

 eunit

 v2.10

 [image: Logo]

 Table of contents

 	EUnit Release Notes

 	User's Guides

 	EUnit - a Lightweight Unit Testing Framework for Erlang

 	
 Modules

 	eunit

 	eunit_surefire

 EUnit Release Notes

This document describes the changes made to the EUnit application.
Eunit 2.10
Fixed Bugs and Malfunctions
	Fix so that when running tests in parallel and one test is cancelled due to a failing setup, it is report as cancelled. Before this fix the cancellation was ignored.
Own Id: OTP-19630 Aux Id: PR-9794

Improvements and New Features
	EEP-69: Nominal Types has been implemented. As a side effect, nominal types can encode opaque types. We changed all opaque-handling logic and improved opaque warnings in Dialyzer.
All existing Erlang type systems are structural: two types are seen as equivalent if their structures are the same. Type comparisons are based on the structures of the types, not on how the user explicitly defines them. For example, in the following example, meter() and foot() are equivalent. The two types can be used interchangeably. Neither of them differ from the basic type integer().
-type meter() :: integer().
-type foot() :: integer().
Nominal typing is an alternative type system, where two types are equivalent if and only if they are declared with the same type name. The EEP proposes one new syntax -nominal for declaring nominal types. Under nominal typing, meter() and foot() are no longer compatible. Whenever a function expects type meter(), passing in type foot() would result in a Dialyzer error.
-nominal meter() :: integer().
-nominal foot() :: integer().
More nominal type-checking rules can be found in the EEP. It is worth noting that most work for adding nominal types and type-checking is in erl_types.erl. The rest are changes that removed the previous opaque type-checking, and added an improved version of it using nominal type-checking with reworked warnings.
Backwards compatibility for opaque type-checking is not preserved by this PR. Previous opaque warnings can appear with slightly different wordings. A new kind of opaque warning opaque_union is added, together with a Dialyzer option no_opaque_union to turn this kind of warnings off.
Own Id: OTP-19364 Aux Id: PR-9079

	Fixed licenses in files and added ORT curations to the following apps: otp, eldap, erl_interface, eunit, parsetools, stdlib, syntax_tools, and ERTS.
Own Id: OTP-19478 Aux Id: PR-9376, PR-9402, PR-9819

	The license and copyright header has changed format to include an SPDX-License-Identifier. At the same time, most files have been updated to follow a uniform standard for license headers.
Own Id: OTP-19575 Aux Id: PR-9670

Eunit 2.9.1
Improvements and New Features
	The documentation has been migrated to use Markdown and ExDoc.
Own Id: OTP-18955 Aux Id: PR-8026

Eunit 2.9
Improvements and New Features
	With this change, EUnit timetraps can be scaled with the use of scale_timeouts
option.
Own Id: OTP-18771 Aux Id: PR-7635

Eunit 2.8.2
Improvements and New Features
	Replace size/1 with either tuple_size/1 or byte_size/1
The size/1 BIF is not optimized by the JIT, and its use can
result in worse types for Dialyzer.
When one knows that the value being tested must be a tuple,
tuple_size/1 should always be preferred.
When one knows that the value being tested must be a binary,
byte_size/1 should be preferred. However,
byte_size/1 also accepts a bitstring (rounding up size to a
whole number of bytes), so one must make sure that the call to byte_size/ is
preceded by a call to is_binary/1 to ensure that bitstrings
are rejected. Note that the compiler removes redundant calls to
is_binary/1, so if one is not sure whether previous code
had made sure that the argument is a binary, it does not harm to add an
is_binary/1 test immediately before the call to
byte_size/1.
Own Id: OTP-18432 Aux Id:
GH-6672,PR-6793,PR-6784,PR-6787,PR-6785,PR-6682,PR-6800,PR-6797,PR-6798,PR-6799,PR-6796,PR-6813,PR-6671,PR-6673,PR-6684,PR-6694,GH-6677,PR-6696,PR-6670,PR-6674

Eunit 2.8.1
Fixed Bugs and Malfunctions
	With this change, eunit exact_execution option works with application
primitive.
Own Id: OTP-18264 Aux Id: PR-6322, GH-6320

Eunit 2.8
Improvements and New Features
	With this change, Eunit can optionally not try to execute related module with
"_tests" suffix. This might be used for avoiding duplicated executions when
source and test modules are located in the same folder.
Own Id: OTP-18181 Aux Id: ERL-97, GH-3064, PR-5461

Eunit 2.7.1
Improvements and New Features
	Minor internal improvements.
Own Id: OTP-17884 Aux Id: GH-5617

Eunit 2.7
Improvements and New Features
	In an eunit test, when a test case times out, include a stacktrace.
Own Id: OTP-17613 Aux Id: PR-5185

Eunit 2.6.1
Fixed Bugs and Malfunctions
	The eunit_surefire report handler has been updated to automatically create
the directories needed to store the surefire xml file.
Own Id: OTP-17300 Aux Id: PR-4695

Eunit 2.6
Improvements and New Features
	Fixed compiler warning.
Own Id: OTP-16674

Eunit 2.5
Improvements and New Features
	Let eunit_surefire skip invalid XML 1.0 characters.
Own Id: OTP-15950 Aux Id: PR-2316, ERL-991

	Add new macro ?capturedOutput for enabling to write test cases that verify
data printed to standard out
Own Id: OTP-16275 Aux Id: PR-2424

	Add option to limit print depth of exceptions generated by eunit test suites.
Own Id: OTP-16549 Aux Id: PR-2532

Eunit 2.4.1
Improvements and New Features
	Backport of PR-2316: Strip control codes from eunit_surefire output to avoid
generation of invalid xml
Own Id: OTP-16380 Aux Id: ERL-991, PR-2316, PR-2487

Eunit 2.4
Improvements and New Features
	Remove compiler warnings from eunit.
Own Id: OTP-16313

Eunit 2.3.8
Fixed Bugs and Malfunctions
	Handle get_until request with explicit encoding in the implementation of the
I/O protocol.
Own Id: OTP-16000

Eunit 2.3.7
Fixed Bugs and Malfunctions
	Improved documentation.
Own Id: OTP-15190

Eunit 2.3.6
Improvements and New Features
	Calls to erlang:get_stacktrace() are removed.
Own Id: OTP-14861

Eunit 2.3.5
Fixed Bugs and Malfunctions
	Removed all old unused files in the documentation.
Own Id: OTP-14475 Aux Id: ERL-409, PR-1493

