

 inets

 v9.4.2

 [image: Logo]

 Table of contents

 	Inets Release Notes

 	User's Guides

 	Introduction

 	Inets

 	HTTP Client

 	HTTP server

 	
 Modules

 	Service API

 	inets

 	HTTP client modules

 	httpc

 	HTTP server modules

 	httpd

 	httpd_custom_api

 	httpd_socket

 	httpd_util

 	mod_alias

 	mod_auth

 	mod_esi

 	mod_security

 	Deprecated functionality

 	http_uri

 Inets Release Notes

Inets 9.4.2
Fixed Bugs and Malfunctions
	Fixed a RFC 2616 violation, where a http request, made by httpc, without providing any options, would be sent with an empty TE header, without also having a TE value in the connection header. Now the default request doesn't send a TE header at all.
Own Id: OTP-19760 Aux Id: PR-10120, GH-10065

Inets 9.4.1
Fixed Bugs and Malfunctions
	Fixed a bug where a request sent to httpd server which is using CGI script to generate a response, would pollute server's environment variable - HTTP_PROXY for that request. This bug is also known as httpoxy. More information: CVE-2016-1000107
Own Id: OTP-19729 Aux Id: PR-6223, GH-3392, CVE-2016-1000107

Inets 9.4
Fixed Bugs and Malfunctions
	Replaced calls to deprecated crypto:start() with application:start(crypto).
Own Id: OTP-19485 Aux Id: PR-8592

	Enhance specs of timeout for improving documentation and dialyzer analysis.
Own Id: OTP-19604 Aux Id: PR-9574

Improvements and New Features
	Enhanced http client documentation.
Own Id: OTP-19520 Aux Id: PR-9516

	Enhance made to mod_esi documentation
Own Id: OTP-19521 Aux Id: PR-9472

	The license and copyright header has changed format to include an SPDX-License-Identifier. At the same time, most files have been updated to follow a uniform standard for license headers.
Own Id: OTP-19575 Aux Id: PR-9670

	Inets Makefiles now create and use dependencies files for .erl files
Own Id: OTP-19624 Aux Id: PR-9101

Inets 9.3.2.1
Fixed Bugs and Malfunctions
	Fixed a bug where a request sent to httpd server which is using CGI script to generate a response, would pollute server's environment variable - HTTP_PROXY for that request. This bug is also known as httpoxy. More information: CVE-2016-1000107
Own Id: OTP-19729 Aux Id: PR-6223, GH-3392

	Fixed a RFC 2616 violation, where a http request, made by httpc, without providing any options, would be sent with an empty TE header, without also having a TE value in the connection header. Now the default request doesn't send a TE header at all.
Own Id: OTP-19760 Aux Id: PR-10120, GH-10065

Inets 9.3.2
Fixed Bugs and Malfunctions
	Improved robustness of httpd startup procedure.
Own Id: OTP-19486 Aux Id: ERIERL-1190, PR-9408

Inets 9.3.1
Fixed Bugs and Malfunctions
	The HTTP client now correctly takes into account the full_result option when returning an asynchronous request.
 POTENTIAL INCOMPATIBILITY
Own Id: OTP-19158

	A synchronous httpc:request now timeouts after the Timeout specified in HttpOption {timeout, Timeout}.
Own Id: OTP-19221 Aux Id: ERIERL-1091, PR-8788, PR-8801

	Fixed a bug where calling httpc:set_options/2 when one of keys: ipfamily or unix_socket, was not present, would cause the other value to get overriden by the default value. The validation of these options was also improved.
Own Id: OTP-19379 Aux Id: PR-8878, GH-8829

Improvements and New Features
	The variable Env in the mod_esi callback will now have an additional property {connect_addr, Addr} indicating on which address the server received a connection.
Own Id: OTP-19377 Aux Id: ERIERL-1152, PR-9127

Inets 9.3
Improvements and New Features
	The documentation for the httpd module has been improved, along with correction of headings and types.
Own Id: OTP-19171 Aux Id: PR-8578

	Userinfo is now properly percent-decoded before usage in headers.
Own Id: OTP-19172 Aux Id: PR-8575

Inets 9.2
Improvements and New Features
	Introduced a default value for httpd_server name configuration to improve ease of use.
 POTENTIAL INCOMPATIBILITY
Own Id: OTP-18641 Aux Id: PR-7316

	The httpd module has been extended with an API for simple serving directory content over HTTP. With this change, the current working directory can be served like this:
erl -S httpd
An arbitrary directory can be served like this:
erl -S httpd serve path/to/dir
Own Id: OTP-18727 Aux Id: PR-7299

	Added -callback attributes to httpd, mod_esi, and mod_security.
Own Id: OTP-18786 Aux Id: PR-7700

	Inets now uses a relative redirect with an absolute path to prevent whoever is running Inets from having to configure the ServerName to match the network-reachable host name of the server.
Own Id: OTP-18809 Aux Id: GH-7617, PR-7678

	inets processes now use proc_lib:set_label/1 to improve observeability.
Own Id: OTP-18927 Aux Id: PR-8029

	The documentation has been migrated to use Markdown and ExDoc.
Own Id: OTP-18955 Aux Id: PR-8026

	The implementations of http_uri:encode/1 and http_uri:decode/1 are now replaced with their equivalent, but bug free versions from module uri_string, namely uri_string:quote/1 and uri_string:unquote/1.
 POTENTIAL INCOMPATIBILITY
Own Id: OTP-19022

	With this change, the API specs are updated.
Own Id: OTP-19033

Inets 9.1.0.3
Fixed Bugs and Malfunctions
	Fixed a bug where a request sent to httpd server which is using CGI script to generate a response, would pollute server's environment variable - HTTP_PROXY for that request. This bug is also known as httpoxy. More information: CVE-2016-1000107
Own Id: OTP-19729 Aux Id: PR-6223, GH-3392

	Fixed a RFC 2616 violation, where a http request, made by httpc, without providing any options, would be sent with an empty TE header, without also having a TE value in the connection header. Now the default request doesn't send a TE header at all.
Own Id: OTP-19760 Aux Id: PR-10120, GH-10065

Inets 9.1.0.2
Fixed Bugs and Malfunctions
	Fixed a bug where calling httpc:set_options/2 when one of keys: ipfamily or unix_socket, was not present, would cause the other value to get overriden by the default value. The validation of these options was also improved.
Own Id: OTP-19379 Aux Id: PR-8878, GH-8829

Inets 9.1.0.1
Fixed Bugs and Malfunctions
	With this change, HTTP client, when returning an asynchronous request, now correctly takes into account `OptionRequest - full_result`
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-19158

	With this change, synchronous httpc:request now timeouts after `Timeout` specified in `HttpOption {timeout, Timeout}`
Own Id: OTP-19221 Aux Id: ERIERL-1091, PR-8788, PR-8801

Inets 9.1
Fixed Bugs and Malfunctions
	Replaced unintentional Erlang Public License 1.1 headers in some files with
the intended Apache License 2.0 header.
Own Id: OTP-18815 Aux Id: PR-7780

	Correct IP protocol handling so that redirects always uses correct IP-family
options and not fails.
Own Id: OTP-18855

Improvements and New Features
	inets app starts ssl by default
Own Id: OTP-18735 Aux Id: PR-7596, GH-7580

	Avoid httpd returning 500 internal server error when unable to open a file.
404 or 503 will be returned instead.
Own Id: OTP-18882

	Properly handle documented option mime_type, for backwards compatibility
fallback to undocumented option default_type if mime_type is not set.
Own Id: OTP-18891 Aux Id: PR-7843, GH-7827

Inets 9.0.2
Fixed Bugs and Malfunctions
	With this change, re_write httpd works as expected and does not return error.
Own Id: OTP-18582 Aux Id: GH-6074,PR-6892

	Fixed a bug so httpd does not crash when stopped at the wrong time during
TLS connection negotiation, or any other theoretically as slow connection
setup.
Own Id: OTP-18688 Aux Id: ERIERL-962

	Enhance error handling and avoid that the HTTP client hangs on headers
provided on the wrong format.
Own Id: OTP-18694 Aux Id: GH-7482

	With this change, error report generated by httpd during connection setup
contains socket type information.
Own Id: OTP-18704 Aux Id: ERIERL-962, PR-7513, OTP-18688

	Stop and restart of the httpd server in the Inets application has been
refactored to a more synchronous and OTP supervisor friendly approach.
This should increase stability and for example avoid a supervisor report from
httpd_connection_sup about killed child process(es) in some cases when
stopping or restarting httpd.
Own Id: OTP-18708 Aux Id: ERIERL-962, OTP-18688

Inets 9.0.1
Fixed Bugs and Malfunctions
	Do not make the default ssl options by calling
httpc:ssl_verify_host_options(true) if ssl options are supplied by the user.
Own Id: OTP-18604 Aux Id: PR-7306 GH-7303

Inets 9.0
Fixed Bugs and Malfunctions
	Correct timing related pipelining/keepalive queue bug, that could result in
unexpected "socket_remotly_closed" errors.
Own Id: OTP-18476 Aux Id: GH-6380

Improvements and New Features
	By default ssl connections will use options from ssl_default_options(true)
Own Id: OTP-18167

	Runtime dependencies have been updated.
Own Id: OTP-18350

	Deprecates dbg:stop_clear/0 because it is simply a function alias to
dbg:stop/0
Own Id: OTP-18478 Aux Id: GH-6903

	The implementation has been fixed to use proc_lib:init_fail/2,3 where
appropriate, instead of proc_lib:init_ack/1,2.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18490 Aux Id: OTP-18471, GH-6339, PR-6843

	IP display string will now always be in lower case, effects ipv6 addresses.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18530

	Removed deprecated functions
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18536

	Update the code in the inets example directory to reflect the latest
implementation
Own Id: OTP-18544 Aux Id: GH-5276

Inets 8.3.1.5
Fixed Bugs and Malfunctions
	Fixed a bug where calling httpc:set_options/2 when one of keys: ipfamily or unix_socket, was not present, would cause the other value to get overriden by the default value. The validation of these options was also improved.
Own Id: OTP-19379 Aux Id: PR-8878, GH-8829

Inets 8.3.1.4
Fixed Bugs and Malfunctions
	With this change, HTTP client, when returning an asynchronous request, now correctly takes into account `OptionRequest - full_result`
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-19158

	With this change, synchronous httpc:request now timeouts after `Timeout` specified in `HttpOption {timeout, Timeout}`
Own Id: OTP-19221 Aux Id: ERIERL-1091, PR-8788, PR-8801

Inets 8.3.1.3
Fixed Bugs and Malfunctions
	Fixed runtime dependencies.
Own Id: OTP-19064

Inets 8.3.1.2
Fixed Bugs and Malfunctions
	With this change, error report generated by httpd during connection setup
contains socket type information.
Own Id: OTP-18704 Aux Id: ERIERL-962, PR-7513, OTP-18688

	Stop and restart of the httpd server in the Inets application has been
refactored to a more synchronous and OTP supervisor friendly approach.
This should increase stability and for example avoid a supervisor report from
httpd_connection_sup about killed child process(es) in some cases when
stopping or restarting httpd.
Own Id: OTP-18708 Aux Id: ERIERL-962, OTP-18688

Inets 8.3.1.1
Fixed Bugs and Malfunctions
	Fixed a bug so httpd does not crash when stopped at the wrong time during
TLS connection negotiation, or any other theoretically as slow connection
setup.
Own Id: OTP-18688 Aux Id: ERIERL-962

Inets 8.3.1
Fixed Bugs and Malfunctions
	Correct timing related pipelining/keepalive queue bug, that could result in
unexpected "socket_remotly_closed" errors.
Own Id: OTP-18509 Aux Id: OTP-18476

	With this change, upon remote socket closure current request is added to a
retried queue (either pipeline or keep_alive, but not both).
Own Id: OTP-18545 Aux Id: OTP-18509, ERIERL-937, ERIERL-928

Inets 8.3
Fixed Bugs and Malfunctions
	With this change, handling of URI to a folder, with missing trailing / and a
query component present is fixed.
Own Id: OTP-18472 Aux Id: DAFH-1592

Improvements and New Features
	Adds more type information to the inets app, thus improving the errors that
static analysis tools can detect.
The addition of type information to records and the updates to function heads
help static analysis tools to understand that some values in the records
cannot be 'undefined', thus making static tools to type check correctly more
modules in the inets app
Own Id: OTP-18390 Aux Id: PR-6661

	Replace size/1 with either tuple_size/1 or byte_size/1
The size/1 BIF is not optimized by the JIT, and its use can
result in worse types for Dialyzer.
When one knows that the value being tested must be a tuple,
tuple_size/1 should always be preferred.
When one knows that the value being tested must be a binary,
byte_size/1 should be preferred. However,
byte_size/1 also accepts a bitstring (rounding up size to a
whole number of bytes), so one must make sure that the call to byte_size/ is
preceded by a call to is_binary/1 to ensure that bitstrings
are rejected. Note that the compiler removes redundant calls to
is_binary/1, so if one is not sure whether previous code
had made sure that the argument is a binary, it does not harm to add an
is_binary/1 test immediately before the call to
byte_size/1.
Own Id: OTP-18432 Aux Id:
GH-6672,PR-6793,PR-6784,PR-6787,PR-6785,PR-6682,PR-6800,PR-6797,PR-6798,PR-6799,PR-6796,PR-6813,PR-6671,PR-6673,PR-6684,PR-6694,GH-6677,PR-6696,PR-6670,PR-6674

Inets 8.2.2
Fixed Bugs and Malfunctions
	Ensure graceful shutdown
Own Id: OTP-18461 Aux Id: ERIERL-890

	Return type of the type specification for function
httpc:cookie_header/{1,2,3} has been fixed from
-spec cookie_header(url()) -> [{ field(), value() }] | {error, Reason} to
-spec cookie_header(url()) -> { field(), value() } | {error, Reason}
Own Id: OTP-18462 Aux Id: GH-6846

Inets 8.2.1
Fixed Bugs and Malfunctions
	fixes a missing case of the type specification for httpd:info/2/3/4
Own Id: OTP-18362 Aux Id: GH-6558, ERIERL-895

Inets 8.2
Improvements and New Features
	This change allows body requests to httpc:request/5 be an iolist/0
Own Id: OTP-18250

	addition of type specs in httpc.erl
Own Id: OTP-18251 Aux Id: GH-6245

	httpc: Add support for HTTP 308 status code
Own Id: OTP-18280 Aux Id: GH-6290, PR-6291

Inets 8.1
Improvements and New Features
	Add httpc:ssl_verify_host_options/1 to help setting default ssl options for
the https client.
Own Id: OTP-18118

	This change fixes dialyzer warnings generated for inets/httpd examples
(includes needed adjustment of spec for ssh_sftp module).
Own Id: OTP-18178 Aux Id: ERIERL-833, ERIERL-834, ERIERL-835

	Remove documentation of no longer supported callback.
Own Id: OTP-18193 Aux Id: GH-6122

Inets 8.0
Fixed Bugs and Malfunctions
	Adjust uri_string:normalize behavior for URIs with undefined port (URI string
with a port colon but no port value or URI map with port => undefined).
Remove redundant normalization from http_request module.
Before this change, normalize would not remove port subcomponent in such cases
and could for example return "http://localhost:" URI.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-17627

	Fixed typo in Reason term returned from httpc_handler:handle_http_body.
After this change, could_not_establish_ssl_tunnel atom is returned within
Reason term.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-17889

	With this change, inet6fb4 option is documented for inets/httpc. Option can be
used when IP family needs to be discovered by a connection attempt.
Own Id: OTP-18063 Aux Id: ERIERL-798

Improvements and New Features
	This change removes deprecated functions: http_uri:parse/1, http_uri:parse/2
and http_uri:scheme_defaults/0.
This change delays until OTP-26 removal of deprecated functions:
http_uri:encode/1 and http_uri:decode/1.
This change marks httpd_util:decode_hex/1 and httpd_util:encode_hex/1 as
deprecated.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-17866

	After this change, connect_timeout value is re-used when upgrading TCP
connection to TLS over a proxy.
Own Id: OTP-17997 Aux Id: GH-5782

	Remove reference to unsupported Apache-like config file from httpd manual.
Own Id: OTP-18088 Aux Id: GH-5276

Inets 7.5.3.4
Fixed Bugs and Malfunctions
	With this change, upon remote socket closure current request is added to a
retried queue (either pipeline or keep_alive, but not both).
Own Id: OTP-18545 Aux Id: OTP-18509, ERIERL-937, ERIERL-928

Inets 7.5.3.3
Fixed Bugs and Malfunctions
	Correct timing related pipelining/keepalive queue bug, that could result in
unexpected "socket_remotly_closed" errors.
Own Id: OTP-18509 Aux Id: OTP-18476

Inets 7.5.3.2
Fixed Bugs and Malfunctions
	With this change, handling of URI to a folder, with missing trailing / and a
query component present is fixed.
Own Id: OTP-18472 Aux Id: DAFH-1592

Inets 7.5.3.1
Improvements and New Features
	Remove documentation of no longer supported callback.
Own Id: OTP-18193 Aux Id: GH-6122

Inets 7.5.3
Fixed Bugs and Malfunctions
	Fix handling of erl_script_script option in httpd when atom 'all' is used as
AllowedModule.
Own Id: OTP-18069 Aux Id: ERIERL-805

Inets 7.5.2
Fixed Bugs and Malfunctions
	The compilation time is no longer recorded in BEAM files. There remained
several undocumented functions that attempted to retrieve compilation times.
Those have now been removed.
Own Id: OTP-17962

Improvements and New Features
	Documentation fix for inets:services_info/0, which now describes that Info
might be a Reason term() in case when {error, Reason} is returned as service
info.
Own Id: OTP-17931 Aux Id: ERIERL-761

Inets 7.5.1
Fixed Bugs and Malfunctions
	Avoid intermediate ungraceful shutdown of the HTTP server.
Own Id: OTP-17922 Aux Id: ERIERL-743

Inets 7.5
Fixed Bugs and Malfunctions
	Correct HTTP server URI handling to fully rely on uri_string. The server could
mistreat some URI paths that in turn could result in incorrect responses being
generated.
Own Id: OTP-17818 Aux Id: ERIERL-731

Improvements and New Features
	Extend header values to httpc:request/5 to allow binary() as well. Make error
detection of invalid arguments to httpc:request/5 be more precise so an error
is returned in more cases instead of causing a hang or function_clause. Be
more precise in documentation regarding the types of arguments being accepted.
Own Id: OTP-17579 Aux Id: GH-5074

Inets 7.4.2
Fixed Bugs and Malfunctions
	Before this change hrefs in dir listing page contained percentage encoded
forward slashes which did not work properly with httpd.
Own Id: OTP-17383 Aux Id: GH-4677

	Restored HTTP headers handling in inets/mod_esi.
Own Id: OTP-17600

	inets/httpd dir listing icons and other improvements
Own Id: OTP-17624 Aux Id: GH-4855

Improvements and New Features
	httpc: Improve performance by removing redundant URI handling
Own Id: OTP-17460

Inets 7.4.1
Fixed Bugs and Malfunctions
	Improved user input handling in inets/mod_esi preventing unnecessary atom
creation.
Own Id: OTP-17490

Inets 7.4
Improvements and New Features
	Drop all support for ftp and tftp in inets code.
Own Id: OTP-16722

	Deprecate following functions in httpd_util module: flatlength/1,
lhexlist_to_integer/1, integer_to_hexlist/1, strip/1, and suffix/1.
Own Id: OTP-16723

	Remove support of HTTP 0.9 in httpd.
Own Id: OTP-16724

	Remove support of HTTP 0.9 in httpc.
Own Id: OTP-16725

	Fixed warnings in code matching on underscore prefixed variables.
Own Id: OTP-17385 Aux Id: OTP-17123

Inets 7.3.2.3
Improvements and New Features
	Remove documentation of no longer supported callback.
Own Id: OTP-18193 Aux Id: GH-6122

Inets 7.3.2.2
Fixed Bugs and Malfunctions
	Restored HTTP headers handling in inets/mod_esi.
Own Id: OTP-17600

Inets 7.3.2.1
Fixed Bugs and Malfunctions
	Improved user input handling in inets/mod_esi preventing unnecessary atom
creation.
Own Id: OTP-17490

Inets 7.3.2
Fixed Bugs and Malfunctions
	Solves CVE-2021-27563, that is make sure no form of relative path can be used
to go outside webservers directory.
Own Id: OTP-17205 Aux Id: ERIERL-608

	Make sure HEAD requests rejects directory links
Own Id: OTP-17220

Inets 7.3.1
Fixed Bugs and Malfunctions
	Fix an issue about HTML-escaped filename in inets.
Own Id: OTP-16873 Aux Id: ERL-330

Inets 7.3
Fixed Bugs and Malfunctions
	Clarify the handling of percent encoded characters in http client.
Own Id: OTP-16650 Aux Id: ERL-1215, PR-2629

	fix crash for undefined port in uri.
Own Id: OTP-16663 Aux Id: ERL-1241

	Avoid timing issue when setting active once on a socket that is being closed
by the peer.
Own Id: OTP-16735 Aux Id: OTP-16697, ERIERL-496

	Handle message body of response with 1XX status code as next http message.
Own Id: OTP-16746 Aux Id: ERL-1268

	Fix a crash in http server when setopts is called on a socket closed by the
peer.
Own Id: OTP-16775 Aux Id: ERIERL-519

	A vulnerability in the httpd module (inets application) regarding directory
traversal that was introduced in OTP 22.3.1 and corrected in OTP 22.3.4.6. It
was also introduced in OTP 23.0 and corrected in OTP 23.1 The vulnerability is
registered as CVE-2020-25623
The vulnerability is only exposed if the http server (httpd) in the inets
application is used. The vulnerability makes it possible to read arbitrary
files which the Erlang system has read access to with for example a specially
prepared http request.
Own Id: OTP-16790 Aux Id: ERIERL-522

Improvements and New Features
	Add support of PATCH method in mod_esi.
Own Id: OTP-16591 Aux Id: ERIERL-484

Inets 7.2
Improvements and New Features
	Remove support for deprecated functionality. Support for mod_esi eval scheme,
mod_htacess, mod_browser, apache config files and deprecated httpd_conf
functions are dropped. Module http_uri is deprecated.
Own Id: OTP-16252

	Refactored the internal handling of deprecated and removed functions.
Own Id: OTP-16469

Inets 7.1.3.3
Fixed Bugs and Malfunctions
	Corrected an error regarding decode of percent encoded URLs introduced in
inets-7.1.3.
Own Id: OTP-16790 Aux Id: ERIERL-522

Inets 7.1.3.2
Fixed Bugs and Malfunctions
	Fix a crash in http server when setopts is called on a socket closed by the
peer.
Own Id: OTP-16775 Aux Id: ERIERL-519

Inets 7.1.3.1
Fixed Bugs and Malfunctions
	Avoid timing issue when setting active once on a socket that is being closed
by the peer.
Own Id: OTP-16735 Aux Id: OTP-16697, ERIERL-496

Inets 7.1.3
Fixed Bugs and Malfunctions
	Remove use of http_uri and mod_esi eval API.
This is a backport from OTP 23 that improves the check of URIs to ensure that
invalid URIs does not cause vulnerabilities. This will render the deprecated
mod_esi eval API unusable as it used URI that does not conform to valid URI
syntax.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-16556

Inets 7.1.2
Fixed Bugs and Malfunctions
	Inets will honor that valid HTTP headers can not have white space between
field-name and the colon.
Own Id: OTP-16169 Aux Id: ERL-1053

	Changed error propagation in httpc:request/1 to return expected error tuple
instead of crashing.
Own Id: OTP-16290 Aux Id: PR-2437, ERL-1083

	Fix handling of HEAD request with chunked transfer-encoding (httpc).
Own Id: OTP-16300 Aux Id: ERL-1090

Inets 7.1.1
Improvements and New Features
	Add HTTP server error logging vi logger
Own Id: OTP-16019

Inets 7.1
Improvements and New Features
	httpd - Accept single LF as line terminator
Own Id: OTP-15893 Aux Id: PR-2206

	mod_esi will now always propagate the actual HTTP status code that it answered
with, to later mod-modules, and not in some cases hardcode 200.
Own Id: OTP-16049 Aux Id: ERIERL-395

Inets 7.0.9
Fixed Bugs and Malfunctions
	Fix a regression in http client that causes a crash when request URI has no
scheme.
Own Id: OTP-15930 Aux Id: ERL-969

Inets 7.0.8
Fixed Bugs and Malfunctions
	All incorrect (that is, all) uses of "can not" has been corrected to "cannot"
in source code comments, documentation, examples, and so on.
Own Id: OTP-14282 Aux Id: PR-1891

Inets 7.0.7.2
Improvements and New Features
	Add HTTP server error logging vi logger
Own Id: OTP-16019

Inets 7.0.7.1
Improvements and New Features
	mod_esi will now always propagate the actual HTTP status code that it answered
with, to later mod-modules, and not in some cases hardcode 200.
Own Id: OTP-16049 Aux Id: ERIERL-395

Inets 7.0.7
Fixed Bugs and Malfunctions
	Fix the internal handling of the option erl_script_timeout in httpd. If
explicit erl_script_timeout value was supplied in seconds it was not correctly
converted to millisecond units for internal usage.
This change fixes the handling of erl_script_timeout in all possible
configuration scenarios.
Own Id: OTP-15769 Aux Id: ERIERL-345

Inets 7.0.6
Fixed Bugs and Malfunctions
	Fix the internal handling of the option erl_script_timeout in httpd. When
httpd was started with explicit erl_script_timeout, the value of the option
was converted to milliseconds before storage. Subsequent calls to httpd:info/1
returned the input value multiplied by 1000.
This change fixes the handing of erl_script_timeout by storing the timeout in
seconds and converting to milliseconds before usage.
Own Id: OTP-15669 Aux Id: ERIERL-321

Improvements and New Features
	Enhance documentation
Own Id: OTP-15508 Aux Id: ERL-816

