bin2)

      


        Perform bit-wise XOR (exclusive or) on the data supplied.



    


    
      
        hash_equals(BinA, BinB)

      


        Compare two binaries in constant time, such as results of HMAC computations.



    


    
      
        hash_info(Type)

      


        Get information about a hash algorithm.



    


    
      
        info()

      


        Get information about crypto and the OpenSSL backend.



    


    
      
        info_fips()

      


        Get information about the operating status of FIPS.



    


    
      
        info_lib()

      


        Get the name and version of the libraries used by crypto.



    


    
      
        mod_pow(N, P, M)

      


        Compute the function N^P mod M.



    


    
      
        supports(Type)

      


        Get which crypto algorithms that are supported by the underlying libcrypto
library.



    





      


      
        Types: Ciphers

        


  
    
      
    
    
      cipher()


        (not exported)


        
          
        

    

  


  

      

          -type cipher() :: cipher_no_iv() | cipher_iv() | cipher_aead().


      



  



  
    
      
    
    
      cipher_aead()


        (not exported)


        
          
        

    

  


  

      

          -type cipher_aead() ::
          aes_128_ccm | aes_192_ccm | aes_256_ccm | aes_ccm | aes_128_gcm | aes_192_gcm | aes_256_gcm |
          aes_gcm | sm4_gcm | sm4_ccm | chacha20_poly1305.


      


Ciphers known by the CRYPTO application.
Note that this list might be reduced if the underlying libcrypto does not
support all of them.

  



  
    
      
    
    
      cipher_iv()


        (not exported)


        
          
        

    

  


  

      

          -type cipher_iv() ::
          aes_128_cbc | aes_192_cbc | aes_256_cbc | aes_cbc | aes_128_ofb | aes_192_ofb | aes_256_ofb |
          aes_128_cfb128 | aes_192_cfb128 | aes_256_cfb128 | aes_cfb128 | aes_128_cfb8 | aes_192_cfb8 |
          aes_256_cfb8 | aes_cfb8 | aes_128_ctr | aes_192_ctr | aes_256_ctr | aes_ctr | sm4_cbc |
          sm4_ofb | sm4_cfb | sm4_ctr | blowfish_cbc | blowfish_cfb64 | blowfish_ofb64 | chacha20 |
          des_ede3_cbc | des_ede3_cfb | des_cbc | des_cfb | rc2_cbc.


      



  



  
    
      
    
    
      cipher_no_iv()


        (not exported)


        
          
        

    

  


  

      

          -type cipher_no_iv() ::
          aes_128_ecb | aes_192_ecb | aes_256_ecb | aes_ecb | blowfish_ecb | des_ecb | sm4_ecb | rc4.


      



  



  
    
      
    
    
      crypto_opt()


        (not exported)


        
          
        

    

  


  

      

          -type crypto_opt() :: {encrypt, boolean()} | {padding, padding()}.


      


Selects encryption ({encrypt,true}) or decryption ({encrypt,false}).

  



  
    
      
    
    
      crypto_opts()


        (not exported)


        
          
        

    

  


  

      

          -type crypto_opts() :: boolean() | [crypto_opt()].


      


Equivalent to crypto_opt().

  



  
    
      
    
    
      cryptolib_padding()


        (not exported)


        
          
        

    

  


  

      

          -type cryptolib_padding() :: none | pkcs_padding.


      


The cryptolib_padding are paddings that may be present in the underlying
cryptolib linked to the Erlang/OTP crypto app.
For OpenSSL, see the OpenSSL documentation. and find
EVP_CIPHER_CTX_set_padding() in cryptolib for your linked version.

  



  
    
      
    
    
      otp_padding()


        (not exported)


        
          
        

    

  


  

      

          -type otp_padding() :: zero | random.


      


Erlang/OTP adds a either padding of zeroes or padding with random bytes.

  



  
    
      
    
    
      padding()


        (not exported)


        
          
        

    

  


  

      

          -type padding() :: cryptolib_padding() | otp_padding().


      


This option handles padding in the last block. If not set, no padding is done
and any bytes in the last unfilled block is silently discarded.

  


        

      

      
        Types: Diffie-Hellman Keys and parameters

        


  
    
      
    
    
      dh_params()


        (not exported)


        
          
        

    

  


  

      

          -type dh_params() :: [key_integer()].


      


dh_params() = [P, G] | [P, G, PrivateKeyBitLength]

  



  
    
      
    
    
      dh_private()



        
          
        

    

  


  

      

          -type dh_private() :: key_integer().


      



  



  
    
      
    
    
      dh_public()



        
          
        

    

  


  

      

          -type dh_public() :: key_integer().


      


Equivalent to dh_private().

  



  
    
      
    
    
      ecdh_params()


        (not exported)


        
          
        

    

  


  

      

          -type ecdh_params() :: ec_named_curve() | edwards_curve_dh() | ec_explicit_curve().


      



  



  
    
      
    
    
      ecdh_private()


        (not exported)


        
          
        

    

  


  

      

          -type ecdh_private() :: key_integer().


      


Equivalent to ecdh_params().

  



  
    
      
    
    
      ecdh_public()


        (not exported)


        
          
        

    

  


  

      

          -type ecdh_public() :: key_integer().


      


Equivalent to ecdh_params().

  


        

      

      
        Types: Digests and hash

        


  
    
      
    
    
      blake2()


        (not exported)


        
          
        

    

  


  

      

          -type blake2() :: blake2b | blake2s.


      



  



  
    
      
    
    
      cmac_cipher_algorithm()



        
          
        

    

  


  

      

          -type cmac_cipher_algorithm() ::
          aes_128_cbc | aes_192_cbc | aes_256_cbc | aes_cbc | blowfish_cbc | des_cbc | des_ede3_cbc |
          rc2_cbc.


      



  



  
    
      
    
    
      compatibility_only_hash()


        (not exported)


        
          
        

    

  


  

      

          -type compatibility_only_hash() :: md5 | md4.


      


The compatibility_only_hash/0 algorithms are recommended only for
compatibility with existing applications.

  



  
    
      
    
    
      dss_digest_type()



        
          
        

    

  


  

      

          -type dss_digest_type() :: sha1() | sha2().


      



  



  
    
      
    
    
      ecdsa_digest_type()



        
          
        

    

  


  

      

          -type ecdsa_digest_type() :: sha1() | sha2().


      



  



  
    
      
    
    
      hash_algorithm()


        (not exported)


        
          
        

    

  


  

      

          -type hash_algorithm() ::
          sha1() | sha2() | sha3() | sha3_xof() | blake2() | ripemd160 | sm3 | compatibility_only_hash().


      



  



  
    
      
    
    
      hash_xof_algorithm()


        (not exported)


        
          
        

    

  


  

      

          -type hash_xof_algorithm() :: sha3_xof().


      



  



  
    
      
    
    
      hmac_hash_algorithm()



        
          
        

    

  


  

      

          -type hmac_hash_algorithm() :: sha1() | sha2() | sha3() | sm3 | compatibility_only_hash().


      



  



  
    
      
    
    
      rsa_digest_type()



        
          
        

    

  


  

      

          -type rsa_digest_type() :: sha1() | sha2() | md5 | ripemd160.


      



  



  
    
      
    
    
      sha1()



        
          
        

    

  


  

      

          -type sha1() :: sha.


      


Equivalent to blake2().

  



  
    
      
    
    
      sha2()



        
          
        

    

  


  

      

          -type sha2() :: sha224 | sha256 | sha384 | sha512 | sha512_224 | sha512_256.


      


Equivalent to blake2().

  



  
    
      
    
    
      sha3()



        
          
        

    

  


  

      

          -type sha3() :: sha3_224 | sha3_256 | sha3_384 | sha3_512.


      


Equivalent to blake2().

  



  
    
      
    
    
      sha3_xof()


        (not exported)


        
          
        

    

  


  

      

          -type sha3_xof() :: shake128 | shake256.


      


Equivalent to blake2().

  


        

      

      
        Types: Elliptic Curves

        


  
    
      
    
    
      ec_basis()


        (not exported)


        
          
        

    

  


  

      

          -type ec_basis() ::
          {tpbasis, K :: non_neg_integer()} |
          {ppbasis, K1 :: non_neg_integer(), K2 :: non_neg_integer(), K3 :: non_neg_integer()} |
          onbasis.


      


Curve definition details.

  



  
    
      
    
    
      ec_characteristic_two_field()


        (not exported)


        
          
        

    

  


  

      

          -type ec_characteristic_two_field() :: {characteristic_two_field, M :: integer(), Basis :: ec_basis()}.


      


Equivalent to ec_basis().

  



  
    
      
    
    
      ec_curve()


        (not exported)


        
          
        

    

  


  

      

          -type ec_curve() :: {A :: binary(), B :: binary(), Seed :: none | binary()}.


      


Parametric curve definition.

  



  
    
      
    
    
      ec_explicit_curve()


        (not exported)


        
          
        

    

  


  

      

          -type ec_explicit_curve() ::
          {Field :: ec_field(),
           Curve :: ec_curve(),
           BasePoint :: binary(),
           Order :: binary(),
           CoFactor :: none | binary()}.


      


Equivalent to ec_curve().

  



  
    
      
    
    
      ec_field()


        (not exported)


        
          
        

    

  


  

      

          -type ec_field() :: ec_prime_field() | ec_characteristic_two_field().


      


Equivalent to ec_curve().

