

 debugger

 v6.0.3

 [image: Logo]

 Table of contents

 	Debugger Release Notes

 	User's Guides

 	Introduction

 	Debugger

 	
 Modules

 	debugger

 	i

 	int

 Debugger Release Notes

This document describes the changes made to the Debugger application.
Debugger 6.0.3
Fixed Bugs and Malfunctions
	Fixed unbound error in interpreted modules
Own Id: OTP-19719 Aux Id: GH-10057, PR-10066

Debugger 6.0.2
Fixed Bugs and Malfunctions
	Fixed debugger priv dir, which was removed and caused crashes when the icons could not be found.
Own Id: OTP-19687 Aux Id: PR-9994, GH-9858

Debugger 6.0.1
Fixed Bugs and Malfunctions
	Restore deleted icon so that debugger does not crash on startup.
Own Id: OTP-19641 Aux Id: GH-9858, PR-9861

Debugger 6.0
Fixed Bugs and Malfunctions
	Error handling has been improved when modules fail to load.
Own Id: OTP-19484 Aux Id: GH-7819, PR-9399

Improvements and New Features
	Comprehensions have been extended with zip generators according to EEP 73.
Example:
1> [A+B || A <- [1,2,3] && B <- [4,5,6]].
[5,7,9]
Own Id: OTP-19184 Aux Id: PR-8926

	New strict generators have been added for comprehensions.
The currently existing generators are "relaxed": they ignore terms in the
right-hand side expression that do not match the left-hand side pattern.
The new strict generators fail with exception badmatch if a pattern doesn't match.
Examples:
Using the current relaxed generator operator <-, any element not matching
the pattern {_,_} will be silently discarded:
1> [T || {_,_}=T <- [{ok,1},ok,{error,2}]].
[{ok,1},{error,2}]
If the intention is that all lists processed by a list comprehension must only
contain tuples of size two, using the new strict version of the operator ensures
that term not matching will cause a crash:
2> [T || {_,_}=T <:- [{ok,1},ok,{error,2}]].
** exception error: no match of right hand side value ok
Using the strict generator operator to mark the intention that all list elements must match the pattern could help finding mistakes quicker if something unpexected is added to the list processed by the generator.
The strict version for bitstring generators is <:=.
Own Id: OTP-19317 Aux Id: PR-8625

	The license and copyright header has changed format to include an SPDX-License-Identifier. At the same time, most files have been updated to follow a uniform standard for license headers.
Own Id: OTP-19575 Aux Id: PR-9670

Debugger 5.5.0.1
Fixed Bugs and Malfunctions
	Fix unbound error in interpreted modules
Own Id: OTP-19719 Aux Id: GH-10057, PR-10066

Debugger 5.5
Fixed Bugs and Malfunctions
	Defining a fun in the shell using the syntax fun Name/Arity would fail. This has been corrected so that the following now works:
1> F = fun is_atom/1.
#Fun.erl.42.18682967>
> F(a).
true
3> Id = fun id/1.
#Fun.erl.42.18682967>
4> Id(42).
** exception error: undefined shell command id/1
5> id(I) -> I.
ok
6> Id(42).
42
The Debugger has also been corrected to correctly handle this syntax for a BIF.
Own Id: OTP-19322 Aux Id: GH-8963, PR-8987

Improvements and New Features
	Erlang/OTP type specifications has been updated to eliminate overlapping domains.
Own Id: OTP-19310 Aux Id: GH-8810, GH-8821, PR-8986

Debugger 5.4
Fixed Bugs and Malfunctions
	The dependencies for this application are now listed in the app file.
Own Id: OTP-18831 Aux Id: PR-7441

Improvements and New Features
	Type specs have been added to all API functions.
Own Id: OTP-18819 Aux Id: PR-7781

	The documentation has been migrated to use Markdown and ExDoc.
Own Id: OTP-18955 Aux Id: PR-8026

	The Debugger now use a trace session for its internal use of tracing to avoid interfering with the user's use of tracing.
Own Id: OTP-19074 Aux Id: PR-8389

Debugger 5.3.4
Fixed Bugs and Malfunctions
	Guards with nested record expression could wrongly evaluate to false.
Own Id: OTP-18958 Aux Id: GH-8120, PR-8275

Debugger 5.3.3
Fixed Bugs and Malfunctions
	Map comprehensions now work in the Debugger.
Own Id: OTP-18888 Aux Id: GH-7914

Debugger 5.3.2
Fixed Bugs and Malfunctions
	The call int:no_break(Module) did not remove any breakpoints.
Own Id: OTP-18644 Aux Id: GH-7336

	The maybe expression is now supported in the Debugger.
Own Id: OTP-18740 Aux Id: GH-7410, PR-7599

Debugger 5.3.1.3
Fixed Bugs and Malfunctions
	Guards with nested record expression could wrongly evaluate to false.
Own Id: OTP-18958 Aux Id: GH-8120, PR-8275

Debugger 5.3.1.2
Fixed Bugs and Malfunctions
	The maybe expression is now supported in the Debugger.
Own Id: OTP-18740 Aux Id: GH-7410, PR-7599

Debugger 5.3.1.1
Fixed Bugs and Malfunctions
	The call int:no_break(Module) did not remove any breakpoints.
Own Id: OTP-18644 Aux Id: GH-7336

Debugger 5.3.1
Fixed Bugs and Malfunctions
	Fixed a bug that would cause analysis to crash.
Own Id: OTP-18372 Aux Id: GH-6580

Debugger 5.3
Improvements and New Features
	The configuration files .erlang,
.erlang.cookie and
.erlang.crypt can now be located in the XDG
Config Home directory.
See the documentation for each file and filename:basedir/2 for more details.
Own Id: OTP-17554 Aux Id: GH-5016 PR-5408 OTP-17821

Debugger 5.2.1.1
Fixed Bugs and Malfunctions
	The call int:no_break(Module) did not remove any breakpoints.
Own Id: OTP-18644 Aux Id: GH-7336

Debugger 5.2.1
Fixed Bugs and Malfunctions
	Fix record index matching, it was broken and could never match.
Own Id: OTP-17865 Aux Id: GH-5571

Debugger 5.2
Improvements and New Features
	Improve record handling, print known records with record syntax.
Own Id: OTP-17574

Debugger 5.1
Improvements and New Features
	Extended error information for failing BIF calls as proposed in
EEP 54 has been
implemented.
When a BIF call from the Erlang shell fails, more information about which
argument or arguments that were in error will be printed. The same extended
error information will by proc_lib, common_test, and qlc when BIF calls
fail.
For applications that wish to provide the same extended error information,
there are new functions erl_error:format_exception/3 and
erl_error:format_exception/4.
There is a new error/3 BIF that allows applications or
libraries to provide extended error information in the same way for their own
exceptions.
Own Id: OTP-16686

Debugger 5.0
Improvements and New Features
	EEP-52 has been implemented.
In binary matching, the size of the segment to be matched is now allowed to be
a guard expression, and similarly in map matching the keys can now be guard
expressions. See the Erlang Reference Manual and Programming Examples for more
details.
Language compilers or code generators that generate Core Erlang code may need
to be updated to be compatible with the compiler in OTP 23. For more details,
see the section Backwards Compatibility in
EEP 52.
Own Id: OTP-14708

	The deprecated erlang:get_stacktrace/0 BIF now returns an empty list instead
of a stacktrace. To retrieve the stacktrace, use the extended try/catch syntax
that was introduced in OTP 21. erlang:get_stacktrace/0 is scheduled for
removal in OTP 24.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-16484

Debugger 4.2.8
Fixed Bugs and Malfunctions
	Fix a bug where Unicode atoms are printed differently depending on if integer
lists are printed as strings or not.
Own Id: OTP-16186

Debugger 4.2.7
Fixed Bugs and Malfunctions
	All incorrect (that is, all) uses of "can not" has been corrected to "cannot"
in source code comments, documentation, examples, and so on.
Own Id: OTP-14282 Aux Id: PR-1891

Debugger 4.2.6
Fixed Bugs and Malfunctions
	Improved documentation.
Own Id: OTP-15190