Inets 7.0.5
Fixed Bugs and Malfunctions
	Fixed bug that causes a crash in http client when using hostnames (e.g.
localhost) with the the option ipv6_host_with_brackets set to true.
This change also fixes a regression: httpc:request fails with connection error
(nxdomain) if option ipv6_host_with_brackets set to true and host component of
the URI is an IPv6 address.
Own Id: OTP-15554 Aux Id: ERIERL-289

Inets 7.0.4
Fixed Bugs and Malfunctions
	Make sure ipv6 addresses with brackets in URIs are converted correctly before
passing to lower level functions like gen_tcp and ssl functions. Could cause
connection to fail.
Own Id: OTP-15544 Aux Id: ERIERL-289

Inets 7.0.3
Fixed Bugs and Malfunctions
	Fixed http client to not send 'content-length' header in chunked encoded
requests.
Own Id: OTP-15338 Aux Id: ERL-733

	Fixed http client to not drop explicit 'Content-Type' header in requests
without a body such as requests with the 'Content-Type' of
application/x-www-form-urlencoded.
Own Id: OTP-15339 Aux Id: ERL-736

Inets 7.0.2
Fixed Bugs and Malfunctions
	Enhance error handling, that is mod_get will return 403 if a path is a
directory and not a file.
Own Id: OTP-15192

	Do not use chunked-encoding with 1xx, 204 and 304 responses when using
mod_esi. Old behavior was not compliant with HTTP/1.1 RFC and could cause
clients to hang when they received 1xx, 204 or 304 responses that included an
empty chunked-encoded body.
Own Id: OTP-15241

	Add robust handling of chunked-encoded HTTP responses with an empty body (1xx,
204, 304). Old behavior could cause the client to hang when connecting to a
faulty server implementation.
Own Id: OTP-15242

Inets 7.0.1
Fixed Bugs and Malfunctions
	Change status code for no mod found to handle request to 501
Own Id: OTP-15215

Inets 7.0
Fixed Bugs and Malfunctions
	Fixed HTTP content injection bug in httpc (ERL-456).
Own Id: OTP-14726

	Fixed support for URI-references in HTTP 'Location' header (ERL-333).
Own Id: OTP-14729

	Fix broken 'Content-Type' handling in httpc (ERL-536).
Own Id: OTP-15006

	Fix handling of relative paths in the script_alias property of httpd
(ERL-574).
Own Id: OTP-15021

	Fix httpd:reload_config/2 with path() as the first argument (ERL-578).
Own Id: OTP-15025

	Improved gracefulness.
Own Id: OTP-15042

Improvements and New Features
	Split inets and create separate ftp and tftp apps.
Own Id: OTP-14113

Inets 6.5.2.4
Fixed Bugs and Malfunctions
	Do not use chunked-encoding with 1xx, 204 and 304 responses when using
mod_esi. Old behavior was not compliant with HTTP/1.1 RFC and could cause
clients to hang when they received 1xx, 204 or 304 responses that included an
empty chunked-encoded body.
Own Id: OTP-15241

	Add robust handling of chunked-encoded HTTP responses with an empty body (1xx,
204, 304). Old behavior could cause the client to hang when connecting to a
faulty server implementation.
Own Id: OTP-15242

Inets 6.5.2.3
Fixed Bugs and Malfunctions
	Change status code for no mod found to handle request to 501
Own Id: OTP-15215

Inets 6.5.2.2
Fixed Bugs and Malfunctions
	Enhance error handling, that is mod_get will return 403 if a path is a
directory and not a file.
Own Id: OTP-15192

Inets 6.5.2.1
Improvements and New Features
	Options added for setting low-level properties on the underlying TCP
connections. The options are: sock_ctrl, sock_data_act and
sock_data_pass. See the manual for details.
Own Id: OTP-15120 Aux Id: ERIERL-192

Inets 6.5.2
Fixed Bugs and Malfunctions
	inets: httpd - Gracefully handle bad headers
The option max_headers operated on the individual header length instead of the
total length of all headers. Also headers with empty keys are now discarded.
Own Id: OTP-15092

Inets 6.5.1
Fixed Bugs and Malfunctions
	Fix broken options handling in httpc (ERL-441).
Own Id: OTP-15007

Inets 6.5
Fixed Bugs and Malfunctions
	httpc_manager crashes when a long running request is sent on a persistent HTTP
connection (keep-alive). Fixed httpc_manager to use proper timeouts on
keep-alive connections.
Own Id: OTP-14908

Improvements and New Features
	Add support for unix domain sockets in the http client.
Own Id: OTP-14854

Inets 6.4.5
Fixed Bugs and Malfunctions
	CGI environment variable CONTENT_LENGTH shall be a string
Own Id: OTP-14679

	In relaxed mode disregard Content-Length header if there is also a
Transfer-Encoding header.
Own Id: OTP-14727

	Eliminated race condition, that could cause http request to sporadically fail
to complete successfully, when keep-alive connections are used.
Own Id: OTP-14783

Inets 6.4.4
Fixed Bugs and Malfunctions
	Correct the handling of location headers so that the status code is not hard
coded. This should have been fixed by commit
2cc5ba70cbbc6b3ace81a2a0324417c3b65265bb but unfortunately was broken during a
code refactoring and unnoticed due to a faulty placed test case.
Own Id: OTP-14761

Inets 6.4.3
Improvements and New Features
	Fix broken handling of POST requests
New chunk mechanism of body data in POST requests added in
5d01c70ca399edf28e99dc760506329689fab6ba broke handling of POST body data not
using the new mechanism.
Own Id: OTP-14656

	Make sure ints:stop/2 of the service httpd is synchronous
Own Id: OTP-14696

	Honor status code returned by ESI script and modernize "location" header
handling.
Own Id: OTP-14716

Inets 6.4.2
Fixed Bugs and Malfunctions
	Make sure mod_log uses the correct status code
Own Id: OTP-14510

	Correct behaviour of mod_disk_log to proparly handle repair options
Own Id: OTP-14530

Inets 6.4.1
Fixed Bugs and Malfunctions
	http_uri aligned to follow RFC 3986 and not convert "+" to space when decoding
URIs.
Own Id: OTP-14573

Improvements and New Features
	Added new option max_client_body_chunk to httpd server to allow chunked
delivery of PUT and POST data to mod_esi callback. Note, new mod_esi callback
implementation is required.
Also correct value provided by server_name environment variable
Own Id: OTP-14450

Inets 6.4
Fixed Bugs and Malfunctions
	httpd_util:rfc1123_date/1 gracefully handle invalid DST dates by returning the
original time in the expected rfc1123 format.
Own Id: OTP-14394

Improvements and New Features
	Add unicode binary support to http_uri functions
Own Id: OTP-14404

	httpc - Change timeout handling so the redirects cause a new timer to be set.
This means that a simple redirected request could return after 2*timeout
milliseconds.
Own Id: OTP-14429

Inets 6.3.9
Fixed Bugs and Malfunctions
	The close of a chunked file reception crashed in a certain timing sequence.
Own Id: OTP-14391 Aux Id: seq13306

Inets 6.3.8
Improvements and New Features
	Added missing release note for inets-6.3.7
Own Id: OTP-14383

Inets 6.3.7
Fixed Bugs and Malfunctions
	Fixed a bug in ftp that made further operations after a recv_chunk operation
impossible.
Own Id: OTP-14242

	Make default port, 80 and 443, implicit in automatic redirection.
Own Id: OTP-14301

Inets 6.3.6
Fixed Bugs and Malfunctions
	Chunk size decoding could fail. The symptom was that chunk decoding sometimes
failed depending on timing of the received stream. If chunk size was split
into two different packets decoding would fail.
Own Id: OTP-13571 Aux Id: ERL-116

	Prevent httpc user process to hang if httpc_handler process terminates
unexpectedly
Own Id: OTP-14091

	Correct Host header, to include port number, when redirecting requests.
Own Id: OTP-14097

	Shutdown gracefully on connection or TLS handshake errors
Own Id: OTP-14173 Aux Id: seq13262

Inets 6.3.5
Fixed Bugs and Malfunctions
	Correct mistakes in ftp client introduced in inets-6.3.4
Own Id: OTP-14203 Aux Id: OTP-13982

Inets 6.3.4
Fixed Bugs and Malfunctions
	Fixes a bug that makes the ftp client end up in bad state if there is a multi
line response from the server and the response number is in the message being
sent.
Own Id: OTP-13960 Aux Id: PR1196

	The ftp client could stop consuming messages when the multiline response
handling was corrected.
Own Id: OTP-13967

	Fix keep-alive https through proxy connections so that all requests, following
the first one, will run as expected instead of failing.
Own Id: OTP-14041

	Fix bug from commit fdfda2fab0921d409789174556582db28141448e that could make
listing of group members in mod_auth callbacks fail.
Own Id: OTP-14082

Improvements and New Features
	Update behavior of httpc:request to match RFC-7231
Own Id: OTP-13902

	Fixed dialyzer warnings as well as some white-space issues. Thanks to Kostis.
Own Id: OTP-13982 Aux Id: PR-1207

Inets 6.3.3
Fixed Bugs and Malfunctions
	The legacy option 'inet6fb4' for inets had stopped working. This bug has now
been corrected. Fix by Edwin Fine in bugs.erlang.org ERL-200 and Github
PR#1132.
Own Id: OTP-13776 Aux Id: ERL-200 PR-1132

Inets 6.3.2
Improvements and New Features
	PUT and DELETE support has been added to mod_esi
Own Id: OTP-13688 Aux Id: seq13149

Inets 6.3.1
Fixed Bugs and Malfunctions
	A debug message was accidentally left enabled in the ftp client.
Own Id: OTP-13712 Aux Id: seq13143

Inets 6.3
Fixed Bugs and Malfunctions
	Ftp client fixes: 1) Corrected a bug that the ftp client gen_server crashed if
the listening data socket was closed.
	Corrections of ftp client error codes so they are as defined in the
reference manual

Own Id: OTP-13644

Improvements and New Features
	Remove usage of erlang:now().
Own Id: OTP-12441

	Add handling of DELETE Body to http client.
Own Id: OTP-13383 Aux Id: PR-972

	Removed references to mod_include and webtool from examples and tests.
Own Id: OTP-13445 Aux Id: PR-988

	Remove module inets_regexp. Module re should be used instead.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-13561

Inets 6.2.4
Improvements and New Features
	Handle multiple \t in mime types file
Own Id: OTP-13663 Aux Id: seq13132

Inets 6.2.3
Improvements and New Features
	Put back unused module inets_regexp and remove it in OTP 19 instead as it is
an incompatibility, although it is an undocumented module and should not
affect other applications.
Own Id: OTP-13533

Inets 6.2.2
Improvements and New Features
	Add environment information item peer_cert to mod_esi
Own Id: OTP-13510

Inets 6.2.1
Fixed Bugs and Malfunctions
	Mend ipv6_host_with_brackets option in httpc
Own Id: OTP-13417

Inets 6.2
Fixed Bugs and Malfunctions
	The TFTP client/server has been fixed to allow file sizes larger than 32MB
block by allowing the 16 bit block counter to wrap. Since this is a commonly
accepted behavior we regard it as a bug fix.
Own Id: OTP-13403

Improvements and New Features
	Handle HTTP PATCH method in client.
Own Id: OTP-13286

	Expected termination should not be logged as an application error.
Own Id: OTP-13389

Inets 6.1.1.1
Fixed Bugs and Malfunctions
	Mend ipv6_host_with_brackets option in httpc
Own Id: OTP-13417

Inets 6.1.1
Fixed Bugs and Malfunctions
	mod_alias now traverses all aliases picking the longest match and not the
first match.
Own Id: OTP-13248

Inets 6.1
Fixed Bugs and Malfunctions
	Replace obs-folds with spaces instead of failing
Own Id: OTP-13069

	Add validation fun for URI scheme to http_uri API
Own Id: OTP-13071

	Handle stream bodies as documented.
Own Id: OTP-13093

	Correct error handling of mod_esi generated chunks. Send warning headers in
chunk trailers instead of generating an unexpected additional 500 request
response, when problems, such as a timeout occurs.
Own Id: OTP-13110

	HTTP client terminates gracefully when an invalid chunked length header is
encountered.
Own Id: OTP-13117

Improvements and New Features
	Add default for SNI (Server Name Indication) when running https using the
inets HTTP-client.
Own Id: OTP-12985

	Be forgiving to chunked sizes that have trailing whitespaces as prior
implementation was. Also some legacy embedded devices does actually have
trailing whitespaces even though this in not according to the spec.
Own Id: OTP-13116

Inets 6.0.3
Fixed Bugs and Malfunctions
	Improved error handling and gracfully termination when an invalid chunked
length header is encountered.
Own Id: OTP-13061

Improvements and New Features
	Add possibility to set socket options, such as nodelay, for httpd. Also phase
out legacy option value inet6bf4 for the ipfamily option. This value will be
translated to the value inet.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-13062

Inets 6.0.2
Fixed Bugs and Malfunctions
	Avoid crash in mod_auth_server and mod_security_server due to using an atom
instead of a string when creating a name.
Own Id: OTP-13022

Improvements and New Features
	Add function response_default_headers/0 to httpd customize API, to allow user
to specify default values for HTTP response headers.
Own Id: OTP-13013

Inets 6.0.1
Fixed Bugs and Malfunctions
	Fix broken socket feature, that is on Linux systems a socket may be opened
before starting Erlang and then passed to Erlang's httpd daemon. This is
useful as the wrap program can open a privileged port and Erlang does not have
to be run as root.
Own Id: OTP-12875 Aux Id: seq12878

	Fix broken socket feature, that is on Linux systems a socket may be opened
before starting Erlang and then passed to Erlangs tftp daemon. This is useful
as the wrap program can open a privileged port and Erlang does not have to be
run as root.
Own Id: OTP-12898 Aux Id: seq12900

	httpc_handler should react properly to cancel requests even when the request
to be canceled was already finished but httpc_manager did not get notified
about that yet.
Own Id: OTP-12922

Improvements and New Features
	Added format_status function to httpd process to avoid sensitive information
to be printed in supervisor logs.
Own Id: OTP-12976

	Return meaningful error reason disregarding whether a http proxy is used or
not.
Own Id: OTP-12984

Inets 6.0
Fixed Bugs and Malfunctions
	Fix race condition in httpc. If the socket is closed by the peer do not try to
close it again.
Own Id: OTP-11845

	Avoid process leak by gracefully terminating httpc request handler process
when send operation fails.
Own Id: OTP-12362

	Reject messages with a Content-Length less than 0
Own Id: OTP-12739 Aux Id: seq12860

	Let gen_tcp:controlling_process/2 and inet_sctp:connect/[45] propagate
prim_inet:setopt/3 errors instead of having them generate badmatch exceptions.
Own Id: OTP-12798

Improvements and New Features
	Remove Server Side Include support from inets, as this is an old technique
that has security issues and was not well tested.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-12156

	New value in server_tokens config for limiting banner grabbing attempts.
By setting {server_tokens, none} in ServiceConfig for
inets:start(httpd, ServiceConfig), the "Server:" header will not be set in
messages from the server.
Own Id: OTP-12661 Aux Id: seq12840

	To enable the HTTP server to run in a virtualized environment, where there can
be more that one server that has the same ip-address and port, we add a new
option profile.
Own Id: OTP-12674

	httpc: Fix implementation of graceful shudown to work as intended for keep
alive connections not using pipelining.
Own Id: OTP-12803

	Correct handling of proxy options when using persistent connections.
Own Id: OTP-12822

Inets 5.10.9
Improvements and New Features
	Add behaviour with optional callbacks to customize the inets HTTP server.
Own Id: OTP-12776

Inets 5.10.8
Fixed Bugs and Malfunctions
	Reject messages with a Content-Length less than 0
Own Id: OTP-12739 Aux Id: seq12860

Inets 5.10.7
Improvements and New Features
	New value in server_tokens config for limiting banner grabbing attempts.
By setting {server_tokens, none} in ServiceConfig for
inets:start(httpd, ServiceConfig), the "Server:" header will not be set in
messages from the server.
Own Id: OTP-12661 Aux Id: seq12840

Inets 5.10.6
Fixed Bugs and Malfunctions
	inets: parse correctly 'Set-Cookie' header with empty value
httpc_cookie should parse cookies with empty values and no attributes set in
the 'Set-Cookie' headers.
Own Id: OTP-12455

Improvements and New Features
	Add parsing of URI fragments to http_uri:parse
This fixes a bug in httpc where redirection URIs could lead to bad requests if
they contained fragments.
Own Id: OTP-12398

	httpc: http client now ignores invalid set-cookie headers
Own Id: OTP-12430

Inets 5.10.5
Fixed Bugs and Malfunctions
	mod_alias now handles https-URIs properly
Consistent view of configuration parameter keep_alive_timeout, should be
presented in the httpd:info/[1,2] function in the same unit as it is
inputted.
Own Id: OTP-12436 Aux Id: seq12786

Improvements and New Features
	Gracefully handle invalid content-length headers instead of crashing in
list_to_integer.
Own Id: OTP-12429

Inets 5.10.4
Fixed Bugs and Malfunctions
	Fixed a spelling mistake in httpc documentation.
Own Id: OTP-12221

Improvements and New Features
	Add option {ftp_extension, boolean} to enable use of extended commands EPSV
and EPRT, as specified in RFC 2428, for IPv4 instead of using the legacy
commands. Ipv6 cannot be supported without the extended commands.
Own Id: OTP-12255

Inets 5.10.3
Fixed Bugs and Malfunctions
	Fix some spelling mistakes in documentation
Own Id: OTP-12152

Improvements and New Features
	httpd: Separate timeout for TLS/SSL handshake from keepalive timeout
Own Id: OTP-12013

	Warning: this is experimental and may disappear or change without previous
warning.
Experimental support for running Quickcheck and PropEr tests from common_test
suites is added to common_test. See the reference manual for the new module
ct_property_testing.
Experimental property tests are added under
lib/{inet,ssh}/test/property_test. They can be run directly or from the
commont_test suites inet/ftp_property_test_SUITE.erl and
ssh/test/ssh_property_test_SUITE.erl.
See the code in the test directories and the man page for details.
(Thanks to Tuncer Ayaz for a patch adding Triq)
Own Id: OTP-12119

Inets 5.10.2
Fixed Bugs and Malfunctions
	httpc: Fix streaming bugs when handling small responses
Own Id: OTP-11992

Inets 5.10.1
Fixed Bugs and Malfunctions
	Correct distirbing mode for httpd:reload_config/2
Own Id: OTP-11914

Improvements and New Features
	Improved handling of invalid strings in the HTTP request line.
Impact: May improve memory consumption
Own Id: OTP-11925 Aux Id: Sequence 12601

Inets 5.10
Fixed Bugs and Malfunctions
	Fixed a spelling mistake in httpc doc (Thanks to Wasif Riaz Malik)
Own Id: OTP-11538

	Application upgrade (appup) files are corrected for the following
applications:
asn1, common_test, compiler, crypto, debugger, dialyzer, edoc, eldap, erl_docgen, et, eunit, gs, hipe, inets, observer, odbc, os_mon, otp_mibs, parsetools, percept, public_key, reltool, runtime_tools, ssh, syntax_tools, test_server, tools, typer, webtool, wx, xmerl
A new test utility for testing appup files is added to test_server. This is
now used by most applications in OTP.
(Thanks to Tobias Schlager)
Own Id: OTP-11744

	ftp now sanitize file name, user name and passwords from <CR> and <LF> tags
(Thanks to Sergei Golovan)
Own Id: OTP-11750

	Corrected error handling in the HTTP client, making it behave more graceful.
Thanks to Kirilll Zaborsky
Own Id: OTP-11794

	Support identity transfer-encoding in httpc.
Thanks to Anthony Ramine
Own Id: OTP-11802

	Ignore empty Set-Cookie headers to increase interoperability with servers that
violate the RFC.
Thanks to Kirilll Zaborsky
Own Id: OTP-11803

Improvements and New Features
	The commit 6189bc07 "inets: httpc improve pipelining" has been reverted, as it
turned out to break things rather than improve pipelining utilization. It is
instead up to the user to configure httpc and use it wisely to be able to get
the most out of pipelining.
Own Id: OTP-11756

	Handle all response codes in httpd_util:message/3
Own Id: OTP-11838

Inets 5.9.8
Improvements and New Features
	Mend max_clients check that was broken and avoid too extensive logging that
could cause memory problems.
Own Id: OTP-11557 Aux Id: seq12478

Inets 5.9.7
Fixed Bugs and Malfunctions
	Fix httpd config option 'script_timeout' and fixed httpd config option
'keep_alive_timeout'. Thanks to Johannes Weissl.
Own Id: OTP-11276

	Make httpc:request_cancel/[1,2] asynchronous. Previously these functions
tried to guarantee request answer would not reach the client, which only
worked for some of the use cases. Now these functions are totally asynchronous
which makes it the clients responsibility to disregard possible answers to
canceled requests.
Also pipelining implementation has been changed to improve the utilization
factor. Further investigation of possible enhancements in this area are
planned for later.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-11312

	[httpd] Add handling of new response for mod_head (otherwise causing
case_clause crash). Also updated logging: Removed logging for keep-alive
connections timeout (this is a normal occurrence and not an error) and some
access-log body size corrections.
Own Id: OTP-11328

Improvements and New Features
	The ftp client now supports ftp over tls (ftps).
Own Id: OTP-11037

Inets 5.9.6
Improvements and New Features
	httpc: Allow content body in DELETE requests. Thanks to James Wheare.
Own Id: OTP-11190

	Add missing brackets to report formatting on ftp_progress process exit. Thanks
to Artur Wilniewczyc.
Own Id: OTP-11202

	Fix some errors in the inets documentation. Thanks to Johannes Weissl.
Own Id: OTP-11210

	Fix various typos in httpd, inets. Thanks to Tomohiko Aono.
Own Id: OTP-11226

	Fix httpd config option 'erl_script_nocache'. Thanks to Johannes Weissl.
Own Id: OTP-11260

Inets 5.9.5
Fixed Bugs and Malfunctions
	Reverted incorrect commit that broke cookie handling when using
httpc-profiles.
Own Id: OTP-10956

Improvements and New Features
	Fix http_request:http_headers/1 to send content-length when length is zero.
Thanks to CA Meijer.
Own Id: OTP-10934

	Integrate elliptic curve contribution from Andreas Schultz
In order to be able to support elliptic curve cipher suites in SSL/TLS,
additions to handle elliptic curve infrastructure has been added to public_key
and crypto.
This also has resulted in a rewrite of the crypto API to gain consistency and
remove unnecessary overhead. All OTP applications using crypto has been
updated to use the new API.
Impact: Elliptic curve cryptography (ECC) offers equivalent security with
smaller key sizes than other public key algorithms. Smaller key sizes result
in savings for power, memory, bandwidth, and computational cost that make ECC
especially attractive for constrained environments.
Own Id: OTP-11009

	Fix {stream, {self, once}} in httpc to work as expected. Thanks to
Masatake Daimon
Own Id: OTP-11122

Inets 5.9.4
Improvements and New Features
	httpd: The modules option now defaults to the documented value.
Own Id: OTP-10844

	httpc: Fixed persistent connection implementation that was broken by a patch
to R13. The patch made persistent connections behaved the same way as
pipelining.
Own Id: OTP-10845

	httpd: Simplified configuration of ssl in httpd, this also enables all ssl
options to be configured. The old and limited way is no longer documented but
will be supported for backwards comatibility for some time.
Own Id: OTP-10846

	Handle correctly the "No files found or file unavailable" error code. Thanks
to Serge Aleynikov
Own Id: OTP-10886

Inets 5.9.3
Improvements and New Features
	httpc: The HTTP client now supports HTTPS through proxies
Own Id: OTP-10256 Aux Id: kunagi-2 [ce2e800e-c99f-4050-a1c4-f47023d9c7aa-1]

	Some examples overflowing the width of PDF pages have been corrected.
Own Id: OTP-10665

	Fix autoredirect for POST requests responding 303. Thanks to Hans Svensson.
Own Id: OTP-10765

Inets 5.9.2.2
Improvements and New Features
	Make log_alert configurable as option in ssl, SSLLogLevel added as option to
inets conf file
Own Id: OTP-11259

Inets 5.9.2.1
Improvements and New Features
	Fixed obsolete error report in inets.
Own Id: OTP-11185 Aux Id: seq12357

Inets 5.9.2
Improvements and New Features
	Minimum bytes per second
New option to http server, {minimum_bytes_per_second, integer()}, for a
connection, if it is not reached the socket will close for that specific
connection. Can be used to prevent hanging requests from faulty clients.
Own Id: OTP-10392

Inets 5.9.1
Improvements and New Features
	Better handling of errorI(s) during update of the session database.
Also added and updated some debugging functions
which_sessions/0,1 and
info/0.
Own Id: OTP-10093
Aux Id: Seq 12062

	Removed R14B compatible version of (inets-service and tftp) behaviour
definition.
Own Id: OTP-10095

	[httpc] Documentation of KeepAlive and Pipeline timeout options have been
improved.
Own Id: OTP-10114

Fixed Bugs and Malfunctions
	[httpc] Cancel request does not work due to incorrect handler table creation
(wrong keypos).
Vyacheslav Vorobyov
Own Id: OTP-10092

Incompatibilities
-
Inets 5.9
Improvements and New Features
	[httpd] Make the server header configurable with new config option
server_tokens. The value of the server header,
which was previously hard-coded (at compile time), is now possible to
manipulate through the means of the
server_tokens config option.
Own Id: OTP-9805

	Improve inets support for inets as an included application.
inets_app calls supervisor:start_link/3 directly rather than calling the
root supervisor function inets_sup:start_link/0. This precludes using
included_applications to start inets without having a wrapper function.
Jay Nelson
Own Id: OTP-9960

	[httpc] Add function for retrieving current options,
get_options/1,2.
Own Id: OTP-9979

	Utility module http_uri now officially supported.
Also, the http_uri:parse function has been extended with more scheme support
and a way to provide your own scheme info.
Own Id: OTP-9983
Aux Id: Seq 12022

Fixed Bugs and Malfunctions
-
Inets 5.8.1
Improvements and New Features
-
Fixed Bugs and Malfunctions
	[ftp] Fails to open IPv6 connection due to badly formatted IPv6 address in
EPRT command. The address part of the command incorrectly contained decimal
elements instead of hexadecimal.
Own Id: OTP-9827
Aux Id: Seq 11970