Eunit 2.3.4
Improvements and New Features
	Tools are updated to show Unicode atoms correctly.
Own Id: OTP-14464

Eunit 2.3.3
Fixed Bugs and Malfunctions
	The surefire reports from eunit will no longer have names with embedded
double quotes.
Own Id: OTP-14287

Eunit 2.3.2
Fixed Bugs and Malfunctions
	The address to the FSF in the license header has been updated.
Own Id: OTP-14084

Eunit 2.3.1
Fixed Bugs and Malfunctions
	When asserts were moved out to a separate header file, the automatic enabling
of asserts when testing is enabled stopped working.
Own Id: OTP-13892

Eunit 2.3
Improvements and New Features
	There is a new debugVal/2 that gives control over the truncation depth.
Own Id: OTP-13612

Eunit 2.2.13
Improvements and New Features
	Suppress Dialyzer warnings.
Own Id: OTP-12862

Eunit 2.2.12
Fixed Bugs and Malfunctions
	Small documentation fixes
Own Id: OTP-13017

Eunit 2.2.11
Fixed Bugs and Malfunctions
	Improve success message when 2 tests have passed
Own Id: OTP-12952

Eunit 2.2.10
Fixed Bugs and Malfunctions
	The eunit application is now unicode safe.
Own Id: OTP-11660

Eunit 2.2.9
Fixed Bugs and Malfunctions
	Make sure to install .hrl files when needed
Own Id: OTP-12197

	Make sure the clean rule for ssh, ssl, eunit and otp_mibs actually removes
generated files.
Own Id: OTP-12200

Eunit 2.2.8
Fixed Bugs and Malfunctions
	Minor refactoring.
Own Id: OTP-12051

Eunit 2.2.7
Fixed Bugs and Malfunctions
	Application upgrade (appup) files are corrected for the following
applications:
asn1, common_test, compiler, crypto, debugger, dialyzer, edoc, eldap, erl_docgen, et, eunit, gs, hipe, inets, observer, odbc, os_mon, otp_mibs, parsetools, percept, public_key, reltool, runtime_tools, ssh, syntax_tools, test_server, tools, typer, webtool, wx, xmerl
A new test utility for testing appup files is added to test_server. This is
now used by most applications in OTP.
(Thanks to Tobias Schlager)
Own Id: OTP-11744

Eunit 2.2.6
Fixed Bugs and Malfunctions
	Fix I/O-protocol error handling in eunit. Thanks to Yuki Ito.
Own Id: OTP-11373

	Do not attempt to detect lists of printable characters in format. Thanks to
Roberto Aloi.
Own Id: OTP-11467

	Fix silent make rule (Thanks to Anthony Ramine)
Own Id: OTP-11516

Eunit 2.2.5
Improvements and New Features
	Wrap eunit macros into begin ... end blocks. Thanks to Anthony Ramine.
Own Id: OTP-11217

Eunit 2.2.4
Improvements and New Features
	Where necessary a comment stating encoding has been added to Erlang files. The
comment is meant to be removed in Erlang/OTP R17B when UTF-8 becomes the
default encoding.
Own Id: OTP-10630

Eunit 2.2.3
Fixed Bugs and Malfunctions
	New option 'no_tty' to silent the default tty report.
Recognize the new stacktrace format introduced in R15, adding location
information. (Thanks to Klas Johansson.)
Improve layout of error messages, printing the stack trace before the error
term.
Heuristically detect and report bad return values from generators and
instantiators. E.g., "ok" will not be interpreted as a module name, and a
warning will be printed.
New test representation {test,M,F} for completeness along with
{generator,M,F}. Tuples {M,F} are deprecated.
Use UTF-8 as encoding in Surefire output files. (Thanks to Lukas Larsson.)
Own Id: OTP-10173

Eunit 2.2.2
Improvements and New Features
	Erlang/OTP can now be built using parallel make if you limit the number of
jobs, for instance using 'make -j6' or 'make -j10'. 'make -j' does not
work at the moment because of some missing dependencies.
Own Id: OTP-9451

Eunit 2.2.1
Fixed Bugs and Malfunctions
	Generate separate surefire XMLs for each test suite
Previously the test cases of all test suites (=modules) were put in one and
the same surefire report XML thereby breaking the principle of least
astonishment and making post analysis harder. Assume the following layout:
src/x.erl src/y.erl test/x_tests.erl test/y_tests.erl
The results for both x_tests and y_tests were written to only one report
grouped under either module x or y (seemingly randomly).
Now two reports, one for module x and one for y are generated. (Thanks to Klas
Johansson)
Own Id: OTP-9465

	Updated to EUnit version 2.2.0
New macros assertNotMatch(Guard, Expr), assertNotEqual(Unexpected, Expr), and
assertNotException(Class, Term, Expr).
The debugMsg macro now also prints the pid of the current process.
When testing all modules in a directory, tests in Module_tests.erl are no
longer executed twice.
The use of regexp internally has been replaced with re. (Thanks to Richard
Carlsson)
Own Id: OTP-9505

	Removed some never-matching clauses reported by dialyzer Updated author
e-mails and homepages Removed cvs keywords from files Removed files that
should not be checked in (Thanks to Richard Carlsson)
Own Id: OTP-9591

Eunit 2.1.7
Fixed Bugs and Malfunctions
	Increase depth of error messages in Eunit Surefire reports
Currently, error messages in Eunit Surefire reports are shortened just like
when written to a terminal. However, the space limitations that constrain
terminal output do not apply here, so it's more useful to include more of the
error message. The new depth of 100 should be enough for most cases, while
protecting against runaway errors. (Thanks to Magnus Henoch)
Own Id: OTP-9220

	Don't let eunit_surefire report back to eunit when stopping
When eunit is terminating, a stop message is sent to all listeners and eunit
then waits for one result message but previously both eunit_tty and
eunit_surefire sent a response on error. Don't send a result message from
eunit_surefire; let eunit_tty take care of all result reporting, both positive
and negative to avoid race conditions and inconsistencies. (Thanks to Klas
Johansson)
Own Id: OTP-9269

Eunit 2.1.6
Fixed Bugs and Malfunctions
	Fix format_man_pages so it handles all man sections and remove warnings/errors
in various man pages.
Own Id: OTP-8600