Debugger 4.2.5
Fixed Bugs and Malfunctions
	Fix a bug where calling a fun inside a binary would crash the Debugger.
Own Id: OTP-14957 Aux Id: PR-1741

Debugger 4.2.4
Fixed Bugs and Malfunctions
	Do not quote variables and button names in Debugger windows. The bug was
introduced in Erlang/OTP 20.1.
Own Id: OTP-14802

Debugger 4.2.3
Improvements and New Features
	Tools are updated to show Unicode atoms correctly.
Own Id: OTP-14464

Debugger 4.2.2
Fixed Bugs and Malfunctions
	The Erlang shell, qlc:string_to_handle(), and the Debugger (the Evaluator
area and Edit variable window of the Bindings area) can parse pids, ports,
references, and external funs, as long as they can be created in the running
system.
Own Id: OTP-14296

	Fix editing of simple binary values in the Bindings area of the Debugger's
Attach Process Window.
Own Id: OTP-14318

Improvements and New Features
	Miscellaneous updates due to atoms containing arbitrary Unicode characters.
Own Id: OTP-14285

Debugger 4.2.1
Fixed Bugs and Malfunctions
	Update build scripts to not make assumptions about where env, cp and perl are
located.
Own Id: OTP-13800

	A bug causing non-interpreted code to crash the debugger has been fixed.
Own Id: OTP-13756

Debugger 4.2
Improvements and New Features
	When the debugger searches for source files, it will also use the location of
the source in the compilation information part of the BEAM file.
Own Id: OTP-13375

Debugger 4.1.2
Improvements and New Features
	Documentation corrections.
Own Id: OTP-12994

Debugger 4.1.1
Fixed Bugs and Malfunctions
	Fix crash when starting a quick debugging session. Thanks Alan Duffield.
Own Id: OTP-12911 Aux Id: seq12906

Debugger 4.1
Improvements and New Features
	Support variables as Map keys in expressions and patterns
Erlang will accept any expression as keys in Map expressions and it will
accept literals or bound variables as keys in Map patterns.
Own Id: OTP-12218

Debugger 4.0.3
Fixed Bugs and Malfunctions
	Fix save state which did not work on Mac.
Own Id: OTP-12378

Debugger 4.0.2
Fixed Bugs and Malfunctions
	Make sure to install .hrl files when needed
Own Id: OTP-12197

	Invoking debugger functions ia/1 and iaa/1 crashed, when it tried to
invoke the old and removed gs based gui functions.
Own Id: OTP-12357

Debugger 4.0.1
Fixed Bugs and Malfunctions
	Fix evaluation of map updates in the debugger and erl_eval
Reported-by: José Valim
Own Id: OTP-11922

Debugger 4.0
Fixed Bugs and Malfunctions
	The debugger now correctly evaluates code such as 'X = true andalso X'.
(Thanks to Anthony Ramine.)
Own Id: OTP-11553

	A few subtle bugs in the evaluation of code in the debugger has been
corrected. (Thanks to Anthony Ramine.)
Own Id: OTP-11676

	Application upgrade (appup) files are corrected for the following
applications:
asn1, common_test, compiler, crypto, debugger, dialyzer, edoc, eldap, erl_docgen, et, eunit, gs, hipe, inets, observer, odbc, os_mon, otp_mibs, parsetools, percept, public_key, reltool, runtime_tools, ssh, syntax_tools, test_server, tools, typer, webtool, wx, xmerl
A new test utility for testing appup files is added to test_server. This is
now used by most applications in OTP.
(Thanks to Tobias Schlager)
Own Id: OTP-11744

Improvements and New Features
	Removed gs based applications and gs based backends. The observer
application replaces the removed applications.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-10915

	Support Maps syntax in debugger (Thanks to Anthony Ramine).
Own Id: OTP-11673

Debugger 3.2.12
Improvements and New Features
	Fix matching of floating point middle-endian machines. Thanks to Johannes
Weissl.
Own Id: OTP-11201

Debugger 3.2.11
Improvements and New Features
	A new checkbox has been added. When it is checked, the range set by the erl
flag +pc is used for determining when to print lists of integers as strings.
When it is unchecked, integer lists are never printed as strings.
A minor incompatibility: settings saved by Erlang R16B01 or later cannot be
read by Erlang R16B or earlier.
Own Id: OTP-10899

	Erlang source files with non-ASCII characters are now encoded in UTF-8
(instead of latin1).
Own Id: OTP-11041 Aux Id: OTP-10907

Debugger 3.2.10
Improvements and New Features
	The +pc flag to erl can be used to set the range of characters considered
printable. This affects how the shell and io:format("~tp",...) functionality
does heuristic string detection. More can be read in STDLIB users guide.
Own Id: OTP-10884

Debugger 3.2.9
Fixed Bugs and Malfunctions
	Fix Debugger settings dialog due to changed behavior in wxFileDialog (Thanks
to Håkan Mattsson)
Own Id: OTP-10621

Improvements and New Features
	Support for Unicode has been implemented.
Own Id: OTP-10302

	Where necessary a comment stating encoding has been added to Erlang files. The
comment is meant to be removed in Erlang/OTP R17B when UTF-8 becomes the
default encoding.
Own Id: OTP-10630

	Integer lists and utf-8 binaries in variables are now displayed as strings.
Own Id: OTP-10679

Debugger 3.2.8
Fixed Bugs and Malfunctions
	Fixed disappearing breakpoints bug, reported by Ricardo Catalinas Jiménez.
Own Id: OTP-9950

Debugger 3.2.7
Fixed Bugs and Malfunctions
	Fix "OK" spelling in debugger messages and variables
Simple code refactor in the debugger: renames all the occurrences of "Ok" to
"OK" in the code, variable names and strings. This improves the consistency of
the code and follows the GTK UI where "OK" is always used.(Thanks to Ricardo
Catalinas Jiménez)
Own Id: OTP-9699

Improvements and New Features
	Variables are now now allowed in 'fun M:F/A' as suggested by Richard O'Keefe
in EEP-23.
The representation of 'fun M:F/A' in the abstract format has been changed in
an incompatible way. Tools that directly read or manipulate the abstract
format (such as parse transforms) may need to be updated. The compiler can
handle both the new and the old format (i.e. extracting the abstract format
from a pre-R15 BEAM file and compiling it using compile:forms/1,2 will work).
The syntax_tools application can also handle both formats.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-9643

Debugger 3.2.6
Improvements and New Features
	Fix issues reported by dialyzer.
Own Id: OTP-9107

Debugger 3.2.5
Improvements and New Features
	Miscellaneous updates
Own Id: OTP-8976

Debugger 3.2.4
Improvements and New Features
	Type specs have been added/cleaned up. (Thanks to Kostis Sagonas.)
Own Id: OTP-8757

Debugger 3.2.3
Improvements and New Features
	Warnings due to new autoimported BIFs removed
Own Id: OTP-8674 Aux Id: OTP-8579

	The predefined builtin type tid() has been removed. Instead, ets:tid() should
be used.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-8687

Debugger 3.2.2
Fixed Bugs and Malfunctions
	Bugs have been fixed in the evaluation of comprehensions and short-circuit
expressions in guards.
Own Id: OTP-8310

Improvements and New Features
	Miscellaneous corrections of the WX version of the debugger.
Own Id: OTP-8346

Debugger 3.2.1
Improvements and New Features
	The documentation is now built with open source tools (xsltproc and fop) that
exists on most platforms. One visible change is that the frames are removed.
Own Id: OTP-8201

Debugger 3.2
Improvements and New Features
	Added a new gui, start with debugger:start(gs) for old gui.
Own Id: OTP-7366

	The undocumented, unsupported, and deprecated guard BIF is_constant/1 has
been removed.
* INCOMPATIBILITY with R12B *
Own Id: OTP-7673

Debugger 3.1.1.4
Improvements and New Features
	There is now experimental support for loading of code from archive files. See
the documentation of code, init, erl_prim_loaderand escript for more
info.
The error handling of escripts has been improved.
An escript may now set explicit arguments to the emulator, such as
-smp enabled.
An escript may now contain a precompiled beam file.
An escript may now contain an archive file containing one or more
applications (experimental).
The internal module code_aux has been removed.
Own Id: OTP-7548 Aux Id: otp-6622