  



  
    
      
    
    
      ec_named_curve()



        
          
        

    

  


  

      

          -type ec_named_curve() ::
          brainpoolP160r1 | brainpoolP160t1 | brainpoolP192r1 | brainpoolP192t1 | brainpoolP224r1 |
          brainpoolP224t1 | brainpoolP256r1 | brainpoolP256t1 | brainpoolP320r1 | brainpoolP320t1 |
          brainpoolP384r1 | brainpoolP384t1 | brainpoolP512r1 | brainpoolP512t1 | c2pnb163v1 |
          c2pnb163v2 | c2pnb163v3 | c2pnb176v1 | c2pnb208w1 | c2pnb272w1 | c2pnb304w1 | c2pnb368w1 |
          c2tnb191v1 | c2tnb191v2 | c2tnb191v3 | c2tnb239v1 | c2tnb239v2 | c2tnb239v3 | c2tnb359v1 |
          c2tnb431r1 | ipsec3 | ipsec4 | prime192v1 | prime192v2 | prime192v3 | prime239v1 |
          prime239v2 | prime239v3 | prime256v1 | secp112r1 | secp112r2 | secp128r1 | secp128r2 |
          secp160k1 | secp160r1 | secp160r2 | secp192k1 | secp192r1 | secp224k1 | secp224r1 |
          secp256k1 | secp256r1 | secp384r1 | secp521r1 | sect113r1 | sect113r2 | sect131r1 |
          sect131r2 | sect163k1 | sect163r1 | sect163r2 | sect193r1 | sect193r2 | sect233k1 |
          sect233r1 | sect239k1 | sect283k1 | sect283r1 | sect409k1 | sect409r1 | sect571k1 |
          sect571r1 | wtls1 | wtls10 | wtls11 | wtls12 | wtls3 | wtls4 | wtls5 | wtls6 | wtls7 | wtls8 |
          wtls9.


      


Equivalent to edwards_curve_ed().

  



  
    
      
    
    
      ec_prime_field()


        (not exported)


        
          
        

    

  


  

      

          -type ec_prime_field() :: {prime_field, Prime :: integer()}.


      


Equivalent to ec_basis().

  



  
    
      
    
    
      edwards_curve_dh()


        (not exported)


        
          
        

    

  


  

      

          -type edwards_curve_dh() :: x25519 | x448.


      


Equivalent to edwards_curve_ed().

  



  
    
      
    
    
      edwards_curve_ed()


        (not exported)


        
          
        

    

  


  

      

          -type edwards_curve_ed() :: ed25519 | ed448.


      


Note that some curves are disabled if FIPS is enabled.

  


        

      

      
        Types: Internal data types

        


  
    
      
    
    
      crypto_state()



        
          
        

    

  


  

      

          -opaque crypto_state()


      


Equivalent to mac_state().

  



  
    
      
    
    
      hash_state()



        
          
        

    

  


  

      

          -opaque hash_state()


      


Equivalent to mac_state().

  



  
    
      
    
    
      mac_state()



        
          
        

    

  


  

      

          -opaque mac_state()


      


Contexts with an internal state that should not be manipulated but passed
between function calls.

  


        

      

      
        Types: Key Encapsulation Mechanism

        


  
    
      
    
    
      kem()


        (not exported)


        
          
        

    

  


  

      

          -type kem() :: mlkem512 | mlkem768 | mlkem1024.


      


Key encapsulation mechanisms.

  


        

      

      
        Types: Keys

        


  
    
      
    
    
      key_integer()


        (not exported)


        
          
        

    

  


  

      

          -type key_integer() :: integer() | binary().


      


Always binary/0 when used as return value

  


        

      

      
        Types: Public Key Ciphers

        


  
    
      
    
    
      pk_encrypt_decrypt_algs()


        (not exported)


        
          
        

    

  


  

      

          -type pk_encrypt_decrypt_algs() :: rsa.


      


Algorithms for public key encrypt/decrypt. Only RSA is supported.

  



  
    
      
    
    
      pk_encrypt_decrypt_opts()



        
          
        

    

  


  

      

          -type pk_encrypt_decrypt_opts() :: [rsa_opt()] | rsa_compat_opts().


      


Equivalent to rsa_padding().

  



  
    
      
    
    
      rsa_compat_opts()


        (not exported)


        
          
        

    

  


  

      

          -type rsa_compat_opts() :: [{rsa_pad, rsa_padding()}] | rsa_padding().


      


Those option forms are kept only for compatibility and should not be used in new
code.

  



  
    
      
    
    
      rsa_opt()


        (not exported)


        
          
        

    

  


  

      

          -type rsa_opt() ::
          {rsa_padding, rsa_padding()} |
          {signature_md, atom()} |
          {rsa_mgf1_md, sha} |
          {rsa_oaep_label, binary()} |
          {rsa_oaep_md, sha}.


      


Equivalent to rsa_padding().

  



  
    
      
    
    
      rsa_padding()


        (not exported)


        
          
        

    

  


  

      

          -type rsa_padding() :: rsa_pkcs1_padding | rsa_pkcs1_oaep_padding | rsa_x931_padding | rsa_no_padding.


      


Options for public key encrypt/decrypt. Only RSA is supported.
Warning
The RSA options are experimental.
The exact set of options and there syntax may be changed without prior
notice.

  


        

      

      
        Types: Public Key Sign and Verify

        


  
    
      
    
    
      pk_sign_verify_algs()


        (not exported)


        
          
        

    

  


  

      

          -type pk_sign_verify_algs() :: rsa | dss | ecdsa | eddsa | mldsa().


      


Algorithms for sign and verify.

  



  
    
      
    
    
      pk_sign_verify_opts()



        
          
        

    

  


  

      

          -type pk_sign_verify_opts() :: [rsa_sign_verify_opt()].


      


Equivalent to rsa_sign_verify_padding().

  



  
    
      
    
    
      rsa_sign_verify_opt()


        (not exported)


        
          
        

    

  


  

      

          -type rsa_sign_verify_opt() ::
          {rsa_padding, rsa_sign_verify_padding()} |
          {rsa_pss_saltlen, integer()} |
          {rsa_mgf1_md, sha2()}.


      


Equivalent to rsa_sign_verify_padding().

  



  
    
      
    
    
      rsa_sign_verify_padding()


        (not exported)


        
          
        

    

  


  

      

          -type rsa_sign_verify_padding() ::
          rsa_pkcs1_padding | rsa_pkcs1_pss_padding | rsa_x931_padding | rsa_no_padding.


      


Options for sign and verify.
Warning
The RSA options are experimental.
The exact set of options and there syntax may be changed without prior
notice.

  


        

      

      
        Types: Public/Private Keys

        


  
    
      
    
    
      dss_private()


        (not exported)


        
          
        

    

  


  

      

          -type dss_private() :: [key_integer()].


      


dss_public() = [P, Q, G, Y]
Where P, Q and G are the dss parameters and Y is the public key.
dss_private() = [P, Q, G, X]
Where P, Q and G are the dss parameters and X is the private key.

  



  
    
      
    
    
      dss_public()


        (not exported)


        
          
        

    

  


  

      

          -type dss_public() :: [key_integer()].


      


Equivalent to dss_private().

  



  
    
      
    
    
      ecdsa_params()


        (not exported)


        
          
        

    

  


  

      

          -type ecdsa_params() :: ec_named_curve() | ec_explicit_curve().


      



  



  
    
      
    
    
      ecdsa_private()


        (not exported)


        
          
        

    

  


  

      

          -type ecdsa_private() :: key_integer().


      


Equivalent to ecdsa_params().

  



  
    
      
    
    
      ecdsa_public()


        (not exported)


        
          
        

    

  


  

      

          -type ecdsa_public() :: key_integer().


      


Equivalent to ecdsa_params().

  



  
    
      
    
    
      eddsa_params()


        (not exported)


        
          
        

    

  


  

      

          -type eddsa_params() :: edwards_curve_ed().


      



  



  
    
      
    
    
      eddsa_private()


        (not exported)


        
          
        

    

  


  

      

          -type eddsa_private() :: key_integer().


      


Equivalent to eddsa_params().

  



  
    
      
    
    
      eddsa_public()


        (not exported)


        
          
        

    

  


  

      

          -type eddsa_public() :: key_integer().


      


Equivalent to eddsa_params().

  



  
    
      
    
    
      rsa_params()


        (not exported)


        
          
        

    

  


  

      

          -type rsa_params() :: {ModulusSizeInBits :: integer(), PublicExponent :: key_integer()}.


      


rsa_public() = [E, N]
rsa_private() = [E, N, D] | [E, N, D, P1, P2, E1, E2, C]
Where E is the public exponent, N is public modulus and D is the private
exponent. The longer key format contains redundant information that will make
the calculation faster. P1 and P2 are first and second prime factors. E1 and E2
are first and second exponents. C is the CRT coefficient. The terminology is
taken from RFC 3447.

  



  
    
      
    
    
      rsa_private()


        (not exported)


        
          
        

    

  


  

      

          -type rsa_private() :: [key_integer()].


      


Equivalent to rsa_params().

  



  
    
      
    
    
      rsa_public()


        (not exported)


        
          
        

    

  


  

      

          -type rsa_public() :: [key_integer()].


      


Equivalent to rsa_params().

  



  
    
      
    
    
      srp_comp_params()


        (not exported)


        
          
        

    

  


  

      

          -type srp_comp_params() :: {user, srp_user_comp_params()} | {host, srp_host_comp_params()}.


      


Equivalent to srp_host_comp_params().

  



  
    
      
    
    
      srp_gen_params()


        (not exported)


        
          
        

    

  


  

      

          -type srp_gen_params() :: {user, srp_user_gen_params()} | {host, srp_host_gen_params()}.


      


Equivalent to srp_host_comp_params().

  



  
    
      
    
    
      srp_host_comp_params()


        (not exported)


        
          
        

    

  


  

      

          -type srp_host_comp_params() :: [binary() | atom()].


      


Where Verifier is v, Generator is g and Prime isN, DerivedKey is X, and
Scrambler is u (optional will be generated if not provided) from
SRP design Version = '3' | '6' | '6a'

  



  
    
      
    
    
      srp_host_gen_params()


        (not exported)


        
          
        

    

  


  

      

          -type srp_host_gen_params() :: [binary() | atom() | list()].


      


Equivalent to srp_host_comp_params().

  



  
    
      
    
    
      srp_private()


        (not exported)


        
          
        

    

  


  

      

          -type srp_private() :: key_integer().


