

 kernel

 v10.4

 [image: Logo]

 Table of contents

 	Kernel Application

 	Kernel Release Notes

 	User's Guides

 	Introduction

 	Socket Usage

 	Logging

 	Logging Cookbook

 	EEP-48: Documentation storage and format

 	References

 	app

 	config

 	
 Modules

 	Code & System

 	application

 	code

 	erl_ddll

 	erl_debugger

 	error_handler

 	heart

 	os

 	Distribution

 	auth

 	erl_boot_server

 	erl_epmd

 	erpc

 	global

 	global_group

 	net_adm

 	net_kernel

 	pg

 	rpc

 	Files & Networking

 	file

 	gen_sctp

 	gen_tcp

 	gen_udp

 	inet

 	inet_res

 	net

 	socket

 	Logging

 	disk_log

 	error_logger

 	logger

 	logger_disk_log_h

 	logger_filters

 	logger_formatter

 	logger_handler

 	logger_std_h

 	wrap_log_reader

 	Tracing

 	seq_trace

 	trace

 Kernel Application

Description
The Kernel application has all the code necessary to run the Erlang runtime
system: file servers, code servers, and so on.
The Kernel application is the first application started. It is mandatory in the
sense that the minimal system based on Erlang/OTP consists of Kernel and STDLIB.
Kernel contains the following functional areas:
	Start, stop, supervision, configuration, and distribution of applications
	Code loading
	Logging
	Global name service
	Supervision of Erlang/OTP
	Communication with sockets
	Operating system interface

Logger Handlers
Two standard logger handlers are defined in the Kernel application. These are
described in the Kernel User's Guide, and in the
logger_std_h and logger_disk_log_h manual pages.

OS Signal Event Handler
Asynchronous OS signals may be subscribed to via the Kernel applications event
manager (see OTP Design Principles and
gen_event) registered as erl_signal_server. A default signal handler is
installed which handles the following signals:
	sigusr1 - The default handler will halt Erlang and produce a crashdump
with slogan "Received SIGUSR1". This is equivalent to calling
erlang:halt("Received SIGUSR1").

	sigquit - The default handler will halt Erlang immediately. This is
equivalent to calling erlang:halt().

	sigterm - The default handler will terminate Erlang normally. This is
equivalent to calling init:stop().

Events
Any event handler added to erl_signal_server must handle the following events.
	sighup - Hangup detected on controlling terminal or death of controlling
process

	sigquit - Quit from keyboard

	sigabrt - Abort signal from abort

	sigalrm - Timer signal from alarm

	sigterm - Termination signal

	sigusr1 - User-defined signal 1

	sigusr2 - User-defined signal 2

	sigchld - Child process stopped or terminated

	sigstop - Stop process

	sigtstp - Stop typed at terminal

	sigcont - Continue after stop

	sigwinch - Window size change

	siginfo - Status request from keyboard. Note several operating systems
(Linux in particular) do not support this signal. os:set_signal/2 will thow
a badarg exception if support is missing.

Setting OS signals are described in os:set_signal/2.
Configuration
The following configuration parameters are defined for the Kernel application.
For more information about configuration parameters, see file
app.
	connect_all = true | false - If enabled (true), which
also is the default, global will actively connect to all nodes that
becomes known to it. Note that you also want to enable
prevent_overlapping_partitions
in order for global to ensure that a fully connected network is maintained.
prevent_overlapping_partitions will also prevent inconsistencies in
global's name registration and locking.
The now deprecated command line argument
-connect_all <boolean> has the same
effect as the connect_all configuration parameter. If this configuration
parameter is defined, it will override the command line argument.

	distributed = [Distrib] - Specifies which applications
that are distributed and on which nodes they are allowed to execute. In this
parameter:
	Distrib = {App,Nodes} | {App,Time,Nodes}

	App = atom()
	Time = integer()>0
	Nodes = [node() | {node(),...,node()}]

The parameter is described in application:load/2.

	dist_auto_connect = Value - Specifies when nodes
are automatically connected. If this parameter is not specified, a node is
always automatically connected, for example, when a message is to be sent to
that node. Value is one of:
	never - Connections are never automatically established, they must be
explicitly connected. See net_kernel.

	once - Connections are established automatically, but only once per
node. If a node goes down, it must thereafter be explicitly connected. See
net_kernel.

	epmd_module = module() - Configures the module
responsible for communication with epmd. If this parameter
is undefined, it defaults to erl_epmd.
The now deprecated command line argument
-epmd_module <module> has the same
effect as the epmd_module configuration parameter. If this configuration
parameter is defined, it will override the command line argument.

	erl_epmd_node_listen_port = integer() - Configures the port used by erl_epmd
to listen for connection and connect to other nodes. If this flag is set, the
Erlang VM will boot in distributed mode even if EPMD is not available. If not
set, a port is chosen automatically (equivalent to port 0). See erl_epmd
for more details.
The now deprecated command line argument
erl_epmd_port <module> has the same
effect as the erl_epmd_node_listen_port configuration parameter. If this
configuration parameter is defined, it will override the command line argument.

	permissions = [Perm] - Specifies the default permission
for applications when they are started. In this parameter:
	Perm = {ApplName,Bool}
	ApplName = atom()
	Bool = boolean()

Permissions are described in application:permit/2.

	logger = [Config] - Specifies the configuration for
Logger, except the primary log level, which is specified with
logger_level, and the compatibility with
SASL Error Logging, which is specified with
logger_sasl_compatible.
The loggerparameter is described in section
Logging in the Kernel User's Guide.

	logger_level = Level - Specifies the primary log level
for Logger. Log events with the same, or a more severe level, pass through the
primary log level check. See section Logging in the
Kernel User's Guide for more information about Logger and log levels.
Level = emergency | alert | critical | error | warning | notice | info | debug | all | none
To change the primary log level at runtime, use
logger:set_primary_config(level, Level).
Defaults to notice.

	logger_metadata = Metadata - Specifies primary
metadata for log events.
Metadata = map()
Defaults to #{}.

	logger_sasl_compatible = true | false -
Specifies if Logger behaves backwards compatible with the SASL error logging
functionality from releases prior to Erlang/OTP 21.0.
If this parameter is set to true, the default Logger handler does not log
any progress-, crash-, or supervisor reports. If the SASL application is then
started, it adds a Logger handler named sasl, which logs these events
according to values of the SASL configuration parameter sasl_error_logger
and sasl_errlog_type.
See section
Deprecated Error Logger Event Handlers and Configuration
in the sasl(6) manual page for information about the SASL configuration
parameters.
See section SASL Error Logging in the SASL User's
Guide, and section
Backwards Compatibility with error_logger
in the Kernel User's Guide for information about the SASL error logging
functionality, and how Logger can be backwards compatible with this.
Defaults to false.
Note
If this parameter is set to true, sasl_errlog_type indicates that
progress reports shall be logged, and the configured primary log level is
notice or more severe, then SASL automatically sets the primary log level
to info. That is, this setting can potentially overwrite the value of the
Kernel configuration parameter logger_level. This is to allow progress
reports, which have log level info, to be forwarded to the handlers.

	global_groups = [GroupTuple] - Defines global groups,
see global_group. In this parameter:
	GroupTuple = {GroupName, [Node]} | {GroupName, PublishType, [Node]}

	GroupName = atom()
	PublishType = normal | hidden

	Node = node()

	inet_default_connect_options = [{Opt, Val}] - Specifies default options for connect
sockets, see inet.

	inet_default_listen_options = [{Opt, Val}] - Specifies default options for listen (and accept) sockets, see
inet.

	inet_dist_use_interface = ip_address() - If
the host of an Erlang node has many network interfaces, this parameter
specifies which one to listen on. For the type definition of ip_address(),
see inet.

	inet_dist_listen_min = First
inet_dist_listen_max = Last
Defines the First..Last port range for the listener socket of a distributed
Erlang node.

	inet_dist_listen_options = Opts - Defines
a list of extra socket options to be used when opening the listening socket
for a distributed Erlang node. See gen_tcp:listen/2.

	inet_dist_connect_options = Opts -
Defines a list of extra socket options to be used when connecting to other
distributed Erlang nodes. See gen_tcp:connect/4.

	inet_parse_error_log = silent - If set, no log
events are issued when erroneous lines are found and skipped in the various
Inet configuration files.

	inetrc = Filename - The name (string) of an Inet user
configuration file. For details, see section
Inet Configuration in the ERTS User's Guide.

	net_setuptime = SetupTime -
SetupTime must be a positive integer or floating point number, and is
interpreted as the maximum allowed time for each network operation during
connection setup to another Erlang node. The maximum allowed value is 120.
If higher values are specified, 120 is used. Default is 7 seconds if the
variable is not specified, or if the value is incorrect (for example, not a
number).
Notice that this value does not limit the total connection setup time, but
rather each individual network operation during the connection setup and
handshake.

	net_ticker_spawn_options = Opts - Defines
a list of extra spawn options for net ticker processes. There exist one such
process for each connection to another node. A net ticker process is
responsible for supervising the connection it is associated with. These
processes also execute the distribution handshake protocol when setting up
connections. When there is a large number of distribution connections, setting
up garbage collection options can be helpful to reduce memory usage. Default
is [link, {priority, max}], and these two options cannot be changed. The
monitor and {monitor, MonitorOpts} options are not allowed and will be
dropped if present. See the documentation of the erlang:spawn_opt/4 BIF for
information about valid options. If the Opts list is not a proper list, or
containing invalid options the setup of connections will fail.
Note that the behavior described above is only true if the distribution
carrier protocol used is implemented as described in
ERTS User's Guide ➜ How to implement an Alternative Carrier for the Erlang Distribution ➜ Distribution Module
without further alterations. The implementer of the distribution carrier
protocol used, may have chosen to ignore the net_ticker_spawn_options
parameter or altered its behavior. Currently all distribution modules shipped
with OTP do, however, behave as described above.

	net_tickintensity = NetTickIntensity - Net tick
intensity specifies how many ticks to send during a
net tick time period when no other data is sent
over a connection to another node. This also determines how often to check for
data from the other node. The higher net tick intensity, the closer to the
chosen net tick time period the node will detect an unresponsive node. The net
tick intensity defaults to 4. The value of NetTickIntensity should be an
integer in the range 4..1000. If the NetTickIntensity is not an integer or
an integer less than 4, 4 will silently be used. If NetTickIntensity is
an integer larger than 1000, 1000 will silently be used.
Note
Note that all communicating nodes are expected to use the same net tick
intensity as well as the same net tick time.
Warning
Be careful not to set a too high net tick intensity, since you can overwhelm
the node with work if it is set too high.

	net_ticktime = NetTickTime - Specifies the net tick
time in seconds. This is the approximate time a connected node may be
unresponsive until it is considered down and thereby disconnected.
Net tick time together with
net tick intensity determines an interval
TickInterval = NetTickTime/NetTickIntensity. Once every TickInterval
seconds, each connected node is ticked if nothing has been sent to it during
that last TickInterval seconds. A tick is a small package sent on the
connection. A connected node is considered to be down if no ticks or payload
packages have been received during the last NetTickIntensity number of
TickInterval seconds intervals. This ensures that nodes that are not
responding, for reasons such as hardware errors, are considered to be down.
As the availability is only checked every TickInterval seconds, the actual
time T a node have been unresponsive when detected may vary between MinT
and MaxT, where:
MinT = NetTickTime - NetTickTime / NetTickIntensity
MaxT = NetTickTime + NetTickTime / NetTickIntensity
NetTickTime defaults to 60 seconds and NetTickIntensity defaults to 4.
Thus, 45 < T < 75 seconds.
Note
Notice that all communicating nodes are to have the same NetTickTime
and NetTickIntensity values specified, as it determines both the frequency
of outgoing ticks and the expected frequency of incominging ticks.
NetTickTime needs to be a multiple of NetTickIntensity. If the configured
values are not, NetTickTime will internally be rounded up to the nearest
millisecond.
net_kernel:get_net_ticktime() will,
however, report net tick time truncated to the nearest second.
Normally, a terminating node is detected immediately by the transport protocol
(like TCP/IP).

	prevent_overlapping_partitions = true | false - If enabled (true), global will
actively prevent overlapping partitions from forming when connections are lost
between nodes. This fix is enabled by default. If you are about to disable
this fix, make sure to read the
global documentation about this
fix for more important information about this.

	shutdown_timeout = integer() | infinity -
Specifies the time application_controller waits for an application to
terminate during node shutdown. If the timer expires, application_controller
brutally kills application_master of the hanging application. If this
parameter is undefined, it defaults to infinity.

	sync_nodes_mandatory = [NodeName] - Specifies
which other nodes that must be alive for this node to start properly. If
some node in the list does not start within the specified time, this node does
not start either. If this parameter is undefined, it defaults to [].

	sync_nodes_optional = [NodeName] - Specifies
which other nodes that can be alive for this node to start properly. If some
node in this list does not start within the specified time, this node starts
anyway. If this parameter is undefined, it defaults to the empty list.

	sync_nodes_timeout = integer() | infinity -
Specifies the time (in milliseconds) that this node waits for the mandatory
and optional nodes to start. If this parameter is undefined, no node
synchronization is performed. This option ensures that global is
synchronized.

	start_distribution = true | false - Starts all
distribution services, such as rpc, global, and net_kernel if the
parameter is true. This parameter is to be set to false for systems who
want to disable all distribution functionality.
Defaults to true.

	start_dist_ac = true | false - Starts the dist_ac
server if the parameter is true. This parameter is to be set to true for
systems using distributed applications.
Defaults to false. If this parameter is undefined, the server is started if
parameter distributed is set.

	start_boot_server = true | false - Starts the
boot_server if the parameter is true (see erl_boot_server). This
parameter is to be set to true in an embedded system using this service.
Defaults to false.

	boot_server_slaves = [SlaveIP] - If
configuration parameter start_boot_server is true, this parameter can be
used to initialize boot_server with a list of slave IP addresses:
SlaveIP = string() | atom | {integer(),integer(),integer(),integer()},
where 0 <= integer() <=255.
Examples of SlaveIP in atom, string, and tuple form:
'150.236.16.70', "150,236,16,70", {150,236,16,70}.
Defaults to [].

	start_disk_log = true | false - Starts the
disk_log_server if the parameter is true (see disk_log). This
parameter is to be set to true in an embedded system using this service.
Defaults to false.

	start_pg = true | false - Starts the
default pg scope server (see pg) if the parameter is true. This
parameter is to be set to true in an embedded system that uses this service.
Defaults to false.

	start_timer = true | false - Starts the timer_server
if the parameter is true (see timer). This parameter is to be set to
true in an embedded system using this service.
Defaults to false.

	shell_docs_ansi = boolean() - Specifies whether
the documentation rendered in the shell should use ANSI escape codes.
See also shell_docs:config/0.

	shell_history = enabled | disabled | module() -
Specifies whether shell history should be logged to disk between usages of
erl (enabled), not logged at all (disabled), or a user-specified module
will be used to log shell history. This module should export
load() -> [string()] returning a list of strings to load in the shell when
it starts, and add(iodata()) -> ok. called every time new line is entered in
the shell. By default logging is disabled.

	shell_history_drop = [string()] - Specific log
lines that should not be persisted. For example ["q().", "init:stop()."]
will allow to ignore commands that shut the node down. Defaults to [].

	shell_history_file_bytes = integer() - How
many bytes the shell should remember. By default, the value is set to 512kb,
and the minimal value is 50kb.

	shell_history_path = string() - Specifies where
the shell history files will be stored. defaults to the user's cache directory
as returned by filename:basedir(user_cache, "erlang-history").

	shutdown_func = {Mod :: atom(), Func :: atom()} -
Sets a function that application_controller calls when it starts to
terminate. The function is called as Mod:Func(Reason), where Reason is the
terminate reason for application_controller, and it must return as soon as
possible for application_controller to terminate properly.

	source_search_rules = [DirRule] | [SuffixRule]
Where:
	DirRule = {ObjDirSuffix,SrcDirSuffix}
	SuffixRule = {ObjSuffix,SrcSuffix,[DirRule]}
	ObjDirSuffix = string()
	SrcDirSuffix = string()
	ObjSuffix = string()
	SrcSuffix = string()

Specifies a list of rules for use by filelib:find_file/2
filelib:find_source/2 If this is set to some other value than the empty
list, it replaces the default rules. Rules can be simple pairs of directory
suffixes, such as {"ebin", "src"}, which are used by filelib:find_file/2,
or triples specifying separate directory suffix rules depending on file name
extensions, for example [{".beam", ".erl", [{"ebin", "src"}]}, which are
used by filelib:find_source/2. Both kinds of rules can be mixed in the list.
The interpretation of ObjDirSuffix and SrcDirSuffix is as follows: if the
end of the directory name where an object is located matches ObjDirSuffix,
then the name created by replacing ObjDirSuffix with SrcDirSuffix is
expanded by calling filelib:wildcard/1, and the first regular file found
among the matches is the source file.

	standard_io_encoding = Encoding - Set whether
bytes sent or received via standard_io should be interpreted as unicode or
latin1. By default input and output is interpreted as Unicode if it is
supported on the host. With this flag you may configure the encoding on
startup.
This works similarly to
io:setopts(standard_io, {encoding, Encoding}) but is
applied before any bytes on standard_io may have been read.
Encoding is one of:
	unicode - Configure standard_io to use unicode mode.

	latin1 - Configure standard_io to use latin1 mode.

	_ - Anything other than unicode or latin1 will be ignored and the
system will configure the encoding by itself, typically unicode on modern
systems.

See
Escripts and non-interactive I/O in Unicode Usage in Erlang
for more details.

	os_cmd_shell = string() - Specifies which shell to
use when invoking system commands via os:cmd/2. By default the shell is detected
automatically.

Deprecated Configuration Parameters
In Erlang/OTP 21.0, a new API for logging was added. The old error_logger
event manager, and event handlers running on this manager, still work, but they
are no longer used by default.
The following application configuration parameters can still be set, but they
are only used if the corresponding configuration parameters for Logger are not
set.
	error_logger - Replaced by setting the type,
and possibly file and
modes parameters of the default logger_std_h
handler. Example:
erl -kernel logger '[{handler,default,logger_std_h,#{config=>#{file=>"/tmp/erlang.log"}}}]'

	error_logger_format_depth - Replaced by setting the
depth parameter of the default handlers
formatter. Example:
erl -kernel logger '[{handler,default,logger_std_h,#{formatter=>{logger_formatter,#{legacy_header=>true,template=>[{logger_formatter,header},"\n",msg,"\n"],depth=>10}}}]'

See Backwards compatibility with error_logger
for more information.

 Kernel Release Notes

This document describes the changes made to the Kernel application.
Kernel 10.4
Fixed Bugs and Malfunctions
	A remote shell can now exit by closing the input stream, without terminating the remote node.
Own Id: OTP-19667 Aux Id: PR-9912

	The internal inet_dns_tsig and inet_res modules have been fixed to TSIG verify the correct timestamp.
In the process two undocumented error code atoms have been corrected to notauth and notzone to adhere to the DNS RFCs. Code that relied on the previous incorrect values may have to be corrected.
 POTENTIAL INCOMPATIBILITY
Own Id: OTP-19756 Aux Id: PR-10146

Improvements and New Features
	The rudimentary DNS resolver inet_res has aqcuired 3 new functions inet_res:gethostbyname/4, inet_res;getbyname/4 and inet_res:gethostbyaddr/3, that all take an option list argument.
This option list can be used to override the Kernel application's resolver options when calling the inet_res function directly.
Own Id: OTP-19737 Aux Id: ERIERL-1209, PR-10112

Kernel 10.3.2
Fixed Bugs and Malfunctions
	socket:sendv/3 with 'nowait' sometimes return 'completion' without 'CompletionInfo' (Windows only).
Own Id: OTP-19661

	prim_net nif used incorrect encoding for family resulting in non-functional address selection.
Own Id: OTP-19674

	socket:accept can return unexpected 'select_sent'.
Own Id: OTP-19684 Aux Id: ERIERL-1242

	net_kernel could be blocked for a very long time when selecting distribution module for a connection if the DNS service was slow. This prevented any new connections to be set up during that time.
Own Id: OTP-19702 Aux Id: ERIERL-1241, PR-10029

Improvements and New Features
	Improved documentation of CompletionStatus for asynchronous (nowait) socket operations.
Own Id: OTP-19670 Aux Id: PR-9930

Kernel 10.3.1
Fixed Bugs and Malfunctions
	Fix bug where calling io:setopts/1 in a shell without the line_history option would always disable line_history. This bug was introduced in Erlang/OTP 28.0.
Own Id: OTP-19645 Aux Id: GH-9863, PR-9870

Kernel 10.3
Fixed Bugs and Malfunctions
	Fixed an issue where output to the shell would not print the prompt on a new line.
Own Id: OTP-19228 Aux Id: PR-8820

	When in shell is in -noshell mode, and in latin1 encoding mode, io requests in latin1 encoding will not be translated to unicode and back to latin1.
Own Id: OTP-19296 Aux Id: PR-9013

	Fixed a bug where a composing unicode character would bind to a character not available to the user and deleting that character would cause a crash.
Own Id: OTP-19297 Aux Id: PR-9005

	The -noshell mode has been updated to read data lazily from standard input. Before this fix any data would be read greedily which meant that Erlang could consume data not meant for it. It also meant that in order for shell:start_interactive/0 to work on Windows an API that did not support reading of Unicode characters had to be used.
Own Id: OTP-19313 Aux Id: PR-8962, GH-8113

	The Erlang shell no longer crashes when a shell prompt ends with an escape sequence.
Own Id: OTP-19414 Aux Id: PR-9272

	code:get_doc/1 now works for cover-compiled modules.
Own Id: OTP-19513 Aux Id: PR-9433

	An infinite loop in CNAME loop detection that can cause Out Of Memory has been fixed. This affected CNAME lookup with the internal DNS resolver.
Own Id: OTP-19544 Aux Id: PR-9587, OTP-19545

	The internal resolver framework has been fixed to wait with the first resolver lookup until the ERL_INETRC environment variable has been applied.
Previously, on some platform(s) (Linux) a first lookup when figuring out the domain name was always placed on the native resolver even if ERL_INETRC was used to disable it.
Own Id: OTP-19555 Aux Id: PR-9543

	Fix logger:add_handler(default, ...) to correctly replay events generated during startup when the default logger is set to undefined in logger's configuration parameters.
Own Id: OTP-19588 Aux Id: PR-9595, GH-9436

	Enhance specs of timeout for improving documentation and dialyzer analysis.
Own Id: OTP-19604 Aux Id: PR-9574

	Removed the default values for SCTP send (sndbuf) and receive (recbuf) buffers.
Own Id: OTP-19627 Aux Id: OTP-19576, GH-9722

Improvements and New Features
	application:load/1 slows down as the number of directories in the code path increases because the call to code:where_is_file/1 for the '.app' file must scan each directory for the app.
code_server maintains a cache of the contents of directories in the path. Re-using that cache when searching for '.app' files in application:load/1 may improve its runtime, especially when loading multiple applications.
Own Id: OTP-19194 Aux Id: PR-8078

	The Erlang SSH daemon now uses the same backend to handle multiline functionality as the Erlang shell.
Own Id: OTP-19226 Aux Id: PR-8805

	Added support for SIGWINCH, SIGCONT, and SIGINFO signals to os:set_signal/2 where available.
Own Id: OTP-19278 Aux Id: PR-8887, PR-8938

	Add net_kernel:allowed/0, it returns a list of nodes that are explicitly allowed to connect to the node by calling
net_kernel:allow/1
Own Id: OTP-19287 Aux Id: PR-8207

	Documentation chunks (EEP-48) has been updated to include the following reserved metadata fields: behaviours, group, source_path, and source_annos. The compiler has also been updated to emit this metadata. See the EEP-48 documentation for more details.
Own Id: OTP-19306 Aux Id: PR-8945, PR-8975

	The erpc:call/3, erpc:call/5, erpc:multicall/3, and erpc:multicall/5 functions now also accept an option map as last argument containing the timeout and always_spawn options. The always_spawn option can be used in order to ensure that the call operation will use a newly spawned process when executing the remote call.
Own Id: OTP-19343 Aux Id: PR-8642

	EEP-69: Nominal Types has been implemented. As a side effect, nominal types can encode opaque types. We changed all opaque-handling logic and improved opaque warnings in Dialyzer.
All existing Erlang type systems are structural: two types are seen as equivalent if their structures are the same. Type comparisons are based on the structures of the types, not on how the user explicitly defines them. For example, in the following example, meter() and foot() are equivalent. The two types can be used interchangeably. Neither of them differ from the basic type integer().
-type meter() :: integer().
-type foot() :: integer().
Nominal typing is an alternative type system, where two types are equivalent if and only if they are declared with the same type name. The EEP proposes one new syntax -nominal for declaring nominal types. Under nominal typing, meter() and foot() are no longer compatible. Whenever a function expects type meter(), passing in type foot() would result in a Dialyzer error.
-nominal meter() :: integer().
-nominal foot() :: integer().
More nominal type-checking rules can be found in the EEP. It is worth noting that most work for adding nominal types and type-checking is in erl_types.erl. The rest are changes that removed the previous opaque type-checking, and added an improved version of it using nominal type-checking with reworked warnings.
Backwards compatibility for opaque type-checking is not preserved by this PR. Previous opaque warnings can appear with slightly different wordings. A new kind of opaque warning opaque_union is added, together with a Dialyzer option no_opaque_union to turn this kind of warnings off.
Own Id: OTP-19364 Aux Id: PR-9079

	Improved open debug for gen_tcp_socket (connect and listen) and gen_udp_socket (open).
Own Id: OTP-19386

	io:standard_error/0 has been updated to write via a NIF API instead of a port. This allows it to access the dirty-scheduler pool and make sure that writes have been written to the OSs stderr when io:format/3 and equivalent return.
Own Id: OTP-19401 Aux Id: PR-9116

	Added the option exception_on_failure to os:cmd/2 to make os:cmd/2 raise an exception if the command fails to execute.
Own Id: OTP-19404 Aux Id: PR-9082

	A socket option {otp,select_read} has been added that enables keeping a socket in the VM select/poll set between calls to recv functions.
This increases throughput by reducing the number of calls to said functions.
Own Id: OTP-19451 Aux Id: PR-9344

	Add a configure chapter to the socket usage guide
Own Id: OTP-19522 Aux Id: PR-9508

	The license and copyright header has changed format to include an SPDX-License-Identifier. At the same time, most files have been updated to follow a uniform standard for license headers.
Own Id: OTP-19575 Aux Id: PR-9670

	Increase the default inet-driver buffer size(s). Also introduce kernel parameters for UDP and SCTP to change the sizes when creating (those) sockets.
Own Id: OTP-19576

	An experimental API for a native debugger has been added. The main components are the following:
	A new compiler option beam_debug_info for the Erlang compiler. When given, most optimizations are disabled and debug information suitable for the native debugger are added to generated BEAM files.

	A new +D emulator flag. When given, the VM becomes "debuggable", which means that when modules that been compiled with the beam_debug_info option are loaded, the code is instrumented so that one can enable and disable breakpoints on executable lines.

	An experimental erl_debugger module with a new debugging API. Essentially, it allows a single, local, process to be registered as the "debugger" process for the node. This process is the one that will receive messages notifying that a process hit a breakpoint. This way, the front-end implementation of a debugger (such as edb from WhatApp) can be decoupled from OTP.

	The erl_debugger module also exposes new BIFs to inspect X and Y registers of a suspended process. Together with new code-information BIFs, this let's a debugger show the values of variables in scope for a suspended process.

Own Id: OTP-19609 Aux Id: PR-8670, PR-9334, PR-9604

Kernel 10.2.7.2
Fixed Bugs and Malfunctions
	socket:sendv/3 with 'nowait' sometimes return 'completion' without 'CompletionInfo' (Windows only).
Own Id: OTP-19661

	socket:accept can return unexpected 'select_sent'.
Own Id: OTP-19684 Aux Id: ERIERL-1242

	net_kernel could be blocked for a very long time when selecting distribution module for a connection if the DNS service was slow. This prevented any new connections to be set up during that time.
Own Id: OTP-19702 Aux Id: ERIERL-1241, PR-10029

Improvements and New Features
	Improved documentation of CompletionStatus for asynchronous (nowait) socket operations.
Own Id: OTP-19670 Aux Id: PR-9930

Kernel 10.2.7.1
Fixed Bugs and Malfunctions
	A remote shell can now exit by closing the input stream, without terminating the remote node.
Own Id: OTP-19667 Aux Id: PR-9912

Improvements and New Features
	Document default buffer sizes
Own Id: OTP-19640 Aux Id: GH-9722

Kernel 10.2.7
Fixed Bugs and Malfunctions
	With this change, disk_log will not crash when using chunk_step/3 after log size was decreased.
Own Id: OTP-19605 Aux Id: GH-9720, PR-9765

	With this change, disk_log will not run into infinite loop when using chunk/2,3 after log size was decreased.
Own Id: OTP-19608 Aux Id: GH-9707, PR-9767

Kernel 10.2.6
Fixed Bugs and Malfunctions
	Fixed bug in call_memory tracing that could cause wildly incorrect reported memory values. Bug exists since OTP 27.1.
Also fixed return type spec of trace:info/3.
Own Id: OTP-19581 Aux Id: ERIERL-1219, PR-9706

Kernel 10.2.5
Fixed Bugs and Malfunctions
	On Windows, using socket:sendv, a large IOV (size > MAX), the tail was not sent.
Own Id: OTP-19482

	gen_tcp connect with a sockaddr with loopback address failed.
Own Id: OTP-19560 Aux Id: GH-9541

	Remove debug printouts from gen_tcp_socket
Own Id: OTP-19564

Kernel 10.2.4
Fixed Bugs and Malfunctions
	Behavior for socket:recv/3 has been improved. The behavior has also been clarified in the documentation.
Own Id: OTP-19469 Aux Id: #9172

	An infinite loop in CNAME loop detection that can cause Out Of Memory has been fixed. This affected CNAME lookup with the internal DNS resolver.
Own Id: OTP-19545 Aux Id: PR-9587, OTP-19544

Kernel 10.2.3
Fixed Bugs and Malfunctions
	Clarify inet:setopts documentation
Own Id: OTP-19416 Aux Id: PR-9248

	Fix bug where log printouts would go missing when application_controller is stopping while log messages are being sent.
This bug was introduced by OTP-19078 in Erlang/OTP 26.2.5.
Own Id: OTP-19418 Aux Id: GH-9163, PR-9274

	Fixes a bug in the socket type spec, which caused Dialyzer to reject some valid programs.
Own Id: OTP-19429 Aux Id: PR-9295, PR-9379

Kernel 10.2.2
Fixed Bugs and Malfunctions
	Fixed a couple of bugs that could make global's internal state inconsistent when a connection was reconnected.
Own Id: OTP-19381 Aux Id: PR-9377, GH-9112, GH-9117

Kernel 10.2.1
Fixed Bugs and Malfunctions
	Fix the default group_leader to reply {error,request} on invalid I/O requests instead of crashing.
This bug was introduced in Erlang/OTP 27.2.
Own Id: OTP-19444 Aux Id: GH-9237, PR-9318

Kernel 10.2
Fixed Bugs and Malfunctions
	gen_sctp:peeloff/2 has been fixed to inherit socket options to the peeled off socket more like gen_tcp:accept/1, for example the options tos or tclass.
When setting SCTP options that are unsupported on the platform, some should be silently ignored, but a bug caused the option parsing to derail so the options after could bail out and cause an error instead. This has been fixed.
Own Id: OTP-19225 Aux Id: PR-8789

	Made it possible to expand help text displayed by pressing ^[h by pressing ^[h again.
Own Id: OTP-19260 Aux Id: PR-8884

	inet:getifaddrs/0,1 is improved when using
inet_backend = socket.
Own Id: OTP-19264

	Fixed logger:report/0 to mandate at least one element in the report. This fixes an issue with overlapping spec domains in all logger functions that use logger:report/0.
Own Id: OTP-19302 Aux Id: PR-8959

	Fixed deadlock on code_server. Multiple calls loading the same module with an on_load function loading call would create a deadlock.
Own Id: OTP-19305 Aux Id: PR-8744, GH-7466, GH-8510

Improvements and New Features
	The Kernel application now recognizes the epmd_module and erl_epmd_listen_port parameters, similar to -kernel:connect_all.
Own Id: OTP-19253 Aux Id: PR-8671

	The inetrc kernel argument will now tolerate atoms again to improve compatibility with old configurations that relied on atoms working by accident.
The expected type always was, and still remains, a string.
Own Id: OTP-19280 Aux Id: GH-8899, PR-8902

	The file:io_device/0 type has been updated to clearly show the difference between a raw and cooked IoDevice.
Own Id: OTP-19301 Aux Id: PR-8956

	Erlang/OTP type specifications has been updated to eliminate overlapping domains.
Own Id: OTP-19310 Aux Id: GH-8810, GH-8821, PR-8986

	Added the kernel parameter os_cmd_shell that controls which shell should be used by os:cmd/1.
Own Id: OTP-19342 Aux Id: PR-8972

	Added logging support to io:user/0, io:standard_io/0 and io:standard_error/0. See io:setopts/2 for more details.
Own Id: OTP-19372 Aux Id: PR-8947

Kernel 10.1.2
Fixed Bugs and Malfunctions
	On windows the socket:recv could return with success ({ok, Data}) even though not all data had been read.
Own Id: OTP-19328

	gen_udp:send on domain local can leak inet_reply messages.
Own Id: OTP-19332 Aux Id: #8989

	Failure to create an UDP IPv6 socket when inet_backend = socket with certain IPv6 socket options.
Own Id: OTP-19357

	net:getifaddrs does not properly report the running flag on windows.
Own Id: OTP-19366 Aux Id: OTP-19061, ERIERL-1134

Kernel 10.1.1
Fixed Bugs and Malfunctions
	A bug has been fixed where receiving an SCTP message with gen_sctp could waste the first fragments of a message and only deliver the last fragment.
This happened with low probability when the OS signaled that the socket was ready for reading in combination with an internal time-out retry.
A bug has been fixed with a lingering time-out from after an SCTP connect that could stop the flow of incoming messages on an active gen_tcp socket.
Own Id: OTP-19235 Aux Id: ERIERL-1133, PR-8837

	An boolean option non_block_send for SCTP, has ben added to be able to achieve the old behaviour to avoid blocking send operations by passing the OS network stack error message ({error,eagain} through.
Own Id: OTP-19258 Aux Id: OTP-19061, ERIERL-1134

Kernel 10.1
Fixed Bugs and Malfunctions
	A faulty assertion was corrected in the prim_tty module. This assertion could trigger when invalid UTF-8 was read from stdin just as the mode was changed from unicode to latin1.
Own Id: OTP-19097 Aux Id: PR-8503

	Opening a disk_log file and combining head_func with rotate options did not work.
Own Id: OTP-19104 Aux Id: ERIERL-870

	Fixed an error info printout for erlang:is_process_alive/1 on non-local pids.
Own Id: OTP-19134 Aux Id: PR-8560

	A race in the kTLS flavour of SSL distribution has been fixed so that inet_drv.c doesn't read ahead too much data, which could cause the kTLS encryption to be activated too late when some encrypted data had already been read into the inet_drv.c buffer as unencrypted.
Own Id: OTP-19175 Aux Id: GH-8561, PR-8690

	Fixed a deadlock when an application crashes during startup and log messages were sent to standard out. Logger would fail to print the messages to standard out and instead print them to standard error.
Own Id: OTP-19205

	The -proto_dist init parameter will no longer be ignored when specified multiple times. It will now log a warning and use the first specified value.
Own Id: OTP-19208 Aux Id: PR-8672

	Corrected socket:ioctl for genaddr (SIOCGENADDR).
Own Id: OTP-19216

Improvements and New Features
	Added functions getservbyname and getservbyport to the net module.
Own Id: OTP-19101 Aux Id: OTP-18835

	Introduced enet | esock variants of inet functions, either when called with sockets,
with explicit inet_backend config or with the e inet_backend kernel config option.
Own Id: OTP-19132 Aux Id: OTP-19101

	The function socket:i/0 now uses the net module (instead of the inet module) for service translation.
Own Id: OTP-19138 Aux Id: OTP-19101

	A boolean option read_ahead has been implemented for gen_tcp, default true, to facilitate not reading past (caching data) the end of a packet. In particular, for kTLS, caching data could read in data that was supposed to be decrypted by the platform's network stack, before crypto parameters could be activated.
Own Id: OTP-19199 Aux Id: OTP-19175, GH-8561, GH-8690, GH-8785

Kernel 10.0.1
Improvements and New Features
	Polish the logger documentation.
Own Id: OTP-19118 Aux Id: PR-8534

Kernel 10.0
Fixed Bugs and Malfunctions
	Fixed a crash when calling file:delete/2 with an empty option list.
Own Id: OTP-18590 Aux Id: PR-7220

	New functions have been added to the undocumented module m:inet_dns that take a flag to specify if encode/decode is for mDNS. This affects how CLASS values in the private range, with the top bit set, are handled.
Own Id: OTP-18878 Aux Id: GH-7718, OTP-17734

	The error information for erlang:phash/2 has been corrected.
Own Id: OTP-18904 Aux Id: PR-7960

	get_until requests using the I/O protocol now correctly return a binary or list when eof is the last item returned by the callback.
Own Id: OTP-18930 Aux Id: PR-7993, GH-4992

	Calling logger:add_handlers/1 with config option now works.
Own Id: OTP-18954 Aux Id: GH-8061, PR-8076

	The code:del_path/1 function now also works on paths added through -pa, -pz , -path and the boot script.
Own Id: OTP-18959 Aux Id: GH-6692, PR-7697

	A call to socket:[recv|recvfrom|recvmsg]/* with Timeout = 0 on Windows could cause a (case clause) crash if data is immediately available.
Own Id: OTP-19063 Aux Id: OTP-18835

	Improve heuristic for when a characters is wide in the shell for systems with old libc versions.
Own Id: OTP-19087 Aux Id: PR-8382

	Fix reading a line when reading from io:user/0 to not consider \r without \n to be a new line when erl is started with -noshell.
Own Id: OTP-19088 Aux Id: PR-8396, GH-8360

Improvements and New Features
	Added file:read_file/2 with a raw option for reading files without going through the file server.
Own Id: OTP-18589 Aux Id: PR-7220

	The undocumented Erlang DNS resolver library (inet_dns and inet_res) has been augmented to handle IXFR, NOTIFY, UPDATE and TSIG records. With this some bug fixes and code cleanup has been done, and the resolver used in the test suite has been changed to Knot DNS. See the source code.
Kudos to Alexander Clouter that did almost all the work!
Own Id: OTP-18713 Aux Id: PR-6985, GH-6985

	The ebin directories for escripts are now cached.
Own Id: OTP-18778 Aux Id: PR-7556

	-callback attributes haven been added to application, logger_handler, and logger_formatter.
Own Id: OTP-18795 Aux Id: PR-7703

	Progress reports from before logger is started are now logged when log level is set to debug.
Own Id: OTP-18807 Aux Id: PR-7732 ERIERL-985

	The code:where_is_file/2 and
code:which/1 functions now check for existence of the file directly instead of listing the content of each directory in the code path.
Own Id: OTP-18816 Aux Id: PR-7711

	Type specs has been added to the logger:Level/1,2,3 functions.
Own Id: OTP-18820 Aux Id: PR-7779

	For inet_backend = socket, setting the active socket option alone, to once, true or N has been optimized, as well as the corresponding data delivery.
Own Id: OTP-18835

	New functions socket:sendv/* for sending I/O vectors have been added.
Own Id: OTP-18845

	The shell now pages long output from the documentation help command (h(Module)), auto completions and the search command.
Own Id: OTP-18846 Aux Id: PR-7845

	Native coverage support has been implemented in the JIT. It will automatically be used by the cover tool to reduce the execution overhead when running cover-compiled code.
There are also new APIs to support native coverage without using the cover tool.
To instrument code for native coverage it must be compiled with the line_coverage option.
To enable native coverage in the runtime system, start it like so:
$ erl +JPcover true
There are also the following new functions for supporting native coverage:
	code:coverage_support/0
	code:get_coverage/2
	code:reset_coverage/1
	code:get_coverage_mode/0
	code:get_coverage_mode/1
	code:set_coverage_mode/1

Own Id: OTP-18856 Aux Id: PR-7856

	Optimized code loading by moving certain operations from the code server to the caller.
Own Id: OTP-18941 Aux Id: PR-7981

	The documentation has been migrated to use Markdown and ExDoc.
Own Id: OTP-18955 Aux Id: PR-8026

	Application startup has been optimized by removing an intermediary process.
Own Id: OTP-18963 Aux Id: PR-8042

	The existing experimental support for archive files will be changed in a future release. The support for having an archive in an escript will remain, but the support for using archives in a release will either become more limited or completely removed.
As of Erlang/OTP 27, the function code:lib_dir/2, the -code_path_choice flag, and using erl_prim_loader for reading members of an archive are deprecated.
To remain compatible with future version of Erlang/OTP escript scripts that need to retrieve data files from its archive should use escript:extract/2 instead of erl_prim_loader and code:lib_dir/2.
 POTENTIAL INCOMPATIBILITY
Own Id: OTP-18966 Aux Id: PR-8091

	The undocumented and deprecated file:pid2name function has been removed.
Own Id: OTP-18967 Aux Id: PR-8092

	There is a new module trace in Kernel providing the same trace functionality as erlang:trace/3 and erlang:trace_pattern/3, but with the addition of dynamic isolated trace sessions.
Own Id: OTP-18980

	Error logging has been improved when the io:standard_io/0 reader and/or writer terminates with an error.
Own Id: OTP-18989 Aux Id: PR-8103

	inet_backend = socket has been optimized and reworked to be more compatible with the original inet_backend = inet.
Own Id: OTP-19004 Aux Id: OTP-18835

	Add an simple example (echo server))to the socket users guide.
Own Id: OTP-19042

	inet:i/0,1,2 has been improved to allow port numbers to be shown explicitly.
Own Id: OTP-19053 Aux Id: #6724

	The socket documentation has been reworked, and due to
that a few details were fixed:
	socket:is_supported/1 now returns true for example for protocols
that is a "category", not an item.
	socket:cancel_monitor/1 no longer badargs for a monitor that was set by
another process, instead it returns false as for other unknown
reference()s.

Own Id: OTP-19054

	Add stdin, stdout and stderr keys to io:getopts/1 on io:standard_io/0 to indicate if the respective I/O device is backed by a terminal.
Own Id: OTP-19089 Aux Id: PR-8396

Kernel 9.2.4.10
Fixed Bugs and Malfunctions
	net_kernel could be blocked for a very long time when selecting distribution module for a connection if the DNS service was slow. This prevented any new connections to be set up during that time.
Own Id: OTP-19702 Aux Id: ERIERL-1241, PR-10029

Kernel 9.2.4.9
Fixed Bugs and Malfunctions
	A remote shell can now exit by closing the input stream, without terminating the remote node.
Own Id: OTP-19667 Aux Id: PR-9912

Kernel 9.2.4.8
Fixed Bugs and Malfunctions
	With this change, disk_log will not crash when using chunk_step/3 after log size was decreased.
Own Id: OTP-19605 Aux Id: GH-9720, PR-9765

	With this change, disk_log will not run into infinite loop when using chunk/2,3 after log size was decreased.
Own Id: OTP-19608 Aux Id: GH-9707, PR-9767

Kernel 9.2.4.7
Fixed Bugs and Malfunctions
	Behavior for socket:recv/3 has been improved. The behavior has also been clarified in the documentation.
Own Id: OTP-19469 Aux Id: #9172

	An infinite loop in CNAME loop detection that can cause Out Of Memory has been fixed. This affected CNAME lookup with the internal DNS resolver.
Own Id: OTP-19545 Aux Id: PR-9587, OTP-19544

Kernel 9.2.4.6
Fixed Bugs and Malfunctions
	Fixed a couple of bugs that could make global's internal state inconsistent when a connection was reconnected.
Own Id: OTP-19381 Aux Id: PR-9377, GH-9112, GH-9117

Kernel 9.2.4.5
Fixed Bugs and Malfunctions
	Fix bug where log printouts would go missing when application_controller is stopping while log messages are being sent.
This bug was introduced by OTP-19078 in Erlang/OTP 26.2.5.
Own Id: OTP-19418 Aux Id: GH-9163 PR-9274

Kernel 9.2.4.4
Fixed Bugs and Malfunctions
	gen_udp:send on domain local can leak inet_reply messages.
Own Id: OTP-19332 Aux Id: #8989

	Failure to create an UDP IPv6 socket when inet_backend = socket with certain IPv6 socket options.
Own Id: OTP-19357

	net:getifaddrs does not properly report the running flag on windows.
Own Id: OTP-19366 Aux Id: OTP-19061, ERIERL-1134

Kernel 9.2.4.3
Fixed Bugs and Malfunctions
	A bug has been fixed where receiving an SCTP message with `gen_sctp` could waste the first fragments of a message and only deliver the last fragment.
This happened with low probability when the OS signaled that the socket was ready for reading in combination with an internal time-out retry.
A bug has been fixed with a lingering time-out from after an SCTP connect that could stop the flow of incoming messages on an active `gen_tcp` socket.
Own Id: OTP-19235 Aux Id: ERIERL-1133, PR-8837

	An boolean option `non_block_send` for SCTP, has ben added to be able to achieve the old behaviour to avoid blocking send operations by passing the OS network stack error message (`{error,eagain}` through.
Own Id: OTP-19258 Aux Id: OTP-19061, ERIERL-1134

Kernel 9.2.4.2
Fixed Bugs and Malfunctions
	A race in the kTLS flavour of SSL distribution has been fixed so inet_drv.c doesn't read ahead too much data which could cause the kTLS encryption to be activated too late when some encrypted data had already been read into the inet_drv.c buffer as unencrypted.
Own Id: OTP-19175 Aux Id: GH-8561, PR-8690

	Fix a deadlock when an application crashes during startup and log messages were sent to standard out. Logger would fail to print the messages to standard out and instead print them to standard error.
Own Id: OTP-19205

	Add the stdlib application parameters shell_redraw_prompt_on_output which when set to false disables redrawing of the shell prompt if any other output is done.
Own Id: OTP-19213 Aux Id: PR-8763 ERIERL-1108

Kernel 9.2.4.1
Fixed Bugs and Malfunctions
	A call to socket:[recv|recvfrom|recvmsg]/* with Timeout = 0 on Windows could cause a (case clause) crash if data is immediately available.
Own Id: OTP-19063 Aux Id: OTP-18835

	Open a disk_log file and combining head_func with rotate options did not work.
Own Id: OTP-19104 Aux Id: ERIERL-870

Kernel 9.2.4
Fixed Bugs and Malfunctions
	Fix the shell Job Control Mode to not crash when typing TAB or CTRL+R.
Own Id: OTP-19072 Aux Id: PR-8391

	Fix calls to blocking application APIs to throw an exception with reason terminating if called when the system is terminating.
This is done in order to avoid deadlocks during shutdown or restart.
Own Id: OTP-19078 Aux Id: PR-8422

Kernel 9.2.3
Fixed Bugs and Malfunctions
	When using IPv6, classic gen_udp failed to add (group) membership (drop was used instead).
Own Id: OTP-19049 Aux Id: #8176

	The check in inet_res of the RD bit has been relaxed slightly.
Own Id: OTP-19056 Aux Id: PR-8312, OTP-17323

Kernel 9.2.2
Fixed Bugs and Malfunctions
	Fix performance bug when using io:fread to read from standard_io. This regression was introduced in OTP 26.0.
Own Id: OTP-18910 Aux Id: PR-7933 GH-7924

	A bug in the code server could cause it to crash in some concurrent scenarios. This bug was introduced in 26.1.
Own Id: OTP-18948 Aux Id: PR-8046

	Fixed gen_udp:open/2 type spec to include already supported module socket address types.
Own Id: OTP-18990 Aux Id: GH-8158

	Fix reading of password for ssh client when in user_interactive mode.
Own Id: OTP-19007 Aux Id: ERIERL-1049

Kernel 9.2.1
Fixed Bugs and Malfunctions
	Fix group (that is the shell) to properly handle when an get_until callback function returned {done, eof, []} when an eof was detected.
Own Id: OTP-18901

Kernel 9.2
Fixed Bugs and Malfunctions
	For inet_backend = socket, an unexpected receive error such as etimedout
caused the receiving state machine server to crash. This bug has now been
fixed.
Own Id: OTP-18749 Aux Id: GH-7608

	Fix bug where reading using file from a unicode enabled standard_io,
standard_error or any other group backed device would result in incorrect
values being returned or a crash.
Now instead a no_translation error is returned to the caller when unicode data
is read using file. See
Using Unicode
in the STDLIB User's Guide for more details on how to correctly read from
standard_io.
Own Id: OTP-18800 Aux Id: PR-7714 GH-7591

	The native resolver interface module has gotten a rewrite of its ETS table
handling to minimize term copying, and also to move the handling of client
time-outs to the clients, which helps the native resolver name server from
digging itself into a tar pit when heavily loaded.
Own Id: OTP-18812 Aux Id: ERIERL-997

	Replaced unintentional Erlang Public License 1.1 headers in some files with
the intended Apache License 2.0 header.
Own Id: OTP-18815 Aux Id: PR-7780

	Fix bug in pg if a client process both monitored a group/scope and joined a
group. The termination of such process resulted in crash of the pg server
process.
Own Id: OTP-18833 Aux Id: GH-7625, PR-7659

	Fix crash when using file:consult and the underlying file read returns an
error while reading.
Own Id: OTP-18873 Aux Id: PR-7831

	Corrected gen_tcp_socket listen option handling.
Own Id: OTP-18883 Aux Id: #7764

Improvements and New Features
	Add Windows support for DGRAM socket connect.
Own Id: OTP-18762

	Document the, previously opaque, types select_tag() and completion_tag().
Own Id: OTP-18818 Aux Id: #7337

Kernel 9.1
Fixed Bugs and Malfunctions
	Fixed an issue with truncated crash slogans on failed emulator start.
Own Id: OTP-18623 Aux Id: GH-7344

	Fix shell:start_interactive function specification.
Own Id: OTP-18628 Aux Id: GH-7280

	Fix code:get_doc/1 to return missing, when it can't find erts instead of
crashing.
Own Id: OTP-18654 Aux Id: PR-7404

	Function socket:close/1 could cause a VM crash on Windows.
Own Id: OTP-18669 Aux Id: OTP-18029

	Fix deadlock when erl.exe is used as part of a pipe on Windows and trying to
set the encoding of the standard_io device.
Own Id: OTP-18675 Aux Id: PR-7473 GH-7459

	Expanded the documentation about how to use the standard_io,
standard_error and user I/O devices.
Added the types io:standard_io/0,
io:standard:error/0 and io:user/0.
Own Id: OTP-18676 Aux Id: PR-7473 GH-7459

	Fix logger's overload protection mechanism to only fetch memory used by
messages when needed.
Own Id: OTP-18677 Aux Id: PR-7418 GH-7417

	Fixed a number of socket-related issues causing incompatibilities with gen_tcp
and gen_udp respectively.
Own Id: OTP-18685

	gen_tcp:connect with socket address and socket (inet-) backend fails because
of missing callback function.
Own Id: OTP-18707 Aux Id: #7530

	The DNS RR cache used by `inet_res` has been fixed to preserve insert order,
which is beneficial when the DNS server returns RRs in some specific order for
e.g load balancing purposes.
Own Id: OTP-18731 Aux Id: GH-7577, PR-7578

	The options `reuseport`, `reuseport_lb` and `exclusiveaddruse` were
accidentally not allowed for e.g `gen_udp:open/1,2`, which has now been
corrected.
Own Id: OTP-18734 Aux Id: OTP-18344, PR-6522, GH-6461, GH-7569

	gen_udp:recv/* for Unix Domain Socket in binary mode and passive mode has
been fixed to not crash.
Own Id: OTP-18747 Aux Id: GH-7605

	Fixed issue where cursor would not be placed at the end of the expression when
navigating shell history.
Own Id: OTP-18757 Aux Id: PR-7631

Improvements and New Features
	Update gen_tcp_socket and gen_udp_socket to handle 'completion' (socket on
Windows).
Own Id: OTP-18586 Aux Id: OTP-18029

	Add support for Unix Domain Sockets (only for STREAM sockets) on Windows for
'socket'.
Own Id: OTP-18611 Aux Id: OTP-18029, #5024

	Add basic support for socket ioctl on Windows.
Own Id: OTP-18660

	The file:location/0 type is now exported.
Own Id: OTP-18681

	Add support for (Windows) socket option exclusiveaddruse.
Own Id: OTP-18686

	[socket] Add support for the 'nopush' option.
Own Id: OTP-18687

	Add support for socket option 'BSP STATE'.
Own Id: OTP-18693

	Add tcp socket options 'keepcnt', 'keepidle' and 'keepintvl'.
Own Id: OTP-18698

	Add support for misc (Windows) socket options ('max_msg_size' and 'maxdg').
Own Id: OTP-18710

	The keyboard shortcuts for the shell are now configurable.
Own Id: OTP-18754 Aux Id: PR-7604 PR-7647

	Optimized code_server to reduce repeated work when loading the same module
concurrently.
Own Id: OTP-18755 Aux Id: PR-7503

Kernel 9.0.2
Fixed Bugs and Malfunctions
	Fix bug where when you entered Alt+Enter in the terminal, the cursor would
move to the last line, instead of moving to the next line.
Own Id: OTP-18580 Aux Id: PR-7242

	Fix so that the shell does not crash on startup when termcap is not available.
Own Id: OTP-18624 Aux Id: GH-7296

	Multiple socket:accept calls issue. When making multiple accept calls, only
the last call is active.
Own Id: OTP-18635 Aux Id: #7328

	Fix the shell to ignore terminal delay when the terminal capabilities report
that they should be used.
Own Id: OTP-18636 Aux Id: PR-7352 GH-7308

	Fix "oldshell" to echo characters while typing on Windows.
Own Id: OTP-18637 Aux Id: PR-7359 GH-7324

	Fix eof handling when reading from stdin when erlang is started using
-noshell.
Own Id: OTP-18640 Aux Id: PR-7384 GH-7368 GH-7286 GH-6881

	On Windows, a call to the function socket:close, when there are waiting active
calls to read, write or accept functions, could hang.
Own Id: OTP-18646

	Fix issues when reading or configuring standard_io on Windows when erl.exe
is started using -noshell flag.
Own Id: OTP-18649 Aux Id: GH-7261 PR-7400

	gen_udp:connect with inet_backend = socket fails when the Address is a
hostname (string or atom).
Own Id: OTP-18650

	Fixed problem which would cause shell to crash if particular escape sequence
was written to stdout.
Own Id: OTP-18651 Aux Id: PR-7242

	Fixed problem where output would disappear if it was received after a prompt
was written in the shell.
Own Id: OTP-18652 Aux Id: PR-7242

	Fix a crash where the location of erts could not be found in rebar3 dev
builds.
Own Id: OTP-18656 Aux Id: PR-7404 GH-7390

	Introduce the KERNEL application parameter standard_io_encoding that can be
used to set the default encoding for standard_io. This option needs to be set
to latin1 if the application wants to treat all input data as bytes rather
than utf-8 encoded characters.
Own Id: OTP-18657 Aux Id: GH-7230 PR-7384

Kernel 9.0.1
Fixed Bugs and Malfunctions
	The POSIX error exdev was sometimes incorrectly described as "cross domain
link" in some error messages.
Own Id: OTP-18578 Aux Id: GH-7213

	Corrected the socket send function description (send with Timeout = nowait).
The send function(s) could not return {ok, {RestData, SelectInfo}}
Own Id: OTP-18584 Aux Id: #7238

Kernel 9.0
Fixed Bugs and Malfunctions
	Fixed a bug where duplicate keys were allowed in the .app file of an
application. Duplicate keys are now rejected and the application will not
start if they exist.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18210 Aux Id: GH-5877 PR-5878

	Fix inconsistent handling in logger_formatter of the branched values in
conditional branches. For example using msg in a conditional branch would
not be formatted as it should before this fix.
Own Id: OTP-18225 Aux Id: PR-6036

	Fix the logger_std_h handler to log to standard_error if logging to
standard_io fails for any reason.
Own Id: OTP-18226 Aux Id: PR-6253

	Fix the TLS distribution to work when starting Erlang in embedded mode and a
connection is done before kernel is fully started.
Own Id: OTP-18248 Aux Id: PR-6227 GH-6085

	erl -remsh has been improved to provide better error reasons and work when
using a shell without terminal support (that is an "oldshell").
Own Id: OTP-18271 Aux Id: PR-6279

	Fix logging of log events generated before kernel is started to not fail if
the code for formatting those log messaged have not yet been loaded.
Own Id: OTP-18286 Aux Id: PR-5955

	proc_lib:start*/* has become synchronous when the started process fails.
This requires that a failing process use a new function
proc_lib:init_fail/2,3, or exits, to indicate failure. All OTP behaviours
have been fixed to do this.
All these start functions now consume the 'EXIT' message from a process link
for all error returns. Previously it was only the start_link/* functions
that did this, and only when the started function exited, not when it used
init_ack/1,2 or init_fail/2,3 to create the return value.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18471 Aux Id: GH-6339, PR-6843

	Fixed a bug where file:read(standard_io, ...) unexpectedly returned eof in
binary mode.
Own Id: OTP-18486 Aux Id: PR-6881

	Return type for seq_trace:get_token/1 fixed.
Own Id: OTP-18528 Aux Id: PR-7009

	Looking up, connecting to and sending to a host with an empty name is now
handled by trying to look up the address of the root domain, which fails.
Previously some of these operations caused an internal exception, which
contradicted type specifications.
Own Id: OTP-18543 Aux Id: GH-6353

	Replaced a regex with a special case handling of ANSI Select Graphic Rendition
escape characters, to speed up io output that make use of these escape
sequences.
Own Id: OTP-18547 Aux Id: PR-7092

Improvements and New Features
	The Erlang shell has been improved to support the following features:
	Auto-complete variables, record names, record field names, map keys,
function parameter types and filenames.
	Open external editor in the shell (with C-o) to edit the current expression
in an editor.
	Support defining records (with types), functions and function typespecs, and
custom types in the shell.
	Do not save pager commands, and input to io:getline in history.

Own Id: OTP-14835 Aux Id: PR-5924

	The TTY/terminal subsystem has been rewritten by moving more code to Erlang
from the old linked-in driver and implementing all the I/O primitives needed
in a NIF instead.
On Unix platforms the user should not notice a lot of difference, besides
better handling of unicode characters and fixing of some long standing bugs.
Windows users will notice that erl.exe has the same functionality as a normal
Unix shell and that werl.exe has been removed and replaced with a symlink to
erl.exe. This makes the Windows Erlang terminal experience identical to that
of Unix.
The re-write brings with it a number of bug fixes and feature additions:
	The TTY is now reset when Erlang exits, fixing zsh to not break when
terminating an Erlang session.
	standard_error now uses the same unicode mode as standard_io.
	Hitting backspace when searching the shell history with an empty search
string no longer breaks the shell.
	Tab expansion now works on remote nodes started using the JCL interface.
	It is now possible to configure the shell slogan and the session slogans
(that is the texts that appear when you start an Erlang shell). See the
kernel documentation for more details.
	Added shell:start_interactive for starting the interactive shell from a
non-interactive Erlang session (for example an escript).
	On Windows, when starting in detached mode the standard handler are now set
to nul devices instead of being unset.
	Standard I/O now always defaults to unicode mode if supported. Previously
the default was latin1 if the runtime system had been started with
-oldshell or -noshell (for example in an escript). To send raw bytes
over standard out, one now explicitly has to specify
io:setopts(standard_io, [{encoding, latin1}]).

* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-17932 Aux Id: PR-6144 GH-3150 GH-3390 GH-4343 GH-4225

	Add support for socket on Windows.
	Pre release status.
	Error codes not finalized.
	No explicit support for Windows specific options (socket options, flags for
read and write).
	New async api for Windows (completion). See the Asynchronous calls chapter
in the (Socket Usage) Users Guide.
	To ensure platform independence, gentcp and gen_udp is _intended to be
used (not yet updated).

Own Id: OTP-18029

	As announced since the release of OTP 24, support for:
	version 4 node container types in the external term format are now
mandatory. That is, references supporting up to 5 32-bit integer
identifiers, and process and port identifiers with support for 64-bit data
storage. The distribution flag
DFLAG_V4_NC is therefor now
also mandatory. OTP has since OTP 24 supported this. Also note that the
external format produced by term_to_binary() and term_to_iovec() will
unconditionally produce pids, ports, and references supporting this larger
format.
	the new link protocol
introduced in OTP 23.3 is now mandatory. The distribution flag
DFLAG_UNLINK_ID is
therefor now also mandatory.

Due to the above, OTP 26 nodes will refuse to connect to OTP nodes from
releases prior to OTP 24.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18140 Aux Id: PR-6072

	Support for Kernel TLS (kTLS), has been added to the SSL application, for TLS
distribution (-proto_dist inet_tls), the SSL option {ktls, true}. Using
this for general SSL sockets is uncomfortable, undocumented and not
recommended since it requires very platform dependent raw options.
This, for now, only works for some not too old Linux distributions. Roughly, a
kernel 5.2.0 or later with support for UserLand Protocols and the kernel
module tls is required.
Own Id: OTP-18235 Aux Id: PR-6104, PR-5840

	Add code:get_doc/2 which adds support to fetch documentation skeletons of
functions using debug_info chunks instead of eep48 doc chunks.
Own Id: OTP-18261 Aux Id: PR-5924

	The Erlang shell's auto-completion when typing tab has been changed to
happen after the editing current line instead of before it.
This behaviour can be configured using a the shell_expand_location STDLIB
configuration parameter.
Own Id: OTP-18278 Aux Id: PR-6260

	Typing Ctrl+L in a shell now clears the screen and redraws the current line
instead of only redrawing the current line. To only redraw the current line,
you must now type Alt+L. This brings the behaviour of Ctrl+L closer to how
bash and other shells work.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18285 Aux Id: PR-6262

	gen_server optimized by caching callback functions
Own Id: OTP-18305 Aux Id: PR-5831

	Prepare the pg communication protocol for upgrade. The plan is for OTP-28
nodes to be able to use an upgraded pg protocol while still being able to
talk with OTP 26 nodes.
Own Id: OTP-18327 Aux Id: PR-6433

	New disk_log log type rotate, where the log files are compressed upon
rotation.
Own Id: OTP-18331 Aux Id: ERIERL-870

	The following inet:setopts/2 options have been introduced:
	reuseport - Reuse of local port. Load
balancing may or may not be provided depending on underlying OS.

	reuseport_lb - Reuse of local port.
Load balancing provided.

	exclusiveaddruse - Exclusive
address/port usage on Windows. This socket option is Windows specific and
will silently be ignored on other systems.

The behavior of setting reuseaddr on Windows
have changed in a backwards incompatible way. The underlying SO_REUSEADDR
socket option is now only set if both the reusaddr and the reuseport
inet options have been set. This since the underlying SO_REUSEADDR socket
option on Windows behaves similar to how BSD behaves if both the underlying
socket options SO_REUSEADDR and SO_REUSEPORT have been set. See the
documentation of the reuseaddr option for more information.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18344 Aux Id: PR-6522, PR-6944, OTP-18324, PR-6481, GH-6461

	Replace size/1 with either tuple_size/1 or byte_size/1
The size/1 BIF is not optimized by the JIT, and its use can
result in worse types for Dialyzer.
When one knows that the value being tested must be a tuple,
tuple_size/1 should always be preferred.
When one knows that the value being tested must be a binary,
byte_size/1 should be preferred. However,
byte_size/1 also accepts a bitstring (rounding up size to a
whole number of bytes), so one must make sure that the call to byte_size/ is
preceded by a call to is_binary/1 to ensure that bitstrings
are rejected. Note that the compiler removes redundant calls to
is_binary/1, so if one is not sure whether previous code
had made sure that the argument is a binary, it does not harm to add an
is_binary/1 test immediately before the call to
byte_size/1.
Own Id: OTP-18405 Aux Id:
GH-6672,PR-6702,PR-6768,PR-6700,PR-6769,PR-6812,PR-6814

	The function file:pid2name/1 is deprecated and will be removed in
Erlang/OTP 27.
Own Id: OTP-18419

	The modules Erlang DNS resolver inet_res and helper modules have been
updated for RFC6891; to handle OPT RR with DNSSEC OK (DO) bit.
Own Id: OTP-18442 Aux Id: PR-6786, GH-6606

	Introduced application:get_supervisor/1.
Own Id: OTP-18444 Aux Id: PR-6035

	Handling of on_load modules during boot has been improved by adding an extra
step in the boot order for embedded mode that runs all on_load handlers,
instead of relying on explicit invocation of them, later, when the kernel
supervision tree starts.
This is mostly a code improvement and OTP internal simplification to avoid
future bugs and to simplify code maintenance.
Own Id: OTP-18447

	Reduce contention on the code_server by doing the code preparation on the
client.
Own Id: OTP-18448 Aux Id: PR-6736

	Added a mode to ensure_all_loaded, to start children application and their
dependencies concurrently.
Own Id: OTP-18451 Aux Id: PR-6737

	Cache OTP boot code paths, to limit how many folders that are being accessed
during a module lookup. Can be disabled with -cache_boot_path false. OTP boot
code paths consists of ERL_LIB environment variables. The various otp/*/ebin
folders. And the {path, ...} clauses in the init script.
Own Id: OTP-18452 Aux Id: PR-6729

	Erlang distribution code in Kernel and SSL has been refactored a bit to
facilitate debugging and re-usability, which shouldn't have any noticeable
effects on behaviour or performance.
Own Id: OTP-18456

	Add cache attribute to code path apis.
Added an optional cache/nocache argument to all code:add_path,
code:set_path, and code:replace_path* functions. These functions will then
avoid doing file-accesses if they are cached. Cache can be cleared with
code:clear_cache/0. Added code:del_paths/1 to make it easier to clear multiple
paths.
Own Id: OTP-18466 Aux Id: PR-6832

	Deprecates dbg:stop_clear/0 because it is simply a function alias to
dbg:stop/0
Own Id: OTP-18478 Aux Id: GH-6903

	Improvements to code:ensure_modules_loaded/1: Previously it would prepare
modules and then abandon references to said modules if they had on_load
callbacks. This pull request makes it so they keep the references around and
then serially load them without having to fetch the object code and prepare
them again.
Own Id: OTP-18484 Aux Id: PR-6844

	The internal DNS resolver has been updated to handle DNS LOC RR:s (RFC 1876).
This is an undocumented module, although still used by power users. See the
source code.
Own Id: OTP-18510 Aux Id: GH-6098, PR-6982

	Reduced memory consumption in global when informing other nodes about lost
connections.
Own Id: OTP-18521 Aux Id: PR-7025

	The net_kernel, global, and global_group servers now have
fully asynchronous distributed signaling
enabled all the time which prevents them from ever getting blocked on send of
distributed signals.
Documentation about blocking distributed signals has also been improved.
Own Id: OTP-18533 Aux Id: PR-7061

	Allow IPv6 addresses as host in http packets decoded by
erlang:decode_packet/3 and gen_tcp packet option. The IPv6 address should
be enclosed within [] according to RFC2732.
Own Id: OTP-18540 Aux Id: PR-6900

	Remove deprecated functions in OTP-26
Own Id: OTP-18542

	Removed code:is_module_native/1 since HiPE has been removed. It has since
OTP 24 been deprecated and scheduled for removal in OTP 26.
Removed code:rehash/0 since the code path feature no longer is present. It
has since OTP 19 been deprecated and has since OTP 24 been scheduled for
removal in OTP 26.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18551 Aux Id: PR-7106

	Added support for multiple line expressions and navigation in the shell. Added
new keybindings:
	navigate up (ctrl+up)/(alt+up)
	navigate down (ctrl+down)/(alt+down)
	insert newline in middle of line (alt+enter)
	navigate top (alt+<)/(alt+shift+up)
	navigate bottom (alt+>)/(alt+shift+down)
	clear current expression (alt+c)
	cancel search (alt+c)
	opening editor on mac (option+o)/(alt+o)

Modifies the prompt for new lines to make it clearer that the prompt has
entered multi-line mode. Supports terminal with small window size, recommend
not go lower than 7 rows and 40 columns. Modifies the search prompt to support
multi-line statements. Redraw the prompt after continuing from JCL menu.
Own Id: OTP-18575 Aux Id: PR-7169

Kernel 8.5.4.6
Fixed Bugs and Malfunctions
	With this change, disk_log will not crash when using chunk_step/3 after log size was decreased.
Own Id: OTP-19605 Aux Id: GH-9720, PR-9765

	With this change, disk_log will not run into infinite loop when using chunk/2,3 after log size was decreased.
Own Id: OTP-19608 Aux Id: GH-9707, PR-9767

Kernel 8.5.4.5
Fixed Bugs and Malfunctions
	An infinite loop in CNAME loop detection that can cause Out Of Memory has been fixed. This affected CNAME lookup with the internal DNS resolver.
Own Id: OTP-19545 Aux Id: PR-9587, OTP-19544

Kernel 8.5.4.4
Fixed Bugs and Malfunctions
	Fixed a couple of bugs that could make global's internal state inconsistent when a connection was reconnected.
Own Id: OTP-19381 Aux Id: PR-9377, GH-9112, GH-9117

Kernel 8.5.4.3
Fixed Bugs and Malfunctions
	Fixed gen_udp:open/2 type spec to include already supported module socket address types.
Own Id: OTP-19050 Aux Id: OTP-18990

Kernel 8.5.4.2
Fixed Bugs and Malfunctions
	gen_tcp:connect with socket address and socket (inet-) backend fails because
of missing callback function.
Own Id: OTP-18707 Aux Id: #7530

Kernel 8.5.4.1
Fixed Bugs and Malfunctions
	Multiple socket:accept calls issue. When making multiple accept calls, only
the last call is active.
Own Id: OTP-18635 Aux Id: #7328

	gen_udp:connect with inet_backend = socket fails when the Address is a
hostname (string or atom).
Own Id: OTP-18650

Kernel 8.5.4
Fixed Bugs and Malfunctions
	Fixed a bug on Windows where file:read_file_info/1 would fail for files with
corrupt metadata.
Own Id: OTP-18348 Aux Id: GH-6356

	Accept connection setup from OTP 23 and 24 nodes that are not using epmd.
Own Id: OTP-18404 Aux Id: GH-6595, PR-6625

Kernel 8.5.3
Fixed Bugs and Malfunctions
	The tcp connect option 'bind_to_device' could not be used with inet_backend =
'socket'. 'inet' requires value type binarry() and 'socket' requires value
type 'string()'.
Own Id: OTP-18357 Aux Id: #6509

	Minor issue processing options when calling gen_tcp:connect with a sockaddr()
and inet_backend = socket.
Own Id: OTP-18358 Aux Id: #6528

Kernel 8.5.2
Fixed Bugs and Malfunctions
	Fixed shutdown crash in gen_tcp socket backend, when the other end closed the
socket.
Own Id: OTP-18270 Aux Id: #6331

	erl_tar can now read gzip-compressed tar files that are padded. There is a
new option compressed_one for file:open/2 that will read a single member
from a gzip file,
Own Id: OTP-18289 Aux Id: PR-6343

	Fix os:cmd to not translate all exceptions thrown to badarg. For example
emfile from erlang:open_port was translated to badarg.
This bug has existed since Erlang/OTP 24.
Own Id: OTP-18291 Aux Id: PR-6382

	Spec for function net:if_names/0 incorrect
Own Id: OTP-18296 Aux Id: OTP-16464

	Missing ctrl option name transation for TOS and TTL (on FreeBSD) when using
gen_udp with the 'socket' inet_backend.
Own Id: OTP-18315

	gen_udp:open/2 with option(s) add_membership or drop_membership would drop
earlier options.
Own Id: OTP-18323 Aux Id: #6476

	The inet:setopts/2 {reuseaddr, true} option will now be ignored on Windows
unless the socket is an UDP socket. For more information see the documentation
of the reuseaddr option part of the documentation of inet:setopts/2.
Prior to OTP 25 the {reuseaddr, true} option was ignored for all sockets on
Windows, but as of OTP 25.0 this was changed so that it was not ignored for
any sockets.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18324 Aux Id: GH-6461, PR-6481

Improvements and New Features
	The distribution socket option handling in inet_tcp_dist has been cleaned up
to clarify which were mandatory and which just had default values.
Own Id: OTP-18293

	Improve warning message format for gen_tcp_socket.
Own Id: OTP-18317

Kernel 8.5.1
Fixed Bugs and Malfunctions
	Listen sockets created with the socket module, leaked (erlang-) monitors.
Own Id: OTP-18240 Aux Id: #6285

	peer nodes failed to halt when the process supervising the control
connection crashed. When an alternative control connection was used, this
supervision process also quite frequently crashed when the peer node was
stopped by the node that started it which caused the peer node to linger
without ever halting.
Own Id: OTP-18249 Aux Id: PR-6301

Kernel 8.5
Fixed Bugs and Malfunctions
	Fixed inconsistency bugs in global due to nodeup/nodedown messages not
being delivered before/after traffic over connections. Also fixed various
other inconsistency bugs and deadlocks in both global_group and global.
As building blocks for these fixes, a new BIF erlang:nodes/2 has been
introduced and net_kernel:monitor_nodes/2 has been extended.
The -hidden and
-connect_all command line arguments did
not work if multiple instances were present on the command line which has been
fixed. The new kernel parameter connect_all has
also been introduced in order to replace the -connect_all command line
argument.
Own Id: OTP-17934 Aux Id: PR-6007

	Fixed IPv6 multicast_if and membership socket options.
Own Id: OTP-18091 Aux Id: #5789

	Fixed issue with inet:getifaddrs hanging on pure IPv6 Windows
Own Id: OTP-18102 Aux Id: #5904

	The type specifications for inet:getopts/2 and inet:setopts/2 have been
corrected regarding SCTP options.
Own Id: OTP-18115 Aux Id: PR-5939

	The type specifications for inet:parse_* have been tightened.
Own Id: OTP-18121 Aux Id: PR-5972

	Fix gen_tcp:connect/3 spec to include the inet_backend option.
Own Id: OTP-18171 Aux Id: PR-6131

	Fix bug where using a binary as the format when calling
logger:log(Level, Format, Args) (or any other logging function) would cause
a crash or incorrect logging.
Own Id: OTP-18229 Aux Id: PR-6212

Improvements and New Features
	Add rudimentary debug feature (option) for the inet-driver based sockets, such
as gen_tcp and gen_udp.
Own Id: OTP-18032

	Introduced the hidden and dist_listen options to net_kernel:start/2.
Also documented the -dist_listen command
line argument which was erroneously documented as a kernel parameter and not
as a command line argument.
Own Id: OTP-18107 Aux Id: PR-6009

	Scope and group monitoring have been introduced in pg. For more
information see the documentation of
pg:monitor_scope(),
pg:monitor(), and pg:demonitor().
Own Id: OTP-18163 Aux Id: PR-6058, PR-6275

	A new function global:disconnect/0 has been introduced with which one can
cleanly disconnect a node from all other nodes in a cluster of global nodes.
Own Id: OTP-18232 Aux Id: OTP-17843, PR-6264

Kernel 8.4.2
Fixed Bugs and Malfunctions
	A call to net_kernel:setopts(new, Opts) at the
same time as a connection was being set up could cause a deadlock between the
net_kernel process and the process setting up the connection.
Own Id: OTP-18198 Aux Id: GH-6129, PR-6216

Kernel 8.4.1
Fixed Bugs and Malfunctions
	The DNS resolver inet_res has been fixed to ignore trailing dot difference
in the request domain between the sent request and the received response, when
validating a response.
Own Id: OTP-18112 Aux Id: ERIERL-811

	A bug in inet_res has been fixed where a missing internal {ok,_} wrapper
caused inet_res:resolve/* to return a calculated host name instead of an
{ok,Msg} tuple, when resolving an IP address or a host name that is an IP
address string.
Own Id: OTP-18122 Aux Id: GH-6015, PR-6020

	The erlang:is_alive() BIF could return true before configured distribution
service was available. This bug was introduced in OTP 25.0 ERTS version 13.0.
The erlang:monitor_node() and erlang:monitor() BIFs could erroneously fail
even though configured distribution service was available. This occurred if
these BIFs were called after the distribution had been started using dynamic
node name assignment but before the name had been assigned.
Own Id: OTP-18124 Aux Id: OTP-17558, PR-6032

	Added the missing mandatory address/0 callback in the gen_tcp_dist
example.
Own Id: OTP-18136

Kernel 8.4
Fixed Bugs and Malfunctions
	The DNS resolver implementation has been rewritten to validate replies more
thoroughly, and a bit optimized to create less garbage.
Own Id: OTP-17323

	The socket option 'reuseaddr' is no longer ignored on Windows.
Own Id: OTP-17447 Aux Id: GH-4819

	Fix bug where using the atoms string or report as the format when calling
logger:log(Level, Format, Args) (or any other logging function) would cause
a crash or incorrect logging.
Own Id: OTP-17551 Aux Id: GH-5071 PR-5075

	As of OTP 25, global will by default prevent overlapping partitions due to
network issues by actively disconnecting from nodes that reports that they
have lost connections to other nodes. This will cause fully connected
partitions to form instead of leaving the network in a state with overlapping
partitions.
Prevention of overlapping partitions can be disabled using the
prevent_overlapping_partitions
kernel(6) parameter, making global behave like it used to do. This is,
however, problematic for all applications expecting a fully connected network
to be provided, such as for example mnesia, but also for global itself. A
network of overlapping partitions might cause the internal state of global
to become inconsistent. Such an inconsistency can remain even after such
partitions have been brought together to form a fully connected network again.
The effect on other applications that expects that a fully connected network
is maintained may vary, but they might misbehave in very subtle hard to detect
ways during such a partitioning. Since you might get hard to detect issues
without this fix, you are strongly advised not to disable this fix. Also
note that this fix has to be enabled on all nodes in the network in order
to work properly.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-17911 Aux Id: PR-5687, PR-5611, OTP-17843

	Starting the helper program for name resolving; inet_gethost, has been
improved to use an absolute file system path to ensure that the right program
is started.
If the helper program can not be started - the system now halts, to avoid
running with a silently broken name resolver.
Own Id: OTP-17958 Aux Id: OTP-17978

	The type specification for inet_res:getbyname/2,3 has been corrected to
reflect that it can return peculiar #hostent{} records.
Own Id: OTP-17986 Aux Id: PR-5412, PR-5803

	code:module_status/1 would always report BEAM files loaded from an archive
as modified, and code:modified_modules/0 would always return the name of
all modules loaded from archives.
Own Id: OTP-17990 Aux Id: GH-5801

	In logger fix file handler shutdown delay by using erlang timers instead of
the timer module's timers.
Own Id: OTP-18001 Aux Id: GH-5780 PR-5829

	Fix the meta data in log events generated by logger on failure to not contain
the original log event's meta data.
Own Id: OTP-18003 Aux Id: PR-5771

	Fix logger file backend to re-create the log folder if it has been deleted.
Own Id: OTP-18015 Aux Id: GH-5828 PR-5845

	[socket] Encode of sockaddr has been improved.
Own Id: OTP-18020

	Fix put_chars requests to the io server with incomplete unicode data to exit
with no_translation error.
Own Id: OTP-18070 Aux Id: PR-5885

Improvements and New Features
	The net module now works on Windows.
Own Id: OTP-16464

	An Erlang installation directory is now relocatable on the file system given
that the paths in the installation's RELEASES file are paths that are
relative to the installations root directory. The
`release_handler:create_RELEASES/4 function can generate a RELEASES
file with relative paths if its RootDir parameter is set to the empty
string.
Own Id: OTP-17304

	The following distribution flags are now mandatory: DFLAG_BIT_BINARIES,
DFLAG_EXPORT_PTR_TAG, DFLAG_MAP_TAGS, DFLAG_NEW_FLOATS, and
DFLAG_FUN_TAGS. This mainly concerns libraries or application that implement
the distribution protocol themselves.
Own Id: OTP-17318 Aux Id: PR-4972

	Fix os:cmd to work on Android OS.
Own Id: OTP-17479 Aux Id: PR-4917

	The configuration files .erlang,
.erlang.cookie and
.erlang.crypt can now be located in the XDG
Config Home directory.
See the documentation for each file and filename:basedir/2 for more details.
Own Id: OTP-17554 Aux Id: GH-5016 PR-5408 OTP-17821

	Dynamic node name improvements: erlang:is_alive/0 changed to return true for
pending dynamic node name and new function net_kernel:get_state/0.
Own Id: OTP-17558 Aux Id: OTP-17538, PR-5111, GH-5402

	The types for callback result types in gen_statem has bee augmented with
arity 2 types where it is possible for a callback module to specify the type
of the callback data, so the callback module can get type validation of it.
Own Id: OTP-17589 Aux Id: PR-4926

	The tagged tuple tests and fun-calls have been optimized and are now a little
bit cheaper than previously.
These optimizations become possible after making sure that all boxed terms
have at least one word allocated after the arity word. This has been
accomplished by letting all empty tuples refer to the same empty tuple literal
which also reduces memory usage for empty tuples.
Own Id: OTP-17608

	A net_ticker_spawn_options
kernel configuration parameter with which one can set spawn options for the
distribution channel ticker processes has been introduced.
Own Id: OTP-17617 Aux Id: PR-5069

	The most, or at least the most used, rpc operations now require erpc
support in order to communicate with other Erlang nodes. erpc was introduced
in OTP 23. That is, rpc operations against Erlang nodes of releases prior to
OTP 23 will fail.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-17681 Aux Id: PR-5307

	The new module peer supersedes the slave module. The slave module is now
deprecated and will be removed in OTP 27.
peer contains an extended and more robust API for starting erlang nodes.
Own Id: OTP-17720 Aux Id: PR-5162

	In order to make it easier for the user to manage multiple outstanding
asynchronous call requests, new functionality utilizing request identifier
collections have been introduced in
erpc,
gen_server,
gen_statem, and
gen_event.
Own Id: OTP-17784 Aux Id: PR-5792

	Type specifications have been added to the gen_server, and the documentation
has been updated to utilize this.
This surfaced a few type violations that has been corrected in global,
logger_olp and rpc.
Own Id: OTP-17915 Aux Id: PR-5751, GH-2375, GH-2690

	IP address validation functions is_ipv4_address/1, is_ipv6_address/1 and
is_ip_address/1 have been added to the module inet in Kernel.
Own Id: OTP-17923 Aux Id: PR-5646

	An API for multihomed SCTP connect has been added in the guise of
gen_sctp:connectx_init/*
Own Id: OTP-17951 Aux Id: PR-5656

	[socket] Add encoding of the field hatype of the type sockaddr_ll (family
'packet').
Own Id: OTP-17968 Aux Id: OTP-16464

	Added support for configurable features as described in EEP-60. Features can
be enabled/disabled during compilation with options
(-enable-feature Feature, -disable-feature Feature and
+{feature, Feature, enable|disable}) to erlc as well as with directives
(-feature(Feature, enable|disable).) in the file. Similar options can be
used to erl for enabling/disabling features allowed at runtime. The new
maybe expression (EEP-49) is fully supported as the feature maybe_expr.
The features support is documented in the reference manual.
Own Id: OTP-17988

Kernel 8.3.2.4
Fixed Bugs and Malfunctions
	gen_tcp:connect with socket address and socket (inet-) backend fails because
of missing callback function.
Own Id: OTP-18707 Aux Id: #7530

Kernel 8.3.2.3
Fixed Bugs and Malfunctions
	Spec for function net:if_names/0 incorrect
Own Id: OTP-18296 Aux Id: OTP-16464

	Missing ctrl option name transation for TOS and TTL (on FreeBSD) when using
gen_udp with the 'socket' inet_backend.
Own Id: OTP-18315

	The tcp connect option 'bind_to_device' could not be used with inet_backend =
'socket'. 'inet' requires value type binarry() and 'socket' requires value
type 'string()'.
Own Id: OTP-18357 Aux Id: #6509

	Minor issue processing options when calling gen_tcp:connect with a sockaddr()
and inet_backend = socket.
Own Id: OTP-18358 Aux Id: #6528

Improvements and New Features
	Improve warning message format for gen_tcp_socket.
Own Id: OTP-18317

Kernel 8.3.2.2
Improvements and New Features
	A new function global:disconnect/0 has been introduced with which one can
cleanly disconnect a node from all other nodes in a cluster of global nodes.
Own Id: OTP-18232 Aux Id: OTP-17843, PR-6264

Kernel 8.3.2.1
Fixed Bugs and Malfunctions
	A call to net_kernel:setopts(new, Opts) at the
same time as a connection was being set up could cause a deadlock between the
net_kernel process and the process setting up the connection.
Own Id: OTP-18198 Aux Id: GH-6129, PR-6216

Kernel 8.3.2
Fixed Bugs and Malfunctions
	inet:getopts/2 for the 'raw' option for a socket created with inet-backend
'socket' failed.
Own Id: OTP-18078 Aux Id: GH-5930

	Corrected the behaviour of the shutdown function when using with the
inet_backend = socket. It was not sufficiently compatible with the "old"
gen_tcp.
Own Id: OTP-18080 Aux Id: GH-5930

Kernel 8.3.1
Fixed Bugs and Malfunctions
	Fix failed accepted connection setup after previous established connection
from same node closed down silently.
Own Id: OTP-17979 Aux Id: ERIERL-780

	Fixed a problem where typing Ctrl-R in the shell could hang if there were some
problem with the history log file.
Own Id: OTP-17981 Aux Id: PR-5791

Kernel 8.3
Fixed Bugs and Malfunctions
	Handling of send_timeout for gen_tcp has been corrected so that the
timeout is honored also when sending 0 bytes.
Own Id: OTP-17840

	By default global does not take any actions to restore a fully connected
network when connections are lost due to network issues. This is problematic
for all applications expecting a fully connected network to be provided, such
as for example mnesia, but also for global itself. A network of
overlapping partitions might cause the internal state of global to become
inconsistent. Such an inconsistency can remain even after such partitions have
been brought together to form a fully connected network again. The effect on
other applications that expects that a fully connected network is maintained
may vary, but they might misbehave in very subtle hard to detect ways during
such a partitioning.
In order to prevent such issues, we have introduced a prevent overlapping
partitions fix which can be enabled using the
prevent_overlapping_partitions
kernel(6) parameter. When this fix has been enabled, global will actively
disconnect from nodes that reports that they have lost connections to other
nodes. This will cause fully connected partitions to form instead of leaving
the network in a state with overlapping partitions. Note that this fix has
to be enabled on all nodes in the network in order to work properly. Since
this quite substantially changes the behavior, this fix is currently disabled
by default. Since you might get hard to detect issues without this fix you
are, however, strongly advised to enable this fix in order to avoid issues
such as the ones described above. As of OTP 25 this fix will become enabled by
default.
Own Id: OTP-17843 Aux Id: ERIERL-732, PR-5611

	Fix bug where logger would crash when logging a report including improper
lists.
Own Id: OTP-17851

	Make erlang:set_cookie work for dynamic node names.
Own Id: OTP-17902 Aux Id: GH-5402, PR-5670

Improvements and New Features
	Add support for using socket:sockaddr_in() and socket:sockaddr_in6() when
using gen_sctp, gen_tcp and gen_udp. This will make it possible to use Link
Local IPv6 addresses.
Own Id: OTP-17455 Aux Id: GH-4852

	A net_tickintensity kernel parameter
has been introduced. It can be used to control the amount of ticks during a
net_ticktime period.
A new net_kernel:start/2 function has also been introduced in order to make
it easier to add new options. The use of net_kernel:start/1 has been
deprecated.
Own Id: OTP-17905 Aux Id: ERIERL-732, PR-5740

	Improve documentation for the dynamic node name feature.
Own Id: OTP-17918

Kernel 8.2
Fixed Bugs and Malfunctions
	socket:which_sockets(pid()) uses wrong keyword when looking up socket owner
('ctrl' instead of 'owner').
Own Id: OTP-17716

	In epmd_ntop, the #if defined(EPMD6) conditional was inverted and it was only
including the IPv6-specific code when EPMD6 was undefined. This was causing
IPv6 addrs to be interpreted as IPv4 addrs and generating nonsense IPv4
addresses as output.
Several places were incorrectly using 'num_sockets' instead of 'i' to index
into the iserv_addr array during error logging. This would result in a read
into uninitialized data in the iserv_addr array.
Thanks to John Eckersberg for providing this fix.
Own Id: OTP-17730

	Minor fix of the erl_uds_dist distribution module example.
Own Id: OTP-17765 Aux Id: PR-5289

	A bug has been fixed for the legacy TCP socket adaption module
gen_tcp_socket where it did bind to a socket address when given a file
descriptor, but should not.
Own Id: OTP-17793 Aux Id: PR-5348, OTP-17451, PR-4787, GH-4680, PR-2989,
OTP-17216

	Improve the error printout when open_port/2 fails because
of invalid arguments.
Own Id: OTP-17805 Aux Id: PR-5406

	Calling socket:monitor/1 on an already closed socket should succeed and result
in an immediate DOWN message. This has now been fixed.
Own Id: OTP-17806

	Fix the configuration option logger_metadata to work.
Own Id: OTP-17807 Aux Id: PR-5418

	Fix tls and non-tls distribution to use erl_epmd:address_please to figure out
if IPv4 or IPv6 addresses should be used when connecting to the remote node.
Before this fix, a dns lookup of the remote node hostname determined which IP
version was to be used which meant that the hostname had to resolve to a valid
ip address.
Own Id: OTP-17809 Aux Id: PR-5337 GH-5334

Improvements and New Features
	Add logger:reconfigure/0.
Own Id: OTP-17375 Aux Id: PR-4663 PR-5186

	Add socket function ioctl/2,3,4 for socket device control.
Own Id: OTP-17528

	Add simple support for socknames/1 for gen_tcp_socket and gen_udp_socket.
Own Id: OTP-17531

	The types for callback result types in gen_statem has bee augmented with
arity 2 types where it is possible for a callback module to specify the type
of the callback data, so the callback module can get type validation of it.
Own Id: OTP-17738 Aux Id: PR-4926, OTP-17589

Kernel 8.1.3
Fixed Bugs and Malfunctions
	The internal, undocumented, but used, module inet_dns has been fixed to
handle mDNS high bit usage of the Class field.
Code that uses the previously obsolete, undocumented and unused record field
#dns_rr.func will need to be updated since that field is now used as a
boolean flag for the mDNS high Class bit. Code that uses the also undocumented
record #dns_query will need to be recompiled since a boolean field
#dns_query.unicast_response has been added for the mDNS high Class bit.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-17734 Aux Id: GH-5327, OTP-17659

	The fix for Linux's behaviour when reconnecting an UDP socket in PR-5120
released in OTP-24.1.2 has been refined to only dissolve the socket's
connection before a connect if the socket is already connected, that is: only
for a reconnect.
This allows code to open a socket with an ephemeral port, get the port number
and connect; without the port number changing (on Linux). This turned out to
have at least one valid use case (besides test cases).
Should one reconnect the socket then the port number may change, on Linux; it
is a known quirk, which can be worked around by binding to a specific port
number when opening the socket. If you can do without an ephemeral port, that
is...
Own Id: OTP-17736 Aux Id: GH-5279, PR-5120, OTP-17559

Kernel 8.1.2
Fixed Bugs and Malfunctions
	The undocumented DNS encode/decode module inet_dns has been cleaned up to
handle the difference between "symbolic" and "raw" records in a more
consistent manner.
PR-5145/OTP-17584 introduced a change that contributed to an already existing
confusion, which this correction should remedy.
Own Id: OTP-17659 Aux Id: ERIERL-702

Kernel 8.1.1
Fixed Bugs and Malfunctions
	Add more info about the socket 'type' ('socket' or 'port') for the DOWN
message when monitoring sockets.
Own Id: OTP-17640

Kernel 8.1
Fixed Bugs and Malfunctions
	The extended error information has been corrected and improved for the
following BIFs: binary_to_existing_atom/2,
list_to_existing_atom/1,
erlang:send_after/{3,4}, and erlang:start_timer/{3,4}.
Own Id: OTP-17449 Aux Id: GH-4900

	Fixed rare bug that could cause net_kernel process to hang for ever. Have seen
to happen with massive number of TLS connections while remote nodes are
restarting. Bug exists since OTP-22.0.
Own Id: OTP-17476 Aux Id: GH-4931, PR-4934

	Improve handling of closed sockets for inet:info/1.
Own Id: OTP-17492

	This change fixes a performance problem introduced in pull-request #2675.
Pull-request #2675 made so the system tried to start children of already
started applications which is unnecessary. This change fixes this performance
problem.
Own Id: OTP-17519

	Fix code:get_doc/1 to not crash when module is located in an escript.
Own Id: OTP-17570 Aux Id: PR-5139 GH-4256 ERL-1261

	Parsing of the result value in the native DNS resolver has been made more
defensive against incorrect results.
Own Id: OTP-17578 Aux Id: ERIERL-683

	A bug in the option handling for the legacy socket adaptor, that is; when
using inet_backend = socket, has been fixed. Now socket options are set
before the bind() call so options regarding, for example address reuse have
the desired effect.
Own Id: OTP-17580 Aux Id: GH-5122

	inet:ntoa/1 has been fixed to not accept invalid numerical addresses.
Own Id: OTP-17583 Aux Id: GH-5136

	Parsing of DNS records has been improved for records of known types to not
accept and present malformed ones in raw format.
Own Id: OTP-17584 Aux Id: PR-5145

	The ip_mreq() type for the {ip,add_membership} and {ip,drop_membership}
socket options has been corrected to have an interface field instead of,
incorrectly, an address field.
Own Id: OTP-17590 Aux Id: PR-5170

Improvements and New Features
	Add simple utility function to display existing sockets i the erlang shell
(socket:i/0).
Own Id: OTP-17376 Aux Id: OTP-17157

	gen_udp can now be configured to use the socket inet-backend (in the same way
as gen_tcp).
Own Id: OTP-17410

	Functions erlang:set_cookie(Cookie) and erlang:get_cookie(Node) have been
added for completeness and to facilitate configuring distributed nodes with
different cookies.
The documentation regarding distribution cookies has been improved to be less
vague.
Own Id: OTP-17538 Aux Id: GH-5063, PR-5111

	A workaround has been implemented for Linux's quirky behaviour to not adjust
the source IP address when connecting a connected (reconnecing) UDP socket.
The workaround is to, on Linux, always dissolve any connection before
connecting an UDP socket.
Own Id: OTP-17559 Aux Id: GH-5092, PR-5120

	Documented our recommendation against opening NFS-mounted files, FIFOs,
devices, and similar using file:open/2.
Own Id: OTP-17576 Aux Id: ERIERL-685

Kernel 8.0.2
Fixed Bugs and Malfunctions
	For gen_tcp:connect/3,4 it is possible to specify a specific source port,
which should be enough to bind the socket to an address with that port before
connecting.
Unfortunately that feature was lost in OTP-17216 that made it mandatory to
specify the source address to get an address binding, and ignored a specified
source port if no source address was specified.
That bug has now been corrected.
Own Id: OTP-17536 Aux Id: OTP-17216, ERIERL-677

Kernel 8.0.1
Fixed Bugs and Malfunctions
	Fix a race condition in Global.
Own Id: OTP-16033 Aux Id: ERIERL-329, ERL-1414, GH-4448, ERL-885, GH-3923

	After a node restart with init:restart/0,1, the module socket was not
usable because supporting tables had been cleared and not re-initialized. This
has now been fixed.
Handling of the "." domain as a search domain was incorrect and caused a crash
in the DNS resolver inet_res, which has now been fixed.
Own Id: OTP-17439 Aux Id: GH-4827, PR-4888, GH-4838

	Handling of combinations of the fd option and binding to an address has been
corrected, especially for the local address family.
Own Id: OTP-17451 Aux Id: OTP-17374

	Bug fixes and code cleanup for the new socket implementation, such as:
Assertions on the result of demonitoring has been added in the NIF code, where
appropriate.
Internal state handling for socket close in the NIF code has been reviewed.
Looping over close() for EINTR in the NIF code has been removed, since it
is strongly discouraged on Linux and Posix is not clear about if it is
allowed.
The inet_backend temporary socket option for legacy gen_tcp sockets has
been documented.
The return value from net:getaddrinfo/2 has been corrected: the protocol
field is now an atom/0, instead of, incorrectly,
list(atom()). The documentation has also been corrected about
this return type.
Deferred close of a socket:sendfile/* file was broken and has been
corrected.
Some debug code, not enabled by default, in the socket NIF has been corrected
to not accidentally core dump for debug printouts of more or less innocent
events.
Own Id: OTP-17452

Kernel 8.0
Fixed Bugs and Malfunctions
	A bug has been fixed for the internal inet_res resolver cache that handled a
resolver configuration file status timer incorrectly and caused performance
problems due to many unnecessary file system accesses.
Own Id: OTP-14700 Aux Id: PR-2848

	Change the value of the tag head returned by disk_log:info/1 from
{ok, Head} to just Head.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-16809 Aux Id: ERL-1313

	Two options have been added to erl_call. The -fetch_stdout option fetches
stdout data resulting from the code invoked by erl_call. The -fetch_stdout
option disables printing of the result term. In order to implement the first
of these two options a new function called ei_xrpc_from has been added to
erl_interface. For details see the erl_call documentation and
erl_interface documentation.
Own Id: OTP-17132

	Missing runtime dependencies has been added to this application.
Own Id: OTP-17243 Aux Id: PR-4557

	inet:get_rc/0 has been corrected to return host entries as separate entries
instead of (incorrectly) in a list within the list. This bug was introduced by
OTP-16487 in OTP-23.0-rc1.
Own Id: OTP-17262 Aux Id: GH-4588, PR-4604, OTP-16487

	The type gen_tcp:option_name() had a duplicate pktoptions value.
Own Id: OTP-17277

	Fixed removal of empty groups from internal state in pg.
Own Id: OTP-17286 Aux Id: PR-4619

	erl -remsh now prints an error message when it fails to connect to the
remote node.
Own Id: OTP-17287 Aux Id: PR-4581

	Fix bugs related to corrupt shell history files.
Error messages printed by shell history are now logged as logger error reports
instead of written to standard error.
Own Id: OTP-17288 Aux Id: PR-4581

	A logger warning is now issues when too many arguments are given to -name or
-sname. Example: erl -name a b.
Own Id: OTP-17315 Aux Id: GH-4626

	The cache used by inet_res now, again, can handle multiple IP addresses per
domain name, and thus fixes a bug introduced in PR-3041 (OTP-13126) and
PR-2891 (OTP-14485).
Own Id: OTP-17344 Aux Id: PR-4633, GH-4631, OTP-14485, OTP-12136

	Sockets created with socket:accept not counted (socket:info/0).
Own Id: OTP-17372

	The {fd, Fd} option to gen_tcp:listen/2 did not work for inet_backend
socket, which has been fixed.
Own Id: OTP-17374 Aux Id: PR-4787, GH-4680, PR-2989, OTP-17216

Improvements and New Features
	The cache used by the DNS resolver inet_res has been improved to use ETS
lookups instead of server calls. This is a considerable speed improvement for
cache hits.
Own Id: OTP-13126 Aux Id: PR-3041

	The cache ETS table type for the internal DNS resolver inet_res has changed
type (internally) to get better speed and atomicity.
Own Id: OTP-14485 Aux Id: PR-2891

	The experimental socket module can now use any protocol (by name) the OS
supports. Suggested in PR-2641, implemented in PR-2670.
Own Id: OTP-14601 Aux Id: PR-2641, PR-2670, OTP-16749

	The DNS resolver inet_res has been updated to support CAA (RFC 6844) and URI
(RFC 7553) records.
Own Id: OTP-16517 Aux Id: PR-2827

	A compatibility adaptor for gen_tcp to use the new socket API has been
implemented (gen_tcp_socket). Used when setting the kernel application
variable inet_backend = socket.
Own Id: OTP-16611 Aux Id: OTP-16749

	Extended error information for failing BIF calls as proposed in
EEP 54 has been
implemented.
When a BIF call from the Erlang shell fails, more information about which
argument or arguments that were in error will be printed. The same extended
error information will by proc_lib, common_test, and qlc when BIF calls
fail.
For applications that wish to provide the same extended error information,
there are new functions erl_error:format_exception/3 and
erl_error:format_exception/4.
There is a new error/3 BIF that allows applications or
libraries to provide extended error information in the same way for their own
exceptions.
Own Id: OTP-16686

	The file server can now be bypassed in file:delete/1,2 with the raw
option.
Own Id: OTP-16698 Aux Id: PR-2634

	An example implementation of Erlang distribution over UDS using distribution
processes has been introduced.
Thanks to Jérôme de Bretagne
Own Id: OTP-16703 Aux Id: PR-2620

	The process alias feature
as outlined by
EEP 53 has been
introduced. It is introduced in order to provide a lightweight mechanism that
can prevent late replies after timeout or connection loss. For more
information, see EEP 53 and the documentation of the new
alias/1 BIF and the new options to the
monitor/3 BIF.
The call operation in the framework used by gen_server, gen_statem, and
gen_event has been updated to utilize alias in order to prevent late
responses. The gen_statem behavior still use a proxy process in the
distributed case, since it has always prevented late replies and aliases won't
work against pre OTP 24 nodes. The proxy process can be removed in OTP 26.
The alias feature also made it possible to introduce new functions similar to
the erpc:receive_response() function in the gen
behaviors, so the new functions
gen_server:receive_response(),
gen_statem:receive_response(),
gen_event:receive_response() have also
been introduced.
Own Id: OTP-16718 Aux Id: PR-2735

	The experimental new socket API has been further developed. Some backwards
incompatible changes with respect to OTP 23 have been made.
The control message format has been changed so a decoded value is now in the
'value' field instead of in the 'data' field. The 'data' field now always
contains binary data.
Some type names have been changed regarding message headers and control
message headers.
socket:bind/2 now returns plain ok instead of {ok, Port} which was only
relevant for the inet and inet6 address families and often not
interesting. To find out which port was chosen use socket:sockname/1.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-16749 Aux Id: OTP-14601

	New function os:env/0 returns all OS environment variables as a list of
2-tuples.
Own Id: OTP-16793 Aux Id: ERL-1332, PR-2740

	Remove the support for distributed disk logs. The new function
disk_log:all/0 is to be used instead of disk_log:accessible_logs/0. The
function disk_log:close/1 is to be used instead of disk_log:lclose/1,2.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-16811

	Expand the spec for erl_epmd:listen_port_please/2 to mirror
erl_epmd:port_please/2.
Own Id: OTP-16947 Aux Id: PR-2781

	A new erl parameter for specifying a file descriptor with configuration data
has been added. This makes it possible to pass the parameter "-configfd FD"
when executing the erl command. When this option is given, the system will try
to read and parse configuration parameters from the file descriptor.
Own Id: OTP-16952

	The experimental HiPE application has been removed, together with all related
functionality in other applications.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-16963

	The pg2 module has been removed.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-16968

	Accept references up to a size of 160-bits from remote nodes. This is the
first step in an upgrade path toward using references up to 160-bits in a
future OTP release.
Own Id: OTP-17005 Aux Id: OTP-16718

	Allow utf-8 binaries as parts of logger_formatter template.
Own Id: OTP-17015

	Let disk_log:open/1 change the size if a wrap log is opened for the first
time, that is, the disk log process does not exist, and the value of option
size does not match the current size of the disk log.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-17062 Aux Id: ERL-1418, GH-4469, ERIERL-537

	Allow the shell history of an erlang node to be fetched and stores using a
custom callback module. See shell_history configuration parameter in the
kernel documentation for more details.
Own Id: OTP-17103 Aux Id: PR-2949

	The simple logger (used to log events that happen before kernel has been
started) has been improved to print prettier error messages.
Own Id: OTP-17106 Aux Id: PR-2885

	socket:sendfile/2,3,4,5 has been implemented, for platforms that support the
underlying socket library call.
Own Id: OTP-17154 Aux Id: OTP-16749

	Add socket monitor(s) for all types sockets.
Own Id: OTP-17155

	Fix various issues with the gen_tcp_socket. Including documenting some
incompatibilities.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-17156

	inet:i/0 now also shows existing gen_tcp compatibility sockets (based on
'socket').
Own Id: OTP-17157

	Added support in logger for setting primary metadata. The primary metadata is
passed as a base metadata to all log events in the system. See
Metadata in the Logger chapter of the Kernel
User's Guide for more details.
Own Id: OTP-17181 Aux Id: PR-2457

	Recognize new key 'optional_applications' in application resource files.
Own Id: OTP-17189 Aux Id: PR-2675

	The Fun's passed to logger:log/2,3,4 can now return metadata that will only
be fetched when needed. See logger:log/2,3,4 for more
details.
Own Id: OTP-17198 Aux Id: PR-2721

	erpc:multicall() has been rewritten to be able to utilize the newly
introduced and improved selective receive optimization.
Own Id: OTP-17201 Aux Id: PR-4534

	Add utility fiunction inet:info/1 to provide miscellaneous info about a
socket.
Own Id: OTP-17203 Aux Id: OTP-17156

	The behaviour for gen_tcp:connect/3,4 has been changed to not per default
bind to an address, which allows the network stack to delay the address and
port selection to when the remote address is known. This allows better port
re-use, and thus enables far more outgoing connections, since the ephemeral
port range no longer has to be a hard limit.
There is a theoretical possibility that this behaviour change can affect the
set of possible error values, or have other small implications on some
platforms.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-17216 Aux Id: PR-2989

	An option {nxdomain_reply, boolean()} has been implemented in the DNS
resolver inet_res. It is useful since an nxdomain error from a name server
does contain the SOA record if the domain exists at all. This record is useful
to determine a TTL for negative caching of the failed entry.
Own Id: OTP-17266 Aux Id: PR-4564

	Optimized lookup of local processes part of groups in pg.
Own Id: OTP-17284 Aux Id: PR-4615

	The return values from module socket functions send(), sendto(),
sendmsg(), sendfile() and recv() has been changed to return a tuple
tagged with select when a SelectInfo was returned, and not sometimes
tagged with ok.
This is a backwards incompatible change that improves usability for code using
asynchronous operations.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-17355 Aux Id: OTP-17154

	Fixed warnings in code matching on underscore prefixed variables.
Own Id: OTP-17385 Aux Id: OTP-17123

Kernel 7.3.1.7
Improvements and New Features
	A new function global:disconnect/0 has been introduced with which one can
cleanly disconnect a node from all other nodes in a cluster of global nodes.
Own Id: OTP-18232 Aux Id: OTP-17843, PR-6264

Kernel 7.3.1.6
Fixed Bugs and Malfunctions
	A call to net_kernel:setopts(new, Opts) at the
same time as a connection was being set up could cause a deadlock between the
net_kernel process and the process setting up the connection.
Own Id: OTP-18198 Aux Id: GH-6129, PR-6216

Kernel 7.3.1.5
Fixed Bugs and Malfunctions
	By default global does not take any actions to restore a fully connected
network when connections are lost due to network issues. This is problematic
for all applications expecting a fully connected network to be provided, such
as for example mnesia, but also for global itself. A network of
overlapping partitions might cause the internal state of global to become
inconsistent. Such an inconsistency can remain even after such partitions have
been brought together to form a fully connected network again. The effect on
other applications that expects that a fully connected network is maintained
may vary, but they might misbehave in very subtle hard to detect ways during
such a partitioning.
In order to prevent such issues, we have introduced a prevent overlapping
partitions fix which can be enabled using the
prevent_overlapping_partitions
kernel(6) parameter. When this fix has been enabled, global will actively
disconnect from nodes that reports that they have lost connections to other
nodes. This will cause fully connected partitions to form instead of leaving
the network in a state with overlapping partitions. Note that this fix has
to be enabled on all nodes in the network in order to work properly. Since
this quite substantially changes the behavior, this fix is currently disabled
by default. Since you might get hard to detect issues without this fix you
are, however, strongly advised to enable this fix in order to avoid issues
such as the ones described above. As of OTP 25 this fix will become enabled by
default.
Own Id: OTP-17843 Aux Id: ERIERL-732, PR-5611

	Fix failed accepted connection setup after previous established connection
from same node closed down silently.
Own Id: OTP-17979 Aux Id: ERIERL-780

Improvements and New Features
	A net_tickintensity kernel parameter
has been introduced. It can be used to control the amount of ticks during a
net_ticktime period.
A new net_kernel:start/2 function has also been introduced in order to make
it easier to add new options. The use of net_kernel:start/1 has been
deprecated.
Own Id: OTP-17905 Aux Id: ERIERL-732, PR-5740

Kernel 7.3.1.4
Fixed Bugs and Malfunctions
	Parsing of the result value in the native DNS resolver has been made more
defensive against incorrect results.
Own Id: OTP-17578 Aux Id: ERIERL-683

Kernel 7.3.1.3
Fixed Bugs and Malfunctions
	Fix code:get_doc/1 to not crash when module is located in an escript.
Own Id: OTP-17570 Aux Id: PR-5139 GH-4256 ERL-1261

Kernel 7.3.1.2
Fixed Bugs and Malfunctions
	Handling of the "." domain as a search domain was incorrect and caused a crash
in the DNS resolver inet_res, which has now been fixed.
Own Id: OTP-17473 Aux Id: GH-4838, OTP-17439

	Fixed rare bug that could cause net_kernel process to hang for ever. Have seen
to happen with massive number of TLS connections while remote nodes are
restarting. Bug exists since OTP-22.0.
Own Id: OTP-17476 Aux Id: GH-4931, PR-4934

Kernel 7.3.1.1
Fixed Bugs and Malfunctions
	Fix a race condition in Global.
Own Id: OTP-16033 Aux Id: ERIERL-329, ERL-1414, GH-4448, ERL-885, GH-3923

Kernel 7.3.1
Fixed Bugs and Malfunctions
	A bug in the Erlang DNS resolver has been fixed, where it could be made to
bring down the kernel supervisor and thereby the whole node, when getting an
incorrect (IN A reply to an IN CNAME query) reply from the DNS server and used
the reply record's value without verifying its type.
Own Id: OTP-17361

Kernel 7.3
Fixed Bugs and Malfunctions
	The range check for compression pointers in DNS encoding was faulty, which
caused incorrect label compression encoding for very large DNS messages;
larger than about 16 kBytes, such as AXFR responses. This more than 11 year
old bug has now been corrected.
Own Id: OTP-13641 Aux Id: PR-2959

	Fix of internal links in the erpc documentation.
Own Id: OTP-17202 Aux Id: PR-4516

	Fix bug where complex seq_trace tokens (that is lists, tuples, maps etc) could
becomes corrupted by the GC. The bug was introduced in OTP-21.
Own Id: OTP-17209 Aux Id: PR-3039

	When running Xref in the modules mode, the Debugger application would show
up as a dependency for the Kernel applications.
Own Id: OTP-17223 Aux Id: GH-4546, PR-4554

Improvements and New Features
	erl_epmd (the epmd client) will now try to reconnect to the local EPMD if
the connection is broken.
Own Id: OTP-17178 Aux Id: PR-3003

Kernel 7.2.1
Fixed Bugs and Malfunctions
	When using the DNS resolver option servfail_retry_timeout it did not honour
the overall call time-out in e.g inet_res:getbyname/3. This misbehaviour has
now been fixed. Also, the servfail_retry_timeout behaviour has been improved
to only be enforced for servers that gives a servfail answer.
Own Id: OTP-12960 Aux Id: ERIERL-598, PR-4509

Kernel 7.2
Fixed Bugs and Malfunctions
	The apply call's in logger.hrl are now called with erlang prefix to
avoid clashed with local apply/3 functions.
Own Id: OTP-16976 Aux Id: PR-2807

	Fix memory leak in pg.
Own Id: OTP-17034 Aux Id: PR-2866

	Fix crash in logger_proxy due to stray gen_server:call replies not being
handled. The stray replies come when logger is under heavy load and the flow
control mechanism is reaching its limit.
Own Id: OTP-17038

	Fixed a bug in erl_epmd:names() that caused it to return the illegal return
value noport instead of {error, Reason} where Reason is the actual error
reason. This bug also propagated to net_adm:names().
This bug was introduced in kernel version 7.1 (OTP 23.1).
Own Id: OTP-17054 Aux Id: ERL-1424

Improvements and New Features
	Add export of some resolver documented types.
Own Id: OTP-16954 Aux Id: ERIERL-544

	Add configurable retry timeout for resolver lookups.
Own Id: OTP-16956 Aux Id: ERIERL-547

	gen_server:multi_call() has been optimized in the special case of only
calling the local node with timeout set to infinity.
Own Id: OTP-17058 Aux Id: PR-2887

Kernel 7.1
Fixed Bugs and Malfunctions
	A fallback has been implemented for file:sendfile when using inet_backend
socket
Own Id: OTP-15187 Aux Id: ERL-1293

	Make default TCP distribution honour option backlog in
inet_dist_listen_options.
Own Id: OTP-16694 Aux Id: PR-2625

	Raw option handling for the experimental gen_tcp_socket backend was broken
so that all raw options were ignored by for example gen_tcp:listen/2, a bug
that now has been fixed. Reported by Jan Uhlig.
Own Id: OTP-16743 Aux Id: ERL-1287

	Accept fails with inet-backend socket.
Own Id: OTP-16748 Aux Id: ERL-1284

	Fixed various minor errors in the socket backend of gen_tcp.
Own Id: OTP-16754

	Correct disk_log:truncate/1 to count the header. Also correct the
documentation to state that disk_log:truncate/1 can be used with external
disk logs.
Own Id: OTP-16768 Aux Id: ERL-1312

	Fix erl_epmd:port_please/2,3 type specs to include all possible error values.
Own Id: OTP-16783

	Fix erl -erl_epmd_port to work properly. Before this fix it did not work at
all.
Own Id: OTP-16785

	Fix typespec for internal function erlang:seq_trace_info/1 to allow
term/0 as returned label. This in turn fixes so that calls to
seq_trace:get_token/1 can be correctly analyzer by dialyzer.
Own Id: OTP-16823 Aux Id: PR-2722

	Fix erroneous double registration of processes in pg when distribution is
dynamically started.
Own Id: OTP-16832 Aux Id: PR-2738

Improvements and New Features
	Make (use of) the socket registry optional (still enabled by default). Its now
possible to build OTP with the socket registry turned off, turn it off by
setting an environment variable and controlling in runtime (via function calls
and arguments when creating sockets).
Own Id: OTP-16763

	erl -remsh nodename no longer requires the hostname to be given when used
together with dynamic nodenames.
Own Id: OTP-16784

Kernel 7.0
Fixed Bugs and Malfunctions
	Fix race condition during shutdown when shell_history is enabled. The race
condition would trigger crashes in disk_log.
Own Id: OTP-16008 Aux Id: PR-2302

	Fix the Erlang distribution to handle the scenario when a node connects that
can handle message fragmentation but can not handle the atom cache. This bug
only affects users that have implemented a custom distribution carrier. It has
been present since OTP-21.
The DFLAG_FRAGMENT distribution flag was added to the set of flags that can
be rejected by a distribution implementation.
Own Id: OTP-16284

	Fix bug where a binary was not allowed to be the format string in calls to
logger:log.
Own Id: OTP-16395 Aux Id: PR-2444

	Fix bug where logger would end up in an infinite loop when trying to log the
crash of a handler or formatter.
Own Id: OTP-16489 Aux Id: ERL-1134

	code:lib_dir/1 has been fixed to also return the lib dir for erts.
This is been marked as an incompatibility for any application that depended on
{error,bad_name} to be returned for erts.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-16502

	The application stop/1 callback was not called if the application master of
the application terminated.
Own Id: OTP-16504 Aux Id: PR-2328

	Fix bug in application:loaded_applications/0 that could cause it to fail
with badarg if for example a concurrent upgrade/downgrade is running.
Own Id: OTP-16627 Aux Id: PR-2601

Improvements and New Features
	A new module erpc has been introduced in the kernel application. The
erpc module implements an enhanced subset of the operations provided by the
rpc module. Enhanced in the sense that it makes it possible to distinguish
between returned value, raised exceptions, and other errors. erpc also has
better performance and scalability than the original rpc implementation.
This by utilizing the newly introduced
spawn_request() BIF. Also the rpc module
benefits from these improvements by utilizing erpc when it is possible.
This change has been marked as a potential incompatibility since
rpc:block_call() now only is guaranteed to block other
block_call() operations. The documentation previously claimed that it would
block all rpc operations. This has however never been the case. It
previously did not block node-local block_call() operations.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-13450 Aux Id: OTP-15251

	A client node can receive its node name dynamically from the node that it
first connects to. This featured can by used by
	starting with erl -sname undefined
	erl_interface functions ei_connect_init and friends
	erl_call -R

Own Id: OTP-13812

	Improved the printout of single line logger events for most of the OTP
behaviours in STDLIB and Kernel. This includes proc_lib, gen_server,
gen_event, gen_statem, gen_fsm, supervisor, supervisor_bridge and
application.
Improved the chars_limit and
depth handling in proc_lib and when
formatting of exceptions.
Own Id: OTP-15299

	Remove usage and documentation of old requests of the I/O-protocol.
Own Id: OTP-15695

	Directories can now be opened by file:open/2 when passing the directory
option.
Own Id: OTP-15835 Aux Id: PR-2212

	The check of whether to log or not based on the log level in logger has been
optimized by using persistent_term to store the log level.
Own Id: OTP-15948 Aux Id: PR-2356

	file:read_file_info/2 can now be used on opened files and directories.
Own Id: OTP-15956 Aux Id: PR-2231

	The -config option to erl now can take multiple config files without
repeating the -config option. Example:
erl -config sys local
Own Id: OTP-16148 Aux Id: PR-2373

	Improved node connection setup handshake protocol. Made possible to agree on
protocol version without dependence on epmd or other prior knowledge of peer
node version. Also added exchange of node incarnation ("creation") values and
expanded the distribution capability flag field from 32 to 64 bits.
Own Id: OTP-16229

	The possibility to run Erlang distribution without relying on EPMD has been
extended. To achieve this a couple of new options to the inet distribution has
been added.
	-dist_listen false - Setup the distribution channel, but do not listen
for incoming connection. This is useful when you want to use the current
node to interact with another node on the same machine without it joining
the entire cluster.