Debugger 3.1.1.3
Improvements and New Features
	Minor changes.
Own Id: OTP-7388

Debugger 3.1.1.2
Improvements and New Features
	The documentation has been updated so as to reflect the last updates of the
Erlang shell as well as the minor modifications of the control sequence p of
the io_lib module.
Superfluous empty lines have been removed from code examples and from Erlang
shell examples.
Own Id: OTP-6944 Aux Id: OTP-6554, OTP-6911

Debugger 3.1.1.1
Improvements and New Features
	Minor Makefile changes.
Own Id: OTP-6689

	Obsolete guard tests (such as list()) have been replaced with the modern guard
tests (such as is_list()).
Own Id: OTP-6725

Debugger 3.1.1
Fixed Bugs and Malfunctions
	Removed some dead code from dbg_ieval.
Own Id: OTP-6552

Debugger 3.1
Fixed Bugs and Malfunctions
	The interpreter could not handle the case where an expression that should
evaluate to a fun referred to uninterpreted code.
Own Id: OTP-6061 Aux Id: seq10295

	Timeout for gen_server calls within Debugger is now set to infinity.
Own Id: OTP-6103

Improvements and New Features
	Notification windows are now centered over a parent window.
Own Id: OTP-6011 Aux Id: OTP-5987

	When interpreting a module, it is now checked that the module does not belong
to the Kernel, STDLIB, GS or Debugger application, as interpreting a module
used by the debugger/interpreter itself will lead to a deadlock or emulator
crash.
Also int:interpretable(Mod) has been extended to return {error,{app,App}}
if Mod belongs to one of the above applications.
Own Id: OTP-6020

	andalso/orelse is now supported.
Own Id: OTP-6021 Aux Id: OTP-5894

Debugger 3.0.1
Fixed Bugs and Malfunctions
	When evaluating a guard expression for a fun function clause, the environment
variable bindings were not taken into account.
Own Id: OTP-5837

Improvements and New Features
	A number of smaller improvements to the GUI:
	Multiple choices now possible in Function Break Dialog Window.
	Right-clicking the Module entry in a Break Dialog Window will open a popup
menu from which the appropriate (interpreted) module can be selected.
	Auto Attach options can now be changed using the buttons in the left part of
the Monitor Window, not only by the corresponding menu buttons.
	Buttons for enabling and disabling all breakpoints have been added.
	View Module Window keyboard shortcuts corrected.

Own Id: OTP-4284

Debugger 3.0
Improvements and New Features
	Debugger can now handle try-catch. This meant large parts of the interpreter
had to be rewritten. Also, some small changes to the GUI have been made.
Own Id: OTP-5730

Debugger 2.3.3
Improvements and New Features
	It is now possible to encrypt the debug information in Beam files, to help
keep the source code secret. See the documentation for compile on how to
provide the key for encrypting, and the documentation for beam_lib on how to
provide the key for decryption so that tools such as the Debugger, Xref, or
Cover can be used.
The beam_lib:chunks/2 functions now accepts an additional chunk type
'compile_info' to retrieve the compilation information directly as a term.
(Thanks to Tobias Lindahl.)
Own Id: OTP-5460 Aux Id: seq9787

Debugger 2.3.2
Fixed Bugs and Malfunctions
	The graphic applications now search for HTML documentation in the correct
place.
Own Id: OTP-5381

Debugger 2.3.1
Fixed Bugs and Malfunctions
	Package support has been added to the debugger. Thanks to Richard Carlsson in
the HiPE project.
Own Id: OTP-5255

Improvements and New Features
	Updated to handle the latest version of the compiler.
Own Id: OTP-5265

 Introduction

Scope
Debugger is a graphical user interface for the Erlang interpreter, which can be
used for debugging and testing of Erlang programs. For example, breakpoints can
be set, code can be single-stepped, and variable values can be displayed and
changed.
Debugger can also be accessed through the interface module int.
Prerequisites
It is assumed that the reader is familiar with the Erlang programming language.
Modules to be debugged must include debug information, for example,
erlc +debug_info MODULE.erl.

 Debugger

Getting Started
To use Debugger, the basic steps are as follows:
Step 1. Start Debugger by calling debugger:start().
The Monitor window is displayed with information
about all debugged processes, interpreted modules, and selected options.
Initially there are normally no debugged processes. First, it must be specified
which modules that are to be debugged (also called interpreted). Proceed as
follows:
Step 2. Select Module > Interpret... in the Monitor window.
The Interpret Modules window is displayed.
Step 3. Select the appropriate modules from the Interpret Dialog window.
Note
Only modules compiled with option debug_info set can be interpreted.
Non-interpretable modules are displayed within parenthesis in the Interpret
Modules window.
Step 4. In the Monitor window, select Module > the module to be interpreted >
View.
The contents of the source file is displayed in the
View Module window.
Step 5. Set the breakpoints, if any.
Step 6. Start the program to be debugged. This is done the normal way from the
Erlang shell.
All processes executing code in interpreted modules are displayed in the Monitor
window.
Step 7. To attach to one of these processes, double-click it, or select the
process and then choose Process > Attach. Attaching to a process opens an
Attach Process window for this process.
Step 8. From the Attach Process window, you can control the process execution,
inspect variable values, set breakpoints, and so on.

Breakpoints and Break Dialog Windows
Once the appropriate modules are interpreted, breakpoints can be set at relevant
locations in the source code. Breakpoints are specified on a line basis. When a
process reaches a breakpoint, it stops and waits for commands (Step, Skip,
Continue ...) from the user.
Note
When a process reaches a breakpoint, only that process is stopped. Other
processes are not affected.
Breakpoints are created and deleted using the Break menu of either the Monitor
window, View Module window, or Attach Process window.
Executable Lines
To have an effect, a breakpoint must be set at an executable line, which is a
line of code containing an executable expression such as a matching or a
function call. A blank line or a line containing a comment, function head, or
pattern in a case statement or receive statement is not executable.
In the following example, lines 2, 4, 6, 8, and 11 are executable lines:
1: is_loaded(Module,Compiled) ->
2: case get_file(Module,Compiled) of
3: {ok,File} ->
4: case code:which(Module) of
5: ?TAG ->
6: {loaded,File};
7: _ ->
8: unloaded
9: end;
10: false ->
11: false
12: end.
Status and Trigger Action
A breakpoint can be either active or inactive. Inactive breakpoints are
ignored.
Each breakpoint has a trigger action that specifies what is to happen when a
process has reached it (and stopped):
	Enable - Breakpoint is to remain active (default).
	Disable - Breakpoint is to be made inactive.
	Delete - Breakpoint is to be deleted.

Line Breakpoints
A line breakpoint is created at a certain line in a module.
[image: Line Break Dialog Window]
Right-click the Module entry to open a popup menu from which the appropriate
module can be selected.
A line breakpoint can also be created (and deleted) by double-clicking the line
when the module is displayed in the View Module window or Attach Process window.
Conditional Breakpoints
A conditional breakpoint is created at a certain line in the module, but a
process reaching the breakpoint stops only if a specified condition is true.
The condition is specified by the user as a module name CModule and a function
name CFunction. When a process reaches the breakpoint,
CModule:CFunction(Bindings) is evaluated. If and only if this function call
returns true, the process stops. If the function call returns false, the
breakpoint is silently ignored.
Bindings is a list of variable bindings. To retrieve the value of Variable
(given as an atom), use function
int:get_binding(Variable, Bindings). The function
returns unbound or {value,Value}.
[image: Conditional Break Dialog Window]
Right-click the Module entry to open a popup menu from which the appropriate
module can be selected.
Example:
A conditional breakpoint calling c_test:c_break/1 is added at line 6 in module
fact. Each time the breakpoint is reached, the function is called. When N is
equal to 3, the function returns true and the process stops.
Extract from fact.erl:
5. fac(0) -> 1;
6. fac(N) when N > 0, is_integer(N) -> N * fac(N-1).
Definition of c_test:c_break/1:
-module(c_test).
-export([c_break/1]).

c_break(Bindings) ->
 case int:get_binding('N', Bindings) of
 {value, 3} ->
 true;
 _ ->
 false
 end.
Function Breakpoints
A function breakpoint is a set of line breakpoints, one at the first line of
each clause in the specified function.
[image: Function Break Dialog Window]
To open a popup menu from which the appropriate module can be selected,
right-click the Module entry.
To bring up all functions of the module in the listbox, click the OK button
(or press the Return or Tab key) when a module name has been specified,.