Eunit 2.1.5
Improvements and New Features
	The documentation is now possible to build in an open source environment after
a number of bugs are fixed and some features are added in the documentation
build process.
- The arity calculation is updated.
- The module prefix used in the function names for bif's are removed in the
generated links so the links will look like
"http://www.erlang.org/doc/man/erlang.html#append_element-2" instead of
"http://www.erlang.org/doc/man/erlang.html#erlang:append_element-2".
- Enhanced the menu positioning in the html documentation when a new page is
loaded.
- A number of corrections in the generation of man pages (thanks to Sergei
Golovan)
- The legal notice is taken from the xml book file so OTP's build process can
be used for non OTP applications.
Own Id: OTP-8343

Eunit 2.1.4
Improvements and New Features
	The documentation is now built with open source tools (xsltproc and fop) that
exists on most platforms. One visible change is that the frames are removed.
Own Id: OTP-8201

Eunit 2.1.3
Improvements and New Features
	Miscellaneous updates.
Own Id: OTP-8190

Eunit 2.1.2
Improvements and New Features
	Miscellaneous updates.
Own Id: OTP-8038

Eunit 2.1.1
Fixed Bugs and Malfunctions
	eunit was broken in R13B.
Own Id: OTP-8018

Eunit 2.1
Improvements and New Features
	Mostly internal changes, in particular to the event protocol; fixes problems
with timeouts that could cause eunit to hang, and makes it much easier to
write new reporting back-ends.
New "surefire" report backend for Maven and Bamboo.
The test representation is no longer traversed twice (the first pass was for
enumeration only). This eliminates some strange restrictions on how generators
can be written, but it also means that reports cannot be quite as complete as
before in the event of skipped tests.
Own Id: OTP-7964

EUnit 2.0.1
Improvements and New Features
	Corrected the documentation build.

EUnit 2.0
Improvements and New Features
	This is the first version of EUnit (for unit testing of Erlang modules) by
Richard Carlsson released in OTP.

 EUnit - a Lightweight Unit Testing Framework for Erlang

EUnit is a unit testing framework for Erlang. It is very powerful and flexible,
is easy to use, and has small syntactical overhead.
	Unit testing
	Terminology
	Getting started
	EUnit macros
	EUnit test representation

EUnit builds on ideas from the family of unit testing frameworks for Object
Oriented languages that originated with JUnit by Beck and Gamma (and Beck's
previous framework SUnit for Smalltalk). However, EUnit uses techniques more
adapted to functional and concurrent programming, and is typically less verbose
than its relatives.
Although EUnit uses many preprocessor macros, they have been designed to be as
nonintrusive as possible, and should not cause conflicts with existing code.
Adding EUnit tests to a module should thus not normally require changing
existing code. Furthermore, tests that only exercise the exported functions of a
module can always be placed in a completely separate module, avoiding any
conflicts entirely.

Unit testing
Unit Testing is testing of individual program "units" in relative isolation.
There is no particular size requirement: a unit can be a function, a module, a
process, or even a whole application, but the most typical testing units are
individual functions or modules. In order to test a unit, you specify a set of
individual tests, set up the smallest necessary environment for being able to
run those tests (often, you don't need to do any setup at all), you run the
tests and collect the results, and finally you do any necessary cleanup so that
the test can be run again later. A Unit Testing Framework tries to help you in
each stage of this process, so that it is easy to write tests, easy to run them,
and easy to see which tests failed (so you can fix the bugs).

Advantages of unit testing
	Reduces the risks of changing the program - Most programs will be modified
during their lifetime: bugs will be fixed, features will be added,
optimizations may become necessary, or the code will need to be refactored or
cleaned up in other ways to make it easier to work with. But every change to a
working program is a risk of introducing new bugs - or reintroducing bugs that
had previously been fixed. Having a set of unit tests that you can run with
very little effort makes it easy to know that the code still works as it
should (this use is called regression testing; see
Terminology). This goes a long way to reduce the
resistance to changing and refactoring code.

	Helps guide and speed up the development process - By focusing on getting
the code to pass the tests, the programmer can become more productive, not
overspecify or get lost in premature optimizations, and create code that is
correct from the very beginning (so-called test-driven development; see
Terminology).

	Helps separate interface from implementation - When writing tests, the
programmer may discover dependencies (in order to get the tests to run) that
ought not to be there, and which need to be abstracted away to get a cleaner
design. This helps eliminate bad dependencies before they spread throughout
the code.

	Makes component integration easier - By testing in a bottom-up fashion,
beginning with the smallest program units and creating a confidence in that
they work as they should, it becomes easier to test that a higher-level
component, consisting of several such units, also behaves according to
specification (known as integration testing; see
Terminology).

	Is self-documenting - The tests can be read as documentation, typically
showing both examples of correct and incorrect usage, along with the expected
consequences.

Terminology
	Unit testing - Testing that a program unit behaves as it is supposed to do
(in itself), according to its specifications. Unit tests have an important
function as regression tests, when the program later is modified for some
reason, since they check that the program still behaves according to
specification.

	Regression testing - Running a set of tests after making changes to a
program, to check that the program behaves as it did before the changes
(except, of course, for any intentional changes in behaviour). Unit tests are
important as regression tests, but regression testing can involve more than
just unit testing, and may also test behaviour that might not be part of the
normal specification (such as bug-for-bug-compatibility).

	Integration testing - Testing that a number of individually developed
program units (assumed to already have been separately unit tested) work
together as expected. Depending on the system being developed, integration
testing may be as simple as "just another level of unit testing", but might
also involve other kinds of tests (compare system testing).

	System testing - Testing that a complete system behaves according to its
specification. Specifically, system testing should not require knowing any
details about the implementation. It typically involves testing many different
aspects of the system behaviour apart from the basic functionality, such as
performance, usability, and reliability.

	Test-driven development - A program development technique where you
continuously write tests before you implement the code that is supposed to
pass those tests. This can help you focus on solving the right problems, and
not make a more complicated implementation than necessary, by letting the unit
tests determine when a program is "done": if it fulfils its specifications,
there is no need to keep adding functionality.

	Mock object - Sometimes, testing some unit A (e.g., a function) requires
that it collaborates somehow with some other unit B (perhaps being passed as
an argument, or by reference) - but B has not been implemented yet. A "mock
object" - an object which, for the purposes of testing A, looks and behaves
like a real B - might then be used instead. (This is of course only useful
if it would be significantly more work to implement a real B than to create
a mock object.)

	Test case - A single, well-defined test, that somehow can be uniquely
identified. When executed, the test case either passes or fails; the test
report should identify exactly which test cases failed.

	Test suite - A collection of test cases, generally with a specific, common
target for testing, such as a single function, module, or subsystem. A test
suite may also be recursively composed by smaller test suites.