	-erl_epmd_port Port - Configure a default port that the built-in EPMD
client should return. This allows the local node to know the port to connect
to for any other node in the cluster.

The erl_epmd callback API has also been extended to allow returning -1 as
the creation which means that a random creation will be created by the node.
In addition a new callback function called listen_port_please has been added
that allows the callback to return which listen port the distribution should
use. This can be used instead of inet_dist_listen_min/max if the listen port
is to be fetched from an external service.
Own Id: OTP-16250

	A first EXPERIMENTAL module that is a socket backend to gen_tcp and inet
has been implemented. Others will follow. Feedback will be appreciated.
Own Id: OTP-16260 Aux Id: OTP-15403

	The new experimental socket module has been moved to the Kernel application.
Own Id: OTP-16312

	Replace usage of deprecated function in the group module.
Own Id: OTP-16345

	Minor updates due to the new spawn improvements made.
Own Id: OTP-16368 Aux Id: OTP-15251

	Update of sequential tracing to also support other
information transfers than message passing.
Own Id: OTP-16370 Aux Id: OTP-15251, OTP-15232

	code:module_status/1 now accepts a list of modules. code:module_status/0,
which returns the statuses for all loaded modules, has been added.
Own Id: OTP-16402

	filelib:wildcard/1,2 is now twice as fast when a double star (**) is part
of the pattern.
Own Id: OTP-16419

	A new implementation of distributed named process groups has been introduced.
It is available in the pg module.
Note that this pg module only has the name in common with the experimental
pg module that was present in stdlib up until OTP 17.
Thanks to Maxim Fedorov for the implementation.
Own Id: OTP-16453 Aux Id: PR-2524

	The pg2 module has been deprecated. It has also been scheduled for removal
in OTP 24.
You are advised to replace the usage of pg2 with the newly introduced pg
module. pg has a similar API, but with a more scalable implementation.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-16455

	Refactored the internal handling of deprecated and removed functions.
Own Id: OTP-16469

	The internal hosts file resolver cache inet_hosts has been rewritten to
behave better when the hosts file changes. For example the cache is updated
per entry instead of cleared and reloaded so lookups do not temporarily fail
during reloading, and; when multiple processes simultaneously request reload
these are now folded into one instead of all done in sequence. Reported and
first solution suggestion by Maxim Fedorov.
Own Id: OTP-16487 Aux Id: PR-2516

	Add code:all_available/0 that can be used to get all available modules.
Own Id: OTP-16494

	As of OTP 23, the distributed disk_log feature has been deprecated. It has
also been scheduled for removal in OTP 24.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-16495

	Add the function code:fetch_docs/1 for fetching embedded documentation for
aa Erlang module.
Own Id: OTP-16499

	Improve configure for the net nif, which should increase portability.
Own Id: OTP-16530 Aux Id: OTP-16464

	socket: Socket counters and socket global counters are now represented as maps
(instead of property lists).
Own Id: OTP-16535

	The experimental socket module has gotten restrictions removed so now the
'seqpacket' socket type should work for any communication domain (protocol
family) where the OS supports it, typically the Unix Domain.
Own Id: OTP-16550 Aux Id: ERIERL-476

	Allow using custom IO devices in logger_std_h.
Own Id: OTP-16563 Aux Id: PR-2523

	Added file:del_dir_r/1 which deletes a directory together with all of its
contents, similar to rm -rf on Unix systems.
Own Id: OTP-16570 Aux Id: PR-2565

	socket: By default the socket options rcvtimeo and sndtimeo are now disabled.
To enable these, OTP now has to be built with the configure option
--enable-esock-rcvsndtimeo
Own Id: OTP-16620

	The experimental gen_tcp compatibility code utilizing the socket module could
loose buffered data when receiving a specified number of bytes. This bug has
been fixed. Reported by Maksim Lapshin on bugs.erlang.org ERL-1234
Own Id: OTP-16632 Aux Id: ERL-1234

Kernel 6.5.2.5
Fixed Bugs and Malfunctions
	By default global does not take any actions to restore a fully connected
network when connections are lost due to network issues. This is problematic
for all applications expecting a fully connected network to be provided, such
as for example mnesia, but also for global itself. A network of
overlapping partitions might cause the internal state of global to become
inconsistent. Such an inconsistency can remain even after such partitions have
been brought together to form a fully connected network again. The effect on
other applications that expects that a fully connected network is maintained
may vary, but they might misbehave in very subtle hard to detect ways during
such a partitioning.
In order to prevent such issues, we have introduced a prevent overlapping
partitions fix which can be enabled using the
prevent_overlapping_partitions kernel(6) parameter. When this fix has been
enabled, global will actively disconnect from nodes that reports that they
have lost connections to other nodes. This will cause fully connected
partitions to form instead of leaving the network in a state with overlapping
partitions. Note that this fix has to be enabled on all nodes in the
network in order to work properly. Since this quite substantially changes the
behavior, this fix is currently disabled by default. Since you might get hard
to detect issues without this fix you are, however, strongly advised to
enable this fix in order to avoid issues such as the ones described above. As
of OTP 25 this fix will become enabled by default.
Own Id: OTP-17843 Aux Id: ERIERL-732, PR-5611

Improvements and New Features
	A net_tickintensity kernel parameter has been introduced. It can be used
to control the amount of ticks during a net_ticktime period.
A new net_kernel:start/2 function has also been introduced in order to make
it easier to add new options. The use of net_kernel:start/1 has been
deprecated.
Own Id: OTP-17905 Aux Id: ERIERL-732, PR-5740

Kernel 6.5.2.4
Fixed Bugs and Malfunctions
	Fixed rare bug that could cause net_kernel process to hang for ever. Have seen
to happen with massive number of TLS connections while remote nodes are
restarting. Bug exists since OTP-22.0.
Own Id: OTP-17476 Aux Id: GH-4931, PR-4934

Kernel 6.5.2.3
Fixed Bugs and Malfunctions
	Fix a race condition in Global.
Own Id: OTP-16033 Aux Id: ERIERL-329, ERL-1414, GH-4448, ERL-885, GH-3923

Kernel 6.5.2.2
Fixed Bugs and Malfunctions
	When running Xref in the modules mode, the Debugger application would show
up as a dependency for the Kernel applications.
Own Id: OTP-17223 Aux Id: GH-4546, PR-4554

Kernel 6.5.2.1
Fixed Bugs and Malfunctions
	Fix bug in application:loaded_applications/0 that could cause it to fail
with badarg if for example a concurrent upgrade/downgrade is running.
Own Id: OTP-16627 Aux Id: PR-2601

Kernel 6.5.2
Fixed Bugs and Malfunctions
	The DNS resolver `inet_res` has been fixed to return the last intermediate
error when subsequent requests times out.
Own Id: OTP-16414 Aux Id: ERIERL-452

	The prim_net nif (net/kernel) made use of an undefined atom, notsup. This has
now been corrected.
Own Id: OTP-16440

	Fix a crash when attempting to log faults when loading files during early
boot.
Own Id: OTP-16491

	Fix crash in logger when logging to a remote node during boot.
Own Id: OTP-16493 Aux Id: ERIERL-459

Improvements and New Features
	Improved net_kernel debug functionality.
Own Id: OTP-16458 Aux Id: PR-2525

Kernel 6.5.1
Fixed Bugs and Malfunctions
	The 'socket state' info provided by the inet info function has been improved
Own Id: OTP-16043 Aux Id: ERL-1036

	Fix bug where logger would crash when starting when a very large log file
needed to be rotated and compressed.
Own Id: OTP-16145 Aux Id: ERL-1034

	Fixed a bug causing actual nodedown reason reported by
net_kernel:monitor_nodes(true, [nodedown_reason])
to be lost and replaced by the reason killed.
Own Id: OTP-16216

	The documentation for rpc:call/4,5/ has been updated to describe what
happens when the called function throws or return an 'EXIT' tuple.
Own Id: OTP-16279 Aux Id: ERL-1066

Kernel 6.5
Fixed Bugs and Malfunctions
	The type specification for gen_sctp:connect/4,5 has been corrected.
Own Id: OTP-15344 Aux Id: ERL-947

	Extra -mode flags given to erl are ignored with a warning.
Own Id: OTP-15852

	Fix type spec for seq_trace:set_token/2.
Own Id: OTP-15858 Aux Id: ERL-700

	logger:compare_levels/2 would fail with a badarg exception if given the
values all or none as any of the parameters. This is now corrected.
Own Id: OTP-15942 Aux Id: PR-2301

	Fix bug where the log file in logger_std_h would not be closed when the
inode of the file changed. This would in turn cause a file descriptor leak
when tools like logrotate are used.
Own Id: OTP-15997 Aux Id: PR-2331

	Fix a race condition in the debugging function net_kernel:nodes_info/0.
Own Id: OTP-16022

	Fix race condition when closing a file opened in compressed or
delayed_write mode.
Own Id: OTP-16023

Improvements and New Features
	The possibility to send ancillary data, in particular the TOS field, has been
added to gen_udp:send/4,5.
Own Id: OTP-15747 Aux Id: ERIERL-294

	If the log file was given with relative path, the standard logger handler
(logger_std_h) would store the file name with relative path. If the current
directory of the node was later changed, a new file would be created relative
the new current directory, potentially failing with an enoent if the new
directory did not exist. This is now corrected and logger_std_h always
stores the log file name as an absolute path, calculated from the current
directory at the time of the handler startup.
Own Id: OTP-15850

	Support local sockets with inet:i/0.
Own Id: OTP-15935 Aux Id: PR-2299

Kernel 6.4.1
Fixed Bugs and Malfunctions
	user/user_drv could respond to io requests before they had been processed,
which could cause data to be dropped if the emulator was halted soon after a
call to io:format/2, such as in an escript.
Own Id: OTP-15805

Kernel 6.4
Fixed Bugs and Malfunctions
	Fix so that when multiple -sname or -name are given to erl the first one
is chosen. Before this fix distribution was not started at all when multiple
name options were given.
Own Id: OTP-15786 Aux Id: ERL-918

	Fix inet_res configuration pointing to non-existing files to work again.
This was broken in KERNEL-6.3 (OTP-21.3).
Own Id: OTP-15806

Improvements and New Features
	A simple socket API is provided through the socket module. This is a low level
API that does not replace gen_[tcp|udp|sctp]. It is intended to
eventually replace the inet driver, but not the high level gen-modules
(gen_tcp, gen_udp and gen_sctp). It also provides a basic API that facilitates
the implementation of other protocols, that is TCP, UDP and SCTP.
Known issues are; No support for the Windows OS (currently).
Own Id: OTP-14831

	Improved the documentation for the linger option.
Own Id: OTP-15491 Aux Id: PR-2019

	Global no longer tries more than once when connecting to other nodes.
Own Id: OTP-15607 Aux Id: ERIERL-280

	The dist messages EXIT, EXIT2 and MONITOR_DOWN have been updated with new
versions that send the reason term as part of the payload of the message
instead of as part of the control message.
The old versions are still present and can be used when communicating with
nodes that don't support the new versions.
Own Id: OTP-15611

	Kernel configuration parameter start_distribution = boolean() is added. If
set to false, the system is started with all distribution functionality
disabled. Defaults to true.
Own Id: OTP-15668 Aux Id: PR-2088

	In OTP-21.3, a warning was introduced for duplicated applications/keys in
configuration. This warning would be displayed both when the configuration was
given as a file on system start, and during runtime via
application:set_env/1,2.
The warning is now changed to a badarg exception in
application:set_env/1,2. If the faulty configuration is given in a
configuration file on system start, the startup will fail.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-15692 Aux Id: PR-2170

Kernel 6.3.1.3
Fixed Bugs and Malfunctions
	Fix bug where the log file in logger_std_h would not be closed when the
inode of the file changed. This would in turn cause a file descriptor leak
when tools like logrotate are used.
Own Id: OTP-15997 Aux Id: PR-2331

Kernel 6.3.1.2
Improvements and New Features
	The possibility to send ancillary data, in particular the TOS field, has been
added to gen_udp:send/4,5.
Own Id: OTP-15747 Aux Id: ERIERL-294

Kernel 6.3.1.1
Fixed Bugs and Malfunctions
	Fix type spec for seq_trace:set_token/2.
Own Id: OTP-15858 Aux Id: ERL-700

Kernel 6.3.1
Fixed Bugs and Malfunctions
	Fixed a performance regression when reading files opened with the compressed
flag.
Own Id: OTP-15706 Aux Id: ERIERL-336

Kernel 6.3
Fixed Bugs and Malfunctions
	If for example the /etc/hosts did not come into existence until after the
kernel application had started, its content was never read. This bug has now
been corrected.
Own Id: OTP-14702 Aux Id: PR-2066

	Fix bug where doing seq_trace:reset_trace() while another process was doing
a garbage collection could cause the run-time system to segfault.
Own Id: OTP-15490

	Fix erl_epmd:port_please spec to include atom/0 and string/0.
Own Id: OTP-15557 Aux Id: PR-2117

	The Logger handler logger_std_h now keeps track of the inode of its log file
in order to re-open the file if the inode changes. This may happen, for
instance, if the log file is opened and saved by an editor.
Own Id: OTP-15578 Aux Id: ERL-850

	When user specific file modes are given to the logger handler logger_std_h,
they were earlier accepted without any control. This is now changes, so Logger
will adjust the file modes as follows:
- If raw is not found in the list, it is added.
- If none of write, append or exclusive are found in the list, append
is added.
- If none of delayed_write or {delayed_write,Size,Delay} are found in the
list, delayed_write is added.
Own Id: OTP-15602

Improvements and New Features
	The standard logger handler, logger_std_h, now has a new internal feature
for log rotation. The rotation scheme is as follows:
The log file to which the handler currently writes always has the same name,
i.e. the name which is configured for the handler. The archived files have the
same name, but with extension ".N", where N is an integer. The newest archive
has extension ".0", and the oldest archive has the highest number.
The size at which the log file is rotated, and the number of archive files
that are kept, is specified with the handler specific configuration parameters
max_no_bytes and max_no_files respectively.
Archives can be compressed, in which case they get a ".gz" file extension
after the integer. Compression is specified with the handler specific
configuration parameter compress_on_rotate.
Own Id: OTP-15479

	The new functions logger:i/0 and logger:i/1 are added. These provide the
same information as logger:get_config/0 and other logger:get_*_config
functions, but the information is more logically sorted and more readable.
Own Id: OTP-15600

	Logger is now protected against overload due to massive amounts of log events
from the emulator or from remote nodes.
Own Id: OTP-15601

	Logger now uses os:system_time/1 instead of erlang:system_time/1 to generate
log event timestamps.
Own Id: OTP-15625

	Add functions application:set_env/1,2 and application:set_env/2. These
take a list of application configuration parameters, and the behaviour is
equivalent to calling application:set_env/4 individually for each
application/key combination, except it is more efficient.
set_env/1,2 warns about duplicated applications or keys. The warning is also
emitted during boot, if applications or keys are duplicated within one
configuration file, e.g. sys.config.
Own Id: OTP-15642 Aux Id: PR-2164

	Handler specific configuration parameters for the standard handler
logger_std_h are changed to be more intuitive and more similar to the
disk_log handler.
Earlier there was only one parameter, type, which could have the values
standard_io, standard_error, {file,FileName} or {file,FileName,Modes}.
This is now changed, so the following parameters are allowed:
type = standard_io | standard_error | file
file = file:filename()
modes = [file:mode()]
All parameters are optional. type defaults to standard_io, unless a file
name is given, in which case it defaults to file. If type is set to
file, the file name defaults to the same as the handler id.
The potential incompatibility is that logger:get_config/0 and
logger:get_handler_config/1 now returns the new parameters, even if the
configuration was set with the old variant, e.g. #{type=>{file,FileName}}.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-15662

	The new configuration parameter file_check is added to the Logger handler
logger_std_h. This parameter specifies how long (in milliseconds) the
handler may wait before checking if the log file still exists and the inode is
the same as when it was opened.
The default value is 0, which means that this check is done prior to each
write operation. Setting a higher number may improve performance, but adds the
risk of losing log events.
Own Id: OTP-15663

Kernel 6.2.1
Fixed Bugs and Malfunctions
	Setting the recbuf size of an inet socket the buffer is also automatically
increased. Fix a bug where the auto adjustment of inet buffer size would be
triggered even if an explicit inet buffer size had already been set.
Own Id: OTP-15651 Aux Id: ERIERL-304

Kernel 6.2
Fixed Bugs and Malfunctions
	A new function, logger:update_handler_config/3 is added, and the handler
callback changing_config now has a new argument, SetOrUpdate, which
indicates if the configuration change comes from set_handler_config/2,3 or
update_handler_config/2,3.
This allows the handler to consistently merge the new configuration with the
old (if the change comes from update_handler_config/2,3) or with the default
(if the change comes from set_handler_config/2,3).
The built-in handlers logger_std_h and logger_disk_log_h are updated
accordingly. A bug which could cause inconsistency between the handlers'
internal state and the stored configuration is also corrected.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-15364

	Fix fallback when custom erl_epmd client does not implement address_please.
Own Id: OTP-15388 Aux Id: PR-1983

	The logger ets table did not have the read_concurrency option. This is now
added.
Own Id: OTP-15453 Aux Id: ERL-782

	During system start, logger has a simple handler which prints to stdout. After
the kernel supervision is started, this handler is removed and replaced by the
default handler. Due to a bug, logger earlier issued a debug printout saying
it received an unexpected message, which was the EXIT message from the simple
handler's process. This is now corrected. The simple handler's process now
unlinks from the logger process before terminating.
Own Id: OTP-15466 Aux Id: ERL-788

	The logger handler logger_std_h would not re-create it's log file if it was
removed. Due to this it could not be used with tools like 'logrotate'. This is
now corrected.
Own Id: OTP-15469

Improvements and New Features
	A function inet:getifaddrs/1 that takes a list with a namespace option has
been added, for platforms that support that feature, for example Linux
(only?).
Own Id: OTP-15121 Aux Id: ERIERL-189, PR-1974

	Added the nopush option for TCP sockets, which corresponds to TCP_NOPUSH
on *BSD and TCP_CORK on Linux.
This is also used internally in file:sendfile to reduce latency on
subsequent send operations.
Own Id: OTP-15357 Aux Id: ERL-698

	Optimize handling of send_delay for tcp sockes to better work with the new
pollthread implementation introduced in OTP-21.
Own Id: OTP-15471 Aux Id: ERIERL-229

Kernel 6.1.1
Fixed Bugs and Malfunctions
	Fix bug causing net_kernel process crash on connection attempt from node with
name identical to local node.
Own Id: OTP-15438 Aux Id: ERL-781

Kernel 6.1
Fixed Bugs and Malfunctions
	The values all and none are documented as valid value for the Kernel
configuration parameter logger_level, but would cause a crash during node
start. This is now corrected.
Own Id: OTP-15143

	Fix some potential buggy behavior in how ticks are sent on inter node
distribution connections. Tick is now sent to c-node even if there are unsent
buffered data, as c-nodes need ticks in order to send reply ticks. The amount
of sent data was also calculated wrongly when ticks were suppressed due to
unsent buffered data.
Own Id: OTP-15162 Aux Id: ERIERL-191

	Non semantic change in dist_util.erl to silence dialyzer warning.
Own Id: OTP-15170

	Fixed net_kernel:connect_node(node()) to return true (and do nothing) as
it always has before OTP-21.0. Also documented this successful "self connect"
as the expected behavior.
Own Id: OTP-15182 Aux Id: ERL-643

	The single_line option on logger_formatter would in some cases add an unwanted
comma after the association arrows in a map. This is now corrected.
Own Id: OTP-15228

	Improved robustness of distribution connection setup. In OTP-21.0 a truly
asynchronous connection setup was introduced. This is further improvement on
that work to make the emulator more robust and also be able to recover in
cases when involved Erlang processes misbehave.
Own Id: OTP-15297 Aux Id: OTP-15279, OTP-15280

Improvements and New Features
	A new macro, ?LOG(Level,...), is added. This is equivalent to the existing
?LOG_<LEVEL>(...) macros.
A new variant of Logger report callback is added, which takes an extra
argument containing options for size limiting and line breaks. Module
proc_lib in STDLIB uses this for crash reports.
Logger configuration is now checked a bit more for errors.
Own Id: OTP-15132

	The socket options recvtos, recvttl, recvtclass and pktoptions have
been implemented in the socket modules. See the documentation for the
gen_tcp, gen_udp and inet modules. Note that support for these in the
runtime system is platform dependent. Especially for pktoptions which is
very Linux specific and obsoleted by the RFCs that defined it.
Own Id: OTP-15145 Aux Id: ERIERL-187

	Add logger:set_application_level/2 for setting the logger level of all
modules in one application.
Own Id: OTP-15146

Kernel 6.0.1
Fixed Bugs and Malfunctions
	Fixed bug in net_kernel that could cause an emulator crash if certain
connection attempts failed. Bug exists since kernel-6.0 (OTP-21.0).
Own Id: OTP-15280 Aux Id: ERIERL-226, OTP-15279

Kernel 6.0
Fixed Bugs and Malfunctions
	Clarify the documentation of rpc:multicall/5.
Own Id: OTP-10551

	The DNS resolver when getting econnrefused from a server retained an invalid
socket so look up towards the next server(s) also failed.
Own Id: OTP-13133 Aux Id: PR-1557

	No resolver backend returns V4Mapped IPv6 addresses any more. This was
inconsistent before, some did, some did not. To facilitate working with such
addresses a new function inet:ipv4_mapped_ipv6_address/1 has been added.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-13761 Aux Id: ERL-503

	The type specifications for file:posix/0 and
inet:posix/0 have been updated according to which errors
file and socket operations should be able to return.
Own Id: OTP-14019 Aux Id: ERL-550

	Fix name resolving in IPv6 only environments when doing the initial
distributed connection.
Own Id: OTP-14501

	File operations used to accept filenames containing
null characters (integer value zero). This caused the name to be truncated and
in some cases arguments to primitive operations to be mixed up. Filenames
containing null characters inside the filename are now rejected and will
cause primitive file operations to fail.
Also environment variable operations used to accept
names and values of
environment variables containing null characters (integer value zero). This
caused operations to silently produce erroneous results. Environment variable
names and values containing null characters inside the name or value are now
rejected and will cause environment variable operations to fail.
Primitive environment variable operations also used to accept the $=
character in environment variable names causing various problems. $=
characters in environment variable names are now also rejected.
Also os:cmd/1 now reject null characters inside its
command.
erlang:open_port/2 will also reject null characters inside the port name
from now on.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-14543 Aux Id: ERL-370

	os:putenv and os:getenv no longer access the process environment directly
and instead work on a thread-safe emulation. The only observable difference is
that it's not kept in sync with libc getenv(3) / putenv(3), so those who
relied on that behavior in drivers or NIFs will need to add manual
synchronization.
On Windows this means that you can no longer resolve DLL dependencies by
modifying the PATH just before loading the driver/NIF. To make this less of
a problem, the emulator now adds the target DLL's folder to the DLL search
path.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-14666

	Fixed connection tick toward primitive hidden nodes (erl_interface) that could
cause faulty tick timeout in rare cases when payload data is sent to hidden
node but not received.
Own Id: OTP-14681

	Make group react immediately on an EXIT-signal from shell in e.g ssh.
Own Id: OTP-14991 Aux Id: PR1705

	Calls to gen_tcp:send/2 on closed sockets now returns {error, closed}
instead of {error,enotconn}.
Own Id: OTP-15001

	The included_applications key are no longer duplicated as application
environment variable. Earlier, the included applications could be read both
with application:get[_all]_env(...) and application:get[_all]_key(...)
functions. Now, it can only be read with application:get[_all]_key(...).
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-15071

	Owner and group changes through file:write_file_info, file:change_owner,
and file:change_group will no longer report success on permission errors.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-15118

Improvements and New Features
	A new logging API is added to Erlang/OTP, see the logger manual page, and
section Logging in the Kernel User's Guide.
Calls to error_logger are automatically redirected to the new API, and
legacy error logger event handlers can still be used. It is, however,
recommended to use the Logger API directly when writing new code.
Notice the following potential incompatibilities:
	Kernel configuration parameters error_logger still works, but is overruled
if the default handler's output destination is configured with Kernel
configuration parameter logger.
In general, parameters for configuring error logger are overwritten by new
parameters for configuring Logger.

	The concept of SASL error logging is deprecated, meaning that by default the
SASL application does not affect which log events are logged.
By default, supervisor reports and crash reports are logged by the default
Logger handler started by Kernel, and end up at the same destination
(terminal or file) as other standard log event from Erlang/OTP.
Progress reports are not logged by default, but can be enabled by setting
the primary log level to info, for example with the Kernel configuration
parameter logger_level.
To obtain backwards compatibility with the SASL error logging functionality
from earlier releases, set Kernel configuration parameter
logger_sasl_compatible to true. This prevents the default Logger handler
from logging any supervisor-, crash-, or progress reports. Instead, SASL
adds a separate Logger handler during application start, which takes care of
these log events. The SASL configuration parameters sasl_error_logger and
sasl_errlog_type specify the destination (terminal or file) and severity
level to log for these events.

Since Logger is new in Erlang/OTP 21.0, we do reserve the right to introduce
changes to the Logger API and functionality in patches following this release.
These changes might or might not be backwards compatible with the initial
version.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-13295

	The function inet:i/0 has been documented.
Own Id: OTP-13713 Aux Id: PR-1645

	Typespecs for netns and bind_to_device options have been added to
gen_tcp, gen_udp and gen_sctp functions.
Own Id: OTP-14359 Aux Id: PR-1816

	New functionality for implementation of alternative carriers for the Erlang
distribution has been introduced. This mainly consists of support for usage of
distribution controller processes (previously only ports could be used as
distribution controllers). For more information see
ERTS User's Guide ➜ How to implement an Alternative Carrier for the Erlang Distribution ➜ Distribution Module.
Own Id: OTP-14459

	seq_trace labels may now be any erlang term.
Own Id: OTP-14899

	The SSL distribution protocol -proto inet_tls has stopped setting the SSL
option server_name_indication. New verify funs for client and server in
inet_tls_dist has been added, not documented yet, that checks node name if
present in peer certificate. Usage is still also yet to be documented.
Own Id: OTP-14969 Aux Id: OTP-14465, ERL-598

	Changed timeout of gen_server calls to auth server from default 5 seconds
to infinity.
Own Id: OTP-15009 Aux Id: ERL-601

	The callback module passed as -epmd_module to erl has been expanded to be
able to do name and port resolving.
Documentation has also been added in the erl_epmd reference manual and
ERTS User's Guide
How to Implement an Alternative Node Discovery for Erlang Distribution.
Own Id: OTP-15086 Aux Id: PR-1694

	Included config file specified with relative path in sys.config are now first
searched for relative to the directory of sys.config itself. If not found, it
is also searched for relative to the current working directory. The latter is
for backwards compatibility.
Own Id: OTP-15137 Aux Id: PR-1838

Kernel 5.4.3.2
Fixed Bugs and Malfunctions
	Non semantic change in dist_util.erl to silence dialyzer warning.
Own Id: OTP-15170

Kernel 5.4.3.1
Fixed Bugs and Malfunctions
	Fix some potential buggy behavior in how ticks are sent on inter node
distribution connections. Tick is now sent to c-node even if there are unsent
buffered data, as c-nodes need ticks in order to send reply ticks. The amount
of sent data was calculated wrongly when ticks where suppressed due to unsent
buffered data.
Own Id: OTP-15162 Aux Id: ERIERL-191

Kernel 5.4.3
Fixed Bugs and Malfunctions
	Correct a few contracts.
Own Id: OTP-14889

	Reject loading modules with names containing directory separators ('/' or '\'
on Windows).
Own Id: OTP-14933 Aux Id: ERL-564, PR-1716

	Fix bug in handling of os:cmd/2 option max_size on windows.
Own Id: OTP-14940

Kernel 5.4.2
Fixed Bugs and Malfunctions
	Add os:cmd/2 that takes an options map as the second argument.
Add max_size as an option to os:cmd/2 that control the maximum size of the
result that os:cmd/2 will return.
Own Id: OTP-14823

Kernel 5.4.1
Fixed Bugs and Malfunctions
	Refactored an internal API.
Own Id: OTP-14784

Kernel 5.4
Fixed Bugs and Malfunctions
	Processes which did output after switching jobs (Ctrl+G) could be left forever
stuck in the io request.
Own Id: OTP-14571 Aux Id: ERL-472

Improvements and New Features
	Lock counting can now be fully toggled at runtime in the lock counting
emulator (-emu_type lcnt). Everything is enabled by default to match the old
behavior, but specific categories can be toggled at will with minimal runtime
overhead when disabled. Refer to the documentation on lcnt:rt_mask/1 for
details.
Own Id: OTP-13170

	lcnt:collect and lcnt:clear will no longer block all other threads in the
runtime system.
Own Id: OTP-14412

	General Unicode improvements.
Own Id: OTP-14462

Kernel 5.3.1
Fixed Bugs and Malfunctions
	The documentation for the 'quiet' option in disk_log:open/1 had an incorrect
default value.
Own Id: OTP-14498

Kernel 5.3
Fixed Bugs and Malfunctions
	Function inet:ntoa/1 has been fixed to return lowercase letters according to
RFC 5935 that has been approved after this function was written. Previously
uppercase letters were returned so this may be a backwards incompatible change
depending on how the returned address string is used.
Function inet:parse_address/1 has been fixed to accept %-suffixes on scoped
addresses. The addresses does not work yet, but gives no parse errors.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-13006 Aux Id: ERIERL-20, ERL-429

	Fix bug where gethostname would incorrectly fail with enametoolong on Linux.
Own Id: OTP-14310

	Fix bug causing code:is_module_native to falsely return true when local
call trace is enabled for the module.
Own Id: OTP-14390

	Add early reject of invalid node names from distributed nodes.
Own Id: OTP-14426

Improvements and New Features
	Since Unicode is now allowed in atoms an extra check is needed for node names,
which are restricted to Latin-1.
Own Id: OTP-13805

	Replaced usage of deprecated symbolic time unit
representations.
Own Id: OTP-13831 Aux Id: OTP-13735

	file:write_file(Name, Data, [raw]) would turn Data into a single binary
before writing. This meant it could not take advantage of the writev()
system call if it was given a list of binaries and told to write with raw
mode.
Own Id: OTP-13909

	The performance of the disk_log has been somewhat improved in some corner
cases (big items), and the documentation has been clarified.
Own Id: OTP-14057 Aux Id: PR-1245

	Functions for detecting changed code has been added. code:modified_modules/0
returns all currently loaded modules that have changed on disk.
code:module_status/1 returns the status for a module. In the shell and in
c module, mm/0 is short for code:modified_modules/0, and lm/0 reloads
all currently loaded modules that have changed on disk.
Own Id: OTP-14059

	Introduce an event manager in Erlang to handle OS signals. A subset of OS
signals may be subscribed to and those are described in the Kernel
application.
Own Id: OTP-14186

	Sockets can now be bound to device (SO_BINDTODEVICE) on platforms where it is
supported.
This has been implemented e.g to support VRF-Lite under Linux; see
VRF , and
GitHub pull request #1326.
Own Id: OTP-14357 Aux Id: PR-1326

	Added option to store shell_history on disk so that the history can be reused
between sessions.
Own Id: OTP-14409 Aux Id: PR-1420

	The size of crash reports created by gen_server, gen_statem and proc_lib
is limited with aid of the Kernel application variable
error_logger_format_depth. The purpose is to limit the size of the messages
sent to the error_logger process when processes with huge message queues or
states crash.
The crash report generated by proc_lib includes the new tag
message_queue_len. The neighbour report also includes the new tag
current_stacktrace. Finally, the neighbour report no longer includes the
tags messages and dictionary.
The new function error_logger:get_format_depth/0 can be used to retrieve the
value of the Kernel application variable error_logger_format_depth.
Own Id: OTP-14417

	One of the ETS tables used by the global module is created with
{read_concurrency, true} in order to reduce contention.
Own Id: OTP-14419

	Warnings have been added to the relevant documentation about not using
un-secure distributed nodes in exposed environments.
Own Id: OTP-14425

Kernel 5.2
Fixed Bugs and Malfunctions
	Fix a race during cleanup of os:cmd that would cause os:cmd to hang
indefinitely.
Own Id: OTP-14232 Aux Id: seq13275

Improvements and New Features
	The functions in the 'file' module that take a list of paths (e.g.
file:path_consult/2) will now continue to search in the path if the path
contains something that is not a directory.
Own Id: OTP-14191

	Two OTP processes that are known to receive many messages are 'rex' (used by
'rpc') and 'error_logger'. Those processes will now store unprocessed messages
outside the process heap, which will potentially decrease the cost of garbage
collections.
Own Id: OTP-14192

Kernel 5.1.1
Fixed Bugs and Malfunctions
	code:add_pathsa/1 and command line option -pa both revert the given list
of directories when adding it at the beginning of the code path. This is now
documented.
Own Id: OTP-13920 Aux Id: ERL-267

	Add lost runtime dependency to erts-8.1. This should have been done in
kernel-5.1 (OTP-19.1) as it cannot run without at least erts-8.1 (OTP-19.1).
Own Id: OTP-14003

	Type and doc for gen_{tcp,udp,sctp}:controlling_process/2 has been
improved.
Own Id: OTP-14022 Aux Id: PR-1208

Kernel 5.1
Fixed Bugs and Malfunctions
	Fix a memory leak when calling seq_trace:get_system_tracer().
Own Id: OTP-13742

	Fix for the problem that when adding the ebin directory of an application to
the code path, the code:priv_dir/1 function returns an incorrect path to the
priv directory of the same application.
Own Id: OTP-13758 Aux Id: ERL-195

	Fix code_server crash when adding code paths of two levels.
Own Id: OTP-13765 Aux Id: ERL-194

	Respect -proto_dist switch while connection to EPMD
Own Id: OTP-13770 Aux Id: PR-1129

	Fixed a bug where init:stop could deadlock if a process with infinite shutdown
timeout (e.g. a supervisor) attempted to load code while terminating.
Own Id: OTP-13802

	Close stdin of commands run in os:cmd. This is a backwards compatibility fix
that restores the behaviour of pre 19.0 os:cmd.
Own Id: OTP-13867 Aux Id: seq13178

Improvements and New Features
	Add net_kernel:setopts/2 and net_kernel:getopts/2 to control options for
distribution sockets in runtime.
Own Id: OTP-13564

	Rudimentary support for DSCP has been implemented in the guise of a tclass
socket option for IPv6 sockets.
Own Id: OTP-13582

Kernel 5.0.2
Fixed Bugs and Malfunctions
	When calling os:cmd from a process that has set trap_exit to true an 'EXIT'
message would be left in the message queue. This bug was introduced in kernel
vsn 5.0.1.
Own Id: OTP-13813

Kernel 5.0.1
Fixed Bugs and Malfunctions
	Fix a os:cmd bug where creating a background job using & would cause os:cmd to
hang until the background job terminated or closed its stdout and stderr file
descriptors. This bug has existed from kernel 5.0.
Own Id: OTP-13741

Kernel 5.0
Fixed Bugs and Malfunctions
	The handling of on_load functions has been improved. The major improvement
is that if a code upgrade fails because the on_load function fails, the
previous version of the module will now be retained.
Own Id: OTP-12593

	rpc:call() and rpc:block_call() would sometimes cause an exception (which
was not mentioned in the documentation). This has been corrected so that
{badrpc,Reason} will be returned instead.
Own Id: OTP-13409

	On Windows, for modules that were loaded early (such as the lists module),
code:which/1 would return the path with mixed slashes and backslashes, for
example: "C:\\Program Files\\erl8.0/lib/stdlib-2.7/ebin/lists.beam". This
has been corrected.
Own Id: OTP-13410

	Make file:datasync use fsync instead of fdatasync on Mac OSX.
Own Id: OTP-13411

	The default chunk size for the fallback sendfile implementation, used on
platforms that do not have a native sendfile, has been decreased in order to
reduce connectivity issues.
Own Id: OTP-13444

	Large file writes (2Gb or more) could fail on some Unix platforms (for
example, OS X and FreeBSD).
Own Id: OTP-13461

	A bug has been fixed where the DNS resolver inet_res did not refresh its view
of the contents of for example resolv.conf immediately after start and hence
then failed name resolution. Reported and fix suggested by Michal Ptaszek in
GitHUB pull req #949.
Own Id: OTP-13470 Aux Id: Pull #969

	Fix process leak from global_group.
Own Id: OTP-13516 Aux Id: PR-1008

	The function inet:gethostbyname/1 now honors the resolver option inet6
instead of always looking up IPv4 addresses.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-13622 Aux Id: PR-1065

	The Status argument to init:stop/1 is now sanity checked to make sure
erlang:halt does not fail.
Own Id: OTP-13631 Aux Id: PR-911

Improvements and New Features
	Add {line_delim, byte()} option to inet:setopts/2 and decode_packet/3
Own Id: OTP-12837

	Added os:perf_counter/1.
The perf_counter is a very very cheap and high resolution timer that can be
used to timestamp system events. It does not have monoticity guarantees, but
should on most OS's expose a monotonous time.
Own Id: OTP-12908

	The os:cmd call has been optimized on unix platforms to be scale better with
the number of schedulers.
Own Id: OTP-13089

	New functions that can load multiple modules at once have been added to the
'code' module. The functions are code:atomic_load/1,
code:prepare_loading/1, code:finish_loading/1, and
code:ensure_modules_loaded/1.
Own Id: OTP-13111

	The code path cache feature turned out not to be very useful in practice and
has been removed. If an attempt is made to enable the code path cache, there
will be a warning report informing the user that the feature has been removed.
Own Id: OTP-13191

	When an attempt is made to start a distributed Erlang node with the same name
as an existing node, the error message will be much shorter and easier to read
than before. Example:
Protocol 'inet_tcp': the name somename@somehost seems to be in use by another Erlang node
Own Id: OTP-13294

	The output of the default error logger is somewhat prettier and easier to
read. The default error logger is used during start-up of the OTP system. If
the start-up fails, the output will be easier to read.
Own Id: OTP-13325

	The functions rpc:safe_multi_server_call/2,3 that were deprecated in R12B
have been removed.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-13449

	Update the error reasons in dist_util, and show them in the logs if
net_kernel:verbose(1) has been called.
Own Id: OTP-13458

	Experimental support for Unix Domain Sockets has been implemented. Read the
sources if you want to try it out. Example:
gen_udp:open(0, [{ifaddr,{local,"/tmp/socket"}}]). Documentation will be
written after user feedback on the experimental API.
Own Id: OTP-13572 Aux Id: PR-612

	Allow heart to be configured to not kill the previous emulator before calling
the HEART_COMMAND. This is done by setting the environment variable
HEART_NO_KILL to TRUE.
Own Id: OTP-13650

Kernel 4.2
Fixed Bugs and Malfunctions
	code:load_abs([10100]) would bring down the entire runtime system and create
a crash dump. Corrected to generate an error exception in the calling process.
Also corrected specs for code loading functions and added more information in
the documentation about the error reasons returned by code-loading functions.
Own Id: OTP-9375

	gen_tcp:accept/2 was not
time warp safe. This since
it used the same time as returned by erlang:now/0 when calculating timeout.
This has now been fixed.
Own Id: OTP-13254 Aux Id: OTP-11997, OTP-13222

	Correct the contract for inet:getifaddrs/1.
Own Id: OTP-13335 Aux Id: ERL-95

Improvements and New Features
	Time warp safety improvements.
Introduced the options monotonic_timestamp, and strict_monotonic_timestamp
to the trace, sequential trace, and system profile functionality. This since
the already existing timestamp option is not time warp safe.
Introduced the option safe_fixed_monotonic_time to ets:info/2 and
dets:info/2. This since the already existing safe_fixed option is not time
warp safe.
Own Id: OTP-13222 Aux Id: OTP-11997

	Add validation callback for heart
The erlang heart process may now have a validation callback installed. The
validation callback will be executed, if present, before any heartbeat to
heart port program. If the validation fails, or stalls, no heartbeat will be
sent and the node will go down.
With the option 'check_schedulers' heart executes a responsiveness check of
the schedulers before a heartbeat is sent to the port program. If the
responsiveness check fails, the heartbeat will not be performed (as intended).
Own Id: OTP-13250

	Clarify documentation of net_kernel:allow/1
Own Id: OTP-13299

	EPMD supports both IPv4 and IPv6
Also affects oldest supported windows version.
Own Id: OTP-13364

Kernel 4.1.1
Fixed Bugs and Malfunctions
	Host name lookups though inet_res, the Erlang DNS resolver, are now done case
insensitively according to RFC 4343. Patch by Holger Weiß.
Own Id: OTP-12836

	IPv6 distribution handler has been updated to share code with IPv4 so that all
features are supported in IPv6 as well. A bug when using an IPv4 address as
hostname has been fixed.
Own Id: OTP-13040

	Caching of host names in the internal DNS resolver inet_res has been made
character case insensitive for host names according to RFC 4343.
Own Id: OTP-13083

	Cooked file mode buffering has been fixed so file:position/2 now works
according to Posix on Posix systems i.e. when file:position/2 returns an error
the file pointer is unaffected.
The Windows system documentation, however, is unclear on this point so the
documentation of file:position/2 still does not promise anything.
Cooked file mode file:pread/2,3 and file:pwrite/2,3 have been corrected to
honor character encoding like the combination of file:position/2 and
file:read/2 or file:write/2 already does. This is probably not very useful
since the character representation on the caller's side is latin1, period.
Own Id: OTP-13155 Aux Id: PR#646

Improvements and New Features
	Add {line_delim, byte()} option to inet:setopts/2 and decode_packet/3
Own Id: OTP-12837

Kernel 4.1
Improvements and New Features
	A mechanism for limiting the amount of text that the built-in error logger
events will produce has been introduced. It is useful for limiting both the
size of log files and the CPU time used to produce them.
This mechanism is experimental in the sense that it may be changed if it turns
out that it does not solve the problem it is supposed to solve. In that case,
there may be backward incompatible improvements to this mechanism.
See the documentation for the config parameter error_logger_format_depth in
the Kernel application for information about how to turn on this feature.
Own Id: OTP-12864

Kernel 4.0
Fixed Bugs and Malfunctions
	Fix error handling in file:read_line/1 for Unicode contents.
Own Id: OTP-12144

	Introduce os:getenv/2 which is similar to os:getenv/1 but returns the
passed default value if the required environment variable is undefined.
Own Id: OTP-12342

	It is now possible to paste text in JCL mode (using Ctrl-Y) that has been
copied in the previous shell session. Also a bug that caused the JCL mode to
crash when pasting text has been fixed.
Own Id: OTP-12673

	Ensure that each segment of an IPv6 address when parsed from a string has a
maximum of 4 hex digits
Own Id: OTP-12773

Improvements and New Features
	New BIF: erlang:get_keys/0, lists all keys associated with the process
dictionary. Note: erlang:get_keys/0 is auto-imported.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-12151 Aux Id: seq12521

	The internal group to user_drv protocol has been changed to be synchronous in
order to guarantee that output sent to a process implementing the user_drv
protocol is printed before replying. This protocol is used by the
standard_output device and the ssh application when acting as a client.
This change changes the previous unlimited buffer when printing to standard_io
and other devices that end up in user_drv to 1KB.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-12240

	The inflateInit/2 and deflateInit/6 functions now accepts a WindowBits
argument equal to 8 and -8.
Own Id: OTP-12564

	Map error logger warnings to warning messages by default.
Own Id: OTP-12755

	Map beam error logger warnings to warning messages by default. Previously
these messages were mapped to the error channel by default.
Own Id: OTP-12781

	gen_tcp:shutdown/2 is now asynchronous
This solves the following problems with the old implementation:
It doesn't block when the TCP peer is idle or slow. This is the expected
behaviour when shutdown() is called: the caller needs to be able to continue
reading from the socket, not be prevented from doing so.
It doesn't truncate the output. The current version of gen_tcp:shutdown/2 will
truncate any outbound data in the driver queue after about 10 seconds if the
TCP peer is idle of slow. Worse yet, it doesn't even inform anyone that the
data has been truncated: 'ok' is returned to the caller; and a FIN rather than
an RST is sent to the TCP peer.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-12797

	There are many cases where user code needs to be able to distinguish between a
socket that was closed normally and one that was aborted. Setting the option
{show_econnreset, true} enables the user to receive ECONNRESET errors on
both active and passive sockets.
Own Id: OTP-12843

Kernel 3.2.0.1
Fixed Bugs and Malfunctions
	The 'raw' socket option could not be used multiple times in one call to any
e.g gen_tcp function because only one of the occurrences were used. This bug
has been fixed, and also a small bug concerning propagating error codes from
within inet:setopts/2.
Own Id: OTP-11482 Aux Id: seq12872

Kernel 3.2
Fixed Bugs and Malfunctions
	A bug causing an infinite loop in hostname resolving has been corrected. To
trigger this bug you would have to enter an bogus search method from a
configuration file e.g .inetrc.
Bug pinpointed by Emil Holmström
Own Id: OTP-12133

	The standard_error process now handles the getopts I/O protocol request
correctly and stores its encoding in the same way as standard_io.
Also, io:put_chars(standard_error, [oops]) could previously crash the
standard_error process. This is now corrected.
Own Id: OTP-12424

Improvements and New Features
	Configuration parameters for the Kernel application that allows setting socket
options for the distribution sockets have been added. See the application
Kernel documentation; parameters 'inet_dist_listen_options' and
'inet_dist_connect_options'.
Own Id: OTP-12476 Aux Id: OTP-12476

Kernel 3.1
Fixed Bugs and Malfunctions
	Make sure to install .hrl files when needed
Own Id: OTP-12197

	Removed the undocumented application environment variable 'raw_files' from the
kernel application. This variable was checked (by call to
application:get_env/2) each time a raw file was to be opened in the file
module.
Own Id: OTP-12276

	A bug has been fixed when using the netns option to gen_udp, which
accidentally only worked if it was the last option.
Own Id: OTP-12314

Improvements and New Features
	Updated documentation for inet buffer size options.
Own Id: OTP-12296

	Introduce new option 'raw' in file_info and link_info functions. This option
allows the caller not to go through the file server for information about
files guaranteed to be local.
Own Id: OTP-12325

Kernel 3.0.3
Fixed Bugs and Malfunctions
	Accept inet:ip_address() in net_adm:names/1
Own Id: OTP-12154

Kernel 3.0.2
Fixed Bugs and Malfunctions
	OTP-11850 fixed filelib:wildcard/1 to work with broken symlinks. This
correction, however, introduced problems since symlinks were no longer
followed for functions like filelib:ensure_dir/1, filelib:is_dir/1,
filelib:file_size/1, etc. This is now corrected.
Own Id: OTP-12054 Aux Id: seq12660

Kernel 3.0.1
Fixed Bugs and Malfunctions
	If the Config given to application_controller:change_application_data included
other config files, it was only expanded for already existing (loaded)
applications. If an upgrade added a new application which had config data in
an included config file, the new application did not get correct config data.
This is now changed so config data will be expanded for all applications.
Own Id: OTP-11864

	It was allowed to re-load pre-loaded modules such as erlang, but that could
cause strange and unwanted things to happen, such as call
apply/3 to loop. Pre-loaded modules are now sticky by default.
(Thanks to Loïc Hoguin for reporting this bug.)
code:add_path("/ending/in/slash/") removes the trailing slash, adding
/ending/in/slash to the code path. However,
code:del_path("/ending/in/slash/") would fail to remove the path since it
did not remove the trailing slash. This has been fixed.
Own Id: OTP-11913

	Fix erts_debug:size/1 to handle Map sizes
Own Id: OTP-11923

	The documentation for file:file_info/1 has been removed. The function itself
was removed a long time ago.
Own Id: OTP-11982

Kernel 3.0
Fixed Bugs and Malfunctions
	Fixed a deadlock possibility in terminate application
Own Id: OTP-11171

	Fixed bug where sendfile would return the wrong error code for a remotely
closed socket if the socket was in passive mode. (Thanks to Vincent Siliakus
for reporting the bug.)
Own Id: OTP-11614

	The new option persistent is added to application:set_env/4 and
application:unset_env/3. An environment key set with the persistent option
will not be overridden by the ones configured in the application resource file
on load. This means persistent values will stick after the application is
loaded and also on application reload. (Thanks to José Valim)
Own Id: OTP-11708

	The spec for file:set_cwd/1 is modified to also accept binaries as arguments.
This has always been allowed in the code, but it was not reflected in the spec
since binaries are mostly used for raw file names. Raw file names are names
that are not encoded according to file:native_name_encoding(), and these are
not allowed in file:set_cwd/1. The spec is now, however, more allowing in
order to avoid unnecessary dialyzer warnings. Raw file names will still fail
in runtime with reason 'no_translation'. (Thanks to José Valim)
Own Id: OTP-11787

Improvements and New Features
	heart:set_cmd/1 is updated to allow unicode code points > 255 in the given
heart command
Own Id: OTP-10843

	Dialyzer's unmatched_return warnings have been corrected.
Own Id: OTP-10908

	Make erlang:open_port/2 spawn and spawn_executable handle unicode.
Own Id: OTP-11105

	Erlang/OTP has been ported to the realtime operating system OSE. The port
supports both smp and non-smp emulator. For details around the port and how to
started see the User's Guide in the ose application.
Note that not all parts of Erlang/OTP has been ported.
Notable things that work are: non-smp and smp emulators, OSE signal
interaction, crypto, asn1, run_erl/to_erl, tcp, epmd, distribution and most if
not all non-os specific functionality of Erlang.
Notable things that does not work are: udp/sctp, os_mon, erl_interface,
binding of schedulers.
Own Id: OTP-11334

	Add the {active,N} socket option for TCP, UDP, and SCTP, where N is an
integer in the range -32768..32767, to allow a caller to specify the number of
data messages to be delivered to the controlling process. Once the socket's
delivered message count either reaches 0 or is explicitly set to 0 with
inet:setopts/2 or by including {active,0} as an option when the socket is
created, the socket transitions to passive ({active, false}) mode and the
socket's controlling process receives a message to inform it of the
transition. TCP sockets receive {tcp_passive,Socket}, UDP sockets receive
{udp_passive,Socket} and SCTP sockets receive {sctp_passive,Socket}.
The socket's delivered message counter defaults to 0, but it can be set using
{active,N} via any gen_tcp, gen_udp, or gen_sctp function that takes socket
options as arguments, or via inet:setopts/2. New N values are added to the
socket's current counter value, and negative numbers can be used to reduce the
counter value. Specifying a number that would cause the socket's counter value
to go above 32767 causes an einval error. If a negative number is specified
such that the counter value would become negative, the socket's counter value
is set to 0 and the socket transitions to passive mode. If the counter value
is already 0 and inet:setopts(Socket, [{active,0}]) is specified, the
counter value remains at 0 but the appropriate passive mode transition message
is generated for the socket.
Thanks to Steve Vinoski
Own Id: OTP-11368

	A call to either the garbage_collect/1 BIF or the
check_process_code/2 BIF may trigger garbage
collection of another processes than the process calling the BIF. The previous
implementations performed these kinds of garbage collections without
considering the internal state of the process being garbage collected. In
order to be able to more easily and more efficiently implement yielding native
code, these types of garbage collections have been rewritten. A garbage
collection like this is now triggered by an asynchronous request signal, the
actual garbage collection is performed by the process being garbage collected
itself, and finalized by a reply signal to the process issuing the request.
Using this approach processes can disable garbage collection and yield without
having to set up the heap in a state that can be garbage collected.
The garbage_collect/2, and
check_process_code/3 BIFs have been
introduced. Both taking an option list as last argument. Using these, one can
issue asynchronous requests.
code:purge/1 and code:soft_purge/1 have been rewritten to utilize
asynchronous check_process_code requests in order to parallelize work.
Characteristics impact: A call to the
garbage_collect/1 BIF or the
check_process_code/2 BIF will normally take longer
time to complete while the system as a whole won't be as much negatively
effected by the operation as before. A call to code:purge/1 and
code:soft_purge/1 may complete faster or slower depending on the state of
the system while the system as a whole won't be as much negatively effected by
the operation as before.
Own Id: OTP-11388 Aux Id: OTP-11535, OTP-11648

	Add sync option to file:open/2.
The sync option adds the POSIX O_SYNC flag to the open system call on
platforms that support the flag or its equivalent, e.g.,
FILE_FLAG_WRITE_THROUGH on Windows. For platforms that don't support it,
file:open/2 returns {error, enotsup} if the sync option is passed in. Thank
to Steve Vinoski and Joseph Blomstedt
Own Id: OTP-11498

	The contract of inet:ntoa/1 has been corrected.
Thanks to Max Treskin.
Own Id: OTP-11730

Kernel 2.16.4.1
Known Bugs and Problems
	When using gen_tcp:connect and the fd option with port and/or ip, the
port and ip options were ignored. This has been fixed so that if port
and/or ip is specified together with fd a bind is requested for that fd.
If port and/or ip is not specified bind will not be called.
Own Id: OTP-12061

Kernel 2.16.4
Fixed Bugs and Malfunctions
	Fix the typespec for the inet:ifget/2 and inet:ifget/3 return value. Thanks to
Ali Sabil.
Own Id: OTP-11377

	Fix various typos in erts, kernel and ssh. Thanks to Martin Hässler.
Own Id: OTP-11414

	Fix rpc multicall sample code. Thanks to Edwin Fine.
Own Id: OTP-11471

	Under rare circumstances a process calling inet:close/1, gen_tcp:close/1,
gen_udp:close/1, or gen_sctp:close/1 could hang in the call indefinitely.
Own Id: OTP-11491

Improvements and New Features
	Add more SCTP errors as described in RFC 4960. Thanks to Artem Teslenko.
Own Id: OTP-11379

	Add new BIF os:unsetenv/1 which deletes an environment variable. Thanks to
Martin Hässler.
Own Id: OTP-11446

Kernel 2.16.3
Fixed Bugs and Malfunctions
	Fix indentation of User switch command help in Erlang shell. Thanks to Sylvain
Benner.
Own Id: OTP-11209

Improvements and New Features
	The previous undocumented function ntoa/1 has been added to inet docs and
exported in the inet module.
Own Id: OTP-10676 Aux Id: OTP-10314

	Fix typo in abcast() function comment. Thanks to Johannes Weissl.
Own Id: OTP-11219

	Add application:ensure_all_started/1-2. Thanks to Fred Hebert.
Own Id: OTP-11250

	Make edlin understand a few important control keys. Thanks to Stefan
Zegenhagen.
Own Id: OTP-11251

	Cleanup of hipe_unified_loader, eliminating uses of is_subtype/2 in specs,
change module-local void functions to return 'ok' instead of [] and made sure
there are no dialyzer warnings with --Wunmatched_returns. Thanks to Kostis
Sagonas.
Own Id: OTP-11301

Kernel 2.16.2
Fixed Bugs and Malfunctions
	A bug in prim_inet has been corrected. If the port owner was killed at a bad
time while closing the socket port the port could become orphaned hence
causing port and socket leaking. Reported by Fred Herbert, Dmitry Belyaev and
others.
Own Id: OTP-10497 Aux Id: OTP-10562

	A few bugs regarding case sensitivity for hostname resolution while using e.g
the internal lookup types 'file' and 'dns' has been corrected. When looking up
hostnames ASCII letters a-z are to be regarded as the same as A-Z according to
RFC 4343 "Domain Name System (DNS) Case Insensitivity Clarification", and this
was not always the case.
Own Id: OTP-10689 Aux Id: seq12227

Improvements and New Features
	Add application:ensure_started/1,2. It is equivavlent to
application:start/1,2 except it returns ok for already started
applications.
Own Id: OTP-10910

	Optimize communication with file io server. Thanks to Anthony Ramine.
Own Id: OTP-11040

	Erlang source files with non-ASCII characters are now encoded in UTF-8
(instead of latin1).
Own Id: OTP-11041 Aux Id: OTP-10907

	Optimization of simultaneous inet_db operations on the same socket by using
a lock free implementation.
Impact on the characteristics of the system: Improved performance.
Own Id: OTP-11074

	The high_msgq_watermark and low_msgq_watermark inet socket options
introduced in OTP-R16A could only be set on TCP sockets. These options are now
generic and can be set on all types of sockets.
Own Id: OTP-11075 Aux Id: OTP-10336

	Fix deep list argument error under Windows in os:cmd/1. Thanks to Aleksandr
Vinokurov .
Own Id: OTP-11104

Kernel 2.16.1
Fixed Bugs and Malfunctions
	A bug that could cause a crash with wrong reason has been corrected in the
application_controller module.
Own Id: OTP-10754

	Fix code:is_module_native/1 that sometimes in R16A returned false for hipe
compiled modules containing BIFs such as lists.
Own Id: OTP-10870

	Respect {exit_on_close,false} option on tcp socket in non-passive mode when
receiving fails (due to an ill-formed packet for example) by only doing a half
close and still allow sending on the socket. (Thanks to Anthony Molinaro and
Steve Vinoski for reporting the problem)
Own Id: OTP-10879

Improvements and New Features
	Slightly nicer error message when node start fails due to duplicate name.
Thanks to Magnus Henoch.
Own Id: OTP-10797

	Miscellaneous updates due to Unicode support.
Own Id: OTP-10820

	Add a new function code:get_mode() can be used to detect how the code servers
behaves. Thanks to Vlad Dumitrescu
Own Id: OTP-10823

	Fix type of error Reason on gen_tcp:send/2. Thanks to Sean Cribbs.
Own Id: OTP-10839

	file:list_dir_all/1 and file:read_link_all/1 that can handle raw file
names have been added. See the User Guide for STDLIB for information about raw
file names.
Own Id: OTP-10852

Kernel 2.16
Fixed Bugs and Malfunctions
	It is no longer possible to have {Mod,Vsn} in the 'modules' list in a .app
file.
This was earlier possible, although never documented in the .app file
reference manual. It was however visible in the documentation of
application:load/[1,2], where the same term as in a .app file can be used as
the first argument.
The possibility has been removed since the Vsn part was never used.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-10417

	The contract of erl_ddll:format_error/1 has been corrected. (Thanks to
Joseph Wayne Norton.)
Own Id: OTP-10473

	Change printout of application crash message on startup to formatted strings
(Thanks to Serge Aleynikov)
Own Id: OTP-10620

	The type ascii_string() in the base64 module has been corrected. The type
file:file_info() has been cleaned up. The type
file:fd() has been made opaque in the documentation.
Own Id: OTP-10624 Aux Id: kunagi-352 [263]

Improvements and New Features
	Inet exported functionality
inet:parse_ipv4_address/1, inet:parse_ipv4strict_address/1,
inet:parse_ipv6_address/1, inet:parse_ipv6strict_address/1,
inet:parse_address/1 and inet:parse_strict_address is now exported from the
inet module.
Own Id: OTP-8067 Aux Id: kunagi-274 [185]