Stack Trace
The Erlang emulator keeps track of a stack trace, information about recent
function calls. This information is used if an error occurs, for example:
1> catch a+1.
{'EXIT',{badarith,[{erlang,'+',[a,1],[]},
 {erl_eval,do_apply,6,[{file,"erl_eval.erl"},{line,573}]},
 {erl_eval,expr,5,[{file,"erl_eval.erl"},{line,357}]},
 {shell,exprs,7,[{file,"shell.erl"},{line,674}]},
 {shell,eval_exprs,7,[{file,"shell.erl"},{line,629}]},
 {shell,eval_loop,3,[{file,"shell.erl"},{line,614}]}]}}
For details about the stack trace, see section
Errors and Error Handling in the Erlang Reference
Manual.
Debugger emulates the stack trace by keeping track of recently called
interpreted functions. (The real stack trace cannot be used, as it shows which
functions of Debugger have been called, rather than which interpreted
functions.)
This information can be used to traverse the chain of function calls, using the
Up and Down buttons in the
Attach Process window.
By default, Debugger only saves information about recursive function calls, that
is, function calls that have not yet returned a value (option Stack On, No
Tail).
Sometimes, however, it can be useful to save all calls, even tail-recursive
calls. This is done with option Stack On, Tail. Notice that this option
consumes more memory and slows down execution of interpreted functions when
there are many tail-recursive calls.
To turn off the Debugger stack trace facility, select option Stack Off.
Note
If an error occurs, the stack trace becomes empty in this case.
For information about how to change the stack trace option, see section
Monitor Window.

Monitor Window
The Monitor window is the main window of Debugger and displays the following:
	A listbox containing the names of all interpreted modules
Double-clicking a module brings up the View Module window.

	Which options are selected

	Information about all debugged processes, that is, all processes that have
been or are executing code in interpreted modules

[image: Monitor Window]
The Auto Attach boxes, Stack Trace label, Back Trace Size label, and
Strings box display some options set. For details about these options, see
section Options Menu.
Process Grid
	Pid - The process identifier.

	Initial Call - The first call to an interpreted function by this
process. (Module:Function/Arity)

	Name - The registered name, if any. If a registered name is not
displayed, it can be that Debugger received information about the process
before the name was registered. Try selecting Edit > Refresh.

	Status - The current status, one of the following:
	idle - The interpreted function call has returned a value, and the
process is no longer executing interpreted code.

	running - The process is running.

	waiting - The process is waiting in a receive statement.

	break - The process is stopped at a breakpoint.

	exit - The process has terminated.

	no_conn - There is no connection to the node where the process is
located.

	Information - More information, if any. If the process is stopped at a
breakpoint, the field contains information about the location {Module,Line}.
If the process has terminated, the field contains the exit reason.

File Menu
	Load Settings... - Tries to load and restore Debugger settings from a
file previously saved using Save Settings... (see below). Any errors are
silently ignored.
Notice that settings saved by Erlang/OTP R16B01 or later cannot be read by
Erlang/OTP R16B or earlier.

	Save Settings... - Saves Debugger settings to a file. The settings
include the set of interpreted files, breakpoints, and the selected options.
The settings can be restored in a later Debugger session using Load
Settings... (see above). Any errors are silently ignored.

	Exit - Stops Debugger.

Edit Menu
	Refresh - Updates information about debugged processes. Information
about all terminated processes are removed from the window. All Attach Process
windows for terminated processes are closed.

	Kill All - Terminates all processes listed in the window using
exit(Pid, kill).

Module Menu
	Interpret... - Opens the
Interpret Modules window, where new modules
to be interpreted can be specified.

	Delete All - Stops interpreting all modules. Processes executing in
interpreted modules terminate.

For each interpreted module, a corresponding entry is added to the Module
menu, with the following submenu:
	Delete - Stops interpreting the selected module. Processes executing in
this module terminate.

	View - Opens a View Module window,
displaying the contents of the selected module.

Process Menu
The following menu items apply to the currently selected process, provided it is
stopped at a breakpoint (for details, see section
Attach Process window):
	Step

	Next

	Continue

	Finish

The following menu items apply to the currently selected process:
	Attach - Attaches to the process and open an
Attach Process window.

	Kill - Terminates the process using exit(Pid, kill).

Break Menu
The items in this menu are used to create and delete breakpoints. For details,
see section Breakpoints.
	Line Break... - Sets a line breakpoint.

	Conditional Break... - Sets a conditional breakpoint.

	Function Break... - Sets a function breakpoint.

	Enable All - Enables all breakpoints.

	Disable All - Disables all breakpoints.

	Delete All - Removes all breakpoints.

For each breakpoint, a corresponding entry is added to the Break menu, from
which it is possible to disable, enable, or delete the breakpoint, and to change
its trigger action.

Options Menu
	Trace Window - Sets the areas to be visible in an
Attach Process window. Does not affect existing
Attach Process windows.

	Auto Attach - Sets the events a debugged process is to be attached to
automatically. Affects existing debugged processes.
	First Call - The first time a process calls a function in an interpreted
module.
	On Exit - At process termination.
	On Break - When a process reaches a breakpoint.

	Stack Trace - Sets the stack trace option, see section
Stack Trace. Does not affect existing
debugged processes.
	Stack On, Tail - Saves information about all current calls.
	Stack On, No Tail - Saves information about current calls, discarding
previous information when a tail recursive call is made.
	Stack Off - Does not save any information about current calls.

	Strings - Sets the integer lists to be printed as strings. Does not
affect existing debugged processes.
	Use range of +pc flag - Uses the printable character range set by the
erl(1) flag
+pc.

	Back Trace Size... - Sets how many call frames to be fetched when
inspecting the call stack from the Attach Process window. Does not affect
existing Attach Process windows.

Windows Menu
Contains a menu item for each open Debugger window. Selecting one of the items
raises the corresponding window.
Help Menu
	Help - Shows the Debugger documentation. This function requires a web
browser.

Interpret Modules Window
The Interpret Modules window is used for selecting which modules to interpret.
Initially, the window displays the modules (erl files) and subdirectories of
the current working directory.
Interpretable modules are modules for which a .beam file, compiled with option
debug_info set, is located in the same directory as the source code, or in an
ebin directory next to it.
Modules for which these requirements are not fulfilled are not interpretable and
are therefore displayed within parentheses.
Option debug_info causes debug information or abstract code to be added to
the .beam file. This increases the file size and makes it possible to
reconstruct the source code. It is therefore recommended not to include debug
information in code aimed for target systems.
An example of how to compile code with debug information using erlc:
% erlc +debug_info module.erl
An example of how to compile code with debug information from the Erlang shell:
4> c(module, debug_info).
[image: Interpret Modules Window]
To browse the file hierarchy and interpret the appropriate modules, either
select a module name and click Choose (or press carriage return), or
double-click the module name. Interpreted modules have the type erl src.
To interpret all displayed modules in the chosen directory, click All.
To close the window, click Done.
Note
When Debugger is started in global mode (which is the default, see
debugger:start/0), modules added (or deleted) for interpretation are added
(or deleted) on all known Erlang nodes.

Attach Process Window
From an Attach Process window, you can interact with a debugged process. One
window is opened for each process that has been attached to. Notice that when
attaching to a process, its execution is automatically stopped.
[image: Attach Process Window]
The window is divided into the following five parts:
	The Code area, displaying the code being executed. The code is indented and
each line is prefixed with its line number. If the process execution is
stopped, the current line is marked with -->. An existing break point at a
line is marked with a stop symbol. In the example shown in the illustration,
the execution stopped at line 6, before the execution of fac/1.
Active breakpoints are displayed in red and inactive breakpoints in blue.

	The Button area, with buttons for quick access to frequently used functions in
the Process menu.

	The Evaluator area, where you can evaluate functions within the context of the
debugged process, if that process execution is stopped.