	[httpc] Bad Keep Alive Mode. When selecting a session, the "state" of the
session (specifically if the server has responded) was not taken into account.
Own Id: OTP-9847

	[httpc] The client incorrectly streams 404 responses. The documentation
specifies that only 200 and 206 responses shall be streamed.
Shane Evens
Own Id: OTP-9860

Inets 5.8
Improvements and New Features
	[ftpc] Add a config option to specify a
data connect timeout. That is how long the ftp client will
wait for the server to connect to the data socket. If this timeout occurs, an
error will be returned to the caller and the ftp client process will be
terminated.
Own Id: OTP-9545

	[httpc] Wrong Host header in IPv6 HTTP requests. When a URI with a IPv6 host
is parsed, the brackets that encapsulates the address part is removed. This
value is then supplied as the host header. This can cause problems with some
servers. A workaround for this is to use headers_as_is and provide the host
header with the request call. To solve this a new option has been added,
ipv6_host_with_brackets. This option
specifies if the host value of the host header shall include the brackets or
not. By default, it does not (as before).
Own Id: OTP-9628

Fixed Bugs and Malfunctions
	[httpd] Fix logging of content length in mod_log.
Garrett Smith
Own Id: OTP-9715

	[httpd] Sometimes entries in the transfer log was written with the message
size as list of numbers. This list was actually the size as a string, e.g.
"123", written with the control sequence ~w. This has now been corrected so
that any string is converted to an integer (if possible).
Own Id: OTP-9733

	Fixed various problems detected by Dialyzer.
Own Id: OTP-9736

Incompatibilities
	[httpc] Deprecated interface module http has been removed. It has (long)
been replaced by http client interface module httpc.
Own Id: OTP-9359

	[httpc|httpd] The old ssl implementation (based on OpenSSL), has been
deprecated. The config option that specified usage of this version of the ssl
app, ossl, has been removed.
Own Id: OTP-9522

Inets 5.7.2
Improvements and New Features
-
Fixed Bugs and Malfunctions
	[httpd] XSS prevention did not work for hex-encoded URL's.
Own Id: OTP-9655

	[httpd] GET request with malformed header date caused server crash
(non-fatal) with no reply to client. Will now result in a reply with status
code 400.
Own Id: OTP-9674
Aux Id: seq11936

Inets 5.7.1
Improvements and New Features
-
Fixed Bugs and Malfunctions
	[httpc] Parsing of a cookie expire date should be more forgiving. That is, if
the parsing fails, the date should be ignored. Also added support for (yet
another) date format: "Tue Jan 01 08:00:01 2036 GMT".
Own Id: OTP-9433

	[httpc] Rewrote cookie parsing. Among other things solving cookie processing
from www.expedia.com.
Own Id: OTP-9434

	[httpd] Fix httpd directory traversal on Windows. Directory traversal was
possible on Windows where backward slash is used as directory separator.
András Veres-Szentkirályi.
Own Id: OTP-9561

Inets 5.7
Improvements and New Features
	[httpc|httpd] Added support for IPv6 with ssl.
Own Id: OTP-5566

Fixed Bugs and Malfunctions
	[httpc] Remove unnecessary usage of iolist_to_binary when processing body
(for PUT and POST).
Filipe David Manana
Own Id: OTP-9317

	[ftp] FTP client doesn't work with IPv6 host.
Attila Rajmund Nohl
Own Id: OTP-9342 Aux Id: seq11853

	[httpd] Peer/sockname resolv doesn't work with IPv6 addrs in HTTP.
Attila Rajmund Nohl.
Own Id: OTP-9343

	[httpc] Clients started stand-alone not properly handled. Also it was not
documented how to use them, that is that once started, they are represented by
a pid/0 and not by their profile().
Own Id: OTP-9365

Inets 5.6
Improvements and New Features
	[httpc] Add support for upload body streaming (PUT and POST).
For more info, see the definition of the Body argument of the
request/4,5 function.
Filipe David Manana
Own Id: OTP-9094

	[ftp] Added (type) spec for all exported functions.
Own Id: OTP-9114 Aux Id: seq11799

	[httpd] mod_esi:deliver/2 made to accept binary data.
Bernard Duggan
Own Id: OTP-9123

	[httpd] Prevent XSS in error pages. Prevent user controlled input from being
interpreted as HTML in error pages by encoding the reserved HTML characters.
Michael Santos
Own Id: OTP-9124

	[httpd] Improved error messages.
Ricardo Catalinas Jiménez
Own Id: OTP-9157

	[httpd] Extended support for file descriptors. In order to be able to bind to
a privileged port without running the erlang VM as root, the support for using
file descriptors has been improved. It is now possible to add the file
descriptor to the config (option fd) when calling the
inets:start(httpd, ...) function.
Attila Rajmund Nohl
Own Id: OTP-9202
Aux Id: seq11819

	The default ssl kind has now been changed to essl.
ossl will work for as long as the ssl application supports it.
See the httpd socket_type communication property or
the httpc request/4,5 function for more info.
Own Id: OTP-9230
* POTENTIAL INCOMPATIBILITY *

Fixed Bugs and Malfunctions
	[httpd] Wrong security property names used in
documentation.
security_data_file used instead of data_file.
security_max_retries used instead of max_retries.
security_block_time used instead of block_time.
security_fail_expire_time used instead of fail_expire_time.
security_auth_timeout used instead of auth_timeout.
Garrett Smith
Own Id: OTP-9131

	[httpd] Fix timeout message generated by mod_esi. When a mod_esi request
times out, the code to send a timeout response was incorrect and generated an
internal server error as well as an invalid response line.
Bernard Duggan
Own Id: OTP-9158

	[httpc] httpc manager crashes. When a request results in a retry, the request
id will be "reused" in the previous implementation a race condition could
occur causing the manager to crash.
This is now avoided by using proc_lib:init_ack and gen_server:enter_loop to
allow more advanced initialization of httpc_handlers without blocking the
httpc_manger and eliminating extra processes that can cause race conditions.
Own Id: OTP-9246

	[httpc] Issuing a request (httpc:request) to an host with the ssl option
{ip, {127,0,0,1}} results in an handler crash. The reason was that the
connect call resulted in an exit with reason badarg (this was the same for
both ssl and gen_tcp).
Exits was not caught. This has now been improved.
Own Id: OTP-9289
Aux Id: seq11845

Inets 5.5.2
Improvements and New Features
-
Fixed Bugs and Malfunctions
	[httpd] httpd_response:send_chunk handles empty list and empty binary - i.e.
no chunk is sent, but it does not handle a list with an empty binary [<<>>].
This will be sent as an empty chunk - which in turn will be encoded by
http_chunk to the same as a final chunk, which will make the http client
believe that the end of the page is reached.
Own Id: OTP-8906

Inets 5.5.1
Improvements and New Features
	Miscellaneous inet6 related problems.
Own Id: OTP-8927

	Updated http-server to make sure URLs in error-messages are URL-encoded. Added
support in http-client to use URL-encoding. Also added the missing include
directory for the inets application.
Own Id: OTP-8940
Aux Id: seq11735

Fixed Bugs and Malfunctions
	Fix format_man_pages so it handles all man sections and remove warnings/errors
in various man pages.
Own Id: OTP-8600

	[httpc] Pipelined and queued requests not processed when connection closed
remotelly.
Own Id: OTP-8906

Inets 5.5
Fixed Bugs and Malfunctions
	[httpc] If a request times out (not connect timeout), the handler process
exited (normal) but neglected to inform the manager process. For this reason,
the manager did not clean up the request table., resulting in a memory leak.
Also the manager did not create a monitor for the handler, so in an unforeseen
handler crash, this could also create a memory leak.
Own Id: OTP-8739

	The service tftp was spelled wrong in documentation and in some parts of the
code. It should be tftp.
Own Id: OTP-8741 Aux Id: seq11635

	[httpc] Replaced the old http client api module (http) with the new, httpc in
the users guide.
Own Id: OTP-8742

Improvements and New Features
	Eliminated warnings for auto-imported BIF clashes.
Own Id: OTP-8840

Inets 5.4
Improvements and New Features
	[httpc|httpd] - Now allow the use of the "new" ssl, by using the essl tag
instead.
See the http_option option in the request/4,5 or the
socket-type section of the Communication properties
chapter for more info,
Own Id: OTP-7907

	Deprecated functions designated to be removed in R14 has been removed. Also,
some new functions has been marked as deprecated (the old http client api
module).
Own Id: OTP-8564
* POTENTIAL INCOMPATIBILITY *

	[httpd] - Improved mod_alias. Now able to do better URL rewrites.
See URL aliasing properties and the
CGI properties section(s) for more info,
Own Id: OTP-8573

Fixed Bugs and Malfunctions
-
Inets 5.3.3
Improvements and New Features
-
Fixed Bugs and Malfunctions
	[httpc] - Made cookie handling more case insensitive.
Own Id: OTP-8609
Nicolas Thauvin

	[httpc|httpd] - Netscape cookie dates can also be given with a 2-digit year
(e.g. 06 = 2006).
Own Id: OTP-8610
Nicolas Thauvin

	[httpd] - Added support (again) for the documented debugging features. See
the User's Guide Configuration chapter for more info.
Own Id: OTP-8624

Inets 5.3.2
Improvements and New Features
-
Fixed Bugs and Malfunctions
	[httpc] - Memory leak plugged. The profile manager never cleaned up in its
handler database. This meant that with each new request handler, another entry
was created that was never deleted. Eventually the request id counter (used as
a key) would wrap, but the machine would most likely run out of memory before
that happened.
Own Id: OTP-8542
Lev Walkin

	[httpc] - https requests with default port (443) not handled properly.
Own Id: OTP-8607
jebu ittiachen

Inets 5.3.1
Improvements and New Features
-
Fixed Bugs and Malfunctions
	[httpc] - Badly formatted error reason for errors occurring during initial
connect to a server. Also, the possible error reasons was not properly
documented.
Own Id: OTP-8508
Aux Id: seq11407

	[httpd] - Issues with ESI erl_script_timeout.
	The erl_script_timeout config option is ducumented as a number of seconds.
But when parsing the config, in the new format (not a config file), it was
handled as if in number of milliseconds.
	When the erl-script-timeout time was exceeded, the server incorrectly marked
the answer as sent, thereby leaving client hanging (with an incomplete
answer). This has been changed, so that now the socket will be closed.

Own Id: OTP-8509

Inets 5.3
Improvements and New Features
	[httpc] - Allow users to pass socket options to the transport module when
making requests.
See the socket_opts option in the request/4 or
set_options/1,2 for more info,
Own Id: OTP-8352

	[httpc] Fix bug crafting Host header when port is not 80.
The host header should include the port number as well as the host name when
making a request to a server listening on a port other than the HTTP default
of 80. Currently, only the host name is included. This is important to make
the http client more compliant with the HTTP specification.
Own Id: OTP-8371
Kelly McLaughlin

	[httpc|httpd] http_chunk data handling/passing improvement.
This is a modification to the http_chunk module to forward any full chunk
received, regardless of whether the size field for the following chunk has
been received yet. This allows http_chunk to be used in situations where a
long term HTTP connection is used to send periodic status updates as
individual chunks. Previously a given chunk would not be forwarded to the
client process until the size for the next chunk had been read which rendered
the module difficult to use for the scenario described.
Bernard Duggan
Own Id: OTP-8351

	Include the inets test suite in the release of the application.
Own Id: OTP-8349

	[httpc] - It is now possible to configure the client to deliver an async
reply to more receivers then the calling process.
See the receiver option for more info,
Own Id: OTP-8106

	[httpd] - Methods "PUT" and "DELETE" now allowed.
huntermorris@gmail.com
Own Id: OTP-8103

	[httpc] Several more or less critical fixes:
	Initial call between the httpc manager and request handler was synchronous.
When the manager starts a new request handler, this is no longer a
synchronous operation. Previously, the new request handler made the
connection to the server and issuing of the first request (the reason for
starting it) in the gen_server init function. If the connection for some
reason "took some time", the manager hanged, leaving all other activities by
that manager also hanging.

As a side-effect of these changes, some modules was also renamed, and a new
api module, httpc, has been introduced (the old module http is not
removed, but is now just wrapper for httpc).
Own Id: OTP-8016
* POTENTIAL INCOMPATIBILITY *

Fixed Bugs and Malfunctions
	[httpd] The server did not fully support the documented module callback api.
Specifically, the load function should be able to return the atom ok, but
this was not accepted.
Own Id: OTP-8359

	Fixing various documentation-related bugs (bad quotes).
Own Id: OTP-8327

	Fixing minor Dialyzer and copyright problem(s).
Own Id: OTP-8315

	[httpc] - Added basic sanity check of option value combinations.
adam.kocoloski@gmail.com
Own Id: OTP-8056

Inets 5.2
Improvements and New Features
	[ftpc] - Start of the FTP client has been changed in the following way:
	It is now also possible to start a standalone FTP client process using the
re-introduced ftp:open/2 function.
This is an alternative to starting the client using the
inets service framework.
The old ftp:open/1, undocumented, function, caused the client to be hooken
into the inets service supervision framework. This is no longer the case.
* POTENTIAL INCOMPATIBILITY *

	Previously, the FTP client attempted to use IPv6, unless otherwise
instructed (the ip_v6_disabled flag), and only used IPv4 if this did not
work. This has now been changed.
A new option, ipfamily, has been introduced, with the
default value inet (IPv4).
See ftp:open/2 for more info.
* POTENTIAL INCOMPATIBILITY *

Own Id: OTP-8258

	The documentation is now built with open source tools (xsltproc and fop)
that exists on most platforms. One visible change is that the frames are
removed.
Own Id: OTP-8249

Fixed Bugs and Malfunctions
	[httpc] - Streaming to file did not work.
dizzyd@gmail.com
Own Id: OTP-8204

	[ftpc] - The ftp:ls/2 function (LIST command) and the
ftp:nlist/2 function (NLST command) with wildcards did not work
properly.
These functions is documented as working on directories, but this is actually
not according the standard. The LIST and NLST commands are specified to
operate on a directory or other group of files, or a file.
Previously, an attempt was made to check if the listing returned by the server
was actually an error message. This was done by changing remote directory (cd)
into the (assumed) "directory". This may work if Pathname was actually a
directory, but as this is not always the case, this test does not work.
Instead, we now return the actual server result and leave the interpretation
to the caller.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-8247
Aux Id: seq11407

	[httpc] - Fixes various bugs in timeout and keep-alive queue handling.
	When a queued request times, out the error mssage is sent the owner of the
active request.
	Requests in the keep-alive queue is forgotten when handler terminates.
	Timeout out requests are retried.

Jean-Sébastien Pédron
Own Id: OTP-8248

	[httpd] - Unnecessarily strict matching when handling closing sockets.
Own Id: OTP-8280

Inets 5.1.3
Improvements and New Features
-
Fixed Bugs and Malfunctions
	[httpc] - Raise condition. When http:request is called and httpc_manager
selects a session where there's already a pending request, then the connection
handler for that session effectively resets its parser, readying it for the
response to the second request. But if there are still some inbound packets
for the response to the first request, things get confused.
tomas.abrahamsson@gmail.com
Own Id: OTP-8154

Inets 5.1.2
Improvements and New Features
	[httpc] - Added http option connect_timeout for http client request. The
connect_timeout option is used for the initial request, when the client
connects to the server. Default value is that of the timeout option.
See the request/4,5 function for more info.
Own Id: OTP-7298

Fixed Bugs and Malfunctions
	[httpd] - Failed to create listen socket with invalid option combo. The
http-server failed to create its listen socket when the bind-address was an
IPv4-address (a tuple of size 4) and the ipfamily option was inet6fb4.
Own Id: OTP-8118
Aux Id: seq11321

	[httpd] - Removed documentation for non-existing function
(httpd_util:header/2,3,4).
Own Id: OTP-8101

Inets 5.1.1
Improvements and New Features
	[httpd] - When starting inets (the web-server) and supplying a descriptor on
the command line (example: erl -httpd_8888 <descriptor>) it is now possible to
specify which ip-family to use: inet | inet6 | inet6fb4.
Example: erl -httpd_8888 10|inet6
When starting the web-server either using a file with property list (the
proplist_file) or a an property list, using the ipfamily option:
{ipfamily, inet | inet6 | inet6fb4}.
Finally, when starting the web-server using the classical apache-style config
file, the BindAddress directive has been augmented to allow the
specification of the IpFamily: BindAddress blirk.ericsson.se|inet
Default is inet6fb4 which emulates the behaviour of the previous version.
See the Communication properties section for more
info.
Own Id: OTP-8069
Aux Id: seq11086

Fixed Bugs and Malfunctions
	[httpc] - Reception of unexpected data causes handler crash.
Own Id: OTP-8052

Inets 5.1
Improvements and New Features
	[httpc] Added support for web services using only basic auth, with a token as
the user part and no password part.
twoggle@gmail.com
Own Id: OTP-7998

	[httpc] - Bind HTTP client to IP-addr. It is now possible to specify an
alternate ip-address and port to be used when the client connects to the
server.
As a side-effect of this, the option ipv6 has been removed and replaced by
the ipfamily option.
See http:set_options/1,2 for more info.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-8004

Fixed Bugs and Malfunctions
	Updated guard tests (i.e. is_list(L) instead of list(L) and possibly
andalso/orelse instead of ","/";").
Own Id: OTP-7994

	[httpc] - Remove use of the deprecated regexp module.
Own Id: OTP-8001

	[httpc] - The option max_keep_alive_length was not handled properly.
Own Id: OTP-8005

 Introduction

Purpose
Inets is a container for Internet clients and servers including the following:
	An HTTP client and server

The HTTP client and server are HTTP 1.1 compliant as defined in
RFC 2616.
Prerequisites
It is assumed that the reader is familiar with the Erlang programming language,
concepts of OTP, and has a basic understanding of and HTTP protocol.

 Inets

Service Concept
Each client and server in Inets is viewed as a service. Services can be
configured to be started at application startup or dynamically in runtime. To
run Inets as a distributed application that handles application failover and
takeover, configure the services to be started at application startup. When
starting the Inets application, the Inets top supervisor starts a number of
subsupervisors and worker processes for handling the provided services. When
starting services dynamically, new children are added to the supervision tree,
unless the service is started with the standalone option. In this case the
service is linked to the calling process and all OTP application features, such
as soft upgrade, are lost.
Services to be configured for startup at application startup are to be put into
the Erlang node configuration file on the following form:
[{inets, [{services, ListofConfiguredServices}]}].
For details of what to put in the list of configured services, see the
documentation for the services to be configured.

 HTTP Client

Configuration
The HTTP client default profile is started when the Inets application is
started and is then available to all processes on that Erlang node. Other
profiles can also be started at application startup, or profiles can be started
and stopped dynamically in runtime. Each client profile spawns a new process to
handle each request, unless a persistent connection can be used with or without
pipelining. The client adds a host header and an empty te header if there
are no such headers present in the request.
The client supports IPv6 as long as the underlying mechanisms also do so.
The following is to be put in the Erlang node application configuration file to
start a profile at application startup:
[{inets, [{services, [{httpc, PropertyList}]}]}]
For valid properties, see httpc.
Getting Started
Start Inets:
1> inets:start().
ok
The following calls use the default client profile. Use the proxy
"www-proxy.mycompany.com:8000", except from requests to localhost. This
applies to all the following requests.
Example:
2> httpc:set_options([{proxy, {{"www-proxy.mycompany.com", 8000},
["localhost"]}}]).
ok
The following is an ordinary synchronous request:
3> {ok, {{Version, 200, ReasonPhrase}, Headers, Body}} =
.. httpc:request(get, {"http://www.erlang.org", []}, [], []).
With all the default values presented, a get request can also be written as
follows:
4> {ok, {{Version, 200, ReasonPhrase}, Headers, Body}} =
.. httpc:request("http://www.erlang.org").
The following is a https request and with verification of the host:
5> {ok, {{Version, 200, ReasonPhrase}, Headers, Body}} =
.. httpc:request(get, {"https://www.erlang.org", []}, [{ssl, httpc:ssl_verify_host_options(true)}], []).
The following is an ordinary asynchronous request:
6> {ok, RequestId} =
.. httpc:request(get, {"http://www.erlang.org", []}, [], [{sync, false}]).
The result is sent to the calling process as {http, {ReqestId, Result}}.
In this case, the calling process is the shell, so the following result is
received:
7> receive {http, {RequestId, Result}} -> ok after 500 -> error end.
ok
This sends a request with a specified connection header:
8> {ok, {{NewVersion, 200, NewReasonPhrase}, NewHeaders, NewBody}} =
.. httpc:request(get, {"http://www.erlang.org", [{"connection", "close"}]},
.. [], []).
This sends an HTTP request over a unix domain socket (experimental):
9> httpc:set_options([{ipfamily, local}, {unix_socket,"/tmp/unix_socket/consul_http.sock"}]).
10> {ok, {{NewVersion, 200, NewReasonPhrase}, NewHeaders, NewBody}} =
 .. httpc:request(put, {"http:///v1/kv/foo", [], [], "hello"}, [], []).
Start an HTTP client profile:
10> {ok, Pid} = inets:start(httpc, [{profile, foo}]).
{ok, <0.45.0>}
The new profile has no proxy settings, so the connection is refused:
11> httpc:request("http://www.erlang.org", foo).
{error, econnrefused}
Stop the HTTP client profile:
12> inets:stop(httpc, foo).
ok
Alternative way to stop the HTTP client profile:
13> inets:stop(httpc, Pid).
ok

 HTTP server

Configuration

The HTTP server, also referred to as httpd, handles HTTP requests as described
in RFC 2616 with a few exceptions, such
as gateway and proxy functionality. The server supports IPv6 as long as the
underlying mechanisms also do so.
The server implements numerous features, such as:
	Secure Sockets Layer (SSL)
	Erlang Scripting Interface (ESI)
	Common Gateway Interface (CGI)
	User Authentication (using Mnesia, Dets or plain text database)
	Common Logfile Format (with or without disk_log(3) support)
	URL Aliasing
	Action Mappings
	Directory Listings

The configuration of the server is provided as an Erlang property list.
As of Inets 5.0 the HTTP server is an easy to start/stop and customize web
server providing the most basic web server functionality. Inets is designed for
embedded systems and if you want a full-fledged web server there are other
erlang open source alternatives.
Almost all server functionality has been implemented using an especially crafted
server API, which is described in the Erlang Web Server API. This API can be
used to enhance the core server functionality, for example with custom logging
and authentication.
The following is to be put in the Erlang node application configuration file to
start an HTTP server at application startup:
[{inets, [{services, [{httpd, [{proplist_file,
 "/var/tmp/server_root/conf/8888_props.conf"}]},
 {httpd, [{proplist_file,
 "/var/tmp/server_root/conf/8080_props.conf"}]}]}]}].
The server is configured using an Erlang property list. For the available
properties, see httpd.
The available configuration properties are as follows:
httpd_service() -> {httpd, httpd()}
httpd() -> [httpd_config()]
httpd_config() -> {proplist_file, file()}
 {debug, debug()} |
 {accept_timeout, integer()}
debug() -> disable | [debug_options()]
debug_options() -> {all_functions, modules()} |
 {exported_functions, modules()} |
 {disable, modules()}
modules() -> [atom()]
Here:
	{proplist_file, file()} - File containing an Erlang property list,
followed by a full stop, describing the HTTP server configuration.

	{debug, debug()} - Can enable trace on all functions or only exported
functions on chosen modules.

	{accept_timeout, integer()} - Sets the wanted time-out value for the
server to set up a request connection.

Getting Started

Start Inets:
1> inets:start().
ok
Start an HTTP server with minimal required configuration. If you specify port
0, an arbitrary available port is used, and you can use function info to
find which port number that was picked:
2> {ok, Pid} = inets:start(httpd, [{port, 0}, {server_root,"/tmp"},
.. {document_root,"/tmp/htdocs"}, {bind_address, "localhost"}]).
{ok, 0.79.0}
Call info:
3> httpd:info(Pid).
[{mime_types,[{"html","text/html"},{"htm","text/html"}]},
 {server_name,"machine.local"},
 {bind_address, {127,0,0,1}},
 {server_root,"/tmp"},
 {port,59408},
 {document_root,"/tmp/htdocs"},
 {ipfamily,inet}]
Reload the configuration without restarting the server:
4> httpd:reload_config([{port, 59408},
.. {server_root,"/tmp/www_test"}, {document_root,"/tmp/www_test/htdocs"},
.. {bind_address, "localhost"}], non_disturbing).
ok.
Note
port and bind_address cannot be changed. Clients trying to access the
server during the reload get a service temporary unavailable answer.
5> httpd:info(Pid, [server_root, document_root]).
[{server_root,"/tmp/www_test"},{document_root,"/tmp/www_test/htdocs"}]
6> ok = inets:stop(httpd, Pid).
Alternative:
6> ok = inets:stop(httpd, {{127,0,0,1}, 59408}).
Notice that bind_address must be the IP address reported by function info
and cannot be the hostname that is allowed when putting in bind_address.
Dynamic Web Pages

Inets HTTP server provides two ways of creating dynamic web pages, each with
its own advantages and disadvantages:
	CGI scripts - Common Gateway Interface (CGI) scripts can be written in
any programming language. CGI scripts are standardized and supported by most
web servers. The drawback with CGI scripts is that they are resource-intensive
because of their design. CGI requires the server to fork a new OS process for
each executable it needs to start.

	ESI-functions - Erlang Server Interface (ESI) functions provide a tight
and efficient interface to the execution of Erlang functions. This interface,
on the other hand, is Inets specific.