	A boolean socket option 'ipv6_v6only' for IPv6 sockets has been added. The
default value of the option is OS dependent, so applications aiming to be
portable should consider using {ipv6_v6only,true} when creating an inet6
listening/destination socket, and if necessary also create an inet socket on
the same port for IPv4 traffic. See the documentation.
Own Id: OTP-8928 Aux Id: kunagi-193 [104]

	Support for Unicode has been implemented.
Own Id: OTP-10302

	The documentation for global:register_name/3 has been updated to mention
that the use of {Module,Function} as the method argument (resolve function)
is deprecated.
Own Id: OTP-10419

	Fixed bug where sendfile on oracle solaris would return an error when a
partial send was done.
Own Id: OTP-10549

	The error_handler module will now call '$handle_undefined_function'/2 if
an attempt is made to call a non-existing function in a module that exists.
See the documentation for error_handler module for details.
Own Id: OTP-10617 Aux Id: kunagi-340 [251]

	Where necessary a comment stating encoding has been added to Erlang files. The
comment is meant to be removed in Erlang/OTP R17B when UTF-8 becomes the
default encoding.
Own Id: OTP-10630

	Do not return wrong terms unnecessarily. (Thanks to Kostis Sagonas.)
Own Id: OTP-10662

	Some examples overflowing the width of PDF pages have been corrected.
Own Id: OTP-10665

	Add file:allocate/3 operation
This operation allows pre-allocation of space for files. It succeeds only on
systems that support such operation. (Thanks to Filipe David Manana)
Own Id: OTP-10680

	Add application:get_key/3. The new function provides a default value for a
configuration parameter. Thanks to Serge Aleynikov.
Own Id: OTP-10694

	Add search to Erlang shell's history. Thanks to Fred Herbert.
Own Id: OTP-10739

Kernel 2.15.3
Fixed Bugs and Malfunctions
	Ensure 'erl_crash.dump' when asked for it. This will change erl_crash.dump
behaviour.
* Not setting ERL_CRASH_DUMP_SECONDS will now terminate beam immediately on a
crash without writing a crash dump file.
* Setting ERL_CRASH_DUMP_SECONDS to 0 will also terminate beam immediately on
a crash without writing a crash dump file, i.e. same as not setting
ERL_CRASH_DUMP_SECONDS environment variable.
* Setting ERL_CRASH_DUMP_SECONDS to a negative value will let the beam wait
indefinitely on the crash dump file being written.
* Setting ERL_CRASH_DUMP_SECONDS to a positive value will let the beam wait
that many seconds on the crash dump file being written.
A positive value will set an alarm/timeout for restart both in beam and in
heart if heart is running.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-10422 Aux Id: kunagi-250 [161]

Kernel 2.15.2
Fixed Bugs and Malfunctions
	Fixed issue where using controlling_process/2 with self() as the second
argument caused the port to leak if self() crashes. (Thanks to Ricardo
Catalinas Jiménez)
Own Id: OTP-10094

	When sending large files using the file:sendfile fallback file:sendfile would
crash. This is now fixed.
Own Id: OTP-10098

	Fix rpc:call/5 for local calls with a finite Timeout (Thanks to Tomer
Chachamu)
Own Id: OTP-10149

	fix escript/primary archive reloading
If the mtime of an escript/primary archive file changes after being added to
the code path, correctly reload the archive and update the cache. (Thanks to
Tuncer Ayaz)
Own Id: OTP-10151

	Support added for home directories named with non-ASCII characters (codepoints
above 127) on a system running in Unicode file mode (e.g. on MacOSX or Linux
with startup arguments +fnu or +fna with the right LOCALE). Also environment
variables with Unicode content are supported in applicable environments.
Own Id: OTP-10160

	Allow mixed IPv4 and IPv6 addresses to sctp_bindx
Also allow mixed address families to bind, since the first address on a
multihomed sctp socket must be bound with bind, while the rest are to be bound
using sctp_bindx. At least Linux supports adding address of mixing families.
Make inet_set_faddress function available also when HAVE_SCTP is not defined,
since we use it to find an address for bind to be able to mix ipv4 and ipv6
addresses. Thanks to Tomas Abrahamsson
Own Id: OTP-10217

Improvements and New Features
	Document inet options: high_watermark, priority, linger and a some other
options that previously was undocumented.
Own Id: OTP-10053

	Remove bit8 option support from inet
Own Id: OTP-10056

	The type of the disk log header has been corrected. (Thanks to Niclas Eklund.)
Own Id: OTP-10131

Kernel 2.15.1
Fixed Bugs and Malfunctions
	Driver output has been corrected so output of large binaries (> 4 GiB) now
does not silently fail or crash the emulator, but either outputs the binary or
fails the call. This means that writing a binary > 4 Gib to file now works but
on e.g 64-bit Windows (that has scatter/gather I/O buffer segment lengths of
32 bits) fails. The behaviour may change in the future to always write the
binary, in parts if necessary.
Own Id: OTP-9820 Aux Id: OTP-9795

	erts: minor fix for unnecessary condition erts: change SENDFILE_CHUNK_SIZE
from signed to unsigned (Thanks to jovi zhang)
Own Id: OTP-9872

	Two contracts in gen_sctp have been corrected.
Own Id: OTP-9874

	If a process calls a module with an running on_load handler, the process is
supposed to be suspended. But if the module with the on_load handler was
loading used code:load_binary/3, the call would instead fail with an undef
exception.
Own Id: OTP-9875

	File name and error reason is now returned if creation of a cookie fails.
(Thanks to Magnus Henoch)
Own Id: OTP-9954

	Fix port leak in zlib when passing invalid data to
compress,uncompress,zip,unzip,gzip,gunzip.
Own Id: OTP-9981

	Various typographical errors corrected in documentation for the global,
error_logger, etop, lists, ets and supervisor modules and in the c_portdriver
and kernel_app documentation. (Thanks to Ricardo Catalinas Jiménez)
Own Id: OTP-9987

	Fix returned error from gen_tcp:accept/1,2 when running out of ports.
The {error, enfile} return value is badly misleading and confusing for this
case, since the Posix ENFILE errno value has a well-defined meaning that has
nothing to do with Erlang ports. The fix changes the return value to {error,
system_limit}, which is consistent with e.g. various file(3) functions.
inet:format_error/1 has also been updated to support system_limit in the same
manner as file:format_error/1. (Thanks to Per Hedeland)
Own Id: OTP-9990

	erts_debug:size/1 has been corrected to take sharing in the environment of
funs into account. For funs it used to always give the same result as
erts_debug:flat_size/1.
Own Id: OTP-9991

	In some cases when the process doing file:sendfile crashes while sending the
file the efile_drv code would not clean up after itself correctly. This has
now been fixed.
Own Id: OTP-9993

	On BSD based platforms file:sendfile would sometime go into an infinite loop
when sending big files. This has now been fixed.
Own Id: OTP-9994

	While disk_log eagerly collects logged terms for better performance,
collecting too much data may choke the system and cause huge binaries to be
written.
The problem was addressed in OTP-9764, but the situation was not improved in
all cases.
(Thanks to Richard Carlsson.)
Own Id: OTP-9999 Aux Id: OTP-9764

	The documentation of .app files incorrectly said that the default value for
the mod parameter is undefined. This is now corrected to [].
Own Id: OTP-10002

Kernel 2.15
Fixed Bugs and Malfunctions
	Calls to global:whereis_name/1 have been substituted for calls to
global:safe_whereis_name/1 since the latter is not safe at all.
The reason for not doing this earlier is that setting a global lock masked out
a bug concerning the restart of supervised children. The bug has now been
fixed by a modification of global:whereis_name/1. (Thanks to Ulf Wiger for
code contribution.)
A minor race conditions in gen_fsm:start* has been fixed: if one of these
functions returned {error, Reason} or ignore, the name could still be
registered (either locally or in global. (This is the same modification as
was done for gen_server in OTP-7669.)
The undocumented function global:safe_whereis_name/1 has been removed.
Own Id: OTP-9212 Aux Id: seq7117, OTP-4174

	Honor option packet_size for http packet parsing by both TCP socket and
erlang:decode_packet. This gives the ability to accept HTTP headers larger
than the default setting, but also avoid DoS attacks by accepting lines only
up to whatever length you wish to allow. For consistency, packet type line
also honor option packet_size. (Thanks to Steve Vinoski)
Own Id: OTP-9389

	disk_log:reopen/2,3 and disk_log:breopen/3 could return the error reason
from file:rename/2 rather than the reason {file_error, Filename, Reason}.
This bug has been fixed.
The message {disk_log, Node, {error, disk_log_stopped}} which according the
documentation is sent upon failure to truncate or reopen a disk log was
sometimes turned into a reply. This bug has been fixed.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-9508

	Environment variable 'shutdown_timeout' is added to kernel application.
Earlier, application_controller would hang forever if an application top
supervisor did not terminate upon a shutdown request. If this new environment
variable is set to a positive integer T, then application controller will now
give up after T milliseconds and instead brutally kill the application. For
backwards compatibility, the default value for shutdown_timeout is 'infinity'.
Own Id: OTP-9540

	Add '-callback' attributes in stdlib's behaviours
Replace the behaviour_info(callbacks) export in stdlib's behaviours with
-callback' attributes for all the callbacks. Update the documentation with
information on the callback attribute Automatically generate 'behaviour_info'
function from '-callback' attributes
'behaviour_info(callbacks)' is a special function that is defined in a module
which describes a behaviour and returns a list of its callbacks.
This function is now automatically generated using the '-callback' specs. An
error is returned by lint if user defines both '-callback' attributes and the
behaviour_info/1 function. If no type info is needed for a callback use a
generic spec for it. Add '-callback' attribute to language syntax
Behaviours may define specs for their callbacks using the familiar spec
syntax, replacing the '-spec' keyword with '-callback'. Simple lint checks are
performed to ensure that no callbacks are defined twice and all types referred
are declared.
These attributes can be then used by tools to provide documentation to the
behaviour or find discrepancies in the callback definitions in the callback
module.
Add callback specs into 'application' module in kernel Add callback specs to
tftp module following internet documentation Add callback specs to
inets_service module following possibly deprecated comments
Own Id: OTP-9621

	make tab completion work in remote shells (Thanks to Mats Cronqvist)
Own Id: OTP-9673

	Add missing parenthesis in heart doc.
Add missing spaces in the Reference Manual distributed section.
In the HTML version of the doc those spaces are necessary to separate those
words.
Own Id: OTP-9693

	Fixes net_kernel:get_net_ticktime() doc
Adds missing description when `ignored' is returned. (Thanks to Ricardo
Catalinas Jiménez)
Own Id: OTP-9713

	While disk_log eagerly collects logged terms for better performance,
collecting too much data may choke the system and cause huge binaries to be
written. In order to remedy the situation a (small) limit on the amount of
data that is collected before writing to disk has been introduced.
Own Id: OTP-9764

		Correct callback spec in application module
	Refine warning about callback specs with extra ranges
	Cleanup autoimport compiler directives
	Fix Dialyzer's warnings in typer
	Fix Dialyzer's warning for its own code
	Fix bug in Dialyzer's behaviours analysis
	Fix crash in Dialyzer
	Variable substitution was not generalizing any unknown variables.

Own Id: OTP-9776

	Fix a crash when file:change_time/2,3 are called with invalid dates
Calling file:change_time/2,3 with an invalid date tuple (e.g
file:change_time("file.txt", {undefined, undefined})) will cause
file_server_2 to crash. error_logger will shutdown and the whole VM will stop.
Change behavior to validate given dates on system boundaries. (i.e before
issuing a server call).(Thanks to Ahmed Omar)
Own Id: OTP-9785

Improvements and New Features
	An option list argument can now be passed to
file:read_file_info/2, file:read_link_info/2 and file:write_file_info/3
and set time type information in the call. Valid options are
{time, local}, {time, universal} and {time, posix}. In the case of posix
time no conversions are made which makes the operation a bit faster.
Own Id: OTP-7687

	file:list_dir/1,2 will now fill an buffer entire with filenames from the
efile driver before sending it to an erlang process. This will speed up this
file operation in most cases.
Own Id: OTP-9023

	gen_sctp:open/0-2 may now return {error,eprotonosupport} if SCTP is not
supported
gen_sctp:peeloff/1 has been implemented and creates a one-to-one socket which
also are supported now
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-9239

	Sendfile has been added to the file module's API. sendfile/2 is used to read
data from a file and send it to a tcp socket using a zero copying mechanism if
available on that OS.
Thanks to Tuncer Ayaz and Steve Vinovski for original implementation
Own Id: OTP-9240

	Tuple funs (a two-element tuple with a module name and a function) are now
officially deprecated and will be removed in R16. Use 'fun M:F/A' instead.
To make you aware that your system uses tuple funs, the very first time a
tuple fun is applied, a warning will be sent to the error logger.
Own Id: OTP-9649

Kernel 2.14.5
Fixed Bugs and Malfunctions
	Fix type of Packet arg of gen_tcp:send/2 and gen_udp:send/4
The type is marked as a binary() or a string() but in practice it can be an
iodata(). The test suite was updated to confirm the gen_tcp/2 and
gen_udp:send/4 functions accept iodata() (iolists) packets. (Thanks to Filipe
David Manana)
Own Id: OTP-9514

	XML files have been corrected.
Own Id: OTP-9550 Aux Id: OTP-9541

Improvements and New Features
	The types and specifications of the inet modules have been improved.
Own Id: OTP-9260

	Types and specifications have been added.
Own Id: OTP-9356

	Contracts in STDLIB and Kernel have been improved and type errors have been
corrected.
Own Id: OTP-9485

	Update documentation and specifications of some of the zlib functions.
Own Id: OTP-9506

Kernel 2.14.4
Fixed Bugs and Malfunctions
	The send_timeout option in gen_tcp did not work properly in active mode or
with {active,once} options. This is now corrected.
Own Id: OTP-9145

	Fixed various typos across the documentation (Thanks to Tuncer Ayaz)
Own Id: OTP-9154

	Fix typo in doc of rpc:pmap/3 (Thanks to Ricardo Catalinas Jiménez)
Own Id: OTP-9168

	A bug in inet_res, the specialized DNS resolver, has been corrected. A late
answer with unfortunate timing could cause a runtime exception. Some code
cleanup and improvements also tagged along. Thanks to Evegeniy Khramtsov for a
pinpointing bug report and bug fix testing.
Own Id: OTP-9221 Aux Id: OTP-8712

Improvements and New Features
	Types and specifications have been added.
Own Id: OTP-9268

	Erlang types and specifications are used for documentation.
Own Id: OTP-9272

	Two opaque types that could cause warnings when running Dialyzer have been
modified.
Own Id: OTP-9337

Kernel 2.14.3
Fixed Bugs and Malfunctions
	os:find_executable/{1,2} will no longer return the path of a directory that
happens to be in the PATH.
Own Id: OTP-8983 Aux Id: seq11749

	Fix -spec for file:write_file/3
Change type for second parameter from binary() to iodata(), since the function
explicitly takes steps to accept lists as well as binaries. (thanks to Magnus
Henoch).
Own Id: OTP-9067

	Sanitize the specs of the code module
After the addition of unicode_binary() to the file:filename() type, dialyzer
started complaining about erroneous or incomplete specs in some functions of
the 'code' module. The culprit was hard-coded information in erl_bif_types for
functions of this module, which were not updated. Since these functions have
proper specs these days and code duplication (pun intended) is never a good
idea, their type information was removed from erl_bif_types.
While doing this, some erroneous comments were fixed in the code module and
also made sure that the code now runs without dialyzer warnings even when the
-Wunmatched_returns option is used.
Some cleanups were applied to erl_bif_types too.
Own Id: OTP-9100

	- Add spec for function that does not return - Strengthen spec - Introduce
types to avoid duplication in specs - Add specs for functions that do not
return - Add specs for behaviour callbacks - Simplify two specs
Own Id: OTP-9127

Kernel 2.14.2
Improvements and New Features
	The Erlang VM now supports Unicode filenames. The feature is turned on by
default on systems where Unicode filenames are mandatory (Windows and MacOSX),
but can be enabled on other systems with the '+fnu' emulator option. Enabling
the Unicode filename feature on systems where it is not default is however
considered experimental and not to be used for production. Together with the
Unicode file name support, the concept of "raw filenames" is introduced, which
means filenames provided without implicit unicode encoding translation. Raw
filenames are provided as binaries, not lists. For further information, see
stdlib users guide and the chapter about using Unicode in Erlang. Also see the
file module manual page.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-8887

	There is now a new function inet:getifaddrs/0 modeled after C library function
getifaddrs() on BSD and LInux that reports existing interfaces and their
addresses on the host. This replaces the undocumented and unsupported
inet:getiflist/0 and inet:ifget/2.
Own Id: OTP-8926

Kernel 2.14.1.1
Fixed Bugs and Malfunctions
	In embedded mode, on_load handlers that called code:priv_dir/1 or other
functions in code would hang the system. Since the crypto application now
contains an on_loader handler that calls code:priv_dir/1, including the
crypto application in the boot file would prevent the system from starting.
Also extended the -init_debug option to print information about on_load
handlers being run to facilitate debugging.
Own Id: OTP-8902 Aux Id: seq11703

Kernel 2.14.1
Fixed Bugs and Malfunctions
	Fixed: inet:setopts(S, [{linger,{true,2}}]) returned {error,einval} for
SCTP sockets. The inet_drv had a bug when checking the option size.
Own Id: OTP-8726 Aux Id: seq11617

	gen_udp:connect/3 was broken for SCTP enabled builds. It did not detect remote
end errors as it should.
Own Id: OTP-8729

	reference() has been substituted for ref() in the documentation.
Own Id: OTP-8733

	A bug introduced in kernel-2.13.5.3 has been fixed. If running
net_kernel:set_net_ticktime/1 twice within the TransitionPerod the second
call caused the net_kernel process to crash with a badmatch.
Own Id: OTP-8787 Aux Id: seq11657, OTP-8643

	inet:getsockopt for SCTP sctp_default_send_param had a bug to not initialize
required feilds causing random answers. It is now corrected.
Own Id: OTP-8795 Aux Id: seq11655

	For a socket in the HTTP packet mode, the return value from gen_tcp:recv/2,3
if there is an error in the header will be {ok,{http_error,String}} instead
of {error,{http_error,String}} to be consistent with ssl:recv/2,3.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-8831

Improvements and New Features
	Even when configuring erlang with --enable-native-libs, the native code for
modules loaded very early (such as lists) would not get loaded. This has been
corrected. (Thanks to Paul Guyot.)
Own Id: OTP-8750

	The undocumented function inet:ifget/2 has been improved to return interface
hardware address (MAC) on platforms supporting getaddrinfo() (such as BSD
unixes). Note it still does not work on all platforms for example not Windows
nor Solaris, so the function is still undocumented.
Buffer overflow and field init bugs for inet:ifget/2 and inet:getservbyname/2
has also been fixed.
Thanks to Michael Santos.
Own Id: OTP-8816

	As a usability improvement the 'inet6' option to functions gen_tcp:listen/2,
gen_tcp:connect/3-4, gen_udp:open/2 and gen_sctp:open/1-2 is now implicit if
the address argument or the 'ip' option contain an IPv6 address (8-tuple).
Own Id: OTP-8822

Kernel 2.14
Fixed Bugs and Malfunctions
	os:find_executable can now be fed with the complete name of the executable on
Windows and still find it. I.e os:find_executable("werl.exe") will work as
os:find_executable("werl").
Own Id: OTP-3626

	The shell's line editing has been improved to more resemble the behaviour of
readline and other shells. (Thanks to Dave Peticolas)
Own Id: OTP-8635

	Under certain circumstances the net kernel could hang. (Thanks to Scott Lystig
Fritchie.)
Own Id: OTP-8643 Aux Id: seq11584

	The kernel DNS resolver was leaking one or two ports if the DNS reply could
not be parsed or if the resolver(s) caused noconnection type errors. Bug now
fixed. A DNS specification borderline truncated reply triggering the port
leakage bug has also been fixed.
Own Id: OTP-8652

Improvements and New Features
	As of this version, the global name server no longer supports nodes running
Erlang/OTP R11B.
Own Id: OTP-8527

	The file module's functions write,read and read_line now handles named
io_servers like 'standard_io' and 'standard_error' correctly.
Own Id: OTP-8611

	The functions file:advise/4 and file:datasync/1 have been added. (Thanks to
Filipe David Manana.)
Own Id: OTP-8637

	When exchanging groups between nodes pg2 did not remove duplicated members.
This bug was introduced in R13B03 (kernel-2.13.4).
Own Id: OTP-8653

	There is a new option 'exclusive' to file:open/2 that uses the OS O_EXCL flag
where supported to open the file in exclusive mode.
Own Id: OTP-8670

Kernel 2.13.5.3
Fixed Bugs and Malfunctions
	A bug introduced in Kernel 2.13.5.2 has been fixed.
Own Id: OTP-8686 Aux Id: OTP-8643

Kernel 2.13.5.2
Fixed Bugs and Malfunctions
	Under certain circumstances the net kernel could hang. (Thanks to Scott Lystig
Fritchie.)
Own Id: OTP-8643 Aux Id: seq11584

Kernel 2.13.5.1
Fixed Bugs and Malfunctions
	A race condition in os:cmd/1 could cause the caller to get stuck in
os:cmd/1 forever.
Own Id: OTP-8502

Kernel 2.13.5
Fixed Bugs and Malfunctions
	A race bug affecting pg2:get_local_members/1 has been fixed. The bug was
introduced in R13B03.
Own Id: OTP-8358

	The loading of native code was not properly atomic in the SMP emulator, which
could cause crashes. Also a per-MFA information table for the native code has
now been protected with a lock since it turns that it could be accessed
concurrently in the SMP emulator. (Thanks to Mikael Pettersson.)
Own Id: OTP-8397

	user.erl (used in oldshell) is updated to handle unicode in prompt strings
(io:get_line/{1,2}). io_lib is also updated to format prompts with the 't'
modifier (i.e. ~ts instead of ~s).
Own Id: OTP-8418 Aux Id: OTP-8393

	The resolver routines failed to look up the own node name as hostname, if the
OS native resolver was erroneously configured, bug reported by Yogish Baliga,
now fixed.
The resolver routines now tries to parse the hostname as an IP string as most
OS resolvers do, unless the native resolver is used.
The DNS resolver inet_res and file resolver inet_hosts now do not read OS
configuration files until they are needed. Since the native resolver is
default, in most cases they are never needed.
The DNS resolver's automatic updating of OS configuration file data
(/etc/resolv.conf) now uses the 'domain' keyword as default search domain if
there is no 'search' keyword.
Own Id: OTP-8426 Aux Id: OTP-8381

Improvements and New Features
	The expected return value for an on_load function has been changed. (See the
section about code loading in the Reference manual.)
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-8339

	Explicit top directories in archive files are now optional.
For example, if an archive (app-vsn.ez) just contains an app-vsn/ebin/mod.beam
file, the file info for the app-vsn and app-vsn/ebin directories are faked
using the file info from the archive file as origin. The virtual directories
can also be listed. For short, the top directories are virtual if they does
not exist.
Own Id: OTP-8387

	code:clash/0 now looks inside archives (.ez files). (Thanks to Tuncer Ayaz.)
Own Id: OTP-8413

	There are new gen_sctp:connect_init/* functions that initiate an SCTP
connection without blocking for the result. The result is delivered
asynchronously as an sctp_assoc_change event. (Thanks to Simon Cornish.)
Own Id: OTP-8414

Kernel 2.13.4
Fixed Bugs and Malfunctions
	A link in m:pg2 has been fixed. (Thanks to Christophe Romain.)
Own Id: OTP-8198

	A ticker process could potentially be blocked indefinitely trying to send a
tick to a node not responding. If this happened, the connection would not be
brought down as it should.
Own Id: OTP-8218

	A bug in pg2 when members who died did not leave process groups has been
fixed. (Thanks to Matthew Dempsky.)
Own Id: OTP-8259

Improvements and New Features
	The documentation is now built with open source tools (xsltproc and fop) that
exists on most platforms. One visible change is that the frames are removed.
Own Id: OTP-8201

	The top directory in archive files does not need to have a -vsn suffix
anymore. For example if the archive file has the name like mnesia-4.4.7.ez
the top directory in the archive can either be named mnesia or
mnesia-4.4.7. If the archive file has a name like mnesia.ez the top
directory in the archive must be named mnesia as earlier.
Own Id: OTP-8266

	The -on_load() directive can be used to run a function when a module is
loaded. It is documented in the section about code loading in the Reference
Manual.
Own Id: OTP-8295

Kernel 2.13.3
Improvements and New Features
	The DNS resolver client inet_res has been rewritten, documented and released.
See inet_res(3) and Erts User's Guide: Inet configuration.
It can formally not be incompatible with respect to earlier versions since
there was no earlier official version. However it was used before and some
details have changed.
Configuration now initializes from /etc/resolv.conf and /etc/hosts on all unix
platforms regardless of which distribution mode the node is started in. The
directory (/etc) these files are supposed to reside in can be changed via an
environment variable. These configuration file locations can also be changed
in the inet configuration. The files are monitored for change and re-read,
which makes a few resolver configuration variables out of application control.
The /etc/hosts entries have now their own cache table that is shadowed (with
lookup method 'file' is used) by the application configured host entries. This
problem (that inet_res configuration only worked for distribution mode long
names) was among other reported by Matthew O'Gorman many moons ago.
The lookup methods are still 'native' only per default. Resolver configuration
is done on all Unix platforms just to get a usable configuration for direct
calls to inet_res.
The functions inet_res:nslookup/3..5 and inet_res:nnslookup/4..4 are no
longer recommended to use, instead use inet_res:lookup/3..5 and
inet_res:resolve/3..5 which provide clearer argument types and the
possibility to override options in the call.
Users of previous unsupported versions of inet_res have included internal
header files to get to the internal record definitions in order to examine DNS
replies. This is still unsupported and there are access functions in inet_dns
to use instead. These are documented in inet_res(3).
Bug fix: a compression reference loop would make DNS message decoding loop
forever. Problem reported by Florian Weimer.
Bug fix and patch suggestion by Sergei Golovan: configuring IPv6 nameservers
did not work. His patch (as he warned) created many UDP sockets; one per
nameserver. This has been fixed in the released version.
Improvement: inet_res is now EDNS0 capable. The current implementation is
simple and does not probe and cache EDNS info for nameservers, which a fully
capable implementation probably should do. EDNS has to be enabled via resolver
configuration, and if a nameserver replies that it does not support EDNS,
inet_res falls back to a regular DNS query.
Improvement: now inet_res automatically falls back to TCP if it gets a
truncated answer from a nameserver.
Warning: some of the ancient and exotic record types handled by inet_res and
inet_dns are not supported by current versions of BIND, so they could not be
tested after the rewrite, with reasonable effort, e.g MD, MF, NULL, and SPF.
The risk for bugs in these particular records is still low since their code is
mostly shared with other tested record types.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-7955 Aux Id: OTP-7107 OTP-6852

	A TCP socket with option {packet,4} could crash the emulator if it received
a packet header with a very large size value (>2Gb). The same bug caused
erlang:decode_packet/3 to return faulty values. (Thanks to Georgos Seganos.)
Own Id: OTP-8102

	The file module has now a read_line/1 function similar to the io:get_line/2,
but with byte oriented semantics. The function file:read_line/1 works for raw
files as well, but for good performance it is recommended to use it together
with the 'read_ahead' option for raw file access.
Own Id: OTP-8108

Kernel 2.13.2
Fixed Bugs and Malfunctions
	A bug when doing io:get_line (among other calls) from a file opened with
encoding other than latin1, causing false unicode errors to occur, is now
corrected.
Own Id: OTP-7974

Improvements and New Features
	Added functionality to get higher resolution timestamp from system. The
erlang:now function returns a timestamp that's not always consistent with the
actual operating system time (due to resilience against large time changes in
the operating system). The function os:timestamp/0 is added to get a similar
timestamp as the one being returned by erlang:now, but untouched by Erlangs
time correcting and smoothing algorithms. The timestamp returned by
os:timestamp is always consistent with the operating systems view of time,
like the calendar functions for getting wall clock time, but with higher
resolution. Example of usage can be found in the os manual page.
Own Id: OTP-7971

Kernel 2.13.1
Fixed Bugs and Malfunctions
	Many concurrent calls to os:cmd/1 will only block one scheduler thread at a
time, making an smp emulator more responsive if the OS is slow forking
processes.
Own Id: OTP-7890 Aux Id: seq11219

	Fixed hanging early RPC that did IO operation during node start.
Own Id: OTP-7903 Aux Id: seq11224

	The error behavior of gen_tcp and gen_udp has been corrected.
gen_tcp:connect/3,4 and gen_udp:send/4 now returns {error,eafnosupport} for
conflicting destination address versus socket address family. Other corner
cases for IP address string host names combined with not using the native (OS)
resolver (which is not default) has also been changed to return
{error,nxdomain} instead of {error,einval}. Those changes just may
surprise old existing code. gen_tcp:listen/2 and gen_udp:open/2 now fails for
conflicting local address versus socket address family instead of trying to
use an erroneous address. Problem reported by Per Hedeland.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-7929

Improvements and New Features
	Several glitches and performance issues in the Unicode and I/O-system
implementation of R13A have been corrected.
Own Id: OTP-7896 Aux Id: OTP-7648 OTP-7887

	The unsupported DNS resolver client inet_res has now been improved to handle
NAPTR queries.
Own Id: OTP-7925 Aux Id: seq11231

Kernel 2.13
Fixed Bugs and Malfunctions
	The old Erlang DNS resolver inet_res has been corrected to handle TXT records
with more than one character string. Patch courtesy of Geoff Cant.
Own Id: OTP-7588

	When chunk reading a disk log opened in read_only mode, bad terms could crash
the disk log process.
Own Id: OTP-7641 Aux Id: seq11090

	gen_tcp:send() did sometimes (only observed on Solaris) return
{error,enotconn} instead of the expected {error,closed} as the peer socket
had been explicitly closed.
Own Id: OTP-7647

	The gen_sctp option sctp_peer_addr_params,
#sctp_paddrparams{address={IP,Port} was erroneously decoded in the inet
driver. This bug has now been corrected.
Own Id: OTP-7755

Improvements and New Features
	Erlang programs can now access STDERR on platforms where such a file
descriptor is available by using the io_server 'standard_error', i.e.
io:format(standard_error,"~s~n",[ErrorMessage]),
Own Id: OTP-6688

	The format of the string returned by erlang:system_info(system_version) (as
well as the first message when Erlang is started) has changed. The string now
contains the both the OTP version number as well as the erts version number.
Own Id: OTP-7649

	As of this version, the global name server no longer supports nodes running
Erlang/OTP R10B.
Own Id: OTP-7661

	A {nodedown, Node} message passed by the net_kernel:monitor_nodes/X
functionality is now guaranteed to be sent after Node has been removed from
the result returned by erlang:nodes/Y.
Own Id: OTP-7725

	The deprecated functions erlang:fault/1, erlang:fault/2, and
file:rawopen/2 have been removed.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-7812

	Nodes belonging to different independent clusters can now co-exist on the same
host with the help of a new environment variable setting ERL_EPMD_PORT.
Own Id: OTP-7826

	The copyright notices have been updated.
Own Id: OTP-7851

Kernel 2.12.5.1
Fixed Bugs and Malfunctions
	When chunk reading a disk log opened in read_only mode, bad terms could crash
the disk log process.
Own Id: OTP-7641 Aux Id: seq11090

	Calling gen_tcp:send() from several processes on socket with option
send_timeout could lead to much longer timeout than specified. The solution
is a new socket option {send_timeout_close,true} that will do automatic
close on timeout. Subsequent calls to send will then immediately fail due to
the closed connection.
Own Id: OTP-7731 Aux Id: seq11161

Kernel 2.12.5
Fixed Bugs and Malfunctions
	The documentation of rpc:pmap/3 has been corrected. (Thanks to Kirill
Zaborski.)
Own Id: OTP-7537

	The listen socket used for the distributed Erlang protocol now uses the socket
option 'reuseaddr', which is useful when you force the listen port number
using kernel options 'inet_dist_listen_min' and 'inet_dist_listen_max' and
restarts a node with open connections.
Own Id: OTP-7563

	Fixed memory leak of unclosed TCP-ports. A gen_tcp:send() followed by a
failing gen_tcp:recv() could in some cases cause the port to linger after
being closed.
Own Id: OTP-7615

Improvements and New Features
	Processes spawned using proc_lib (including gen_server and other library
modules that use proc_lib) no longer keep the entire argument list for the
initial call, but only the arity.
Also, if proc_lib:spawn/1 is used to spawn a fun, the actual fun is not
kept, but only module, function name, and arity of the function that
implements the fun.
The reason for the change is that keeping the initial fun (or a fun in an
argument list), would prevent upgrading the code for the module. A secondary
reason is that keeping the fun and function arguments could waste a
significant amount of memory.
The drawback with the change is that the crash reports will provide less
precise information about the initial call (only Module:Function/Arity
instead of Module:Function(Arguments)). The function
proc_lib:initial_call/1 still returns a list, but each argument has been
replaced with a dummy atom.
Own Id: OTP-7531 Aux Id: seq11036

	io:get_line/1 when reading from standard input is now substantially faster.
There are also some minor performance improvements in io:get_line/1 when
reading from any file opened in binary mode. (Thanks to Fredrik Svahn.)
Own Id: OTP-7542

	There is now experimental support for loading of code from archive files. See
the documentation of code, init, erl_prim_loaderand escript for more
info.
The error handling of escripts has been improved.
An escript may now set explicit arguments to the emulator, such as
-smp enabled.
An escript may now contain a precompiled beam file.
An escript may now contain an archive file containing one or more
applications (experimental).
The internal module code_aux has been removed.
Own Id: OTP-7548 Aux Id: otp-6622

	code:is_sticky/1 is now documented. (Thanks to Vlad Dumitrescu.)
Own Id: OTP-7561

	In the job control mode, the "s" and "r" commands now take an optional
argument to specify which shell to start. (Thanks to Robert Virding.)
Own Id: OTP-7617

	net_adm:world/0,1 could crash if called in an emulator that has not been
started with either the -sname or -name option; now it will return an
empty list. (Thanks to Edwin Fine.)
Own Id: OTP-7618

Kernel 2.12.4
Fixed Bugs and Malfunctions
	Large files are now handled on Windows, where the filesystem supports it.
Own Id: OTP-7410

Improvements and New Features
	New BIF erlang:decode_packet/3 that extracts a protocol packet from a
binary. Similar to the socket option {packet, Type}. Also documented the
socket packet type http and made it official. NOTE: The tuple format for
http packets sent from an active socket has been changed in an incompatible
way.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-7404

	Setting the {active,once} for a socket (using inets:setopts/2) is now
specially optimized (because the {active,once} option is typically used much
more frequently than other options).
Own Id: OTP-7520

Kernel 2.12.3
Fixed Bugs and Malfunctions
	SCTP_ADDR_CONFIRMED events are now handled by gen_sctp.
Own Id: OTP-7276

	When leaving a process group with pg2:leave/2 the process was falsely
assumed to be a member of the group. This bug has been fixed.
Own Id: OTP-7277

	In the Erlang shell, using up and down arrow keys, the wrong previous command
could sometimes be retrieved.
Own Id: OTP-7278

	The documentation for erlang:trace/3 has been corrected.
Own Id: OTP-7279 Aux Id: seq10927

	In the SMP emulator, there was small risk that code:purge(Mod) would kill a
process that was running code in Mod and unload the module Mod before the
process had terminated. code:purge(Mod) now waits for confirmation (using
erlang:monitor/2) that the process has been killed before proceeding.
Own Id: OTP-7282

	zlib:inflate failed when the size of the inflated data was an exact multiple
of the internal buffer size (4000 bytes by default).
Own Id: OTP-7359

Improvements and New Features
	Additional library directories can now be specified in the environment
variable ERL_LIBS. See the manual page for the code module. (Thanks to Serge
Aleynikov.)
Own Id: OTP-6940

	crypto and zlib drivers improved to allow concurrent smp access.
Own Id: OTP-7262

	There is a new function init:stop/1 which can be used to shutdown the system
cleanly AND generate a non-zero exit status or crash dump. (Thanks to Magnus
Froberg.)
Own Id: OTP-7308

	The hide option for open_port/2 is now documented.
(Thanks to Richard Carlsson.)
Own Id: OTP-7358

Kernel 2.12.2.1
Improvements and New Features
	os:cmd/1 on unix platforms now use /bin/sh as shell instead of looking for
sh in the PATH environment.
Own Id: OTP-7283

Kernel 2.12.2
Fixed Bugs and Malfunctions
	A bug caused by a race condition involving disk_log and pg2 has been
fixed.
Own Id: OTP-7209 Aux Id: seq10890

	The beta testing module gen_sctp now supports active mode as stated in the
documentation. Active mode is still rather untested, and there are some issues
about what should be the right semantics for gen_sctp:connect/5. In
particular: should it be blocking or non-blocking or choosable. There is a
high probability it will change semantics in a (near) future patch.
Try it, give comments and send in bug reports!
Own Id: OTP-7225

Improvements and New Features
	erlang:system_info/1 now accepts the logical_processors, and
debug_compiled arguments. For more info see the, erlang documentation.
The scale factor returned by test_server:timetrap_scale_factor/0 is now also
effected if the emulator uses a larger amount of scheduler threads than the
amount of logical processors on the system.
Own Id: OTP-7175

	Updated the documentation for erlang:function_exported/3 and io:format/2
functions to no longer state that those functions are kept mainly for
backwards compatibility.
Own Id: OTP-7186

	A process executing the processes/0 BIF can now be preempted by other
processes during its execution. This in order to disturb the rest of the
system as little as possible. The returned result is, of course, still a
consistent snapshot of existing processes at a time during the call to
processes/0.
The documentation of the processes/0 BIF and the
is_process_alive/1 BIF have been updated in order to
clarify the difference between an existing process and a process that is
alive.
Own Id: OTP-7213

	tuple_size/1 and byte_size/1 have been
substituted for size/1 in the documentation.
Own Id: OTP-7244

Kernel 2.12.1.2
Improvements and New Features
	The {allocator_sizes, Alloc} and alloc_util_allocators arguments are now
accepted by erlang:system_info/1. For more information see the erlang
documentation.
Own Id: OTP-7167

Kernel 2.12.1.1
Fixed Bugs and Malfunctions
	Fixed a problem in group that could cause the ssh server to lose answers or
hang.
Own Id: OTP-7185 Aux Id: seq10871

Kernel 2.12.1
Fixed Bugs and Malfunctions
	file:read/2 and file:consult_stream/1,3 did not use an empty prompt on I/O
devices. This bug has now been corrected.
Own Id: OTP-7013

	The sctp driver has been updated to work against newer lksctp packages e.g
1.0.7 that uses the API spelling change adaption -> adaptation. Older lksctp
(1.0.6) still work. The erlang API in gen_sctp.erl and inet_sctp.hrl now
spells 'adaptation' regardless of the underlying C API.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-7120

Improvements and New Features
	The documentation has been updated so as to reflect the last updates of the
Erlang shell as well as the minor modifications of the control sequence p of
the io_lib module.
Superfluous empty lines have been removed from code examples and from Erlang
shell examples.
Own Id: OTP-6944 Aux Id: OTP-6554, OTP-6911

	tuple_size/1 and byte_size/1 have been
substituted for size/1.
Own Id: OTP-7009

Kernel 2.12
Fixed Bugs and Malfunctions
	A bug for raw files when reading 0 bytes returning 'eof' instead of empty data
has been corrected.
Own Id: OTP-6291 Aux Id: OTP-6967

	A bug in gen_udp:fdopen reported by David Baird and also found by Dialyzer has
been fixed.
Own Id: OTP-6836 Aux Id: OTP-6594

	Calling error_logger:tty(true) multiple times does not give multiple error
log printouts.
Own Id: OTP-6884 Aux Id: seq10767

	The global name server now ignores nodeup messages when the command line
flag -connect_all false has been used. (Thanks to Trevor Woollacott.)
Own Id: OTP-6931

	file:write_file/3, file:write/2 and file:read/2 could crash (contrary to
documentation) for odd enough file system problems, e.g write to full file
system. This bug has now been corrected.
In this process the file module has been rewritten to produce better error
codes. Posix error codes now originate from the OS file system calls or are
generated only for very similar causes (for example 'enomem' is generated if a
memory allocation fails, and 'einval' is generated if the file handle in
Erlang is a file handle but currently invalid).
More Erlang-ish error codes are now generated. For example {error,badarg} is
now returned from file:close/1 if the argument is not of a file handle type.
See file(3).
The possibility to write a single byte using file:write/2 instead of a list
or binary of one byte, contradictory to the documentation, has been removed.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-6967 Aux Id: OTP-6597 OTP-6291

	Monitor messages produced by the system monitor functionality, and garbage
collect trace messages could contain erroneous heap and/or stack sizes when
the actual heaps and/or stacks were huge.
As of erts version 5.6 the large_heap option to
erlang:system_monitor/[1,2] has been modified. The monitor message is sent
if the sum of the sizes of all memory blocks allocated for all heap
generations is equal to or larger than the specified size. Previously the
monitor message was sent if the memory block allocated for the youngest
generation was equal to or larger than the specified size.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-6974 Aux Id: seq10796

	inet:getopts/2 returned random values on Windows Vista.
Own Id: OTP-7003

Improvements and New Features
	Minor documentation corrections for file:pread/2 and file:pread/3.
Own Id: OTP-6853

	The deprecated functions file:file_info/1, init:get_flag/1,
init:get_flags/0, and init:get_args/0 have been removed.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-6886

	Contract directives for modules in Kernel and STDLIB.
Own Id: OTP-6895

	The functions io:columns/0, io:columns/1, io:rows/0 and io:rows/1 are added to
allow the user to get information about the terminal geometry. The shell takes
some advantage of this when formatting output. For regular files and other
io-devices where height and width are not applicable, the functions return
{error,enotsup}.
Potential incompatibility: If one has written a custom io-handler, the handler
has to either return an error or take care of io-requests regarding terminal
height and width. Usually that is no problem as io-handlers, as a rule of
thumb, should give an error reply when receiving unknown io-requests, instead
of crashing.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-6933

	The undocumented and unsupported functions inet:ip_to_bytes/1,
inet:ip4_to_bytes/1, inet:ip6_to_bytes/1, and inet:bytes_to_ip6/16 have
been removed.
Own Id: OTP-6938

	Added new checksum combine functions to zlib. And fixed a bug in
zlib:deflate. Thanks Matthew Dempsky.
Own Id: OTP-6970

	The spawn_monitor/1 and
spawn_monitor/3 BIFs are now auto-imported (i.e. they
no longer need an erlang: prefix).
Own Id: OTP-6975

	All functions in the code module now fail with an exception if they are
called with obviously bad arguments, such as a tuple when an atom was
expected. Some functions now also fail for undocumented argument types (for
instance, ensure_loaded/1 now only accepts an atom as documented; it used to
accept a string too).
Dialyzer will generally emit warnings for any calls that use undocumented
argument types. Even if the call happens to still work in R12B, you should
correct your code. A future release will adhere to the documentation.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-6983

Kernel 2.11.5.2
Fixed Bugs and Malfunctions
	The kernel parameter dist_auto_connect once could fail to block a node if
massive parallel sends were issued during a transient failure of network
communication
Own Id: OTP-6893 Aux Id: seq10753

Kernel 2.11.5.1
Fixed Bugs and Malfunctions
	The internal (rarely used) DNS resolver has been modified to not use the
domain search list when asked to resolve an absolute name; a name with a
terminating dot. There was also a bug causing it to create malformed DNS
queries for absolute names that has been corrected, correction suggested by
Scott Lystig Fritchie. The code has also been corrected to look up cached RRs
in the same search order as non-cached, now allows having the root domain
among the search domains, and can now actually do a zone transfer request.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-6806 Aux Id: seq10714 EABln35459

	zlib:close/1 would leave an EXIT message in the message queue if the calling
process had the trap_exit flag enabled.
Own Id: OTP-6811

Improvements and New Features
	The documentation of process_flag(priority, Level) has
been updated, see the erlang documentation.
Own Id: OTP-6745 Aux Id: OTP-6715

Kernel 2.11.5
Fixed Bugs and Malfunctions
	The shell has been updated to fix the following flaws: Shell process exit left
you with an unresponsive initial shell if not using oldshell. Starting a
restricted shell with a nonexisting callback module resulted in a shell where
no commands could be used, not even init:stop/0. Fun's could not be used as
parameters to local shell functions (in shell_default or user_default) when
restricted_shell was active.
Own Id: OTP-6537

	The undocumented feature gen_tcp:fdopen/2 was broken in R11B-4. It is now
fixed again.
Own Id: OTP-6615

	Corrected cancellation of timers in three places in the inet_res module.
(Problem found by Dialyzer.)
Own Id: OTP-6676

Improvements and New Features
	Corrected protocol layer flue for socket options SO_LINGER, SO_SNDBUF and
SO_RCVBUF, for SCTP.
Own Id: OTP-6625 Aux Id: OTP-6336

	The behaviour of the inet option {active,once} on peer close is improved and
documented.
Own Id: OTP-6681

	The inet option send_timeout for connection oriented sockets is added to allow
for timeouts in communicating send requests to the underlying TCP stack.
Own Id: OTP-6684 Aux Id: seq10637 OTP-6681

	Minor Makefile changes.
Own Id: OTP-6689 Aux Id: OTP-6742

	The documentation of process_flag(priority, Level) has
been updated, see the erlang documentation.
Own Id: OTP-6715

Kernel 2.11.4.2
Improvements and New Features
	process_flag/2 accepts the new flag sensitive.
Own Id: OTP-6592 Aux Id: seq10555

Kernel 2.11.4.1
Fixed Bugs and Malfunctions
	A bug in gen_udp:open that broke the 'fd' option has been fixed.
Own Id: OTP-6594 Aux Id: seq10619

Kernel 2.11.4
Fixed Bugs and Malfunctions
	Added a warning to the documentation for the error_logger functions
error_msg/1,2, warning_msg/1,2 and info_msg/1,2 that calling these
function with bad arguments can crash the standard event handler.
Own Id: OTP-4575 Aux Id: seq7693

	A bug in inet_db concerning getting the resolver option retry has been
corrected.
Own Id: OTP-6380 Aux Id: seq10534

	Names registered by calling global:register_name() or
global:re_register_name() were not always unregistered when the registering
or registered process died. This bug has been fixed.
Own Id: OTP-6428

	When setting the kernel configuration parameter error_logger to false, the
documentation stated that "No error logger handler is installed". This is
true, but error logging is not turned off, as the initial, primitive error
logger event handler is kept, printing raw event messages to tty.
Changing this behavior can be viewed as a backward incompatible change.
Instead a new value silent for the configuration parameter has been added,
which ensures that error logging is completely turned off.
Own Id: OTP-6445

	Clarified the documentation for code:lib_dir/1 and code:priv_dir/1. The
functions traverse the names of the code path, they do not search the actual
directories.
Own Id: OTP-6466

	io:setopts returned {error,badarg}, when called with only an expand_fun
argument. (Thanks to igwan.)
Own Id: OTP-6508

Improvements and New Features
	An interface towards the SCTP Socket API Extensions has been implemented.It is
an Open Source patch courtesy of Serge Aleynikov and Leonid Timochouk. The
Erlang code parts has been adapted by the OTP team, changing the Erlang API
somewhat.
The Erlang interface consists of the module gen_sctp and an include file
-include_lib("kernel/include/inet_sctp.hrl"). for option record definitions.
The gen_sctp module is documented.
The delivered Open Source patch, before the OTP team rewrites, was written
according to
http://tools.ietf.org/html/draft-ietf-tsvwg-sctpsocket-13
and was claimed to work fine, tested on Linux Fedora Core 5.0 (kernel
2.6.15-2054 or later) and on Solaris 10 and 11. The OTP team rewrites used the
same standard document but might have accidentally broken some functionality.
If so, it will soon be patched to working state. The tricky parts in C and the
general design has essentially not changed. During the rewrites the code was
hand tested on SuSE Linux Enterprise Server 10, and briefly on Solaris 10.
Feedbach on code and docs is very much appreciated.
The SCTP interface is in beta state. It has only been hand tested and has no
automatic test suites in OTP meaning everything is most certainly not tested.
Socket active mode is broken. IPv6 is not tested. The documentation has been
reworked due to the API changes, but has not been proofread after this.
Thank you from the OTP team to Serge Aleynikov and Leonid Timochouk for a
valuable contribution. We hope we have not messed it up too much.
Own Id: OTP-6336

	A {minor_version,Version} option is now recognized by
term_to_binary/2. {minor_version,1} will cause
floats to be encoded in an exact and more space-efficient way compared to the
previous encoding.
Own Id: OTP-6434

	Monitoring of nodes has been improved. Now the following properties apply to
net_kernel:monitor_nodes/[1,2]:
	nodeup messages will be delivered before delivery of any message from the
remote node passed through the newly established connection.
	nodedown messages will not be delivered until all messages from the remote
node that have been passed through the connection have been delivered.
	Subscriptions can also be made before the net_kernel server has been
started.

Own Id: OTP-6481

	Setting and getting socket options in a "raw" fashion is now allowed. Using
this feature will inevitably produce non portable code, but will allow setting
ang getting arbitrary uncommon options on TCP stacks that do have them.
Own Id: OTP-6519

	Dialyzer warnings have been eliminated.
Own Id: OTP-6523

	The documentation for file:delete/1 and file:set_cwd/1 has been updated to
clarify what happens if the input arguments are of an incorrect type.
Own Id: OTP-6535

Kernel 2.11.3.1
Fixed Bugs and Malfunctions
	An erroneous packet size could be used for the first messages passed through a
newly established connection between two Erlang nodes. This could cause
messages to be discarded, or termination of the connection.
Own Id: OTP-6473

Kernel 2.11.3
Fixed Bugs and Malfunctions
	On Unix, the unix:cmd/1 function could leave an 'EXIT' message in the
message queue for the calling process That problem was more likely to happen
in an SMP emulator.
Own Id: OTP-6368

Improvements and New Features
	More interfaces are added in erl_ddll, to support different usage scenarios.
Own Id: OTP-6307 Aux Id: OTP-6234

	Locks set by calling global:set_lock() were not always deleted when the
locking process died. This bug has been fixed.
Own Id: OTP-6341 Aux Id: seq10445

Kernel 2.11.2
Fixed Bugs and Malfunctions
	Behavior in case of disappeared nodes when using he dist_auto_connect once got
changed in R11B-1. The timeouts regarding normal distributed operations is now
reverted to the old (pre R11B-1).
Own Id: OTP-6258 Aux Id: OTP-6200, seq10449

	Start-up problems for the internal process used by the inet:gethostbyname()
functions were eliminated. If the internal process (inet_gethost_native) had
not previously been started, and if several processes at the same time called
one of the inet:gethostbyname() functions, the calls could fail.
Own Id: OTP-6286

Improvements and New Features
	Code cleanup: the old internal obsolete file_server has been removed. It was
only used when communicating with R7 and older nodes.
Own Id: OTP-6245

	Trying to open a non-existent or badly formed disk log no longer results in a
crash report. In particular, ets:file2tab/1 reports no error when the
argument is not a well-formed disk log file. (The return value has not been
changed, it is still an error tuple.)
Own Id: OTP-6278 Aux Id: seq10421

	There are new BIFs erlang:spawn_monitor/1,3, and the new option monitor
for spawn_opt/2,3,4,5.
The observer_backend module has been updated to handle the new BIFs.
Own Id: OTP-6281

	To help Dialyzer find more bugs, many functions in the Kernel and STDLIB
applications now only accept arguments of the type that is documented.
For instance, the functions lists:prefix/2 and lists:suffix/2 are
documented to only accept lists as their arguments, but they actually accepted
anything and returned false. That has been changed so that the functions
cause an exception if one or both arguments are not lists.
Also, the string:strip/3 function is documented to take a character argument
that is a character to strip from one or both ends of the string. Given a list
instead of a character, it used to do nothing, but will now cause an
exception.
Dialyzer will find most cases where those functions are passed arguments of
the wrong type.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-6295

Kernel 2.11.1.1
Improvements and New Features
	There is now an option read_packets for UDP sockets that sets the maximum
number of UDP packets that will be read for each invocation of the socket
driver.
Own Id: OTP-6249 Aux Id: seq10452

Kernel 2.11.1
Fixed Bugs and Malfunctions
	In R11B-0, the erl_ddll server process is always started. Despite that, the
configuration parameter start_ddll for the Kernel application was still
obeyed, which would cause the erl_ddll server to be started TWICE (and the
system shutting down as a result). In this release, start_ddll is no longer
used and its documentation has been removed.
Own Id: OTP-6163

	The kernel option {dist_auto_connect,once} could block out nodes that had
never been connected, causing persistent partitioning of networks.
Furthermore, partial restarts of networks could cause inconsistent global name
databases. Both problems are now solved.
Own Id: OTP-6200 Aux Id: seq10377

Improvements and New Features
	Late arriving tcp_closed and udp_closed messages are now removed from the
message queue of a process calling gen_tcp:close/1, gen_udp:close/1, and
inet:close/1.
Own Id: OTP-6197

Kernel 2.11
Fixed Bugs and Malfunctions
	When repairing a disk log with a corrupt index file (caused by for instance a
hard disk failure) the old contents of the index file is kept unmodified. This
will make repeated attempts to open the disk log fail every time.
Own Id: OTP-5558 Aux Id: seq9823

	Previously unlink/1 and erlang:demonitor/2 behaved
completely asynchronous. This had one undesirable effect, though. You could
never know when you were guaranteed not to be affected by a link that you
had unlinked or a monitor that you had demonitored.
The new behavior of unlink/1 and erlang:demonitor/2 can be
viewed as two operations performed atomically. Asynchronously send an unlink
signal or a demonitor signal, and ignore any future results of the link or
monitor.
NOTE: This change can cause some obscure code to fail which previously did
not. For example, the following code might hang:
 Mon = erlang:monitor(process, Pid),
 %% ...
 exit(Pid, bang),
 erlang:demonitor(Mon),
 receive
 {'DOWN', Mon, process, Pid, _} -> ok
 %% We were previously guaranteed to get a down message
 %% (since we exited the process ourself), so we could
 %% in this case leave out:
 %% after 0 -> ok
 end,
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-5772

	The behavior when an application fails to start and possibly causes the
runtime system to halt has been cleaned up, including fixing some minor bugs.
application_controller should now always terminate with a non-nested string,
meaning the slogan in an erl_crash.dump should always be easy to read.
init now makes sure that the slogan passed to erlang:halt/1 does not
exceed the maximum allowed length.
Redundant calls to list_to_atom/1 has been removed from
the primitive error_logger event handler. (Thanks Serge Aleynikov for
pointing this out).
The changes only affects the contents of the error messages and crashdump file
slogan.
Own Id: OTP-5964

	The erl_ddll server is now started when OTP is started and placed under the
Kernel supervisor. This fixes several minor issues. It used to be started on
demand.
The documentation for the start and stop functions in the erl_ddll
module has been removed, as those functions are not meant to be used by other
applications.
Furthermore, the erl_ddll:stop/1 function no longer terminates the
erl_ddll server, as that would terminate the entire runtime system.
Own Id: OTP-6033

Improvements and New Features
	Removed some unused functions from application_master.
Own Id: OTP-3889

	Global no longer allows the registration of a process under more than one
name. If the old (buggy) behavior is desired the Kernel application variable
global_multi_name_action can be given the value allow.
Own Id: OTP-5640 Aux Id: OTP-5603

	The (slightly misleading) warnings that was shown when the erlang.erl file
was compiled has been eliminated.
Own Id: OTP-5947

	The auth module API is deprecated.
Own Id: OTP-6037

	Added erlang:demonitor/2, making it possible to at the same time flush a
received 'DOWN' message, if there is one. See erlang.
Own Id: OTP-6100 Aux Id: OTP-5772

Kernel 2.10.13
Fixed Bugs and Malfunctions
	Large files (more than 2 GBytes) are now handled on Solaris 8.
Own Id: OTP-5849 Aux Id: seq10157

	During startup, a garbage {'DOWN', ...} message was left by
inet_gethost_native, that caused problems for the starting code server.
Own Id: OTP-5978 Aux Id: OTP-5974

Improvements and New Features
	global now makes several attempts to connect nodes when maintaining the
fully connected network. More than one attempt is sometimes needed under very
heavy load.
Own Id: OTP-5889

	erl_epmd now explicitly sets the timeout to infinity when calling
gen_server:call. The old timeout of 15 seconds could time out under very
heavy load.
Own Id: OTP-5959

	Corrected the start of code server to use reference-tagged tuples to ensure
that an unexpected message sent to the parent process does not cause a halt of
the system. Also removed the useless start/* functions in both code.erl
and code_server.erl and no longer exports the init function from
code_server.erl.
Own Id: OTP-5974 Aux Id: seq10243, OTP-5978

Kernel 2.10.12
Fixed Bugs and Malfunctions
	A bug in global has been fixed: the locker process added nonode@nohost to
the list of nodes to lock. This could happen before any nodes got known to the
global name server. Depending on net configuration the symptom was a delay.
Own Id: OTP-5792 Aux Id: OTP-5563

	If an .app file is missing, the error reason returned by
application:load/1 has been corrected to
{"no such file or directory", "FILE.app"}, instead of the less informative
{"unknown POSIX error","FILE.app"}.
Own Id: OTP-5809

	Bug fixes: disk_log:accessible_logs/0 no longer reports all pg2 process
groups as distributed disk logs; disk_log:pid2name/1 did not recognize
processes of distributed disk logs.
Own Id: OTP-5810

	The functions file:consult/1, file:path_consult/2, file:eval/1,2,
file:path_eval/2,3, file:script/1,2, file:path_script/2,3 now return
correct line numbers in error tuples.
Own Id: OTP-5814

	If there were user-defined variables in the boot script, and their values were
not provided using the -boot_var option, the emulator would refuse to start
with a confusing error message. Corrected to show a clear, understandable
message.
The prim_file module was modified to not depend on the lists module, to
make it possible to start the emulator using a user-defined loader. (Thanks to
Martin Bjorklund.)
Own Id: OTP-5828 Aux Id: seq10151

	Minor corrections in the description of open modes. (Thanks to Richard
Carlsson.)
Own Id: OTP-5856

Improvements and New Features
	application_controller now terminates with the actual error reason, instead
of shutdown. This means that the crash dump now should be somewhat more
informative, in the case where the runtime system is terminated due to an
error in an application.
Example: If the (permanent) application app1 fails to start, the slogan now
will be:
"Kernel pid terminated (application_controller) ({application_start_failure,app1,{shutdown, {app1,start,[normal,[]]}}})"
rather than the previous
"Kernel pid terminated (application_controller) (shutdown)".
Own Id: OTP-5811