      


srp_public() = key_integer()
Where is A or B from SRP design
srp_private() = key_integer()
Where is a or b from SRP design

  



  
    
      
    
    
      srp_public()


        (not exported)


        
          
        

    

  


  

      

          -type srp_public() :: key_integer().


      


Equivalent to srp_private().

  



  
    
      
    
    
      srp_user_comp_params()


        (not exported)


        
          
        

    

  


  

      

          -type srp_user_comp_params() :: [binary() | atom()].


      


Equivalent to srp_host_comp_params().

  



  
    
      
    
    
      srp_user_gen_params()


        (not exported)


        
          
        

    

  


  

      

          -type srp_user_gen_params() :: [binary() | atom() | list()].


      


Equivalent to srp_host_comp_params().

  


        

      

      
        Types: Types for Engines

        


  
    
      
    
    
      engine_cmnd()


        (not exported)


        
          
        

    

  


  

      

          -type engine_cmnd() :: {unicode:chardata(), unicode:chardata()}.


      


Pre and Post commands for engine_load/3 and /4.

  



  
    
      
    
    
      engine_key_ref()


        (not exported)


        
          
        

    

  


  

      

          -type engine_key_ref() ::
          #{engine := engine_ref(), key_id := key_id(), password => password(), term() => term()}.


      


Equivalent to engine_ref().

  



  
    
      
    
    
      engine_method_type()


        (not exported)


        
          
        

    

  


  

      

          -type engine_method_type() ::
          engine_method_rsa | engine_method_dsa | engine_method_dh | engine_method_rand |
          engine_method_ecdh | engine_method_ecdsa | engine_method_ciphers | engine_method_digests |
          engine_method_store | engine_method_pkey_meths | engine_method_pkey_asn1_meths |
          engine_method_ec.


      



  



  
    
      
    
    
      engine_ref()



        
          
        

    

  


  

      

          -type engine_ref() :: term().


      


The result of a call to engine_load/3.

  



  
    
      
    
    
      key_id()



        
          
        

    

  


  

      

          -type key_id() :: string() | binary().


      


Identifies the key to be used. The format depends on the loaded engine. It is
passed to the ENGINE_load_(private|public)_key functions in libcrypto.

  



  
    
      
    
    
      password()



        
          
        

    

  


  

      

          -type password() :: string() | binary().


      


The password of the key stored in an engine.

  


        

      

      
        Types

        


  
    
      
    
    
      crypto_integer()


        (not exported)


        
          
        

    

  


  

      

          -type crypto_integer() :: binary() | integer().


      



  



  
    
      
    
    
      mldsa()


        (not exported)


        
          
        

    

  


  

      

          -type mldsa() :: mldsa44 | mldsa65 | mldsa87.


      



  



  
    
      
    
    
      mldsa_private()


        (not exported)


        
          
        

    

  


  

      

          -type mldsa_private() :: {seed | expandedkey, binary()}.


      



  



  
    
      
    
    
      mldsa_public()


        (not exported)


        
          
        

    

  


  

      

          -type mldsa_public() :: binary().


      



  



  
    
      
    
    
      rand_cache_seed()


        (not exported)


        
          
        

    

  


  

      

          -type rand_cache_seed() :: nonempty_improper_list(non_neg_integer(), binary()).


      



  


        

      

      
        Cipher API

        


  
    
      
    
    
      crypto_final(State)


        (since OTP 23.0)


        
          
        

    

  


  

      

          -spec crypto_final(State) -> FinalResult when State :: crypto_state(), FinalResult :: binary().


      


Finalize a streaming encryptions or decryptions operation and delivers the final
bytes of the final block.
The data returned from this function may be empty if no padding was enabled in
crypto_init/3 or crypto_init/4.
Uses the 3-tuple style for error handling.

  



  
    
      
    
    
      crypto_get_data(State)


        (since OTP 23.0)


        
          
        

    

  


  

      

          -spec crypto_get_data(State) -> Result when State :: crypto_state(), Result :: map().


      


Return information about a crypto_state/0.
The information returned is a map, which currently contains at least:
	size - The number of bytes encrypted or decrypted so far.

	padding_size - After a call to crypto_final/1 it contains the number
of bytes padded. Otherwise 0.

	padding_type - The type of the padding as provided in the call to
crypto_init/3 or crypto_init/4.

	encrypt - Is true if encryption is performed. It is false otherwise.


Uses the 3-tuple style for error handling.

  



  
    
      
    
    
      crypto_init(Cipher, Key, FlagOrOptions)


        (since OTP 22.0)


        
          
        

    

  


  

      

          -spec crypto_init(Cipher, Key, FlagOrOptions) -> State
                     when
                         Cipher :: cipher_no_iv(),
                         Key :: iodata(),
                         FlagOrOptions :: crypto_opts() | boolean(),
                         State :: crypto_state().


      


Initialize the state for a streaming encryption or decryption
operation.
Equivalent to the call
crypto_init(Cipher, Key, <<>>, FlagOrOptions). It is
intended for ciphers without an IV (nounce).
Uses the 3-tuple style for error handling.

  



  
    
      
    
    
      crypto_init(Cipher, Key, IV, FlagOrOptions)


        (since OTP 22.0)


        
          
        

    

  


  

      

          -spec crypto_init(Cipher, Key, IV, FlagOrOptions) -> State
                     when
                         Cipher :: cipher_iv(),
                         Key :: iodata(),
                         IV :: iodata(),
                         FlagOrOptions :: crypto_opts(),
                         State :: crypto_state().


      


Initialize the state for a streaming encryptions or decryptions operation.
The returned state should be used as argument to crypto_update/2 and
crypto_final/1 to do the actual encryption or decryption.
If IV = <<>>, no IV is used. This is intended for ciphers without an IV
(nounce). See crypto_init/3.
For encryption, set the FlagOrOptions to true or [{encrypt,true}]. For
decryption, set it to false or [{encrypt,false}].
Padding could be enabled with the option {padding,Padding}.
The cryptolib_padding enables pkcs_padding or no
padding (none). The paddings zero or random fills the last part of the
last block with zeroes or random bytes. If the last block is already full,
nothing is added.
In decryption, the cryptolib_padding removes such
padding, if present. The otp_padding is not removed - it
has to be done elsewhere.
If padding is {padding,none} or not specified and the total data from all
subsequent crypto_updates does not fill the last block
fully, that last data is lost. In case of {padding,none} there will be an
error in this case. If padding is not specified, the bytes of the unfilled block
is silently discarded.
The actual padding is performed by crypto_final/1.
For blocksizes call cipher_info/1.
Uses the 3-tuple style for error handling.
See
examples in the User's Guide.

  



  
    
      
    
    
      crypto_one_time(Cipher, Key, Data, FlagOrOptions)


        (since OTP 22.0)


        
          
        

    

  


  

      

          -spec crypto_one_time(Cipher, Key, Data, FlagOrOptions) -> Result
                         when
                             Cipher :: cipher_no_iv(),
                             Key :: iodata(),
                             Data :: iodata(),
                             FlagOrOptions :: crypto_opts() | boolean(),
                             Result :: binary().


      


Do a complete encrypt or decrypt of the full text.
As crypto_one_time/5 but for ciphers without IVs.
Uses the 3-tuple style for error handling.

  



  
    
      
    
    
      crypto_one_time(Cipher, Key, IV, Data, FlagOrOptions)


        (since OTP 22.0)


        
          
        

    

  


  

      

          -spec crypto_one_time(Cipher, Key, IV, Data, FlagOrOptions) -> Result
                         when
                             Cipher :: cipher_iv(),
                             Key :: iodata(),
                             IV :: iodata(),
                             Data :: iodata(),
                             FlagOrOptions :: crypto_opts() | boolean(),
                             Result :: binary().


      


Do a complete encrypt or decrypt of the full text.
Argument Data is the text to be encrypted or decrypted.
For encryption, set the FlagOrOptions to true. For decryption, set it to
false. For setting other options, see crypto_init/4.
Uses the 3-tuple style for error handling.
See examples in the User's Guide.

  



  
    
      
    
    
      crypto_one_time_aead(State, IV, InText, AAD)


        (since OTP 28.0)


        
          
        

    

  


  

      

          -spec crypto_one_time_aead(State, IV, InText, AAD) -> Result
                              when
                                  State :: crypto_state(),
                                  IV :: iodata(),
                                  InText :: iodata(),
                                  AAD :: iodata(),
                                  Result :: EncryptResult | DecryptResult,
                                  EncryptResult :: binary(),
                                  DecryptResult :: binary() | error.


      


Do a complete encrypt or decrypt with an AEAD cipher of the full text.
Similar to 'crypto_one_time_aead/7' but uses the handle from 'crypto_one_time_aead_init/4'.
Appends the tag of the specified 'TagLength' to the end of the encrypted data, when doing encryption.
Strips the tag from the end of 'InText' and verifies it when doing decryption.

  



  
    
      
    
    
      crypto_one_time_aead(Cipher, Key, IV, InText, AAD, EncFlag)


        (since OTP 22.0)


        
          
        

    

  


  

      

          -spec crypto_one_time_aead(Cipher, Key, IV, InText, AAD, EncFlag :: true) -> Result
                              when
                                  Cipher :: cipher_aead(),
                                  Key :: iodata(),
                                  IV :: iodata(),
                                  InText :: iodata(),
                                  AAD :: iodata(),
                                  Result :: EncryptResult,
                                  EncryptResult :: {OutCryptoText, OutTag},
                                  OutCryptoText :: binary(),
                                  OutTag :: binary().


      


Do a complete encrypt with an AEAD cipher of the full text
with the default tag length.
Equivalent to
crypto_one_time_aead(Cipher, Key, IV, InText, AAD, TagLength, true)
where TagLength is the default tag length for the given Cipher.