CGI Version 1.1, RFC 3875
The module mod_cgi enables execution of
CGI scripts on the server. A file
matching the definition of a ScriptAlias config directive is treated as a CGI
script. A CGI script is executed by the server and its output is returned to the
client.
The CGI script response comprises a message header and a message body, separated
by a blank line. The message header contains one or more header fields. The body
can be empty.
Example:
"Content-Type:text/plain\nAccept-Ranges:none\n\nsome very
	plain text"
The server interprets the message headers and most of them are transformed into
HTTP headers and sent back to the client together with the message-body.
Support for CGI-1.1 is implemented in accordance with
RFC 3875.
ESI
The Erlang server interface is implemented by module mod_esi.
ERL Scheme
The erl scheme is designed to mimic plain CGI, but without the extra overhead.
An URL that calls an Erlang erl function has the following syntax (regular
expression):
http://your.server.org/***/Module[:/]Function(?QueryString|/PathInfo)
*** depends on how the ErlScriptAlias config directive has been used.
The module Module referred to must be found in the code path, and it must
define a function Function with an arity of two or three. It is preferable to
implement a function with arity three, as it permits to send chunks of the web
page to the client during the generation phase instead of first generating the
whole web page and then sending it to the client. The option to implement a
function with arity two is only kept for backwards compatibility reasons. For
implementation details of the ESI callback function, see mod_esi.
Logging
Three types of logs are supported: transfer logs, security logs, and error logs.
The de-facto standard Common Logfile Format is used for the transfer and
security logging. There are numerous statistics programs available to analyze
Common Logfile Format. The Common Logfile Format looks as follows:
remotehost rfc931 authuser [date] "request" status bytes
Here:
	remotehost - Remote hostname.

	rfc931 - The client remote username
(RFC 931).

	authuser - The username used for authentication.

	[date] - Date and time of the request
(RFC 1123).

	"request" - The request line exactly as it came from the client
(RFC 1945).

	status - The HTTP status code returned to the client
(RFC 1945).

	bytes - The content-length of the document transferred.

Internal server errors are recorded in the error log file. The format of this
file is a more unplanned format than the logs using Common Logfile Format, but
conforms to the following syntax:
[date] access to path failed for remotehost, reason: reason
Erlang Web Server API
The process of handling an HTTP request involves several steps, such as:
	Setting up connections, sending and receiving data.
	URI to filename translation.
	Authentication/access checks.
	Retrieving/generating the response.
	Logging.

To provide customization and extensibility of the request handling of the HTTP
servers, most of these steps are handled by one or more modules. These modules
can be replaced or removed at runtime and new ones can be added. For each
request, all modules are traversed in the order specified by the module
directive in the server configuration file. Some parts, mainly the
communication- related steps, are considered server core functionality and are
not implemented using the Erlang web server API. A description of functionality
implemented by the Erlang webserver API is described in
Section Inets Web Server Modules.
A module can use data generated by previous modules in the Erlang webserver API
module sequence or generate data to be used by consecutive Erlang Web Server API
modules. This is possible owing to an internal list of key-value tuples,
referred to as interaction data.
Note
Interaction data enforces module dependencies and is to be avoided if
possible. This means that the order of modules in the modules property is
significant.
API Description
Each module that implements server functionality using the Erlang web server API
is to implement the following call back functions:
	do/1 (mandatory) - the function called when a request is to be handled
	load/2
	store/2
	remove/1

The latter functions are needed only when new config directives are to be
introduced. For details, see httpd.
Inets Web Server Modules

The convention is that all modules implementing some web server functionality
has the name mod_*. When configuring the web server, an appropriate selection
of these modules is to be present in the module directive. Notice that there are
some interaction dependencies to take into account, so the order of the modules
cannot be random.
mod_action - Filetype/Method-Based Script Execution
This module runs CGI scripts whenever a file of a certain type or HTTP method
(see RFC 1945) is requested.
Uses the following Erlang Web Server API interaction data:
	real_name - from mod_alias.

Exports the following Erlang Web Server API interaction data, if possible:
	{new_request_uri, RequestURI} - An alternative RequestURI has been
generated.

mod_alias - URL Aliasing
The mod_alias module makes it possible to map different parts of the host
file system into the document tree, that is, creates aliases and redirections.
Exports the following Erlang Web Server API interaction data, if possible:
	{real_name, PathData} - PathData is the argument used for API function
mod_alias:path/3.

mod_auth - User Authentication
The mod_auth module provides for basic user authentication using textual
files, Dets databases as well as Mnesia databases.
Uses the following Erlang Web Server API interaction data:
	real_name - from mod_alias

Exports the following Erlang Web Server API interaction data:
	{remote_user, User} - The username used for authentication.

Mnesia As Authentication Database
If Mnesia is used as storage method, Mnesia must be started before the HTTP
server. The first time Mnesia is started, the schema and the tables must be
created before Mnesia is started. A simple example of a module with two
functions that creates and start Mnesia is provided here. Function
first_start/0 is to be used the first time. It creates the schema and the
tables. start/0 is to be used in consecutive startups. start/0 starts Mnesia
and waits for the tables to be initiated. This function must only be used when
the schema and the tables are already created.
-module(mnesia_test).
-export([start/0,load_data/0]).
-include_lib("mod_auth.hrl").

first_start() ->
 mnesia:create_schema([node()]),
 mnesia:start(),
 mnesia:create_table(httpd_user,
 [{type, bag},
 {disc_copies, [node()]},
 {attributes, record_info(fields,
 httpd_user)}]),
 mnesia:create_table(httpd_group,
 [{type, bag},
 {disc_copies, [node()]},
 {attributes, record_info(fields,
 httpd_group)}]),
 mnesia:wait_for_tables([httpd_user, httpd_group], 60000).

start() ->
 mnesia:start(),
 mnesia:wait_for_tables([httpd_user, httpd_group], 60000).
To create the Mnesia tables, we use two records defined in mod_auth.hrl, so
that file must be included. first_start/0 creates a schema that specifies on
which nodes the database is to reside. Then it starts Mnesia and creates the
tables. The first argument is the name of the tables, the second argument is a
list of options of how to create the table, see mnesia, documentation for
more information. As the implementation of the mod_auth_mnesia saves one row
for each user, the type must be bag. When the schema and the tables are
created, function mnesia:start/0 is used to start Mnesia and waits for the
tables to be loaded. Mnesia uses the directory specified as mnesia_dir at
startup if specified, otherwise Mnesia uses the current directory. For security
reasons, ensure that the Mnesia tables are stored outside the document tree of
the HTTP server. If they are placed in the directory which it protects, clients
can download the tables. Only the Dets and Mnesia storage methods allow writing
of dynamic user data to disk. plain is a read only method.
mod_cgi - CGI Scripts
This module handles invoking of CGI scripts.
mod_dir - Directories
This module generates an HTML directory listing (Apache-style) if a client sends
a request for a directory instead of a file. This module must be removed from
the Modules config directive if directory listings is unwanted.
Uses the following Erlang Web Server API interaction data:
	real_name - from mod_alias

Exports the following Erlang Web Server API interaction data:
	{mime_type, MimeType} - The file suffix of the incoming URL mapped into
a MimeType.

mod_disk_log - Logging Using Disk_Log.
Standard logging using the "Common Logfile Format" and disk_log.
Uses the following Erlang Web Server API interaction data:
	remote_user - from mod_auth

mod_esi - Erlang Server Interface
The mod_esi module implements the Erlang Server Interface (ESI) providing a
tight and efficient interface to the execution of Erlang functions.
Uses the following Erlang web server API interaction data:
	remote_user - from mod_auth

Exports the following Erlang web server API interaction data:
	{mime_type, MimeType} - The file suffix of the incoming URL mapped into
a MimeType

mod_get - Regular GET Requests
This module is responsible for handling GET requests to regular files. GET
requests for parts of files is handled by mod_range.
Uses the following Erlang web server API interaction data:
	real_name - from mod_alias

mod_head - Regular HEAD Requests
This module is responsible for handling HEAD requests to regular files. HEAD
requests for dynamic content is handled by each module responsible for dynamic
content.
Uses the following Erlang Web Server API interaction data:
	real_name - from mod_alias

mod_log - Logging Using Text Files.
Standard logging using the "Common Logfile Format" and text files.
Uses the following Erlang Web Server API interaction data:
	remote_user - from mod_auth

mod_range - Requests with Range Headers
This module responses to requests for one or many ranges of a file. This is
especially useful when downloading large files, as a broken download can be
resumed.
Notice that request for multiple parts of a document report a size of zero to
the log file.
Uses the following Erlang Web Server API interaction data:
	real_name - from mod_alias

mod_response_control - Requests with If* Headers
This module controls that the conditions in the requests are fulfilled. For
example, a request can specify that the answer only is of interest if the
content is unchanged since the last retrieval. If the content is changed, the
range request is to be converted to a request for the whole file instead.
If a client sends more than one of the header fields that restricts the servers
right to respond, the standard does not specify how this is to be handled.
httpd controls each field in the following order and if one of the fields
does not match the current state, the request is rejected with a proper
response:
If-modified
If-Unmodified
If-Match
If-Nomatch
Uses the following Erlang Web Server API interaction data:
	real_name - from mod_alias

Exports the following Erlang Web Server API interaction data:
	{if_range, send_file} - The conditions for the range request are not
fulfilled. The response must not be treated as a range request, instead it
must be treated as an ordinary get request.

mod_security - Security Filter
The mod_security module serves as a filter for authenticated requests
handled in mod_auth. It provides a possibility to restrict users from access
for a specified amount of time if they fail to authenticate several times. It
logs failed authentication as well as blocking of users, and it calls a
configurable callback module when the events occur.
There is also an API to block or unblock users manually. This API can also list
blocked users or users who have been authenticated within a configurable amount
of time.
mod_trace - TRACE Request
mod_trace is responsible for handling of TRACE requests. Trace is a new
request method in HTTP/1.1. The intended use of trace requests is for testing.
The body of the trace response is the request message that the responding web
server or proxy received.
Serving files from the command line
httpd includes functionality to quickly serve files from the command line. In
its simplest form, erl -S httpd will serve files in the local directory on
localhost.
	--port - Sets the port to bind on. Defaults to 8000.

	--bind - Sets the bind address to listen on. Defaults to 127.0.0.1.

	DIRECTORY - Sets the directory to serve data from. Defaults to the
current directory.

For example, to serve files from directory test_results on port 4000:
erl -S httpd serve --port 4000 test_results
For a full reference of all options, run erl -S httpd serve --help.

inets

The Inets services API.
This module provides the most basic API to the clients and servers that are part
of the Inets application, such as start and stop.

Data types
Type definitions that are used more than once in this module:
service() = httpc | httpd
property() = atom()
See also
httpc, httpd

 Summary

 Types

 inets_service()

 service_info()

 Functions

 service_names()

 Returns a list of available service names.

 services()

 Returns a list of currently running services.

 services_info()

 Returns a list of currently running services where each service is described by
an [{Option, Value}] list. The information in the list is specific for each
service and each service has probably its own info function that gives more
details about the service. If specific service info returns {error, Reason},
Info will contain Reason term.

 start()

 Equivalent to start/1.

 start(Type)

 Starts the Inets application. Default type is temporary. See also
application.

 start(Service, ServiceConfig)

 Equivalent to start/3.

 start(Service, ServiceConfig, How)

 Dynamically starts an Inets service after the Inets application has been
started.

 stop()

 Stops the Inets application. See also application.

 stop(Service, Reference)

 Stops a started service of the Inets application or takes down a
stand_alone-service gracefully. When option stand_alone is used in start,
only the pid is a valid argument to stop.

 Types

 inets_service()

 (not exported)

 -type inets_service() :: httpd | httpc.

 service_info()

 (not exported)

 -type service_info() ::
 {inets_service(), pid(), [{profile, atom()}] | no_such_service | service_not_available}.

 Functions

 service_names()

 -spec service_names() -> [inets_service()].

Returns a list of available service names.

 services()

 -spec services() -> [{inets_service(), pid()}] | {error, inets_not_started}.

Returns a list of currently running services.
Note
Services started as stand_alone are not listed.

 services_info()

 -spec services_info() -> [service_info()] | {error, inets_not_started}.

Returns a list of currently running services where each service is described by
an [{Option, Value}] list. The information in the list is specific for each
service and each service has probably its own info function that gives more
details about the service. If specific service info returns {error, Reason},
Info will contain Reason term.

 start()

 -spec start() -> ok | {error, Reason} when Reason :: term().

Equivalent to start/1.

 start(Type)

 -spec start(Type) -> ok | {error, Reason} when Type :: application:restart_type(), Reason :: term().

Starts the Inets application. Default type is temporary. See also
application.

 start(Service, ServiceConfig)

 -spec start(Service, ServiceConfig) -> Result
 when
 Service :: inets_service(),
 ServiceConfig :: ConfPropList | ConfFile,
 ConfPropList :: [{Property, Value}],
 ConfFile :: string(),
 Property :: term(),
 Value :: term(),
 Result :: {ok, pid()} | {error, term()}.

Equivalent to start/3.

 start(Service, ServiceConfig, How)

 -spec start(Service, ServiceConfig, How) -> Result
 when
 Service :: inets_service(),
 ServiceConfig :: ConfPropList | ConfFile,
 How :: inets | stand_alone,
 ConfPropList :: [{Property, Value}],
 ConfFile :: string(),
 Property :: term(),
 Value :: term(),
 Result :: {ok, pid()} | {error, term()}.

Dynamically starts an Inets service after the Inets application has been
started.
Note
Dynamically started services are not handled by application takeover and
failover behavior when Inets is run as a distributed application. Nor are
they automatically restarted when the Inets application is restarted. As
long as the Inets application is operational, they are supervised and can be
soft code upgraded.
A service started as stand_alone, that is, the service is not started as
part of the Inets application, lose all OTP application benefits, such as
soft upgrade. The stand_alone-service is linked to the process that started
it. Usually some supervision functionality is still in place and in some sense
the calling process becomes the top supervisor.
Warning
The stand_alone option is considered deprecated.

 stop()

 -spec stop() -> ok.

Stops the Inets application. See also application.

 stop(Service, Reference)

 -spec stop(Service, Reference) -> ok | {error, Reason}
 when
 Service :: inets_service() | stand_alone,
 Reference :: pid() | term(),
 Reason :: term().

Stops a started service of the Inets application or takes down a
stand_alone-service gracefully. When option stand_alone is used in start,
only the pid is a valid argument to stop.

httpc

An HTTP/1.1 client
This module provides the API to an HTTP/1.1 compatible client according to
RFC 2616. Caching is not supported.
Note
When starting the Inets application, a manager process for the default
profile is started. The functions in this API that do not explicitly use a
profile accesses the default profile. A profile keeps track of proxy options,
cookies, and other options that can be applied to more than one request.
If the scheme https is used, the SSL application must be started. When
https links need to go through a proxy, the CONNECT method extension to
HTTP-1.1 is used to establish a tunnel and then the connection is upgraded to
TLS. However, "TLS upgrade" according to
RFC 2817 is not supported.
Pipelining is only used if the pipeline time-out is set, otherwise persistent
connections without pipelining are used. That is, the client always waits for
the previous response before sending the next request.
Some examples are provided in the Inets User's Guide.
HTTP client service start & stop
An HTTP client can be configured to start when starting the Inets application
or started dynamically in runtime by calling the Inets application API
inets:start(httpc, ServiceConfig) or inets:start(httpc, ServiceConfig, How),
see inets. The configuration options are as follows:
	{profile, Profile :: atom() | pid()} - Name of the profile. This option
is mandatory.

	{data_dir, Path :: string()} - Directory where the profile can save
persistent data. If omitted, all cookies are treated as session cookies.
Path represents a file path or directory path.

The client can be stopped using inets:stop(httpc, Pid) or
inets:stop(httpc, Profile).
Warning
Please note that httpc normalizes input URIs before internal processing and
special care shall be taken when the URI has percent ("%") characters. A
percent serves as the indicator for percent-encoded octets and it must be
percent-encoded as "%25" for that octet to be used as data within the URI.
For example, in order to send an HTTP GET request with the URI
http://localhost/foo%25bar, the percent character must be percent-encoded
when creating the request: httpc:request("http://localhost/foo%2525bar").
See also
RFC 2616, inets, gen_tcp, ssl

 Summary

 Functions

 cancel_request(RequestId)

 Equivalent to cancel_request/2.

 cancel_request(RequestId, Profile)

 Cancels an asynchronous HTTP request. Notice that this does not guarantee that
the request response is not delivered. Because it is asynchronous, the request
can already have been completed when the cancellation arrives.

 cookie_header(Url)

 Equivalent to cookie_header/2.

 cookie_header(Url, ProfileOrOpts)

 Returns the cookie header that would have been sent when making a request to
Url using profile Profile. If no profile is specified, the default profile
is used.

 cookie_header(Url, Opts, Profile)

 Returns the cookie header that would have been sent when making a request to
Url using profile Profile. If no profile is specified, the default profile
is used.

 get_options(OptionItems)

 Equivalent to get_options/2.

 get_options(OptionItems, Profile)

 Retrieves the options currently used by the client.

 info()

 Equivalent to info/1.

 info(Profile)

 Produces a list of miscellaneous information. Intended for debugging. If no
profile is specified, the default profile is used.

 request(Url)

 Equivalent to request/2.

 request(Url, Profile)

 Equivalent to httpc:request(get, {Url, []}, [], []).

 request(Method, Request, HttpOptions, Options)

 Equivalent to request/5.

 request(Method, Request, HttpOptions, Options, Profile)

 Sends an HTTP request. The function can be both synchronous and asynchronous. In
the latter case, the function returns {ok, RequestId} and then the information
is delivered to the receiver depending on that value.

 reset_cookies()

 Equivalent to reset_cookies/1.

 reset_cookies(Profile)

 Resets (clears) the cookie database for the specified Profile. If no profile
is specified the default profile is used.

 set_options(Options)

 Equivalent to set_options/2.

 set_options(Options, Profile)

 Sets options to be used for subsequent requests.

 ssl_verify_host_options(WildcardHostName)

 Returns ssl options which can be used to verify the host, uses
public_key:cacerts_get() to read CA certicates
and if WildcardHostName is true adds the hostname check from
public_key:public_key:pkix_verify_hostname_match_fun(https)
to the options.

 store_cookies(SetCookieHeaders, Url)

 Equivalent to store_cookies/3.

 store_cookies(SetCookieHeaders, Url, Profile)

 Saves the cookies defined in SetCookieHeaders in the client profile cookie
database. Call this function if option cookies is set to verify. If no
profile is specified, the default profile is used.

 stream_next(Pid)

 Triggers the next message to be streamed, that is, the same behavior as active
ones for sockets.

 which_cookies()

 Equivalent to which_cookies/1.

 which_cookies(Profile)

 Produces a list of the entire cookie database. Intended for debugging/testing
purposes. If no profile is specified, the default profile is used.

 which_sessions()

 Equivalent to which_sessions/1.

 which_sessions(Profile)

 This function is intended for debugging only. It produces a slightly processed
dump of the session database. The first list of the session information tuple
will contain session information on an internal format. The last two lists of
the session information tuple should always be empty if the code is working as
intended. If no profile is specified, the default profile is used.

 Functions

 cancel_request(RequestId)

 (since OTP R13B04)

 -spec cancel_request(RequestId) -> ok when RequestId :: any().

Equivalent to cancel_request/2.

 cancel_request(RequestId, Profile)

 (since OTP R13B04)

 -spec cancel_request(RequestId, Profile) -> ok when RequestId :: any(), Profile :: atom() | pid().

Cancels an asynchronous HTTP request. Notice that this does not guarantee that
the request response is not delivered. Because it is asynchronous, the request
can already have been completed when the cancellation arrives.

 cookie_header(Url)

 (since OTP R13B04)

 -spec cookie_header(Url) -> HttpHeader | {error, Reason}
 when
 Url :: uri_string:uri_string(),
 HttpHeader :: {Field :: [byte()], Value :: binary() | iolist()},
 Reason :: term().

Equivalent to cookie_header/2.

 cookie_header(Url, ProfileOrOpts)

 (since OTP R13B04)

 -spec cookie_header(Url, ProfileOrOpts) -> HttpHeader | {error, Reason}
 when
 Url :: uri_string:uri_string(),
 HttpHeader :: {Field :: [byte()], Value :: binary() | iolist()},
 ProfileOrOpts :: Profile | Opts,
 Profile :: atom() | pid(),
 Opts :: [CookieHeaderOpt],
 CookieHeaderOpt :: {ipv6_host_with_brackets, boolean()},
 Reason :: term().

Returns the cookie header that would have been sent when making a request to
Url using profile Profile. If no profile is specified, the default profile
is used.
Option ipv6_host_with_bracket deals with how to parse IPv6 addresses. For
details, see argument Options of request/4,5.

 cookie_header(Url, Opts, Profile)

 (since OTP R15B)

 -spec cookie_header(Url, Opts, Profile) -> HttpHeader | {error, Reason}
 when
 Url :: uri_string:uri_string(),
 HttpHeader :: {Field :: [byte()], Value :: binary() | iolist()},
 Profile :: atom() | pid(),
 Opts :: [CookieHeaderOpt],
 CookieHeaderOpt :: {ipv6_host_with_brackets, boolean()},
 Reason :: term().

Returns the cookie header that would have been sent when making a request to
Url using profile Profile. If no profile is specified, the default profile
is used.
Option ipv6_host_with_bracket deals with how to parse IPv6 addresses. For
details, see argument Options of request/4,5.

 get_options(OptionItems)

 (since OTP R15B01)

 -spec get_options(OptionItems) -> {ok, Values} | {error, Reason}
 when
 OptionItems :: all | [OptionItem],
 OptionItem ::
 proxy | https_proxy | max_sessions | keep_alive_timeout |
 max_keep_alive_length | pipeline_timeout | max_pipeline_length | cookies |
 ipfamily | ip | port | socket_opts | verbose | unix_socket,
 Values :: [{OptionItem, term()}],
 Reason :: term().

Equivalent to get_options/2.

 get_options(OptionItems, Profile)

 (since OTP R15B01)

 -spec get_options(OptionItems, Profile) -> {ok, Values} | {error, Reason}
 when
 OptionItems :: all | [OptionItem],
 OptionItem ::
 proxy | https_proxy | max_sessions | keep_alive_timeout |
 max_keep_alive_length | pipeline_timeout | max_pipeline_length | cookies |
 ipfamily | ip | port | socket_opts | verbose | unix_socket,
 Values :: [{OptionItem, term()}],
 Profile :: atom() | pid(),
 Reason :: term().

Retrieves the options currently used by the client.

 info()

 (since OTP R15B02)

 -spec info() -> list() | {error, Reason} when Reason :: term().

Equivalent to info/1.

 info(Profile)

 (since OTP R15B02)

 -spec info(Profile) -> list() | {error, Reason} when Reason :: term(), Profile :: atom() | pid().

Produces a list of miscellaneous information. Intended for debugging. If no
profile is specified, the default profile is used.

 request(Url)

 (since OTP R13B04)

 -spec request(uri_string:uri_string()) -> {ok, Result} | {error, term()}
 when
 Result ::
 {StatusLine :: {HttpVersion, StatusCode, string()},
 [HttpHeader],
 HttpBodyResult} |
 {StatusCode, HttpBodyResult} |
 RequestId | saved_to_file,
 HttpBodyResult :: uri_string:uri_string() | binary(),
 HttpVersion :: uri_string:uri_string(),
 StatusCode :: non_neg_integer(),
 HttpHeader :: {Field :: [byte()], Value :: binary() | iolist()},
 RequestId :: any().

Equivalent to request/2.

 request(Url, Profile)

 (since OTP R13B04)

 -spec request(Url, Profile) -> {ok, Result} | {error, term()}
 when
 Url :: uri_string:uri_string(),
 Profile :: atom() | pid(),
 Result ::
 {StatusLine, [HttpHeader], HttpBodyResult} |
 {StatusCode, HttpBodyResult} |
 RequestId | saved_to_file,
 HttpHeader :: {Field :: [byte()], Value :: binary() | iolist()},
 HttpBodyResult :: uri_string:uri_string() | binary(),
 StatusLine :: {HttpVersion, StatusCode, string()},
 HttpVersion :: uri_string:uri_string(),
 StatusCode :: non_neg_integer(),
 RequestId :: any().

Equivalent to httpc:request(get, {Url, []}, [], []).

 request(Method, Request, HttpOptions, Options)

 (since OTP R13B04)

 -spec request(Method, Request, HttpOptions, Options) -> {ok, Result} | {error, term()}
 when
 Method :: head | get | put | patch | post | trace | options | delete,
 Request ::
 {uri_string:uri_string(), [HttpHeader]} |
 {uri_string:uri_string(),
 [HttpHeader],
 ContentType :: uri_string:uri_string(),
 HttpBody},
 HttpBody ::
 iolist() |
 binary() |
 {fun((Accumulator :: term()) -> eof | {ok, iolist(), Accumulator :: term()}),
 Accumulator :: term()} |
 {chunkify,
 fun((Accumulator :: term()) -> eof | {ok, iolist(), Accumulator :: term()}),
 Accumulator :: term()},
 HttpOptions :: [HttpOption],
 HttpOption ::
 {timeout, timeout()} |
 {connect_timeout, timeout()} |
 {ssl, [ssl:tls_option()]} |
 {autoredirect, boolean()} |
 {proxy_auth, {string(), string()}} |
 {version, HttpVersion} |
 {relaxed, boolean()},
 Options :: [OptionRequest],
 OptionRequest ::
 {sync, boolean()} |
 {stream, StreamTo} |
 {body_format, BodyFormat} |
 {full_result, boolean()} |
 {headers_as_is, boolean()} |
 {socket_opts, [SocketOpt]} |
 {receiver, Receiver} |
 {ipv6_host_with_brackets, boolean()},
 StreamTo :: none | self | {self, once} | file:name_all(),
 SocketOpt :: term(),
 BodyFormat :: string | binary,
 Receiver ::
 pid() |
 fun((term()) -> term()) |
 {ReceiverModule :: atom(), ReceiverFunction :: atom(), ReceiverArgs :: list()},
 Result ::
 {StatusLine, [HttpHeader], HttpBodyResult} |
 {StatusCode, HttpBodyResult} |
 RequestId | saved_to_file,
 StatusCode :: non_neg_integer(),
 StatusLine :: {HttpVersion, StatusCode, string()},
 HttpVersion :: uri_string:uri_string(),
 HttpHeader :: {Field :: [byte()], Value :: binary() | iolist()},
 HttpBodyResult :: uri_string:uri_string() | binary(),
 RequestId :: any().