Kernel 2.10.11.1
Fixed Bugs and Malfunctions
	Timers could sometimes timeout too early. This bug has now been fixed.
Automatic cancellation of timers created by erlang:send_after(Time, pid(),
Msg), and erlang:start_timer(Time, pid(), Msg) has been introduced. Timers
created with the receiver specified by a pid, will automatically be cancelled
when the receiver exits. For more information see the erlang man page.
In order to be able to maintain a larger amount of timers without increasing
the maintenance cost, the internal timer wheel and bif timer table have been
enlarged.
Also a number of minor bif timer optimizations have been implemented.
Own Id: OTP-5795 Aux Id: OTP-5090, seq8913, seq10139, OTP-5782

Improvements and New Features
	Documentation improvements:
- documentation for erlang:link/1 corrected
- command line flag -code_path_cache added
- erl command line flags clarifications
- net_kernel clarifications
Own Id: OTP-5847

Kernel 2.10.11
Fixed Bugs and Malfunctions
	Several bug fixes and improvements in the global name registration facility
(see global):
	the name resolving procedure did not always unlink no longer registered
processes;
	the global name could sometimes hang when a nodedown was immediately
followed by a nodeup;
	global names were not always unregistered when a node went down;
	it is now possible to set and delete locks at the same time as the global
name server is resolving names--the handling of global locks has been
separated from registration of global names;

As of this version, global no longer supports nodes running Erlang/OTP R7B
or earlier.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-5563

	The functions global:set_lock/3 and global:trans/4 now accept the value
0 (zero) of the Retries argument.
Own Id: OTP-5737

	The inet:getaddr(Addr, Family) no longer validates the Addr argument if it
is a 4 or 8 tuple containing the IP address, except for the size of the tuple
and that it contains integers in the correct range.
The reason for the change is that validation could cause the following
sequence of calls to fail:
{ok,Addr} = inet:getaddr(localhost, inet6), gen_tcp:connect(Addr, 7, [inet6])
Own Id: OTP-5743

Improvements and New Features
	The previously undocumented and UNSUPPORTED zlib module has been updated in
an incompatible way and many bugs have been corrected. It is now also
documented.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-5715

	Added application interface functions which_applications/1, set_env/4
and unset_env/3, which take an additional Timeout argument. To be used in
situations where the standard gen_server timeout (5000ms) is not adequate.
Own Id: OTP-5724 Aux Id: seq10083

	Improved documentation regarding synchronized start of applications with
included applications (using start phases and application_starter).
Own Id: OTP-5754

	New socket options priority and tos for platforms that support them
(currently only Linux).
Own Id: OTP-5756

	The global name server has been optimized when it comes to maintaining a fully
connected network.
Own Id: OTP-5770

Kernel 2.10.10.1
Fixed Bugs and Malfunctions
	The native resolver has gotten an control API for extended debugging and soft
restart. It is: inet_gethost_native:control(Control)
Control = {debug_level,Level} | soft_restart
Level = integer() in the range 0-4.
Own Id: OTP-5751 Aux Id: EABln25013

Kernel 2.10.10
Fixed Bugs and Malfunctions
	If several processes (at the same node) simultaneously tried to start the same
distributed application, this could lead to application:start returning an
erroneous value, or even hang.
Own Id: OTP-5606 Aux Id: seq9838

Improvements and New Features
	The manual pages for most of the Kernel and some of the STDLIB modules have
been updated, in particular regarding type definitions.
The documentation of the return value for erts:info/1 has been corrected.
The documentation for erlang:statistics/1 now lists all possible arguments.
Own Id: OTP-5360

	When the native resolver fails a gethostbyaddr lookup, nxdomain should be
returned. There should be no attempt to fallback on a routine that succeeds if
only the syntax of the IP address is valid. This has been fixed.
Own Id: OTP-5598 Aux Id: OTP-5576

	Replaced some tuple funs with the new fun M:F/A construct.
The high-order functions in the lists module no longer accept bad funs under
any circumstances. 'lists:map(bad_fun, [])' used to return '[]' but now
causes an exception.
Unused, broken compatibility code in the ets module was removed. (Thanks to
Dialyzer.)
Eliminated 5 discrepancies found by Dialyzer in the Appmon application.
Own Id: OTP-5633

	The possibility to have comments following the list of tuples in a config file
(file specified with the -config flag) has been added.
Own Id: OTP-5661 Aux Id: seq10003

Kernel 2.10.9
Fixed Bugs and Malfunctions
	'erl -config sys.config' would fail to start if the sys.config file did
not contain any whitespace at all after the dot. (Thanks to Anders Nygren.)
Own Id: OTP-5543

	A bug regarding tcp sockets which results in hanging gen_tcp:send/2 has been
corrected. To encounter this bug you needed one process that read from a
socket, one that wrote more date than the reader read out so the sender got
suspended, and then the reader closed the socket. (Reported and diagnosed by
Alexey Shchepin.)
Corrected a bug in the (undocumented and unsupported) option {packet,http}
for gen_tcp. (Thanks to Claes Wikstrom and Luke Gorrie.)
Updated the documentation regarding the second argument to gen_tcp:recv/2,
the Length to receive.
Own Id: OTP-5582 Aux Id: seq9839

Improvements and New Features
	At startup, the Erlang resolver hosts table was used to look up the name of
the local (and possibly stand alone) host. This was incorrect. The configured
resolver method is now used for this purpose.
Own Id: OTP-5393

	The erlang:port_info/1 BIF is now documented. Minor corrections of the
documentation for erlang:port_info/2.
Added a note to the documentation of the math module that all functions are
not available on all platforms.
Added more information about the +c option in the erl man page in the ERTS
documentation.
Own Id: OTP-5555

	The new fun M:F/A construct creates a fun that refers to the latest version
of M:F/A. This syntax is meant to replace tuple funs {M,F} which have many
problems.
The new type test is_function(Fun,A) (which may be used
in guards) test whether Fun is a fun that can be applied with A arguments.
(Currently, Fun can also be a tuple fun.)
Own Id: OTP-5584

	According to the documentation global implements the equivalent of
register/2, which returns badarg if a process is already
registered. As it turns out there is no check in global if a process is
registered under more than one name. If some process is accidentally or by
design given several names, it is possible that the name registry becomes
inconsistent due to the way the resolve function is called when name clashes
are discovered (see register_name/3 in global).
In OTP R11B global will not allow the registration of a process under more
than one name. To help finding code where no will be returned, a Kernel
application variable, global_multi_name_action, is hereby introduced.
Depending on its value (info, warning, or error), messages are sent to
the error logger when global discovers that some process is given more than
one name. The variable only affects the node where it is defined.
Own Id: OTP-5603

Kernel 2.10.8
Improvements and New Features
	In case of a DNS lookup loop, inet_db:getbyname ends up building an infinite
list. This has been fixed.
Own Id: OTP-5449

	When doing an inet6 name lookup on an IPv4 address it was possible to get an
address on IPv4 format back. This has been corrected. Some other minor
inconsistencies regarding IPv6 name lookup have also been corrected.
Own Id: OTP-5576

Kernel 2.10.7
Fixed Bugs and Malfunctions
	Under certain circumstances the net_kernel could emit spurious nodedown
messages. This bug has been fixed.
Own Id: OTP-5396

	Removed description of the keep_zombies configuration parameter in the
kernel man page.
Own Id: OTP-5497

Improvements and New Features
	Eliminated Dialyzer warnings (caused by dead code) in the init and
prim_file modules.
Own Id: OTP-5496

	inet_config now also checks the environment variable ERL_INETRC for a
possible user configuration file. See the ERTS User's Guide for details.
Own Id: OTP-5512

Kernel 2.10.6
Improvements and New Features
	The c option for the +B flag has been introduced which makes it possible
to use Ctrl-C (Ctrl-Break on Windows) to interrupt the shell process rather
than to invoke the emulator break handler. All new +B options are also
supported on Windows (werl) as of now. Furthermore, Ctrl-C on Windows has now
been reserved for copying text (what Ctrl-Ins was used for previously).
Ctrl-Break should be used for break handling. Lastly, the documentation of the
system flags has been updated.
Own Id: OTP-5388

	The possibility to start the Erlang shell in parallel with the rest of the
system was reintroduced for backwards compatibility in STDLIB 1.13.1. The flag
to be used for this is now called async_shell_start and has been documented.
New shells started from the JCL menu are not synchronized with init anymore.
This makes it possible to start a new shell (e.g. for debugging purposes) even
if the initial shell has not come up.
Own Id: OTP-5406 Aux Id: OTP-5218

Kernel 2.10.5
Fixed Bugs and Malfunctions
	Documentation for erlang:binary_to_float/1 deleted. The BIF itself was
removed several releases ago.
Updated documentation for apply/2 and apply/3.
Own Id: OTP-5391

Improvements and New Features
	net_kernel:monitor_nodes/2 which takes a flag and an option list has been
added. By use of net_kernel:monitor_nodes/2 one can subscribe for
nodeup/nodedown messages with extra information. It is now possible to
monitor hidden nodes, and get nodedown reason. See the net_kernel
documentation for more information.
Own Id: OTP-5374

Kernel 2.10.4
Fixed Bugs and Malfunctions
	The application master for an application now terminates the application
faster, which reduces the risk for timeouts in other parts of the system.
Own Id: OTP-5363 Aux Id: EABln19084

	A BIF erlang:raise/3 has been added. See the manual for details. It is
intended for internal system programming only, advanced error handling.
Own Id: OTP-5376 Aux Id: OTP-5257

Kernel 2.10.3
Improvements and New Features
	With the -eval flag (erl -eval Expr), an arbitrary expression can be
evaluated during system initialization. This is documented in init.
Own Id: OTP-5260

	The unsupported and undocumented modules socks5, socks5_auth,
socks5_tcp, and socks5_udp have been removed.
Own Id: OTP-5266

Kernel 2.10.1
Fixed Bugs and Malfunctions
	The Pman 'trace shell' functionality was broken and has now been fixed.
Furthermore, Pman could not correctly find the pid of the active shell if more
than one shell process was running on the node. This has also been corrected.
Own Id: OTP-5191

	The documentation for the auth:open/1 function which no longer exists has
been removed. (Thanks to Miguel Barreiro.)
Own Id: OTP-5208

	Corrected the crc32/3 function in the undocumented and unsupported zlib
module.
Own Id: OTP-5227

Improvements and New Features
	You can now start Erlang with the -rsh flag which gives you a remote initial
shell instead of a local one. Example:
 erl -sname this_node -rsh other_node@other_host
Own Id: OTP-5210

	If /etc/hosts specified two hosts with the same IP address (on separate
lines), only the last host would be registered by inet_db during inet
configuration. This has been corrected now so that both aliases are registered
with the same IP address.
Own Id: OTP-5212 Aux Id: seq7128

	The documentation for BIFs that take I/O lists have been clarified. Those are
list_to_binary/1,
port_command/2, port_control/3.
Documentation for all is_* BIFs (such as is_atom/1) has
been added.
Removed the documentation for erlang:float_to_binary/2 which was removed
from the run-time system several releases ago.
Own Id: OTP-5222

 Introduction

Scope
The Kernel application has all the code necessary to run the Erlang runtime
system: file servers, code servers, and so on.
The Kernel application is the first application started. It is mandatory in the
sense that the minimal system based on Erlang/OTP consists of Kernel and STDLIB.
Kernel contains the following functional areas:
	Start, stop, supervision, configuration, and distribution of applications
	Code loading
	Logging
	Global name service
	Supervision of Erlang/OTP
	Communication with sockets
	Operating system interface

Prerequisites
It is assumed that the reader is familiar with the Erlang programming language.

 Socket Usage

Introduction
The socket interface (module) is basically a "thin" layer on top of the OS
socket interface. It is assumed that, unless you have special needs,
gen_[tcp|udp|sctp] should be sufficient (when they become available).
Note that just because we have a documented and described option, it does not
mean that the OS supports it. So its recommended that the user reads the
platform specific documentation for the option used.
Asynchronous calls
Some functions allow for an asynchronous call
(accept/2,
connect/3, recv/3,4,
recvfrom/3,4,
recvmsg/2,3,5,
send/3,4, sendmsg/3,4
and sendto/4,5). This is achieved by setting the
Timeout argument to nowait. For instance, if calling the
recv/3 function with Timeout set to nowait (i.e.
recv(Sock, 0, nowait)) when there is actually nothing to read, it will return
with:
	On Unix - {select,SelectInfo}
SelectInfo contains the SelectHandle.

	On Windows -
{completion,CompletionInfo}
CompletionInfo contains the
CompletionHandle.

When data eventually arrives a 'select' or 'completion' message will be sent to
the caller:
	On Unix - {'$socket', socket(), select, SelectHandle}
The caller can then make another call to the recv function and now expect
data.
Note that all other users are locked out until the 'current user' has called
the function (recv in this case). So either immediately call the function or
cancel.

	On Windows -
{'$socket', socket(), completion, {CompletionHandle, CompletionStatus}}
The CompletionStatus contains the result of the operation (read).

The user must also be prepared to receive an abort message:
	{'$socket', socket(), abort, Info}

If the operation is aborted for whatever reason (e.g. if the socket is closed
"by someone else"). The Info part contains the abort reason (in this case that
the socket has been closed Info = {SelectHandle, closed}).
The general form of the 'socket' message is:
	{'$socket', Sock :: socket(), Tag :: atom(), Info :: term()}

Where the format of Info is a function of Tag:
	Tag	Info value type
	select	select_handle()
	completion	{completion_handle(), CompletionStatus}
	abort	{select_handle(), Reason :: term()}

Table: socket message info value type
The select_handle() is the same as was returned in the
SelectInfo.
The completion_handle() is the same as was returned in the
CompletionInfo.
Socket Registry
The socket registry is how we keep track of sockets. There are two functions
that can be used for interaction: socket:number_of/0 and
socket:which_sockets/1.
In systems which create and delete many sockets dynamically, it (the socket
registry) could become a bottleneck. For such systems, there are a couple of
ways to control the use of the socket registry.
Firstly, its possible to effect the global default value when building OTP from
source with the two configure options:
--enable-esock-socket-registry (default) | --disable-esock-socket-registry
Second, its possible to effect the global default value by setting the
environment variable ESOCK_USE_SOCKET_REGISTRY (boolean) before starting the
erlang.
Third, its possible to alter the global default value in runtime by calling the
function use_registry/1.
And finally, its possible to override the global default when creating a socket
(with open/2 and open/4) by providing
the attribute use_registry (boolean) in the their Opts argument (which
effects that specific socket).
Examples
Completion asynchronous sendv
This is a simple example function that illustrates how to use
socket:sendv/3 with asynchronous (nowait) on completion systems (Windows).
Observe that this is not an illustration how to write a asynchronous
sendv function. Its just an example of what kind of messages and results
that can be expected. The example below basically (re-) implements:
socket:sendv(Sock, IOV, infinity).
completion_sendv(Sock, IOV) ->
 case socket:sendv(Sock, IOV, nowait) of
 ok -> % Complete success - We are done
 ok;
 {completion, {CompletionInfo, RestIOV0}} ->
 %% Some of IOV was sent, but the rest, RestIOV0, was scheduled
 case completion_sendv_await_result(Sock,
 CompletionInfo, RestIOV0) of
 ok -> % We done
 ok;
 {ok, RestIOV} ->
 completion_sendv(Sock, RestIOV);
 {error, Reason} ->
 {error, {Reason, RestIOV0}}
 end;
 {completion, CompletionInfo} ->
 %% Nothing was sent, IOV was scheduled
 case completion_sendv_await_result(Sock,
 CompletionInfo, IOV) of
 ok -> % We done
 ok;
 {ok, RestIOV} ->
 completion_sendv(Sock, RestIOV);
 {error, _} = ERROR ->
 ERROR
 end;
 {error, {_Reason, _RestIOV}} = ERROR ->
 %% Some part of the I/O vector was sent before an error occured
 ERROR;
 {error, _} = ERROR ->
 %% Note that
 ERROR
 end.

completion_sendv_await_result(Sock,
 {completion_info, _, Handle},
 IOV) ->
 receive
 {'$socket', Sock, abort, {Handle, Reason}} ->
 ?P("unexpected abort: "
 "~n Reason: ~p", [Reason]),
 {error, {abort, Reason}};

 {'$socket', Sock, completion, {Handle, {ok, Written}}} ->
 %% Partial send; calculate rest I/O vector
 case socket:rest_iov(Written, IOV) of
 [] -> % We are done
 ok;
 RestIOV ->
 {ok, RestIOV}
 end;

 {'$socket', Sock, completion, {Handle, CompletionStatus}} ->
 CompletionStatus

 end.
Completion asynchronous recv
This is a simple example function that illustrates how to use
socket:recv/3 with asynchronous (nowait) on completion systems (Windows).
Observe that this is not an illustration how to write a asynchronous
read function. Its just an example of what kind of messages and results
that can be expected. The example below basically (re-) implements:
socket:recv(Sock, Sz).
completion_recv(Sock, Sz) when (Sz > 0) ->
 completion_recv(Sock, Sz, []).

completion_recv(_Sock, 0, [Bin] = _Acc) ->
 {ok, Bin};
completion_recv(_Sock, 0, Acc) ->
 {ok, erlang:iolist_to_binary(lists:reverse(Acc))};
completion_recv(Sock, Sz, Acc) ->
 case socket:recv(Sock, Sz, nowait) of
 {ok, Bin} when (byte_size(Bin) =:= Sz) ->
 completion_recv(Sock, 0, [Bin|Acc]);
 {ok, Bin} ->
 completion_recv(Sock, Sz-byte_size(Bin), [Bin|Acc]);

	{completion, CompletionInfo} ->
 case completion_recv_await_result(Sock, CompletionInfo) of
 {ok, Bin} ->
 completion_recv(Sock, Sz-byte_size(Bin), [Bin|Acc]);
 {error, {_Reason, _Data}} = ERROR ->
 ERROR;
 {error, _Reason} = ERROR ->
 ERROR
	 end;

	{error, {_Reason, _Data}} = ERROR ->
	 ERROR;
	{error, _Reason} = ERROR ->
	 ERROR

 end.

completion_recv_await_result(Sock,
 {completion_info, _, Handle}) ->
 receive
	{'$socket', Sock, abort, {Handle, Reason}} ->
	 {error, {abort, Reason}};

	{'$socket', Sock, completion, {Handle, {ok, _Bin} = OK}} ->
 %% We "should" be done
	 OK;
	{'$socket', Sock, completion, {Handle, {more, Bin}}} ->
 %% There is more to read
	 {ok, Bin};

	{'$socket', Sock, completion, {Handle, CompletionStatus}} ->
	 CompletionStatus

 end.
Echo server (and client)
This example is intended to show how to create a simple (echo) server
(and client).
-module(example).

-export([client/2, client/3]).
-export([server/0, server/1, server/2]).

%% ==

%% === Client ===

client(#{family := Family} = ServerSockAddr, Msg)
 when is_list(Msg) orelse is_binary(Msg) ->
 {ok, Sock} = socket:open(Family, stream, default),
 ok = maybe_bind(Sock, Family),
 ok = socket:connect(Sock, ServerSockAddr),
 client_exchange(Sock, Msg);

client(ServerPort, Msg)
 when is_integer(ServerPort) andalso (ServerPort > 0) ->
 Family = inet, % Default
 Addr = get_local_addr(Family), % Pick an address
 SockAddr = #{family => Family,
		 addr => Addr,
		 port => ServerPort},
 client(SockAddr, Msg).

client(ServerPort, ServerAddr, Msg)
 when is_integer(ServerPort) andalso (ServerPort > 0) andalso
 is_tuple(ServerAddr) ->
 Family = which_family(ServerAddr),
 SockAddr = #{family => Family,
		 addr => ServerAddr,
		 port => ServerPort},
 client(SockAddr, Msg).

%% Send the message to the (echo) server and wait for the echo to come back.
client_exchange(Sock, Msg) when is_list(Msg) ->
 client_exchange(Sock, list_to_binary(Msg));
client_exchange(Sock, Msg) when is_binary(Msg) ->
 ok = socket:send(Sock, Msg, infinity),
 {ok, Msg} = socket:recv(Sock, byte_size(Msg), infinity),
 ok.

%% ==

%% === Server ===

server() ->
 %% Make system choose port (and address)
 server(0).

%% This function return the port and address that it actually uses,
%% in case server/0 or server/1 (with a port number) was used to start it.

server(#{family := Family, addr := Addr, port := _} = SockAddr) ->
 {ok, Sock} = socket:open(Family, stream, tcp),
 ok = socket:bind(Sock, SockAddr),
 ok = socket:listen(Sock),
 {ok, #{port := Port}} = socket:sockname(Sock),
 Acceptor = start_acceptor(Sock),
 {ok, {Port, Addr, Acceptor}};

server(Port) when is_integer(Port) ->
 Family = inet, % Default
 Addr = get_local_addr(Family), % Pick an address
 SockAddr = #{family => Family,
		 addr => Addr,
		 port => Port},
 server(SockAddr).

server(Port, Addr)
 when is_integer(Port) andalso (Port >= 0) andalso
 is_tuple(Addr) ->
 Family = which_family(Addr),
 SockAddr = #{family => Family,
		 addr => Addr,
		 port => Port},
 server(SockAddr).

%% --- Echo Server - Acceptor ---

start_acceptor(LSock) ->
 Self = self(),
 {Pid, MRef} = spawn_monitor(fun() -> acceptor_init(Self, LSock) end),
 receive
	{'DOWN', MRef, process, Pid, Info} ->
	 erlang:error({failed_starting_acceptor, Info});
	{Pid, started} ->
	 %% Transfer ownership
	 socket:setopt(LSock, otp, owner, Pid),
	 Pid ! {self(), continue},
	 erlang:demonitor(MRef),
	 Pid
 end.

acceptor_init(Parent, LSock) ->
 Parent ! {self(), started},
 receive
	{Parent, continue} ->
	 ok
 end,
 acceptor_loop(LSock).

acceptor_loop(LSock) ->
 case socket:accept(LSock, infinity) of
	{ok, ASock} ->
	 start_handler(ASock),
	 acceptor_loop(LSock);
	{error, Reason} ->
	 erlang:error({accept_failed, Reason})
 end.

%% --- Echo Server - Handler ---

start_handler(Sock) ->
 Self = self(),
 {Pid, MRef} = spawn_monitor(fun() -> handler_init(Self, Sock) end),
 receive
	{'DOWN', MRef, process, Pid, Info} ->
	 erlang:error({failed_starting_handler, Info});
	{Pid, started} ->
	 %% Transfer ownership
	 socket:setopt(Sock, otp, owner, Pid),
	 Pid ! {self(), continue},
	 erlang:demonitor(MRef),
	 Pid
 end.

handler_init(Parent, Sock) ->
 Parent ! {self(), started},
 receive
	{Parent, continue} ->
	 ok
 end,
 handler_loop(Sock, undefined).

%% No "ongoing" reads
%% The use of 'nowait' here is clearly *overkill* for this use case,
%% but is intended as an example of how to use it.
handler_loop(Sock, undefined) ->
 case socket:recv(Sock, 0, nowait) of
	{ok, Data} ->
	 echo(Sock, Data),
	 handler_loop(Sock, undefined);

	{select, SelectInfo} ->
	 handler_loop(Sock, SelectInfo);

	{completion, CompletionInfo} ->
	 handler_loop(Sock, CompletionInfo);

	{error, Reason} ->
	 erlang:error({recv_failed, Reason})
 end;

%% This is the standard (asyncronous) behaviour.
handler_loop(Sock, {select_info, recv, SelectHandle}) ->
 receive
	{'$socket', Sock, select, SelectHandle} ->
	 case socket:recv(Sock, 0, nowait) of
		{ok, Data} ->
		 echo(Sock, Data),
		 handler_loop(Sock, undefined);

		{select, NewSelectInfo} ->
		 handler_loop(Sock, NewSelectInfo);

		{error, Reason} ->
		 erlang:error({recv_failed, Reason})
	 end
 end;

%% This is the (asyncronous) behaviour on platforms that support 'completion',
%% currently only Windows.
handler_loop(Sock, {completion_info, recv, CompletionHandle}) ->
 receive
	{'$socket', Sock, completion, {CompletionHandle, CompletionStatus}} ->
	 case CompletionStatus of
		{ok, Data} ->
		 echo(Sock, Data),
		 handler_loop(Sock, undefined);
		{error, Reason} ->
		 erlang:error({recv_failed, Reason})
	 end
 end.

echo(Sock, Data) when is_binary(Data) ->
 ok = socket:send(Sock, Data, infinity),
 io:format("** ECHO **"
	 "~n~s~n", [binary_to_list(Data)]).

%% ==

%% === Utility functions ===

maybe_bind(Sock, Family) ->
 maybe_bind(Sock, Family, os:type()).

maybe_bind(Sock, Family, {win32, _}) ->
 Addr = get_local_addr(Family),
 SockAddr = #{family => Family,
 addr => Addr,
 port => 0},
 socket:bind(Sock, SockAddr);
maybe_bind(_Sock, _Family, _OS) ->
 ok.

%% The idea with this is extract a "usable" local address
%% that can be used even from *another* host. And doing
%% so using the net module.

get_local_addr(Family) ->
 Filter =
	fun(#{addr := #{family := Fam},
	 flags := Flags}) ->
		(Fam =:= Family) andalso (not lists:member(loopback, Flags));
	 (_) ->
		false
	end,
 {ok, [SockAddr|_]} = net:getifaddrs(Filter),
 #{addr := #{addr := Addr}} = SockAddr,
 Addr.

which_family(Addr) when is_tuple(Addr) andalso (tuple_size(Addr) =:= 4) ->
 inet;
which_family(Addr) when is_tuple(Addr) andalso (tuple_size(Addr) =:= 8) ->
 inet6.

Socket Options

Options for level otp:
	Option Name	Value Type	Set	Get	Other Requirements and comments
	assoc_id	integer()	no	yes	type = seqpacket, protocol = sctp, is an association
	debug	boolean()	yes	yes	none
	iow	boolean()	yes	yes	none
	controlling_process	pid()	yes	yes	none
	rcvbuf	default | pos_integer() | {pos_integer(), pos_ineteger()}	yes	yes	The tuple format is not allowed on Windows. 'default' only valid for set. The tuple form is only valid for type 'stream' and protocol 'tcp'.
	rcvctrlbuf	default | pos_integer()	yes	yes	default only valid for set
	sndctrlbuf	default | pos_integer()	yes	yes	default only valid for set
	fd	integer()	no	yes	none
	use_registry	boolean()	no	yes	the value is set when the socket is created, by a call to open/2 or open/4.

Table: option levels

Options for level socket:
	Option Name	Value Type	Set	Get	Other Requirements and comments
	acceptconn	boolean()	no	yes	none
	bindtodevice	string()	yes	yes	Before Linux 3.8, this socket option could be set, but not get. Only works for some socket types (e.g. inet). If empty value is set, the binding is removed.
	broadcast	boolean()	yes	yes	type = dgram
	bsp_state	map()	no	yes	Windows only
	debug	integer()	yes	yes	may require admin capability
	domain	domain()	no	yes	Not on FreeBSD (for instance)
	dontroute	boolean()	yes	yes	none
	exclusiveaddruse	boolean()	yes	yes	Windows only
	keepalive	boolean()	yes	yes	none
	linger	abort | linger()	yes	yes	none
	maxdg	integer()	no	yes	Windows only
	max_msg_size	integer()	no	yes	Windows only
	oobinline	boolean()	yes	yes	none
	peek_off	integer()	yes	yes	domain = local (unix). Currently disabled due to a possible infinite loop when calling recv([peek]) the second time.
	priority	integer()	yes	yes	none
	protocol	protocol()	no	yes	Not on (some) Darwin (for instance)
	rcvbuf	non_neg_integer()	yes	yes	none
	rcvlowat	non_neg_integer()	yes	yes	none
	rcvtimeo	timeval()	yes	yes	This option is not normally supported. OTP has to be explicitly built with the --enable-esock-rcvsndtime configure option for this to be available. Since our implementation is nonblocking, its unknown if and how this option works, or even if it may cause malfunctions. Therefore, we do not recommend setting this option. Instead, use the Timeout argument to, for instance, the recv/3 function.
	reuseaddr	boolean()	yes	yes	none
	reuseport	boolean()	yes	yes	domain = inet | inet6
	sndbuf	non_neg_integer()	yes	yes	none
	sndlowat	non_neg_integer()	yes	yes	not changeable on Linux
	sndtimeo	timeval()	yes	yes	This option is not normally supported. OTP has to be explicitly built with the --enable-esock-rcvsndtime configure option for this to be available. Since our implementation is nonblocking, its unknown if and how this option works, or even if it may cause malfunctions. Therefore, we do not recommend setting this option. Instead, use the Timeout argument to, for instance, the send/3 function.
	timestamp	boolean()	yes	yes	none
	type	type()	no	yes	none

Table: socket options

Options for level ip:
	Option Name	Value Type	Set	Get	Other Requirements and comments
	add_membership	ip_mreq()	yes	no	none
	add_source_membership	ip_mreq_source()	yes	no	none
	block_source	ip_mreq_source()	yes	no	none
	drop_membership	ip_mreq()	yes	no	none
	drop_source_membership	ip_mreq_source()	yes	no	none
	freebind	boolean()	yes	yes	none
	hdrincl	boolean()	yes	yes	type = raw
	minttl	integer()	yes	yes	type = raw
	msfilter	null | ip_msfilter()	yes	no	none
	mtu	integer()	no	yes	type = raw
	mtu_discover	ip_pmtudisc()	yes	yes	none
	multicast_all	boolean()	yes	yes	none
	multicast_if	any | ip4_address()	yes	yes	none
	multicast_loop	boolean()	yes	yes	none
	multicast_ttl	uint8()	yes	yes	none
	nodefrag	boolean()	yes	yes	type = raw
	pktinfo	boolean()	yes	yes	type = dgram
	recvdstaddr	boolean()	yes	yes	type = dgram
	recverr	boolean()	yes	yes	none
	recvif	boolean()	yes	yes	type = dgram | raw
	recvopts	boolean()	yes	yes	type =/= stream
	recvorigdstaddr	boolean()	yes	yes	none
	recvttl	boolean()	yes	yes	type =/= stream
	retopts	boolean()	yes	yes	type =/= stream
	router_alert	integer()	yes	yes	type = raw
	sendsrcaddr	boolean()	yes	yes	none
	tos	ip_tos()	yes	yes	some high-priority levels may require superuser capability
	transparent	boolean()	yes	yes	requires admin capability
	ttl	integer()	yes	yes	none
	unblock_source	ip_mreq_source()	yes	no	none

Table: ip options

Options for level ipv6:
	Option Name	Value Type	Set	Get	Other Requirements and comments
	addrform	inet	yes	no	allowed only for IPv6 sockets that are connected and bound to a v4-mapped-on-v6 address
	add_membership	ipv6_mreq()	yes	no	none
	authhdr	boolean()	yes	yes	type = dgram | raw, obsolete?
	drop_membership	ipv6_mreq()	yes	no	none
	dstopts	boolean()	yes	yes	type = dgram | raw, requires superuser privileges to update
	flowinfo	boolean()	yes	yes	type = dgram | raw, requires superuser privileges to update
	hoplimit	boolean()	yes	yes	type = dgram | raw. On some platforms (e.g. FreeBSD) is used to set in order to get hoplimit as a control message heeader. On others (e.g. Linux), recvhoplimit is set in order to get hoplimit.
	hopopts	boolean()	yes	yes	type = dgram | raw, requires superuser privileges to update
	mtu	boolean()	yes	yes	Get: Only after the socket has been connected
	mtu_discover	ipv6_pmtudisc()	yes	yes	none
	multicast_hops	default | uint8()	yes	yes	none
	multicast_if	integer()	yes	yes	type = dgram | raw
	multicast_loop	boolean()	yes	yes	none
	recverr	boolean()	yes	yes	none
	recvhoplimit	boolean()	yes	yes	type = dgram | raw. On some platforms (e.g. Linux), recvhoplimit is set in order to get hoplimit
	recvpktinfo | pktinfo	boolean()	yes	yes	type = dgram | raw. On some platforms (e.g. FreeBSD) is used to set in order to get hoplimit as a control message heeader. On others (e.g. Linux), recvhoplimit is set in order to get hoplimit.
	recvtclass	boolean()	yes	yes	type = dgram | raw. On some platforms is used to set (=true) in order to get the tclass control message heeader. On others, tclass is set in order to get tclass control message heeader.
	router_alert	integer()	yes	yes	type = raw
	rthdr	boolean()	yes	yes	type = dgram | raw, requires superuser privileges to update
	tclass	integer()	yes	yes	Set the traffic class associated with outgoing packets. RFC3542.
	unicast_hops	default | uint8()	yes	yes	none
	v6only	boolean()	yes	no	none

Table: ipv6 options

Options for level tcp:
	Option Name	Value Type	Set	Get	Other Requirements and comments
	congestion	string()	yes	yes	none
	cork	boolean()	yes	yes	'nopush' one some platforms (FreeBSD)
	keepcnt	integer()	yes	yes	On Windows (at least), it is illegal to set to a value greater than 255.
	keepidle	integer()	yes	yes	none
	keepintvl	integer()	yes	yes	none
	maxseg	integer()	yes	yes	Set not allowed on all platforms.
	nodelay	boolean()	yes	yes	none
	nopush	boolean()	yes	yes	'cork' on some platforms (Linux). On Darwin this has a different meaning than on, for instance, FreeBSD.

Table: tcp options

Options for level udp:
	Option Name	Value Type	Set	Get	Other Requirements and comments
	cork	boolean()	yes	yes	none

Table: udp options

Options for level sctp:
	Option Name	Value Type	Set	Get	Other Requirements and comments
	associnfo	sctp_assocparams()	yes	yes	none
	autoclose	non_neg_integer()	yes	yes	none
	disable_fragments	boolean()	yes	yes	none
	events	sctp_event_subscribe()	yes	no	none
	initmsg	sctp_initmsg()	yes	yes	none
	maxseg	non_neg_integer()	yes	yes	none
	nodelay	boolean()	yes	yes	none
	rtoinfo	sctp_rtoinfo()	yes	yes	none

Table: sctp options
Socket Configure Flags
There are a couple of configure flags, that can be used when (configure and)
building Erlang/OTP, which effect the functionality of the 'socket' nif.
Builtin Socket Support
Support for the builtin 'socket' (as a nif) can be explicitly enabled and
disabled:
--enable-esock (default) | --disable-esock
RCVTIMEO/SNDTIMEO socket options
Support for these (socket) options has to be explicitly enabled.
For details, see the specific option descriptions in the
socket option table):
--enable-esock-rcvsndtimeo | --disable-esock-rcvsndtimeo (default)
Extended Error Info
The use of Extended Error Info (currently only used on
Windows) can be explicitly enabled and disabled:
--enable-esock-extended-error-info (default) | --disable-esock-extended-error-info
Verbose Mutex Names
The 'socket' nif uses several mutex(s). Specifically, two for each
socket; One for read and one for write. These mutex(s) are named as:
esock.r[FD] & and esock.w[FD] (where FD is the file descriptor).
Example: esock.r[10].
This is not normally a problem, but in some very specific debug scenarious,
it can become a bottleneck.
Therefor these names can be simplified to just e.g. "esock.r".
(that is, all read mutex(s) have the same "name").
The use of these verbose mutex names (in the 'socket' nif) can be
explicitly enabled and disabled:
--enable-esock-verbose-mtx-names (default) | --disable-esock-verbose-mtx-names
Counter Size
The 'socket' nif uses counters for various things (diagnistics and statistics).
The size (in number of bits) of these counters can be explictly
configured:
--with-esock-counter-size=SZ
Where SZ is one of 16 | 24 | 32 | 48 | 64. Defaults to 64.
Socket Registry
The socket registry keeps track of 'socket' sockets.
This can be explicitly enabled and disabled:
--enable-esock-socket-registry (default) | --disable-esock-socket-registry
See socket registry for more info.

 Logging

Erlang provides a standard API for logging through Logger, which is part of
the Kernel application. Logger consists of the API for issuing log events, and a
customizable backend where log handlers, filters and formatters can be plugged
in.
By default, the Kernel application installs one log handler at system start.
This handler is named default. It receives and processes standard log events
produced by the Erlang runtime system, standard behaviours and different
Erlang/OTP applications. The log events are by default written to the terminal.
You can also configure the system so that the default handler prints log events
to a single file, or to a set of wrap logs via disk_log.
By configuration, you can also modify or disable the default handler, replace it
by a custom handler, and install additional handlers.
Overview
A log event consists of a log level, the message to be logged, and
metadata.
The Logger backend forwards log events from the API, first through a set of
primary filters, then through a set of secondary filters attached to each log
handler. The secondary filters are in the following named handler filters.
Each filter set consists of a log level check, followed by zero or more
filter functions.
The following figure shows a conceptual overview of Logger. The figure shows two
log handlers, but any number of handlers can be installed.

title: Conceptual Overview

flowchart TD
 DB[(Config DB)]
 API ---> ML[Module Level <hr> Global Level <hr> Global Filters]
 API -.Update configuration.-> DB
 ML -.-> DB
 ML ---> HL1[Handler Level <hr> Handler Filter]
 ML ---> HL2[Handler Level <hr> Handler Filter]
 HL1 ---> HC1[Handler Callback]
 HL2 ---> HC2[Handler Callback]
 HL1 -.-> DB
 HL2 -.-> DB
 subgraph Legend
 direction LR
 start1[] -->|Log event flow| stop1[]
 style start1 height:0px;
 style stop1 height:0px;
 start2[] -.->|Look up configuration| stop2[]
 style start2 height:0px;
 style stop2 height:0px;
 end
Log levels are expressed as atoms. Internally in Logger, the atoms are mapped to
integer values, and a log event passes the log level check if the integer value
of its log level is less than or equal to the currently configured log level.
That is, the check passes if the event is equally or more severe than the
configured level. See section Log Level for a
listing and description of all log levels.
The primary log level can be overridden by a log level configured per module.
This is to, for instance, allow more verbose logging from a specific part of the
system.
Filter functions can be used for more sophisticated filtering than the log level
check provides. A filter function can stop or pass a log event, based on any of
the event's contents. It can also modify all parts of the log event. See section
Filters for more details.
If a log event passes through all primary filters and all handler filters for a
specific handler, Logger forwards the event to the handler callback. The
handler formats and prints the event to its destination. See section
Handlers for more details.
Everything up to and including the call to the handler callbacks is executed on
the client process, that is, the process where the log event was issued. It is
up to the handler implementation if other processes are involved or not.
The handlers are called in sequence, and the order is not defined.
Logger API
The API for logging consists of a set of macros, and a set
of functions of the form logger:Level/1,2,3, which are all shortcuts for
logger:log(Level,Arg1[,Arg2[,Arg3]]).
The macros are defined in logger.hrl, which is included in a module with the
directive
-include_lib("kernel/include/logger.hrl").
The difference between using the macros and the exported functions is that
macros add location (originator) information to the metadata, and performs lazy
evaluation by wrapping the logger call in a case statement, so it is only
evaluated if the log level of the event passes the primary log level check.
Log Level
The log level indicates the severity of a event. In accordance with the Syslog
protocol, RFC 5424, eight log levels can
be specified. The following table lists all possible log levels by name (atom),
integer value, and description:
	Level	Integer	Description
	emergency	0	system is unusable
	alert	1	action must be taken immediately
	critical	2	critical conditions
	error	3	error conditions
	warning	4	warning conditions
	notice	5	normal but significant conditions
	info	6	informational messages
	debug	7	debug-level messages

Table: Log Levels
Notice that the integer value is only used internally in Logger. In the API, you
must always use the atom. To compare the severity of two log levels, use
logger:compare_levels/2.
Log Message
The log message contains the information to be logged. The message can consist
of a format string and arguments (given as two separate parameters in the Logger
API), a string or a report.
Example, format string and arguments:
logger:error("The file does not exist: ~ts",[Filename])
Example, string:
logger:notice("Something strange happened!")
A report, which is either a map or a key-value list, is the preferred way to log
using Logger as it makes it possible for different backends to filter and format
the log event as it needs to.
Example, report:
?LOG_ERROR(#{ user => joe, filename => Filename, reason => enoent })
Reports can be accompanied by a report callback specified in the log event's
metadata. The report callback is a convenience
function that the formatter can use to convert
the report to a format string and arguments, or directly to a string. The
formatter can also use its own conversion function, if no callback is provided,
or if a customized formatting is desired.
The report callback must be a fun with one or two arguments. If it takes one
argument, this is the report itself, and the fun returns a format string and
arguments:
fun((logger:report()) -> {io:format(),[term()]})
If it takes two arguments, the first is the report, and the second is a map
containing extra data that allows direct conversion to a string:
fun((logger:report(),logger:report_cb_config()) -> unicode:chardata())
The fun must obey the depth and chars_limit parameters provided in the
second argument, as the formatter cannot do anything useful of these parameters
with the returned string. The extra data also contains a field named
single_line, indicating if the printed log message may contain line breaks or
not. This variant is used when the formatting of the report depends on the size
or single line parameters.
Example, report, and metadata with report callback:
logger:debug(#{got => connection_request, id => Id, state => State},
 #{report_cb => fun(R) -> {"~p",[R]} end})
The log message can also be provided through a fun for lazy evaluation. The fun
is only evaluated if the primary log level check passes, and is therefore
recommended if it is expensive to generate the message. The lazy fun must return
a string, a report, or a tuple with format string and arguments.
Metadata
Metadata contains additional data associated with a log message. Logger inserts
some metadata fields by default, and the client can add custom metadata in three
different ways:
	Set primary metadata - Primary metadata applies is the base metadata given
to all log events. At startup it can be set using the kernel configuration
parameter logger_metadata. At run-time it can
be set and updated using logger:set_primary_config/1 and
logger:update_primary_config/1 respectively.

	Set process metadata - Process metadata is set and updated with
logger:set_process_metadata/1 and logger:update_process_metadata/1,
respectively. This metadata applies to the process on which these calls are
made, and Logger adds the metadata to all log events issued on that process.

	Add metadata to a specific log event - Metadata associated with one
specific log event is given as the last parameter to the log macro or Logger
API function when the event is issued. For example:
?LOG_ERROR("Connection closed",#{context => server})

See the description of the logger:metadata/0 type for information about
which default keys Logger inserts, and how the different metadata maps are
merged.
Filters
Filters can be primary, or attached to a specific handler. Logger calls the
primary filters first, and if they all pass, it calls the handler filters for
each handler. Logger calls the handler callback only if all filters attached to
the handler in question also pass.
A filter is defined as:
{FilterFun, Extra}
where FilterFun is a function of arity 2, and Extra is any term. When
applying the filter, Logger calls the function with the log event as the first
argument, and the value of Extra as the second argument. See
logger:filter/0 for type definitions.
The filter function can return stop, ignore or the (possibly modified) log
event.
If stop is returned, the log event is immediately discarded. If the filter is
primary, no handler filters or callbacks are called. If it is a handler filter,
the corresponding handler callback is not called, but the log event is forwarded
to filters attached to the next handler, if any.
If the log event is returned, the next filter function is called with the
returned value as the first argument. That is, if a filter function modifies the
log event, the next filter function receives the modified event. The value
returned from the last filter function is the value that the handler callback
receives.
If the filter function returns ignore, it means that it did not recognize the
log event, and thus leaves to other filters to decide the event's destiny.
The configuration option filter_default specifies the behaviour if all filter
functions return ignore, or if no filters exist. filter_default is by
default set to log, meaning that if all existing filters ignore a log event,
Logger forwards the event to the handler callback. If filter_default is set to
stop, Logger discards such events.
Primary filters are added with logger:add_primary_filter/2 and removed with
logger:remove_primary_filter/1. They can also be added at system start via the
Kernel configuration parameter logger.
Handler filters are added with logger:add_handler_filter/3 and removed with
logger:remove_handler_filter/2. They can also be specified directly in the
configuration when adding a handler with logger:add_handler/3 or via the
Kernel configuration parameter logger.
To see which filters are currently installed in the system, use
logger:get_config/0, or logger:get_primary_config/0 and
logger:get_handler_config/1. Filters are listed in the order they are applied,
that is, the first filter in the list is applied first, and so on.
For convenience, the following built-in filters exist:
	logger_filters:domain/2 - Provides a way of filtering log events based
on a domain field in Metadata.

	logger_filters:level/2 - Provides a way of filtering log events based on
the log level.

	logger_filters:progress/2 - Stops or allows progress reports from
supervisor and application_controller.

	logger_filters:remote_gl/2 - Stops or allows log events originating from
a process that has its group leader on a remote node.

Handlers
A handler is defined as a module exporting at least the following callback
function:
log(LogEvent, Config) -> term()
This function is called when a log event has passed through all primary filters,
and all handler filters attached to the handler in question. The function call
is executed on the client process, and it is up to the handler implementation if
other processes are involved or not.
Logger allows adding multiple instances of a handler callback. That is, if a
callback module implementation allows it, you can add multiple handler instances
using the same callback module. The different instances are identified by unique
handler identities.
In addition to the mandatory callback function log/2, a handler module can
export the optional callback functions adding_handler/1, changing_config/3,
filter_config/1, and removing_handler/1. See logger_handler for more
information about these function.
The following built-in handlers exist:
	logger_std_h - This is the default handler used by OTP. Multiple
instances can be started, and each instance will write log events to a given
destination, terminal or file.

	logger_disk_log_h - This handler behaves much like logger_std_h,
except it uses disk_log as its destination.

	error_logger - This handler is provided for
backwards compatibility only. It is not started by default, but will be
automatically started the first time an error_logger event handler is added
with
error_logger:add_report_handler/1,2.
The old error_logger event handlers in STDLIB and SASL still exist, but they
are not added by Erlang/OTP 21.0 or later.

Formatters
A formatter can be used by the handler implementation to do the final formatting
of a log event, before printing to the handler's destination. The handler
callback receives the formatter information as part of the handler
configuration, which is passed as the second argument to
HModule:log/2.
The formatter information consist of a formatter module, FModule and its
configuration, FConfig. FModule must export the following function, which
can be called by the handler:
format(LogEvent,FConfig)
	-> FormattedLogEntry
The formatter information for a handler is set as a part of its configuration
when the handler is added. It can also be changed during runtime with
logger:set_handler_config(HandlerId,formatter,{Module,FConfig}) ,
which overwrites the current formatter information, or with
logger:update_formatter_config/2,3,
which only modifies the formatter configuration.
If the formatter module exports the optional callback function
check_config(FConfig), Logger calls
this function when the formatter information is set or modified, to verify the
validity of the formatter configuration.
If no formatter information is specified for a handler, Logger uses
logger_formatter as default. See the logger_formatter manual page for more
information about this module.
Configuration
At system start, Logger is configured through Kernel configuration parameters.
The parameters that apply to Logger are described in section
Kernel Configuration Parameters.
Examples are found in section
Configuration Examples.
During runtime, Logger configuration is changed via API functions. See section
Configuration API Functions in the logger
manual page.
Primary Logger Configuration
Logger API functions that apply to the primary Logger configuration are:
	get_primary_config/0
	set_primary_config/1,2
	update_primary_config/1
	add_primary_filter/2
	remove_primary_filter/1

The primary Logger configuration is a map with the following keys:
	level =logger:level/0 | all | none - Specifies
the primary log level, that is, log event that are equally or more severe than
this level, are forwarded to the primary filters. Less severe log events are
immediately discarded.
See section Log Level for a listing and
description of possible log levels.
The initial value of this option is set by the Kernel configuration parameter
logger_level. It is changed during runtime
with
logger:set_primary_config(level,Level).
Defaults to notice.

	filters = [{FilterId,Filter}] - Specifies the primary filters.
	FilterId = logger:filter_id/0
	Filter = logger:filter/0

The initial value of this option is set by the Kernel configuration parameter
logger. During runtime, primary
filters are added and removed with logger:add_primary_filter/2 and
logger:remove_primary_filter/1, respectively.
See section Filters for more detailed
information.
Defaults to [].

	filter_default = log | stop - Specifies what happens to a log event if
all filters return ignore, or if no filters exist.
See section Filters for more information about
how this option is used.
Defaults to log.

	metadata =metadata() - The primary metadata
to be used for all log calls.
See section Metadata for more information about
how this option is used.
Defaults to #{}.

Handler Configuration
Logger API functions that apply to handler configuration are:
	get_handler_config/0,1
	set_handler_config/2,3
	update_handler_config/2,3
	add_handler_filter/3
	remove_handler_filter/2
	update_formatter_config/2,3

The configuration for a handler is a map with the following keys:
	id = logger_handler:id/0 - Automatically inserted by Logger. The
value is the same as the HandlerId specified when adding the handler, and it
cannot be changed.

	module = module() - Automatically inserted by Logger. The value is the
same as the Module specified when adding the handler, and it cannot be
changed.

	level = logger:level/0 | all | none - Specifies the log level for
the handler, that is, log events that are equally or more severe than this
level, are forwarded to the handler filters for this handler.
See section Log Level for a listing and
description of possible log levels.
The log level is specified when adding the handler, or changed during runtime
with, for instance,
logger:set_handler_config(HandlerId,level,Level).
Defaults to all.

	filters = [{FilterId,Filter}] - Specifies the handler filters.
	FilterId = logger:filter_id/0
	Filter = logger:filter/0

Handler filters are specified when adding the handler, or added or removed
during runtime with logger:add_handler_filter/3 and
logger:remove_handler_filter/2, respectively.
See Filters for more detailed information.
Defaults to [].

	filter_default = log | stop - Specifies what happens to a log event if
all filters return ignore, or if no filters exist.
See section Filters for more information about
how this option is used.
Defaults to log.

	formatter = {FormatterModule,FormatterConfig} - Specifies a formatter
that the handler can use for converting the log event term to a printable
string.
	FormatterModule = module()
	FormatterConfig = logger:formatter_config/0

The formatter information is specified when adding the handler. The formatter
configuration can be changed during runtime with
logger:update_formatter_config/2,3, or
the complete formatter information can be overwritten with, for instance,
logger:set_handler_config/3.
See section Formatters for more detailed
information.
Defaults to {logger_formatter,DefaultFormatterConfig}. See the
logger_formatter manual page for information about this formatter and its
default configuration.

	config = term() - Handler specific configuration, that is, configuration
data related to a specific handler implementation.
The configuration for the built-in handlers is described in the
logger_std_h and logger_disk_log_h manual
pages.

Notice that level and filters are obeyed by Logger itself before forwarding
the log events to each handler, while formatter and all handler specific
options are left to the handler implementation.
Kernel Configuration Parameters
The following Kernel configuration parameters apply to Logger:
	logger = [Config] - Specifies the configuration
for Logger, except the primary log level, which is specified
with logger_level, and the compatibility
with SASL Error Logging, which is specified with
logger_sasl_compatible.
With this parameter, you can modify or disable the default handler, add custom
handlers and primary logger filters, set log levels per module, and modify the
proxy configuration.
Config is any (zero or more) of the following:
	{handler, default, undefined} - Disables the default handler. This
allows another application to add its own default handler.
Only one entry of this type is allowed.

	{handler, HandlerId, Module, HandlerConfig} - If HandlerId is
default, then this entry modifies the default handler, equivalent to
calling
logger:remove_handler(default)
followed by
logger:add_handler(default, Module, HandlerConfig)
For all other values of HandlerId, this entry adds a new handler,
equivalent to calling
logger:add_handler(HandlerId, Module, HandlerConfig)
Multiple entries of this type are allowed.

	{filters, FilterDefault, [Filter]} - Adds the specified primary
filters.
	FilterDefault = log | stop

	Filter = {FilterId, {FilterFun, FilterConfig}}

Equivalent to calling
logger:add_primary_filter(FilterId, {FilterFun, FilterConfig})
for each Filter.
FilterDefault specifies the behaviour if all primary filters return
ignore, see section Filters.
Only one entry of this type is allowed.

	{module_level, Level, [Module]} - Sets module log level for the given
modules. Equivalent to calling
logger:set_module_level(Module, Level)
for each Module.
Multiple entries of this type are allowed.

	{proxy, ProxyConfig} - Sets the proxy configuration, equivalent to
calling
logger:set_proxy_config(ProxyConfig)
Only one entry of this type is allowed.

See section Configuration Examples for
examples using the logger parameter for system configuration.

	logger_metadata = map() - Specifies the primary
metadata. See the kernel(6) manual page for
more information about this parameter.

	logger_level = Level - Specifies the primary log
level. See the kernel(6) manual page for more
information about this parameter.

	logger_sasl_compatible = true | false -
Specifies Logger's compatibility with
SASL Error Logging. See the
kernel(6) manual page for more
information about this parameter.

Configuration Examples
The value of the Kernel configuration parameter logger is a list of tuples. It
is possible to write the term on the command line when starting an erlang node,
but as the term grows, a better approach is to use the system configuration
file. See the config(4) manual page for more information about
this file.
Each of the following examples shows a simple system configuration file that
configures Logger according to the description.
Modify the default handler to print to a file instead of
standard_io:
[{kernel,
 [{logger,
 [{handler, default, logger_std_h, % {handler, HandlerId, Module,
 #{config => #{file => "log/erlang.log"}}} % Config}
]}]}].
Modify the default handler to print each log event as a single line:
[{kernel,
 [{logger,
 [{handler, default, logger_std_h,
 #{formatter => {logger_formatter, #{single_line => true}}}}
]}]}].
Modify the default handler to print the pid of the logging process for each log
event:
[{kernel,
 [{logger,
 [{handler, default, logger_std_h,
 #{formatter => {logger_formatter,
 #{template => [time," ",pid," ",msg,"\n"]}}}}
]}]}].
Modify the default handler to only print errors and more severe log events to
"log/erlang.log", and add another handler to print all log events to
"log/debug.log".
[{kernel,
 [{logger,
 [{handler, default, logger_std_h,
 #{level => error,
 config => #{file => "log/erlang.log"}}},
 {handler, info, logger_std_h,
 #{level => debug,
 config => #{file => "log/debug.log"}}}
]}]}].
Backwards Compatibility with error_logger
Logger provides backwards compatibility with error_logger in the following
ways:
	API for Logging - The error_logger API still exists, but should only be
used by legacy code. It will be removed in a later release.
Calls to error_logger:error_report/1,2,
error_logger:error_msg/1,2, and corresponding
functions for warning and info messages, are all forwarded to Logger as calls
to logger:log(Level,Report,Metadata).
Level = error | warning | info and is taken from the function name. Report
contains the actual log message, and Metadata contains additional
information which can be used for creating backwards compatible events for
legacy error_logger event handlers, see section
Legacy Event Handlers.

	Output Format - To get log events on the same format as produced by
error_logger_tty_h and error_logger_file_h, use the default formatter,
logger_formatter, with configuration parameter legacy_header set to
true. This is the default configuration of the default handler started by
Kernel.

	Default Format of Log Events from OTP - By default, all log events
originating from within OTP, except the former so called "SASL reports", look
the same as before.

	 SASL Reports - By SASL reports we mean supervisor
reports, crash reports and progress reports.
Prior to Erlang/OTP 21.0, these reports were only logged when the SASL
application was running, and they were printed through SASL's own event
handlers sasl_report_tty_h and sasl_report_file_h.
The destination of these log events was configured by
SASL configuration parameters.
Due to the specific event handlers, the output format slightly differed from
other log events.
As of Erlang/OTP 21.0, the concept of SASL reports is removed, meaning that
the default behaviour is as follows:
	Supervisor reports, crash reports, and progress reports are no longer
connected to the SASL application.
	Supervisor reports and crash reports are issued as error level log events,
and are logged through the default handler started by Kernel.
	Progress reports are issued as info level log events, and since the
default primary log level is notice, these are not logged by default. To
enable printing of progress reports, set the
primary log level to info.
	The output format is the same for all log events.

If the old behaviour is preferred, the Kernel configuration parameter
logger_sasl_compatible can be set to
true. The
SASL configuration parameters
can then be used as before, and the SASL reports will only be printed if the
SASL application is running, through a second log handler named sasl.
All SASL reports have a metadata field domain which is set to [otp,sasl].
This field can be used by filters to stop or allow the log events.
See section SASL User's Guide for more
information about the old SASL error logging functionality.

	 Legacy Event Handlers - To use event
handlers written for error_logger, just add your event handler
with
error_logger:add_report_handler/1,2.
This automatically starts the error logger event manager, and adds
error_logger as a handler to Logger, with the following configuration:
#{level => info,
 filter_default => log,
 filters => []}.
Note
This handler ignores events that do not originate from the error_logger
API, or from within OTP. This means that if your code uses the Logger API
for logging, then your log events will be discarded by this handler.
The handler is not overload protected.

Error Handling
Logger does, to a certain extent, check its input data before forwarding a log
event to filters and handlers. It does, however, not evaluate report callbacks,
or check the validity of format strings and arguments. This means that all
filters and handlers must be careful when formatting the data of a log event,
making sure that it does not crash due to bad input data or faulty callbacks.
If a filter or handler still crashes, Logger will remove the filter or handler
in question from the configuration, and print a short error message to the
terminal. A debug event containing the crash reason and other details is also
issued.
See section Log Message for more information
about report callbacks and valid forms of log messages.
Example: Add a handler to log info events to file
When starting an Erlang node, the default behaviour is that all log events on
level notice or more severe, are logged to the terminal via the default
handler. To also log info events, you can either change the primary log level to
info:
1> logger:set_primary_config(level, info).
ok
or set the level for one or a few modules only:
2> logger:set_module_level(mymodule, info).
ok
This allows info events to pass through to the default handler, and be printed
to the terminal as well. If there are many info events, it can be useful to
print these to a file instead.
First, set the log level of the default handler to notice, preventing it from
printing info events to the terminal:
3> logger:set_handler_config(default, level, notice).
ok
Then, add a new handler which prints to file. You can use the handler module
logger_std_h, and configure it to log to file:
4> Config = #{config => #{file => "./info.log"}, level => info}.
#{config => #{file => "./info.log"},level => info}
5> logger:add_handler(myhandler, logger_std_h, Config).
ok
Since filter_default defaults to log, this handler now receives all log
events. If you want info events only in the file, you must add a filter to stop
all non-info events. The built-in filter logger_filters:level/2 can do this:
6> logger:add_handler_filter(myhandler, stop_non_info,
 {fun logger_filters:level/2, {stop, neq, info}}).
ok
See section Filters for more information about the
filters and the filter_default configuration parameter.
Example: Implement a handler
logger_handler describes the callback functions that can be implemented for
a Logger handler.
A handler callback module must export:
	log(Log, Config)

It can optionally also export some, or all, of the following:
	adding_handler(Config)
	removing_handler(Config)
	changing_config(SetOrUpdate, OldConfig, NewConfig)
	filter_config(Config)

When a handler is added, by for example a call to
logger:add_handler(Id, HModule, Config), Logger
first calls HModule:adding_handler(Config). If this function returns
{ok,Config1}, Logger writes Config1 to the configuration database, and the
logger:add_handler/3 call returns. After this, the handler is installed and
must be ready to receive log events as calls to HModule:log/2.
A handler can be removed by calling
logger:remove_handler(Id). Logger calls
HModule:removing_handler(Config), and removes the handler's configuration from
the configuration database.
When logger:set_handler_config/2,3 or
logger:update_handler_config/2,3 is
called, Logger calls
HModule:changing_config(SetOrUpdate, OldConfig, NewConfig). If this function
returns {ok,NewConfig1}, Logger writes NewConfig1 to the configuration
database.
When logger:get_config/0 or
logger:get_handler_config/0,1 is called,
Logger calls HModule:filter_config(Config). This function must return the
handler configuration where internal data is removed.
A simple handler that prints to the terminal can be implemented as follows:
-module(myhandler1).
-export([log/2]).

log(LogEvent, #{formatter := {FModule, FConfig}}) ->
 io:put_chars(FModule:format(LogEvent, FConfig)).
Notice that the above handler does not have any overload protection, and all log
events are printed directly from the client process.
For information and examples of overload protection, please refer to section
Protecting the Handler from Overload,
and the implementation of logger_std_h and
logger_disk_log_h .
The following is a simpler example of a handler which logs to a file through one
single process:
-module(myhandler2).
-export([adding_handler/1, removing_handler/1, log/2]).
-export([init/1, handle_call/3, handle_cast/2, terminate/2]).

adding_handler(Config) ->
 MyConfig = maps:get(config,Config,#{file => "myhandler2.log"}),
 {ok, Pid} = gen_server:start(?MODULE, MyConfig, []),
 {ok, Config#{config => MyConfig#{pid => Pid}}}.

removing_handler(#{config := #{pid := Pid}}) ->
 gen_server:stop(Pid).

log(LogEvent,#{config := #{pid := Pid}} = Config) ->
 gen_server:cast(Pid, {log, LogEvent, Config}).

init(#{file := File}) ->
 {ok, Fd} = file:open(File, [append, {encoding, utf8}]),
 {ok, #{file => File, fd => Fd}}.

handle_call(_, _, State) ->
 {reply, {error, bad_request}, State}.

handle_cast({log, LogEvent, Config}, #{fd := Fd} = State) ->
 do_log(Fd, LogEvent, Config),
 {noreply, State}.

terminate(_Reason, #{fd := Fd}) ->
 _ = file:close(Fd),
 ok.

do_log(Fd, LogEvent, #{formatter := {FModule, FConfig}}) ->
 String = FModule:format(LogEvent, FConfig),
 io:put_chars(Fd, String).