  



  
    
      
    
    
      crypto_one_time_aead(Cipher, Key, IV, InText, AAD, TagOrTagLength, EncFlag)


        (since OTP 22.0)


        
          
        

    

  


  

      

          -spec crypto_one_time_aead(Cipher, Key, IV, InText, AAD, TagOrTagLength, EncFlag) -> Result
                              when
                                  Cipher :: cipher_aead(),
                                  Key :: iodata(),
                                  IV :: iodata(),
                                  InText :: iodata(),
                                  AAD :: iodata(),
                                  TagOrTagLength :: EncryptTagLength | DecryptTag,
                                  EncryptTagLength :: non_neg_integer(),
                                  DecryptTag :: iodata(),
                                  EncFlag :: boolean(),
                                  Result :: EncryptResult | DecryptResult,
                                  EncryptResult :: {OutCryptoText, OutTag},
                                  DecryptResult :: OutPlainText | error,
                                  OutCryptoText :: binary(),
                                  OutTag :: binary(),
                                  OutPlainText :: binary().


      


Do a complete encrypt or decrypt with an AEAD cipher of the full text.
For encryption, set the EncryptFlag to true and set the TagOrTagLength to
the wanted size (in bytes) of the tag, that is, the tag length. If the default
length is wanted, the crypto_one_time_aead/6 form may be used.
For decryption, set the EncryptFlag to false and put the tag to be checked
in the argument TagOrTagLength.
Warning
The length of the tag at decryption is not checked by the function. It is the
caller's responsibility to ensure that the length of the tag matches the
length of the tag used when the data was encrypted. Otherwise the decryption
may succeed if the given tag only matches the start of the proper tag.
Additional Authentication Data (AAD) is plaintext data that will not be
encrypted, but will be covered by authenticity protection. It should be provided
through the AAD argument, but can be an empty binary as well (<<>>) if not
needed. In that case, a plain AE (Authenticated Encryption) is performed instead
of AEAD (Authenticated Encryption with Associated Data). This function only
supports ciphers that can be used both with and without AAD.
Uses the 3-tuple style for error handling.
See
examples in the User's Guide.

  



  
    
      
    
    
      crypto_one_time_aead_init(Cipher, Key, TagLength, EncFlag)


        (since OTP 28.0)


        
          
        

    

  


  

      

          -spec crypto_one_time_aead_init(Cipher, Key, TagLength, EncFlag) -> Result
                                   when
                                       Cipher :: cipher_aead(),
                                       Key :: iodata(),
                                       TagLength :: non_neg_integer(),
                                       EncFlag :: boolean(),
                                       Result :: crypto_state().


      


Initializes AEAD cipher.
Similar to 'crypto_one_time_aead/7' but only does the initialization part,
returns a handle that can be used with 'crypto_one_time_aead/4' serveral times.

  



  
    
      
    
    
      crypto_update(State, Data)


        (since OTP 22.0)


        
          
        

    

  


  

      

          -spec crypto_update(State, Data) -> Result
                       when State :: crypto_state(), Data :: iodata(), Result :: binary().


      


Add data to a streaming encryption or decryption operation.
If the part is less than a number of full blocks, only the full blocks (possibly
none) are encrypted or decrypted and the remaining bytes are saved to the next
crypto_update operation. The State should be created with crypto_init/3 or
crypto_init/4.
Uses the 3-tuple style for error handling.
See
examples in the User's Guide.

  


        

      

      
        Deprecated API

        


  
    
      
    
    
      enable_fips_mode(Enable)


        (since OTP 21.1)


        
          
        

    

  


    
      This function is deprecated. crypto:enable_fips_mode/1 is deprecated; use config parameter fips_mode.
    


  

      

          -spec enable_fips_mode(Enable) -> Result when Enable :: boolean(), Result :: boolean().


      


Enable or disable FIPs mode.
Argument Enable should be true to enable and false to disable FIPS mode.
Returns true if the operation was successful or false otherwise.
Note that to enable FIPS mode successfully, OTP must be built with the configure
option --enable-fips, and the underlying libcrypto must also support FIPS.
See also info_fips/0.

  



  
    
      
    
    
      start()



        
          
        

    

  


    
      This function is deprecated. crypto:start/0 is deprecated; use application:start(crypto) instead.
    


  

      

          -spec start() -> ok | {error, Reason :: term()}.


      


Use application:start(crypto) instead.
Warning
This function does not work if FIPS mode is to be enabled. FIPS mode will be
disabled even if configuration parameter fips_mode is set to true. Use
application:start(crypto) instead.

  



  
    
      
    
    
      stop()



        
          
        

    

  


    
      This function is deprecated. crypto:stop/0 is deprecated; use application:stop(crypto) instead.
    


  

      

          -spec stop() -> ok | {error, Reason :: term()}.


      


Use application:stop(crypto) instead.

  


        

      

      
        Engine API

        


  
    
      
    
    
      engine_add(Engine)


        (since OTP 21.0.6)


        
          
        

    

  


  

      

          -spec engine_add(Engine) -> Result when Engine :: engine_ref(), Result :: ok | {error, Reason :: term()}.


      


Add the engine to OpenSSL's internal list.
The function raises a error:badarg if the parameters are in wrong format. It
may also raise the exception error:notsup in case there is no engine support
in the underlying OpenSSL implementation.

  



  
    
      
    
    
      engine_by_id(EngineId)


        (since OTP 21.0.6)


        
          
        

    

  


  

      

          -spec engine_by_id(EngineId) -> Result
                      when
                          EngineId :: unicode:chardata(),
                          Result :: {ok, Engine :: engine_ref()} | {error, Reason :: term()}.


      


Get a reference to an already loaded engine with EngineId. An error tuple is
returned if the engine can't be unloaded.
The function raises a error:badarg if the parameter is in wrong format. It may
also raise the exception error:notsup in case there is no engine support in
the underlying OpenSSL implementation.
See also the chapter Engine Load in the User's
Guide.

  



  
    
      
    
    
      engine_ctrl_cmd_string(Engine, CmdName, CmdArg)


        (since OTP 20.2)


        
          
        

    

  


  

      

          -spec engine_ctrl_cmd_string(Engine, CmdName, CmdArg) -> Result
                                when
                                    Engine :: term(),
                                    CmdName :: unicode:chardata(),
                                    CmdArg :: unicode:chardata(),
                                    Result :: ok | {error, Reason :: term()}.


      


Send ctrl commands to an OpenSSL engine.
This function is the same as calling engine_ctrl_cmd_string/4 with Optional
set to false.
The function raises a error:badarg if the parameters are in wrong format. It
may also raise the exception error:notsup in case there is no engine support
in the underlying OpenSSL implementation.

  



  
    
      
    
    
      engine_ctrl_cmd_string(Engine, CmdName, CmdArg, Optional)


        (since OTP 20.2)


        
          
        

    

  


  

      

          -spec engine_ctrl_cmd_string(Engine, CmdName, CmdArg, Optional) -> Result
                                when
                                    Engine :: term(),
                                    CmdName :: unicode:chardata(),
                                    CmdArg :: unicode:chardata(),
                                    Optional :: boolean(),
                                    Result :: ok | {error, Reason :: term()}.


      


Send ctrl commands to an OpenSSL engine.
Optional is a
boolean argument that can relax the semantics of the function. If set to true
it will only return failure if the ENGINE supported the given command name but
failed while executing it, if the ENGINE doesn't support the command name it
will simply return success without doing anything. In this case we assume the
user is only supplying commands specific to the given ENGINE so we set this to
false.
The function raises a error:badarg if the parameters are in wrong format. It
may also raise the exception error:notsup in case there is no engine support
in the underlying OpenSSL implementation.

  



  
    
      
    
    
      engine_get_all_methods()


        (since OTP 20.2)


        
          
        

    

  


  

      

          -spec engine_get_all_methods() -> Result when Result :: [engine_method_type()].


      


Return a list of all possible engine methods.
May raise exception error:notsup in case there is no engine support in the
underlying OpenSSL implementation.
See also the chapter Engine Load in the User's
Guide.

  



  
    
      
    
    
      engine_get_id(Engine)


        (since OTP 21.0.6)


        
          
        

    

  


  

      

          -spec engine_get_id(Engine) -> EngineId when Engine :: engine_ref(), EngineId :: unicode:chardata().


      


Return the ID for the engine, or an empty binary if there is no id set.
The function raises a error:badarg if the parameters are in wrong format. It
may also raise the exception error:notsup in case there is no engine support
in the underlying OpenSSL implementation.

  



  
    
      
    
    
      engine_get_name(Engine)


        (since OTP 21.0.6)


        
          
        

    

  


  

      

          -spec engine_get_name(Engine) -> EngineName
                         when Engine :: engine_ref(), EngineName :: unicode:chardata().


      


Return the name (eg a description) for the engine, or an empty binary if there
is no name set.
The function raises a error:badarg if the parameters are in wrong format. It
may also raise the exception error:notsup in case there is no engine support
in the underlying OpenSSL implementation.

  



  
    
      
    
    
      engine_list()


        (since OTP 20.2)


        
          
        

    

  


  

      

          -spec engine_list() -> Result when Result :: [EngineId :: unicode:chardata()].


      


List the id's of all engines in OpenSSL's internal list.
It may also raise the exception error:notsup in case there is no engine
support in the underlying OpenSSL implementation.
See also the chapter Engine Load in the User's
Guide.
May raise exception error:notsup in case engine functionality is not supported
by the underlying OpenSSL implementation.

  



  
    
      
    
    
      engine_load(EngineId, PreCmds, PostCmds)


        (since OTP 20.2)


        
          
        

    

  


  

      

          -spec engine_load(EngineId, PreCmds, PostCmds) -> Result
                     when
                         EngineId :: unicode:chardata(),
                         PreCmds :: [engine_cmnd()],
                         PostCmds :: [engine_cmnd()],
                         Result :: {ok, Engine :: engine_ref()} | {error, Reason :: term()}.


      


Load an OpenSSL engine.
Loads the OpenSSL engine given by EngineId if it is available and intialize
it. Returns ok and an engine handle, or if the engine can't be loaded an error
tuple is returned.
The function raises a error:badarg if the parameters are in wrong format. It
may also raise the exception error:notsup in case there is no engine support
in the underlying OpenSSL implementation.
See also the chapter Engine Load in the User's
Guide.