Getting started
	Including the EUnit header file
	Writing simple test functions
	Running EUnit
	Writing test generating functions
	An example
	Disabling testing
	Avoiding compile-time dependency on EUnit

Including the EUnit header file
The simplest way to use EUnit in an Erlang module is to add the following line
at the beginning of the module (after the -module declaration, but before any
function definitions):
 -include_lib("eunit/include/eunit.hrl").
This will have the following effect:
	Creates an exported function test() (unless testing is turned off, and the
module does not already contain a test() function), that can be used to run
all the unit tests defined in the module
	Causes all functions whose names match ..._test() or ..._test_() to be
automatically exported from the module (unless testing is turned off, or the
EUNIT_NOAUTO macro is defined)
	Makes all the preprocessor macros of EUnit available, to help writing tests

Note: For -include_lib(...) to work, the Erlang module search path must
contain a directory whose name ends in eunit/ebin (pointing to the ebin
subdirectory of the EUnit installation directory). If EUnit is installed as
lib/eunit under your Erlang/OTP system directory, its ebin subdirectory will
be automatically added to the search path when Erlang starts. Otherwise, you
need to add the directory explicitly, by passing a -pa flag to the erl or
erlc command. For example, a Makefile could contain the following action for
compiling .erl files:
 erlc -pa "path/to/eunit/ebin" $(ERL_COMPILE_FLAGS) -o$(EBIN) $<
or if you want Eunit to always be available when you run Erlang interactively,
you can add a line like the following to your $HOME/.erlang file:
 code:add_path("/path/to/eunit/ebin").

Writing simple test functions
The EUnit framework makes it extremely easy to write unit tests in Erlang. There
are a few different ways of writing them, though, so we start with the simplest:
A function with a name ending in ..._test() is recognized by EUnit as a simple
test function - it takes no arguments, and its execution either succeeds
(returning some arbitrary value that EUnit will throw away), or fails by
throwing an exception of some kind (or by not terminating, in which case it will
be aborted after a while).
An example of a simple test function could be the following:
 reverse_test() -> lists:reverse([1,2,3]).
This just tests that the function lists:reverse(List) does not crash when
List is [1,2,3]. It is not a great test, but many people write simple
functions like this one to test the basic functionality of their code, and those
tests can be used directly by EUnit, without changes, as long as their function
names match.
Use exceptions to signal failure To
write more interesting tests, we need to make them crash (throw an exception)
when they don't get the result they expect. A simple way of doing this is to use
pattern matching with =, as in the following examples:
 reverse_nil_test() -> [] = lists:reverse([]).
 reverse_one_test() -> [1] = lists:reverse([1]).
 reverse_two_test() -> [2,1] = lists:reverse([1,2]).
If there was some bug in lists:reverse/1 that made it return something other
than [2,1] when it got [1,2] as input, then the last test above would throw
a badmatch error. The first two (we assume they do not get a badmatch) would
simply return [] and [1], respectively, so both succeed. (Note that EUnit is
not psychic: if you write a test that returns a value, even if it is the wrong
value, EUnit will consider it a success. You must make sure that the test is
written so that it causes a crash if the result is not what it should be.)
Using assert macros If you want to use Boolean
operators for your tests, the assert macro comes in handy (see
EUnit macros for details):
 length_test() -> ?assert(length([1,2,3]) =:= 3).
The ?assert(Expression) macro will evaluate Expression, and if that does not
evaluate to true, it will throw an exception; otherwise it just returns ok.
In the above example, the test will thus fail if the call to length does not
return 3.

Running EUnit
If you have added the declaration -include_lib("eunit/include/eunit.hrl") to
your module, as described above, you only need to compile the module, and run
the automatically exported function test(). For example, if your module was
named m, then calling \m:test() will run EUnit on all the tests defined in
the module. You do not need to write -export declarations for the test
functions. This is all done by magic.
You can also use the function eunit:test/1 to run arbitrary tests, for example
to try out some more advanced test descriptors (see
EUnit test representation). For example,
running eunit:test(m) does the same thing as the auto-generated function
\m:test(), while eunit:test({inparallel, m}) runs the same test cases but
executes them all in parallel.
Putting tests in separate modules
If you want to separate your test code from your normal code (at least for
testing the exported functions), you can simply write the test functions in a
module named m_tests (note: not m_test), if your module is named m. Then,
whenever you ask EUnit to test the module m, it will also look for the module
m_tests and run those tests as well. See ModuleName in the section
Primitives for details.
EUnit captures standard output
If your test code writes to the standard output, you may be surprised to see
that the text does not appear on the console when the tests are running. This is
because EUnit captures all standard output from test functions (this also
includes setup and cleanup functions, but not generator functions), so that it
can be included in the test report if errors occur. To bypass EUnit and print
text directly to the console while testing, you can write to the user output
stream, as in io:format(user, "~w", [Term]). The recommended way of doing this
is to use the EUnit Debugging macros, which make
it much simpler.
For checking the output produced by the unit under test, see
Macros for checking output.

Writing test generating functions
A drawback of simple test functions is that you must write a separate function
(with a separate name) for each test case. A more compact way of writing tests
(and much more flexible, as we shall see), is to write functions that return
tests, instead of being tests.
A function with a name ending in ..._test_() (note the final underscore) is
recognized by EUnit as a test generator function. Test generators return a
representation of a set of tests to be executed by EUnit.
Representing a test as data The most basic
representation of a test is a single fun-expression that takes no arguments. For
example, the following test generator:
 basic_test_() ->
 fun () -> ?assert(1 + 1 =:= 2) end.
will have the same effect as the following simple test:
 simple_test() ->
 ?assert(1 + 1 =:= 2).
(in fact, EUnit will handle all simple tests just like it handles
fun-expressions: it will put them in a list, and run them one by one).
Using macros to write tests To make tests
more compact and readable, as well as automatically add information about the
line number in the source code where a test occurred (and reduce the number of
characters you have to type), you can use the _test macro (note the initial
underscore character), like this:
 basic_test_() ->
 ?_test(?assert(1 + 1 =:= 2)).
The _test macro takes any expression (the "body") as argument, and places it
within a fun-expression (along with some extra information). The body can be any
kind of test expression, just like the body of a simple test function.
Underscore-prefixed macros create test objects But this example can be made
even shorter! Most test macros, such as the family of assert macros, have a
corresponding form with an initial underscore character, which automatically
adds a ?_test(...) wrapper. The above example can then simply be written:
 basic_test_() ->
 ?_assert(1 + 1 =:= 2).
which has exactly the same meaning (note the _assert instead of assert). You
can think of the initial underscore as signalling test object.