Equivalent to request/5.

 request(Method, Request, HttpOptions, Options, Profile)

 (since OTP R13B04)

 -spec request(Method, Request, HttpOptions, Options, Profile) -> {ok, Result} | {error, term()}
 when
 Method :: head | get | put | patch | post | trace | options | delete,
 Request ::
 {uri_string:uri_string(), [HttpHeader]} |
 {uri_string:uri_string(),
 [HttpHeader],
 ContentType :: uri_string:uri_string(),
 HttpBody},
 HttpBody ::
 iolist() |
 binary() |
 {fun((Accumulator :: term()) -> eof | {ok, iolist(), Accumulator :: term()}),
 Accumulator :: term()} |
 {chunkify,
 fun((Accumulator :: term()) -> eof | {ok, iolist(), Accumulator :: term()}),
 Accumulator :: term()},
 HttpHeader :: {Field :: [byte()], Value :: binary() | iolist()},
 HttpOptions :: [HttpOption],
 HttpOption ::
 {timeout, timeout()} |
 {connect_timeout, timeout()} |
 {ssl, [ssl:tls_option()]} |
 {autoredirect, boolean()} |
 {proxy_auth, {string(), string()}} |
 {version, HttpVersion} |
 {relaxed, boolean()},
 Options :: [OptionRequest],
 OptionRequest ::
 {sync, boolean()} |
 {stream, StreamTo} |
 {body_format, BodyFormat} |
 {full_result, boolean()} |
 {headers_as_is, boolean()} |
 {socket_opts, [SocketOpt]} |
 {receiver, Receiver} |
 {ipv6_host_with_brackets, boolean()},
 StreamTo :: none | self | {self, once} | file:name_all(),
 BodyFormat :: string | binary,
 SocketOpt :: term(),
 Receiver ::
 pid() |
 fun((term()) -> term()) |
 {ReceiverModule :: atom(), ReceiverFunction :: atom(), ReceiverArgs :: list()},
 Profile :: atom() | pid(),
 HttpVersion :: uri_string:uri_string(),
 Result ::
 {StatusLine, [HttpHeader], HttpBodyResult} |
 {StatusCode, HttpBodyResult} |
 RequestId | saved_to_file,
 StatusLine :: {HttpVersion, StatusCode, string()},
 StatusCode :: non_neg_integer(),
 HttpBodyResult :: uri_string:uri_string() | binary(),
 RequestId :: any().

Sends an HTTP request. The function can be both synchronous and asynchronous. In
the latter case, the function returns {ok, RequestId} and then the information
is delivered to the receiver depending on that value.
When Profile is stand_alone only the pid can be used.
HTTP options:
	timeout - Time-out time for the request.
The clock starts ticking when the request is sent.
Time is in milliseconds.
Default is infinity.

	connect_timeout - Connection time-out time, used during the initial
request, when the client is connecting to the server.
Time is in milliseconds.
Default is the value of option timeout.

	ssl - This is the SSL/TLS connecting configuration option.
Default value is obtained by calling
httpc:ssl_verify_host_options(true). . See
ssl:connect/2,3,4 for available options.

	autoredirect - The client automatically retrieves the information from
the new URI and returns that as the result, instead of a 30X-result code.
For some 30X-result codes, automatic redirect is not allowed. In these cases
the 30X-result is always returned.
Default is true.

	proxy_auth - A proxy-authorization header using a tuple where the first
element is the username and the second element of the tuple is the
password added to the request.

	version - Can be used to make the client act as an HTTP/1.0 client. By
default this is an HTTP/1.1 client. When using HTTP/1.0 persistent
connections are not used.
Default is the string "HTTP/1.1".

	relaxed - If set to true, workarounds for known server deviations from
the HTTP-standard are enabled.
Default is false.

Options details:
	sync - Option for the request to be synchronous or asynchronous.
Default is true.

	stream - Streams the body of a 200 or 206 response to the calling
process or to a file. When streaming to the calling process using option
self, the following stream messages are sent to that process:
{http, {RequestId, stream_start, Headers}}, {http, {RequestId, stream, BinBodyPart}}, and {http, {RequestId, stream_end, Headers}}.
When streaming to the calling processes using option {self, once}, the first
message has an extra element, that is,
{http, {RequestId, stream_start, Headers, Pid}}. This is the process id to
be used as an argument to httpc:stream_next/1 to trigger the next message to
be sent to the calling process.
Notice that chunked encoding can add headers so that there are more headers in
the stream_end message than in stream_start. When streaming to a file and
the request is asynchronous, the message {http, {RequestId, saved_to_file}}
is sent.
Default is none.

	body_format - Defines if the body is to be delivered as a string or
binary. This option is only valid for the synchronous request.
Default is string. Asynchronous requests always use binary.

	full_result - Defines if a "full result" is to be returned to the caller
(that is, the body, the headers, and the entire status line) or not (the body
and the status code).
Default is true.

	headers_as_is - Defines if the headers provided by the user are to be
made lower case or to be regarded as case sensitive.
The HTTP standard requires them to be case insensitive. Use this feature only
if there is no other way to communicate with the server or for testing
purpose. When this option is used, no headers are automatically added. All
necessary headers must be provided by the user.
Default is false.

	socket_opts - Socket options to be used for this request.
See the options used by gen_tcp and ssl
Overrides any value set by function set_options.
The validity of the options is not checked by the HTTP client they are
assumed to be correct and passed on to ssl application and inet driver, which
may reject them if they are not correct.
Note
Persistent connections are not supported when setting the socket_opts
option. When socket_opts is not set the current implementation assumes the
requests to the same host, port combination will use the same socket
options.
By default the socket options set by function
set_options/1,2 are used when establishing a connection.

	receiver - Defines how the client delivers the result of an asynchronous
request (sync has the value false).
	pid/0 - Messages are sent to this process in the format
{http, ReplyInfo}.

	alias/0 - Messages are sent to this special reference in the format
{http, ReplyInfo}.

	function/1 - Information is delivered to the receiver through calls to
the provided fun Receiver(ReplyInfo).

	{Module, Function, Args} - Information is delivered to the receiver
through calls to the callback function
apply(Module, Function, [ReplyInfo | Args]).

In all of these cases, ReplyInfo has the following structure:
 {RequestId, saved_to_file}
 {RequestId, {error, Reason}}
 {RequestId, Result}
 {RequestId, stream_start, Headers}
 {RequestId, stream_start, Headers, HandlerPid}
 {RequestId, stream, BinBodyPart}
 {RequestId, stream_end, Headers}
Default is the pid of the process calling the request function (self/0).

	ipv6_host_with_brackets - Defines when parsing the Host-Port part of an
URI with an IPv6 address with brackets, if those brackets are to be retained
(true) or stripped (false).
Default is false.

 reset_cookies()

 (since OTP R13B04)

 -spec reset_cookies() -> Void when Void :: term().

Equivalent to reset_cookies/1.

 reset_cookies(Profile)

 (since OTP R13B04)

 -spec reset_cookies(Profile) -> Void when Profile :: atom() | pid(), Void :: term().

Resets (clears) the cookie database for the specified Profile. If no profile
is specified the default profile is used.

 set_options(Options)

 (since OTP R13B04)

 -spec set_options(Options) -> ok | {error, Reason}
 when
 Options :: [Option],
 Option ::
 {proxy, {Proxy, NoProxy}} |
 {https_proxy, {Proxy, NoProxy}} |
 {max_sessions, MaxSessions} |
 {max_keep_alive_length, MaxKeepAlive} |
 {keep_alive_timeout, KeepAliveTimeout} |
 {max_pipeline_length, MaxPipeline} |
 {pipeline_timeout, PipelineTimeout} |
 {cookies, CookieMode} |
 {ipfamily, IpFamily} |
 {ip, IpAddress} |
 {port, Port} |
 {socket_opts, SocketOpts} |
 {verbose, VerboseMode} |
 {unix_socket, UnixSocket},
 Proxy :: {HostName, Port},
 Port :: non_neg_integer(),
 NoProxy :: [DomainDesc | HostName | IpAddressDesc],
 MaxSessions :: integer(),
 MaxKeepAlive :: integer(),
 KeepAliveTimeout :: integer(),
 MaxPipeline :: integer(),
 PipelineTimeout :: integer(),
 CookieMode :: enabled | disabled | verify,
 IpFamily :: inet | inet6 | local | inet6fb4,
 IpAddressDesc :: uri_string:uri_string(),
 IpAddress :: inet:ip_address(),
 VerboseMode :: false | verbose | debug | trace,
 SocketOpts :: [SocketOpt],
 SocketOpt :: term(),
 UnixSocket :: file:name_all(),
 Reason :: term(),
 DomainDesc :: string(),
 HostName :: uri_string:uri_string().

Equivalent to set_options/2.

 set_options(Options, Profile)

 (since OTP R13B04)

 -spec set_options(Options, Profile) -> ok | {error, Reason}
 when
 Options :: [Option],
 Option ::
 {proxy, {Proxy, NoProxy}} |
 {https_proxy, {Proxy, NoProxy}} |
 {max_sessions, MaxSessions} |
 {max_keep_alive_length, MaxKeepAlive} |
 {keep_alive_timeout, KeepAliveTimeout} |
 {max_pipeline_length, MaxPipeline} |
 {pipeline_timeout, PipelineTimeout} |
 {cookies, CookieMode} |
 {ipfamily, IpFamily} |
 {ip, IpAddress} |
 {port, Port} |
 {socket_opts, [SocketOpt]} |
 {verbose, VerboseMode} |
 {unix_socket, UnixSocket},
 Profile :: atom() | pid(),
 SocketOpt :: term(),
 Proxy :: {HostName, Port},
 Port :: non_neg_integer(),
 NoProxy :: [DomainDesc | HostName | IpAddressDesc],
 MaxSessions :: integer(),
 MaxKeepAlive :: integer(),
 KeepAliveTimeout :: integer(),
 MaxPipeline :: integer(),
 PipelineTimeout :: integer(),
 CookieMode :: enabled | disabled | verify,
 IpFamily :: inet | inet6 | local | inet6fb4,
 IpAddressDesc :: uri_string:uri_string(),
 IpAddress :: inet:ip_address(),
 VerboseMode :: false | verbose | debug | trace,
 UnixSocket :: string(),
 Reason :: term(),
 DomainDesc :: string(),
 HostName :: uri_string:uri_string().

Sets options to be used for subsequent requests.
	HostName - Example: "localhost" or "foo.bar.se"

	DomainDesc - Example "*.Domain" or "*.ericsson.se"

	IpAddressDesc - Example: "134.138" or "[FEDC:BA98" (all IP addresses
starting with 134.138 or FEDC:BA98), "66.35.250.150" or
"[2010:836B:4179::836B:4179]" (a complete IP address). proxy defaults to
{undefined, []}, that is, no proxy is configured and https_proxy defaults
to the value of proxy.

	MaxSessions - MaxSessions Maximum number of persistent connections to
a host. Default is 2.

	MaxKeepAlive - MaxKeepAlive Maximum number of outstanding requests on
the same connection to a host. Default is 5.

	KeepAliveTimeout - KeepAliveTimeout If a persistent connection is idle
longer than the keep_alive_timeout in milliseconds, the client closes the
connection. The server can also have such a time-out but do not take that for
granted. Default is 120000 (= 2 min).

	MaxPipeline - MaxPipeline Maximum number of outstanding requests on a
pipelined connection to a host. Default is 2.

	PipelineTimeout - PipelineTimeout If a persistent connection is idle
longer than the pipeline_timeout in milliseconds, the client closes the
connection. Default is 0, which results in pipelining not being used.

	CookieMode - If cookies are enabled, all valid cookies are automatically
saved in the cookie database of the client manager. If option verify is
used, function store_cookies/2 has to be called for the
cookies to be saved. Default is disabled.

	IpFamily - Default is inet. With inet6fb4 option, IPv6 will be
preferred but if connection fails, an IPv4 fallback connection attempt will be
made.

	IpAddress - If the host has several network interfaces, this option
specifies which one to use. See gen_tcp:connect/3,4 for
details.

	Port - Example: 8080. Local port number to use. See
gen_tcp:connect/3,4 for details.

	SocketOpts - The options are appended to the socket options used by the
client. These are the default values when a new request handler is started
(for the initial connect). They are passed directly to the underlying
transport (gen_tcp or SSL) without verification.
See the options used by gen_tcp and ssl

	VerboseMode - Default is false. This option is used to switch on (or
off) different levels of Erlang trace on the client. It is a debug feature.

	Profile - When started stand_alone only the pid can be used.

	UnixSocket - Experimental option for sending HTTP requests over a unix
domain socket. The value of unix_socket shall be the full path to a unix
domain socket file with read/write permissions for the erlang process. Default
is undefined.

Note
If possible, the client keeps its connections alive and uses persistent
connections with or without pipeline depending on configuration and current
circumstances. The HTTP/1.1 specification does not provide a guideline for how
many requests that are ideal to be sent on a persistent connection. This
depends much on the application.
A long queue of requests can cause a user-perceived delay, as earlier requests
can take a long time to complete. The HTTP/1.1 specification suggests a limit
of two persistent connections per server, which is the default value of option
max_sessions.
The current implementation assumes the requests to the same host, port
combination will use the same socket options.

 ssl_verify_host_options(WildcardHostName)

 (since OTP 25.1)

 -spec ssl_verify_host_options(WildcardHostName) -> list() when WildcardHostName :: boolean().

Returns ssl options which can be used to verify the host, uses
public_key:cacerts_get() to read CA certicates
and if WildcardHostName is true adds the hostname check from
public_key:public_key:pkix_verify_hostname_match_fun(https)
to the options.

 store_cookies(SetCookieHeaders, Url)

 (since OTP R14B02)

 -spec store_cookies(SetCookieHeaders, Url) -> ok | {error, Reason}
 when
 SetCookieHeaders :: [HttpHeader],
 HttpHeader :: {Field :: [byte()], Value :: binary() | iolist()},
 Url :: term(),
 Reason :: term().

Equivalent to store_cookies/3.

 store_cookies(SetCookieHeaders, Url, Profile)

 (since OTP R14B02)

 -spec store_cookies(SetCookieHeaders, Url, Profile) -> ok | {error, Reason}
 when
 SetCookieHeaders :: [HttpHeader],
 HttpHeader :: {Field :: [byte()], Value :: binary() | iolist()},
 Url :: term(),
 Profile :: atom() | pid(),
 Reason :: term().

Saves the cookies defined in SetCookieHeaders in the client profile cookie
database. Call this function if option cookies is set to verify. If no
profile is specified, the default profile is used.

 stream_next(Pid)

 (since OTP R13B04)

 -spec stream_next(Pid) -> ok when Pid :: pid().

Triggers the next message to be streamed, that is, the same behavior as active
ones for sockets.

 which_cookies()

 (since OTP R13B04)

 -spec which_cookies() -> [CookieStores]
 when
 CookieStores :: {cookies, Cookies} | {session_cookies, Cookies},
 Cookies :: [term()].

Equivalent to which_cookies/1.

 which_cookies(Profile)

 (since OTP R13B04)

 -spec which_cookies(Profile) -> [CookieStores]
 when
 Profile :: atom() | pid(),
 CookieStores :: {cookies, Cookies} | {session_cookies, Cookies},
 Cookies :: [term()].

Produces a list of the entire cookie database. Intended for debugging/testing
purposes. If no profile is specified, the default profile is used.

 which_sessions()

 (since OTP R15B02)

 -spec which_sessions() -> SessionInfo
 when
 SessionInfo :: {GoodSession, BadSessions, NonSessions},
 GoodSession :: [Session],
 BadSessions :: [term()],
 NonSessions :: [term()],
 Session :: term().

Equivalent to which_sessions/1.

 which_sessions(Profile)

 (since OTP R15B02)

 -spec which_sessions(Profile) -> SessionInfo
 when
 Profile :: atom() | pid(),
 SessionInfo :: {GoodSession, BadSessions, NonSessions},
 GoodSession :: [Session],
 BadSessions :: [term()],
 NonSessions :: [term()],
 Session :: term().

This function is intended for debugging only. It produces a slightly processed
dump of the session database. The first list of the session information tuple
will contain session information on an internal format. The last two lists of
the session information tuple should always be empty if the code is working as
intended. If no profile is specified, the default profile is used.

httpd behaviour

HTTP server API
An implementation of an HTTP 1.1 compliant web server, as defined in
RFC 2616. Provides web server start
options, administrative functions, and an Erlang callback API.
Data types
Type definitions that are used more than once in this module:
boolean() = true | false
string/0 = list of ASCII characters
path() = string() representing a file or a directory path
ip_address() = {N1,N2,N3,N4} % IPv4 | {K1,K2,K3,K4,K5,K6,K7,K8} % IPv6
hostname() = string() representing a host, for example, "foo.bar.com"
property() = atom()
HTTP server service start & stop
A web server can be configured to start when starting the Inets application,
or dynamically in runtime by calling the Inets application API
inets:start(httpd, ServiceConfig) or inets:start(httpd, ServiceConfig, How),
see inets. The configuration options, also called properties, are as
follows:

File Properties
When the web server is started at application start time, the properties are to
be fetched from a configuration file that can consist of a regular Erlang
property list, that is, [{Option, Value}], where Option = property()and
Value = term(), followed by a full stop. If the web server is started
dynamically at runtime, a file can still be specified but also the complete
property list.
	 {proplist_file, path()}
If this property is defined, Inets expects to find all other properties
defined in this file. The file must include all properties listed under
mandatory properties.

Note
Note support for legacy configuration file with Apache syntax is dropped in
OTP-23.

Mandatory Properties
	 {port, integer()}
The port that the HTTP server listen to. If zero is specified as port, an
arbitrary available port is picked and function httpd:info/2 can be used to
determine which port was picked.

	 {server_root, path()}
Defines the home directory of the server, where log files, and so on, can be
stored. Relative paths specified in other properties refer to this directory.

	 {document_root, path()}
Defines the top directory for the documents that are available on the HTTP
server.

Communication Properties
	 {bind_address, ip_address() | hostname() | any}
Default is any

	 {server_name, string()}
The name of your server, normally a fully qualified domain name.
If not given, this defaults to net_adm:localhost().

	 {profile, atom()}
Used together with bind_address and
port to uniquely identify a HTTP server. This can be
useful in a virtualized environment, where there can be more that one server
that has the same bind_address and port. If this property is not explicitly
set, it is assumed that the bind_address and
port uniquely identifies the HTTP server.

	 {socket_type, ip_comm | {ip_comm, Config::proplist()} | {ssl, Config::proplist()}}
For ip_comm configuration options, see gen_tcp:listen/2, some options that
are used internally by httpd cannot be set.
For SSL configuration options, see ssl:listen/2.
Default is ip_comm.
Note
OTP-25 deprecates the communication properties
{socket_type, ip_comm | {ip_comm, Config::proplist()} | {essl, Config::proplist()}}
replacing it by
{socket_type, ip_comm | {ip_comm, Config::proplist()} | {ssl, Config::proplist()}}.

	 {ipfamily, inet | inet6}
Default is inet, legacy option inet6fb4 no longer makes sense and will be
translated to inet.

	 {minimum_bytes_per_second, integer()}
If given, sets a minimum of bytes per second value for connections.
If the value is unreached, the socket closes for that connection.
The option is good for reducing the risk of "slow DoS" attacks.

Erlang Web Server API Modules
	 {modules, [atom()]}
Defines which modules the HTTP server uses when handling requests. Default is
[mod_alias, mod_auth, mod_esi, mod_actions, mod_cgi, mod_dir, mod_get, mod_head, mod_log, mod_disk_log].
Notice that some mod-modules are dependent on others, so the order cannot
be entirely arbitrary. See the Inets Web Server Modules in
the User's Guide for details.

Limit properties
	 {customize, atom()}
A callback module to customize the inets HTTP servers behaviour see
httpd_custom_api

	
{disable_chunked_transfer_encoding_send, boolean()}
Allows you to disable chunked transfer-encoding when sending a response to an
HTTP/1.1 client. Default is false.

	 {keep_alive, boolean()}
Instructs the server whether to use persistent connections when the client
claims to be HTTP/1.1 compliant. Default is true.

	 {keep_alive_timeout, integer()}
The number of seconds the server waits for a subsequent request from the
client before closing the connection. Default is 150.

	 {max_body_size, integer()}
Limits the size of the message body of an HTTP request. Default is no limit.

	 {max_clients, integer()}
Limits the number of simultaneous requests that can be supported. Default is
150.

	 {max_header_size, integer()}
Limits the size of the message header of an HTTP request. Default is 10240.

	 {max_content_length, integer()}
Maximum content-length in an incoming request, in bytes. Requests with content
larger than this are answered with status 413. Default is 100000000 (100
MB).

	 {max_uri_size, integer()}
Limits the size of the HTTP request URI. Default is no limit.

	 {max_keep_alive_request, integer()}
The number of requests that a client can do on one connection. When the server
has responded to the number of requests defined by max_keep_alive_requests,
the server closes the connection. The server closes it even if there are
queued request. Default is no limit.

	 {max_client_body_chunk, integer()}
Enforces chunking of a HTTP PUT or POST body data to be delivered to the
mod_esi callback. Note this is not supported for mod_cgi. Default is no limit
e.i the whole body is delivered as one entity, which could be very memory
consuming. mod_esi.

Administrative Properties
	 {mime_types, [{MimeType, Extension}] | path()}
MimeType = string() and Extension = string(). Files delivered to the
client are MIME typed according to RFC 1590. File suffixes are mapped to MIME
types before file delivery. The mapping between file suffixes and MIME types
can be specified in the property list.
Mime types can also be read from a file. The file should contain lines in the
form MediaType [Extensions...], such as text/html html htm. To configure
this, specify the path to it, such as {mime_types, "/etc/mime.types"}.
If unset, conf/mime.types under server_root will be used if it exists,
otherwise, the default is [{"html","text/html"},{"htm","text/html"}].

	 {mime_type, string()}
When the server is asked to provide a document type that cannot be determined
by the MIME Type Settings, the server uses this default type.

	 {server_admin, string()}
Defines the email-address of the server administrator to be included in any
error messages returned by the server.

	 {server_tokens, none|prod|major|minor|minimal|os|full|{private, string()}}
Defines the look of the value of the server header.
Example: Assuming the version of Inets is 5.8.1, the server header string
can look as follows for the different values of server-tokens:
	none - "" % A Server: header will not be generated

	prod - "inets"

	major - "inets/5"

	minor - "inets/5.8"

	minimal - "inets/5.8.1"

	os - "inets/5.8.1 (unix)"

	full - "inets/5.8.1 (unix/linux) OTP/R15B"

	{private, "foo/bar"} - "foo/bar"

By default, the value is as before, that is, minimal.

	 {logger, Options::list()}
Currently only one option is supported:
	{error, ServerID::atom()} - Produces
logger events on logger
level error under the hierarchical logger
domain: [otp, inets, httpd, ServerID, error] The
built in logger formatting function produces log entries from the error
reports:
#{server_name => string()
 protocol => internal | 'TCP' | 'TLS' | 'HTTP',
 transport => "TCP" | "TLS", %% Present when protocol = 'HTTP'
 uri => string(), %% Present when protocol = 'HTTP' and URI is valid
 peer => inet:peername(),
 host => inet:hostname(),
 reason => term()
}
An example of a log entry with only default settings of logger
=ERROR REPORT==== 9-Oct-2019::09:33:27.350235 ===
 Server: My Server
 Protocol: HTTP
Transport: TLS
 URI: /not_there
 Host: 127.0.1.1:80
 Peer: 127.0.0.1:45253
 Reason: [{statuscode,404},{description,"Object Not Found"}]
Using this option makes mod_log and mod_disk_log error logs redundant.
Add the filter
{fun logger_filters:domain/2,
 {log,equal,[otp,inets, httpd, ServerID, error]}
to appropriate logger handler to handle the events. For example to write the
error log from an httpd server with a ServerID of my_server to a file
you can use the following sys.config:
[{kernel,
 [{logger,
 [{handler, http_error_test, logger_std_h,
 #{config => #{ file => "log/http_error.log" },
 filters => [{inets_httpd, {fun logger_filters:domain/2,
 {log, equal,
 [otp, inets, httpd, my_server, error]
 }}}],
 filter_default => stop }}]}]}].
or if you want to add it to the default logger via an API:
logger:add_handler_filter(default,
 inets_httpd,
 {fun logger_filters:domain/2,
 {log, equal,
 [otp, inets, httpd, my_server, error]}}).

	 {log_format, common | combined}
Defines if access logs are to be written according to the common log format
or the extended common log format. The common format is one line looking
like this: remotehost rfc931 authuser [date] "request" status bytes.
Here:
	remotehost - Remote.

	rfc931 - The remote username of the client
(RFC 931).

	authuser - The username used for authentication.

	[date] - Date and time of the request
(RFC 1123).

	"request" - The request line as it came from the client
(RFC 1945).

	status - The HTTP status code returned to the client
(RFC 1945).

	bytes - The content-length of the document transferred.

The combined format is one line looking like this:
remotehost rfc931 authuser [date] "request" status bytes "referer" "user_agent"
In addition to the earlier:
	"referer" - The URL the client was on before requesting the URL (if it
could not be determined, a minus sign is placed in this field).

	"user_agent" - The software the client claims to be using (if it could
not be determined, a minus sign is placed in this field).

This affects the access logs written by mod_log and mod_disk_log.

	 {error_log_format, pretty | compact}
Default is pretty. If the error log is meant to be read directly by a human,
pretty is the best option.
pretty has a format corresponding to:
io:format("[~s] ~s, reason: ~n ~p ~n~n", [Date, Msg, Reason]).
compact has a format corresponding to:
io:format("[~s] ~s, reason: ~w ~n", [Date, Msg, Reason]).
This affects the error logs written by mod_log and mod_disk_log.

URL Aliasing Properties - Requires mod_alias
	 {alias, {Alias, RealName}}
Alias = string() and RealName = string(). alias allows documents to be
stored in the local file system instead of the document_root location. URLs
with a path beginning with url-path is mapped to local files beginning with
directory-filename, for example:
{alias, {"/image", "/ftp/pub/image"}}
Access to http://your.server.org/image/foo.gif would refer to the file
/ftp/pub/image/foo.gif.