  



  
    
      
    
    
      engine_register(Engine, EngineMethods)


        (since OTP 25.1)


        
          
        

    

  


  

      

          -spec engine_register(Engine, EngineMethods) -> Result
                         when
                             Engine :: engine_ref(),
                             EngineMethods :: [engine_method_type()],
                             Result :: ok | {error, Reason :: term()}.


      


Register engine to handle some type of methods, for example
engine_method_digests.
The function raises a error:badarg if the parameters are in wrong format. It
may also raise the exception error:notsup in case there is no engine support
in the underlying OpenSSL implementation.

  



  
    
      
    
    
      engine_remove(Engine)


        (since OTP 21.0.6)


        
          
        

    

  


  

      

          -spec engine_remove(Engine) -> Result
                       when Engine :: engine_ref(), Result :: ok | {error, Reason :: term()}.


      


Remove the engine from OpenSSL's internal list.
The function raises a error:badarg if the parameters are in wrong format. It
may also raise the exception error:notsup in case there is no engine support
in the underlying OpenSSL implementation.

  



  
    
      
    
    
      engine_unload(Engine)


        (since OTP 20.2)


        
          
        

    

  


  

      

          -spec engine_unload(Engine) -> Result
                       when Engine :: engine_ref(), Result :: ok | {error, Reason :: term()}.


      


Unload an OpenSSL engine.
Unloads the OpenSSL engine given by Engine. An error tuple is returned if the
engine can't be unloaded.
The function raises a error:badarg if the parameter is in wrong format. It may
also raise the exception error:notsup in case there is no engine support in
the underlying OpenSSL implementation.
See also the chapter Engine Load in the User's
Guide.

  



  
    
      
    
    
      engine_unregister(Engine, EngineMethods)


        (since OTP 25.1)


        
          
        

    

  


  

      

          -spec engine_unregister(Engine, EngineMethods) -> Result
                           when
                               Engine :: engine_ref(),
                               EngineMethods :: [engine_method_type()],
                               Result :: ok | {error, Reason :: term()}.


      


Unregister engine so it don't handle some type of methods.
The function raises a error:badarg if the parameters are in wrong format. It
may also raise the exception error:notsup in case there is no engine support
in the underlying OpenSSL implementation.

  



  
    
      
    
    
      ensure_engine_loaded(EngineId, LibPath)


        (since OTP 21.0.6)


        
          
        

    

  


  

      

          -spec ensure_engine_loaded(EngineId, LibPath) -> Result
                              when
                                  EngineId :: unicode:chardata(),
                                  LibPath :: unicode:chardata(),
                                  Result :: {ok, Engine :: engine_ref()} | {error, Reason :: term()}.


      


Load a dynamic engine if not already done.
Loada the engine given by EngineId and the path to the dynamic library
implementing the engine. An error tuple is returned if the engine can't be
loaded.
This function differs from the normal engine_load in the sense that it also add
the engine id to OpenSSL's internal engine list. The difference between the
first call and the following is that the first loads the engine with the
dynamical engine and the following calls fetch it from the OpenSSL's engine
list. All references that is returned are equal.
Use engine_unload/1 function to remove the references.
But remember that engine_unload/1 just removes the
references to the engine and not the tag in OpenSSL's engine list. That has to
be done with the engine_remove/1 function when needed
(just called once, from any of the references you got).
The function raises a error:badarg if the parameters are in wrong format. It
may also raise the exception error:notsup in case there is no engine support
in the underlying OpenSSL implementation.
See also the chapter Engine Load in the User's
Guide.

  



  
    
      
    
    
      pbkdf2_hmac(Digest, Pass, Salt, Iter, KeyLen)


        (since OTP 24.2)


        
          
        

    

  


  

      

          -spec pbkdf2_hmac(Digest, Pass, Salt, Iter, KeyLen) -> Result
                     when
                         Digest :: sha | sha224 | sha256 | sha384 | sha512 | sha512_224 | sha512_256,
                         Pass :: binary(),
                         Salt :: binary(),
                         Iter :: pos_integer(),
                         KeyLen :: pos_integer(),
                         Result :: binary().


      


PKCS #5 PBKDF2 (Password-Based Key Derivation Function 2) in combination with
HMAC.
Uses the 3-tuple style for error handling.

  



  
    
      
    
    
      privkey_to_pubkey(Type, EnginePrivateKeyRef)


        (since OTP 20.2)


        
          
        

    

  


  

      

          -spec privkey_to_pubkey(Type, EnginePrivateKeyRef) -> PublicKey
                           when
                               Type :: rsa | dss,
                               EnginePrivateKeyRef :: engine_key_ref(),
                               PublicKey :: rsa_public() | dss_public().


      


Fetch public key from a private key stored in an Engine.
The key must be of the type indicated by the Type parameter.

  


        

      

      
        Hash API

        


  
    
      
    
    
      hash(Type, Data)


        (since OTP R15B02)


        
          
        

    

  


  

      

          -spec hash(Type, Data) -> Digest when Type :: hash_algorithm(), Data :: iodata(), Digest :: binary().


      


Compute a message digest.
Argument Type is the digest type and argument Data is the full message.
Uses the 3-tuple style for error handling.

  



  
    
      
    
    
      hash_final(State)


        (since OTP R15B02)


        
          
        

    

  


  

      

          -spec hash_final(State) -> Digest when State :: hash_state(), Digest :: binary().


      


Finalize a streaming hash calculation.
Argument State as returned from the last call to
hash_update. The size of Digest is determined by
the type of hash function used to generate it.
Uses the 3-tuple style for error handling.

  



  
    
      
    
    
      hash_init(Type)


        (since OTP R15B02)


        
          
        

    

  


  

      

          -spec hash_init(Type) -> State when Type :: hash_algorithm(), State :: hash_state().


      


Initialize the state for a streaming hash digest calculation.
Argument Type determines which digest to use. The returned state should be
used as argument to hash_update/2.
Uses the 3-tuple style for error handling.

  



  
    
      
    
    
      hash_update(State, Data)


        (since OTP R15B02)


        
          
        

    

  


  

      

          -spec hash_update(State, Data) -> NewState
                     when State :: hash_state(), NewState :: hash_state(), Data :: iodata().


      


Add data to a streaming digest calculation.
Update the digest using the given Data of any length.
Argument State must have been generated by hash_init or a
previous call to this function.
Returns NewState that must be passed into the next call to hash_update/2 or
hash_final/1.
Uses the 3-tuple style for error handling.

  



  
    
      
    
    
      hash_xof(Type, Data, Length)


        (since OTP 26.0)


        
          
        

    

  


  

      

          -spec hash_xof(Type, Data, Length) -> Digest
                  when
                      Type :: hash_xof_algorithm(),
                      Data :: iodata(),
                      Length :: non_neg_integer(),
                      Digest :: binary().


      


Compute a message digest for an xof_algorithm.
Argument Type is the type of digest, Data is the full text and Length is
the digest length in bits.
Uses the 3-tuple style for error handling.
May raise exception error:notsup in case the chosen Type is not supported by
the underlying libcrypto implementation.

  


        

      

      
        Key API

        


  
    
      
    
    
      compute_key(Type, OthersPublicKey, MyPrivateKey, Params)


        (since OTP R16B01)


        
          
        

    

  


  

      

          -spec compute_key(Type, OthersPublicKey, MyPrivateKey, Params) -> SharedSecret
                     when
                         Type :: dh | ecdh | eddh | srp,
                         SharedSecret :: binary(),
                         OthersPublicKey :: dh_public() | ecdh_public() | srp_public(),
                         MyPrivateKey :: dh_private() | ecdh_private() | {srp_public(), srp_private()},
                         Params :: dh_params() | ecdh_params() | srp_comp_params().


      


Compute the shared secret from the private key and the other party's public
key.
See also public_key:compute_key/2.
Uses the 3-tuple style for error handling.

  



  
    
      
    
    
      decapsulate_key(Type, MyPrivKey, EncapSecret)


        (since OTP 28.1)


        
          
        

    

  


  

      

          -spec decapsulate_key(Type, MyPrivKey, EncapSecret) -> Secret
                         when
                             Type :: kem(),
                             MyPrivKey :: binary(),
                             EncapSecret :: binary(),
                             Secret :: binary().


      


Regenerate shared secret from encapsulated secret and private key.
Returns a shared secret for encryption/decryption by local party.
Supported encapsulation methods can be obtained with
supports(kems).

  



  
    
      
    
    
      encapsulate_key(Type, OthersPublicKey)


        (since OTP 28.1)


        
          
        

    

  


  

      

          -spec encapsulate_key(Type, OthersPublicKey) -> {Secret, EncapSecret}
                         when
                             Type :: kem(),
                             OthersPublicKey :: binary(),
                             Secret :: binary(),
                             EncapSecret :: binary().


      


Generate encapsulated shared secret from the other party's public key.
Returns both a shared secret for encryption/decryption by local party and an
encapsulated format of the same secret to be safely sent to the other
party. With its private key, the other party can decapsulate the received secret
(with decapsulate_key/3 for example) to regenerate the same shared secret.
Supported encapsulation methods can be obtained with
supports(kems).

  



  
    
      
    
    
      generate_key(Type, Params)


        (since OTP R16B01)


        
          
        

    

  


  

      

          -spec generate_key(Type, Params) -> {PublicKey, PrivKeyOut}
                      when
                          Type ::
                              dh | ecdh | eddh | eddsa | rsa |
                              mldsa() |
                              mlkem512 | mlkem768 | mlkem1024 | srp,
                          PublicKey :: dh_public() | ecdh_public() | rsa_public() | srp_public(),
                          PrivKeyOut ::
                              dh_private() |
                              ecdh_private() |
                              rsa_private() |
                              {srp_public(), srp_private()},
                          Params ::
                              dh_params() |
                              ecdh_params() |
                              eddsa_params() |
                              rsa_params() |
                              srp_gen_params() |
                              [].