An example
Sometimes, an example says more than a thousand words. The following small
Erlang module shows how EUnit can be used in practice.
 -module(fib).
 -export([fib/1]).
 -include_lib("eunit/include/eunit.hrl").

 fib(0) -> 1;
 fib(1) -> 1;
 fib(N) when N > 1 -> fib(N-1) + fib(N-2).

 fib_test_() ->
 [?_assert(fib(0) =:= 1),
	?_assert(fib(1) =:= 1),
	?_assert(fib(2) =:= 2),
	?_assert(fib(3) =:= 3),
	?_assert(fib(4) =:= 5),
	?_assert(fib(5) =:= 8),
	?_assertException(error, function_clause, fib(-1)),
	?_assert(fib(31) =:= 2178309)
].
(Author's note: When I first wrote this example, I happened to write a *
instead of + in the fib function. Of course, this showed up immediately when
I ran the tests.)
See EUnit test representation for a full
list of all the ways you can specify test sets in EUnit.

Disabling testing
Testing can be turned off by defining the NOTEST macro when compiling, for
example as an option to erlc, as in:
 erlc -DNOTEST my_module.erl
or by adding a macro definition to the code, before the EUnit header file is
included:
 -define(NOTEST, 1).
(the value is not important, but should typically be 1 or true). Note that
unless the EUNIT_NOAUTO macro is defined, disabling testing will also
automatically strip all test functions from the code, except for any that are
explicitly declared as exported.
For instance, to use EUnit in your application, but with testing turned off by
default, put the following lines in a header file:
 -define(NOTEST, true).
 -include_lib("eunit/include/eunit.hrl").
and then make sure that every module of your application includes that header
file. This means that you have a single place to modify in order to change the
default setting for testing. To override the NOTEST setting without modifying
the code, you can define TEST in a compiler option, like this:
 erlc -DTEST my_module.erl
See Compilation control macros for
details about these macros.

Avoiding compile-time dependency on EUnit
If you are distributing the source code for your application for other people to
compile and run, you probably want to ensure that the code compiles even if
EUnit is not available. Like the example in the previous section, you can put
the following lines in a common header file:
 -ifdef(TEST).
 -include_lib("eunit/include/eunit.hrl").
 -endif.
and, of course, also make sure that you place all test code that uses EUnit
macros within -ifdef(TEST) or -ifdef(EUNIT) sections.

EUnit macros
Although all the functionality of EUnit is available even without the use of
preprocessor macros, the EUnit header file defines a number of such macros in
order to make it as easy as possible to write unit tests as compactly as
possible and without getting too many details in the way.
Except where explicitly stated, using EUnit macros will never introduce run-time
dependencies on the EUnit library code, regardless of whether your code is
compiled with testing enabled or disabled.
	Basic macros
	Compilation control macros
	Utility macros
	Assert macros
	Macros for checking output
	Macros for running external commands
	Debugging macros

Basic macros
	_test(Expr) - Turns Expr into a "test object", by wrapping it in a
fun-expression and a source line number. Technically, this is the same as
{?LINE, fun () -> (Expr) end}.

Compilation control macros
	EUNIT - This macro is always defined to true whenever EUnit is enabled
at compile time. This is typically used to place testing code within
conditional compilation, as in:
 -ifdef(EUNIT).
 % test code here
 ...
 -endif.
e.g., to ensure that the code can be compiled without including the EUnit
header file, when testing is disabled. See also the macros TEST and
NOTEST.

	EUNIT_NOAUTO - If this macro is defined, the automatic exporting or
stripping of test functions will be disabled.

	TEST - This macro is always defined (to true, unless previously
defined by the user to have another value) whenever EUnit is enabled at
compile time. This can be used to place testing code within conditional
compilation; see also the macros NOTEST and EUNIT.
For testing code that is strictly dependent on EUnit, it may be preferable to
use the EUNIT macro for this purpose, while for code that uses more generic
testing conventions, using the TEST macro may be preferred.
The TEST macro can also be used to override the NOTEST macro. If TEST is
defined before the EUnit header file is included (even if NOTEST is also
defined), then the code will be compiled with EUnit enabled.

	NOTEST - This macro is always defined (to true, unless previously
defined by the user to have another value) whenever EUnit is disabled at
compile time. (Compare the TEST macro.)
This macro can also be used for conditional compilation, but is more typically
used to disable testing: If NOTEST is defined before the EUnit header file
is included, and TEST is not defined, then the code will be compiled with
EUnit disabled. See also Disabling testing.

	NOASSERT - If this macro is defined, the assert macros will have no
effect, when testing is also disabled. See
Assert macros. When testing is enabled, the assert
macros are always enabled automatically and cannot be disabled.

	ASSERT - If this macro is defined, it overrides the NOASSERT macro,
forcing the assert macros to always be enabled regardless of other settings.

	NODEBUG - If this macro is defined, the debugging macros will have no
effect. See Debugging macros. NODEBUG also
implies NOASSERT, unless testing is enabled.

	DEBUG - If this macro is defined, it overrides the NODEBUG macro,
forcing the debugging macros to be enabled.

Utility macros
The following macros can make tests more compact and readable:
	LET(Var,Arg,Expr) - Creates a local binding Var = Arg in Expr. (This
is the same as (fun(Var)->(Expr)end)(Arg).) Note that the binding is not
exported outside of Expr, and that within Expr, this binding of Var will
shadow any binding of Var in the surrounding scope.

	IF(Cond,TrueCase,FalseCase) - Evaluates TrueCase if Cond evaluates
to true, or otherwise evaluates FalseCase if Cond evaluates to false.
(This is the same as
(case (Cond) of true->(TrueCase); false->(FalseCase) end).) Note that it is
an error if Cond does not yield a boolean value.