Protecting the Handler from Overload
The default handlers, logger_std_h and logger_disk_log_h, feature
multiple overload protection mechanisms, which make it possible for the
handlers to survive, and stay responsive, during periods of high load
(when huge numbers of incoming log requests must be handled).
The mechanisms are as follows:
	message queue length: the handler process tracks
its message queue length and takes actions depending on its size, from turning
on a sync mode to dropping messages.
	limit the number of logs emitted:
the handlers will handle a maximum number of log events per time unit,
defaulting to 500 per second.
	terminate an overloaded handler:
a handler can be terminated and restarted automatically if it exceeds message
queue length or memory thresholds - this is disabled by default.

These mechanisms are described in more detail in the following sections.
Message Queue Length
The handler process keeps track of the length of its message queue and takes
some form of action when the current length exceeds a configurable threshold.
The purpose is to keep the handler in, or to as quickly as possible get the
handler into, a state where it can keep up with the pace of incoming log events.
The memory use of the handler must never grow larger and larger, since that will
eventually cause the handler to crash. These three thresholds, with associated
actions, exist:
	sync_mode_qlen - As long as the length of the message queue is lower
than this value, all log events are handled asynchronously. This means that
the client process sending the log event, by calling a log function in the
Logger API, does not wait for a response from
the handler but continues executing immediately after the event is sent. It is
not affected by the time it takes the handler to print the event to the log
device. If the message queue grows larger than this value, the handler starts
handling log events synchronously instead, meaning that the client process
sending the event must wait for a response. When the handler reduces the
message queue to a level below the sync_mode_qlen threshold, asynchronous
operation is resumed. The switch from asynchronous to synchronous mode can
slow down the logging tempo of one, or a few, busy senders, but cannot protect
the handler sufficiently in a situation of many busy concurrent senders.
Defaults to 10 messages.

	drop_mode_qlen - When the message queue grows larger than this
threshold, the handler switches to a mode in which it drops all new events
that senders want to log. Dropping an event in this mode means that the call
to the log function never results in a message being sent to the handler, but
the function returns without taking any action. The handler keeps logging the
events that are already in its message queue, and when the length of the
message queue is reduced to a level below the threshold, synchronous or
asynchronous mode is resumed. Notice that when the handler activates or
deactivates drop mode, information about it is printed in the log.
The emitted log message is on the :notice level and looks like this:
Handler :default switched from :sync to :drop mode
Defaults to 200 messages.

	flush_qlen - If the length of the message queue grows larger than this
threshold, a flush (delete) operation takes place. To flush events, the
handler discards the messages in the message queue by receiving them in a loop
without logging. Client processes waiting for a response from a synchronous
log request receive a reply from the handler indicating that the request is
dropped. The handler process increases its priority during the flush loop to
make sure that no new events are received during the operation. Notice that
after the flush operation is performed, the handler prints information in the
log about how many events have been deleted.
The emitted log message is on the :notice level and looks like this:
Handler :default flushed 1070 log events
Defaults to 1000 messages.

For the overload protection algorithm to work properly, it is required that:
sync_mode_qlen =< drop_mode_qlen =< flush_qlen
and that:
drop_mode_qlen > 1
To disable certain modes, do the following:
	If sync_mode_qlen is set to 0, all log events are handled synchronously.
That is, asynchronous logging is disabled.
	If sync_mode_qlen is set to the same value as drop_mode_qlen, synchronous
mode is disabled. That is, the handler always runs in asynchronous mode,
unless dropping or flushing is invoked.
	If drop_mode_qlen is set to the same value as flush_qlen, drop mode is
disabled and can never occur.

During high load scenarios, the length of the handler message queue rarely grows
in a linear and predictable way. Instead, whenever the handler process is
scheduled in, it can have an almost arbitrary number of messages waiting in the
message queue. It is for this reason that the overload protection mechanism is
focused on acting quickly, and quite drastically, such as immediately dropping
or flushing messages, when a large queue length is detected.
The values of the previously listed thresholds can be specified by the user.
This way, a handler can be configured to, for example, not drop or flush
messages unless the message queue length of the handler process grows extremely
large. Notice that large amounts of memory can be required for the node under
such circumstances. Another example of user configuration is when, for
performance reasons, the client processes must never be blocked by synchronous
log requests. It is possible, perhaps, that dropping or flushing events is still
acceptable, since it does not affect the performance of the client processes
sending the log events.
A configuration example:
logger:add_handler(my_standard_h, logger_std_h,
 #{config => #{file => "./system_info.log",
 sync_mode_qlen => 100,
 drop_mode_qlen => 1000,
 flush_qlen => 2000}}).
Controlling Bursts of Log Requests
Large bursts of log events - many events received by the handler under a short
period of time - can potentially cause problems, such as:
	Log files grow very large, very quickly.
	Circular logs wrap too quickly so that important data is overwritten.
	Write buffers grow large, which slows down file sync operations.

Note that these examples apply to file-based logging. If you're logging to
the console the protections discussed below should be safe to disable or
tweak, as long as your system can handle the load of them.
For this reason, both built-in handlers offer the possibility to specify the
maximum number of events to be handled within a certain time frame. With this
burst control feature enabled, the handler can avoid choking the log with
massive amounts of printouts. The configuration parameters are:
	burst_limit_enable - Value true enables burst control and false
disables it.
Defaults to true.

	burst_limit_max_count - This is the maximum number of events to handle
within a burst_limit_window_time time frame. After the limit is reached,
successive events are dropped until the end of the time frame.
Defaults to 500 events.

	burst_limit_window_time - See the previous description of
burst_limit_max_count.
Defaults to 1000 milliseconds.

A configuration example:
logger:add_handler(my_disk_log_h, logger_disk_log_h,
 #{config => #{file => "./my_disk_log",
 burst_limit_enable => true,
 burst_limit_max_count => 20,
 burst_limit_window_time => 500}}).
Terminating an Overloaded Handler
It is possible that a handler, even if it can successfully manage peaks of high
load without crashing, can build up a large message queue, or use a large amount
of memory. The overload protection mechanism includes an automatic termination
and restart feature for the purpose of guaranteeing that a handler does not grow
out of bounds. The feature is configured with the following parameters:
	overload_kill_enable - Value true enables the feature and false
disables it.
Defaults to false.

	overload_kill_qlen - This is the maximum allowed queue length. If the
message queue grows larger than this, the handler process is terminated.
Defaults to 20000 messages.

	overload_kill_mem_size - This is the maximum memory size that the
handler process is allowed to use. If the handler grows larger than this, the
process is terminated.
Defaults to 3000000 bytes.

	overload_kill_restart_after - If the handler is terminated, it restarts
automatically after a delay specified in milliseconds. The value infinity
prevents restarts.
Defaults to 5000 milliseconds.

If the handler process is terminated because of overload, it prints information
about it in the log. It also prints information about when a restart has taken
place, and the handler is back in action.
Note
The sizes of the log events affect the memory needs of the handler. For
information about how to limit the size of log events, see the
logger_formatter manual page.
Logger Proxy
The Logger proxy is an Erlang process which is part of the Kernel application's
supervision tree. During startup, the proxy process registers itself as the
system_logger, meaning that log events produced by the emulator are sent to
this process.
When a log event is issued on a process which has its group leader on a remote
node, Logger automatically forwards the log event to the group leader's node. To
achieve this, it first sends the log event as an Erlang message from the
original client process to the proxy on the local node, and the proxy in turn
forwards the event to the proxy on the remote node.
When receiving a log event, either from the emulator or from a remote node, the
proxy calls the Logger API to log the event.
The proxy process is overload protected in the same way as described in section
Protecting the Handler from Overload,
but with the following default values:
 #{sync_mode_qlen => 500,
 drop_mode_qlen => 1000,
 flush_qlen => 5000,
 burst_limit_enable => false,
 overload_kill_enable => false}
For log events from the emulator, synchronous message passing mode is not
applicable, since all messages are passed asynchronously by the emulator. Drop
mode is achieved by setting the system_logger to undefined, forcing the
emulator to drop events until it is set back to the proxy pid again.
The proxy uses erlang:send_nosuspend/2 when sending log events to a remote
node. If the message could not be sent without suspending the sender, it is
dropped. This is to avoid blocking the proxy process.
See Also
disk_log, erlang, error_logger, logger, logger_disk_log_h,
logger_filters, logger_formatter, logger_std_h,
sasl(6)

 Logging Cookbook

Using and especially configuring Logger can be difficult at times as there are
many different options that can be changed and often more than one way to
achieve the same result. This User's Guide tries to help by giving many
different examples of how you can use logger.
For more examples of practical use-cases of using Logger, Fred Hebert's blog
post
Erlang/OTP 21's new logger is
a great starting point.
Note
If you find that some common Logger usage is missing from this guide, please
open a pull request on github with the suggested addition
Get Logger information
Print the primary Logger configurations.
1> logger:i(primary).
Primary configuration:
 Level: notice
 Filter Default: log
 Filters:
 (none)
It is also possible to fetch the configuration using
logger:get_primary_config().
See also
	logger:i()
	Configuration in the Logging User's Guide

Print the configuration of all handlers.
2> logger:i(handlers).
Handler configuration:
 Id: default
 Module: logger_std_h
 Level: all
 Formatter:
 Module: logger_formatter
 Config:
 legacy_header: true
 single_line: false
 Filter Default: stop
 Filters:
 Id: remote_gl
 Fun: fun logger_filters:remote_gl/2
 Arg: stop
 Id: domain
 Fun: fun logger_filters:domain/2
 Arg: {log,super,[otp,sasl]}
 Id: no_domain
 Fun: fun logger_filters:domain/2
 Arg: {log,undefined,[]}
 Handler Config:
 burst_limit_enable: true
 burst_limit_max_count: 500
 burst_limit_window_time: 1000
 drop_mode_qlen: 200
 filesync_repeat_interval: no_repeat
 flush_qlen: 1000
 overload_kill_enable: false
 overload_kill_mem_size: 3000000
 overload_kill_qlen: 20000
 overload_kill_restart_after: 5000
 sync_mode_qlen: 10
 type: standard_io
You can also print the configuration of a specific handler using
logger:i(HandlerName), or fetch the configuration using
logger:get_handler_config(), or
logger:get_handler_config(HandlerName) for a
specific handler.
See also
	logger:i()
	Configuration in the Logging User's Guide

Configure the Logger
Where did my progress reports go?
In OTP-21 the default primary log level is notice. The means that many log
messages are by default not printed. This includes the progress reports of
supervisors. In order to get progress reports you need to raise the primary log
level to info
$ erl -kernel logger_level info
=PROGRESS REPORT==== 4-Nov-2019::16:33:11.742069 ===
 application: kernel
 started_at: nonode@nohost
=PROGRESS REPORT==== 4-Nov-2019::16:33:11.746546 ===
 application: stdlib
 started_at: nonode@nohost
Eshell V10.5.3 (abort with ^G)
1>
Configure Logger formatter
In order to fit better into your existing logging infrastructure Logger can
format its logging messages any way you want to. Either you can use the built-in
formatter, or you can build your own.
Single line configuration
Since single line logging is the default of the built-in formatter you only have
to provide the empty map as the configuration. The example below uses the
sys.config to change the formatter configuration.
$ cat sys.config
[{kernel,
 [{logger,
 [{handler, default, logger_std_h,
 #{ formatter => {logger_formatter, #{ }}}}]}]}].
$ erl -config sys
Eshell V10.5.1 (abort with ^G)
1> logger:error("Oh noes, an error").
1962-10-03T11:07:47.466763-04:00 error: Oh noes, an error
However, if you just want to change it for the current session you can also do
that.
1> logger:set_handler_config(default, formatter, {logger_formatter, #{}}).
ok
2> logger:error("Oh noes, another error").
1962-10-04T15:34:02.648713-04:00 error: Oh noes, another error
See also
	logger_formatter's Configuration
	Formatters in the Logging User's Guide
	logger:set_handler_config/3

Add file and line number to log entries
You can change what is printed to the log by using the formatter template:
$ cat sys.config
[{kernel,
 [{logger,
 [{handler, default, logger_std_h,
 #{ formatter => {logger_formatter,
 #{ template => [time," ", file,":",line," ",level,": ",msg,"\n"] }}}}]}]}].
$ erl -config sys
Eshell V10.5.1 (abort with ^G)
1> logger:error("Oh noes, more errors",#{ file => "shell.erl", line => 1 }).
1962-10-05T07:37:44.104241+02:00 shell.erl:1 error: Oh noes, more errors
Note that file and line have to be added in the metadata by the caller of
logger:log/3 as otherwise Logger will not know from where it was called. The
file and line number are automatically added if you use the ?LOG_ERROR macros
in kernel/include/logger.hrl.
See also
	logger_formatter's Configuration
	logger_formatter's Template
	Logger Macros
	Metadata in the Logging User's Guide

Configuring handlers
Print logs to a file
Instead of printing the logs to stdout we print them to a rotating file log.
$ cat sys.config
[{kernel,
 [{logger,
 [{handler, default, logger_std_h,
 #{ config => #{ file => "log/erlang.log",
 max_no_bytes => 4096,
 max_no_files => 5},
 formatter => {logger_formatter, #{}}}}]}]}].
$ erl -config sys
Eshell V10.5.1 (abort with ^G)
1> logger:error("Oh noes, even more errors").
ok
2> erlang:halt().
$ cat log/erlang.log
2019-10-07T11:47:16.837958+02:00 error: Oh noes, even more errors
See also
	logger_std_h
	Handlers in the Logging User's Guide

Debug only handler
Add a handler that prints debug log events to a file, while the default
handler prints only up to notice level events to standard out.
$ cat sys.config
[{kernel,
 [{logger_level, all},
 {logger,
 [{handler, default, logger_std_h,
 #{ level => notice }},
 {handler, debug, logger_std_h,
 #{ filters => [{debug,{fun logger_filters:level/2, {stop, neq, debug}}}],
 config => #{ file => "log/debug.log" } }}
]}]}].
$ erl -config sys
Eshell V10.5.1 (abort with ^G)
1> logger:error("Oh noes, even more errors").
=ERROR REPORT==== 9-Oct-2019::14:40:54.784162 ===
Oh noes, even more errors
ok
2> logger:debug("A debug event").
ok
3> erlang:halt().
$ cat log/debug.log
2019-10-09T14:41:03.680541+02:00 debug: A debug event
In the configuration above we first raise the primary log level to max in order
for the debug log events to get to the handlers. Then we configure the default
handler to only log notice and below events, the default log level for a handler
is all. Then the debug handler is configured with a filter to stop any log
message that is not a debug level message.
It is also possible to do the same changes in an already running system using
the logger module. Then you do like this:
$ erl
1> logger:set_handler_config(default, level, notice).
ok
2> logger:add_handler(debug, logger_std_h, #{
 filters => [{debug,{fun logger_filters:level/2, {stop, neq, debug}}}],
 config => #{ file => "log/debug.log" } }).
ok
3> logger:set_primary_config(level, all).
ok
It is important that you do not raise the primary log level before adjusting the
default handler's level as otherwise your standard out may be flooded by debug
log messages.
See also
	logger_std_h
	Filters in the Logging User's Guide

Logging
What to log and how
The simplest way to log something is by using the Logger macros and give a
report to the macro. For example if you want to log an error:
?LOG_ERROR(#{ what => http_error, status => 418, src => ClientIP, dst => ServerIP }).
This will print the following in the default log:
=ERROR REPORT==== 10-Oct-2019::12:13:10.089073 ===
 dst: {8,8,4,4}
 src: {8,8,8,8}
 status: 418
 what: http_error
or the below if you use a single line formatter:
2019-10-10T12:14:11.921843+02:00 error: dst: {8,8,4,4}, src: {8,8,8,8}, status: 418, what: http_error
See also
	Log Message in the Logging User's Guide

Report call-backs and printing of events
If you want to do structured logging, but still want to have some control of how
the final log message is formatted you can give a report_cb as part of the
metadata with your log event.
ReportCB = fun(#{ what := What, status := Status, src := Src, dst := Dst }) ->
 {ok, #hostent{ h_name = SrcName }} = inet:gethostbyaddr(Src),
 {ok, #hostent{ h_name = DstName }} = inet:gethostbyaddr(Dst),
 {"What: ~p~nStatus: ~p~nSrc: ~s (~s)~nDst: ~s (~s)~n",
 [What, Status, inet:ntoa(Src), SrcName, inet:ntoa(Dst), DstName]}
 end,
?LOG_ERROR(#{ what => http_error, status => 418, src => ClientIP, dst => ServerIP },
 #{ report_cb => ReportCB }).
This will print the following:
=ERROR REPORT==== 10-Oct-2019::13:29:02.230863 ===
What: http_error
Status: 418
Src: 8.8.8.8 (dns.google)
Dst: 192.121.151.106 (erlang.org)
Note that the order that things are printed have changed, and also I added a
reverse-dns lookup of the IP address. This will not print as nicely when using a
single line formatter, however you can also use a report_cb fun with 2 arguments
where the second argument is the formatting options.
See also
	Log Message in the Logging User's Guide
	Logger Report Callbacks

Filters
Filters are used to remove or change log events before they reach the handlers.
Process filters
If we only want debug messages from a specific process it is possible to do this
with a filter like this:
%% Initial setup to use a filter for the level filter instead of the primary level
PrimaryLevel = maps:get(level, logger:get_primary_config()),
ok = logger:add_primary_filter(primary_level,
 {fun logger_filters:level/2, {log, gteq, PrimaryLevel}}),
logger:set_primary_config(filter_default, stop),
logger:set_primary_config(level, all),

%% Test that things work as they should
logger:notice("Notice should be logged"),
logger:debug("Should not be logged"),

%% Add the filter to allow PidToLog to send debug events
PidToLog = self(),
PidFilter = fun(LogEvent, _) when PidToLog =:= self() -> LogEvent;
 (_LogEvent, _) -> ignore end,
ok = logger:add_primary_filter(pid, {PidFilter,[]}),
logger:debug("Debug should be logged").
There is a bit of setup needed to allow filters to decide whether a specific
process should be allowed to log. This is because the default primary log level
is notice and it is enforced before the primary filters. So in order for the pid
filter to be useful we have to raise the primary log level to all and then add
a level filter that only lets certain messages at or greater than notice
through. When the setup is done, it is simple to add a filter that allows a
certain pid through.
Note that doing the primary log level filtering through a filter and not through
the level is quite a lot more expensive, so make sure to test that your system
can handle the extra load before you enable it on a production node.
See also
	Filters in the Logging User's Guide
	logger_filters:level/2
	logger:set_primary_config/2

Domains
Domains are used to specify which subsystem a certain log event originates from.
The default handler will by default only log events with the domain [otp] or
without a domain. If you would like to include SSL log events into the default
handler log you could do this:
1> logger:add_handler_filter(default,ssl_domain,
 {fun logger_filters:domain/2,{log,sub,[otp,ssl]}}).
2> application:ensure_all_started(ssl).
{ok,[crypto,asn1,public_key,ssl]}
3> ssl:connect("www.erlang.org",443,[{log_level,debug}]).
%% lots of text
See also
	Filters in the Logging User's Guide
	logger_filters:domain/2
	logger:set_primary_config/2

 EEP-48: Documentation storage and format

This User's Guide describes the documentation storage format initially described
in EEP-48.
By standardizing how API documentation is stored, it will be possible to write
tools that work across languages.
To fetch the EEP-48 documentation for a module, use code:get_doc/1.
To render the EEP-48 documentation for an Erlang module, use
shell_docs:render/2.
The "Docs" storage
To look for documentation for a module named example, a tool should:
Look for example.beam in the code path, parse the BEAM file, and retrieve the
Docs chunk. If the chunk is not available, it should look for "example.beam"
in the code path and find the doc/chunks/example.chunk file in the application
that defines the example module. If no .chunk file exists,
documentation is not available.
The choice of using a chunk or the filesystem is completely up to the language
or library. In both cases, the documentation can be added or removed at any
moment by stripping the Docs chunk (using beam_lib) or by removing the
doc/chunks directory.
For example, languages such as Elixir and LFE attach the Docs chunk at
compilation time, which can be controlled via a compiler flag, while
other languages might want to generate the documentation separate from
the compilation of the source code.
The "Docs" format
In both storages, the documentation is written in the exactly same format: an
Erlang term serialized to binary via
term_to_binary/1. The term can be optionally
compressed when serialized. It must follow the type specification below:
{docs_v1,
 Anno :: erl_anno:anno(),
 BeamLanguage :: atom(),
 Format :: binary(),
 ModuleDoc :: #{DocLanguage := DocValue} | none | hidden,
 Metadata :: map(),
 Docs ::
 [{{Kind, Name, Arity},
 Anno :: erl_anno:anno(),
 Signature :: [binary()],
 Doc :: #{DocLanguage := DocValue} | none | hidden,
 Metadata :: map()
 }]} when DocLanguage :: binary(),
 DocValue :: binary() | term()
where in the root tuple we have:
	Anno - annotation (line, column, file) of the definition itself (see
erl_anno)

	BeamLanguage - an atom representing the language, for example: erlang,
elixir, lfe, alpaca, and so on

	Format - the mime type of the documentation, such as <<"text/markdown">>
or <<"application/erlang+html">>. For details of the format used by Erlang
see the EEP-48 Chapter in EDoc's User's
Guide.

	ModuleDoc - a map with the documentation language as key, such as
<<"en">> or <<"pt_BR">>, and the documentation as a binary value. It can
be atom none if no documentation exists or the atom hidden if
documentation has been explicitly disabled for this entry.

	Metadata - a map of atom keys with any term as value. This can be used to
add annotations like the authors of a module, deprecated, or anything else
a language or documentation tool finds relevant.

	Docs - a list of documentation for other entities (such as functions and
types) in the module.

For each entry in Docs, we have:
	{Kind, Name, Arity} - the kind, name and arity identifying the function,
callback, type, and so on. The official entities are: function, type, and
callback. Other languages will add their own. For instance, Elixir and LFE
might add macro.

	Anno - annotation (line, column, file) of the module documentation
(see erl_anno).

	Signature - the signature of the entity. It is is a list of binaries.
Each entry represents a binary in the signature that can be joined with
whitespace or newline. For example,
[<<"binary_to_atom(Binary, Encoding)">>, <<"when is_binary(Binary)">>] can
be rendered as a single line or two lines. It exists exclusively for
exhibition purposes.

	Doc - a map with the documentation language as key, such as <<"en">> or
<<"pt_BR">>, and the documentation as a value. The documentation can either be
a binary or any Erlang term, both described by Format. If it is an Erlang
term, then Format must be <<"application/erlang+SUFFIX">>, such as
<<"application/erlang+html">> when the documentation is an Erlang
representation of an HTML document. Doc can also be atom none
if no documentation exists or the atom hidden if documentation has been
explicitly disabled for this entry.

	Metadata - a map of atom keys with any term as value.

This shared format is the heart of the EEP as it is what effectively allows
cross-language collaboration.
The Metadata field exists to allow languages, tools, and libraries to add custom
information to each entry. This EEP documents the following metadata keys:
	authors := [binary()] - a list of authors as binaries.

	behaviours := [module()] - a list of the behaviours implemented by
this module.

	cross_references := [module() | {module(), {Kind, Name, Arity}}] - a
list of modules or module entries that can be used as cross references when
generating documentation.

	deprecated := binary() - when present, it means the current entry is
deprecated with a binary that represents the reason for deprecation and a
recommendation to replace the deprecated code.

	group := binary() - when present, it allows tooling, such as shell
autocompletion and documentation generators, to list all entries within the
same group together, often using the group name as an indicator. It currently
only applies to doc entries, not for module metadata.

	since := binary() - a binary representing the version such entry was
added, such as <<"1.3.0">> or <<"20.0">>.

	source_annos := [erl_anno:anno()] - a list of source code locations.
You may either store one for each clause or only for the first clause.

	source_path := file:filename() - the absolute location of the source file for
this module. Applies only to the module metadata.

Any key may be added to Metadata at any time. Keys that are frequently used by
the community can be standardized in future versions.
See Also
erl_anno, shell_docs,
EEP-48 Chapter in EDoc's User's Guide,
code:get_doc/1

 app

Application resource file.
Description
The application resource file specifies the resources an application uses, and
how the application is started. There must always be one application resource
file called Application.app for each application Application in the system.
The file is read by the application controller when an application is
loaded/started. It is also used by the functions in systools, for example when
generating start scripts.
File Syntax
The application resource file is to be called Application.app, where
Application is the application name. The file is to be located in directory
ebin for the application.
The file must contain a single Erlang term, which is called an application
specification:
{application, Application,
 [{description, Description},
 {id, Id},
 {vsn, Vsn},
 {modules, Modules},
 {maxP, MaxP},
 {maxT, MaxT},
 {registered, Names},
 {included_applications, Apps},
 {optional_applications, Apps},
 {applications, Apps},
 {env, Env},
 {mod, Start},
 {start_phases, Phases},
 {runtime_dependencies, RTDeps}]}.

 Value Default
 ----- -------
Application atom() -
Description string() ""
Id string() ""
Vsn string() ""
Modules [Module] []
MaxP int() infinity
MaxT int() infinity
Names [Name] []
Apps [App] []
Env [{Par,Val}] []
Start {Module,StartArgs} []
Phases [{Phase,PhaseArgs}] undefined
RTDeps [ApplicationVersion] []

Module = Name = App = Par = Phase = atom()
Val = StartArgs = PhaseArgs = term()
ApplicationVersion = string()
	Application - Application name.

For the application controller, all keys are optional. The respective default
values are used for any omitted keys.
The functions in systools require more information. If they are used, the
following keys are mandatory:
	description
	vsn
	modules
	registered
	applications

The other keys are ignored by systools.
	description - A one-line description of the application.

	id - Product identification, or similar.

	vsn - Version of the application.

	modules - All modules introduced by this application. systools uses
this list when generating start scripts and tar files. A module can only be
defined in one application.

	maxP - Deprecated - is ignored
Maximum number of processes allowed in the application.

	maxT - Maximum time, in milliseconds, that the application is allowed to
run. After the specified time, the application terminates automatically.

	registered - All names of registered processes started in this
application. systools uses this list to detect name clashes between
different applications.

	included_applications - All applications included by this application.
When this application is started, all included applications are loaded
automatically, but not started, by the application controller. It is assumed
that the top-most supervisor of the included application is started by a
supervisor of this application.

	applications - All applications that must be started before this
application. If an application is also listed in optional_applications, then
the application is not required to exist (but if it exists, it is also
guaranteed to be started before this one).
systools uses this list to generate correct start scripts. Defaults to the
empty list, but notice that all applications have dependencies to (at least)
Kernel and STDLIB.

	optional_applications - A list of applications that are optional. Note
if you want an optional dependency to be automatically started before the
current application whenever it is available, it must be listed on both
applications and optional_applications.

	env - Configuration parameters used by the application. The value of a
configuration parameter is retrieved by calling application:get_env/1,2. The
values in the application resource file can be overridden by values in a
configuration file (see config(4)) or by command-line flags
(see erts:erl(1)).

	mod - Specifies the application callback module and a start argument,
see application.
Key mod is necessary for an application implemented as a supervision tree,
otherwise the application controller does not know how to start it. mod can
be omitted for applications without processes, typically code libraries, for
example, STDLIB.

	start_phases - A list of start phases and corresponding start arguments
for the application. If this key is present, the application master, in
addition to the usual call to Module:start/2, also calls
Module:start_phase(Phase,Type,PhaseArgs) for each start phase defined by key
start_phases. Only after this extended start procedure,
application:start(Application) returns.
Start phases can be used to synchronize startup of an application and its
included applications. In this case, key mod must be specified as follows:
{mod, {application_starter,[Module,StartArgs]}}
The application master then calls Module:start/2 for the primary
application, followed by calls to Module:start_phase/3 for each start phase
(as defined for the primary application), both for the primary application and
for each of its included applications, for which the start phase is defined.
This implies that for an included application, the set of start phases must be
a subset of the set of phases defined for the primary application. For more
information, see Applications in OTP Design Principles.

	runtime_dependencies - A list of application
versions that the application depends on. An example of such an application
version is "kernel-3.0". Application versions specified as runtime
dependencies are minimum requirements. That is, a larger application version
than the one specified in the dependency satisfies the requirement. For
information about how to compare application versions, see section
Versions in the System Principles User's Guide.
Notice that the application version specifies a source code version. One more,
indirect, requirement is that the installed binary application of the
specified version is built so that it is compatible with the rest of the
system.
Some dependencies can only be required in specific runtime scenarios. When
such optional dependencies exist, these are specified and documented in the
corresponding "App" documentation of the specific application.

See Also
application, systools

 config

Configuration file.
Description
A configuration file contains values for configuration parameters for the
applications in the system. The erl command-line argument
-config Name tells the system to use data in the
system configuration file Name.config.
The erl command-line argument -configfd works
the same way as the -config option but specifies a file descriptor to read
configuration data from instead of a file.
The configuration data from configuration files and file descriptors are read in
the same order as they are given on the command line. For example,
erl -config a -configfd 3 -config b -configfd 4 would cause the system to read
configuration data in the following order a.config, file descriptor 3,
b.config, and file descriptor 4. If a configuration parameter is specified
more than once in the given files and file descriptors, the last one overrides
the previous ones.
Configuration parameter values in a configuration file or file descriptor
override the values in the application resource files (see app(4)).
The values in the configuration file are always overridden by command-line flags
(see erts:erl(1)).
The value of a configuration parameter is retrieved by calling
application:get_env/1,2.
File Syntax
The configuration file is to be called Name.config, where Name is any name.
File .config contains a single Erlang term and has the following syntax:
[{Application1, [{Par11, Val11}, ...]},
 ...
 {ApplicationN, [{ParN1, ValN1}, ...]}].
	Application = atom() - Application name.

	Par = atom() - Name of a configuration parameter.

	Val = term() - Value of a configuration parameter.

sys.config
When starting Erlang in embedded mode, it is assumed that exactly one system
configuration file is used, named sys.config. This file is to be located in
$ROOT/releases/Vsn, where $ROOT is the Erlang/OTP root installation
directory and Vsn is the release version.
Release handling relies on this assumption. When installing a new release
version, the new sys.config is read and used to update the application's
configurations.
This means that specifying another .config file, or more .config files,
leads to an inconsistent update of application configurations. There is,
however, a way to point out other config files from a sys.config. How to do
this is described in the next section.
Including Files from sys.config and -configfd Configurations
There is a way to include other configuration files from a sys.config file and
from a configuration that comes from a file descriptor that has been pointed out
with the -configfd command-line argument.
The syntax for including files can be described by the
Erlang type language like this:
[{Application, [{Par, Val}]} | IncludeFile].
	IncludeFile = string() - Name of a .config file. The extension
.config can be omitted. It is recommended to use absolute paths. If a
relative path is used in a sys.config, IncludeFile is searched, first,
relative to the sys.config directory, then relative to the current working
directory of the emulator. If a relative path is used in a -configfd
configuration, IncludeFile is searched, first, relative to the dictionary
containing the boot script (see also the
-boot command-line argument) for the emulator,
then relative to the current working directory of the emulator. This makes it
possible to use sys.config for pointing out other .config files in a
release or in a node started manually using -config or -configfd with the
same result whatever the current working directory is.

When traversing the contents of a sys.config or a -configfd configuration
and a filename is encountered, its contents are read and merged with the result
so far. When an application configuration tuple {Application, Env} is found,
it is merged with the result so far. Merging means that new parameters are added
and existing parameter values are overwritten.
Example:
sys.config:

["/home/user/myconfig1"
 {myapp,[{par1,val1},{par2,val2}]},
 "/home/user/myconfig2"].

myconfig1.config:

[{myapp,[{par0,val0},{par1,val0},{par2,val0}]}].

myconfig2.config:

[{myapp,[{par2,val3},{par3,val4}]}].
This yields the following environment for myapp:
[{par0,val0},{par1,val1},{par2,val3},{par3,val4}]
The run-time system will abort before staring up if an include file specified in
sys.config or a -configfd configuration does not exist, or is erroneous.
However, installing a new release version will not fail if there is an error
while loading an include file, but an error message is returned and the
erroneous file is ignored.
See Also
app(4), erts:erl(1),
OTP Design Principles

application behaviour

Generic OTP application functions
In OTP, application denotes a component implementing some specific
functionality, that can be started and stopped as a unit, and that can be reused
in other systems. This module interacts with application controller, a process
started at every Erlang runtime system. This module contains functions for
controlling applications (for example, starting and stopping applications), and
functions to access information about applications (for example, configuration
parameters).
An application is defined by an application specification. The specification
is normally located in an application resource file named Application.app,
where Application is the application name. For details about the application
specification, see app.
This module can also be viewed as a behaviour for an application implemented
according to the OTP design principles as a supervision tree. The definition of
how to start and stop the tree is to be located in an application callback
module, exporting a predefined set of functions.
For details about applications and behaviours, see
OTP Design Principles.
See Also
OTP Design Principles,
kernel, app

 Summary

 Types

 application_opt()

 The built-in options available to an application.

 application_spec()

 An application specification.

 restart_type()

 The type of restart behaviour an application should have.

 start_type()

 The reason for the application to be started on the current node.

 tuple_of(T)

 A tuple where the elements are of type T.

 Callbacks: Callback Module

 config_change(Changed, New, Removed)

 This function is called by an application after a code replacement, if the
configuration parameters have changed.

 prep_stop(State)

 This function is called when an application is about to be stopped, before
shutting down the processes of the application.

 start(Application, Type)

 This function is called whenever an application is started using start/1,2,
and is to start the processes of the application. If the application is
structured according to the OTP design principles as a supervision tree, this
means starting the top supervisor of the tree.

 start_phase(Phase, StartType, PhaseArgs)

 Starts an application with included applications, when synchronization is needed
between processes in the different applications during startup.

 stop(Application)

 This function is called whenever an application has stopped. It is intended to
be the opposite of Module:start/2 and is to do any necessary
cleaning up. The return value is ignored.

 Functions

 ensure_all_started(Applications)

 Equivalent to ensure_all_started(Applications, temporary, serial).

 ensure_all_started(Applications, Type)

 Equivalent to ensure_all_started(Applications, Type, serial).

 ensure_all_started(Applications, Type, Mode)

 Applications is either an an atom/0 or a list of atom/0 representing
multiple applications.

 ensure_started(Application)

 Equivalent to start(Application) except it returns ok for
already started applications.

 ensure_started(Application, Type)

 Equivalent to start(Application, Type) except it returns ok for
already started applications.

 get_all_env()

 Equivalent to get_all_env(application:get_application()).

 get_all_env(Application)

 Returns the configuration parameters and their values for Application.

 get_all_key()

 Equivalent to get_all_key(application:get_application()).

 get_all_key(Application)

 Returns the application specification keys and their values for Application.
If the argument is omitted, it defaults to the application of the calling
process.

 get_application()

 Equivalent to get_application(self()).

 get_application(PidOrModule)

 Returns the name of the application to which the process Pid or the module
Module belongs.

 get_env(Par)

 Equivalent to get_env(application:get_application(), Par).

 get_env(Application, Par)

 Returns the value of configuration parameter Par for Application.

 get_env(Application, Par, Def)

 Works like get_env/2 but returns value Def when configuration parameter
Par does not exist.

 get_key(Key)

 Equivalent to get_key(application:get_application(), Key).

 get_key(Application, Key)

 Returns the value of the application specification key Key for Application.

 get_supervisor(Application)

 Returns the Pid of the supervisor running at the root of Application.

 load(AppDescr)

 Equivalent to load(AppDescr, []).

 load(AppDescr, Distributed)

 Loads the application specification for an application into the application
controller. It also loads the application specifications for any included
applications. Notice that the function does not load the Erlang object code.

 loaded_applications()

 Returns a list with information about the applications, and included
applications, which are loaded using load/1,2. Application is the
application name. Description and Vsn are the values of their description
and vsn application specification keys, respectively.

 permit(Application, Permission)

 Changes the permission for Application to run at the current node. The
application must be loaded using load/1,2 for the function to have effect.

 set_env(Config)

 Equivalent to set_env(Config, []).

 set_env(Config, Opts)

 Sets the configuration Config for multiple applications.

 set_env(Application, Par, Val)

 Equivalent to set_env(Application, Par, Val, []).

 set_env(Application, Par, Val, Opts)

 Sets the value of configuration parameter Par for Application.

 start(Application)

 Equivalent to start(Application, temporary).

 start(Application, Type)

 Starts Application. If it is not loaded, the application controller first
loads it using load/1. It ensures that any included applications
are loaded, but does not start them. That is assumed to be taken care of in the
code for Application.

 start_type()

 This function is intended to be called by a process belonging to an application,
when the application is started, to determine the start type, which is
StartType or local.

 stop(Application)

 Stops Application. The application master calls
Module:prep_stop/1, if such a function is defined, and then
tells the top supervisor of the application to shut down (see supervisor).

 takeover(Application, Type)

 Takes over the distributed application Application, which executes at another
node Node.

 unload(Application)

 Unloads the application specification for Application from the application
controller. It also unloads the application specifications for any included
applications. Notice that the function does not purge the Erlang object code.

 unset_env(Application, Par)

 Equivalent to unset_env(Application, Par, []).

 unset_env(Application, Par, Opts)

 Removes the configuration parameter Par and its value for Application.

 which_applications()

 Equivalent to which_applications(5000).

 which_applications(Timeout)

 Returns a list with information about the applications that are currently
running.

 Types

 application_opt()

 (not exported)

 -type application_opt() ::
 {description, Description :: string()} |
 {vsn, Vsn :: string()} |
 {id, Id :: string()} |
 {modules, [Module :: module()]} |
 {registered, Names :: [Name :: atom()]} |
 {applications, [Application :: atom()]} |
 {included_applications, [Application :: atom()]} |
 {env, [{Par :: atom(), Val :: term()}]} |
 {start_phases, [{Phase :: atom(), PhaseArgs :: term()}] | undefined} |
 {maxT, MaxT :: timeout()} |
 {maxP, MaxP :: pos_integer() | infinity} |
 {mod, Start :: {Module :: module(), StartArgs :: term()}}.

The built-in options available to an application.
See app for descriptions of the options.

 application_spec()

 (not exported)

 -type application_spec() :: {application, Application :: atom(), AppSpecKeys :: [application_opt()]}.

An application specification.

 restart_type()

 -type restart_type() :: permanent | transient | temporary.

The type of restart behaviour an application should have.

 start_type()

 -type start_type() :: normal | {takeover, Node :: node()} | {failover, Node :: node()}.

The reason for the application to be started on the current node.

 tuple_of(T)

 (not exported)

 -type tuple_of(_T) :: tuple().

A tuple where the elements are of type T.

 Callbacks: Callback Module

 config_change(Changed, New, Removed)

 (optional)

 -callback config_change(Changed, New, Removed) -> ok
 when
 Changed :: [{Par, Val}],
 New :: [{Par, Val}],
 Removed :: [Par],
 Par :: atom(),
 Val :: term().

This function is called by an application after a code replacement, if the
configuration parameters have changed.
Changed is a list of parameter-value tuples including all configuration
parameters with changed values.
New is a list of parameter-value tuples including all added configuration
parameters.
Removed is a list of all removed parameters.

 prep_stop(State)

 (optional)

 -callback prep_stop(State) -> NewState when State :: term(), NewState :: term().

This function is called when an application is about to be stopped, before
shutting down the processes of the application.
State is the state returned from Module:start/2, or [] if
no state was returned. NewState is any term and is passed to
Module:stop/1.
The function is optional. If it is not defined, the processes are terminated and
then Module:stop(State) is called.

 start(Application, Type)

 -callback start(StartType :: start_type(), StartArgs :: term()) ->
 {ok, pid()} | {ok, pid(), State :: term()} | {error, Reason :: term()}.

This function is called whenever an application is started using start/1,2,
and is to start the processes of the application. If the application is
structured according to the OTP design principles as a supervision tree, this
means starting the top supervisor of the tree.
StartType defines the type of start:
	normal if it is a normal startup.
	normal also if the application is distributed and started at the current
node because of a failover from another node, and the application
specification key start_phases == undefined.
	{takeover,Node} if the application is distributed and started at the current
node because of a takeover from Node, either because
takeover/2 has been called or because the current node has
higher priority than Node.
	{failover,Node} if the application is distributed and started at the current
node because of a failover from Node, and the application specification key
start_phases /= undefined.

StartArgs is the StartArgs argument defined by the application specification
key mod.
The function is to return {ok,Pid} or {ok,Pid,State}, where Pid is the pid
of the top supervisor and State is any term. If omitted, State defaults to
[]. If the application is stopped later, State is passed to
Module:prep_stop/1.

 start_phase(Phase, StartType, PhaseArgs)

 (optional)

 -callback start_phase(Phase, StartType, PhaseArgs) -> ok | {error, Reason}
 when
 Phase :: atom(),
 StartType :: start_type(),
 PhaseArgs :: term(),
 Reason :: term().

Starts an application with included applications, when synchronization is needed
between processes in the different applications during startup.
The start phases are defined by the application specification key
start_phases == [{Phase,PhaseArgs}]. For included applications, the set of
phases must be a subset of the set of phases defined for the including
application.
The function is called for each start phase (as defined for the primary
application) for the primary application and all included applications, for
which the start phase is defined.
For a description of StartType, see Module:start/2.

 stop(Application)

 -callback stop(State :: term()) -> term().

This function is called whenever an application has stopped. It is intended to
be the opposite of Module:start/2 and is to do any necessary
cleaning up. The return value is ignored.
State is the return value of Module:prep_stop/1, if such
a function exists. Otherwise State is taken from the return value of
Module:start/2.

 Functions

 ensure_all_started(Applications)

 (since OTP R16B02)

 -spec ensure_all_started(Applications) -> {ok, Started} | {error, Reason}
 when
 Applications :: atom() | [atom()], Started :: [atom()], Reason :: term().

Equivalent to ensure_all_started(Applications, temporary, serial).

 ensure_all_started(Applications, Type)

 (since OTP R16B02)

 -spec ensure_all_started(Applications, Type) -> {ok, Started} | {error, AppReason}
 when
 Applications :: atom() | [atom()],
 Type :: restart_type(),
 Started :: [atom()],
 AppReason :: {atom(), term()}.

Equivalent to ensure_all_started(Applications, Type, serial).

 ensure_all_started(Applications, Type, Mode)

 (since OTP 26.0)

 -spec ensure_all_started(Applications, Type, Mode) -> {ok, Started} | {error, AppReason}
 when
 Applications :: atom() | [atom()],
 Type :: restart_type(),
 Mode :: serial | concurrent,
 Started :: [atom()],
 AppReason :: {atom(), term()}.

Applications is either an an atom/0 or a list of atom/0 representing
multiple applications.
This function is equivalent to calling start/1,2 repeatedly on
all dependencies that are not yet started of each application. Optional
dependencies will also be loaded and started if they are available.
The Mode argument controls if the applications should be started in serial
mode (one at a time) or concurrent mode. In concurrent mode, a dependency
graph is built and the leaves of the graph are started concurrently and
recursively. In both modes, no assertion can be made about the order the
applications are started. If not supplied, it defaults to serial.
Returns {ok, AppNames} for a successful start or for an already started
application (which is, however, omitted from the AppNames list).
The function reports {error, {AppName,Reason}} for errors, where Reason is
any possible reason returned by start/1,2 when starting a
specific dependency.
If an error occurs, the applications started by the function are stopped to
bring the set of running applications back to its initial state.

 ensure_started(Application)

 (since OTP R16B01)

 -spec ensure_started(Application) -> ok | {error, Reason} when Application :: atom(), Reason :: term().

Equivalent to start(Application) except it returns ok for
already started applications.

 ensure_started(Application, Type)

 (since OTP R16B01)

 -spec ensure_started(Application, Type) -> ok | {error, Reason}
 when Application :: atom(), Type :: restart_type(), Reason :: term().

Equivalent to start(Application, Type) except it returns ok for
already started applications.

 get_all_env()

 -spec get_all_env() -> Env when Env :: [{Par :: atom(), Val :: term()}].

Equivalent to get_all_env(application:get_application()).

 get_all_env(Application)

 -spec get_all_env(Application) -> Env
 when Application :: atom(), Env :: [{Par :: atom(), Val :: term()}].

Returns the configuration parameters and their values for Application.
If the specified application is not loaded, or if the process executing the call
does not belong to any application, the function returns [].

 get_all_key()

 -spec get_all_key() -> [] | {ok, Keys} when Keys :: [{Key :: atom(), Val :: term()}, ...].

Equivalent to get_all_key(application:get_application()).

 get_all_key(Application)

 -spec get_all_key(Application) -> undefined | Keys
 when Application :: atom(), Keys :: {ok, [{Key :: atom(), Val :: term()}, ...]}.

Returns the application specification keys and their values for Application.
If the argument is omitted, it defaults to the application of the calling
process.
If the specified application is not loaded, the function returns undefined. If
the process executing the call does not belong to any application, the function
returns [].

 get_application()

 -spec get_application() -> undefined | {ok, Application} when Application :: atom().

Equivalent to get_application(self()).

 get_application(PidOrModule)

 -spec get_application(PidOrModule) -> undefined | {ok, Application}
 when
 PidOrModule :: (Pid :: pid()) | (Module :: module()), Application :: atom().

Returns the name of the application to which the process Pid or the module
Module belongs.
If the specified process does not belong to any application, or if the specified
process or module does not exist, the function returns undefined.

 get_env(Par)

 -spec get_env(Par) -> undefined | {ok, Val} when Par :: atom(), Val :: term().

Equivalent to get_env(application:get_application(), Par).

 get_env(Application, Par)

 -spec get_env(Application, Par) -> undefined | {ok, Val}
 when Application :: atom(), Par :: atom(), Val :: term().

Returns the value of configuration parameter Par for Application.
Returns undefined if any of the following applies:
	The specified application is not loaded.
	The configuration parameter does not exist.
	The process executing the call does not belong to any application.

 get_env(Application, Par, Def)

 (since OTP R16B)

 -spec get_env(Application, Par, Def) -> Val
 when Application :: atom(), Par :: atom(), Def :: term(), Val :: term().

Works like get_env/2 but returns value Def when configuration parameter
Par does not exist.

 get_key(Key)

 -spec get_key(Key) -> undefined | {ok, Val} when Key :: atom(), Val :: term().

Equivalent to get_key(application:get_application(), Key).

 get_key(Application, Key)

 -spec get_key(Application, Key) -> undefined | {ok, Val}
 when Application :: atom(), Key :: atom(), Val :: term().

Returns the value of the application specification key Key for Application.
Returns undefined if any of the following applies:
	The specified application is not loaded.
	The specification key does not exist.
	The process executing the call does not belong to any application.

 get_supervisor(Application)

 (since OTP 26.0)

 -spec get_supervisor(Application) -> undefined | {ok, Pid} when Pid :: pid(), Application :: atom().

Returns the Pid of the supervisor running at the root of Application.
If the specified application does not exist or does not define a callback
module, the function returns undefined.

 load(AppDescr)

 -spec load(AppDescr) -> ok | {error, Reason}
 when
 AppDescr :: Application | (AppSpec :: application_spec()),
 Application :: atom(),
 Reason :: term().

Equivalent to load(AppDescr, []).

 load(AppDescr, Distributed)

 -spec load(AppDescr, Distributed) -> ok | {error, Reason}
 when
 AppDescr :: Application | (AppSpec :: application_spec()),
 Application :: atom(),
 Distributed :: {Application, Nodes} | {Application, Time, Nodes} | default,
 Nodes :: [node() | tuple_of(node())],
 Time :: pos_integer(),
 Reason :: term().

Loads the application specification for an application into the application
controller. It also loads the application specifications for any included
applications. Notice that the function does not load the Erlang object code.
The application can be specified by its name Application. In this case, the
application controller searches the code path for the application resource file
Application.app and loads the specification it contains.
The application specification can also be specified directly as a tuple
AppSpec, having the format and contents as described in app.
If Distributed == {Application,[Time,]Nodes}, the application becomes
distributed. The argument overrides the value for the application in the Kernel
configuration parameter distributed. Application must be the application
name (same as in the first argument). If a node crashes and Time is specified,
the application controller waits for Time milliseconds before attempting to
restart the application on another node. If Time is not specified, it defaults
to 0 and the application is restarted immediately.
Nodes is a list of node names where the application can run, in priority from
left to right. Node names can be grouped using tuples to indicate that they have
the same priority.
Example:
Nodes = [cp1@cave, {cp2@cave, cp3@cave}]
This means that the application is preferably to be started at cp1@cave. If
cp1@cave is down, the application is to be started at cp2@cave or
cp3@cave.
If Distributed == default, the value for the application in the Kernel
configuration parameter distributed is used.

 loaded_applications()

 -spec loaded_applications() -> [{Application, Description, Vsn}]
 when Application :: atom(), Description :: string(), Vsn :: string().

Returns a list with information about the applications, and included
applications, which are loaded using load/1,2. Application is the
application name. Description and Vsn are the values of their description
and vsn application specification keys, respectively.

 permit(Application, Permission)

 -spec permit(Application, Permission) -> ok | {error, Reason}
 when Application :: atom(), Permission :: boolean(), Reason :: term().

Changes the permission for Application to run at the current node. The
application must be loaded using load/1,2 for the function to have effect.
If the permission of a loaded, but not started, application is set to false,
start returns ok but the application is not started until the permission is
set to true.
If the permission of a running application is set to false, the application is
stopped. If the permission later is set to true, it is restarted.
If the application is distributed, setting the permission to false means that
the application will be started at, or moved to, another node according to how
its distribution is configured (see load/2).
The function does not return until the application is started, stopped, or
successfully moved to another node. However, in some cases where permission is
set to true, the function returns ok even though the application is not
started. This is true when an application cannot start because of dependencies
to other applications that are not yet started. When they are started,
Application is started as well.
By default, all applications are loaded with permission true on all nodes. The
permission can be configured using the Kernel configuration parameter
permissions.

 set_env(Config)

 (since OTP 21.3)

 -spec set_env(Config) -> ok
 when
 Config :: [{Application, Env}],
 Application :: atom(),
 Env :: [{Par :: atom(), Val :: term()}].

Equivalent to set_env(Config, []).

 set_env(Config, Opts)

 (since OTP 21.3)

 -spec set_env(Config, Opts) -> ok
 when
 Config :: [{Application, Env}],
 Application :: atom(),
 Env :: [{Par :: atom(), Val :: term()}],
 Opts :: [{timeout, timeout()} | {persistent, boolean()}].

Sets the configuration Config for multiple applications.
It is equivalent to calling set_env/4 on each application
individually, except it is more efficient. The given Config is validated before
the configuration is set.
set_env/2 uses the standard gen_server time-out value (5000
ms). Option timeout can be specified if another time-out value is useful, for
example, in situations where the application controller is heavily loaded.
Option persistent can be set to true to guarantee that parameters set with
set_env/2 are not overridden by those defined in the
application resource file on load. This means that persistent values will stick
after the application is loaded and also on application reload.
If an application is given more than once or if an application has the same key
given more than once, the behaviour is undefined and a warning message will be
logged. In future releases, an error will be raised.
Warning
Use this function only if you know what you are doing, that is, on your own
applications. It is very application-dependent and configuration
parameter-dependent when and how often the value is read by the application.
Careless use of this function can put the application in a weird,
inconsistent, and malfunctioning state.

 set_env(Application, Par, Val)

 -spec set_env(Application, Par, Val) -> ok when Application :: atom(), Par :: atom(), Val :: term().

Equivalent to set_env(Application, Par, Val, []).

 set_env(Application, Par, Val, Opts)

 -spec set_env(Application, Par, Val, Opts) -> ok
 when
 Application :: atom(),
 Par :: atom(),
 Val :: term(),
 Opts :: [{timeout, timeout()} | {persistent, boolean()}].

Sets the value of configuration parameter Par for Application.
set_env/4 uses the standard gen_server time-out value (5000
ms). Option timeout can be specified if another time-out value is useful, for
example, in situations where the application controller is heavily loaded.
If set_env/4 is called before the application is loaded, the
application environment values specified in file Application.app override the
ones previously set. This is also true for application reloads.
Option persistent can be set to true to guarantee that parameters set with
set_env/4 are not overridden by those defined in the
application resource file on load. This means that persistent values will stick
after the application is loaded and also on application reload.
Warning
Use this function only if you know what you are doing, that is, on your own
applications. It is very application-dependent and configuration
parameter-dependent when and how often the value is read by the application.
Careless use of this function can put the application in a weird,
inconsistent, and malfunctioning state.

 start(Application)

 -spec start(Application) -> ok | {error, Reason} when Application :: atom(), Reason :: term().

Equivalent to start(Application, temporary).

 start(Application, Type)

 -spec start(Application, Type) -> ok | {error, Reason}
 when Application :: atom(), Type :: restart_type(), Reason :: term().

Starts Application. If it is not loaded, the application controller first
loads it using load/1. It ensures that any included applications
are loaded, but does not start them. That is assumed to be taken care of in the
code for Application.
The application controller checks the value of the application specification key
applications, to ensure that all applications needed to be started before this
application are running. If an application is missing and the application is not
marked as optional, {error,{not_started,App}} is returned, where App is the
name of the missing application. Note this function makes no attempt to start
any of the applications listed in applications, not even optional ones. See
ensure_all_started/1,2 for recursively starting the
current application and its dependencies.
Once validated, the application controller then creates an application master
for the application. The application master becomes the group leader of all the
processes in the application. I/O is forwarded to the previous group leader,
though, this is just a way to identify processes that belong to the application.
Used for example to find itself from any process, or, reciprocally, to kill them
all when it terminates.
The application master starts the application by calling the application
callback function Module:start/2 as defined by the application
specification key mod.
Argument Type specifies the type of the application. If omitted, it defaults
to temporary.
	If a permanent application terminates, all other applications and the entire
Erlang node are also terminated.
	If a transient application terminates:	with Reason == normal, this is reported but no other applications are
terminated.
	abnormally, all other applications and the entire Erlang node are also
terminated.

	If a temporary application terminates, this is reported but no other
applications are terminated.

Notice that an application can always be stopped explicitly by calling
stop/1. Regardless of the type of the application, no other
applications are affected.
Notice also that the transient type is of little practical use, because when a
supervision tree terminates, the reason is set to shutdown, not normal.

 start_type()

 -spec start_type() -> StartType | undefined | local when StartType :: start_type().

This function is intended to be called by a process belonging to an application,
when the application is started, to determine the start type, which is
StartType or local.
For a description of StartType, see
Module:start/2.
local is returned if only parts of the application are restarted (by a
supervisor), or if the function is called outside a startup.
If the process executing the call does not belong to any application, the
function returns undefined.

 stop(Application)

 -spec stop(Application) -> ok | {error, Reason} when Application :: atom(), Reason :: term().

Stops Application. The application master calls
Module:prep_stop/1, if such a function is defined, and then
tells the top supervisor of the application to shut down (see supervisor).
This means that the entire supervision tree, including included applications, is
terminated in reversed start order. After the shutdown, the application master
calls Module:stop/1. Module is the callback module as defined
by the application specification key mod.
Last, the application master terminates. Notice that all processes with the
application master as group leader, that is, processes spawned from a process
belonging to the application, are also terminated.
When stopped, the application is still loaded.
To stop a distributed application, stop/1 must be called on all
nodes where it can execute (that is, on all nodes where it has been started).
The call to stop/1 on the node where the application currently
executes stops its execution. The application is not moved between nodes, as
stop/1 is called on the node where the application currently
executes before stop/1 is called on the other nodes.

 takeover(Application, Type)

 -spec takeover(Application, Type) -> ok | {error, Reason}
 when Application :: atom(), Type :: restart_type(), Reason :: term().

Takes over the distributed application Application, which executes at another
node Node.
At the current node, the application is restarted by calling
Module:start({takeover,Node},StartArgs). Module and
StartArgs are retrieved from the loaded application specification. The
application at the other node is not stopped until the startup is completed,
that is, when Module:start/2 and any calls to
Module:start_phase/3 have returned.
Thus, two instances of the application run simultaneously during the takeover,
so that data can be transferred from the old to the new instance. If this is not
an acceptable behavior, parts of the old instance can be shut down when the new
instance is started. However, the application cannot be stopped entirely, at
least the top supervisor must remain alive.
For a description of Type, see start/1,2.

 unload(Application)

 -spec unload(Application) -> ok | {error, Reason} when Application :: atom(), Reason :: term().

Unloads the application specification for Application from the application
controller. It also unloads the application specifications for any included
applications. Notice that the function does not purge the Erlang object code.

 unset_env(Application, Par)

 -spec unset_env(Application, Par) -> ok when Application :: atom(), Par :: atom().

Equivalent to unset_env(Application, Par, []).

 unset_env(Application, Par, Opts)

 -spec unset_env(Application, Par, Opts) -> ok
 when
 Application :: atom(),
 Par :: atom(),
 Opts :: [{timeout, timeout()} | {persistent, boolean()}].