	The Bindings area, displaying all variables bindings. If you click a variable
name, the value is displayed in the Evaluator area. Double-click a variable
name to open a window where the variable value can be edited. Notice however
that pid, port, reference, or fun values cannot be edited unless they can be
represented in the running system.

	The Trace area, which displays a trace output for the process.
	++ (N) <L> - Function call, where N is the call level and L the
line number.

	-- (N) - Function return value
.

	==> Pid : Msg - The message Msg is sent to process Pid.

	<== Msg - The message Msg is received.

	++ (N) receive - Waiting in a receive.

	++ (N) receive with timeout - Waiting in a receive...after.

The Trace area also displays Back Trace, a summary of the current function
calls on the stack.

Using the Options menu, you can set which areas to be displayed. By default,
all areas except the Trace area are displayed.
File Menu
	Close - Closes this window and detach from the process.

Edit Menu
	Go to line... - Goes to a specified line number.

	Search... - Searches for a specified string.

Process Menu
	Step - Executes the current code line, stepping into any (interpreted)
function calls.

	Next - Executes the current code line and stop at the next line.

	Continue - Continues the execution.

	Finish - Continues the execution until the current function returns.

	Skip - Skips the current code line and stop at the next line. If used on
the last line in a function body, the function returns skipped.

	Time Out - Simulates a time-out when executing a receive...after
statement.

	Stop - Stops the execution of a running process, that is, make the
process stop at a breakpoint. The command takes effect (visibly) the next time
the process receives a message.

	Where - Verifies that the current location of the execution is visible
in the code area.

	Kill - Terminates the process using exit(Pid, kill).

	Messages - Inspects the message queue of the process. The queue is
displayed in the Evaluator area.

	Back Trace - Displays the back trace of the process, a summary of the
current function calls on the stack, in the Trace area. Requires that the
Trace area is visible and that the Stack Trace option is Stack On, Tail or
Stack On, No Tail.

	Up - Inspects the previous function call on the stack, showing the
location and variable bindings.

	Down - Inspects the next function call on the stack, showing the
location and variable bindings.

Options Menu
	Trace Window - Sets which areas are to be visible. Does not affect other
Attach Process windows.

	Stack Trace - Same as in the
Monitor window, but only affects the debugged
process the window is attached to.

	Strings - Same as in the Monitor window,
but only affects the debugged process the window is attached to.

	Back Trace Size... - Sets how many call frames are to be fetched when
inspecting the call stack. Does not affect other Attach Process windows.

Break, Windows, and Help Menus
The Break, Windows, and Help menus are the same as in the
Monitor Window, except that the Breaks menu
applies only to local breakpoints.

View Module Window
The View Module window displays the contents of an interpreted module and makes
it possible to set breakpoints.
[image: View Module Window]
The source code is indented and each line is prefixed with its line number.
Clicking a line highlights it and selects it to be the target of the breakpoint
functions available from the Break menu. To set a line breakpoint on a line,
double-click it. To remove the breakpoint, double-click the line with an
existing breakpoint.
Breakpoints are marked with a stop symbol.
File and Edit Menus
The File and Edit menus are the same as in the
Attach Process Window.
Break, Windows, and Help Menus
The Break, Windows, and Help menus are the same as in the
Monitor Window, except that the Break menu
applies only to local breakpoints.
Performance
Execution of interpreted code is naturally slower than for regularly compiled
modules. Using Debugger also increases the number of processes in the system, as
for each debugged process another process (the meta process) is created.
It is also worth to keep in mind that programs with timers can behave
differently when debugged. This is especially true when stopping the execution
of a process (for example, at a breakpoint). Time-outs can then occur in other
processes that continue execution as normal.
Code Loading Mechanism
Code loading works almost as usual, except that interpreted modules are also
stored in a database and debugged processes use only this stored code.
Reinterpreting an interpreted module results in the new version being stored as
well, but does not affect existing processes executing an older version of the
code. This means that the code replacement mechanism of Erlang does not work for
debugged processes.
Debugging Remote Nodes
By using debugger:start/1, you can specify if Debugger is to be started in
local or global mode:
debugger:start(local | global)
If debugger:start/0 is called, Debugger starts in global mode.
In local mode, code is interpreted only on the current node. In global mode,
code is interpreted on all known nodes. Processes on other nodes executing
interpreted code are automatically displayed in the Monitor window and can be
attached to like any other debugged process.
Note
It not recommended to start Debugger in global mode on more than one
node in a network, as the nodes interfere with each other, leading to
inconsistent behavior.

debugger

The Erlang Debugger for debugging and testing of Erlang programs.

 Summary

 Functions

 quick(Module, Name, Args)

 Debugs a single process.

 start()

 Starts Debugger.

 start(ModeOrFile)

 Starts Debugger.

 start(Mode, File)

 Starts Debugger.

 Functions

 quick(Module, Name, Args)

 -spec quick(Module, Name, Args) -> term() when Module :: atom(), Name :: atom(), Args :: [term()].

Debugs a single process.
The module Module is interpreted and
apply(Module, Name, Args) is called. This opens an "Attach
Process" window. For details, see the
User's Guide.

 start()

 -spec start() -> term().

Starts Debugger.
Started by this function, Debugger interprets code on all known nodes.

 start(ModeOrFile)

 -spec start(Mode) -> term() when Mode :: local | global | wx;
 (File) -> term() when File :: string().

Starts Debugger.
If ModeOrFile is a string, it is assumed to be the name of a file,
and Debugger tries to load its settings from this file. For details
about settings, see the User's Guide.
If ModeOrFile is atom local, Debugger interprets code only at the
current node. If ModeOrFile is global, Debugger interprets code on
all known nodes.

 start(Mode, File)

 -spec start(Mode, File) -> term() when Mode :: local | global, File :: string().

Starts Debugger.
Debugger tries to load its settings from the file named by File.
For details about settings, see the User's Guide.
If Mode is local, Debugger interprets code only on the current
node. If Mode is global, Debugger interprets code on all known
nodes.

i

Debugger/Interpreter Interface.
The i module provides short forms for some of the functions used by the
graphical Debugger and some of the functions in module int, the Erlang
interpreter.
This module also provides facilities for displaying status information about
interpreted processes and break points.
It is possible to attach to interpreted processes by only giving the corresponding
process identity. By default, an attachment window is displayed. Processes
at other Erlang nodes can be attached manually or automatically.
The functions in this module are defined in the Erlang shell. That is,
they can be called without the i: prefix. For example:
1> ii(t).
{module,t}
2> iaa([init]).
true

 Summary

 Functions

 help()

 Prints help for using the functions in this module.

 ia(Pid)

 Attaches to the debugged process Pid.

 ia(Pid, Function)

 Attaches to the debugged process Pid.

 ia(X, Y, Z)

 Equivalent to ia(Pid), where Pid is the result of calling the shell
function pid(X, Y, Z).

 ia(X, Y, Z, Function)

 Equivalent to ia(Pid, Function), where Pid is the result of calling the
shell function pid(X, Y, Z).

 iaa(Flags)

 Sets when to attach to a debugged process automatically.

 iaa(Flags, Function)

 Sets when and how to attach to a debugged process automatically.

 ib(Module, Line)

 Creates a breakpoint at Line in Module.

 ib(Module, Name, Arity)

 Creates breakpoints at the first line of every clause of function
Module:Name/Arity.

 iba(Module, Line, Action)

 Sets the trigger action of the breakpoint at Line in Module to Action.

 ibc(Module, Line, Function)

 Sets the conditional test of the breakpoint at Line in Module to Function.

 ibd(Module, Line)

 Makes the breakpoint at Line in Module inactive.

 ibe(Module, Line)

 Makes the breakpoint at Line in Module active.

 ic()

 Clears information about processes executing interpreted code by removing all
information about terminated processes.

 ii(Module)

 Interprets the specified module(s) on the local node.

 il()

 Makes a printout of all interpreted modules.

 im()

 Starts a new graphical Monitor window.

 ini(Module)

 Interprets the specified module(s) on all known nodes.

 inq(AbsModule)

 Stops interpreting the specified module on all known nodes.

 ip()

 Prints the current status of all interpreted processes.

 ipb()

 Prints all existing breakpoints.

 ipb(Module)

 Prints all existing breakpoints in Module.

 iq(AbsModule)

 Stops interpreting the specified module on the local node.

 ir()

 Deletes all breakpoints in all interpreted modules.

 ir(Module)

 Deletes all breakpoints in Module.

 ir(Module, Line)

 Deletes the breakpoint at Line in Module.

 ir(Module, Name, Arity)

 Deletes the breakpoints at the first line of every clause of function
Module:Name/Arity.

 ist(Flag)

 Sets how to save call frames in the stack.

 iv()

 Returns the current version of the interpreter (Debugger).