	 {re_write, {Re, Replacement}}
Re = string() and Replacement = string(). re_write allows documents to
be stored in the local file system instead of the document_root location.
URLs are rewritten by re:replace/3 to produce a path in the local
file-system, for example:
{re_write, {"^/[~]([^/]+)(.*)$", "/home/\\1/public\\2"}}
Access to http://your.server.org/~bob/foo.gif would refer to the file
/home/bob/public/foo.gif.

	 {directory_index, [string()]}
directory_index specifies a list of resources to look for if a client
requests a directory using a / at the end of the directory name. file
depicts the name of a file in the directory. Several files can be given, in
which case the server returns the first it finds, for example:
{directory_index, ["index.html", "welcome.html"]}
Access to http://your.server.org/docs/ would return
http://your.server.org/docs/index.html or
http://your.server.org/docs/welcome.html if index.html does not exist.

CGI Properties - Requires mod_cgi
	 {script_alias, {Alias, RealName}}
Alias = string() and RealName = string(). Have the same behavior as
property alias, except that they also mark the target directory as
containing CGI scripts. URLs with a path beginning with url-path are mapped to
scripts beginning with directory-filename, for example:
{script_alias, {"/cgi-bin/", "/web/cgi-bin/"}}
Access to http://your.server.org/cgi-bin/foo would cause the server to run the
script /web/cgi-bin/foo.

	 {script_re_write, {Re, Replacement}}
Re = string() and Replacement = string(). Have the same behavior as
property re_write, except that they also mark the target directory as
containing CGI scripts. URLs with a path beginning with url-path are mapped to
scripts beginning with directory-filename, for example:
{script_re_write, {"^/cgi-bin/(\\d+)/", "/web/\\1/cgi-bin/"}}
Access to http://your.server.org/cgi-bin/17/foo would cause the server to run
the script /web/17/cgi-bin/foo.

	 {script_nocache, boolean()}
If script_nocache is set to true, the HTTP server by default adds the
header fields necessary to prevent proxies from caching the page. Generally
this is preferred. Default to false.

	 {script_timeout, integer()}
The time in seconds the web server waits between each chunk of data from the
script. If the CGI script does not deliver any data before the timeout, the
connection to the client is closed. Default is 15.

	 {action, {MimeType, CgiScript}} - requires mod_actions
MimeType = string() and CgiScript = string(). action adds an action
activating a CGI script whenever a file of a certain MIME type is requested.
It propagates the URL and file path of the requested document using the
standard CGI PATH_INFO and PATH_TRANSLATED environment variables.
Example:
{action, {"text/plain", "/cgi-bin/log_and_deliver_text"}}

	 {script, {Method, CgiScript}} - requires mod_actions
Method = string() and CgiScript = string(). script adds an action
activating a CGI script whenever a file is requested using a certain HTTP
method. The method is either GET or POST, as defined in
RFC 1945. It propagates the URL and
file path of the requested document using the standard CGI PATH_INFO and
PATH_TRANSLATED environment variables.
Example:
{script, {"PUT", "/cgi-bin/put"}}

ESI Properties - Requires mod_esi
	 {erl_script_alias, {URLPath, [AllowedModule]}}
URLPath = string() and AllowedModule = atom(). erl_script_alias marks
all URLs matching url-path as erl scheme scripts. A matching URL is mapped
into a specific module and function, for example:
{erl_script_alias, {"/cgi-bin/example", [httpd_example]}}
A request to http://your.server.org/cgi-bin/example/httpd_example:yahoo would
refer to httpd_example:yahoo/3 or, if that does not exist,
httpd_example:yahoo/2 and http://your.server.org/cgi-bin/example/other:yahoo
would not be allowed to execute.

	 {erl_script_nocache, boolean()}
If erl_script_nocache is set to true, the server adds HTTP header fields
preventing proxies from caching the page. This is generally a good idea for
dynamic content, as the content often varies between each request. Default is
false.

	 {erl_script_timeout, integer()}
If erl_script_timeout sets the time in seconds the server waits between each
chunk of data to be delivered through mod_esi:deliver/2. Default is 15.
This is only relevant for scripts that use the erl scheme.

Log Properties - Requires mod_log
	 {error_log, path()}
Defines the filename of the error log file to be used to log server errors. If
the filename does not begin with a slash (/), it is assumed to be relative to
the server_root.

	 {security_log, path()}
Defines the filename of the access log file to be used to log security events.
If the filename does not begin with a slash (/), it is assumed to be relative
to the server_root.

	 {transfer_log, path()}
Defines the filename of the access log file to be used to log incoming
requests. If the filename does not begin with a slash (/), it is assumed to be
relative to the server_root.

Disk Log Properties - Requires mod_disk_log
	 {disk_log_format, internal | external}
Defines the file format of the log files. See disk_log for details. If the
internal file format is used, the log file is repaired after a crash. When a
log file is repaired, data can disappear. When the external file format is
used, httpd does not start if the log file is broken. Default is external.

	 {error_disk_log, path()}
Defines the filename of the (disk_log) error log file to be used to log
server errors. If the filename does not begin with a slash (/), it is assumed
to be relative to the server_root.

	 {error_disk_log_size, {MaxBytes, MaxFiles}}
MaxBytes = integer() and MaxFiles = integer(). Defines the properties of
the (disk_log) error log file. This file is of type wrap log and max bytes
is written to each file and max files is used before the first file is
truncated and reused.

	 {security_disk_log, path()}
Defines the filename of the (disk_log) access log file logging incoming
security events, that is, authenticated requests. If the filename does not
begin with a slash (/), it is assumed to be relative to the server_root.

	 {security_disk_log_size, {MaxBytes, MaxFiles}}
MaxBytes = integer() and MaxFiles = integer(). Defines the properties of
the disk_log access log file. This file is of type wrap log and max bytes
is written to each file and max files is used before the first file is
truncated and reused.

	 {transfer_disk_log, path()}
Defines the filename of the (disk_log) access log file logging incoming
requests. If the filename does not begin with a slash (/), it is assumed to be
relative to the server_root.

	 {transfer_disk_log_size, {MaxBytes, MaxFiles}}
MaxBytes = integer() and MaxFiles = integer(). Defines the properties of
the disk_log access log file. This file is of type wrap log and max bytes
is written to each file and max files is used before the first file is
truncated and reused.

Authentication Properties - Requires mod_auth

{directory, {path(), [{property(), term()}]}}

The properties for directories are as follows:
	 {allow_from, all | [RegxpHostString]}
Defines a set of hosts to be granted access to a given directory, for example:
{allow_from, ["123.34.56.11", "150.100.23"]}
The host 123.34.56.11 and all machines on the 150.100.23 subnet are
allowed access.

	 {deny_from, all | [RegxpHostString]}
Defines a set of hosts to be denied access to a given directory, for example:
{deny_from, ["123.34.56.11", "150.100.23"]}
The host 123.34.56.11 and all machines on the 150.100.23 subnet are not
allowed access.

	 {auth_type, plain | dets | mnesia}
Sets the type of authentication database that is used for the directory. The
key difference between the different methods is that dynamic data can be saved
when Mnesia and Dets are used.

	 {auth_user_file, path()}
Sets the name of a file containing the list of users and passwords for user
authentication. The filename can be either absolute or relative to the
server_root. If using the plain storage method, this file is a plain text
file where each line contains a username followed by a colon, followed by the
non-encrypted password. If usernames are duplicated, the behavior is
undefined.
Example:
ragnar:s7Xxv7
edward:wwjau8
If the Dets storage method is used, the user database is maintained by Dets
and must not be edited by hand. Use the API functions in module mod_auth to
create/edit the user database. This directive is ignored if the Mnesia storage
method is used. For security reasons, ensure that auth_user_file is stored
outside the document tree of the web server. If it is placed in the directory
that it protects, clients can download it.

	 {auth_group_file, path()}
Sets the name of a file containing the list of user groups for user
authentication. The filename can be either absolute or relative to the
server_root. If the plain storage method is used, the group file is a plain
text file, where each line contains a group name followed by a colon, followed
by the members usernames separated by spaces.
Example:
group1: bob joe ante
If the Dets storage method is used, the group database is maintained by Dets
and must not be edited by hand. Use the API for module mod_auth to
create/edit the group database. This directive is ignored if the Mnesia
storage method is used. For security reasons, ensure that the
auth_group_file is stored outside the document tree of the web server. If it
is placed in the directory that it protects, clients can download it.

	 {auth_name, string()}
Sets the name of the authorization realm (auth-domain) for a directory. This
string informs the client about which username and password to use.

	 {auth_access_password, string()}
If set to other than "NoPassword", the password is required for all API calls.
If the password is set to "DummyPassword", the password must be changed before
any other API calls. To secure the authenticating data, the password must be
changed after the web server is started. Otherwise it is written in clear text
in the configuration file.

	 {require_user, [string()]}
Defines users to grant access to a given directory using a secret password.

	 {require_group, [string()]}
Defines users to grant access to a given directory using a secret password.

Security Properties - Requires mod_security

{security_directory, {path(), [{property(), term()}]}}

The properties for the security directories are as follows:
	 {data_file, path()}
Name of the security data file. The filename can either be absolute or
relative to the server_root. This file is used to store persistent data for
module mod_security.

	 {max_retries, integer()}
Specifies the maximum number of attempts to authenticate a user before the
user is blocked out. If a user successfully authenticates while blocked, the
user receives a 403 (Forbidden) response from the server. If the user makes a
failed attempt while blocked, the server returns 401 (Unauthorized), for
security reasons. Default is 3. Can be set to infinity.

	 {block_time, integer()}
Specifies the number of minutes a user is blocked. After this time has passed,
the user automatically regains access. Default is 60.

	 {fail_expire_time, integer()}
Specifies the number of minutes a failed user authentication is remembered. If
a user authenticates after this time has passed, the previous failed
authentications are forgotten. Default is 30.

	 {auth_timeout, integer()}
Specifies the number of seconds a successful user authentication is
remembered. After this time has passed, the authentication is no longer
reported. Default is 30.

Web server API data types
The Erlang web server API data types are as follows:
ModData = #mod{}

-record(mod, {
 data = [],
 socket_type = ip_comm,
 socket,
 config_db,
 method,
 absolute_uri,
 request_uri,
 http_version,
 request_line,
 parsed_header = [],
 entity_body,
 connection
}).
To access the record in your callback-module use:
-include_lib("inets/include/httpd.hrl").
The fields of record mod have the following meaning:
	data - Type [{InteractionKey,InteractionValue}] is used to propagate
data between modules. Depicted interaction_data() in function type
declarations.

	socket_type - socket_type() indicates whether it is an IP socket or an
ssl socket.

	socket - The socket, in format ip_comm or ssl, depending on
socket_type.

	config_db - The config file directives stored as key-value tuples in an
ETS table. Depicted config_db() in function type declarations.

	method - Type "GET" | "POST" | "HEAD" | "TRACE", that is, the HTTP
method.

	absolute_uri - If the request is an HTTP/1.1 request, the URI can be in
the absolute URI format. In that case, httpd saves the absolute URI in this
field. An Example of an absolute URI is
"http://ServerName:Part/cgi-bin/find.pl?person=jocke"

	request_uri - The Request-URI as defined in
RFC 1945, for example,
"/cgi-bin/find.pl?person=jocke".

	http_version - The HTTP version of the request, that is, "HTTP/1.0",
or "HTTP/1.1".

	request_line - The Request-Line as defined
inRFC 1945, for example,
"GET /cgi-bin/find.pl?person=jocke HTTP/1.0".

	parsed_header - Type [{HeaderKey,HeaderValue}]. parsed_header
contains all HTTP header fields from the HTTP request stored in a list as
key-value tuples. See RFC 2616 for a
listing of all header fields. For example, the date field is stored as
{"date","Wed, 15 Oct 1997 14:35:17 GMT"}. RFC 2616 defines that HTTP is a
case-insensitive protocol and the header fields can be in lower case or upper
case. httpd ensures that all header field names are in lower case.

	entity_body - The entity-Body as defined in
RFC 2616, for example, data sent from a
CGI script using the POST method.

	connection - true | false. If set to true, the connection to the
client is a persistent connection and is not closed when the request is
served.

See also
RFC 2616, inets, ssl

 Summary

 Types

 property()

 socket_type()

 Callbacks: ERLANG WEB SERVER API CALLBACK FUNCTIONS

 do(ModData)

 When a valid request reaches httpd, it calls do/1 in each
module, defined by the configuration option of Module. The function can
generate data for other modules or a response that can be sent back to the
client.

 remove(ConfigDB)

 When httpd is shut down, it tries to execute remove/1 in
each Erlang web server callback module. The programmer can use this function to
clean up resources created in the store function.

 store/2

 Checks the validity of the configuration options before saving them in the
internal database. This function can also have a side effect, that is, setup of
necessary extra resources implied by the configuration option. It can also
resolve possible dependencies among configuration options by changing the value
of the option. This function only needs clauses for the options implemented by
this particular callback module.

 Web server API help functions

 parse_query(QueryString)

 deprecated

 parse_query/1 parses incoming data to erl and eval
scripts (see mod_esi) as defined in the standard URL format, that is, '+'
becomes 'space' and decoding of hexadecimal characters (%xx).

 Functions

 info(Pid)

 Equivalent to info/2.

 info/2

 Fetches information about the HTTP server. When called with only the pid, all
properties are fetched. When called with a list of specific properties, they are
fetched. The available properties are the same as the start options of the
server.

 info/3

 Equivalent to info/4.

 info(Address, Port, Profile, Properties)

 Fetches information about the HTTP server. When called with only Address and
Port, all properties are fetched. When called with a list of specific
properties, they are fetched. The available properties are the same as the start
options of the server.

 reload_config(Config, Mode)

 Reloads the HTTP server configuration without restarting the server. Incoming
requests are answered with a temporary down message during the reload time.

 Types

 property()

 (not exported)

 -type property() :: atom().

 socket_type()

 -type socket_type() :: ip_comm | ssl.

 Callbacks: ERLANG WEB SERVER API CALLBACK FUNCTIONS

 do(ModData)

 -callback do(ModData) -> {proceed, OldData} | {proceed, NewData} | {break, NewData} | done
 when
 ModData :: [{data, NewData} | {'Body', Body} | {'Head', Head}],
 OldData :: list(),
 NewData :: [{response, {StatusCode, Body}}],
 StatusCode :: integer(),
 Body :: iolist() | nobody | {Fun, FunArg},
 Head :: [HeaderOption],
 HeaderOption :: {Option, Value} | {code, StatusCode},
 Option :: accept_ranges | allow,
 Value :: string(),
 FunArg :: [term()],
 Fun :: fun((FunArg) -> sent | close | Body).

When a valid request reaches httpd, it calls do/1 in each
module, defined by the configuration option of Module. The function can
generate data for other modules or a response that can be sent back to the
client.
The field data in ModData is a list. This list is the list returned from the
last call to do/1.
Body is the body of the HTTP response that is sent back to the client. An
appropriate header is appended to the message. StatusCode is the status code
of the response, see RFC 2616 for the
appropriate values.
Head is a key value list of HTTP header fields. The server constructs an HTTP
header from this data. See RFC 2616 for
the appropriate value for each header field. If the client is an HTTP/1.0
client, the server filters the list so that only HTTP/1.0 header fields are sent
back to the client.
If Body is returned and equal to {Fun,Arg}, the web server tries
apply/2 on Fun with Arg as argument. The web server expects
that the fun either returns a list (Body) that is an HTTP response, or the
atom sent if the HTTP response is sent back to the client. If close is
returned from the fun, something has gone wrong and the server signals this to
the client by closing the connection.

 remove(ConfigDB)

 (optional)

 -callback remove(ConfigDB) -> ok | {error, Reason} when ConfigDB :: ets:tid(), Reason :: term().

When httpd is shut down, it tries to execute remove/1 in
each Erlang web server callback module. The programmer can use this function to
clean up resources created in the store function.

 store/2

 (optional)

 -callback store({Option, Value}, Config) -> {ok, {Option, NewValue}} | {error, Reason}
 when
 Option :: property(),
 Config :: [{Option, Value}],
 Value :: term(),
 NewValue :: term(),
 Reason :: term().

Checks the validity of the configuration options before saving them in the
internal database. This function can also have a side effect, that is, setup of
necessary extra resources implied by the configuration option. It can also
resolve possible dependencies among configuration options by changing the value
of the option. This function only needs clauses for the options implemented by
this particular callback module.

 Web server API help functions

 parse_query(QueryString)

 This function is deprecated. httpd:parse_query/1 is deprecated; use uri_string:dissect_query/1 instead.

 -spec parse_query(QueryString) -> QueryList | uri_string:error()
 when
 QueryString :: string(),
 QueryList :: [{unicode:chardata(), unicode:chardata() | true}].

parse_query/1 parses incoming data to erl and eval
scripts (see mod_esi) as defined in the standard URL format, that is, '+'
becomes 'space' and decoding of hexadecimal characters (%xx).

 Functions

 info(Pid)

 -spec info(Pid) -> HttpInformation
 when
 Pid :: pid(),
 Path :: file:name_all(),
 HttpInformation ::
 [CommonOption] |
 [CommunicationOption] |
 [ModOption] |
 [LimitOption] |
 [AdminOption],
 CommonOption ::
 {port, non_neg_integer()} |
 {server_name, string()} |
 {server_root, Path} |
 {document_root, Path},
 CommunicationOption ::
 {bind_address, inet:ip_address() | inet:hostname() | any} |
 {profile, atom()} |
 {socket_type,
 ip_comm |
 {ip_comm, ssl:tls_option() | gen_tcp:option()} |
 {ssl, ssl:tls_option() | gen_tcp:option()}} |
 {ipfamily, inet | inet6} |
 {minimum_bytes_per_second, integer()},
 ModOption :: {modules, atom()},
 LimitOption ::
 {customize, atom()} |
 {disable_chunked_transfer_encoding_send, boolean()} |
 {keep_alive, boolean()} |
 {keep_alive_timeout, integer()} |
 {max_body_size, integer()} |
 {max_clients, integer()} |
 {max_header_size, integer()} |
 {max_content_length, integer()} |
 {max_uri_size, integer()} |
 {max_keep_alive_request, integer()} |
 {max_client_body_chunk, integer()},
 AdminOption ::
 {mime_types, [{MimeType :: string(), Extension :: string()}] | Path} |
 {mime_type, string()} |
 {server_admin, string()} |
 {server_tokens,
 none | prod | major | minor | minimal | os | full | {private, string()}} |
 {logger, Options :: list()} |
 {log_format, common | combined} |
 {error_log_format, pretty | compact}.

Equivalent to info/2.

 info/2

 -spec info(Pid, Properties) -> HttpInformation
 when
 Pid :: pid(),
 Properties :: [atom()],
 HttpInformation ::
 [CommonOption] |
 [CommunicationOption] |
 [ModOption] |
 [LimitOption] |
 [AdminOption],
 CommonOption ::
 {port, non_neg_integer()} |
 {server_name, string()} |
 {server_root, Path} |
 {document_root, Path},
 CommunicationOption ::
 {bind_address, inet:ip_address() | inet:hostname() | any} |
 {profile, atom()} |
 {socket_type,
 ip_comm |
 {ip_comm, ssl:tls_option() | gen_tcp:option()} |
 {ssl, ssl:tls_option() | gen_tcp:option()}} |
 {ipfamily, inet | inet6} |
 {minimum_bytes_per_second, integer()},
 ModOption :: {modules, atom()},
 LimitOption ::
 {customize, atom()} |
 {disable_chunked_transfer_encoding_send, boolean()} |
 {keep_alive, boolean()} |
 {keep_alive_timeout, integer()} |
 {max_body_size, integer()} |
 {max_clients, integer()} |
 {max_header_size, integer()} |
 {max_content_length, integer()} |
 {max_uri_size, integer()} |
 {max_keep_alive_request, integer()} |
 {max_client_body_chunk, integer()},
 AdminOption ::
 {mime_types, [{MimeType :: string(), Extension :: string()}] | Path} |
 {mime_type, string()} |
 {server_admin, string()} |
 {server_tokens,
 none | prod | major | minor | minimal | os | full | {private, string()}} |
 {logger, Options :: list()} |
 {log_format, common | combined} |
 {error_log_format, pretty | compact};
 (Address, Port) -> HttpInformation
 when
 Address :: inet:ip_address(),
 Port :: integer(),
 Path :: file:name_all(),
 HttpInformation ::
 [CommonOption] |
 [CommunicationOption] |
 [ModOption] |
 [LimitOption] |
 [AdminOption],
 CommonOption ::
 {port, non_neg_integer()} |
 {server_name, string()} |
 {server_root, Path} |
 {document_root, Path},
 CommunicationOption ::
 {bind_address, inet:ip_address() | inet:hostname() | any} |
 {profile, atom()} |
 {socket_type,
 ip_comm |
 {ip_comm, ssl:tls_option() | gen_tcp:option()} |
 {ssl, ssl:tls_option() | gen_tcp:option()}} |
 {ipfamily, inet | inet6} |
 {minimum_bytes_per_second, integer()},
 ModOption :: {modules, atom()},
 LimitOption ::
 {customize, atom()} |
 {disable_chunked_transfer_encoding_send, boolean()} |
 {keep_alive, boolean()} |
 {keep_alive_timeout, integer()} |
 {max_body_size, integer()} |
 {max_clients, integer()} |
 {max_header_size, integer()} |
 {max_content_length, integer()} |
 {max_uri_size, integer()} |
 {max_keep_alive_request, integer()} |
 {max_client_body_chunk, integer()},
 AdminOption ::
 {mime_types, [{MimeType :: string(), Extension :: string()}] | Path} |
 {mime_type, string()} |
 {server_admin, string()} |
 {server_tokens,
 none | prod | major | minor | minimal | os | full | {private, string()}} |
 {logger, Options :: list()} |
 {log_format, common | combined} |
 {error_log_format, pretty | compact}.

Fetches information about the HTTP server. When called with only the pid, all
properties are fetched. When called with a list of specific properties, they are
fetched. The available properties are the same as the start options of the
server.
Note
Pid is the pid returned from inets:start/[2,3]. Can also be retrieved form
inets:services/0 and inets:services_info/0, see inets.

 info/3

 -spec info(Address, Port, Profile) -> HttpInformation
 when
 Address :: inet:ip_address() | any,
 Port :: integer(),
 Profile :: atom(),
 Path :: file:name_all(),
 HttpInformation ::
 [CommonOption] |
 [CommunicationOption] |
 [ModOption] |
 [LimitOption] |
 [AdminOption],
 CommonOption ::
 {port, non_neg_integer()} |
 {server_name, string()} |
 {server_root, Path} |
 {document_root, Path},
 CommunicationOption ::
 {bind_address, inet:ip_address() | inet:hostname() | any} |
 {profile, atom()} |
 {socket_type,
 ip_comm |
 {ip_comm, ssl:tls_option() | gen_tcp:option()} |
 {ssl, ssl:tls_option() | gen_tcp:option()}} |
 {ipfamily, inet | inet6} |
 {minimum_bytes_per_second, integer()},
 ModOption :: {modules, atom()},
 LimitOption ::
 {customize, atom()} |
 {disable_chunked_transfer_encoding_send, boolean()} |
 {keep_alive, boolean()} |
 {keep_alive_timeout, integer()} |
 {max_body_size, integer()} |
 {max_clients, integer()} |
 {max_header_size, integer()} |
 {max_content_length, integer()} |
 {max_uri_size, integer()} |
 {max_keep_alive_request, integer()} |
 {max_client_body_chunk, integer()},
 AdminOption ::
 {mime_types, [{MimeType :: string(), Extension :: string()}] | Path} |
 {mime_type, string()} |
 {server_admin, string()} |
 {server_tokens,
 none | prod | major | minor | minimal | os | full | {private, string()}} |
 {logger, Options :: list()} |
 {log_format, common | combined} |
 {error_log_format, pretty | compact};
 (Address, Port, Properties) -> HttpInformation
 when
 Address :: inet:ip_address() | any,
 Port :: integer(),
 Properties :: [atom()],
 Path :: file:name_all(),
 HttpInformation ::
 [CommonOption] |
 [CommunicationOption] |
 [ModOption] |
 [LimitOption] |
 [AdminOption],
 CommonOption ::
 {port, non_neg_integer()} |
 {server_name, string()} |
 {server_root, Path} |
 {document_root, Path},
 CommunicationOption ::
 {bind_address, inet:ip_address() | inet:hostname() | any} |
 {profile, atom()} |
 {socket_type,
 ip_comm |
 {ip_comm, ssl:tls_option() | gen_tcp:option()} |
 {ssl, ssl:tls_option() | gen_tcp:option()}} |
 {ipfamily, inet | inet6} |
 {minimum_bytes_per_second, integer()},
 ModOption :: {modules, atom()},
 LimitOption ::
 {customize, atom()} |
 {disable_chunked_transfer_encoding_send, boolean()} |
 {keep_alive, boolean()} |
 {keep_alive_timeout, integer()} |
 {max_body_size, integer()} |
 {max_clients, integer()} |
 {max_header_size, integer()} |
 {max_content_length, integer()} |
 {max_uri_size, integer()} |
 {max_keep_alive_request, integer()} |
 {max_client_body_chunk, integer()},
 AdminOption ::
 {mime_types, [{MimeType :: string(), Extension :: string()}] | Path} |
 {mime_type, string()} |
 {server_admin, string()} |
 {server_tokens,
 none | prod | major | minor | minimal | os | full | {private, string()}} |
 {logger, Options :: list()} |
 {log_format, common | combined} |
 {error_log_format, pretty | compact}.