      


Equivalent to generate_key/3.

  



  
    
      
    
    
      generate_key(Type, Params, PrivKeyIn)


        (since OTP R16B01)


        
          
        

    

  


  

      

          -spec generate_key(Type, Params, PrivKeyIn) -> {PublicKey, PrivKeyOut}
                      when
                          Type ::
                              dh | ecdh | eddh | eddsa | rsa |
                              mldsa() |
                              mlkem512 | mlkem768 | mlkem1024 | srp,
                          PublicKey :: dh_public() | ecdh_public() | rsa_public() | srp_public(),
                          PrivKeyIn ::
                              undefined |
                              dh_private() |
                              ecdh_private() |
                              rsa_private() |
                              {srp_public(), srp_private()},
                          PrivKeyOut ::
                              dh_private() |
                              ecdh_private() |
                              rsa_private() |
                              {srp_public(), srp_private()},
                          Params ::
                              dh_params() |
                              ecdh_params() |
                              eddsa_params() |
                              rsa_params() |
                              srp_comp_params() |
                              [].


      


Generate a public key.
See also public_key:generate_key/1.
Uses the 3-tuple style for error handling.
Note
If the linked version of cryptolib is OpenSSL 3.0
	and the Type is dh (diffie-hellman)
	and the parameter P (in dh_params/0) is one of the MODP groups (see
RFC 3526)
	and the optional PrivateKeyBitLength parameter (in dh_params/0) is
present,

then the optional key length parameter must be at least 224, 256, 302, 352 and
400 for group sizes of 2048, 3072, 4096, 6144 and 8192, respectively.

  


        

      

      
        Legacy RSA Encryption API

        


  
    
      
    
    
      private_decrypt(Algorithm, CipherText, PrivateKey, Options)


        (since OTP R16B01)


        
          
        

    

  


  

      

          -spec private_decrypt(Algorithm, CipherText, PrivateKey, Options) -> PlainText
                         when
                             Algorithm :: pk_encrypt_decrypt_algs(),
                             CipherText :: binary(),
                             PrivateKey :: rsa_private() | engine_key_ref(),
                             Options :: pk_encrypt_decrypt_opts(),
                             PlainText :: binary().


      


Decrypt using a private key.
Decrypts the CipherText, encrypted with public_encrypt/4 (or equivalent
function) using the PrivateKey, and returns the plaintext (message digest).
This is a low level signature verification operation used for instance by older
versions of the SSL protocol. See also
public_key:decrypt_private/2,3
Uses the 3-tuple style for error handling.
Warning
This is a legacy function, for security reasons do not use with rsa_pkcs1_padding.

  



  
    
      
    
    
      private_encrypt(Algorithm, PlainText, PrivateKey, Options)


        (since OTP R16B01)


        
          
        

    

  


  

      

          -spec private_encrypt(Algorithm, PlainText, PrivateKey, Options) -> CipherText
                         when
                             Algorithm :: pk_encrypt_decrypt_algs(),
                             PlainText :: binary(),
                             PrivateKey :: rsa_private() | engine_key_ref(),
                             Options :: pk_encrypt_decrypt_opts(),
                             CipherText :: binary().


      


Encrypt using a private key.
Encrypts the PlainText using the PrivateKey and returns the ciphertext. This
is a low level signature operation used for instance by older versions of the
SSL protocol. See also
public_key:encrypt_private/2,3
Uses the 3-tuple style for error handling.
Public-key decryption using the private key. See also crypto:private_decrypt/4
Warning
This is a legacy function, for security reasons do not use with rsa_pkcs1_padding.
For digital signatures use of sign/4 together
with verify/5 is the prefered solution.

  



  
    
      
    
    
      public_decrypt(Algorithm, CipherText, PublicKey, Options)


        (since OTP R16B01)


        
          
        

    

  


  

      

          -spec public_decrypt(Algorithm, CipherText, PublicKey, Options) -> PlainText
                        when
                            Algorithm :: pk_encrypt_decrypt_algs(),
                            CipherText :: binary(),
                            PublicKey :: rsa_public() | engine_key_ref(),
                            Options :: pk_encrypt_decrypt_opts(),
                            PlainText :: binary().


      


Decrypt using a public key.
Decrypts the CipherText, encrypted with private_encrypt/4(or equivalent
function) using the PublicKey, and returns the plaintext (message digest).
This is a low level signature verification operation used for instance by older
versions of the SSL protocol. See also
public_key:decrypt_public/2,3
Uses the 3-tuple style for error handling.
Warning
This is a legacy function, for security reasons do not use with rsa_pkcs1_padding.
For digital signatures use of verify/5 together
with sign/4 is the prefered solution.

  



  
    
      
    
    
      public_encrypt(Algorithm, PlainText, PublicKey, Options)


        (since OTP R16B01)


        
          
        

    

  


  

      

          -spec public_encrypt(Algorithm, PlainText, PublicKey, Options) -> CipherText
                        when
                            Algorithm :: pk_encrypt_decrypt_algs(),
                            PlainText :: binary(),
                            PublicKey :: rsa_public() | engine_key_ref(),
                            Options :: pk_encrypt_decrypt_opts(),
                            CipherText :: binary().


      


Encrypt using a public key.
Encrypts the PlainText (message digest) using the PublicKey and returns the
CipherText. This is a low level signature operation used for instance by older
versions of the SSL protocol. See also
public_key:encrypt_public/2,3
Uses the 3-tuple style for error handling.
Warning
This is a legacy function, for security reasons do not use together with rsa_pkcs1_padding.

  


        

      

      
        MAC API

        


  
    
      
    
    
      mac(Type, Key, Data)


        (since OTP 22.1)


        
          
        

    

  


  

      

          -spec mac(Type :: poly1305, Key, Data) -> Mac when Key :: iodata(), Data :: iodata(), Mac :: binary().


      


Compute a poly1305 MAC (Message Authentication Code).
Same as mac(Type, undefined, Key, Data).
Uses the 3-tuple style for error handling.

  



  
    
      
    
    
      mac(Type, SubType, Key, Data)


        (since OTP 22.1)


        
          
        

    

  


  

      

          -spec mac(Type, SubType, Key, Data) -> Mac
             when
                 Type :: hmac | cmac | poly1305,
                 SubType :: hmac_hash_algorithm() | cmac_cipher_algorithm() | undefined,
                 Key :: iodata(),
                 Data :: iodata(),
                 Mac :: binary().


      


Compute a MAC (Message Authentication Code).
Argument Type is the type of MAC and Data is the full message.
SubType depends on the MAC Type:
	For hmac it is a hash algorithm, see
Algorithm Details in the User's Guide.
	For cmac it is a cipher suitable for cmac, see
Algorithm Details in the User's Guide.
	For poly1305 it should be set to undefined or the mac/2
function could be used instead, see
Algorithm Details in the User's Guide.

Key is the authentication key with a length according to the Type and
SubType. The key length could be found with the hash_info/1 (hmac) for and
cipher_info/1 (cmac) functions. For poly1305 the key length is 32 bytes.
Note that the cryptographic quality of the key is not checked.
The Mac result will have a default length depending on the Type and
SubType. To set a shorter length, use macN/4 or macN/5 instead. The
default length is documented in
Algorithm Details in
the User's Guide.
Uses the 3-tuple style for error handling.

  



  
    
      
    
    
      mac_final(State)


        (since OTP 22.1)


        
          
        

    

  


  

      

          -spec mac_final(State) -> Mac when State :: mac_state(), Mac :: binary().


      


Finalize a streaming MAC operation.
Argument State is the state as returned by the last call to mac_update/2.
The Mac result will have a default length depending on the Type and SubType in the
mac_init/2,3 call. To set a shorter length, use mac_finalN/2
instead. The default length is documented in
Algorithm Details in
the User's Guide.
Uses the 3-tuple style for error handling.

  



  
    
      
    
    
      mac_finalN(State, MacLength)


        (since OTP 22.1)


        
          
        

    

  


  

      

          -spec mac_finalN(State, MacLength) -> Mac
                    when State :: mac_state(), MacLength :: pos_integer(), Mac :: binary().


      


Finalize a MAC operation with a custom length.
Argument State is the state as returned by the last call to mac_update/2.
Mac will be a binary with at most MacLength bytes. Note that if MacLength
is greater than the actual number of bytes returned from the underlying hash,
the returned hash will have that shorter length instead.
The max MacLength is documented in
Algorithm Details in
the User's Guide.
Uses the 3-tuple style for error handling.

  



  
    
      
    
    
      mac_init(Type, Key)


        (since OTP 22.1)


        
          
        

    

  


  

      

          -spec mac_init(Type :: poly1305, Key) -> State when Key :: iodata(), State :: mac_state().


      


Initialize a state for streaming poly1305 MAC calculation.
Same as mac_init(Type, undefined, Key).
Uses the 3-tuple style for error handling.

  



  
    
      
    
    
      mac_init(Type, SubType, Key)


        (since OTP 22.1)


        
          
        

    

  


  

      

          -spec mac_init(Type, SubType, Key) -> State
                  when
                      Type :: hmac | cmac | poly1305,
                      SubType :: hmac_hash_algorithm() | cmac_cipher_algorithm() | undefined,
                      Key :: iodata(),
                      State :: mac_state().


      


Initialize the state for streaming MAC calculation.
Type determines which mac algorithm to use in the MAC operation.
SubType depends on the MAC Type:
	For hmac it is a hash algorithm, see
Algorithm Details in the User's Guide.
	For cmac it is a cipher suitable for cmac, see
Algorithm Details in the User's Guide.
	For poly1305 it should be set to undefined or the mac/2
function could be used instead, see
Algorithm Details in the User's Guide.

Key is the authentication key with a length according to the Type and
SubType. The key length could be found with the hash_info/1 (hmac) for and
cipher_info/1 (cmac) functions. For poly1305 the key length is 32 bytes.
Note that the cryptographic quality of the key is not checked.
The returned State should be used in one or more subsequent calls to
mac_update/2. The MAC value is finally returned by calling mac_final/1 or
mac_finalN/2.
Uses the 3-tuple style for error handling.
See
examples in the User's Guide.