Assert macros
(Note that these macros also have corresponding forms which start with an "_"
(underscore) character, as in ?_assert(BoolExpr), that create a "test object"
instead of performing the test immediately. This is equivalent to writing
?_test(assert(BoolExpr)), etc.)
If the macro NOASSERT is defined before the EUnit header file is included,
these macros have no effect when testing is also disabled; see
Compilation control macros for details.
	assert(BoolExpr) - Evaluates the expression BoolExpr, if testing is
enabled. Unless the result is true, an informative exception will be
generated. If there is no exception, the result of the macro expression is the
atom ok, and the value of BoolExpr is discarded. If testing is disabled,
the macro will not generate any code except the atom ok, and BoolExpr will
not be evaluated.
Typical usage:
 ?assert(f(X, Y) =:= [])
The assert macro can be used anywhere in a program, not just in unit tests,
to check pre/postconditions and invariants. For example:
 some_recursive_function(X, Y, Z) ->
 ?assert(X + Y > Z),
 ...

	assertNot(BoolExpr) - Equivalent to assert(not (BoolExpr)).

	assertMatch(GuardedPattern, Expr) - Evaluates Expr and matches the
result against GuardedPattern, if testing is enabled. If the match fails, an
informative exception will be generated; see the assert macro for further
details. GuardedPattern can be anything that you can write on the left hand
side of the -> symbol in a case-clause, except that it cannot contain
comma-separated guard tests.
The main reason for using assertMatch also for simple matches, instead of
matching with =, is that it produces more detailed error messages.
Examples:
 ?assertMatch({found, {fred, _}}, lookup(bloggs, Table))
 ?assertMatch([X|_] when X > 0, binary_to_list(B))

	assertNotMatch(GuardedPattern, Expr) - The inverse case of assertMatch,
for convenience.

	assertEqual(Expect, Expr) - Evaluates the expressions Expect and
Expr and compares the results for equality, if testing is enabled. If the
values are not equal, an informative exception will be generated; see the
assert macro for further details.
assertEqual is more suitable than assertMatch when the left-hand side is a
computed value rather than a simple pattern, and gives more details than
?assert(Expect =:= Expr).
Examples:
 ?assertEqual("b" ++ "a", lists:reverse("ab"))
 ?assertEqual(foo(X), bar(Y))

	assertNotEqual(Unexpected, Expr) - The inverse case of assertEqual, for
convenience.

	assertException(ClassPattern, TermPattern, Expr)

	assertError(TermPattern, Expr)

	assertExit(TermPattern, Expr)

	assertThrow(TermPattern, Expr) - Evaluates Expr, catching any
exception and testing that it matches the expected ClassPattern:TermPattern.
If the match fails, or if no exception is thrown by Expr, an informative
exception will be generated; see the assert macro for further details. The
assertError, assertExit, and assertThrow macros, are equivalent to using
assertException with a ClassPattern of error, exit, or throw,
respectively.
Examples:
 ?assertError(badarith, X/0)
 ?assertExit(normal, exit(normal))
 ?assertException(throw, {not_found,_}, throw({not_found,42}))

Macros for checking output
The following macro can be used within a test case to retrieve the output
written to standard output.
	capturedOutput - The output captured by EUnit in the current test case,
as a string.
Examples:
 io:format("Hello~n"),
 ?assertEqual("Hello\n", ?capturedOutput)

Macros for running external commands
Keep in mind that external commands are highly dependent on the operating
system. You can use the standard library function os:type() in test generator
functions, to produce different sets of tests depending on the current operating
system.
Note: these macros introduce a run-time dependency on the EUnit library code, if
compiled with testing enabled.
	assertCmd(CommandString) - Runs CommandString as an external command,
if testing is enabled. Unless the returned status value is 0, an informative
exception will be generated. If there is no exception, the result of the macro
expression is the atom ok. If testing is disabled, the macro will not
generate any code except the atom ok, and the command will not be executed.
Typical usage:
 ?assertCmd("mkdir foo")

	assertCmdStatus(N, CommandString) - Like the assertCmd(CommandString)
macro, but generates an exception unless the returned status value is N.

	assertCmdOutput(Text, CommandString) - Runs CommandString as an
external command, if testing is enabled. Unless the output produced by the
command exactly matches the specified string Text, an informative exception
will be generated. (Note that the output is normalized to use a single LF
character as line break on all platforms.) If there is no exception, the
result of the macro expression is the atom ok. If testing is disabled, the
macro will not generate any code except the atom ok, and the command will
not be executed.

	cmd(CommandString) - Runs CommandString as an external command. Unless
the returned status value is 0 (indicating success), an informative exception
will be generated; otherwise, the result of the macro expression is the output
produced by the command, as a flat string. The output is normalized to use a
single LF character as line break on all platforms.
This macro is useful in the setup and cleanup sections of fixtures, e.g., for
creating and deleting files or perform similar operating system specific
tasks, to make sure that the test system is informed of any failures.
A Unix-specific example:
 {setup,
 fun () -> ?cmd("mktemp") end,
 fun (FileName) -> ?cmd("rm " ++ FileName) end,
 ...}

Debugging macros
To help with debugging, EUnit defines several useful macros for printing
messages directly to the console (rather than to the standard output).
Furthermore, these macros all use the same basic format, which includes the file
and line number where they occur, making it possible in some development
environments (e.g., when running Erlang in an Emacs buffer) to simply click on
the message and jump directly to the corresponding line in the code.
If the macro NODEBUG is defined before the EUnit header file is included,
these macros have no effect; see
Compilation control macros for details.
	debugHere - Just prints a marker showing the current file and line
number. Note that this is an argument-less macro. The result is always ok.

	debugMsg(Text) - Outputs the message Text (which can be a plain
string, an IO-list, or just an atom). The result is always ok.

	debugFmt(FmtString, Args) - This formats the text like
io:format(FmtString, Args) and outputs it like debugMsg. The result is
always ok.

	debugVal(Expr) - Prints both the source code for Expr and its current
value. E.g., ?debugVal(f(X)) might be displayed as "f(X) = 42". (Large
terms are truncated to the depth given by the macro EUNIT_DEBUG_VAL_DEPTH,
which defaults to 15 but can be overridden by the user.) The result is always
the value of Expr, so this macro can be wrapped around any expression to
display its value when the code is compiled with debugging enabled.

	debugVal(Expr, Depth) - Like debugVal(Expr), but prints terms
truncated to the given depth.

	debugTime(Text,Expr) - Prints Text and the wall clock time for
evaluation of Expr. The result is always the value of Expr, so this macro
can be wrapped around any expression to show its run time when the code is
compiled with debugging enabled. For example,
List1 = ?debugTime("sorting", lists:sort(List)) might show as
"sorting: 0.015 s".