Equivalent to info/4.

 info(Address, Port, Profile, Properties)

 (since OTP 18.0)

 -spec info(Address, Port, Profile, Properties) -> HttpInformation
 when
 Address :: inet:ip_address() | any,
 Port :: integer(),
 Profile :: atom(),
 Properties :: [atom()],
 Path :: file:name_all(),
 HttpInformation ::
 [CommonOption] |
 [CommunicationOption] |
 [ModOption] |
 [LimitOption] |
 [AdminOption],
 CommonOption ::
 {port, non_neg_integer()} |
 {server_name, string()} |
 {server_root, Path} |
 {document_root, Path},
 CommunicationOption ::
 {bind_address, inet:ip_address() | inet:hostname() | any} |
 {profile, atom()} |
 {socket_type,
 ip_comm |
 {ip_comm, ssl:tls_option() | gen_tcp:option()} |
 {ssl, ssl:tls_option() | gen_tcp:option()}} |
 {ipfamily, inet | inet6} |
 {minimum_bytes_per_second, integer()},
 ModOption :: {modules, atom()},
 LimitOption ::
 {customize, atom()} |
 {disable_chunked_transfer_encoding_send, boolean()} |
 {keep_alive, boolean()} |
 {keep_alive_timeout, integer()} |
 {max_body_size, integer()} |
 {max_clients, integer()} |
 {max_header_size, integer()} |
 {max_content_length, integer()} |
 {max_uri_size, integer()} |
 {max_keep_alive_request, integer()} |
 {max_client_body_chunk, integer()},
 AdminOption ::
 {mime_types, [{MimeType :: string(), Extension :: string()}] | Path} |
 {mime_type, string()} |
 {server_admin, string()} |
 {server_tokens,
 none | prod | major | minor | minimal | os | full | {private, string()}} |
 {logger, Options :: list()} |
 {log_format, common | combined} |
 {error_log_format, pretty | compact}.

Fetches information about the HTTP server. When called with only Address and
Port, all properties are fetched. When called with a list of specific
properties, they are fetched. The available properties are the same as the start
options of the server.
Note
The Address must be the IP address and cannot be the hostname.

 reload_config(Config, Mode)

 -spec reload_config(Config, Mode) -> ok | {error, Reason} | no_return()
 when
 Config :: file:name_all() | [{Option, Value}],
 Mode :: non_disturbing | disturbing | blocked,
 Option :: atom(),
 Value :: term(),
 Reason :: term().

Reloads the HTTP server configuration without restarting the server. Incoming
requests are answered with a temporary down message during the reload time.
Note
Available properties are the same as the start options of the server, but the
properties bind_address and port cannot be changed.
If mode is disturbing, the server is blocked forcefully, all ongoing requests
terminates, and the reload starts immediately. If mode is non-disturbing, no new
connections are accepted, but ongoing requests are allowed to complete before
the reload is done.

httpd_custom_api behaviour

Behaviour with optional callbacks to customize the inets HTTP server.
The module implementing this behaviour shall be supplied to to the servers
configuration with the option customize

 Summary

 Callbacks

 request_header/1

 Filter and possible alter HTTP request headers before they are processed by the
server.

 response_default_headers()

 Provide default headers for the HTTP servers responses. Note that this option
may override built-in defaults.

 response_header/1

 Filter and possible alter HTTP response headers before they are sent to the
client.

 Callbacks

 request_header/1

 (since OTP 17.5.6)

 (optional)

 -callback request_header({Key :: string(), Value :: string()}) ->
 {true, {Key :: string(), Value :: string()}} | false.

Filter and possible alter HTTP request headers before they are processed by the
server.

 response_default_headers()

 (since OTP 18.1.1)

 (optional)

 -callback response_default_headers() -> [{Key :: string(), Value :: string()}].

Provide default headers for the HTTP servers responses. Note that this option
may override built-in defaults.

 response_header/1

 (since OTP 17.5.6)

 (optional)

 -callback response_header({Key :: string(), Value :: string()}) ->
 {true, {Key :: string(), Value :: string()}} | false | {true, string()}.

Filter and possible alter HTTP response headers before they are sent to the
client.

httpd_socket

Communication utility functions to be used by the Erlang web server API
programmer.
This module provides the Erlang web server API module programmer with utility
functions for generic sockets communication. The appropriate communication
mechanism is transparently used, that is, ip_comm or ssl.
See also
httpd

 Summary

 Functions

 deliver(SocketType, Socket, Data)

 deliver/3 sends Data over Socket using the specified SocketType.
Socket and SocketType is to be the socket and the socket_type form the
mod record as defined in httpd.hrl

 peername(SocketType, Socket)

 peername/2 returns the Port and IPAddress of the remote Socket.

 resolve()

 resolve/0 returns the official HostName of the current host.

 Functions

 deliver(SocketType, Socket, Data)

 -spec deliver(SocketType, Socket, Data) -> Result
 when
 SocketType :: httpd:socket_type(),
 Socket :: inet:socket(),
 Data :: iolist() | binary(),
 Result :: ok | socket_closed.

deliver/3 sends Data over Socket using the specified SocketType.
Socket and SocketType is to be the socket and the socket_type form the
mod record as defined in httpd.hrl

 peername(SocketType, Socket)

 -spec peername(SocketType, Socket) -> {Port, IpAdress}
 when
 SocketType :: httpd:socket_type(),
 Socket :: inet:socket() | ssl:sslsocket(),
 Port :: inet:port_number(),
 IpAdress :: inet:ip4_address() | inet:ip6_address() | string().

peername/2 returns the Port and IPAddress of the remote Socket.

 resolve()

 -spec resolve() -> HostName when HostName :: inet:hostname().

resolve/0 returns the official HostName of the current host.

httpd_util

Miscellaneous utility functions to be used when implementing Erlang web server
API modules.
This module provides the Erlang web server API module programmer with
miscellaneous utility functions.
Note
Note the module is only recommended for using with httpd - for other cases it
should be considered as deprecated.

See also
httpd

 Summary

 Functions

 convert_request_date(DateString)

 convert_request_date/1 converts DateString to
the Erlang date format. DateString must be in one of the three date formats
defined in RFC 2616.

 create_etag(FileInfo)

 create_etag/1 calculates the Etag for a file from its size and time for last
modification. FileInfo is a record defined in kernel/include/file.hrl.

 day(NthDayOfWeek)

 day/1 converts the day of the week (NthDayOfWeek) from an integer
(1-7) to an abbreviated string, that is

 lookup(EtsTable, Key)

 Equivalent to lookup/3.

 lookup(EtsTable, Key, Undefined)

 lookup extracts {Key, Value} tuples from ETSTable and returns the Value
associated with Key. If ETSTable is of type bag, only the first Value
associated with Key is returned. lookup/2 returns undefined
and lookup/3 returns Undefined if no Value is found.

 lookup_mime(ConfigDB, Suffix)

 Equivalent to lookup_mime/3.

 lookup_mime(ConfigDB, Suffix, Undefined)

 lookup_mime returns the MIME type associated with a specific file suffix as
specified in the file mime.types (located in the config directory).

 lookup_mime_default(ConfigDB, Suffix)

 Equivalent to lookup_mime_default/3.

 lookup_mime_default(ConfigDB, Suffix, Undefined)

 lookup_mime_default returns the MIME type associated with a specific file
suffix as specified in the mime.types file (located in the config directory).
If no appropriate association is found, the value of DefaultType is returned.

 message(StatusCode, PhraseArgs, ConfigDB)

 message/3 returns an informative HTTP 1.1 status string in
HTML. Each StatusCode requires a specific PhraseArgs

 month(NthMonth)

 month/1 converts the month NthMonth as an integer (1-12) to an
abbreviated string, that is

 multi_lookup(EtsTable, Key)

 multi_lookup extracts all {Key, Value} tuples from an ETSTable and returns
all Values associated with Key in a list.

 reason_phrase(StatusCode)

 reason_phrase returns Description of an HTTP 1.1 StatusCode, for example,
200 is "OK" and 201 is "Created". For more information, see
RFC 2616.

 rfc1123_date()

 Equivalent to rfc1123_date/1.

 rfc1123_date(LocalTime)

 rfc1123_date/0 returns the current date in RFC 1123 format. rfc_date/1
converts the date in the Erlang format to the RFC 1123 date format.

 split(String, RegExp, N)

 split/3 splits String in N chunks using RegExp. split/3 is equivalent
to re:split/3 with the exception that N defines the maximum number of
fields in FieldList.

 split_path(URIString)

 split_path/1 splits RequestLine in a file reference
(Path), and a QueryString or a PathInfo string as specified in
RFC 2616. A QueryString is isolated
from Path with a question mark (?) and PathInfo with a slash (/). In the
case of a QueryString, everything before ? is a Path and everything after
? is a QueryString. In the case of a PathInfo, RequestLine is scanned
from left-to-right on the hunt for longest possible Path being a file or a
directory. Everything after the longest possible Path, isolated with a /, is
regarded as PathInfo

 split_script_path(URIString)

 split_script_path/1 is equivalent to split_path/1 with one exception. If
the longest possible path is not a regular, accessible, and executable file,
then not_a_script is returned.

 Functions

 convert_request_date(DateString)

 -spec convert_request_date(DateString) -> ErlDate | bad_date
 when DateString :: string(), ErlDate :: calendar:datetime().

convert_request_date/1 converts DateString to
the Erlang date format. DateString must be in one of the three date formats
defined in RFC 2616.

 create_etag(FileInfo)

 -spec create_etag(FileInfo) -> Etag when FileInfo :: file:file_info(), Etag :: string().

create_etag/1 calculates the Etag for a file from its size and time for last
modification. FileInfo is a record defined in kernel/include/file.hrl.

 day(NthDayOfWeek)

 -spec day(NthDayOfWeek) -> DayOfWeek when NthDayOfWeek :: 1..7, DayOfWeek :: string().

day/1 converts the day of the week (NthDayOfWeek) from an integer
(1-7) to an abbreviated string, that is:
1 = "Mon", 2 = "Tue", ..., 7 = "Sat".

 lookup(EtsTable, Key)

 -spec lookup(EtsTable, Key) -> Result
 when EtsTable :: ets:table(), Key :: term(), Result :: term() | undefined.

Equivalent to lookup/3.

 lookup(EtsTable, Key, Undefined)

 -spec lookup(EtsTable, Key, Undefined) -> Result
 when
 EtsTable :: ets:table(),
 Key :: term(),
 Undefined :: term(),
 Result :: term() | Undefined.

lookup extracts {Key, Value} tuples from ETSTable and returns the Value
associated with Key. If ETSTable is of type bag, only the first Value
associated with Key is returned. lookup/2 returns undefined
and lookup/3 returns Undefined if no Value is found.

 lookup_mime(ConfigDB, Suffix)

 -spec lookup_mime(ConfigDB, Suffix) -> MimeType
 when ConfigDB :: ets:tid(), Suffix :: string(), MimeType :: string() | undefined.

Equivalent to lookup_mime/3.

 lookup_mime(ConfigDB, Suffix, Undefined)

 -spec lookup_mime(ConfigDB, Suffix, Undefined) -> MimeType
 when
 ConfigDB :: ets:tid(),
 Suffix :: string(),
 Undefined :: term(),
 MimeType :: string() | Undefined.

lookup_mime returns the MIME type associated with a specific file suffix as
specified in the file mime.types (located in the config directory).

 lookup_mime_default(ConfigDB, Suffix)

 -spec lookup_mime_default(ConfigDB, Suffix) -> MimeType
 when
 ConfigDB :: ets:tid(),
 Suffix :: string(),
 MimeType :: string() | undefined.

Equivalent to lookup_mime_default/3.

 lookup_mime_default(ConfigDB, Suffix, Undefined)

 -spec lookup_mime_default(ConfigDB, Suffix, Undefined) -> MimeType
 when
 ConfigDB :: ets:tid(),
 Suffix :: string(),
 Undefined :: term(),
 MimeType :: string() | Undefined.

lookup_mime_default returns the MIME type associated with a specific file
suffix as specified in the mime.types file (located in the config directory).
If no appropriate association is found, the value of DefaultType is returned.

 message(StatusCode, PhraseArgs, ConfigDB)

 -spec message(StatusCode, PhraseArgs, ConfigDB) -> Message
 when
 StatusCode ::
 301 | 304 | 400 | 401 | 403 | 404 | 408 | 412 | 413 | 414 | 500 | 501 | 503 |
 504,
 PhraseArgs :: term(),
 ConfigDB :: ets:tid(),
 Message :: string().

message/3 returns an informative HTTP 1.1 status string in
HTML. Each StatusCode requires a specific PhraseArgs:
	301 - string/0: A URL pointing at the new document position.

	400 | 401 | 500 - none (no PhraseArgs).

	403 | 404 - string/0: A Request-URI as described in
RFC 2616.

	501 - {Method, RequestURI, HTTPVersion}: The HTTP Method,
Request-URI, and HTTP-Version as defined in RFC 2616.

	504 - string/0: A string describing why the service was unavailable.

 month(NthMonth)

 -spec month(NthMonth) -> Month when NthMonth :: 1..12, Month :: string().

month/1 converts the month NthMonth as an integer (1-12) to an
abbreviated string, that is:
1 = "Jan", 2 = "Feb", ..., 12 = "Dec".

 multi_lookup(EtsTable, Key)

 -spec multi_lookup(EtsTable, Key) -> Result
 when EtsTable :: ets:tid(), Key :: term(), Result :: list() | [term()].

multi_lookup extracts all {Key, Value} tuples from an ETSTable and returns
all Values associated with Key in a list.

 reason_phrase(StatusCode)

 -spec reason_phrase(StatusCode) -> Description
 when
 StatusCode ::
 100 | 101 | 102 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 226 |
 300 | 301 | 302 | 303 | 304 | 305 | 306 | 307 | 308 | 400 | 401 | 402 |
 403 | 404 | 405 | 406 | 407 | 408 | 409 | 410 | 411 | 412 | 413 | 414 |
 415 | 416 | 417 | 422 | 423 | 424 | 425 | 426 | 500 | 501 | 502 | 503 |
 504 | 505 | 507,
 Description :: string().

reason_phrase returns Description of an HTTP 1.1 StatusCode, for example,
200 is "OK" and 201 is "Created". For more information, see
RFC 2616.

 rfc1123_date()

 -spec rfc1123_date() -> RFC1123Date when RFC1123Date :: string().

Equivalent to rfc1123_date/1.

 rfc1123_date(LocalTime)

 -spec rfc1123_date(LocalTime) -> RFC1123Date
 when
 LocalTime :: calendar:datetime() | undefined,
 RFC1123Date :: string() | undefined.

rfc1123_date/0 returns the current date in RFC 1123 format. rfc_date/1
converts the date in the Erlang format to the RFC 1123 date format.

 split(String, RegExp, N)

 -spec split(String, RegExp, N) -> SplitRes
 when
 String :: string(),
 RegExp :: string(),
 N :: non_neg_integer(),
 SplitRes :: {ok, FieldList} | {error, term()},
 FieldList :: [string()].

split/3 splits String in N chunks using RegExp. split/3 is equivalent
to re:split/3 with the exception that N defines the maximum number of
fields in FieldList.

 split_path(URIString)

 -spec split_path(URIString) -> {Path, QueryStringOrPathInfo}
 when URIString :: string(), Path :: string(), QueryStringOrPathInfo :: string().

split_path/1 splits RequestLine in a file reference
(Path), and a QueryString or a PathInfo string as specified in
RFC 2616. A QueryString is isolated
from Path with a question mark (?) and PathInfo with a slash (/). In the
case of a QueryString, everything before ? is a Path and everything after
? is a QueryString. In the case of a PathInfo, RequestLine is scanned
from left-to-right on the hunt for longest possible Path being a file or a
directory. Everything after the longest possible Path, isolated with a /, is
regarded as PathInfo

 split_script_path(URIString)

 -spec split_script_path(URIString) -> Split
 when
 URIString :: string(),
 Split :: not_a_script | {Path, {PathInfo, QueryString}} | {Path, []},
 Path :: string(),
 QueryString :: string(),
 PathInfo :: string().

split_script_path/1 is equivalent to split_path/1 with one exception. If
the longest possible path is not a regular, accessible, and executable file,
then not_a_script is returned.

mod_alias

URL aliasing.
Erlang web server internal API for handling of, for example, interaction data
exported by module mod_alias.

 Summary

 Functions

 default_index(ConfigDB, Path)

 If Path is a directory, default_index/2, it starts
searching for resources or files that are specified in the config directive
DirectoryIndex. If an appropriate resource or file is found, it is appended to
the end of Path and then returned. Path is returned unaltered if no
appropriate file is found or if Path is not a directory. config_db() is the
server config file in ETS table format as described in
Inets User's Guide.

 path(Data, ConfigDB, RequestURI)

 path/3 returns the file Path in the RequestURI (see
RFC 1945). If the interaction data
{real_name, {Path, AfterPath}} has been exported by mod_alias, Path is
returned. If no interaction data has been exported, ServerRoot is used to
generate a file Path. config_db() and interaction_data() are as defined in
Inets User's Guide.

 real_name(ConfigDB, RequestURI, Aliases)

 real_name/3 traverses Aliases, typically extracted from
ConfigDB, and matches each FakeName with RequestURI. If a match is found,
FakeName is replaced with RealName in the match. The resulting path is split
into two parts, ShortPath and AfterPath, as defined in
httpd_util:split_path/1. Path is generated from ShortPath, that is, the
result from default_index/2 with ShortPath as
an argument. config_db() is the server config file in ETS table format as
described in Inets User's Guide.

 real_script_name(ConfigDB, RequestURI, ScriptAliases)

 real_script_name/3 traverses ScriptAliases,
typically extracted from ConfigDB, and matches each FakeName with
RequestURI. If a match is found, FakeName is replaced with RealName in the
match. If the resulting match is not an executable script, not_a_script is
returned. If it is a script, the resulting script path is in two parts,
ShortPath and AfterPath, as defined in httpd_util:split_script_path/1.
config_db() is the server config file in ETS table format as described in
Inets User's Guide.

 Functions

 default_index(ConfigDB, Path)

 -spec default_index(ConfigDB, Path) -> NewPath
 when ConfigDB :: ets:tid(), Path :: string(), NewPath :: string().

If Path is a directory, default_index/2, it starts
searching for resources or files that are specified in the config directive
DirectoryIndex. If an appropriate resource or file is found, it is appended to
the end of Path and then returned. Path is returned unaltered if no
appropriate file is found or if Path is not a directory. config_db() is the
server config file in ETS table format as described in
Inets User's Guide.

 path(Data, ConfigDB, RequestURI)

 -spec path(Data, ConfigDB, RequestURI) -> Path
 when
 Data :: [{real_name, {Path, AfterPath}}],
 ConfigDB :: ets:tid(),
 RequestURI :: string(),
 AfterPath :: string(),
 Path :: string().

path/3 returns the file Path in the RequestURI (see
RFC 1945). If the interaction data
{real_name, {Path, AfterPath}} has been exported by mod_alias, Path is
returned. If no interaction data has been exported, ServerRoot is used to
generate a file Path. config_db() and interaction_data() are as defined in
Inets User's Guide.

 real_name(ConfigDB, RequestURI, Aliases)

 -spec real_name(ConfigDB, RequestURI, Aliases) -> ReturnPath
 when
 ConfigDB :: ets:tid(),
 RequestURI :: string(),
 Aliases :: [{FakeName, RealName}],
 ReturnPath :: {ShortPath, Path, AfterPath},
 FakeName :: re:mp() | iodata() | unicode:charlist() | string(),
 RealName :: string(),
 ShortPath :: string(),
 Path :: string(),
 AfterPath :: string().

real_name/3 traverses Aliases, typically extracted from
ConfigDB, and matches each FakeName with RequestURI. If a match is found,
FakeName is replaced with RealName in the match. The resulting path is split
into two parts, ShortPath and AfterPath, as defined in
httpd_util:split_path/1. Path is generated from ShortPath, that is, the
result from default_index/2 with ShortPath as
an argument. config_db() is the server config file in ETS table format as
described in Inets User's Guide.

 real_script_name(ConfigDB, RequestURI, ScriptAliases)

 -spec real_script_name(ConfigDB, RequestURI, ScriptAliases) -> ReturnPath | not_a_script
 when
 ConfigDB :: ets:tid(),
 RequestURI :: string(),
 ScriptAliases :: list() | [{FakeName, RealName}],
 ReturnPath :: {ShortPath, AfterPath},
 FakeName :: re:mp() | iodata() | unicode:charlist() | string(),
 RealName :: string(),
 ShortPath :: string(),
 AfterPath :: term().

real_script_name/3 traverses ScriptAliases,
typically extracted from ConfigDB, and matches each FakeName with
RequestURI. If a match is found, FakeName is replaced with RealName in the
match. If the resulting match is not an executable script, not_a_script is
returned. If it is a script, the resulting script path is in two parts,
ShortPath and AfterPath, as defined in httpd_util:split_script_path/1.
config_db() is the server config file in ETS table format as described in
Inets User's Guide.

mod_auth

User authentication using text files, Dets, or Mnesia database.
This module provides for basic user authentication using textual files, Dets
databases, or Mnesia databases.
See also
httpd, mod_alias

 Summary

 Types

 httpd_group()

 httpd_user()

 Functions

 add_group_member(GroupName, UserName, Options)

 Equivalent to add_group_member/5.

 add_group_member(GroupName, UserName, Port, Directory)

 Equivalent to add_group_member/5.

 add_group_member(GroupName, UserName, Address, Port, Directory)

 add_group_member/3, add_group_member/4, and add_group_member/5 each adds
a user to a group. If the group does not exist, it is created and the user is
added to the group. Upon successful operation, this function returns true.
When add_group_members/3 is called, options Port and Dir are mandatory.

 add_user(UserName, Options)

 Equivalent to add_user/6.

 add_user(UserName, Password, UserData, Port, Directory)

 Equivalent to add_user/6.

 add_user(UserName, Password, UserData, Address, Port, Directory)

 add_user(UserName, Password, UserData, Address, Port, Dir) -> true | {error,
Reason}

 delete_group(GroupName, Options)

 Equivalent to delete_group/4.

 delete_group(GroupName, Port, Directory)

 Equivalent to delete_group(GroupName, undefined, Port, Dir).

 delete_group(GroupName, Address, Port, Directory)

 delete_group/2, delete_group/3, and delete_group/4 each deletes the group
specified and returns true. If there is an error, {error, Reason} is
returned. When delete_group/2 is called, option Port and Dir are
mandatory.

 delete_group_member(GroupName, UserName, Options)

 Equivalent to delete_group_member/5.

 delete_group_member(GroupName, UserName, Port, Directory)

 Equivalent to delete_group_member/5.

 delete_group_member(GroupName, UserName, Address, Port, Directory)

 delete_group_member/3, delete_group_member/4, and delete_group_member/5
each deletes a user from a group. If the group or the user does not exist, this
function returns an error, otherwise true. When delete_group_member/3 is
called, the options Port and Dir are mandatory.

 delete_user(UserName, Options)

 Equivalent to delete_user/4.

 delete_user(UserName, Port, Directory)

 Equivalent to delete_user/4.

 delete_user(UserName, Address, Port, Directory)

 delete_user/2, delete_user/3, and delete_user/4 each
deletes a user from the user database. If the operation is successful, this
function returns true. If an error occurs, {error, Reason} is returned. When
delete_user/2 is called, options Port and Dir are
mandatory.

 get_user(UserName, Options)

 Equivalent to get_user/4.

 get_user(UserName, Port, Directory)

 Equivalent to get_user/4.

 get_user(UserName, Address, Port, Directory)

 get_user/2, get_user/3, and get_user/4 each returns an httpd_user/0
record containing the userdata for a specific user. If the user cannot be
found, {error, Reason} is returned. When get_user/2 is called, options
Port and Dir are mandatory.

 list_group_members(GroupName, Options)

 Equivalent to list_group_members/4.

 list_group_members(GroupName, Port, Directory)

 Equivalent to list_group_members/4.

 list_group_members(GroupName, Address, Port, Directory)

 list_group_members/2, list_group_members/3, and list_group_members/4 each
lists the members of a specified group. If the group does not exist or there is
an error, {error, Reason} is returned. When list_group_members/2 is called,
options Port and Dir are mandatory.

 list_groups(Options)

 Equivalent to list_groups/3.

 list_groups(Port, Directory)

 Equivalent to list_groups/3.

 list_groups(Address, Port, Directory)

 list_groups/1, list_groups/2, and list_groups/3 each lists all the groups
available. If there is an error, {error, Reason} is returned. When
list_groups/1 is called, options Port and Dir are mandatory.

 list_users(Options)

 Equivalent to list_users/3.

 list_users(Port, Directory)

 Equivalent to list_users/3.

 list_users(Address, Port, Directory)

 list_users/1, list_users/2, and list_users/3 each returns a list of users
in the user database for a specific Port/Dir. When list_users/1 is called,
options Port and Dir are mandatory.

 update_password(Port, Dir, OldPassword, NewPassword, NewPassword)

 Equivalent to update_password/6.

 update_password(Address, Port, Dir, OldPassword, NewPassword, NewPassword)

 update_password/5 and update_password/6 each updates AuthAccessPassword
for the specified directory. If NewPassword is equal to "NoPassword", no
password is required to change authorisation data. If NewPassword is equal to
"DummyPassword", no changes can be done without changing the password first.

 Types

 httpd_group()

 (not exported)

 -type httpd_group() :: #httpd_group{name :: term(), userlist :: term()}.

 httpd_user()

 (not exported)

 -type httpd_user() :: #httpd_user{username :: term(), password :: term(), user_data :: term()}.

 Functions

 add_group_member(GroupName, UserName, Options)

 -spec add_group_member(GroupName, UserName, Options) -> true | {error, Reason}
 when
 GroupName :: string(),
 UserName :: string(),
 Options ::
 [{port, Port} |
 {addr, Address} |
 {dir, Directory} |
 {authPassword, AuthPassword}],
 Port :: inet:port_number(),
 Address :: inet:ip4_address() | inet:ip6_address() | string() | undefined,
 Directory :: string(),
 AuthPassword :: string(),
 Reason :: term().

Equivalent to add_group_member/5.

 add_group_member(GroupName, UserName, Port, Directory)

 -spec add_group_member(GroupName, UserName, Port, Directory) -> true | {error, Reason}
 when
 GroupName :: string(),
 UserName :: string(),
 Port :: inet:port_number(),
 Directory :: string(),
 Reason :: term().