  



  
    
      
    
    
      mac_update(State0, Data)


        (since OTP 22.1)


        
          
        

    

  


  

      

          -spec mac_update(State0, Data) -> State
                    when Data :: iodata(), State0 :: mac_state(), State :: mac_state().


      


Add data to a streaming MAC calculation.
Update the MAC represented by State0 using the given Data which could be of
any length.
The State0 is the State value originally from a MAC init function, that is
mac_init/2, mac_init/3 or the last call to mac_update/2. The value
State0 is returned unchanged by the function as a reference to a mutated
internal state. Hence, it is not possible to branch off a data stream by reusing
old states.
Uses the 3-tuple style for error handling.

  



  
    
      
    
    
      macN(Type, Key, Data, MacLength)


        (since OTP 22.1)


        
          
        

    

  


  

      

          -spec macN(Type :: poly1305, Key, Data, MacLength) -> Mac
              when Key :: iodata(), Data :: iodata(), Mac :: binary(), MacLength :: pos_integer().


      


Compute a poly1305 MAC (Message Authentication Code) with a limited length.
Same as macN(Type, undefined, Key, Data, MacLength).
Uses the 3-tuple style for error handling.

  



  
    
      
    
    
      macN(Type, SubType, Key, Data, MacLength)


        (since OTP 22.1)


        
          
        

    

  


  

      

          -spec macN(Type, SubType, Key, Data, MacLength) -> Mac
              when
                  Type :: hmac | cmac | poly1305,
                  SubType :: hmac_hash_algorithm() | cmac_cipher_algorithm() | undefined,
                  Key :: iodata(),
                  Data :: iodata(),
                  Mac :: binary(),
                  MacLength :: pos_integer().


      


Compute a MAC (Message Authentication Code) with a limited length.
Works like mac/3 and mac/4 but MacLength will limit the size of the
resultant Mac to at most MacLength bytes. Note that if MacLength is
greater than the actual number of bytes returned from the underlying hash, the
returned hash will have that shorter length instead.
The max MacLength is documented in
Algorithm Details in
the User's Guide.

  


        

      

      
        Random API

        


  
    
      
    
    
      rand_seed()


        (since OTP 20.0)


        
          
        

    

  


  

      

          -spec rand_seed() -> rand:state().


      


Create a state object for random number generation, in order to
generate cryptographically strong random numbers (based on OpenSSL's
BN_rand_range).
Saves the state in the process dictionary before returning it as
well. See also rand:seed/1 and rand_seed_s/0.
When using the state object from this function the rand functions using it
may raise exception error:low_entropy in case the random generator failed due
to lack of secure "randomness".
Example
_ = crypto:rand_seed(),
_IntegerValue = rand:uniform(42), % [1; 42]
_FloatValue = rand:uniform().     % [0.0; 1.0[

  



  
    
      
    
    
      rand_seed(Seed)


        (since OTP 17.0)


        
          
        

    

  


  

      

          -spec rand_seed(binary()) -> ok.


      


Set the seed for PRNG to the given binary.
This calls the RAND_seed function from openssl. Only use this if the system you
are running on does not have enough "randomness" built in. Normally this is when
strong_rand_bytes/1 raises error:low_entropy.

  



  
    
      
    
    
      rand_seed_alg(Alg)


        (since OTP 21.0)


        
          
        

    

  


  

      

          -spec rand_seed_alg(Alg :: atom()) -> {rand:alg_handler(), atom() | rand_cache_seed()}.


      


Create a state object for random number generation, in order to
generate cryptographically strong random numbers.
Saves the state in the process dictionary before returning it as well. See also
rand:seed/1 and rand_seed_alg_s/1.
When using the state object from this function the rand functions using it
may raise exception error:low_entropy in case the random generator failed due
to lack of secure "randomness".
Example
_ = crypto:rand_seed_alg(crypto_cache),
_IntegerValue = rand:uniform(42), % [1; 42]
_FloatValue = rand:uniform().     % [0.0; 1.0[

  



  
    
      
    
    
      rand_seed_alg(Alg, Seed)


        (since OTP-22.0)


        
          
        

    

  


  

      

          -spec rand_seed_alg(Alg :: atom(), Seed :: term()) -> {rand:alg_handler(), atom() | rand_cache_seed()}.


      


Creates a state object for random number generation, in order to
generate cryptographically unpredictable random numbers.
Saves the state in the process dictionary before returning it as well. See also
rand_seed_alg_s/2.
Example
_ = crypto:rand_seed_alg(crypto_aes, "my seed"),
IntegerValue = rand:uniform(42), % [1; 42]
FloatValue = rand:uniform(),     % [0.0; 1.0[
_ = crypto:rand_seed_alg(crypto_aes, "my seed"),
IntegerValue = rand:uniform(42), % Same values
FloatValue = rand:uniform().     % again

  



  
    
      
    
    
      rand_seed_alg_s(Alg)


        (since OTP 21.0)


        
          
        

    

  


  

      

          -spec rand_seed_alg_s(Alg :: atom()) -> {rand:alg_handler(), atom() | rand_cache_seed()}.


      


Create a state object for random number generation, in order to
generate cryptographically strongly random numbers.
See also rand:seed_s/1.
If Alg is crypto this function behaves exactly like rand_seed_s/0.
If Alg is crypto_cache this function fetches random data with OpenSSL's
RAND_bytes and caches it for speed using an internal word size of 56 bits that
makes calculations fast on 64 bit machines.
When using the state object from this function the rand functions using it
may raise exception error:low_entropy in case the random generator failed due
to lack of secure "randomness".
The cache size can be changed from its default value using the
crypto app's configuration parameter rand_cache_size.
Note
The state returned from this function cannot be used to get a reproducible
random sequence as from the other rand functions, since reproducibility
does not match cryptographically safe.
In fact since random data is cached some numbers may get reproduced if you
try, but this is unpredictable.
The only supported usage is to generate one distinct random sequence from this
start state.

  



  
    
      
    
    
      rand_seed_alg_s(Alg, Seed)


        (since OTP 22.0)


        
          
        

    

  


  

      

          -spec rand_seed_alg_s(Alg :: atom(), Seed :: term()) -> {rand:alg_handler(), atom() | rand_cache_seed()}.


      


Create a state object for random number generation, in order to
generate cryptographically unpredictable random numbers.
See also rand_seed_alg/1.
To get a long period the Xoroshiro928 generator from the rand module is used
as a counter (with period 2^928 - 1) and the generator states are scrambled
through AES to create 58-bit pseudo random values.
The result should be statistically completely unpredictable random values, since
the scrambling is cryptographically strong and the period is ridiculously long.
But the generated numbers are not to be regarded as cryptographically strong
since there is no re-keying schedule.
	If you need cryptographically strong random numbers use rand_seed_alg_s/1
with Alg =:= crypto or Alg =:= crypto_cache.
	If you need to be able to repeat the sequence use this function.
	If you do not need the statistical quality of this function, there are faster
algorithms in the rand module.

Thanks to the used generator the state object supports the
rand:jump/0,1 function with distance 2^512.
Numbers are generated in batches and cached for speed reasons. The cache size
can be changed from its default value using the
crypto app's configuration parameter rand_cache_size.

  



  
    
      
    
    
      rand_seed_s()


        (since OTP 20.0)


        
          
        

    

  


  

      

          -spec rand_seed_s() -> rand:state().


      


Create a state object for random number generation, in order to
generate cryptographically strongly random numbers (based on OpenSSL's
BN_rand_range). See also rand:seed_s/1.
When using the state object from this function the rand functions using it
may raise exception error:low_entropy in case the random generator failed due
to lack of secure "randomness".
Note
The state returned from this function cannot be used to get a reproducible
random sequence as from the other rand functions, since reproducibility
does not match cryptographically safe.
The only supported usage is to generate one distinct random sequence from this
start state.

  



  
    
      
    
    
      rand_uniform/2



        
          
        

    

  


    
      This function is deprecated. crypto:rand_uniform/2 is deprecated; use rand:uniform/1 instead.
    


  

      

          -spec rand_uniform(crypto_integer(), crypto_integer()) -> crypto_integer().


      


Generate a random integer number.
The interval is From =< N < To. Uses the crypto library
pseudo-random number generator. To must be larger than From.

  



  
    
      
    
    
      strong_rand_bytes(N)


        (since OTP R14B03)


        
          
        

    

  


  

      

          -spec strong_rand_bytes(N :: non_neg_integer()) -> binary().


      


Generate bytes with randomly uniform values 0..255.
Returns the result in a binary with N bytes.
Uses a cryptographically secure PRNG seeded and periodically mixed with
operating system provided entropy. By default this is the RAND_bytes method
from OpenSSL.
May raise exception error:low_entropy in case the random generator failed due
to lack of secure "randomness".

  


        

      

      
        Sign/Verify API

        


  
    
      
    
    
      sign(Algorithm, DigestType, Msg, Key)


        (since OTP R16B01)


        
          
        

    

  


  

      

          -spec sign(Algorithm, DigestType, Msg, Key) -> Signature
              when
                  Algorithm :: pk_sign_verify_algs(),
                  DigestType :: rsa_digest_type() | dss_digest_type() | ecdsa_digest_type() | none,
                  Msg :: iodata() | {digest, iodata()},
                  Key ::
                      rsa_private() |
                      dss_private() |
                      [ecdsa_private() | ecdsa_params()] |
                      [eddsa_private() | eddsa_params()] |
                      mldsa_private() |
                      engine_key_ref(),
                  Signature :: binary().


      


Equivalent to sign/5.