 Functions

 help()

 -spec help() -> ok.

Prints help for using the functions in this module.

 ia(Pid)

 -spec ia(Pid) -> ok | no_proc when Pid :: pid().

Attaches to the debugged process Pid.
An "Attach Process" window is opened for the process.

 ia(Pid, Function)

 -spec ia(Pid, Function) -> ok | no_proc
 when Pid :: pid(), Function :: {Module, Name}, Module :: module(), Name :: atom().

Attaches to the debugged process Pid.
The interpreter calls spawn(Module, Name, [Pid]) (and
ignores the result).

 ia(X, Y, Z)

 -spec ia(X, Y, Z) -> ok | no_proc when X :: integer(), Y :: integer(), Z :: integer().

Equivalent to ia(Pid), where Pid is the result of calling the shell
function pid(X, Y, Z).

 ia(X, Y, Z, Function)

 -spec ia(X, Y, Z, Function) -> ok | no_proc
 when
 X :: integer(),
 Y :: integer(),
 Z :: integer(),
 Function :: {Module, Name},
 Module :: module(),
 Name :: atom().

Equivalent to ia(Pid, Function), where Pid is the result of calling the
shell function pid(X, Y, Z).
An attached process is expected to call the unofficial function
int:attached(Pid) and to be able to handle messages from the
interpreter. For an example, see dbg_wx_trace.erl.

 iaa(Flags)

 -spec iaa(Flags) -> true when Flags :: [init | break | exit].

Sets when to attach to a debugged process automatically.
Debugger supplies a function that opens "Attach Process" window for
the process.
See int:auto_attach/2 for more information.

 iaa(Flags, Function)

 -spec iaa(Flags, Function) -> true
 when
 Flags :: [init | break | exit],
 Function :: {Module, Name, Args},
 Module :: module(),
 Name :: atom(),
 Args :: [term()].

Sets when and how to attach to a debugged process automatically.
See int:auto_attach/2 for more information.

 ib(Module, Line)

 -spec ib(Module, Line) -> ok | {error, break_exists} when Module :: module(), Line :: integer().

Creates a breakpoint at Line in Module.

 ib(Module, Name, Arity)

 -spec ib(Module, Name, Arity) -> ok | {error, function_not_found}
 when Module :: module(), Name :: atom(), Arity :: integer().

Creates breakpoints at the first line of every clause of function
Module:Name/Arity.

 iba(Module, Line, Action)

 -spec iba(Module, Line, Action) -> ok
 when Module :: module(), Line :: integer(), Action :: enable | disable | delete.

Sets the trigger action of the breakpoint at Line in Module to Action.

 ibc(Module, Line, Function)

 -spec ibc(Module, Line, Function) -> ok
 when Module :: module(), Line :: integer(), Function :: {Module, Name}, Name :: atom().

Sets the conditional test of the breakpoint at Line in Module to Function.
The conditional test is performed by calling Module:Name(Bindings), where
Bindings is the current variable bindings. The function must return true
(break) or false (do not break). To retrieve the value of a variable Var
use int:get_binding(Var, Bindings).

 ibd(Module, Line)

 -spec ibd(Module, Line) -> ok when Module :: module(), Line :: integer().

Makes the breakpoint at Line in Module inactive.

 ibe(Module, Line)

 -spec ibe(Module, Line) -> ok when Module :: module(), Line :: integer().

Makes the breakpoint at Line in Module active.

 ic()

 -spec ic() -> ok.

Clears information about processes executing interpreted code by removing all
information about terminated processes.

 ii(Module)

 -spec ii(AbsModules | AbsModule) -> Result
 when
 AbsModules :: [AbsModule, ...],
 AbsModule :: Module | File,
 Module :: module(),
 File :: file:name_all(),
 Result :: AbsModuleResult | AbsModulesResult,
 AbsModuleResult :: {module, Module} | error,
 AbsModulesResult :: ok.

Interprets the specified module(s) on the local node.
	If AbsModule :: Module | File, then Result :: {module, Module} | error.

	If AbsModules :: [AbsModule], then Result :: ok.

See int:i/1 for more information.

 il()

 -spec il() -> ok.

Makes a printout of all interpreted modules.
Modules are printed together with the full path name of the
corresponding source code file.

 im()

 -spec im() -> pid().

Starts a new graphical Monitor window.
This is the Monitor window, the main window of Debugger. All the
Debugger and interpreter functionality is accessed from the Monitor
window. This window displays the status of all processes that have
been or are executing interpreted modules.

 ini(Module)

 -spec ini(AbsModules | AbsModule) -> Result
 when
 AbsModules :: [AbsModule],
 AbsModule :: Module | File,
 Module :: module(),
 File :: file:name_all(),
 Result :: AbsModuleResult | AbsModulesResult,
 AbsModuleResult :: {module, Module} | error,
 AbsModulesResult :: ok.

Interprets the specified module(s) on all known nodes.
	If AbsModule :: Module | File, then Result :: {module, Module} | error.

	If AbsModules :: [AbsModule], then Result :: ok.

See int:ni/1 for more information.

 inq(AbsModule)

 -spec inq(AbsModule) -> ok when AbsModule :: Module | File, Module :: module(), File :: file:name_all().

Stops interpreting the specified module on all known nodes.

 ip()

 -spec ip() -> ok.

Prints the current status of all interpreted processes.

 ipb()

 -spec ipb() -> ok.

Prints all existing breakpoints.

 ipb(Module)

 -spec ipb(Module) -> ok when Module :: module().

Prints all existing breakpoints in Module.

 iq(AbsModule)

 -spec iq(AbsModule) -> ok when AbsModule :: Module | File, Module :: module(), File :: file:name_all().

Stops interpreting the specified module on the local node.

 ir()

 -spec ir() -> ok.

Deletes all breakpoints in all interpreted modules.

 ir(Module)

 -spec ir(Module) -> ok when Module :: module().

Deletes all breakpoints in Module.

 ir(Module, Line)

 -spec ir(Module, Line) -> ok when Module :: module(), Line :: integer().

Deletes the breakpoint at Line in Module.

 ir(Module, Name, Arity)

 -spec ir(Module, Name, Arity) -> ok | {error, function_not_found}
 when Module :: module(), Name :: atom(), Arity :: integer().

Deletes the breakpoints at the first line of every clause of function
Module:Name/Arity.

 ist(Flag)

 -spec ist(Flag) -> true when Flag :: all | no_tail | false.

Sets how to save call frames in the stack.
See int:stack_trace/1 for more information.

 iv()

 -spec iv() -> atom().

Returns the current version of the interpreter (Debugger).

int

Interpreter Interface.
The Erlang interpreter provides mechanisms for breakpoints and stepwise
execution of code. It is primarily intended to be used by Debugger; see the
Users's Guide for Debugger and module debugger.
The following can be done from the shell:
	Specify the modules to be interpreted.
	Specify breakpoints.
	Monitor the current status of all processes executing code in interpreted
modules, also processes at other Erlang nodes.

By attaching to a process executing interpreted code, it is possible to
examine variable bindings and order stepwise execution. This is done by sending
and receiving information to/from the process through a third process, called
the meta process. You can implement your own attached process. See int.erl for
available functions and dbg_wx_trace.erl for possible messages.
The interpreter depends on the Kernel, STDLIB, and WX applications. This means
that modules belonging to any of these applications are not allowed to be
interpreted, as it could lead to a deadlock or emulator crash. This also applies
to modules belonging to the Debugger application.