Equivalent to add_group_member/5.

 add_group_member(GroupName, UserName, Address, Port, Directory)

 -spec add_group_member(GroupName, UserName, Address, Port, Directory) -> true | {error, Reason}
 when
 GroupName :: string(),
 UserName :: string(),
 Port :: inet:port_number(),
 Address :: inet:ip4_address() | inet:ip6_address() | string() | undefined,
 Directory :: string(),
 Reason :: term().

add_group_member/3, add_group_member/4, and add_group_member/5 each adds
a user to a group. If the group does not exist, it is created and the user is
added to the group. Upon successful operation, this function returns true.
When add_group_members/3 is called, options Port and Dir are mandatory.

 add_user(UserName, Options)

 -spec add_user(UserName, Options) -> true | {error, Reason}
 when
 UserName :: string(),
 Options ::
 [{password, Password} |
 {userData, UserData} |
 {port, Port} |
 {addr, Address} |
 {dir, Directory} |
 {authPassword, AuthPassword}],
 Password :: string(),
 UserData :: term(),
 Port :: inet:port_number(),
 Address :: inet:ip4_address() | inet:ip6_address() | string() | undefined,
 Directory :: string(),
 AuthPassword :: string(),
 Reason :: term().

Equivalent to add_user/6.

 add_user(UserName, Password, UserData, Port, Directory)

 -spec add_user(UserName, Password, UserData, Port, Directory) -> true | {error, Reason}
 when
 UserName :: string(),
 Password :: string(),
 UserData :: term(),
 Port :: inet:port_number(),
 Directory :: string(),
 Reason :: term().

Equivalent to add_user/6.

 add_user(UserName, Password, UserData, Address, Port, Directory)

 -spec add_user(UserName, Password, UserData, Address, Port, Directory) -> true | {error, Reason}
 when
 UserName :: string(),
 Password :: string(),
 UserData :: term(),
 Port :: inet:port_number(),
 Address :: inet:ip4_address() | inet:ip6_address() | string() | undefined,
 Directory :: string(),
 Reason :: term().

add_user(UserName, Password, UserData, Address, Port, Dir) -> true | {error,
Reason}
add_user/2, add_user/5, and add_user/6 each adds a user to
the user database. If the operation is successful, this function returns true.
If an error occurs, {error, Reason} is returned. When
add_user/2 is called, options Password, UserData, Port,
and Dir are mandatory.

 delete_group(GroupName, Options)

 -spec delete_group(GroupName, Options) -> true | {error, Reason}
 when
 GroupName :: string(),
 Options ::
 [{port, Port} |
 {addr, Address} |
 {dir, Directory} |
 {authPassword, AuthPassword}],
 Port :: inet:port_number(),
 Address :: inet:ip4_address() | inet:ip6_address() | string() | undefined,
 Directory :: string(),
 AuthPassword :: string(),
 Reason :: term().

Equivalent to delete_group/4.

 delete_group(GroupName, Port, Directory)

 -spec delete_group(GroupName, Port, Directory) -> true | {error, Reason}
 when
 GroupName :: string(),
 Port :: inet:port_number(),
 Directory :: string(),
 Reason :: term().

Equivalent to delete_group(GroupName, undefined, Port, Dir).

 delete_group(GroupName, Address, Port, Directory)

 -spec delete_group(GroupName, Address, Port, Directory) -> true | {error, Reason}
 when
 GroupName :: string(),
 Port :: inet:port_number(),
 Address :: inet:ip4_address() | inet:ip6_address() | string() | undefined,
 Directory :: string(),
 Reason :: term().

delete_group/2, delete_group/3, and delete_group/4 each deletes the group
specified and returns true. If there is an error, {error, Reason} is
returned. When delete_group/2 is called, option Port and Dir are
mandatory.

 delete_group_member(GroupName, UserName, Options)

 -spec delete_group_member(GroupName, UserName, Options) -> true | {error, Reason}
 when
 GroupName :: string(),
 UserName :: string(),
 Options ::
 [{port, Port} |
 {addr, Address} |
 {dir, Directory} |
 {authPassword, AuthPassword}],
 Port :: inet:port_number(),
 Address ::
 inet:ip4_address() | inet:ip6_address() | string() | undefined,
 Directory :: string(),
 AuthPassword :: string(),
 Reason :: term().

Equivalent to delete_group_member/5.

 delete_group_member(GroupName, UserName, Port, Directory)

 -spec delete_group_member(GroupName, UserName, Port, Directory) -> true | {error, Reason}
 when
 GroupName :: string(),
 UserName :: string(),
 Port :: inet:port_number(),
 Directory :: string(),
 Reason :: term().

Equivalent to delete_group_member/5.

 delete_group_member(GroupName, UserName, Address, Port, Directory)

 -spec delete_group_member(GroupName, UserName, Address, Port, Directory) -> true | {error, Reason}
 when
 GroupName :: string(),
 UserName :: string(),
 Port :: inet:port_number(),
 Address ::
 inet:ip4_address() | inet:ip6_address() | string() | undefined,
 Directory :: string(),
 Reason :: term().

delete_group_member/3, delete_group_member/4, and delete_group_member/5
each deletes a user from a group. If the group or the user does not exist, this
function returns an error, otherwise true. When delete_group_member/3 is
called, the options Port and Dir are mandatory.

 delete_user(UserName, Options)

 -spec delete_user(UserName, Options) -> true | {error, Reason}
 when
 UserName :: string(),
 Options ::
 [{port, Port} |
 {addr, Address} |
 {dir, Directory} |
 {authPassword, AuthPassword}],
 Port :: inet:port_number(),
 Address :: inet:ip4_address() | inet:ip6_address() | string() | undefined,
 Directory :: string(),
 AuthPassword :: string(),
 Reason :: term().

Equivalent to delete_user/4.

 delete_user(UserName, Port, Directory)

 -spec delete_user(UserName, Port, Directory) -> true | {error, Reason}
 when
 UserName :: string(),
 Port :: inet:port_number(),
 Directory :: string(),
 Reason :: term().

Equivalent to delete_user/4.

 delete_user(UserName, Address, Port, Directory)

 -spec delete_user(UserName, Address, Port, Directory) -> true | {error, Reason}
 when
 UserName :: string(),
 Port :: inet:port_number(),
 Address :: inet:ip4_address() | inet:ip6_address() | string() | undefined,
 Directory :: string(),
 Reason :: term().

delete_user/2, delete_user/3, and delete_user/4 each
deletes a user from the user database. If the operation is successful, this
function returns true. If an error occurs, {error, Reason} is returned. When
delete_user/2 is called, options Port and Dir are
mandatory.

 get_user(UserName, Options)

 -spec get_user(UserName, Options) -> {ok, User} | {error, Reason}
 when
 UserName :: string(),
 Options ::
 [{port, Port} |
 {addr, Address} |
 {dir, Directory} |
 {authPassword, AuthPassword}],
 User :: httpd_user(),
 Port :: inet:port_number(),
 Address :: inet:ip4_address() | inet:ip6_address() | string() | undefined,
 Directory :: string(),
 AuthPassword :: string(),
 Reason :: term().

Equivalent to get_user/4.

 get_user(UserName, Port, Directory)

 -spec get_user(UserName, Port, Directory) -> {ok, User} | {error, Reason}
 when
 UserName :: string(),
 User :: httpd_user(),
 Port :: inet:port_number(),
 Directory :: string(),
 Reason :: term().

Equivalent to get_user/4.

 get_user(UserName, Address, Port, Directory)

 -spec get_user(UserName, Address, Port, Directory) -> {ok, User} | {error, Reason}
 when
 UserName :: string(),
 User :: httpd_user(),
 Port :: inet:port_number(),
 Address :: inet:ip4_address() | inet:ip6_address() | string() | undefined,
 Directory :: string(),
 Reason :: term().

get_user/2, get_user/3, and get_user/4 each returns an httpd_user/0
record containing the userdata for a specific user. If the user cannot be
found, {error, Reason} is returned. When get_user/2 is called, options
Port and Dir are mandatory.

 list_group_members(GroupName, Options)

 -spec list_group_members(GroupName, Options) -> {ok, Users} | {error, Reason}
 when
 GroupName :: string(),
 Options ::
 [{port, Port} |
 {addr, Address} |
 {dir, Directory} |
 {authPassword, AuthPassword}],
 Port :: inet:port_number(),
 Address ::
 inet:ip4_address() | inet:ip6_address() | string() | undefined,
 Directory :: string(),
 Users :: [httpd_user()],
 AuthPassword :: string(),
 Reason :: term().

Equivalent to list_group_members/4.

 list_group_members(GroupName, Port, Directory)

 -spec list_group_members(GroupName, Port, Directory) -> {ok, Users} | {error, Reason}
 when
 GroupName :: string(),
 Port :: inet:port_number(),
 Directory :: string(),
 Users :: [httpd_user()],
 Reason :: term().

Equivalent to list_group_members/4.

 list_group_members(GroupName, Address, Port, Directory)

 -spec list_group_members(GroupName, Address, Port, Directory) -> {ok, Users} | {error, Reason}
 when
 GroupName :: string(),
 Port :: inet:port_number(),
 Address ::
 inet:ip4_address() | inet:ip6_address() | string() | undefined,
 Directory :: string(),
 Users :: [httpd_user()],
 Reason :: term().

list_group_members/2, list_group_members/3, and list_group_members/4 each
lists the members of a specified group. If the group does not exist or there is
an error, {error, Reason} is returned. When list_group_members/2 is called,
options Port and Dir are mandatory.

 list_groups(Options)

 -spec list_groups(Options) -> {ok, Groups} | {error, Reason}
 when
 Options ::
 [{port, Port} |
 {addr, Address} |
 {dir, Directory} |
 {authPassword, AuthPassword}],
 Port :: inet:port_number(),
 Address :: inet:ip4_address() | inet:ip6_address() | string() | undefined,
 Directory :: string(),
 Groups :: [httpd_group()],
 AuthPassword :: string(),
 Reason :: term().

Equivalent to list_groups/3.

 list_groups(Port, Directory)

 -spec list_groups(Port, Directory) -> {ok, Groups} | {error, Reason}
 when
 Port :: inet:port_number(),
 Directory :: string(),
 Groups :: [httpd_group()],
 Reason :: term().

Equivalent to list_groups/3.

 list_groups(Address, Port, Directory)

 -spec list_groups(Address, Port, Directory) -> {ok, Groups} | {error, Reason}
 when
 Port :: inet:port_number(),
 Address :: inet:ip4_address() | inet:ip6_address() | string() | undefined,
 Directory :: string(),
 Groups :: [httpd_group()],
 Reason :: term().

list_groups/1, list_groups/2, and list_groups/3 each lists all the groups
available. If there is an error, {error, Reason} is returned. When
list_groups/1 is called, options Port and Dir are mandatory.

 list_users(Options)

 -spec list_users(Options) -> {ok, Users} | {error, Reason}
 when
 Options ::
 [{port, Port} |
 {addr, Address} |
 {dir, Directory} |
 {authPassword, AuthPassword}],
 Port :: inet:port_number(),
 Address :: inet:ip4_address() | inet:ip6_address() | string() | undefined,
 Directory :: string(),
 Users :: [httpd_user()],
 AuthPassword :: string(),
 Reason :: atom().

Equivalent to list_users/3.

 list_users(Port, Directory)

 (since OTP R14B01)

 -spec list_users(Port, Directory) -> {ok, Users} | {error, Reason}
 when
 Port :: inet:port_number(),
 Directory :: string(),
 Users :: [httpd_user()],
 Reason :: atom().

Equivalent to list_users/3.

 list_users(Address, Port, Directory)

 -spec list_users(Address, Port, Directory) -> {ok, Users} | {error, Reason}
 when
 Port :: inet:port_number(),
 Address :: inet:ip4_address() | inet:ip6_address() | string() | undefined,
 Directory :: string(),
 Users :: [httpd_user()],
 Reason :: atom().

list_users/1, list_users/2, and list_users/3 each returns a list of users
in the user database for a specific Port/Dir. When list_users/1 is called,
options Port and Dir are mandatory.

 update_password(Port, Dir, OldPassword, NewPassword, NewPassword)

 -spec update_password(Port, Dir, OldPassword, NewPassword, NewPassword) -> ok | {error, Reason}
 when
 Port :: inet:port_number(),
 Dir :: string(),
 OldPassword :: string(),
 NewPassword :: string(),
 Reason :: term().

Equivalent to update_password/6.

 update_password(Address, Port, Dir, OldPassword, NewPassword, NewPassword)

 -spec update_password(Address, Port, Dir, OldPassword, NewPassword, NewPassword) -> ok | {error, Reason}
 when
 Address :: inet:ip4_address() | inet:ip6_address() | string() | undefined,
 Port :: inet:port_number(),
 Dir :: string(),
 OldPassword :: string(),
 NewPassword :: string(),
 Reason :: term().

update_password/5 and update_password/6 each updates AuthAccessPassword
for the specified directory. If NewPassword is equal to "NoPassword", no
password is required to change authorisation data. If NewPassword is equal to
"DummyPassword", no changes can be done without changing the password first.

mod_esi behaviour

Erlang Server Interface
This module defines the Erlang Server Interface (ESI) API. It is a more
efficient way of writing Erlang scripts for your Inets web server than writing
them as common CGI scripts.

 Summary

 Types

 env()

 Environment data associated with a request.

 session_id()

 Identifies the requesting client.

 Callbacks: ESI Callback Functions

 'Function'(SessionID, Env, Input)

 Called by mod_esi in response to requests.

 Functions

 deliver(SessionID, Data)

 Sends data from an ESI script back to the client.

 Types

 env()

 (not exported)

 -type env() ::
 {server_software, string()} |
 {server_name, string()} |
 {gateway_interface, string()} |
 {server_protocol, string()} |
 {server_port, integer()} |
 {request_method, string()} |
 {remote_adress, inet:ip_address()} |
 {peer_cert, undefined | no_peercert | public_key:der_encoded()} |
 {script_name, string()} |
 {http_LowerCaseHTTPHeaderName, string()}.

Environment data associated with a request.
Possible values
	{server_software, string()} - Indicates the inets version.

	{server_name, string()} - The local hostname.

	{gateway_interface, string()} - Legacy string used in CGI, just
ignore.

	{server_protocol, string()} - HTTP version, currently "HTTP/1.1"

	{server_port, integer()} - Servers port number.

	{request_method, "GET" | "PUT" | "DELETE" | "POST" | "PATCH"} - HTTP
request method.

	{remote_adress, inet:ip_address()} - The clients ip address.

	{peer_cert, undefined | no_peercert | DER:binary()} - For TLS
connections where client certificates are used this will be an ASN.1
DER-encoded X509-certificate as an Erlang binary. If client certificates are
not used the value will be no_peercert, and if TLS is not used (HTTP or
connection is lost due to network failure) the value will be undefined.

	{script_name, string()} - Request URI

	{http_LowerCaseHTTPHeaderName, string()} - example:
{http_content_type, "text/html"}

 session_id()

 (since OTP 28.0)

 -opaque session_id()

Identifies the requesting client.

 Callbacks: ESI Callback Functions

 'Function'(SessionID, Env, Input)

 (optional)

 -callback 'Function'(SessionID, Env, Input) -> {continue, State} | _
 when
 SessionID :: session_id(),
 Env :: [env()],
 Input :: string() | ChunkedData,
 ChunkedData ::
 {first, Data :: binary()} |
 {continue, Data :: binary(), State :: term()} |
 {last, Data :: binary(), State :: term()},
 State :: term().

Called by mod_esi in response to requests.
Module must be found in the code path and export Function with an arity of
three. An erl_script_alias must also be set up in the configuration file for
the web server, see the ESI properties documentation.
The Module and Function that are called depend on the URL. See the ESI
introductory documentation for more details.
mod_esi:deliver/2 shall be used to generate the response to the client, and
SessionID shall be passed as the first argument.
Chunking
This function may be called several times to chunk the response data. Notice
that the first chunk of data sent to the client must at least contain all HTTP
header fields that the response will generate. If the first chunk does not
contain the end of HTTP header, that is, "\r\n\r\n", the server assumes
that no HTTP header fields will be generated. This behaviour depends on the
httpd configuration, see below.
Parameters
	SessionID: request identifier.
Pass this to mod_esi:deliver/2 when generating a response.

	Env: environment data of the request, see env/0.

	Input: query data of a GET request or the body of a PUT or POST request.
The default behavior (legacy reasons) for delivering the body, is that the
whole body is gathered and converted to a string. But if the httpd config
parameter max_client_body_chunk is set,
the body will be delivered as binary chunks instead. The maximum size of the
chunks is either max_client_body_chunk or
decided by the client if it uses HTTP chunked encoding to send the body.
When using the chunking mechanism, this callback must return {continue, State::term()} for all calls where Input is {first, Data::binary()} or
{continue, Data::binary(), State::term()}. When Input is {last, Data::binary(), State::term()} the return value will be ignored.
The input State is the last returned State, in it the callback can include
any data that it needs to keep track of when handling the chunks.

Note
Note that if the body is small all data may be delivered in only one chunk and
then the callback will be called with {last, Data::binary(), undefined}
without getting called with {first, Data::binary()}.
Setting a response status
To set the response status code, the special status response header can be
sent. For instance, to acknowledge creation of a resource and send an empty
JSON response body, one could pass the following:
"status: 201 Created\r\ncontent-type: application/json\r\n\r\n{}"

 Functions

 deliver(SessionID, Data)

 -spec deliver(SessionID, Data) -> ok | {error, Reason}
 when SessionID :: session_id(), Data :: iolist(), Reason :: bad_sessionID.

Sends data from an ESI script back to the client.
This function is only intended to be used from functions called by the ESI
interface to deliver parts of the content to the user.
Note
If any HTTP header fields are added by the script, they must be in the first
call to deliver/2, and the data in the call must be a string.
Calls after the headers are complete can contain binary data to reduce copying
overhead. Do not assume anything about the data type of SessionID.
SessionID must be the value given as input to the ESI callback function that
you implemented.

mod_security behaviour

Security Audit and Trailing Functionality

 Summary

 Callbacks

 event(What, Port, Dir, Data)

 event(What, Address, Port, Dir, Data)

 event/4 or event/5 is called whenever an event
occurs in the mod_security Erlang web server API module.
(event/4 is called if Address is undefined, otherwise
event/5. Argument What specifies the type of event that has
occurred and is one of the following reasons

 Functions

 block_user(User, Port, Dir, Seconds)

 Equivalent to block_user/5.

 block_user(User, Address, Port, Dir, Seconds)

 block_user/4 and block_user/5 each
blocks the user User from directory Dir for a specified amount of time.

 list_auth_users(Port)

 Equivalent to list_auth_users/3.

 list_auth_users/2

 Equivalent to list_auth_users/3.

 list_auth_users(Address, Port, Dir)

 list_auth_users/1,
list_auth_users/2, and
list_auth_users/3 each returns a list of users that are
currently authenticated. Authentications are stored for SecurityAuthTimeout
seconds, and then discarded.

 list_blocked_users(Port)

 Equivalent to list_blocked_users/3.

 list_blocked_users/2

 Equivalent to list_blocked_users/3.

 list_blocked_users(Address, Port, Dir)

 list_blocked_users/1,
list_blocked_users/2, and
list_blocked_users/3 each returns a list of users
that are currently blocked from access.

 unblock_user(User, Port)

 Equivalent to unblock_user/4.

 unblock_user/3

 Equivalent to unblock_user/4.

 unblock_user(User, Address, Port, Dir)

 unblock_user/2, unblock_user/3, and
unblock_user/4 each removes the user User from the list
of blocked users for Port (and Dir).

 Callbacks

 event(What, Port, Dir, Data)

 (since OTP 18.1)

 -callback event(What, Port, Dir, Data) -> term()
 when
 What :: auth_fail | user_block | user_unblock,
 Port :: integer(),
 Dir :: string(),
 Data :: [Info],
 Info :: {Name :: term(), Value :: term()}.

 event(What, Address, Port, Dir, Data)

 (since OTP 18.1)

 -callback event(What, Address, Port, Dir, Data) -> term()
 when
 What :: auth_fail | user_block | user_unblock,
 Port :: integer(),
 Address :: inet:ip4_address() | inet:ip6_address() | string(),
 Dir :: string(),
 Data :: [Info],
 Info :: {Name :: term(), Value :: term()}.

event/4 or event/5 is called whenever an event
occurs in the mod_security Erlang web server API module.
(event/4 is called if Address is undefined, otherwise
event/5. Argument What specifies the type of event that has
occurred and is one of the following reasons:
	auth_fail - A failed user authentication.

	user_block - A user is being blocked from access.

	user_unblock - A user is being removed from the block list.

Note
The event user_unblock is not triggered when a user is removed from the
block list explicitly using the unblock_user function.

 Functions

 block_user(User, Port, Dir, Seconds)

 -spec block_user(User, Port, Dir, Seconds) -> true | {error, Reason}
 when
 User :: string(),
 Port :: inet:port_number(),
 Dir :: string(),
 Seconds :: non_neg_integer() | infinity,
 Reason :: no_such_directory.

Equivalent to block_user/5.

 block_user(User, Address, Port, Dir, Seconds)

 -spec block_user(User, Address, Port, Dir, Seconds) -> true | {error, Reason}
 when
 User :: string(),
 Port :: inet:port_number(),
 Address :: inet:ip4_address() | inet:ip6_address() | string() | undefined,
 Dir :: string(),
 Seconds :: non_neg_integer() | infinity,
 Reason :: no_such_directory.

block_user/4 and block_user/5 each
blocks the user User from directory Dir for a specified amount of time.

 list_auth_users(Port)

 -spec list_auth_users(Port) -> Users | [] when Port :: inet:port_number(), Users :: [string()].

Equivalent to list_auth_users/3.

 list_auth_users/2

 -spec list_auth_users(Port, Directory) -> Users | []
 when Port :: inet:port_number(), Directory :: string(), Users :: [string()];
 (Address, Port) -> Users | []
 when
 Port :: inet:port_number(),
 Address :: inet:ip4_address() | inet:ip6_address() | string() | undefined,
 Users :: [string()].

Equivalent to list_auth_users/3.

 list_auth_users(Address, Port, Dir)

 -spec list_auth_users(Address, Port, Dir) -> Users | []
 when
 Port :: inet:port_number(),
 Address :: inet:ip4_address() | inet:ip6_address() | string() | undefined,
 Dir :: string(),
 Users :: [string()].

list_auth_users/1,
list_auth_users/2, and
list_auth_users/3 each returns a list of users that are
currently authenticated. Authentications are stored for SecurityAuthTimeout
seconds, and then discarded.

 list_blocked_users(Port)

 -spec list_blocked_users(Port) -> Users | []
 when
 Port :: integer(),
 Users :: [{blocked_user, term(), term(), term(), term()}].

Equivalent to list_blocked_users/3.

 list_blocked_users/2

 -spec list_blocked_users(Port, Directory) -> Users | []
 when
 Port :: integer(),
 Directory :: string(),
 Users :: [{blocked_user, term(), term(), term(), term()}];
 (Address, Port) -> Users | []
 when
 Port :: integer(),
 Address ::
 inet:ip4_address() | inet:ip6_address() | string() | undefined,
 Users :: [{blocked_user, term(), term(), term(), term()}].

Equivalent to list_blocked_users/3.

 list_blocked_users(Address, Port, Dir)

 -spec list_blocked_users(Address, Port, Dir) -> Users | []
 when
 Port :: integer(),
 Address ::
 inet:ip4_address() | inet:ip6_address() | string() | undefined,
 Dir :: string(),
 Users :: [{blocked_user, term(), term(), term(), term()}].

list_blocked_users/1,
list_blocked_users/2, and
list_blocked_users/3 each returns a list of users
that are currently blocked from access.

 unblock_user(User, Port)

 -spec unblock_user(User, Port) -> true | {error, Reason}
 when User :: string(), Port :: integer(), Reason :: term().

Equivalent to unblock_user/4.

 unblock_user/3

 -spec unblock_user(User, Port, Directory) -> true | {error, Reason}
 when User :: string(), Port :: integer(), Directory :: string(), Reason :: term();
 (User, Address, Port) -> true | {error, Reason}
 when
 User :: string(),
 Port :: integer(),
 Address :: inet:ip4_address() | inet:ip6_address() | string() | undefined,
 Reason :: term().

Equivalent to unblock_user/4.

 unblock_user(User, Address, Port, Dir)

 -spec unblock_user(User, Address, Port, Dir) -> true | {error, Reason}
 when
 User :: string(),
 Port :: integer(),
 Address :: inet:ip4_address() | inet:ip6_address() | string() | undefined,
 Dir :: string(),
 Reason :: term().

unblock_user/2, unblock_user/3, and
unblock_user/4 each removes the user User from the list
of blocked users for Port (and Dir).

http_uri

Old URI utility module, use uri_string instead
This module is deprecated since OTP 23. Use the module uri_string to
properly handle URIs, this is the recommended module since OTP 21.
Data types
Type definitions that are related to URI:
	uri_part() = [byte()] | binary() - Syntax according to the URI
definition in RFC 3986, for example, "http://www.erlang.org/"

For more information about URI, see
RFC 3986.

 Summary

 Functions

 decode(QuotedData)

 deprecated

 Decodes a possibly percent encoded URI part

 encode(Data)

 deprecated

 Performs percent encoding.

 Functions

 decode(QuotedData)

 (since OTP R15B01)

 This function is deprecated. http_uri:decode/1 is deprecated; use uri_string:unquote function instead.

 -spec decode(QuotedData) -> Data when QuotedData :: unicode:chardata(), Data :: unicode:chardata().

Decodes a possibly percent encoded URI part
Warning
Use uri_string:unquote/1 instead

 encode(Data)

 (since OTP R15B01)

 This function is deprecated. http_uri:encode/1 is deprecated; use uri_string:quote function instead.

 -spec encode(Data) -> QuotedData when Data :: unicode:chardata(), QuotedData :: unicode:chardata().

Performs percent encoding.
Warning
Use uri_string:quote/1 instead

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

OEBPS/assets/logo.png
EEEEEE