EUnit test representation
The way EUnit represents tests and test sets as data is flexible, powerful, and
concise. This section describes the representation in detail.
	Simple test objects
	Test sets and deep lists
	Titles
	Primitives
	Control
	Fixtures
	Lazy generators

Simple test objects
A simple test object is one of the following:
	A nullary functional value (i.e., a fun that takes zero arguments). Examples:
 fun () -> ... end
 fun some_function/0
 fun some_module:some_function/0

	A tuple {test, ModuleName, FunctionName}, where ModuleName and
FunctionName are atoms, referring to the function
ModuleName:FunctionName/0

	(Obsolete) A pair of atoms {ModuleName, FunctionName}, equivalent to
{test, ModuleName, FunctionName} if nothing else matches first. This might
be removed in a future version.

	A pair {LineNumber, SimpleTest}, where LineNumber is a nonnegative integer
and SimpleTest is another simple test object. LineNumber should indicate
the source line of the test. Pairs like this are usually only created via
?_test(...) macros; see Basic macros.

In brief, a simple test object consists of a single function that takes no
arguments (possibly annotated with some additional metadata, i.e., a line
number). Evaluation of the function either succeeds, by returning some value
(which is ignored), or fails, by throwing an exception.

Test sets and deep lists
A test set can be easily created by placing a sequence of test objects in a
list. If T_1, ..., T_N are individual test objects, then [T_1, ..., T_N]
is a test set consisting of those objects (in that order).
Test sets can be joined in the same way: if S_1, ..., S_K are test sets,
then [S_1, ..., S_K] is also a test set, where the tests of S_i are ordered
before those of S_(i+1), for each subset S_i.
Thus, the main representation of test sets is deep lists, and a simple test
object can be viewed as a test set containing only a single test; there is no
difference between T and [T].
A module can also be used to represent a test set; see ModuleName under
Primitives below.
Titles
Any test or test set T can be annotated with a title, by wrapping it in a pair
{Title, T}, where Title is a string. For convenience, any test which is
normally represented using a tuple can simply be given a title string as the
first element, i.e., writing {"The Title", ...} instead of adding an extra
tuple wrapper as in {"The Title", {...}}.
Primitives
The following are primitives, which do not contain other test sets as arguments:
	ModuleName::atom() - A single atom represents a module name, and is
equivalent to {module, ModuleName}. This is often used as in the call
eunit:test(some_module).

	{module, ModuleName::atom()} - This composes a test set from the
exported test functions of the named module, i.e., those functions with arity
zero whose names end with _test or _test_. Basically, the ..._test()
functions become simple tests, while the ..._test_() functions become
generators.
In addition, EUnit will also look for another module whose name is
ModuleName plus the suffix _tests, and if it exists, all the tests from
that module will also be added. (If ModuleName already contains the suffix
_tests, this is not done.) E.g., the specification {module, mymodule} will
run all tests in the modules mymodule and mymodule_tests. Typically, the
_tests module should only contain test cases that use the public interface
of the main module (and no other code).

	{application, AppName::atom(), Info::list()} - This is a normal
Erlang/OTP application descriptor, as found in an .app file. The resulting
test set consists of the modules listed in the modules entry in Info.

	{application, AppName::atom()} - This creates a test set from all the
modules belonging to the specified application, by consulting the
application's .app file (see {file, FileName}), or if no such file exists,
by testing all object files in the application's ebin-directory (see
{dir, Path}); if that does not exist, the code:lib_dir(AppName) directory
is used.

	Path::string() - A single string represents the path of a file or
directory, and is equivalent to {file, Path}, or {dir, Path},
respectively, depending on what Path refers to in the file system.

	{file, FileName::string()} - If FileName has a suffix that indicates
an object file (.beam), EUnit will try to reload the module from the
specified file and test it. Otherwise, the file is assumed to be a text file
containing test specifications, which will be read using the standard library
function file:path_consult/2.
Unless the file name is absolute, the file is first searched for relative to
the current directory, and then using the normal search path
(code:get_path()). This means that the names of typical "app" files can be
used directly, without a path, e.g., "mnesia.app".

	{dir, Path::string()} - This tests all object files in the specified
directory, as if they had been individually specified using
{file, FileName}.

	{generator, GenFun::(() -> Tests)} - The generator function GenFun is
called to produce a test set.

	{generator, ModuleName::atom(), FunctionName::atom()} - The function
ModuleName:FunctionName() is called to produce a test set.

	{with, X::any(), [AbstractTestFun::((any()) -> any())]} - Distributes
the value X over the unary functions in the list, turning them into nullary
test functions. An AbstractTestFun is like an ordinary test fun, but takes
one argument instead of zero - it's basically missing some information before
it can be a proper test. In practice, {with, X, [F_1, ..., F_N]} is
equivalent to [fun () -> F_1(X) end, ..., fun () -> F_N(X) end]. This is
particularly useful if your abstract test functions are already implemented as
proper functions:
{with, FD, [fun filetest_a/1, fun filetest_b/1, fun filetest_c/1]} is
equivalent to
[fun () -> filetest_a(FD) end, fun () -> filetest_b(FD) end, fun () -> filetest_c(FD) end],
but much more compact. See also Fixtures, below.

Control
The following representations control how and where tests are executed:
	{spawn, Tests} - Runs the specified tests in a separate subprocess,
while the current test process waits for it to finish. This is useful for
tests that need a fresh, isolated process state. (Note that EUnit always
starts at least one such a subprocess automatically; tests are never executed
by the caller's own process.)

	{spawn, Node::atom(), Tests} - Like {spawn, Tests}, but runs the
specified tests on the given Erlang node.

	{timeout, Time::number(), Tests} - Runs the specified tests under the
given timeout. Time is in seconds; e.g., 60 means one minute and 0.1 means
1/10th of a second. If the timeout is exceeded, the unfinished tests will be
forced to terminate. Note that if a timeout is set around a fixture, it
includes the time for setup and cleanup, and if the timeout is triggered, the
entire fixture is abruptly terminated (without running the cleanup). The
default timeout for an individual test is 5 seconds.

	{inorder, Tests} - Runs the specified tests in strict order. Also see
{inparallel, Tests}. By default, tests are neither marked as inorder or
inparallel, but may be executed as the test framework chooses.

	{inparallel, Tests} - Runs the specified tests in parallel (if
possible). Also see {inorder, Tests}.

	{inparallel, N::integer(), Tests} - Like {inparallel, Tests}, but
running no more than N subtests simultaneously.