Breakpoints
Breakpoints are specified on a line basis. When a process executing code in an
interpreted module reaches a breakpoint, it stops. This means that a breakpoint
must be set at an executable line, that is, a code line containing an executable
expression.
A breakpoint has the following:
	A status, which is active or inactive. An inactive breakpoint is ignored.
	A trigger action. When a breakpoint is reached, the trigger action specifies
if the breakpoint is to continue as active (enable), or to become inactive
(disable), or to be removed (delete).
	Optionally an associated condition. A condition is a tuple {Module,Name}.
When the breakpoint is reached, Module:Name(Bindings) is called. If it
evaluates to true, execution stops. If it evaluates to false, the
breakpoint is ignored. Bindings contains the current variable bindings. To
retrieve the value for a specified variable use get_binding/2.

By default, a breakpoint is active, has trigger action enable, and has no
associated condition. For details about breakpoints, see
Breakpoints and Break Dialog
Windows
in the User's Guide for Debugger.

 Summary

 Functions

 action_at_break(Module, Line, Action)

 Sets the trigger action of the breakpoint at Line in Module to Action.

 all_breaks()

 Gets all breakpoints.

 all_breaks(Module)

 Gets all breakpoints in module Module.

 auto_attach()

 Gets how to attach automatically to a process executing code in
interpreted modules.

 auto_attach/1

 Disables auto attach.

 auto_attach(Flags, Function)

 Sets when and how to attach automatically to a process executing code
in interpreted modules.

 break(Module, Line)

 Creates a breakpoint at Line in Module.

 break_in(Module, Name, Arity)

 Creates a breakpoint at the first line of every clause of function
Module:Name/Arity.

 clear()

 Clears information about processes executing interpreted code by removing all
information about terminated processes.

 continue(Pid)

 Resumes process execution for Pid.

 continue(X, Y, Z)

 Resumes process execution for c:pid(X, Y, Z).

 del_break_in(Module, Name, Arity)

 Deletes the breakpoints at the first line of every clause of function
Module:Name/Arity.

 delete_break(Module, Line)

 Deletes the breakpoint at Line in Module.

 disable_break(Module, Line)

 Makes the breakpoint at Line in Module inactive.

 enable_break(Module, Line)

 Makes the breakpoint at Line in Module active.

 file(Module)

 Returns the source code filename File for an interpreted module Module.

 get_binding(Var, Bindings)

 Retrieves the binding of Var from Bindings.

 i(AbsMods)

 Interprets the specified module(s) on the local node.

 interpretable(AbsModule)

 Checks if a module can be interpreted.

 interpreted()

 Returns a list with all interpreted modules.

 n(AbsModule)

 Stops interpreting the specified module on the local node.

 ni(AbsMods)

 Interprets the specified module(s) on all known nodes.

 nn(AbsModule)

 Stops interpreting the specified module on all known nodes.

 no_break()

 Deletes all breakpoints.

 no_break(Module)

 Deletes all breakpoints in Module.

 snapshot()

 Gets information about all processes executing interpreted code.

 stack_trace()

 Gets how to save call frames in the stack.

 stack_trace(Flag)

 Sets how to save call frames in the stack.

 test_at_break(Module, Line, Function)

 Sets the conditional test of the breakpoint at Line in Module to Function.

 Functions

 action_at_break(Module, Line, Action)

 -spec action_at_break(Module, Line, Action) -> ok
 when Module :: module(), Line :: integer(), Action :: enable | disable | delete.

Sets the trigger action of the breakpoint at Line in Module to Action.

 all_breaks()

 -spec all_breaks() -> [Break]
 when
 Break :: {Point, Options},
 Point :: {Module, Line},
 Module :: module(),
 Line :: integer(),
 Options :: [Status | Trigger | null | Cond],
 Status :: active | inactive,
 Trigger :: enable | disable | delete,
 Cond :: null | Function,
 Function :: {Module, Name},
 Name :: atom().

Gets all breakpoints.

 all_breaks(Module)

 -spec all_breaks(Module) -> [Break]
 when
 Break :: {Point, Options},
 Point :: {Module, Line},
 Module :: module(),
 Line :: integer(),
 Options :: [Status | Trigger | null | Cond],
 Status :: active | inactive,
 Trigger :: enable | disable | delete,
 Cond :: null | Function,
 Function :: {Module, Name},
 Name :: atom().

Gets all breakpoints in module Module.

 auto_attach()

 -spec auto_attach() -> false | {Flags, Function}
 when
 Flags :: [init | break | exit],
 Function :: {Module, Name, Args},
 Module :: module(),
 Name :: atom(),
 Args :: [term()].

Gets how to attach automatically to a process executing code in
interpreted modules.
See auto_attach/2 for the meaning of the possible values in Flags.

 auto_attach/1

 -spec auto_attach(false) -> term().

Disables auto attach.

 auto_attach(Flags, Function)

 -spec auto_attach(Flags, Function) -> term()
 when
 Flags :: [init | break | exit],
 Function :: {Module, Name, Args},
 Module :: module(),
 Name :: atom(),
 Args :: [term()].

Sets when and how to attach automatically to a process executing code
in interpreted modules.
By default when the interpreter is started, automatic attach is disabled.
If Flags is an empty list, automatic attach is disabled.
Otherwise Flags should be a list containing at least one of the following
flags:
	init - Attach when a process for the first time calls an interpreted
function.
	break - Attach whenever a process reaches a breakpoint.
	exit - Attach when a process terminates.

When the specified event occurs, the function Function is called as:
spawn(Module, Name, [Pid | Args])
Pid is the pid of the process executing interpreted code.

 break(Module, Line)

 -spec break(Module, Line) -> ok | {error, break_exists} when Module :: module(), Line :: integer().

Creates a breakpoint at Line in Module.

 break_in(Module, Name, Arity)

 -spec break_in(Module, Name, Arity) -> ok | {error, function_not_found}
 when Module :: module(), Name :: atom(), Arity :: integer().

Creates a breakpoint at the first line of every clause of function
Module:Name/Arity.

 clear()

 -spec clear() -> ok.

Clears information about processes executing interpreted code by removing all
information about terminated processes.

 continue(Pid)

 -spec continue(Pid :: pid()) -> ok | {error, not_interpreted}.

Resumes process execution for Pid.

 continue(X, Y, Z)

 -spec continue(X, Y, Z) -> ok | {error, not_interpreted}
 when X :: integer(), Y :: integer(), Z :: integer().

Resumes process execution for c:pid(X, Y, Z).

 del_break_in(Module, Name, Arity)

 -spec del_break_in(Module, Name, Arity) -> ok | {error, function_not_found}
 when Module :: module(), Name :: atom(), Arity :: integer().

Deletes the breakpoints at the first line of every clause of function
Module:Name/Arity.

 delete_break(Module, Line)

 -spec delete_break(Module, Line) -> ok when Module :: module(), Line :: integer().

Deletes the breakpoint at Line in Module.

 disable_break(Module, Line)

 -spec disable_break(Module, Line) -> ok when Module :: module(), Line :: integer().

Makes the breakpoint at Line in Module inactive.

 enable_break(Module, Line)

 -spec enable_break(Module, Line) -> ok when Module :: module(), Line :: integer().

Makes the breakpoint at Line in Module active.

 file(Module)

 -spec file(Module) -> File | {error, not_loaded} when Module :: module(), File :: file:filename_all().

Returns the source code filename File for an interpreted module Module.

 get_binding(Var, Bindings)

 -spec get_binding(Var, Bindings) -> {value, Value} | unbound
 when Var :: atom(), Bindings :: term(), Value :: term().

Retrieves the binding of Var from Bindings.
This function is intended to be used by the conditional function of a breakpoint.

 i(AbsMods)

 -spec i(AbsModules | AbsModule) -> Result
 when
 AbsModules :: [AbsModule, ...],
 AbsModule :: Module | File,
 Module :: module(),
 File :: file:name_all(),
 Result :: AbsModuleResult | AbsModulesResult,
 AbsModuleResult :: {module, Module} | error,
 AbsModulesResult :: ok.