Removes the configuration parameter Par and its value for Application.
unset_env/3 uses the standard gen_server time-out value
(5000 ms). Option timeout can be specified if another time-out value is
useful, for example, in situations where the application controller is heavily
loaded.
unset_env/3 also allows the persistent option to be passed
(see set_env/4).
Warning
Use this function only if you know what you are doing, that is, on your own
applications. It is very application-dependent and configuration
parameter-dependent when and how often the value is read by the application.
Careless use of this function can put the application in a weird,
inconsistent, and malfunctioning state.

 which_applications()

 -spec which_applications() -> [{Application, Description, Vsn}]
 when Application :: atom(), Description :: string(), Vsn :: string().

Equivalent to which_applications(5000).

 which_applications(Timeout)

 -spec which_applications(Timeout) -> [{Application, Description, Vsn}]
 when
 Timeout :: timeout(),
 Application :: atom(),
 Description :: string(),
 Vsn :: string().

Returns a list with information about the applications that are currently
running.
Application is the application name. Description and Vsn are the
values of their description and vsn application specification keys,
respectively.
A Timeout argument can be specified in situations where the application
controller is heavily loaded.

code

Interface to the Erlang code server process.
This module contains the interface to the Erlang code server, which deals with
the loading of compiled code into a running Erlang runtime system.
The runtime system can be started in interactive or embedded mode. Which one
is decided by the command-line flag -mode:
% erl -mode embedded

The modes are as follows:
	In interactive mode, which is default, only the modules needed by
the runtime system are loaded during system startup. Other code is
dynamically loaded when first referenced. When a call to a function
in a certain module is made, and that module is not loaded, the code
server searches for and tries to load that module.

	In embedded mode, modules are not auto-loaded. Trying to use a
module that has not been loaded results in an error. This mode is
recommended when the boot script loads all modules, as it is
typically done in OTP releases. (Code can still be loaded later by
explicitly ordering the code server to do so).

To prevent accidentally reloading of modules affecting the Erlang runtime
system, directories kernel, stdlib, and compiler are considered sticky.
This means that the system issues a warning and rejects the request if a user
tries to reload a module residing in any of them. The feature can be disabled by
using command-line flag -nostick.
Code Path
In interactive mode, the code server maintains a code path,
consisting of a list of directories, which it searches sequentially
when trying to load a module.
Initially, the code path consists of the current working directory and all
Erlang object code directories under library directory $OTPROOT/lib, where
$OTPROOT is the installation directory of Erlang/OTP, code:root_dir().
Directories can be named Name[-Vsn] and the code server, by default, chooses
the directory with the highest version number among those having the same
Name. Suffix -Vsn is optional. If an ebin directory exists under
Name[-Vsn], this directory is added to the code path.
Environment variable ERL_LIBS (defined in the operating system) can be used to
define more library directories to be handled in the same way as the standard
OTP library directory described above, except that directories without an ebin
directory are ignored.
All application directories found in the additional directories appear before
the standard OTP applications, except for the Kernel and STDLIB applications,
which are placed before any additional applications. In other words, modules
found in any of the additional library directories override modules with the
same name in OTP, except for modules in Kernel and STDLIB.
Environment variable ERL_LIBS (if defined) is to contain a colon-separated
(for Unix-like systems) or semicolon-separated (for Windows) list of additional
libraries.
Example:
On a Unix-like system, ERL_LIBS can be set to the following:
/usr/local/jungerl:/home/some_user/my_erlang_lib
The code paths specified by $OTPROOT, ERL_LIBS, and boot scripts have their
listings cached by default (except for ".") The code server will
lookup the contents in their directories once and avoid future file system
traversals. Therefore, modules added to such directories after the Erlang VM
boots will not be picked up. This behaviour can be disabled by setting
-cache_boot_paths false or by calling code:set_path(code:get_path()).
Change
The support for caching directories in the code path was added
in Erlang/OTP 26.
Directories given by the command line options -pa and -pz are not
cached by default. Many of the functions that manipulate the code path
accept the cache atom as an optional argument to enable caching
selectively.
Loading of Code From Archive Files
Change
The existing experimental support for archive files will be changed
in a future release. As of Erlang/OTP 27, the function code:lib_dir/2,
the -code_path_choice flag, and using erl_prim_loader for
reading files from an archive are deprecated.
escript scripts that use archive files should use
escript:extract/2 to read data files from its archive instead of using
code:lib_dir/2 and erl_prim_loader.
The Erlang archives are ZIP files with extension .ez. Erlang archives can
also be enclosed in escript files whose file extension is arbitrary.
Erlang archive files can contain entire Erlang applications or parts of
applications. The structure in an archive file is the same as the directory
structure for an application. If you, for example, create an archive of
mnesia-4.4.7, the archive file must be named mnesia-4.4.7.ez and it must
contain a top directory named mnesia-4.4.7. If the version part of the name is
omitted, it must also be omitted in the archive. That is, a mnesia.ez archive
must contain a mnesia top directory.
An archive file for an application can, for example, be created like this:
zip:create("mnesia-4.4.7.ez",
	["mnesia-4.4.7"],
	[{cwd, code:lib_dir()},
	 {compress, all},
	 {uncompress,[".beam",".app"]}]).
Any file in the archive can be compressed, but to speed up the access of
frequently read files, it can be a good idea to store beam and app files
uncompressed in the archive.
Normally the top directory of an application is located in library directory
$OTPROOT/lib or in a directory referred to by environment variable ERL_LIBS.
At startup, when the initial code path is computed, the code server also looks
for archive files in these directories and possibly adds ebin directories in
archives to the code path. The code path then contains paths to directories that
look like $OTPROOT/lib/mnesia.ez/mnesia/ebin or
$OTPROOT/lib/mnesia-4.4.7.ez/mnesia-4.4.7/ebin.
The code server uses module erl_prim_loader in ERTS (possibly through
erl_boot_server) to read code files from archives. However, the functions in
erl_prim_loader can also be used by other applications to read files from
archives. For example, the call
erl_prim_loader:list_dir("/otp/root/lib/mnesia-4.4.7.ez/mnesia-4.4.7/examples/bench)"
would list the contents of a directory inside an archive. See
erl_prim_loader.
An application archive file and a regular application directory can coexist.
This can be useful when it is needed to have parts of the application as regular
files. A typical case is the priv directory, which must reside as a regular
directory to link in drivers dynamically and start port programs. For other
applications that do not need this, directory priv can reside in the archive
and the files under the directory priv can be read through erl_prim_loader.
When a directory is added to the code path and when the entire code path is
(re)set, the code server decides which subdirectories in an application that are
to be read from the archive and which that are to be read as regular files. If
directories are added or removed afterwards, the file access can fail if the
code path is not updated (possibly to the same path as before, to trigger the
directory resolution update).
For each directory on the second level in the application archive (ebin,
priv, src, and so on), the code server first chooses the regular directory
if it exists and second from the archive. Function code:lib_dir/2 returns the
path to the subdirectory. For example, code:lib_dir(megaco, ebin) can return
/otp/root/lib/megaco-3.9.1.1.ez/megaco-3.9.1.1/ebin while
code:lib_dir(megaco, priv) can return /otp/root/lib/megaco-3.9.1.1/priv.
When an escript file contains an archive, there are no restrictions on the
name of the escript and no restrictions on how many applications that can be
stored in the embedded archive. Single Beam files can also reside on the top
level in the archive. At startup, the top directory in the embedded archive and
all (second level) ebin directories in the embedded archive are added to the
code path. See escript.
A future-proof way for escript scripts to read data files from the archive is
to use the escript:extract/2 function.
When the choice of directories in the code path is strict (which is
the default as of Erlang/OTP 27), the directory that ends up in the
code path is exactly the stated one. This means that if, for example,
the directory $OTPROOT/lib/mnesia-4.4.7/ebin is explicitly added to
the code path, the code server does not load files from
$OTPROOT/lib/mnesia-4.4.7.ez/mnesia-4.4.7/ebin.
This behavior can be controlled through command-line flag
-code_path_choice Choice. If the flag is set to relaxed, the code server
instead chooses a suitable directory depending on the actual file structure. If
a regular application ebin directory exists, it is chosen. Otherwise, the
directory ebin in the archive is chosen if it exists. If neither of them
exists, the original directory is chosen.
Command-line flag -code_path_choice Choice also affects how module init
interprets the boot script. The interpretation of the explicit code paths in
the boot script can be strict or relaxed. It is particularly useful to set
the flag to relaxed when elaborating with code loading from archives without
editing the boot script. The default has changed to strict in OTP 27 and the
option is scheduled for removal in OTP 28. See module init in the
Erts application.
Current and Old Code
The code for a module can exist in two variants in a system: current code and
old code. When a module is loaded into the system for the first time, the
module code becomes current and the global export table is updated with
references to all functions exported from the module.
When a new instance of the module is loaded, the code of the previous
instance becomes old, and all export entries referring to the
previous instance are removed. After that, the new instance is loaded
as for the first time, and becomes current.
Both old and current code for a module are valid, and can even be executed
concurrently. The difference is that exported functions in old code are
unavailable. Hence, a global call cannot be made to an exported function in old
code, but old code can still be executed because of processes lingering in it.
If a third instance of the module is loaded, the code server removes (purges)
the old code and any processes lingering in it are terminated. Then the third
instance becomes current and the previously current code becomes old.
For more information about old and current code, and how to make a process
switch from old to current code, see section Compilation and Code Loading in the
Erlang Reference Manual.
Native Coverage Support
In runtime systems that use the JIT, native coverage is a light-weight
way to find out which functions or lines that have been executed, or
how many times each function or line has been executed.
Change
The support for native coverage was added in Erlang/OTP 27.
Native coverage works by instrumenting code at load-time. When a
module has been instrumented for native coverage collection it is not
possible to later disable the coverage collection, except by reloading
the module. However, the overhead for keeping coverage collection
running is often neligible, especially for coverage
mode function that only keeps track of which
functions that have been executed.
The cover tool in the Tools application will automatically use the
native coverage support if the runtime system supports it.
It is only necessary to use the functionality described next if
cover is not sufficient, for example:
	If one wants to collect coverage information for the code that runs
when the runtime system is starting (module init and so on).
cover can only be used when the Erlang system has started, and
it will reload every module that is to be analyzed.

	If it is necessary to collect coverage information with the absolute
minimum disturbance of the test system. cover always counts how
many times each line is executed (coverage mode line_counters),
but by using native coverage one can use a less expensive coverage
mode such as function, which has almost negligible overhead.

Short summary of using native coverage
If the line or line_counters coverage mode is to be used,
the code to be tested must be compiled with option
line_coverage.
Use set_coverage_mode(Mode) to set a
coverage mode for all code subsequently
loaded, or set it with option +JPcover
for erl.
Optionally reset coverage information for all
modules that are to be tested by calling
reset_coverage(Module).
Run the code whose coverage information is to be collected.
Read out the counters for all interesting modules by calling
get_coverage(Level, Module), where Level
is either function or line.
The other native coverage BIFs
The following BIFs are sometimes useful, for example to fail gracefully
if the runtime system does not support native coverage:
	coverage_support() - check whether
the runtime system supports native coverage

	get_coverage_mode() - get the current
coverage mode

	get_coverage_mode(Module) - get the coverage
mode for module Module

Argument Types and Invalid Arguments
Module and application names are atoms, while file and directory names are
strings. For backward compatibility reasons, some functions accept both strings
and atoms, but a future release will probably only allow the arguments that are
documented.
Functions in this module generally fail with an exception if they are passed an
incorrect type (for example, an integer or a tuple where an atom is expected).
An error tuple is returned if the argument type is correct, but there are some
other errors (for example, a non-existing directory is specified to
set_path/1).

Error Reasons for Code-Loading Functions
Functions that load code (such as load_file/1) will return
{error,Reason} if the load operation fails. Here follows a description of the
common reasons.
	badfile - The object code has an incorrect format or the module name in
the object code is not the expected module name.

	nofile - No file with object code was found.

	not_purged - The object code could not be loaded because an old version
of the code already existed.

	on_load_failure - The module has an
-on_load function that failed when it
was called.

	sticky_directory - The object code resides in a sticky directory.

 Summary

 Types

 add_path_ret()

 cache()

 coverage_mode()

 debug_frame()

 debug_info()

 debug_line()

 debug_name()

 debug_source()

 debug_value()

 load_error_rsn()

 load_ret()

 loaded_filename()

 loaded_ret_atoms()

 module_status()

 prepared_code()

 An opaque term holding prepared code.

 replace_path_ret()

 set_path_ret()

 Functions

 add_path(Dir)

 Equivalent to add_pathz(Dir, nocache).

 add_path(Dir, Cache)

 Equivalent to add_pathz(Dir, Cache).

 add_patha(Dir)

 Equivalent to add_patha(Dir, nocache).

 add_patha(Dir, Cache)

 Adds Dir to the beginning of the code path.

 add_paths(Dirs)

 Equivalent to add_pathsz(Dirs, nocache).

 add_paths(Dirs, Cache)

 Equivalent to add_pathsz(Dirs, Cache).

 add_pathsa(Dirs)

 Equivalent to add_pathsa(Dirs, nocache).

 add_pathsa(Dirs, Cache)

 Traverses Dirs and adds each Dir to the beginning of the code path.

 add_pathsz(Dirs)

 Equivalent to add_pathsz(Dirs, nocache).

 add_pathsz(Dirs, Cache)

 Adds the directories in Dirs to the end of the code path.

 add_pathz(Dir)

 Equivalent to add_pathz(Dir, nocache).

 add_pathz(Dir, Cache)

 Adds Dir as the directory last in the code path.

 all_available()

 Returns a list of tuples {Module, Filename, Loaded} for all available modules.

 all_loaded()

 Returns a list of tuples {Module, Loaded} for all loaded modules.

 atomic_load(Modules)

 Tries to load all of the modules in the list Modules atomically.

 clash()

 Searches all directories in the code path for module names with identical names
and writes a report to stdout.

 clear_cache()

 Clears the code path cache.

 compiler_dir()

 Returns the compiler library directory.

 coverage_support()

 Returns true if the system supports coverage and false otherwise.

 del_path(NameOrDir)

 Deletes a directory from the code path.

 del_paths(NamesOrDirs)

 Deletes directories from the code path.

 delete(Module)

 Removes the current code for Module, that is, the current code for Module is
made old.

 ensure_loaded(Module)

 Tries to load a module in the same way as load_file/1, unless the module is
already loaded.

 ensure_modules_loaded(Modules)

 Tries to load any modules not already loaded in the list Modules in the same
way as load_file/1.

 finish_loading(Prepared)

 Tries to load code for all modules that have been previously prepared by
prepare_loading/1.

 get_coverage(Level, Module)

 Return either function or line coverage data for module Module.

 get_coverage_mode()

 Returns the coverage mode as set by option
+JPcover for erl or set_coverage_mode/1.

 get_coverage_mode(Module)

 Get coverage mode for the given module.

 get_debug_info(Module)

 get_doc(Module)

 Returns EEP 48 style
documentation for Module if available.

 get_mode()

 Returns an atom describing the mode of the code server: interactive or
embedded.

 get_object_code(Module)

 Returns the object code for module Module if found in the code path.

 get_path()

 Returns the code path.

 is_loaded(Module)

 Checks whether Module is loaded.

 is_sticky(Module)

 Returns true if Module is the name of a module that has been loaded from a
sticky directory (in other words: an attempt to reload the module will fail), or
false if Module is not a loaded module or is not sticky.

 lib_dir()

 Returns the library directory, $OTPROOT/lib, where $OTPROOT is the root
directory of Erlang/OTP.

 lib_dir(Name)

 Returns the path for the library directory, the top directory, for an
application Name located under $OTPROOT/lib or in a directory referred to
with environment variable ERL_LIBS.

 lib_dir(Name, SubDir)

 deprecated

 Returns the path to a subdirectory directly under the top directory of an
application.

 load_abs(Filename)

 Equivalent to load_file(Module), except that Filename is
an absolute or relative filename.

 load_binary(Module, Filename, Binary)

 Loads object code from a binary.

 load_file(Module)

 Tries to load the Erlang module Module using the code path.

 modified_modules()

 Returns the list of all currently loaded modules for which module_status/1
returns modified.

 module_status()

 See module_status/1 and all_loaded/0 for details.

 module_status(Module)

 Returns the status of Module in relation to object file on disk.

 objfile_extension()

 Returns the object code file extension corresponding to the Erlang machine used.

 prepare_loading(Modules)

 Prepares to load the modules in the list Modules.

 priv_dir(Name)

 Returns the path to the priv directory in an application.

 purge(Module)

 Purges the code for Module, that is, removes code marked as old.

 replace_path(Name, Dir)

 Equivalent to replace_path(Name, Dir, nocache).

 replace_path(Name, Dir, Cache)

 Replaces an old occurrence of a directory named .../Name[-Vsn][/ebin] in the
code path, with Dir.

 reset_coverage(Module)

 Resets coverage information for module Module.

 root_dir()

 Returns the root directory of Erlang/OTP, which is the directory where it is
installed.

 set_coverage_mode(Mode)

 Sets the coverage mode for modules that are subsequently loaded, similar to
option +JPcover for erl.

 set_path(Path)

 Equivalent to set_path(PathList, nocache).

 set_path(PathList, Cache)

 Sets the code path to the list of directories Path.

 soft_purge(Module)

 Purges the code for Module, that is, removes code marked as old, but only if
no processes linger in it.

 stick_dir(Dir)

 Marks Dir as sticky.

 unstick_dir(Dir)

 Unsticks a directory that is marked as sticky.

 where_is_file(Filename)

 Searches the code path for Filename, which is a file of arbitrary type.

 which(Module)

 If the module is not loaded, this function searches the code path for the first
file containing object code for Module and returns the absolute filename.

 Types

 add_path_ret()

 (not exported)

 -type add_path_ret() :: true | {error, bad_directory}.

 cache()

 (not exported)

 -type cache() :: cache | nocache.

 coverage_mode()

 -type coverage_mode() :: none | function | function_counters | line | line_counters.

 debug_frame()

 -nominal debug_frame() :: non_neg_integer() | entry | none.

 debug_info()

 -nominal debug_info() :: [{debug_line(), {debug_frame(), [debug_value()]}}].

 debug_line()

 -nominal debug_line() :: pos_integer().

 debug_name()

 -nominal debug_name() :: binary() | 1..255.

 debug_source()

 -nominal debug_source() :: {x, non_neg_integer()} | {y, non_neg_integer()} | {value, _}.

 debug_value()

 -nominal debug_value() :: {debug_name(), debug_source()}.

 load_error_rsn()

 -type load_error_rsn() :: badfile | nofile | not_purged | on_load_failure | sticky_directory.

 load_ret()

 -type load_ret() :: {error, What :: load_error_rsn()} | {module, Module :: module()}.

 loaded_filename()

 (not exported)

 -type loaded_filename() :: (Filename :: file:filename()) | loaded_ret_atoms().

 loaded_ret_atoms()

 (not exported)

 -type loaded_ret_atoms() :: cover_compiled | preloaded.

 module_status()

 -type module_status() :: not_loaded | loaded | modified | removed.

 prepared_code()

 -opaque prepared_code()

An opaque term holding prepared code.

 replace_path_ret()

 (not exported)

 -type replace_path_ret() :: true | {error, bad_directory | bad_name | {badarg, _}}.

 set_path_ret()

 (not exported)

 -type set_path_ret() :: true | {error, bad_directory}.

 Functions

 add_path(Dir)

 -spec add_path(Dir) -> add_path_ret() when Dir :: file:filename().

Equivalent to add_pathz(Dir, nocache).

 add_path(Dir, Cache)

 (since OTP 26.0)

 -spec add_path(Dir, cache()) -> add_path_ret() when Dir :: file:filename().

Equivalent to add_pathz(Dir, Cache).

 add_patha(Dir)

 -spec add_patha(Dir) -> add_path_ret() when Dir :: file:filename().

Equivalent to add_patha(Dir, nocache).

 add_patha(Dir, Cache)

 (since OTP 26.0)

 -spec add_patha(Dir, cache()) -> add_path_ret() when Dir :: file:filename().

Adds Dir to the beginning of the code path.
If Dir exists, it is removed from the old position in the code path.
Argument Cache controls whether the content of the directory
should be cached on first traversal. If Cache is cache the directory
contents will be cached; if Cache is nocache it will not be cached.
Returns true if successful, or {error, bad_directory} if Dir is
not the name of a directory.

 add_paths(Dirs)

 -spec add_paths(Dirs) -> ok when Dirs :: [Dir :: file:filename()].

Equivalent to add_pathsz(Dirs, nocache).

 add_paths(Dirs, Cache)

 (since OTP 26.0)

 -spec add_paths(Dirs, cache()) -> ok when Dirs :: [Dir :: file:filename()].

Equivalent to add_pathsz(Dirs, Cache).

 add_pathsa(Dirs)

 -spec add_pathsa(Dirs) -> ok when Dirs :: [Dir :: file:filename()].

Equivalent to add_pathsa(Dirs, nocache).

 add_pathsa(Dirs, Cache)

 (since OTP 26.0)

 -spec add_pathsa(Dirs, cache()) -> ok when Dirs :: [Dir :: file:filename()].

Traverses Dirs and adds each Dir to the beginning of the code path.
This means that the order of Dirs is reversed in the resulting code
path. For example, if Dirs is [Dir1,Dir2], the resulting path will
be [Dir2,Dir1|OldCodePath].
If a Dir already exists in the code path, it is removed from the old position.
Argument Cache controls whether the content of the directory
should be cached on first traversal. If Cache is cache the directory
contents will be cached; if Cache is nocache it will not be cached.
Always returns ok, regardless of the validity of each individual Dir.

 add_pathsz(Dirs)

 -spec add_pathsz(Dirs) -> ok when Dirs :: [Dir :: file:filename()].

Equivalent to add_pathsz(Dirs, nocache).

 add_pathsz(Dirs, Cache)

 (since OTP 26.0)

 -spec add_pathsz(Dirs, cache()) -> ok when Dirs :: [Dir :: file:filename()].

Adds the directories in Dirs to the end of the code path.
Directories that are already present in the path will not be added.
Argument Cache controls whether the content of the directory
should be cached on first traversal. If Cache is cache the directory
contents will be cached; if Cache is nocache it will not be cached.
Always returns ok, regardless of the validity of each individual Dir.

 add_pathz(Dir)

 -spec add_pathz(Dir) -> add_path_ret() when Dir :: file:filename().

Equivalent to add_pathz(Dir, nocache).

 add_pathz(Dir, Cache)

 (since OTP 26.0)

 -spec add_pathz(Dir, cache()) -> add_path_ret() when Dir :: file:filename().

Adds Dir as the directory last in the code path.
If Dir already exists in the path, it is not added.
Argument Cache controls whether the content of the directory
should be cached on first traversal. If Cache is cache the directory
contents will be cached; if Cache is nocache it will not be cached.
Returns true if successful, or {error, bad_directory} if Dir is
not the name of a directory.

 all_available()

 (since OTP 23.0)

 -spec all_available() -> [{Module, Filename, Loaded}]
 when Module :: string(), Filename :: loaded_filename(), Loaded :: boolean().

Returns a list of tuples {Module, Filename, Loaded} for all available modules.
A module is considered to be available if it either is loaded or would be loaded
if called. Filename is normally the absolute filename, as described for
is_loaded/1.

 all_loaded()

 -spec all_loaded() -> [{Module, Loaded}] when Module :: module(), Loaded :: loaded_filename().

Returns a list of tuples {Module, Loaded} for all loaded modules.
Loaded is normally the absolute filename, as described for is_loaded/1.

 atomic_load(Modules)

 (since OTP 19.0)

 -spec atomic_load(Modules) -> ok | {error, [{Module, What}]}
 when
 Modules :: [Module | {Module, Filename, Binary}],
 Module :: module(),
 Filename :: file:filename(),
 Binary :: binary(),
 What ::
 badfile | nofile | on_load_not_allowed | duplicated | not_purged |
 sticky_directory | pending_on_load.

Tries to load all of the modules in the list Modules atomically.
That means that either all modules are loaded at the same time, or
none of the modules are loaded if there is a problem with any of the
modules.
Loading can fail for one the following reasons:
	badfile - The object code has an incorrect format or the module name in
the object code is not the expected module name.

	nofile - No file with object code exists.

	on_load_not_allowed - A module contains an
-on_load function.

	duplicated - A module is included more than once in Modules.

	not_purged - The object code cannot be loaded because an old version of
the code already exists.

	sticky_directory - The object code resides in a sticky directory.

	pending_on_load - A previously loaded module contains an -on_load
function that never finished.

If it is important to minimize the time that an application is inactive while
changing code, use prepare_loading/1 and finish_loading/1 instead of
atomic_load/1. Here is an example:
{ok,Prepared} = code:prepare_loading(Modules),
%% Put the application into an inactive state or do any
%% other preparation needed before changing the code.
ok = code:finish_loading(Prepared),
%% Resume the application.

 clash()

 -spec clash() -> ok.

Searches all directories in the code path for module names with identical names
and writes a report to stdout.

 clear_cache()

 (since OTP 26.0)

 -spec clear_cache() -> ok.

Clears the code path cache.
If a directory is cached, its cache is cleared once and then it will
be recalculated and cached once more in a future traversal.
To clear the cache for a single path, either re-add it to the code
path (with add_path/2) or replace it (with
replace_path/3). To disable all caching, reset
the code path with code:set_path(code:get_path()).
Always returns ok.

 compiler_dir()

 -spec compiler_dir() -> file:filename().

Returns the compiler library directory.
Equivalent to code:lib_dir(compiler).

 coverage_support()

 (since OTP 27.0)

 -spec coverage_support() -> Supported when Supported :: boolean().

Returns true if the system supports coverage and false otherwise.
See also: Native Coverage Support

 del_path(NameOrDir)

 -spec del_path(NameOrDir) -> boolean() | {error, What}
 when NameOrDir :: Name | Dir, Name :: atom(), Dir :: file:filename(), What :: bad_name.

Deletes a directory from the code path.
The argument can be an atom Name, in which case the directory with
the name .../Name[-Vsn][/ebin] is deleted from the code path. Also,
the complete directory name Dir can be specified as argument.
Returns:
	true - If successful

	false - If the directory is not found

	{error, bad_name} - If the argument is invalid

 del_paths(NamesOrDirs)

 (since OTP 26.0)

 -spec del_paths(NamesOrDirs) -> ok
 when NamesOrDirs :: [Name | Dir], Name :: atom(), Dir :: file:filename().

Deletes directories from the code path.
The argument is a list of either atoms or complete directory names. If
Name is an atom, the directory with the name .../Name[-Vsn][/ebin] is
deleted from the code path.
Always returns ok, regardless of the validity of each individual
NamesOrDirs.

 delete(Module)

 -spec delete(Module) -> boolean() when Module :: module().

Removes the current code for Module, that is, the current code for Module is
made old.
This means that processes can continue to execute the code in the
module, but no external function calls can be made to it.
Returns true if successful, or false if there is old code for Module that
must be purged first, or if Module is not a (loaded) module.

 ensure_loaded(Module)

 -spec ensure_loaded(Module) -> {module, Module} | {error, What}
 when Module :: module(), What :: embedded | badfile | nofile | on_load_failure.

Tries to load a module in the same way as load_file/1, unless the module is
already loaded.
If called concurrently, this function ensures that only one process
attempts to load said module at a given time.
In embedded mode, it does not load a module that is not already loaded, but
returns {error, embedded} instead. See
Error Reasons for Code-Loading Functions for a
description of other possible error reasons.

 ensure_modules_loaded(Modules)

 (since OTP 19.0)

 -spec ensure_modules_loaded([Module]) -> ok | {error, [{Module, What}]}
 when Module :: module(), What :: badfile | nofile | on_load_failure.

Tries to load any modules not already loaded in the list Modules in the same
way as load_file/1.
Unlike ensure_loaded/1, modules are loaded even in embedded mode.
Returns ok if successful, or {error,[{Module,Reason}]} if loading of some
modules fails. See
Error Reasons for Code-Loading Functions for a
description of other possible error reasons.

 finish_loading(Prepared)

 (since OTP 19.0)

 -spec finish_loading(Prepared) -> ok | {error, [{Module, What}]}
 when
 Prepared :: prepared_code(),
 Module :: module(),
 What :: not_purged | sticky_directory | pending_on_load.

Tries to load code for all modules that have been previously prepared by
prepare_loading/1.
The loading occurs atomically, meaning that either all modules are
loaded at the same time, or none of the modules are loaded.
This function can fail with one of the following error reasons:
	not_purged - The object code cannot be loaded because an old version of
the code already exists.

	sticky_directory - The object code resides in a sticky directory.

	pending_on_load - A previously loaded module contains an -on_load
function that never finished.

 get_coverage(Level, Module)

 (since OTP 27.0)

 -spec get_coverage(Level, module()) -> Result
 when
 Level :: function | line | cover_id_line,
 Result :: [{Entity, CoverageInfo}],
 Entity :: {Function, Arity} | Line | CoverId,
 CoverageInfo :: Covered | Counter,
 Function :: atom(),
 Arity :: arity(),
 Line :: non_neg_integer(),
 CoverId :: pos_integer(),
 Covered :: boolean(),
 Counter :: non_neg_integer().

Return either function or line coverage data for module Module.
If Level is function, returns function coverage for the given module
according to its coverage mode:
	function - For each function in module Module, a boolean indicating
whether that function has been executed at least once is returned.

	function_counters - For each function in module Module, an integer
giving the number of times that line has been executed is returned.

	line - For each function in module Module, a boolean indicating whether
that function has been executed at least once is returned.

	line_counters - For each function in module Module, a boolean indicating
whether that function has been executed at least once is returned (note that
in this mode, counters for the number of times each function has been executed
cannot be retrieved).

If Level is line, returns line coverage for the given module according to its
coverage mode:
	line - For each executable line in the module, a boolean indicating
whether that line has been executed at least once is returned.

	line_counters - For each executable line in the module, an integer
giving the number of times that line was executed is returned.

Level cover_id_line is used by the cover tool.
Failures:
	badarg - If Level is not function or line.

	badarg - If Module is not an atom.

	badarg - If Module does not refer to a loaded module.

	badarg - If Module was not loaded in another coverage mode than
none.

	badarg - If Level is line and Module has not been loaded with either
line or line_counters enabled.

	badarg - If the runtime system does not support coverage.

See also: Native Coverage Support

 get_coverage_mode()

 (since OTP 27.0)

 -spec get_coverage_mode() -> Mode when Mode :: coverage_mode().

Returns the coverage mode as set by option
+JPcover for erl or set_coverage_mode/1.
Failure:
	badarg - If the runtime system does not support coverage.

See also: Native Coverage Support

 get_coverage_mode(Module)

 (since OTP 27.0)

 -spec get_coverage_mode(Module) -> Mode when Module :: module(), Mode :: coverage_mode().

Get coverage mode for the given module.
Failures:
	badarg - If Module is not an atom.

	badarg - If Module does not refer to a loaded module.

	badarg - If the runtime system does not support coverage.

See also: Native Coverage Support

 get_debug_info(Module)

 (since OTP 28.0)

 -spec get_debug_info(Module) -> DebugInfo when Module :: module(), DebugInfo :: debug_info().

 get_doc(Module)

 (since OTP 23.0)

 -spec get_doc(Mod) -> {ok, Res} | {error, Reason}
 when
 Mod :: module(),
 Res ::
 #docs_v1{anno :: term(),
 beam_language :: term(),
 format :: term(),
 module_doc :: term(),
 metadata :: term(),
 docs :: term()},
 Reason :: non_existing | missing | file:posix().

Returns EEP 48 style
documentation for Module if available.
If Module is not found in the code path, this function returns
{error,non_existing}.
If no documentation can be found this function attempts to generate
documentation from the debug information in the module. If no debug
information is available, this function returns {error,missing}.
For more information about the documentation chunk see
Documentation Storage and Format in
Kernel's User's Guide.

 get_mode()

 (since OTP R16B)

 -spec get_mode() -> embedded | interactive.

Returns an atom describing the mode of the code server: interactive or
embedded.
This information is useful when an external entity (for example, an IDE)
provides additional code for a running node. If the code server is in
interactive mode, it only has to add the path to the code. If the code server is
in embedded mode, the code must be loaded with load_binary/3.

 get_object_code(Module)

 -spec get_object_code(Module) -> {Module, Binary, Filename} | error
 when Module :: module(), Binary :: binary(), Filename :: file:filename().

Returns the object code for module Module if found in the code path.
Returns {Module, Binary, Filename} if successful, otherwise
error. Binary is a binary data object, which contains the object
code for the module. This is useful if code is to be loaded on a
remote node in a distributed system. For example, loading module
Module on a node Node is done as follows:
...
{_Module, Binary, Filename} = code:get_object_code(Module),
erpc:call(Node, code, load_binary, [Module, Filename, Binary]),
...

 get_path()

 -spec get_path() -> Path when Path :: [Dir :: file:filename()].

Returns the code path.

 is_loaded(Module)

 -spec is_loaded(Module) -> {file, Loaded} | false when Module :: module(), Loaded :: loaded_filename().

Checks whether Module is loaded.
If it is, {file, Loaded} is returned, otherwise false.
Normally, Loaded is the absolute filename Filename from which the code is
obtained. If the module is preloaded (see script(4)),
Loaded =:= preloaded. If the module is Cover-compiled (see cover),
Loaded =:= cover_compiled.

 is_sticky(Module)

 -spec is_sticky(Module) -> boolean() when Module :: module().

Returns true if Module is the name of a module that has been loaded from a
sticky directory (in other words: an attempt to reload the module will fail), or
false if Module is not a loaded module or is not sticky.

 lib_dir()

 -spec lib_dir() -> file:filename().

Returns the library directory, $OTPROOT/lib, where $OTPROOT is the root
directory of Erlang/OTP.
Example:
1> code:lib_dir().
"/usr/local/otp/lib"

 lib_dir(Name)

 -spec lib_dir(Name) -> file:filename() | {error, bad_name} when Name :: atom().

Returns the path for the library directory, the top directory, for an
application Name located under $OTPROOT/lib or in a directory referred to
with environment variable ERL_LIBS.
If a regular directory called Name or Name-Vsn exists in the code path with
an ebin subdirectory, the path to this directory is returned (not the ebin
directory).
If the directory refers to a directory in an archive, the archive name is
stripped away before the path is returned. For example, if directory
/usr/local/otp/lib/mnesia-4.2.2.ez/mnesia-4.2.2/ebin is in the path,
/usr/local/otp/lib/mnesia-4.2.2/ebin is returned. This means that the library
directory for an application is the same, regardless if the application resides
in an archive or not.
Warning
Archives are experimental. In a future release, they can be removed or
their behavior can change.
Example:
> code:lib_dir(mnesia).
"/usr/local/otp/lib/mnesia-4.23"
Returns {error, bad_name} if Name is not the name of an application under
$OTPROOT/lib or on a directory referred to through environment variable
ERL_LIBS. Fails with an exception if Name has the wrong type.
Warning
For backward compatibility, Name is also allowed to be a string. That will
probably change in a future release.

 lib_dir(Name, SubDir)

 This function is deprecated. code:lib_dir/2 is deprecated; this functionality will be removed in a future release.

 -spec lib_dir(Name, SubDir) -> file:filename() | {error, bad_name} when Name :: atom(), SubDir :: atom().

Returns the path to a subdirectory directly under the top directory of an
application.
Change
This function is part of the archive support, which is an experimental
feature that will be changed or removed in a future release.
Normally the subdirectories reside under the top directory for the
application, but when applications at least partly reside in an archive, the
situation is different. Some of the subdirectories can reside as regular
directories while others reside in an archive file. It is not checked whether
this directory exists.
Instead of using this function, use code:lib_dir/1
and filename:join/2.
Example:
1> filename:join(code:lib_dir(megaco), "priv").
"/usr/local/otp/lib/megaco-3.9.1.1/priv"
Fails with an exception if Name or SubDir has the wrong type.

 load_abs(Filename)

 -spec load_abs(Filename) -> load_ret() when Filename :: file:filename().

Equivalent to load_file(Module), except that Filename is
an absolute or relative filename.
The code path is not searched. It returns a value in the same way as
load_file/1. Notice that Filename must not contain the extension
(for example, .beam) because load_abs/1 adds the
correct extension.

 load_binary(Module, Filename, Binary)

 -spec load_binary(Module, Filename, Binary) -> {module, Module} | {error, What}
 when
 Module :: module(),
 Filename :: loaded_filename(),
 Binary :: binary(),
 What :: badarg | load_error_rsn().

Loads object code from a binary.
This function can be used to load object code on remote Erlang nodes. Argument
Binary must contain object code for Module. Filename is only used by the
code server to keep a record of from which file the object code for Module
originates. Thus, Filename is not opened and read by the code server.
Returns {module, Module} if successful, or {error, Reason} if loading fails.
See Error Reasons for Code-Loading Functions for a
description of the possible error reasons.

 load_file(Module)

 -spec load_file(Module) -> load_ret() when Module :: module().

Tries to load the Erlang module Module using the code path.
It looks for the object code file with an extension corresponding to
the Erlang machine used, for example, Module.beam. The loading fails
if the module name found in the object code differs from the name
Module. Use load_binary/3 to load object code with a module name
that is different from the file name.
Returns {module, Module} if successful, or {error, Reason} if loading fails.
See Error Reasons for Code-Loading Functions for a
description of the possible error reasons.

 modified_modules()

 (since OTP 20.0)

 -spec modified_modules() -> [module()].

Returns the list of all currently loaded modules for which module_status/1
returns modified.
See also all_loaded/0.

 module_status()

 (since OTP 23.0)

 -spec module_status() -> [{module(), module_status()}].

See module_status/1 and all_loaded/0 for details.

 module_status(Module)

 (since OTP 20.0)

 -spec module_status(Module :: module() | [module()]) -> module_status() | [{module(), module_status()}].

Returns the status of Module in relation to object file on disk.
The status of a module can be one of:
	not_loaded - If Module is not currently loaded.

	loaded - If Module is loaded, and the object file exists and contains
the same code.

	removed - If Module is loaded, but no corresponding object file can be
found in the code path.

	modified - If Module is loaded, but the object file contains code with
a different MD5 checksum.

Preloaded modules are always reported as loaded, without inspecting the
contents on disk. Cover-compiled modules will always be reported as modified
if an object file exists, or as removed otherwise. Modules whose load path is
an empty string (which is the convention for auto-generated code) will only be
reported as loaded or not_loaded.
See also modified_modules/0.

 objfile_extension()

 -spec objfile_extension() -> nonempty_string().

Returns the object code file extension corresponding to the Erlang machine used.
For the official Erlang/OTP release, the return value is always .beam.

 prepare_loading(Modules)

 (since OTP 19.0)

 -spec prepare_loading(Modules) -> {ok, Prepared} | {error, [{Module, What}]}
 when
 Modules :: [Module | {Module, Filename, Binary}],
 Module :: module(),
 Filename :: file:filename(),
 Binary :: binary(),
 Prepared :: prepared_code(),
 What :: badfile | nofile | on_load_not_allowed | duplicated.

Prepares to load the modules in the list Modules.
Finish the loading by calling
finish_loading(Prepared).
This function can fail with one of the following error reasons:
	badfile - The object code has an incorrect format or the module name in
the object code is not the expected module name.

	nofile - No file with object code exists.

	on_load_not_allowed - A module contains an
-on_load function.

	duplicated - A module is included more than once in Modules.

 priv_dir(Name)

 -spec priv_dir(Name) -> file:filename() | {error, bad_name} when Name :: atom().

Returns the path to the priv directory in an application.
Warning
For backward compatibility, Name is also allowed to be a string. That will
probably change in a future release.

 purge(Module)

 -spec purge(Module) -> boolean() when Module :: module().

Purges the code for Module, that is, removes code marked as old.
If some processes still linger in the old code, these processes are
killed before the code is removed.
Change
As of Erlang/OTP 20.0, a process is only considered to be lingering in the
code if it has direct references to the code. For more information see
documentation of erlang:check_process_code/3, which is used in order to
determine whether a process is lingering.
Returns true if successful and any process is needed to be killed, otherwise
false.

 replace_path(Name, Dir)

 -spec replace_path(Name, Dir) -> replace_path_ret() when Name :: atom(), Dir :: file:filename().

Equivalent to replace_path(Name, Dir, nocache).

 replace_path(Name, Dir, Cache)

 (since OTP 26.0)

 -spec replace_path(Name, Dir, cache()) -> replace_path_ret() when Name :: atom(), Dir :: file:filename().

Replaces an old occurrence of a directory named .../Name[-Vsn][/ebin] in the
code path, with Dir.
If Name does not exist, it adds the new directory Dir last in the
code path. The new directory must also be named
.../Name[-Vsn][/ebin]. This function is to be used if a new version
of the directory (library) is added to a running system.
Argument Cache controls whether the content of the directory
should be cached on first traversal. If Cache is cache the directory
contents will be cached; if Cache is nocache it will not be cached.
Returns:
	true - If successful

	{error, bad_name} - If Name is not found

	{error, bad_directory} - If Dir does not exist

	{error, {badarg, [Name, Dir]}} - If Name or Dir is invalid

 reset_coverage(Module)

 (since OTP 27.0)

 -spec reset_coverage(Module) -> ok when Module :: module().

Resets coverage information for module Module.
If the coverage mode is either function or
line, all booleans for Module keeping track of executed functions
or lines are set to false.
If the coverage mode is either function_counters or
line_counters, all counters for Module are reset to zero.
Failures:
	badarg - If Module is not an atom.

	badarg - If Module does not refer to a loaded module.

	badarg - If Module was not loaded with coverage enabled.

	badarg - If the runtime system does not support coverage.

See also: Native Coverage Support

 root_dir()

 -spec root_dir() -> file:filename().

Returns the root directory of Erlang/OTP, which is the directory where it is
installed.
Example:
1> code:root_dir().
"/usr/local/otp"

 set_coverage_mode(Mode)

 (since OTP 27.0)

 -spec set_coverage_mode(Mode) -> OldMode when Mode :: coverage_mode(), OldMode :: coverage_mode().

Sets the coverage mode for modules that are subsequently loaded, similar to
option +JPcover for erl.
The coverage mode will have the following effect on code that is
loaded following this call:
	function - All modules that are loaded will be instrumented to keep
track of which functions are executed. Information about which functions that
have been executed can be retrieved by calling
get_coverage(function, Module).

	function_counters - All modules that are loaded will be instrumented to
count how many times each function is executed. Information about how many
times each function has been executed can be retrieved by calling
get_coverage(function, Module).

	line - When modules that have been compiled with the
line_coverage option are loaded, they will be
instrumented to keep track of which lines have been executed. Information
about which lines have been executed can be retrieved by calling
get_coverage(line, Module), and information about which
functions that have been executed can be retrieved by calling
get_coverage(function, Module).

	line_counters - When modules that have been compiled with the
line_coverage option are loaded, they will be
instrumented to count the number of times each line is executed. Information
about how many times each line has been executed can be retrieved by calling
get_coverage(line, Module), and information about which
functions that have been executed can be retrieved by calling
get_coverage(function, Module) (note that in this mode,
counters for the number of times each function has been executed cannot be
retrieved).

	none - Modules will be loaded without coverage instrumentation.

Returns the previous coverage mode.
Failures:
	badarg - If Mode is not a valid coverage mode.

	badarg - If the runtime system does not support coverage.

See also: Native Coverage Support

 set_path(Path)

 -spec set_path(Path) -> set_path_ret() when Path :: [Dir :: file:filename()].

Equivalent to set_path(PathList, nocache).

 set_path(PathList, Cache)

 (since OTP 26.0)

 -spec set_path(Path, cache()) -> set_path_ret() when Path :: [Dir :: file:filename()].

Sets the code path to the list of directories Path.
Argument Cache controls whether the content of the directory
should be cached on first traversal. If Cache is cache the directory
contents will be cached; if Cache is nocache it will not be cached.
Returns:
	true - If successful

	{error, bad_directory} - If any Dir is not a directory name

 soft_purge(Module)

 -spec soft_purge(Module) -> boolean() when Module :: module().

Purges the code for Module, that is, removes code marked as old, but only if
no processes linger in it.
Change
As of Erlang/OTP 20.0, a process is only considered to be lingering in the
code if it has direct references to the code. For more information see
documentation of erlang:check_process_code/3, which is used in order to
determine whether a process is lingering.
Returns false if the module cannot be purged because of processes lingering in
old code, otherwise true.

 stick_dir(Dir)

 -spec stick_dir(Dir) -> ok | error when Dir :: file:filename().

Marks Dir as sticky.
Returns ok if successful, otherwise error.

 unstick_dir(Dir)

 -spec unstick_dir(Dir) -> ok | error when Dir :: file:filename().

Unsticks a directory that is marked as sticky.
Returns ok if successful, otherwise error.

 where_is_file(Filename)

 -spec where_is_file(Filename) -> non_existing | Absname
 when Filename :: file:filename(), Absname :: file:filename().

Searches the code path for Filename, which is a file of arbitrary type.
If found, the full name is returned. non_existing is returned if the
file cannot be found. The function can be useful, for example, to
locate application resource files.

 which(Module)

 -spec which(Module) -> Which when Module :: module(), Which :: loaded_filename() | non_existing.

If the module is not loaded, this function searches the code path for the first
file containing object code for Module and returns the absolute filename.
	If the module is loaded, it returns the name of the file containing the loaded
object code.

	If the module is preloaded, preloaded is returned.

	If the module is Cover-compiled, cover_compiled is returned.

	If the module cannot be found, non_existing is returned.

erl_ddll

Dynamic driver loader and linker.
This module provides an interface for loading and unloading Erlang linked-in
drivers in runtime.
Note
This is a large reference document. For casual use of this module, and for
most real world applications, the descriptions of functions load/2 and
unload/1 are enough to getting started.
The driver is to be provided as a dynamically linked library in an object code
format specific for the platform in use, that is, .so files on most Unix
systems and .ddl files on Windows. An Erlang linked-in driver must provide
specific interfaces to the emulator, so this module is not designed for loading
arbitrary dynamic libraries. For more information about Erlang drivers, see
erl_driver .

When describing a set of functions (that is, a module, a part of a module, or an
application), executing in a process and wanting to use a ddll-driver, we use
the term user. A process can have many users (different modules needing the
same driver) and many processes running the same code, making up many users of
a driver.
In the basic scenario, each user loads the driver before starting to use it and
unloads the driver when done. The reference counting keeps track of processes
and the number of loads by each process. This way the driver is only unloaded
when no one wants it (it has no user). The driver also keeps track of ports that
are opened to it. This enables delay of unloading until all ports are closed, or
killing of all ports that use the driver when it is unloaded.

The interface supports two basic scenarios of loading and unloading. Each
scenario can also have the option of either killing ports when the driver is
unloading, or waiting for the ports to close themselves. The scenarios are as
follows:
	Load and Unload on a "When Needed Basis" - This (most common) scenario
simply supports that each user of the driver loads it
when needed and unloads it when no longer needed. The driver is always
reference counted and as long as a process keeping the driver loaded is still
alive, the driver is present in the system.
Each user of the driver use literally the same
pathname for the driver when demanding load, but the
users are not concerned with if the driver is already
loaded from the file system or if the object code must be loaded from file
system.
The following two pairs of functions support this scenario:
	load/2 and unload/1 - When using the load/unload interfaces, the
driver is not unloaded until the last port using the driver is closed.
Function unload/1 can return immediately, as the
users have no interest in when the unloading occurs.
The driver is unloaded when no one needs it any longer.
If a process having the driver loaded dies, it has the same effect as if
unloading is done.
When loading, function load/2 returns ok when any instance
of the driver is present. Thus, if a driver is waiting to get unloaded
(because of open ports), it simply changes state to no longer need
unloading.

	load_driver/2 and unload_driver/1 - These interfaces are intended to
be used when it is considered an error that ports are open to a driver that
no user has loaded. The ports that are still open when
the last user calls
unload_driver/1 or when the last process having the
driver loaded dies, are killed with reason driver_unloaded.
The function names load_driver and unload_driver are kept for backward
compatibility.

	Loading and Reloading for Code Replacement - This scenario can occur if
the driver code needs replacement during operation of the Erlang emulator.
Implementing driver code replacement is a little more tedious than Beam code
replacement, as one driver cannot be loaded as both "old" and "new" code. All
users of a driver must have it closed (no open ports)
before the old code can be unloaded and the new code can be loaded.
The unloading/loading is done as one atomic operation, blocking all processes
in the system from using the driver in question while in progress.
The preferred way to do driver code replacement is to let one single process
keep track of the driver. When the process starts, the driver is loaded. When
replacement is required, the driver is reloaded. Unload is probably never
done, or done when the process exits. If more than one
user has a driver loaded when code replacement is
demanded, the replacement cannot occur until the last "other"
user has unloaded the driver.
Demanding reload when a reload is already in progress is always an error.
Using the high-level functions, it is also an error to demand reloading when
more than one user has the driver loaded.
To simplify driver replacement, avoid designing your system so that more than
one user has the driver loaded.
The two functions for reloading drivers are to be used together with
corresponding load functions to support the two different behaviors concerning
open ports:
	load/2 and reload/2 - This pair of functions is used when reloading is
to be done after the last open port to the driver is closed.
As reload/2 waits for the reloading to occur, a misbehaving
process keeping open ports to the driver (or keeping the driver loaded) can
cause infinite waiting for reload. Time-outs must be provided outside of the
process demanding the reload or by using the low-level interface
try_load/3 in combination with driver monitors.

	load_driver/2 and reload_driver/2 - This pair of functions are used
when open ports to the driver are to be killed with reason driver_unloaded
to allow for new driver code to get loaded.
However, if another process has the driver loaded, calling reload_driver
returns error code pending_process. As stated earlier, the recommended
design is to not allow other users than the "driver
reloader" to demand loading of the driver in question.

See Also
erl_driver(4), driver_entry(4)

 Summary

 Types

 driver()

 path()

 Functions

 demonitor(MonitorRef)

 Removes a driver monitor in much the same way as erlang:demonitor/1 in ERTS
does with process monitors.

 format_error(ErrorDesc)

 Takes an ErrorDesc returned by load, unload, or reload functions and returns a
string that describes the error or warning.

 info()

 Returns a list of tuples {DriverName, InfoList}, where InfoList is the
result of calling info/1 for that DriverName. Only dynamically linked-in
drivers are included in the list.

 info(Name)

 Returns a list of tuples {Tag, Value}, where Tag is the information item and
Value is the result of calling info/2 with this driver name and this tag.
The result is a tuple list containing all information available about a driver.

 info(Name, Tag)

 Returns specific information about one aspect of a driver. Parameter Tag
specifies which aspect to get information about. The return Value differs
between different tags

 load(Path, Name)

 Loads and links the dynamic driver Name. Path is a file path to the
directory containing the driver. Name must be a shareable object/dynamic
library. Two drivers with different Path parameters cannot be loaded under the
same name. Name is a string or atom containing at least one character.

 load_driver(Path, Name)

 Works essentially as load/2, but loads the driver with other
options. All ports using the driver are killed with reason driver_unloaded
when the driver is to be unloaded.

 loaded_drivers()

 Returns a list of all the available drivers, both (statically) linked-in and
dynamically loaded ones.

 monitor(Tag, Item)

 Creates a driver monitor and works in many ways as erlang:monitor/2 in ERTS,
does for processes. When a driver changes state, the monitor results in a
monitor message that is sent to the calling process. MonitorRef returned by
this function is included in the message sent.

 reload(Path, Name)

 Reloads the driver named Name from a possibly different Path than previously
used. This function is used in the code change
scenario described in the introduction.

 reload_driver(Path, Name)

 Works exactly as reload/2, but for drivers loaded with the load_driver/2
interface.

 try_load(Path, Name, OptionList)

 Provides more control than the load/2/reload/2 and
load_driver/2/reload_driver/2
interfaces. It never waits for completion of other operations related to the
driver, but immediately returns the status of the driver as one of the
following

 try_unload(Name, OptionList)

 This is the low-level function to unload (or decrement reference counts of) a
driver. It can be used to force port killing, in much the same way as the driver
option kill_ports implicitly does. Also, it can trigger a monitor either
because other users still have the driver loaded or
because open ports use the driver.

 unload(Name)

 Unloads, or at least dereferences the driver named Name. If the caller is the
last user of the driver, and no more open ports use the
driver, the driver gets unloaded. Otherwise, unloading is delayed until all
ports are closed and no users remain.

 unload_driver(Name)

 Unloads, or at least dereferences the driver named Name. If the caller is the
last user of the driver, all remaining open ports using
the driver are killed with reason driver_unloaded and the driver eventually
gets unloaded.

 Types

 driver()

 (not exported)

 -type driver() :: iolist() | atom().

 path()

 (not exported)

 -type path() :: string() | atom().

 Functions

 demonitor(MonitorRef)

 -spec demonitor(MonitorRef) -> ok when MonitorRef :: reference().

Removes a driver monitor in much the same way as erlang:demonitor/1 in ERTS
does with process monitors.
For details about how to create driver monitors, see monitor/2,
try_load/3, and try_unload/2.
The function throws a badarg exception if the parameter is not a
reference/0.

 format_error(ErrorDesc)

 -spec format_error(ErrorDesc) -> string() when ErrorDesc :: term().

Takes an ErrorDesc returned by load, unload, or reload functions and returns a
string that describes the error or warning.
Note
Because of peculiarities in the dynamic loading interfaces on different
platforms, the returned string is only guaranteed to describe the correct
error if format_error/1 is called in the same instance of the Erlang virtual
machine as the error appeared in (meaning the same operating system process).

 info()

 -spec info() -> AllInfoList
 when
 AllInfoList :: [DriverInfo],
 DriverInfo :: {DriverName, InfoList},
 DriverName :: string(),
 InfoList :: [InfoItem],
 InfoItem :: {Tag :: atom(), Value :: term()}.

Returns a list of tuples {DriverName, InfoList}, where InfoList is the
result of calling info/1 for that DriverName. Only dynamically linked-in
drivers are included in the list.

 info(Name)

 -spec info(Name) -> InfoList
 when
 Name :: driver(),
 InfoList :: [InfoItem, ...],
 InfoItem :: {Tag :: atom(), Value :: term()}.

Returns a list of tuples {Tag, Value}, where Tag is the information item and
Value is the result of calling info/2 with this driver name and this tag.
The result is a tuple list containing all information available about a driver.
The following tags appears in the list:
	processes
	driver_options
	port_count
	linked_in_driver
	permanent
	awaiting_load
	awaiting_unload

For a detailed description of each value, see info/2.
The function throws a badarg exception if the driver is not present in the
system.

 info(Name, Tag)

 -spec info(Name, Tag) -> Value
 when
 Name :: driver(),
 Tag ::
 processes | driver_options | port_count | linked_in_driver | permanent |
 awaiting_load | awaiting_unload,
 Value :: term().

Returns specific information about one aspect of a driver. Parameter Tag
specifies which aspect to get information about. The return Value differs
between different tags:
	processes - Returns all processes containing users
of the specific drivers as a list of tuples {pid(),integer() >= 0}, where
integer/0 denotes the number of users in process pid/0.

	driver_options - Returns a list of the driver options provided when
loading, and any options set by the driver during initialization. The only
valid option is kill_ports.

	port_count - Returns the number of ports (an integer() >= 0) using the
driver.

	linked_in_driver - Returns a boolean/0, which is true if the
driver is a statically linked-in one, otherwise false.

	permanent - Returns a boolean/0, which is true if the driver has
made itself permanent (and is not a statically linked-in driver), otherwise
false.

	awaiting_load - Returns a list of all processes having monitors for
loading active. Each process is returned as {pid(),integer() >= 0}, where
integer/0 is the number of monitors held by process pid/0.

	awaiting_unload - Returns a list of all processes having monitors for
unloading active. Each process is returned as {pid(),integer() >= 0},
where integer/0 is the number of monitors held by process pid/0.

If option linked_in_driver or permanent returns true, all other options
return linked_in_driver or permanent, respectively.
The function throws a badarg exception if the driver is not present in the
system or if the tag is not supported.

 load(Path, Name)

 -spec load(Path, Name) -> ok | {error, ErrorDesc}
 when Path :: path(), Name :: driver(), ErrorDesc :: term().

Loads and links the dynamic driver Name. Path is a file path to the
directory containing the driver. Name must be a shareable object/dynamic
library. Two drivers with different Path parameters cannot be loaded under the
same name. Name is a string or atom containing at least one character.
The Name specified is to correspond to the filename of the dynamically
loadable object file residing in the directory specified as Path, but
without the extension (that is, .so). The driver name provided in the driver
initialization routine must correspond with the filename, in much the same way
as Erlang module names correspond to the names of the .beam files.
If the driver was previously unloaded, but is still present because of open
ports to it, a call to load/2 stops the unloading and keeps the
driver (as long as Path is the same), and ok is returned. If you really want
the object code to be reloaded, use reload/2 or the low-level interface
try_load/3 instead. See also the description of
different scenarios for loading/unloading in the
introduction.
If more than one process tries to load an already loaded driver with the same
Path, or if the same process tries to load it many times, the function returns
ok. The emulator keeps track of the load/2 calls, so that a
corresponding number of unload/2 calls must be done from the same process
before the driver gets unloaded. It is therefore safe for an application to load
a driver that is shared between processes or applications when needed. It can
safely be unloaded without causing trouble for other parts of the system.
It is not allowed to load multiple drivers with the same name but with different
Path parameters.
Note
Path is interpreted literally, so that all loaders of the same driver must
specify the same literal Path string, although different paths can point
out the same directory in the file system (because of use of relative paths
and links).
On success, the function returns ok. On failure, the return value is
{error,ErrorDesc}, where ErrorDesc is an opaque term to be translated into
human readable form by function format_error/1.
For more control over the error handling, use the try_load/3 interface
instead.
The function throws a badarg exception if the parameters are not specified as
described here.

 load_driver(Path, Name)

 -spec load_driver(Path, Name) -> ok | {error, ErrorDesc}
 when Path :: path(), Name :: driver(), ErrorDesc :: term().

Works essentially as load/2, but loads the driver with other
options. All ports using the driver are killed with reason driver_unloaded
when the driver is to be unloaded.
The number of loads and unloads by different users
influences the loading and unloading of a driver file. The port killing
therefore only occurs when the last user unloads the
driver, or when the last process having loaded the driver exits.
This interface (or at least the name of the functions) is kept for backward
compatibility. Using try_load/3 with {driver_options,[kill_ports]} in the
option list gives the same effect regarding the port killing.
The function throws a badarg exception if the parameters are not specified as
described here.

 loaded_drivers()

 -spec loaded_drivers() -> {ok, Drivers} when Drivers :: [Driver], Driver :: string().

Returns a list of all the available drivers, both (statically) linked-in and
dynamically loaded ones.
The driver names are returned as a list of strings rather than a list of atoms
for historical reasons.
For more information about drivers, see info.

 monitor(Tag, Item)

 -spec monitor(Tag, Item) -> MonitorRef
 when
 Tag :: driver,
 Item :: {Name, When},
 Name :: driver(),
 When :: loaded | unloaded | unloaded_only,
 MonitorRef :: reference().