Fixtures
A "fixture" is some state that is necessary for a particular set of tests to
run. EUnit's support for fixtures makes it easy to set up such state locally for
a test set, and automatically tear it down again when the test set is finished,
regardless of the outcome (success, failures, timeouts, etc.).
To make the descriptions simpler, we first list some definitions:
		
	Setup	() -> (R::any())
	SetupX	(X::any()) -> (R::any())
	Cleanup	(R::any()) -> any()
	CleanupX	(X::any(), R::any()) -> any()
	Instantiator	((R::any()) -> Tests) | {with, [AbstractTestFun::((any()) -> any())]}
	Where	local | spawn | {spawn, Node::atom()}

(these are explained in more detail further below.)
The following representations specify fixture handling for test sets:
	{setup, Setup, Tests | Instantiator}

	{setup, Setup, Cleanup, Tests | Instantiator}

	{setup, Where, Setup, Tests | Instantiator}

	{setup, Where, Setup, Cleanup, Tests | Instantiator} - setup sets up a
single fixture for running all of the specified tests, with optional teardown
afterwards. The arguments are described in detail below.

	{node, Node::atom(), Tests | Instantiator}

	{node, Node::atom(), Args::string(), Tests | Instantiator} - node is
like setup, but with a built-in behaviour: it starts a slave node for the
duration of the tests. The atom Node should have the format
nodename@full.machine.name, and Args are the optional arguments to the new
node; see slave:start_link/3 for details.

	{foreach, Where, Setup, Cleanup, [Tests | Instantiator]}

	{foreach, Setup, Cleanup, [Tests | Instantiator]}

	{foreach, Where, Setup, [Tests | Instantiator]}

	{foreach, Setup, [Tests | Instantiator]} - foreach is used to set up a
fixture and optionally tear it down afterwards, repeated for each single one
of the specified test sets.

	{foreachx, Where, SetupX, CleanupX, Pairs::[{X::any(), ((X::any(), R::any()) -> Tests)}]}

	{foreachx, SetupX, CleanupX, Pairs}

	{foreachx, Where, SetupX, Pairs}

	{foreachx, SetupX, Pairs} - foreachx is like foreach, but uses a
list of pairs, each containing an extra argument X and an extended
instantiator function.

A Setup function is executed just before any of the specified tests are run,
and a Cleanup function is executed when no more of the specified tests will be
run, regardless of the reason. A Setup function takes no argument, and returns
some value which will be passed as it is to the Cleanup function. A Cleanup
function should do whatever necessary and return some arbitrary value, such as
the atom ok. (SetupX and CleanupX functions are similar, but receive one
additional argument: some value X, which depends on the context.) When no
Cleanup function is specified, a dummy function is used which has no effect.
An Instantiator function receives the same value as the Cleanup function,
i.e., the value returned by the Setup function. It should then behave much
like a generator (see Primitives), and return a test
set whose tests have been instantiated with the given value. A special case is
the syntax {with, [AbstractTestFun]} which represents an instantiator function
that distributes the value over a list of unary functions; see
Primitives: {with, X, [...]} for more details.
A Where term controls how the specified tests are executed. The default is
spawn, which means that the current process handles the setup and teardown,
while the tests are executed in a subprocess. {spawn, Node} is like spawn,
but runs the subprocess on the specified node. local means that the current
process will handle both setup/teardown and running the tests - the drawback is
that if a test times out so that the process is killed, the cleanup will not be
performed; hence, avoid this for persistent fixtures such as file operations.
In general, local should only be used when:
	the setup/teardown needs to be executed by the process that will run the
tests;
	no further teardown needs to be done if the process is killed (i.e., no state
outside the process was affected by the setup)

Lazy generators
Sometimes, it can be convenient not to produce the whole set of test
descriptions before the testing begins; for example, if you want to generate a
huge amount of tests that would take up too much space to keep in memory all at
once.
It is fairly easy to write a generator which, each time it is called, either
produces an empty list if it is done, or otherwise produces a list containing a
single test case plus a new generator which will produce the rest of the tests.
This demonstrates the basic pattern:
 lazy_test_() ->
 lazy_gen(10000).

 lazy_gen(N) ->
 {generator,
 fun () ->
 if N > 0 ->
 [?_test(...)
 | lazy_gen(N-1)];
 true ->
 []
 end
 end}.
When EUnit traverses the test representation in order to run the tests, the new
generator will not be called to produce the next test until the previous test
has been executed.
Note that it is easiest to write this kind of recursive generator using a help
function, like the lazy_gen/1 function above. It can also be written using a
recursive fun, if you prefer to not clutter your function namespace and are
comfortable with writing that kind of code.

eunit

This module is the main EUnit user interface.

 Summary

 Functions

 start()

 Starts the EUnit server. Normally, you don't need to call this function; it is
started automatically.

 stop()

 Stops the EUnit server. Normally, you don't need to call this function.

 test(Tests)

 Equivalent to test(Tests, []).

 test(Tests, Options)

 Runs a set of tests. The format of Tests is described in the section
EUnit test representation of the
overview.

 Functions

 start()

 -spec start() -> term().

Starts the EUnit server. Normally, you don't need to call this function; it is
started automatically.

 stop()

 -spec stop() -> term().

Stops the EUnit server. Normally, you don't need to call this function.

 test(Tests)

 -spec test(Tests :: term()) -> ok | {error, term()} | error.

Equivalent to test(Tests, []).

 test(Tests, Options)

 -spec test(Tests :: term(), Options :: [term()]) -> ok | error | {error, term()}.

Runs a set of tests. The format of Tests is described in the section
EUnit test representation of the
overview.
Example:
 eunit:test(fred)
runs all tests in the module fred and also any tests in the module
fred_tests, if that module exists.
Options:
	verbose - Displays more details about the running tests.

	print_depth - Maximum depth to which terms are printed in case of error.

	exact_execution - If this boolean flag is set to true framework will
not automatically execute tests found in related module suffixed with
"_tests". This behaviour might be unwanted if execution of modules found in a
folder is ordered while it contains both source and test modules.

	scale_timeouts - If this numeric value is set, timeouts will get scaled
accordingly. It may be useful when running a set of tests on a slower host.
Examples: {scale_timeouts,10} make the timeouts 10 times longer, while
{scale_timeouts,0.1} would shorten them by a factor of 10.

Options in the environment variable EUNIT are also included last in the option
list, i.e., have lower precedence than those in Options.
See also: test/1.

eunit_surefire

Surefire reports for EUnit (Format used by Maven and Atlassian Bamboo for
example to integrate test results). Based on initial code from Paul Guyot.
Example: Generate XML result file in the current directory:
 eunit:test([fib, eunit_examples],
 [{report,{eunit_surefire,[{dir,"."}]}}]).
See also: eunit.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

OEBPS/assets/logo.png
EEEEEE