Interprets the specified module(s) on the local node.
A module can be specified by its module name (atom) or filename.
If specified by its module name, the object code Module.beam is searched for
in the current path. The source code Module.erl is searched for first in the
same directory as the object code, then in an src directory next to it.
If specified by its filename, the filename can include a path and the .erl
extension can be omitted. The object code Module.beam is searched for first in
the same directory as the source code, then in an ebin directory next to it,
and then in the current path.
Note
The interpreter requires both the source code and the object code. The object
code must include debug information, that is, only modules compiled with
option debug_info can be interpreted.
The functions returns {module,Module} if the module was interpreted, otherwise
error is returned.
The argument can also be a list of modules or filenames, in which case the
function tries to interpret each module as specified earlier. The function then
always returns ok, but prints some information to stdout if a module cannot
be interpreted.

 interpretable(AbsModule)

 -spec interpretable(AbsModule) -> true | {error, Reason}
 when
 AbsModule :: Module | File,
 Module :: module(),
 File :: file:name_all(),
 Reason :: no_src | no_beam | no_debug_info | badarg | {app, App},
 App :: atom().

Checks if a module can be interpreted.
The module can be specified by its module name Module or its source
filename File. If specified by a module name, the module is searched
for in the code path.
The function returns true if all of the following apply:
	Both source code and object code for the module is found.
	The module has been compiled with option debug_info set.
	The module does not belong to any of the applications Kernel, STDLIB, WX, or
Debugger.

The function returns {error,Reason} if the module cannot be interpreted.
Reason can have the following values:
	no_src - No source code is found. It is assumed that the source code and
object code are located either in the same directory, or in src and ebin
directories next to each other.

	no_beam - No object code is found. It is assumed that the source code
and object code are located either in the same directory, or in src and
ebin directories next to each other.

	no_debug_info - The module has not been compiled with option
debug_info set.

	badarg - AbsModule is not found. This could be because the specified
file does not exist, or because code:which/1 does not return a BEAM
filename, which is the case not only for non-existing modules but also for
modules that are preloaded or cover-compiled.

	{app,App} - App is kernel, stdlib, gs, or debugger if
AbsModule belongs to one of these applications.

Notice that the function can return true for a module that is not
interpretable the module is marked as sticky or resides in a directory
marked as sticky. The reason is that this is not discovered until the
interpreter tries to load the module.

 interpreted()

 -spec interpreted() -> [Module] when Module :: module().

Returns a list with all interpreted modules.

 n(AbsModule)

 -spec n(AbsModule) -> ok
 when
 AbsModule :: Module | File | [Module | File], Module :: module(), File :: file:name_all().

Stops interpreting the specified module on the local node.
Similar to i/1 and ni/1, a module can be specified by its
module name or filename.

 ni(AbsMods)

 -spec ni(AbsModules | AbsModule) -> Result
 when
 AbsModules :: [AbsModule],
 AbsModule :: Module | File,
 Module :: module(),
 File :: file:name_all(),
 Result :: AbsModuleResult | AbsModulesResult,
 AbsModuleResult :: {module, Module} | error,
 AbsModulesResult :: ok.

Interprets the specified module(s) on all known nodes.
A module can be specified by its module name (atom) or filename.
If specified by its module name, the object code Module.beam is searched for
in the current path. The source code Module.erl is searched for first in the
same directory as the object code, then in an src directory next to it.
If specified by its filename, the filename can include a path and the .erl
extension can be omitted. The object code Module.beam is searched for first in
the same directory as the source code, then in an ebin directory next to it,
and then in the current path.
Note
The interpreter requires both the source code and the object code. The object
code must include debug information, that is, only modules compiled with
option debug_info can be interpreted.
The functions returns {module,Module} if the module was interpreted, otherwise
error is returned.
The argument can also be a list of modules or filenames, in which case the
function tries to interpret each module as specified earlier. The function then
always returns ok, but prints some information to stdout if a module cannot
be interpreted.

 nn(AbsModule)

 -spec nn(AbsModule) -> ok
 when
 AbsModule :: Module | File | [Module | File],
 Module :: module(),
 File :: file:name_all().

Stops interpreting the specified module on all known nodes.
Similar to i/1 and ni/1, a module can be specified by its
module name or filename.

 no_break()

 -spec no_break() -> ok.

Deletes all breakpoints.

 no_break(Module)

 -spec no_break(Module :: term()) -> ok.

Deletes all breakpoints in Module.

 snapshot()

 -spec snapshot() -> [Snapshot]
 when
 Snapshot :: {Pid, Function, Status, Info},
 Pid :: pid(),
 Function :: {Module, Name, Args},
 Module :: module(),
 Name :: atom(),
 Args :: [term()],
 Status :: idle | running | waiting | break | exit | no_conn,
 Info :: {} | {Module, Line} | ExitReason,
 Line :: integer(),
 ExitReason :: term().

Gets information about all processes executing interpreted code.
	Pid - Process identifier.
	Function - First interpreted function called by the process.
	Status - Current status of the process.
	Info - More information.

Status is one of the following:
	idle - The process is no longer executing interpreted code.
Info is {}.
	running - The process is running. Info is {}.
	waiting - The process is waiting at a receive. Info is {}.
	break - Process execution is stopped, normally at a breakpoint.
Info is {Module,Line}.
	exit - The process is terminated. Info is ExitReason.
	no_conn - The connection is down to the node where the process is running.
Info is {}.

 stack_trace()

 -spec stack_trace() -> Flag when Flag :: all | no_tail | false.

Gets how to save call frames in the stack.
See stack_trace/1 for the meaning of Flag.

 stack_trace(Flag)

 -spec stack_trace(Flag) -> term() when Flag :: all | no_tail | false.

Sets how to save call frames in the stack.
Saving call frames makes it possible to inspect the call chain of a
process, and is also used to emulate the stack trace if an error (an
exception of class error) occurs. The following flags can be
specified:
	all - Save information about all current calls, that is, function calls
that have not yet returned a value.

	no_tail - Save information about current calls, but discard previous
information when a tail-recursive call is made. This option consumes less
memory and can be necessary to use for processes with long lifetimes and many
tail-recursive calls. This is the default.

	false - Save no information about current calls.

 test_at_break(Module, Line, Function)

 -spec test_at_break(Module, Line, Function) -> ok
 when
 Module :: module(),
 Line :: integer(),
 Function :: {Module, Name},
 Name :: atom().

Sets the conditional test of the breakpoint at Line in Module to Function.
Function Function must fulfill the requirements specified in section
Breakpoints.

 OEBPS/assets/line_break_dialog.jpg
Line Break

Trigger Action:
© Enable

Disable
© Delete

OEBPS/assets/interpret.jpg
Interpret Modules

[|[# Eorward

[amp/Debuggerr

Name Type Modified

) directory 2013-03-06 12:41:40

T factbeam erlbin 2013-03-04 13:41:36
) facterl erlsrc 2013-02-28 14:11:33

OEBPS/assets/attach.jpg
Attach Process <0.32.0>

File Edit Process Break Options Windows Help
1 %% http://en.wikipedia.org/wiki/Erlang_(programming language)
2 -nodule(fact) .
3 -export(tfac/in).
4
5 faco) > 1
6 Olfac ar) when 1 > 0, is_integerqn -> N * fac(i-1).
7
a I |
Find| |®NextOPrevious[Maich Case Gotoline| |
[steo | Next] continue| Finish | wiere | up | Down |
Evaluator Name Value
N 3
|State: break [fact.erl/6] 7

OEBPS/assets/cond_break_dialog.jpg
Conditional Break

Module: fact
Line:

C-Function: |c_break

Trigger Action:
© Enable

© Disable

© Delete

OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

OEBPS/assets/view.jpg
View Module fact

File Edit Break Windows Help

-module (fact) .
~export ([fac/1]) .

fac@ > 1
B o) it T atager) oo i Fac i

NouaAwN =

fi# http://en.wikipedia.org/wiki/Erlang_(progranming language)

I

il i T

D}

Find| |®NextC Previous] Match Case

GotoLine:| |

7

OEBPS/assets/function_break_dialog.jpg

OEBPS/assets/logo.png
EEEEEE

OEBPS/assets/monitor.jpg
Monitor

File Edit Module Process Break Options Windows Help

fact

Pid Initial Call Name

Status Information

<0.32.0> factfac/1

break {fact,6}

Auto Attach:
[First Call
[0n Break
[on Exit

Stack Trace
On (no tail)

Back Trace Size:

100
Strings:
Use range of +pc flag