  



  
    
      
    
    
      sign(Algorithm, DigestType, Msg, Key, Options)


        (since OTP 20.1)


        
          
        

    

  


  

      

          -spec sign(Algorithm, DigestType, Msg, Key, Options) -> Signature
              when
                  Algorithm :: pk_sign_verify_algs(),
                  DigestType :: rsa_digest_type() | dss_digest_type() | ecdsa_digest_type() | none,
                  Msg :: iodata() | {digest, iodata()},
                  Key ::
                      rsa_private() |
                      dss_private() |
                      [ecdsa_private() | ecdsa_params()] |
                      [eddsa_private() | eddsa_params()] |
                      mldsa_private() |
                      engine_key_ref(),
                  Options :: pk_sign_verify_opts(),
                  Signature :: binary().


      


Create a digital signature.
The msg is either the binary "cleartext" data to be signed or it is the hashed
value of "cleartext" i.e. the digest (plaintext).
Algorithm dss can only be used together with digest type sha.
Uses the 3-tuple style for error handling.
See also public_key:sign/3.

  



  
    
      
    
    
      verify(Algorithm, DigestType, Msg, Signature, Key)


        (since OTP R16B01)


        
          
        

    

  


  

      

          -spec verify(Algorithm, DigestType, Msg, Signature, Key) -> Result
                when
                    Algorithm :: pk_sign_verify_algs(),
                    DigestType :: rsa_digest_type() | dss_digest_type() | ecdsa_digest_type() | none,
                    Msg :: iodata() | {digest, iodata()},
                    Signature :: binary(),
                    Key ::
                        rsa_public() |
                        dss_public() |
                        [ecdsa_public() | ecdsa_params()] |
                        [eddsa_public() | eddsa_params()] |
                        mldsa_public() |
                        engine_key_ref(),
                    Result :: boolean().


      


Equivalent to verify/6.

  



  
    
      
    
    
      verify(Algorithm, DigestType, Msg, Signature, Key, Options)


        (since OTP 20.1)


        
          
        

    

  


  

      

          -spec verify(Algorithm, DigestType, Msg, Signature, Key, Options) -> Result
                when
                    Algorithm :: pk_sign_verify_algs(),
                    DigestType :: rsa_digest_type() | dss_digest_type() | ecdsa_digest_type() | none,
                    Msg :: iodata() | {digest, iodata()},
                    Signature :: binary(),
                    Key ::
                        rsa_public() |
                        dss_public() |
                        [ecdsa_public() | ecdsa_params()] |
                        [eddsa_public() | eddsa_params()] |
                        mldsa_public() |
                        engine_key_ref(),
                    Options :: pk_sign_verify_opts(),
                    Result :: boolean().


      


Verify a digital signature.
The msg is either the binary "cleartext" data to be signed or it is the hashed
value of "cleartext" i.e. the digest (plaintext).
Algorithm dss can only be used together with digest type sha.
Uses the 3-tuple style for error handling.
See also public_key:verify/4.

  


        

      

      
        Utility Functions

        


  
    
      
    
    
      bytes_to_integer(Bin)


        (since OTP R16B01)


        
          
        

    

  


  

      

          -spec bytes_to_integer(binary()) -> integer().


      


Convert binary representation, of an integer, to an Erlang integer.

  



  
    
      
    
    
      cipher_info(Type)


        (since OTP 22.0)


        
          
        

    

  


  

      

          -spec cipher_info(Type) -> Result
                     when
                         Type :: cipher(),
                         Result ::
                             #{key_length := integer(),
                               iv_length := integer(),
                               block_size := integer(),
                               mode := CipherModes,
                               type := undefined | integer(),
                               prop_aead := boolean()},
                         CipherModes ::
                             undefined | cbc_mode | ccm_mode | cfb_mode | ctr_mode | ecb_mode |
                             gcm_mode | ige_mode | ocb_mode | ofb_mode | wrap_mode | xts_mode.


      


Get information about a cipher algorithm.
Returns a map with information about block size, key length, IV length, aead
support and possibly other properties of the cipher algorithm in question.
Note
The ciphers aes_cbc, aes_cfb8, aes_cfb128, aes_ctr, aes_ecb,
aes_gcm and aes_ccm has no keylength in the Type as opposed to for
example aes_128_ctr. They adapt to the length of the key provided in the
encrypt and decrypt function. Therefore it is impossible to return a valid
keylength in the map.
Always use a Type with an explicit key length,
For a list of supported cipher algorithms, see
supports(ciphers).

  



  
    
      
    
    
      ec_curve(CurveName)


        (since OTP 17.0)


        
          
        

    

  


  

      

          -spec ec_curve(CurveName) -> ExplicitCurve
                  when CurveName :: ec_named_curve(), ExplicitCurve :: ec_explicit_curve().


      


Return the defining parameters of a elliptic curve.

  



  
    
      
    
    
      ec_curves()


        (since OTP 17.0)


        
          
        

    

  


  

      

          -spec ec_curves() -> [EllipticCurve]
                   when EllipticCurve :: ec_named_curve() | edwards_curve_dh() | edwards_curve_ed().


      


Return all supported named elliptic curves.

  



  
    
      
    
    
      exor(Bin1, Bin2)



        
          
        

    

  


  

      

          -spec exor(iodata(), iodata()) -> binary().


      


Perform bit-wise XOR (exclusive or) on the data supplied.
The two byte sequences mus be of equal length.

  



  
    
      
    
    
      hash_equals(BinA, BinB)


        (since OTP 25.0)


        
          
        

    

  


  

      

          -spec hash_equals(BinA, BinB) -> Result when BinA :: binary(), BinB :: binary(), Result :: boolean().


      


Compare two binaries in constant time, such as results of HMAC computations.
Returns true if the binaries are identical, false if they are of the same length
but not identical. The function raises an error:badarg exception if the
binaries are of different size.

  



  
    
      
    
    
      hash_info(Type)


        (since OTP 22.0)


        
          
        

    

  


  

      

          -spec hash_info(Type) -> Result
                   when
                       Type :: hash_algorithm(),
                       Result :: #{size := integer(), block_size := integer(), type := integer()}.


      


Get information about a hash algorithm.
Returns a map with information about block_size, size and possibly other
properties of the hash algorithm in question.
For a list of supported hash algorithms, see supports(hashs).

  



  
    
      
    
    
      info()


        (since OTP 24.2)


        
          
        

    

  


  

      

          -spec info() ->
              #{compile_type := normal | debug | valgrind | asan,
                cryptolib_version_compiled := string() | undefined,
                cryptolib_version_linked := string(),
                link_type := dynamic | static,
                otp_crypto_version := string(),
                fips_provider_available => boolean(),
                fips_provider_buildinfo => string()}.


      


Get information about crypto and the OpenSSL backend.
Returns a map with information about the compilation and linking of crypto.
Example:
1> crypto:info().
#{compile_type => normal,
  cryptolib_version_compiled => "OpenSSL 3.0.0 7 sep 2021",
  cryptolib_version_linked => "OpenSSL 3.0.0 7 sep 2021",
  link_type => dynamic,
  otp_crypto_version => "5.0.2",
  fips_provider_available => true,
  fips_provider_buildinfo => "3.0.0"}
2>
More association types than documented may be present in the map. Some of the
associations (like fips) may be absent if not supported.

  



  
    
      
    
    
      info_fips()


        (since OTP 20.0)


        
          
        

    

  


  

      

          -spec info_fips() -> not_supported | not_enabled | enabled.


      


Get information about the operating status of FIPS.
Returns the FIPS operating status of crypto and the underlying libcrypto
library. If crypto was built with FIPS support this can be either enabled
(when running in FIPS mode) or not_enabled. For other builds
this value is always not_supported.
See configuration parameter fips_mode
about how to enable FIPS mode.
Warning
In FIPS mode all non-FIPS compliant algorithms are disabled and raise
exception error:notsup. Check supports(ciphers) that in FIPS
mode returns the restricted list of available algorithms.

  



  
    
      
    
    
      info_lib()



        
          
        

    

  


  

      

          -spec info_lib() -> [{Name, VerNum, VerStr}]
                  when Name :: binary(), VerNum :: integer(), VerStr :: binary().


      


Get the name and version of the libraries used by crypto.
Name is the name of the library. VerNum is the numeric version according to
the library's own versioning scheme. VerStr contains a text variant of the
version.
> info_lib().
[{<<"OpenSSL">>,269484095,<<"OpenSSL 1.1.0c  10 Nov 2016"">>}]
Note
From OTP R16 the numeric version represents the version of the OpenSSL
header files (openssl/opensslv.h) used when crypto was compiled. The text
variant represents the libcrypto library used at runtime. In earlier OTP
versions both numeric and text was taken from the library.

  



  
    
      
    
    
      mod_pow(N, P, M)


        (since OTP R16B01)


        
          
        

    

  


  

      

          -spec mod_pow(N, P, M) -> Result
                 when
                     N :: binary() | integer(),
                     P :: binary() | integer(),
                     M :: binary() | integer(),
                     Result :: binary() | error.


      


Compute the function N^P mod M.

  



  
    
      
    
    
      supports(Type)


        (since OTP 22.0)


        
          
        

    

  


  

      

          -spec supports(Type) -> Support
                  when
                      Type :: hashs | ciphers | kems | public_keys | macs | curves | rsa_opts,
                      Support :: Hashs | Ciphers | KEMs | PKs | Macs | Curves | RSAopts,
                      Hashs ::
                          [sha1() |
                           sha2() |
                           sha3() |
                           sha3_xof() |
                           blake2() |
                           ripemd160 |
                           compatibility_only_hash()],
                      Ciphers :: [cipher()],
                      KEMs :: [kem()],
                      PKs :: [rsa | dss | ecdsa | dh | ecdh | eddh | ec_gf2m],
                      Macs :: [hmac | cmac | poly1305],
                      Curves :: [ec_named_curve() | edwards_curve_dh() | edwards_curve_ed()],
                      RSAopts :: [rsa_sign_verify_opt() | rsa_opt()].


      


Get which crypto algorithms that are supported by the underlying libcrypto
library.
See hash_info/1 and cipher_info/1 for information about the hash and cipher
algorithms.

  


        

      


  OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();




OEBPS/assets/logo.png
EEEEEE