Creates a driver monitor and works in many ways as erlang:monitor/2 in ERTS,
does for processes. When a driver changes state, the monitor results in a
monitor message that is sent to the calling process. MonitorRef returned by
this function is included in the message sent.
As with process monitors, each driver monitor set only generates one single
message. The monitor is "destroyed" after the message is sent, so it is then
not needed to call demonitor/1.
MonitorRef can also be used in subsequent calls to demonitor/1 to remove a
monitor.
The function accepts the following parameters:
	Tag - The monitor tag is always driver, as this function can only be
used to create driver monitors. In the future, driver monitors will be
integrated with process monitors, why this parameter has to be specified for
consistence.

	Item - Parameter Item specifies which driver to monitor (the driver
name) and which state change to monitor. The parameter is a tuple of arity two
whose first element is the driver name and second element is one of the
following:
	loaded - Notifies when the driver is reloaded (or loaded if loading is
underway). It only makes sense to monitor drivers that are in the process of
being loaded or reloaded. A future driver name for loading cannot be
monitored. That only results in a DOWN message sent immediately.
Monitoring for loading is therefore most useful when triggered by function
try_load/3, where the monitor is created because the driver is in such a
pending state.
Setting a driver monitor for loading eventually leads to one of the
following messages being sent:
	{'UP', reference(), driver, Name, loaded} - This message is sent
either immediately if the driver is already loaded and no reloading is
pending, or when reloading is executed if reloading is pending.
The user is expected to know if reloading is
demanded before creating a monitor for loading.

	{'UP', reference(), driver, Name, permanent} - This message is sent
if reloading was expected, but the (old) driver made itself permanent
before reloading. It is also sent if the driver was permanent or
statically linked-in when trying to create the monitor.

	{'DOWN', reference(), driver, Name, load_cancelled} - This message
arrives if reloading was underway, but the requesting
user cancelled it by dying or calling try_unload/2
(or unload/1/unload_driver/1) again
before it was reloaded.

	{'DOWN', reference(), driver, Name, {load_failure, Failure}} - This
message arrives if reloading was underway but the loading for some reason
failed. The Failure term is one of the errors that can be returned from
try_load/3. The error term can be passed to format_error/1 for
translation into human readable form. Notice that the translation must be
done in the same running Erlang virtual machine as the error was detected
in.

	unloaded - Monitors when a driver gets unloaded. If one monitors a
driver that is not present in the system, one immediately gets notified that
the driver got unloaded. There is no guarantee that the driver was ever
loaded.
A driver monitor for unload eventually results in one of the following
messages being sent:
	{'DOWN', reference(), driver, Name, unloaded} - The monitored driver
instance is now unloaded. As the unload can be a result of a
reload/2 request, the driver can once again have been
loaded when this message arrives.

	{'UP', reference(), driver, Name, unload_cancelled} - This message
is sent if unloading was expected, but while the driver was waiting for
all ports to get closed, a new user of the driver
appeared, and the unloading was cancelled.
This message appears if {ok, pending_driver} was returned from
try_unload/2 for the last user of the driver, and
then {ok, already_loaded} is returned from a call to try_load/3.
If one really wants to monitor when the driver gets unloaded, this
message distorts the picture, because no unloading was done. Option
unloaded_only creates a monitor similar to an unloaded monitor, but
never results in this message.

	{'UP', reference(), driver, Name, permanent} - This message is sent
if unloading was expected, but the driver made itself permanent before
unloading. It is also sent if trying to monitor a permanent or statically
linked-in driver.

	unloaded_only - A monitor created as unloaded_only behaves exactly
as one created as unloaded except that the
{'UP', reference(), driver, Name, unload_cancelled} message is never sent,
but the monitor instead persists until the driver really gets unloaded.

The function throws a badarg exception if the parameters are not specified as
described here.

 reload(Path, Name)

 -spec reload(Path, Name) -> ok | {error, ErrorDesc}
 when
 Path :: path(),
 Name :: driver(),
 ErrorDesc :: pending_process | OpaqueError,
 OpaqueError :: term().

Reloads the driver named Name from a possibly different Path than previously
used. This function is used in the code change
scenario described in the introduction.
If there are other users of this driver, the function
returns {error, pending_process}, but if there are no other users, the
function call hangs until all open ports are closed.
Note
Avoid mixing multiple users with driver reload requests.
To avoid hanging on open ports, use function try_load/3 instead.
The Name and Path parameters have exactly the same meaning as when calling
the plain function load/2.
On success, the function returns ok. On failure, the function returns an
opaque error, except the pending_process error described earlier. The opaque
errors are to be translated into human readable form by function
format_error/1.
For more control over the error handling, use the try_load/3 interface
instead.
The function throws a badarg exception if the parameters are not specified as
described here.

 reload_driver(Path, Name)

 -spec reload_driver(Path, Name) -> ok | {error, ErrorDesc}
 when
 Path :: path(),
 Name :: driver(),
 ErrorDesc :: pending_process | OpaqueError,
 OpaqueError :: term().

Works exactly as reload/2, but for drivers loaded with the load_driver/2
interface.
As this interface implies that ports are killed when the last user disappears,
the function does not hang waiting for ports to get closed.
For more details, see scenarios in this module
description and the function description for reload/2.
The function throws a badarg exception if the parameters are not specified as
described here.

 try_load(Path, Name, OptionList)

 -spec try_load(Path, Name, OptionList) -> {ok, Status} | {ok, PendingStatus, Ref} | {error, ErrorDesc}
 when
 Path :: path(),
 Name :: driver(),
 OptionList :: [Option],
 Option ::
 {driver_options, DriverOptionList} |
 {monitor, MonitorOption} |
 {reload, ReloadOption},
 DriverOptionList :: [DriverOption],
 DriverOption :: kill_ports,
 MonitorOption :: pending_driver | pending,
 ReloadOption :: pending_driver | pending,
 Status :: loaded | already_loaded | PendingStatus,
 PendingStatus :: pending_driver | pending_process,
 Ref :: reference(),
 ErrorDesc :: ErrorAtom | OpaqueError,
 ErrorAtom ::
 linked_in_driver | inconsistent | permanent | not_loaded_by_this_process |
 not_loaded | pending_reload | pending_process,
 OpaqueError :: term().

Provides more control than the load/2/reload/2 and
load_driver/2/reload_driver/2
interfaces. It never waits for completion of other operations related to the
driver, but immediately returns the status of the driver as one of the
following:
	{ok, loaded} - The driver was loaded and is immediately usable.

	{ok, already_loaded} - The driver was already loaded by another process
or is in use by a living port, or both. The load by you is registered and a
corresponding try_unload is expected sometime in the future.

	{ok, pending_driver}or {ok, pending_driver, reference()} - The load
request is registered, but the loading is delayed because an earlier instance
of the driver is still waiting to get unloaded (open ports use it). Still,
unload is expected when you are done with the driver. This return value
mostly occurs when options {reload,pending_driver} or {reload,pending}
are used, but can occur when another user is unloading
a driver in parallel and driver option kill_ports is set. In other words,
this return value always needs to be handled.

	{ok, pending_process}or {ok, pending_process, reference()} - The load
request is registered, but the loading is delayed because an earlier instance
of the driver is still waiting to get unloaded by another
user (not only by a port, in which case
{ok,pending_driver} would have been returned). Still, unload is expected
when you are done with the driver. This return value only occurs when option
{reload,pending} is used.

When the function returns {ok, pending_driver} or {ok, pending_process}, one
can get information about when the driver is actually loaded by using option
{monitor, MonitorOption}.
When monitoring is requested, and a corresponding {ok, pending_driver} or
{ok, pending_process} would be returned, the function instead returns a tuple
{ok, PendingStatus, reference()} and the process then gets a monitor message
later, when the driver gets loaded. The monitor message to expect is described
in the function description of monitor/2.
Note
In case of loading, monitoring can not only get triggered by using option
{reload, ReloadOption}, but also in special cases where the load error is
transient. Thus, {monitor, pending_driver} is to be used under basically
all real world circumstances.
The function accepts the following parameters:
	Path - The file system path to the directory where the driver object
file is located. The filename of the object file (minus extension) must
correspond to the driver name (used in parameter Name) and the driver must
identify itself with the same name. Path can be provided as an iolist(),
meaning it can be a list of other iolist/0s, characters (8-bit integers),
or binaries, all to be flattened into a sequence of characters.
The (possibly flattened) Path parameter must be consistent throughout the
system. A driver is to, by all users, be loaded using
the same literal Path. The exception is when reloading is requested, in
which case Path can be specified differently. Notice that all
users trying to load the driver later need to use the
new Path if Path is changed using a reload option. This is yet another
reason to have only one loader of a driver one wants to upgrade in a running
system.

	Name - This parameter is the name of the driver to be used in subsequent
calls to function erlang:open_port in ERTS. The name
can be specified as an iolist/0 or an atom/0. The name specified when
loading is used to find the object file (with the help of Path and the
system-implied extension suffix, that is, .so). The name by which the driver
identifies itself must also be consistent with this Name parameter, much as
the module name of a Beam file much corresponds to its filename.

	OptionList - Some options can be specified to control the loading
operation. The options are specified as a list of two-tuples. The tuples have
the following values and meanings:
	{driver_options, DriverOptionList} - This is to provide options that
changes its general behavior and "sticks" to the driver throughout its
lifespan.
The driver options for a specified driver name need always to be consistent,
even when the driver is reloaded, meaning that they are as much a part of
the driver as the name.
The only allowed driver option is kill_ports, which means that all ports
opened to the driver are killed with exit reason driver_unloaded when no
process any longer has the driver loaded. This situation arises either when
the last user calls try_unload/2, or when the last
process having loaded the driver exits.

	{monitor, MonitorOption} - A MonitorOption tells
try_load/3 to trigger a driver monitor under certain
conditions. When the monitor is triggered, the function returns a
three-tuple {ok, PendingStatus, reference()}, where reference/0 is the
monitor reference for the driver monitor.
Only one MonitorOption can be specified. It is one of the following:
	The atom pending, which means that a monitor is to be created whenever a
load operation is delayed,
	The atom pending_driver, in which a monitor is created whenever the
operation is delayed because of open ports to an otherwise unused driver.

Option pending_driver is of little use, but is present for completeness,
as it is well defined which reload options that can give rise to which
delays. However, it can be a good idea to use the same MonitorOption as
the ReloadOption, if present.
If reloading is not requested, it can still be useful to specify option
monitor, as forced unloads (driver option kill_ports or option
kill_ports to try_unload/2) trigger a transient state where driver
loading cannot be performed until all closing ports are closed. Thus, as
try_unload can, in almost all situations, return {ok, pending_driver},
always specify at least {monitor, pending_driver} in production code (see
the monitor discussion earlier).

	{reload, ReloadOption} - This option is used to reload a driver from
disk, most often in a code upgrade scenario. Having a reload option also
implies that parameter Path does not need to be consistent with earlier
loads of the driver.
To reload a driver, the process must have loaded the driver before, that is,
there must be an active user of the driver in the
process.
The reload option can be either of the following:
	pending - With the atom pending, reloading is requested for any
driver and is effectuated when all ports opened to the driver are
closed. The driver replacement in this case takes place regardless if
there are still pending users having the driver
loaded.
The option also triggers port-killing (if driver option kill_ports is
used) although there are pending users, making it usable for forced driver
replacement, but laying much responsibility on the driver
users. The pending option is seldom used as one does
not want other users to have loaded the driver when
code change is underway.

	pending_driver - This option is more useful. Here, reloading is
queued if the driver is not loaded by any other
users, but the driver has opened ports, in which
case {ok, pending_driver} is returned (a monitor option is
recommended).

If the driver is unloaded (not present in the system), error code
not_loaded is returned. Option reload is intended for when the user has
already loaded the driver in advance.

The function can return numerous errors, some can only be returned given a
certain combination of options.
Some errors are opaque and can only be interpreted by passing them to function
format_error/1, but some can be interpreted directly:
	{error,linked_in_driver} - The driver with the specified name is an
Erlang statically linked-in driver, which cannot be manipulated with this API.

	{error,inconsistent} - The driver is already loaded with other
DriverOptionList or a different literal Path argument.
This can occur even if a reload option is specified, if DriverOptionList
differs from the current.

	{error, permanent} - The driver has requested itself to be permanent,
making it behave like an Erlang linked-in driver and can no longer be
manipulated with this API.

	{error, pending_process} - The driver is loaded by other
users when option {reload, pending_driver} was
specified.

	{error, pending_reload} - Driver reload is already requested by another
user when option {reload, ReloadOption} was specified.

	{error, not_loaded_by_this_process} - Appears when option reload is
specified. The driver Name is present in the system, but there is no
user of it in this process.

	{error, not_loaded} - Appears when option reload is specified. The
driver Name is not in the system. Only drivers loaded by this process can be
reloaded.

All other error codes are to be translated by function format_error/1. Notice
that calls to format_error are to be performed from the same running instance
of the Erlang virtual machine as the error is detected in, because of
system-dependent behavior concerning error values.
If the arguments or options are malformed, the function throws a badarg
exception.

 try_unload(Name, OptionList)

 -spec try_unload(Name, OptionList) -> {ok, Status} | {ok, PendingStatus, Ref} | {error, ErrorAtom}
 when
 Name :: driver(),
 OptionList :: [Option],
 Option :: {monitor, MonitorOption} | kill_ports,
 MonitorOption :: pending_driver | pending,
 Status :: unloaded | PendingStatus,
 PendingStatus :: pending_driver | pending_process,
 Ref :: reference(),
 ErrorAtom ::
 linked_in_driver | not_loaded | not_loaded_by_this_process | permanent.

This is the low-level function to unload (or decrement reference counts of) a
driver. It can be used to force port killing, in much the same way as the driver
option kill_ports implicitly does. Also, it can trigger a monitor either
because other users still have the driver loaded or
because open ports use the driver.
Unloading can be described as the process of telling the emulator that this
particular part of the code in this particular process (that is, this
user) no longer needs the driver. That can, if there are
no other users, trigger unloading of the driver, in which case the driver name
disappears from the system and (if possible) the memory occupied by the driver
executable code is reclaimed.
If the driver has option kill_ports set, or if kill_ports is specified as an
option to this function, all pending ports using this driver are killed when
unloading is done by the last user. If no port-killing is
involved and there are open ports, the unloading is delayed until no more open
ports use the driver. If, in this case, another user (or
even this user) loads the driver again before the driver is unloaded, the
unloading never takes place.
To allow the user to request unloading to wait for
actual unloading, monitor triggers can be specified in much the same way as
when loading. However, as users of this function seldom
are interested in more than decrementing the reference counts, monitoring is
seldom needed.
Note
If option kill_ports is used, monitor trigging is crucial, as the ports are
not guaranteed to be killed until the driver is unloaded. Thus, a monitor must
be triggered for at least the pending_driver case.
The possible monitor messages to expect are the same as when using option
unloaded to function monitor/2.
The function returns one of the following statuses upon success:
	{ok, unloaded} - The driver was immediately unloaded, meaning that the
driver name is now free to use by other drivers and, if the underlying OS
permits it, the memory occupied by the driver object code is now reclaimed.
The driver can only be unloaded when there are no open ports using it and no
more users require it to be loaded.

	{ok, pending_driver}or {ok, pending_driver, reference()} - Indicates
that this call removed the last user from the driver,
but there are still open ports using it. When all ports are closed and no new
users have arrived, the driver is reloaded and the name
and memory reclaimed.
This return value is valid even if option kill_ports was used, as killing
ports can be a process that does not complete immediately. However, the
condition is in that case transient. Monitors are always useful to detect when
the driver is really unloaded.

	{ok, pending_process}or {ok, pending_process, reference()} - The
unload request is registered, but other users still hold
the driver. Notice that the term pending_process can refer to the running
process; there can be more than one user in the same
process.
This is a normal, healthy, return value if the call was just placed to inform
the emulator that you have no further use of the driver. It is the most common
return value in the most common scenario described
in the introduction.

The function accepts the following parameters:
	Name - Name is the name of the driver to be unloaded. The name can be
specified as an iolist/0 or as an atom/0.

	OptionList - Argument OptionList can be used to specify certain
behavior regarding ports and triggering monitors under certain conditions:
	kill_ports - Forces killing of all ports opened using this driver,
with exit reason driver_unloaded, if you are the last
user of the driver.
If other users have the driver loaded, this option has
no effect.
To get the consistent behavior of killing ports when the last
user unloads, use driver option kill_ports when
loading the driver instead.

	{monitor, MonitorOption} - Creates a driver monitor if the condition
specified in MonitorOption is true. The valid options are:
	pending_driver - Creates a driver monitor if the return value is to
be {ok, pending_driver}.

	pending - Creates a monitor if the return value is
{ok, pending_driver} or {ok, pending_process}.

The pending_driver MonitorOption is by far the most useful. It must be
used to ensure that the driver really is unloaded and the ports closed
whenever option kill_ports is used, or the driver can have been loaded
with driver option kill_ports.
Using the monitor triggers in the call to try_unload ensures that the
monitor is added before the unloading is executed, meaning that the monitor
is always properly triggered, which is not the case if
monitor/2 is called separately.

The function can return the following error conditions, all well specified (no
opaque values):
	{error, linked_in_driver} - You were trying to unload an Erlang
statically linked-in driver, which cannot be manipulated with this interface
(and cannot be unloaded at all).

	{error, not_loaded} - The driver Name is not present in the system.

	{error, not_loaded_by_this_process} - The driver Name is present in
the system, but there is no user of it in this process.
As a special case, drivers can be unloaded from processes that have done no
corresponding call to try_load/3 if, and only if, there are
no users of the driver at all, which can occur if the process containing the
last user dies.

	{error, permanent} - The driver has made itself permanent, in which case
it can no longer be manipulated by this interface (much like a statically
linked-in driver).

The function throws a badarg exception if the parameters are not specified as
described here.

 unload(Name)

 -spec unload(Name) -> ok | {error, ErrorDesc} when Name :: driver(), ErrorDesc :: term().

Unloads, or at least dereferences the driver named Name. If the caller is the
last user of the driver, and no more open ports use the
driver, the driver gets unloaded. Otherwise, unloading is delayed until all
ports are closed and no users remain.
If there are other users of the driver, the reference
counts of the driver is merely decreased, so that the caller is no longer
considered a user of the driver. For use scenarios, see
the description in the beginning of this module.
The ErrorDesc returned is an opaque value to be passed further on to function
format_error/1. For more control over the operation, use the try_unload/2
interface.
The function throws a badarg exception if the parameters are not specified as
described here.

 unload_driver(Name)

 -spec unload_driver(Name) -> ok | {error, ErrorDesc} when Name :: driver(), ErrorDesc :: term().

Unloads, or at least dereferences the driver named Name. If the caller is the
last user of the driver, all remaining open ports using
the driver are killed with reason driver_unloaded and the driver eventually
gets unloaded.
If there are other users of the driver, the reference
counts of the driver is merely decreased, so that the caller is no longer
considered a user. For use scenarios, see the
description in the beginning of this module.
The ErrorDesc returned is an opaque value to be passed further on to function
format_error/1. For more control over the operation, use the try_unload/2
interface.
The function throws a badarg exception if the parameters are not specified as
described here.

erl_debugger

Erlang debugger support (EXPERIMENTAL).
This module exposes low-level functionality for the implementation
of a debugger for Erlang.
Any local process can register itself as the debugger for a node, but
there can be at most one such process registered at any given time.
Using the BIFs in this module, a debugger can:
	set breakpoints;
	inspect internal process state, such registers, stack-frames;
	get notified on debugger events such as a process hitting a breakpoint;
	resume processes paused on breakpoints

At the moment, the API is highly experimental; so don't depend on it,
or otherwise expect frequent incompatible changes.

 Summary

 Types

 event()

 Debugger events.

 event_message()

 The debugger process will receive debugger-event messages, wrapped in
an envelope of this type.

 instrumentation()

 Debugging instrumentations that can be applied on module loading.

 reg_val()

 The value of an X or a Y register, provided it fits within the requested
size.

 session()

 Debugger session identifier.

 stack_frame()

 A stack-frame, including the value of each slot.

 stack_frame_fun()

 What is running in each stack frame, including special VM frames.

 stack_frame_info()

 Extra information about a stack-frame.

 stack_frame_slot()

 The contents of a stack frame slot can be a Y register
or an exception handler.

 Functions

 breakpoint(Module, Line, Flag)

 Sets or clear a breakpoint on the given Module/Line.

 breakpoints(Module)

 Returns information on available breakpoints for a module.

 breakpoints(Module, FunName, Arity)

 Returns information on available breakpoints for a given function. .

 instrumentations()

 Returns the instrumentations that will be applied on module loading.

 peek_stack_frame_slot(Pid, FrameNo, Slot, MaxSize)

 Gets the value of a slot in a suspended process stack-frame.

 peek_xreg(Pid, Reg, MaxSize)

 Get the value of an X register for a suspended process.

 register(Pid)

 Register the given process as the debugger.

 stack_frames(Pid, MaxTermSize)

 Get the all the stack-frames for a suspended process.

 supported()

 Returns true if the emulator supports debugging.

 toggle_instrumentations(Toggle)

 Updates the instrumentations that will be applied on module loading.

 unregister(Pid, Session)

 Unregisters the given process.

 whereis()

 Returns the pid of the registered debugger.

 xregs_count(Pid)

 Get the number of X registers currently in use by a suspended process.

 Types

 event()

 (since OTP 28.0)

 -type event() :: {breakpoint, pid(), mfa(), Line :: pos_integer(), Resume :: fun(() -> ok)}.

Debugger events.
Here are the possible events:
	{breakpoint, Pid, {M,F,A}, Line, Resume}: process Pid hit a breakpoint
on module M, at the given Line. The debugger can resume the process
by executing Resume().

 event_message()

 (since OTP 28.0)

 -type event_message() :: {debugger_event, session(), event()}.

The debugger process will receive debugger-event messages, wrapped in
an envelope of this type.

 instrumentation()

 (since OTP 28.0)

 -type instrumentation() :: line_breakpoint.

Debugging instrumentations that can be applied on module loading.
	line_breakpoint: Allows setting breakpoints at the beginning
 of executable lines

 reg_val()

 (since OTP 28.0)

 -type reg_val() :: {value, term()} | {too_large, Size :: pos_integer()}.

The value of an X or a Y register, provided it fits within the requested
size.
If it is too large, then size of the term.

 session()

 (since OTP 28.0)

 -opaque session()

Debugger session identifier.
It is attached to all debugger events.

 stack_frame()

 (since OTP 28.0)

 -type stack_frame() :: {FrameNo :: non_neg_integer(), stack_frame_fun(), stack_frame_info()}.

A stack-frame, including the value of each slot.

 stack_frame_fun()

 (since OTP 28.0)

 -type stack_frame_fun() ::
 #{function := mfa(), line := pos_integer() | undefined} |
 '

 error_handler - kernel v10.4

error_handler

Default system error handler.
This module defines what happens when certain types of errors occur.
You can change the error handler of a process by calling
erlang:process_flag(error_handler, NewErrorHandler).
Notes
The code in error_handler is complex. Do not change it without fully
understanding the interaction between the error handler, the init process of
the code server, and the I/O mechanism of the code.
Code changes that seem small can cause a deadlock, as unforeseen consequences
can occur. The use of input is dangerous in this type of code.

 Summary

 Functions

 raise_undef_exception(Module, Function, Args)

 Raises an undef exception with a stacktrace, indicating that
Module:Function/N is undefined.

 undefined_function(Module, Function, Args)

 This function is called by the runtime system if a call is made to
Module:Function(Arg1,.., ArgN) and Module:Function/N is undefined. Notice
that this function is evaluated inside the process making the original call.

 undefined_lambda(Module, Fun, Args)

 This function is evaluated if a call is made to Fun(Arg1,.., ArgN) when the
module defining the fun is not loaded. The function is evaluated inside the
process making the original call.

 Functions

 raise_undef_exception(Module, Function, Args)

 (since OTP R16B)

 -spec raise_undef_exception(Module, Function, Args) -> no_return()
 when Module :: atom(), Function :: atom(), Args :: list().

Raises an undef exception with a stacktrace, indicating that
Module:Function/N is undefined.

 undefined_function(Module, Function, Args)

 -spec undefined_function(Module, Function, Args) -> any()
 when Module :: atom(), Function :: atom(), Args :: list().

This function is called by the runtime system if a call is made to
Module:Function(Arg1,.., ArgN) and Module:Function/N is undefined. Notice
that this function is evaluated inside the process making the original call.
This function first attempts to autoload Module. If that is not possible, an
undef exception is raised.
If it is possible to load Module and function Function/N is exported, it is
called.
Otherwise, if function '$handle_undefined_function'/2 is exported, it is
called as '$handle_undefined_function'(Function, Args).
Warning
Defining '$handle_undefined_function'/2 in ordinary application code is
highly discouraged. It is very easy to make subtle errors that can take a long
time to debug. Furthermore, none of the tools for static code analysis (such
as Dialyzer and Xref) supports the use of '$handle_undefined_function'/2 and
no such support will be added. Only use this function after having carefully
considered other, less dangerous, solutions. One example of potential
legitimate use is creating stubs for other sub-systems during testing and
debugging.
Otherwise an undef exception is raised.

 undefined_lambda(Module, Fun, Args)

 -spec undefined_lambda(Module, Fun, Args) -> term() when Module :: atom(), Fun :: fun(), Args :: list().

This function is evaluated if a call is made to Fun(Arg1,.., ArgN) when the
module defining the fun is not loaded. The function is evaluated inside the
process making the original call.
If Module is interpreted, the interpreter is invoked and the return value of
the interpreted Fun(Arg1,.., ArgN) call is returned.
Otherwise, it returns, if possible, the value of apply(Fun, Args)
after an attempt is made to autoload Module. If this is not possible, the call
fails with exit reason undef.

 heart - kernel v10.4

heart

Heartbeat monitoring of an Erlang runtime system.
This modules contains the interface to the heart process. heart sends
periodic heartbeats to an external port program, which is also named heart.
The purpose of the heart port program is to check that the Erlang runtime
system it is supervising is still running. If the port program has not received
any heartbeats within HEART_BEAT_TIMEOUT seconds (defaults to 60 seconds), the
system can be rebooted.
An Erlang runtime system to be monitored by a heart program is to be started
with command-line flag -heart (see also erl(1)). The
heart process is then started automatically:
% erl -heart ...
If the system is to be rebooted because of missing heartbeats, or a terminated
Erlang runtime system, environment variable HEART_COMMAND must be set before
the system is started. If this variable is not set, a warning text is printed
but the system does not reboot.
To reboot on Windows, HEART_COMMAND can be set to heart -shutdown (included
in the Erlang delivery) or to any other suitable program that can activate a
reboot.
The environment variable HEART_BEAT_TIMEOUT can be used to configure the heart
time-outs; it can be set in the operating system shell before Erlang is started
or be specified at the command line:
% erl -heart -env HEART_BEAT_TIMEOUT 30 ...
The value (in seconds) must be in the range 10 < X <= 65535.
When running on OSs lacking support for monotonic time, heart is susceptible
to system clock adjustments of more than HEART_BEAT_TIMEOUT seconds. When this
happens, heart times out and tries to reboot the system. This can occur, for
example, if the system clock is adjusted automatically by use of the Network
Time Protocol (NTP).
If a crash occurs, an erl_crash.dump is not written unless environment
variable ERL_CRASH_DUMP_SECONDS is set:
% erl -heart -env ERL_CRASH_DUMP_SECONDS 10 ...
If a regular core dump is wanted, let heart know by setting the kill signal to
abort using environment variable HEART_KILL_SIGNAL=SIGABRT. If unset, or not
set to SIGABRT, the default behavior is a kill signal using SIGKILL:
% erl -heart -env HEART_KILL_SIGNAL SIGABRT ...
If heart should not kill the Erlang runtime system, this can be indicated
using the environment variable HEART_NO_KILL=TRUE. This can be useful if the
command executed by heart takes care of this, for example as part of a specific
cleanup sequence. If unset, or not set to TRUE, the default behaviour will be
to kill as described above.
% erl -heart -env HEART_NO_KILL 1 ...
Furthermore, ERL_CRASH_DUMP_SECONDS has the following behavior on heart:
	ERL_CRASH_DUMP_SECONDS=0 - Suppresses the writing of a crash dump file
entirely, thus rebooting the runtime system immediately. This is the same as
not setting the environment variable.

	ERL_CRASH_DUMP_SECONDS=-1 - Setting the environment variable to a
negative value does not reboot the runtime system until the crash dump file is
completely written.

	ERL_CRASH_DUMP_SECONDS=S - heart waits for S seconds to let the
crash dump file be written. After S seconds, heart reboots the runtime
system, whether the crash dump file is written or not.

In the following descriptions, all functions fail with reason badarg if
heart is not started.

 Summary

 Types

 heart_option()

 Functions

 clear_callback()

 Removes the validation callback call before heartbeats.

 clear_cmd()

 Clears the temporary boot command. If the system terminates, the normal
HEART_COMMAND is used to reboot.

 get_callback()

 Get the validation callback. If the callback is cleared, none will be
returned.

 get_cmd()

 Gets the temporary reboot command. If the command is cleared, the empty string
is returned.

 get_options()

 Returns {ok, Options} where Options is a list of current options enabled for
heart. If the callback is cleared, none will be returned.

 set_callback(Module, Function)

 This validation callback will be executed before any heartbeat is sent to the
port program. For the validation to succeed it needs to return with the value
ok.

 set_cmd(Cmd)

 Sets a temporary reboot command. This command is used if a HEART_COMMAND other
than the one specified with the environment variable is to be used to reboot the
system. The new Erlang runtime system uses (if it misbehaves) environment
variable HEART_COMMAND to reboot.

 set_options(Options)

 Valid options set_options are

 Types

 heart_option()

 (not exported)

 -type heart_option() :: check_schedulers.

 Functions

 clear_callback()

 (since OTP 18.3)

 -spec clear_callback() -> ok.

Removes the validation callback call before heartbeats.

 clear_cmd()

 -spec clear_cmd() -> ok.

Clears the temporary boot command. If the system terminates, the normal
HEART_COMMAND is used to reboot.

 get_callback()

 (since OTP 18.3)

 -spec get_callback() -> {ok, {Module, Function}} | none when Module :: atom(), Function :: atom().

Get the validation callback. If the callback is cleared, none will be
returned.

 get_cmd()

 -spec get_cmd() -> {ok, Cmd} when Cmd :: string().

Gets the temporary reboot command. If the command is cleared, the empty string
is returned.

 get_options()

 (since OTP 18.3)

 -spec get_options() -> {ok, Options} | none when Options :: [atom()].

Returns {ok, Options} where Options is a list of current options enabled for
heart. If the callback is cleared, none will be returned.

 set_callback(Module, Function)

 (since OTP 18.3)

 -spec set_callback(Module, Function) -> ok | {error, {bad_callback, {Module, Function}}}
 when Module :: atom(), Function :: atom().

This validation callback will be executed before any heartbeat is sent to the
port program. For the validation to succeed it needs to return with the value
ok.
An exception within the callback will be treated as a validation failure.
The callback will be removed if the system reboots.

 set_cmd(Cmd)

 -spec set_cmd(Cmd) -> ok | {error, {bad_cmd, Cmd}} when Cmd :: string().

Sets a temporary reboot command. This command is used if a HEART_COMMAND other
than the one specified with the environment variable is to be used to reboot the
system. The new Erlang runtime system uses (if it misbehaves) environment
variable HEART_COMMAND to reboot.
Limitations: Command string Cmd is sent to the heart program as an ISO
Latin-1 or UTF-8 encoded binary, depending on the filename encoding mode of the
emulator (see file:native_name_encoding/0). The size of the encoded binary
must be less than 2047 bytes.

 set_options(Options)

 (since OTP 18.3)

 -spec set_options(Options) -> ok | {error, {bad_options, Options}} when Options :: [heart_option()].

Valid options set_options are:
	check_schedulers - If enabled, a signal will be sent to each scheduler
to check its responsiveness. The system check occurs before any heartbeat sent
to the port program. If any scheduler is not responsive enough the heart
program will not receive its heartbeat and thus eventually terminate the node.

Returns with the value ok if the options are valid.

 os - kernel v10.4

os

Operating system-specific functions.
The functions in this module are operating system-specific. Careless use of
these functions results in programs that will only run on a specific platform.
On the other hand, with careful use, these functions can be of help in enabling
a program to run on most platforms.
Note
The functions in this module will raise a badarg exception if their
arguments contain invalid characters according to the description in the "Data
Types" section.

 Summary

 Types

 env_var_name()

 A string containing valid characters on the specific OS for environment variable
names using file:native_name_encoding()
encoding.

 env_var_name_value()

 Assuming that environment variables has been correctly set, a strings containing
valid characters on the specific OS for environment variable names and values
using file:native_name_encoding() encoding.

 env_var_value()

 A string containing valid characters on the specific OS for environment variable
values using file:native_name_encoding()
encoding.

 os_command()

 All characters needs to be valid characters on the specific OS using
file:native_name_encoding() encoding. Null
characters (integer value zero) are not allowed.

 os_command_opts()

 Options for os:cmd/2.

 Functions

 cmd(Command)

 Equivalent to cmd(Command, #{}).

 cmd(Command, Options)

 Executes Command in a command shell of the target OS, captures the standard
output and standard error of the command, and returns this result as a string.

 env()

 Returns a list of all environment variables. Each environment variable is
expressed as a tuple {VarName,Value}, where VarName is the name of the
variable and Value its value.

 find_executable(Name)

 Equivalent to find_executable(Name, Path) where
Path is the current execution path (that is, the environment variable PATH
on Unix and Windows).

 find_executable(Name, Path)

 Look up an executable program, with the specified name and a search path, in the
same way as the underlying OS.

 getenv()

 Returns a list of all environment variables. Each environment variable is
expressed as a single string on the format "VarName=Value", where VarName is
the name of the variable and Value its value.

 getenv(VarName)

 Returns the Value of the environment variable VarName, or false if the
environment variable is undefined.

 getenv(VarName, DefaultValue)

 Returns the Value of the environment variable VarName, or DefaultValue if
the environment variable is undefined.

 getpid()

 Returns the process identifier of the current Erlang emulator in the format most
commonly used by the OS environment.

 perf_counter()

 Returns the current performance counter value in perf_counter
time unit. This is a highly optimized call that
might not be traceable.

 perf_counter(Unit)

 Returns a performance counter that can be used as a very fast and high
resolution timestamp.

 putenv(VarName, Value)

 Sets a new Value for environment variable VarName.

 set_signal(Signal, Option)

 Enables or disables OS signals.

 system_time()

 Returns the current OS system time
in native time unit.

 system_time(Unit)

 Returns the current OS system time
converted into the Unit passed as argument.

 timestamp()

 Returns the current OS system time
in the same format as erlang:timestamp/0.

 type()

 Returns the Osfamily and, in some cases, the Osname of the current OS.

 unsetenv(VarName)

 Deletes the environment variable VarName.

 version()

 Returns the OS version. On most systems, this function returns a tuple, but a
string is returned instead if the system has versions that cannot be expressed
as three numbers.

 Types

 env_var_name()

 -type env_var_name() :: nonempty_string().

A string containing valid characters on the specific OS for environment variable
names using file:native_name_encoding()
encoding.
Null characters (integer value zero) are not allowed. On Unix, =
characters are not allowed. On Windows, a = character is only allowed as the
very first character in the string.

 env_var_name_value()

 -type env_var_name_value() :: nonempty_string().

Assuming that environment variables has been correctly set, a strings containing
valid characters on the specific OS for environment variable names and values
using file:native_name_encoding() encoding.
The first = characters appearing in the string separates environment variable
name (on the left) from environment variable value (on the right).

 env_var_value()

 -type env_var_value() :: string().

A string containing valid characters on the specific OS for environment variable
values using file:native_name_encoding()
encoding.
Null characters (integer value zero) are not allowed.

 os_command()

 -type os_command() :: atom() | io_lib:chars().

All characters needs to be valid characters on the specific OS using
file:native_name_encoding() encoding. Null
characters (integer value zero) are not allowed.

 os_command_opts()

 -type os_command_opts() ::
 #{max_size => non_neg_integer() | infinity, exception_on_failure => boolean()}.

Options for os:cmd/2.
	max_size - The maximum size of the data returned by the os:cmd/2 call.
See the os:cmd/2 documentation for more details.
	exception_on_failure - If set to true, cmd/2 will throw an error exception if
the command exits with a non-zero exit code.

 Functions

 cmd(Command)

 -spec cmd(Command) -> string() when Command :: os_command().

Equivalent to cmd(Command, #{}).

 cmd(Command, Options)

 (since OTP 20.2.3)

 -spec cmd(Command, Options) -> string() when Command :: os_command(), Options :: os_command_opts().

Executes Command in a command shell of the target OS, captures the standard
output and standard error of the command, and returns this result as a string.
Examples:
LsOut = os:cmd("ls"), % on unix platform
DirOut = os:cmd("dir"), % on Win32 platform
Notice that in some cases, standard output of a command when called from another
program can differ, compared with the standard output of the command when called
directly from an OS command shell.
The possible options are:
	max_size - The maximum size of the data returned by the os:cmd/2 call.
This option is a safety feature that should be used when the command executed
can return a very large, possibly infinite, result.
Example:
> os:cmd("cat /dev/zero", #{ max_size => 20 }).
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

	exception_on_failure - If set to true, os:cmd/2 will throw an error
exception if the command exits with a non-zero exit code. The exception reason
looks like this: {command_failed, ResultBeforeFailure, ExitCode} where
ResultBeforeFailure is the result written to stdout by the command before
the error happened and ExitCode is the exit code from the command.
Example:
> catch os:cmd("echo hello && exit 123", #{ exception_on_failure => true }).
{'EXIT',{{command_failed,"hello\n",123},
 [{os,cmd,2,[{file,"os.erl"},{line,579}]},
...

The command shell can be set using the
kernel configuration parameter, by default the
shell is detected upon system startup.

 env()

 (since OTP 24.0)

 -spec env() -> [{env_var_name(), env_var_value()}].

Returns a list of all environment variables. Each environment variable is
expressed as a tuple {VarName,Value}, where VarName is the name of the
variable and Value its value.
If Unicode filename encoding is in effect (see the
erl manual page), the strings can
contain characters with codepoints > 255.

 find_executable(Name)

 -spec find_executable(Name) -> Filename | false when Name :: string(), Filename :: string().

Equivalent to find_executable(Name, Path) where
Path is the current execution path (that is, the environment variable PATH
on Unix and Windows).

 find_executable(Name, Path)

 -spec find_executable(Name, Path) -> Filename | false
 when Name :: string(), Path :: string(), Filename :: string().

Look up an executable program, with the specified name and a search path, in the
same way as the underlying OS.
Path is to conform to the syntax of execution paths on the OS.
Returns the absolute filename of the executable program Name, or false if
the program is not found.

 getenv()

 -spec getenv() -> [env_var_name_value()].

Returns a list of all environment variables. Each environment variable is
expressed as a single string on the format "VarName=Value", where VarName is
the name of the variable and Value its value.
If Unicode filename encoding is in effect (see the
erl manual page), the strings can
contain characters with codepoints > 255.
Consider using env/0 for a nicer 2-tuple format.

 getenv(VarName)

 -spec getenv(VarName) -> Value | false when VarName :: env_var_name(), Value :: env_var_value().

Returns the Value of the environment variable VarName, or false if the
environment variable is undefined.
If Unicode filename encoding is in effect (see the
erl manual page), the strings
VarName and Value can contain characters with codepoints > 255.

 getenv(VarName, DefaultValue)

 (since OTP 18.0)

 -spec getenv(VarName, DefaultValue) -> Value
 when
 VarName :: env_var_name(), DefaultValue :: env_var_value(), Value :: env_var_value().

Returns the Value of the environment variable VarName, or DefaultValue if
the environment variable is undefined.
If Unicode filename encoding is in effect (see the
erl manual page), the strings
VarName and Value can contain characters with codepoints > 255.

 getpid()

 -spec getpid() -> Value when Value :: string().

Returns the process identifier of the current Erlang emulator in the format most
commonly used by the OS environment.
Returns Value as a string containing the (usually) numerical identifier for a process.
	On Unix, this is typically the return value of the getpid/0 system call.
	On Windows, the process id as returned by the GetCurrentProcessId() system call
is used.

 perf_counter()

 (since OTP 19.0)

 -spec perf_counter() -> Counter when Counter :: integer().

Returns the current performance counter value in perf_counter
time unit. This is a highly optimized call that
might not be traceable.

 perf_counter(Unit)

 (since OTP 19.0)

 -spec perf_counter(Unit) -> integer() when Unit :: erlang:time_unit().

Returns a performance counter that can be used as a very fast and high
resolution timestamp.
This counter is read directly from the hardware or operating system with the
same guarantees. This means that two consecutive calls to the function are not
guaranteed to be monotonic, though it most likely will be. The performance
counter will be converted to the resolution passed as an argument.
1> T1 = os:perf_counter(1000),receive after 10000 -> ok end,T2 = os:perf_counter(1000).
176525861
2> T2 - T1.
10004

 putenv(VarName, Value)

 -spec putenv(VarName, Value) -> true when VarName :: env_var_name(), Value :: env_var_value().

Sets a new Value for environment variable VarName.
If Unicode filename encoding is in effect (see the
erl manual page), the strings
VarName and Value can contain characters with codepoints > 255.
On Unix platforms, the environment is set using UTF-8 encoding if Unicode
filename translation is in effect. On Windows, the environment is set using wide
character interfaces.

 set_signal(Signal, Option)

 (since OTP 20.0)

 -spec set_signal(Signal, Option) -> ok
 when
 Signal ::
 sighup | sigquit | sigabrt | sigalrm | sigterm | sigusr1 | sigusr2 |
 sigchld | sigstop | sigtstp | sigcont | sigwinch | siginfo,
 Option :: default | handle | ignore.

Enables or disables OS signals.
Each signal my be set to one of the following options:
	ignore - This signal will be ignored.

	default - This signal will use the default signal handler for the
operating system.

	handle - This signal will notify
erl_signal_server when it is received by
the Erlang runtime system.

 system_time()

 (since OTP 18.0)

 -spec system_time() -> integer().

Returns the current OS system time
in native time unit.
Note
This time is not a monotonically increasing time.

 system_time(Unit)

 (since OTP 18.0)

 -spec system_time(Unit) -> integer() when Unit :: erlang:time_unit().

Returns the current OS system time
converted into the Unit passed as argument.
Calling os:system_time(Unit) is equivalent to
erlang:convert_time_unit(os:system_time(), native, Unit).
Note
This time is not a monotonically increasing time.

 timestamp()

 -spec timestamp() -> Timestamp when Timestamp :: erlang:timestamp().

Returns the current OS system time
in the same format as erlang:timestamp/0.
The tuple can be used together with function calendar:now_to_universal_time/1
or calendar:now_to_local_time/1 to get calendar time. Using the calendar time,
together with the MicroSecs part of the return tuple from this function,
allows you to log time stamps in high resolution and consistent with the time in
 the rest of the OS.
Example of code formatting a string in format "DD Mon YYYY HH:MM:SS.mmmmmm",
where DD is the day of month, Mon is the textual month name, YYYY is the year,
HH:MM:SS is the time, and mmmmmm is the microseconds in six positions:
-module(print_time).
-export([format_utc_timestamp/0]).
format_utc_timestamp() ->
 TS = {_,_,Micro} = os:timestamp(),
 {{Year,Month,Day},{Hour,Minute,Second}} =
calendar:now_to_universal_time(TS),
 Mstr = element(Month,{"Jan","Feb","Mar","Apr","May","Jun","Jul",
 "Aug","Sep","Oct","Nov","Dec"}),
 io_lib:format("~2w ~s ~4w ~2w:~2..0w:~2..0w.~6..0w",
 [Day,Mstr,Year,Hour,Minute,Second,Micro]).
This module can be used as follows:
1> io:format("~s~n",[print_time:format_utc_timestamp()]).
29 Apr 2009 9:55:30.051711
OS system time can also be retrieved by system_time/0 and system_time/1.

 type()

 -spec type() -> {Osfamily, Osname} when Osfamily :: unix | win32, Osname :: atom().

Returns the Osfamily and, in some cases, the Osname of the current OS.
On Unix, Osname has the same value as uname -s returns, but in lower case.
For example, on Solaris 1 and 2, it is sunos.
On Windows, Osname is nt.
Note
Think twice before using this function. Use module filename if you want to
inspect or build filenames in a portable way. Avoid matching on atom Osname.

 unsetenv(VarName)

 (since OTP R16B03)

 -spec unsetenv(VarName) -> true when VarName :: env_var_name().

Deletes the environment variable VarName.
If Unicode filename encoding is in effect (see the
erl manual page), the string
VarName can contain characters with codepoints > 255.

 version()

 -spec version() -> VersionString | {Major, Minor, Release}
 when
 VersionString :: string(),
 Major :: non_neg_integer(),
 Minor :: non_neg_integer(),
 Release :: non_neg_integer().

Returns the OS version. On most systems, this function returns a tuple, but a
string is returned instead if the system has versions that cannot be expressed
as three numbers.
Note
Think twice before using this function. If you still need to use it, always
call os:type() first.

 auth - kernel v10.4

auth

 This module is deprecated. See each function for what to use instead.

Erlang network authentication server.
For a description of the Magic Cookie system, refer
to Distributed Erlang in the Erlang Reference
Manual.

 Summary

 Types

 cookie()

 Functions

 cookie()

 deprecated

 Use erlang:get_cookie() in ERTS instead.

 cookie(TheCookie)

 deprecated

 Use erlang:set_cookie(node(), Cookie) in ERTS
instead.

 is_auth(Node)

 deprecated

 Returns yes if communication with Node is authorized.

 node_cookie([Node, Cookie])

 deprecated

 Equivalent to node_cookie(Node, Cookie).

 node_cookie(Node, Cookie)

 deprecated

 Sets the magic cookie of Node to Cookie and verifies the status of the
authorization.

 Types

 cookie()

 (not exported)

 -type cookie() :: atom().

 Functions

 cookie()

 This function is deprecated. auth:cookie/0 is deprecated; use erlang:get_cookie/0 instead.

 -spec cookie() -> Cookie when Cookie :: cookie().

Use erlang:get_cookie() in ERTS instead.

 cookie(TheCookie)

 This function is deprecated. auth:cookie/1 is deprecated; use erlang:set_cookie/2 instead.

 -spec cookie(TheCookie) -> true when TheCookie :: Cookie | [Cookie], Cookie :: cookie().

Use erlang:set_cookie(node(), Cookie) in ERTS
instead.

 is_auth(Node)

 This function is deprecated. auth:is_auth/1 is deprecated; use net_adm:ping/1 instead.

 -spec is_auth(Node) -> yes | no when Node :: node().

Returns yes if communication with Node is authorized.
Use net_adm:ping(Node) instead.
Notice that a connection to Node is established in this case. Returns no if
Node does not exist or communication is not authorized (it has another cookie
than auth thinks it has).

 node_cookie([Node, Cookie])

 This function is deprecated. auth:node_cookie/1 is deprecated; use erlang:set_cookie/2 and net_adm:ping/1 instead.

 -spec node_cookie(Cookies :: [node() | cookie(), ...]) -> yes | no.

Equivalent to node_cookie(Node, Cookie).

 node_cookie(Node, Cookie)

 This function is deprecated. auth:node_cookie/2 is deprecated; use erlang:set_cookie/2 and net_adm:ping/1 instead.

 -spec node_cookie(Node, Cookie) -> yes | no when Node :: node(), Cookie :: cookie().

Sets the magic cookie of Node to Cookie and verifies the status of the
authorization.
Equivalent to calling erlang:set_cookie(Node, Cookie),
followed by auth:is_auth(Node).

 erl_boot_server - kernel v10.4

erl_boot_server

Boot server for other Erlang machines.
This server is used to assist diskless Erlang nodes that fetch all Erlang code
from another machine.
This server is used to fetch all code, including the start script, if an Erlang
runtime system is started with command-line flag -loader inet. All hosts
specified with command-line flag -hosts Host must have one instance of this
server running.
This server can be started with the Kernel configuration parameter
start_boot_server.
The erl_boot_server can read regular files and files in archives. See code
and erl_prim_loader in ERTS.
Warning
The support for loading code from archive files is experimental. It is
released before it is ready to obtain early feedback. The file format,
semantics, interfaces, and so on, can be changed in a future release.
SEE ALSO
erts:init, erts:erl_prim_loader

 Summary

 Functions

 add_slave(Slave)

 Adds a Slave node to the list of allowed slave hosts.

 delete_slave(Slave)

 Deletes a Slave node from the list of allowed slave hosts.

 start(Slaves)

 Starts the boot server. Slaves is a list of IP addresses for hosts, which are
allowed to use this server as a boot server.

 start_link(Slaves)

 Starts the boot server and links to the caller. This function is used to start
the server if it is included in a supervision tree.

 which_slaves()

 Returns the current list of allowed slave hosts.

 Functions

 add_slave(Slave)

 -spec add_slave(Slave) -> ok | {error, Reason}
 when
 Slave :: Host,
 Host :: inet:ip_address() | inet:hostname(),
 Reason :: {badarg, Slave}.

Adds a Slave node to the list of allowed slave hosts.

 delete_slave(Slave)

 -spec delete_slave(Slave) -> ok | {error, Reason}
 when
 Slave :: Host,
 Host :: inet:ip_address() | inet:hostname(),
 Reason :: {badarg, Slave}.

Deletes a Slave node from the list of allowed slave hosts.

 start(Slaves)

 -spec start(Slaves) -> {ok, Pid} | {error, Reason}
 when
 Slaves :: [Host],
 Host :: inet:ip_address() | inet:hostname(),
 Pid :: pid(),
 Reason :: {badarg, Slaves}.

Starts the boot server. Slaves is a list of IP addresses for hosts, which are
allowed to use this server as a boot server.

 start_link(Slaves)

 -spec start_link(Slaves) -> {ok, Pid} | {error, Reason}
 when
 Slaves :: [Host],
 Host :: inet:ip_address() | inet:hostname(),
 Pid :: pid(),
 Reason :: {badarg, Slaves}.

Starts the boot server and links to the caller. This function is used to start
the server if it is included in a supervision tree.

 which_slaves()

 -spec which_slaves() -> Slaves
 when
 Slaves :: [Slave],
 Slave :: {Netmask :: inet:ip_address(), Address :: inet:ip_address()}.

Returns the current list of allowed slave hosts.

 erl_epmd - kernel v10.4

erl_epmd

Erlang interface towards epmd
This module communicates with the EPMD daemon, see epmd.
To implement your own epmd module please see
ERTS User's Guide: How to Implement an Alternative Node Discovery for Erlang Distribution

 Summary

 Functions

 address_please(Name, Host, AddressFamily)

 Called by the distribution module to resolves the Host to an IP address of a
remote node.

 listen_port_please(Name, Host)

 Called by the distribution module to get which port the local node should listen
to when accepting new distribution requests.

 names(Host)

 Called by net_adm:names/0. Host defaults to the localhost.
Returns the names and associated port numbers of the Erlang nodes that epmd
registered at the specified host. Returns {error, address} if epmd is not
operational.

 port_please(Name, Host)

 Equivalent to port_please(Name, Host, infinity).

 port_please(Name, Host, Timeout)

 Requests the distribution port for the given node of an EPMD instance. Together
with the port it returns a distribution protocol version which has been 5 since
Erlang/OTP R6.

 register_node(Name, Port)

 Equivalent to register_node(Name, Port, inet).

 register_node(Name, Port, Driver)

 Registers the node with epmd and tells epmd what port will be used for the
current node. It returns a creation number. This number is incremented on each
register to help differentiate a new node instance connecting to epmd with the
same name.

 start_link()

 This function is invoked as this module is added as a child of the
erl_distribution supervisor.

 Functions

 address_please(Name, Host, AddressFamily)

 (since OTP 21.0)

 -spec address_please(Name, Host, AddressFamily) -> Success | {error, term()}
 when
 Name :: string(),
 Host :: string() | inet:ip_address(),
 AddressFamily :: inet | inet6,
 Port :: non_neg_integer(),
 Version :: non_neg_integer(),
 Success :: {ok, inet:ip_address()} | {ok, inet:ip_address(), Port, Version}.

Called by the distribution module to resolves the Host to an IP address of a
remote node.
As an optimization this function may also return the port and version of the
remote node. If port and version are returned port_please/3 will not be
called.

 listen_port_please(Name, Host)

 (since OTP 23.0)

 -spec listen_port_please(Name, Host) -> {ok, Port}
 when
 Name :: atom() | string(),
 Host :: atom() | string() | inet:ip_address(),
 Port :: non_neg_integer().

Called by the distribution module to get which port the local node should listen
to when accepting new distribution requests.

 names(Host)

 (since OTP 21.0)

 -spec names(Host) -> {ok, [{Name, Port}]} | {error, Reason}
 when
 Host :: atom() | string() | inet:ip_address(),
 Name :: string(),
 Port :: non_neg_integer(),
 Reason :: address | file:posix().

Called by net_adm:names/0. Host defaults to the localhost.
Returns the names and associated port numbers of the Erlang nodes that epmd
registered at the specified host. Returns {error, address} if epmd is not
operational.
Example:
(arne@dunn)1> erl_epmd:names(localhost).
{ok,[{"arne",40262}]}

 port_please(Name, Host)

 (since OTP 21.0)

 -spec port_please(Name, Host) -> {port, Port, Version} | noport | closed | {error, term()}
 when
 Name :: atom() | string(),
 Host :: atom() | string() | inet:ip_address(),
 Port :: non_neg_integer(),
 Version :: non_neg_integer().

Equivalent to port_please(Name, Host, infinity).

 port_please(Name, Host, Timeout)

 (since OTP 21.0)

 -spec port_please(Name, Host, Timeout) -> {port, Port, Version} | noport | closed | {error, term()}
 when
 Name :: atom() | string(),
 Host :: atom() | string() | inet:ip_address(),
 Timeout :: non_neg_integer() | infinity,
 Port :: non_neg_integer(),
 Version :: non_neg_integer().

Requests the distribution port for the given node of an EPMD instance. Together
with the port it returns a distribution protocol version which has been 5 since
Erlang/OTP R6.

 register_node(Name, Port)

 (since OTP 21.0)

 -spec register_node(Name, Port) -> Result
 when
 Name :: string(),
 Port :: non_neg_integer(),
 Creation :: non_neg_integer(),
 Result :: {ok, Creation} | {error, already_registered} | term().

Equivalent to register_node(Name, Port, inet).

 register_node(Name, Port, Driver)

 (since OTP 21.0)

 -spec register_node(Name, Port, Driver) -> Result
 when
 Name :: string(),
 Port :: non_neg_integer(),
 Driver :: inet_tcp | inet6_tcp | inet | inet6,
 Creation :: non_neg_integer() | -1,
 Result :: {ok, Creation} | {error, already_registered} | term().

Registers the node with epmd and tells epmd what port will be used for the
current node. It returns a creation number. This number is incremented on each
register to help differentiate a new node instance connecting to epmd with the
same name.
After the node has successfully registered with epmd it will automatically
attempt reconnect to the daemon if the connection is broken.

 start_link()

 (since OTP 21.0)

 -spec start_link() -> {ok, pid()} | ignore | {error, term()}.

This function is invoked as this module is added as a child of the
erl_distribution supervisor.

 erpc - kernel v10.4

erpc

Enhanced Remote Procedure Call
This module provide services similar to Remote Procedure Calls. A remote
procedure call is a method to call a function on a remote node and collect the
answer. It is used for collecting information on a remote node, or for running a
function with some specific side effects on the remote node.
This is an enhanced subset of the operations provided by the rpc module.
Enhanced in the sense that it makes it possible to distinguish between returned
value, raised exceptions, and other errors. erpc also has better performance
and scalability than the original rpc implementation. However, current rpc
module will utilize erpc in order to also provide these properties when
possible.
In order for an erpc operation to succeed, the remote node also needs to
support erpc. Typically only ordinary Erlang nodes as of OTP 23 have erpc
support.
Note that it is up to the user to ensure that correct code to execute via erpc
is available on the involved nodes.
Note
For some important information about distributed signals, see the
Blocking Signaling Over Distribution
section in the Processes chapter of the Erlang Reference Manual. Blocking
signaling can, for example, cause timeouts in erpc to be significantly
delayed.

 Summary

 Types

 call_options()

 Options to be used in call/3,5 and
multicall/3,5 functions.

 caught_call_exception()

 request_id()

 An opaque request identifier. For more information see send_request/4.

 request_id_collection()

 An opaque collection of request identifiers (request_id/0) where each
request identifier can be associated with a label chosen by the user. For more
information see reqids_new/0.

 stack_item()

 timeout_time()

 The timeout time used by erpc functions.

 Functions

 call(Node, Fun)

 Equivalent to call(Node, Fun, #{timeout => infinity}).

 call(Node, Fun, TimeoutOrOptions)

 Equivalent to
erpc:call(Node, erlang, apply, [Fun,[]], #{timeout => Timeout}).

 call(Node, Module, Function, Args)

 Equivalent to call(Node, Module, Function, Args, #{timeout => infinity}).

 call(Node, Module, Function, Args, TimeoutOrOptions)

 Evaluates apply(Module, Function, Args) on node Node and
returns the corresponding value Result.

 cast(Node, Fun)

 Equivalent to erpc:cast(Node,erlang,apply,[Fun,[]]).

 cast(Node, Module, Function, Args)

 Evaluates apply(Module, Function, Args) on node Node. No
response is delivered to the calling process. cast() returns immediately after
the cast request has been sent. Any failures beside bad arguments are silently
ignored.

 check_response(Message, RequestId)

 Check if a message is a response to a call request previously made by the
calling process using send_request/4.

 check_response(Message, RequestIdCollection, Delete)

 Check if a message is a response to a call request corresponding to a request
identifier saved in RequestIdCollection. All request identifiers of
RequestIdCollection must correspond to requests that have been made using
send_request/4 or send_request/6, and all requests must have been made by
the process calling this function.

 multicall(Nodes, Fun)

 Equivalent to multicall(Nodes, Fun, #{timeout => infinity}).

 multicall(Nodes, Fun, TimeoutOrOptions)

 Equivalent to
erpc:multicall(Nodes, erlang, apply, [Fun,[]], #{timeout => Timeout}).

 multicall(Nodes, Module, Function, Args)

 Equivalent to multicall(Nodes, Module, Function, Args, #{timeout => infinity}).

 multicall(Nodes, Module, Function, Args, TimeoutOrOptions)

 Performs multiple call operations in parallel on multiple nodes.

 multicast(Nodes, Fun)

 Equivalent to
erpc:multicast(Nodes,erlang,apply,[Fun,[]]).

 multicast(Nodes, Module, Function, Args)

 Evaluates apply(Module, Function, Args) on the nodes Nodes. No
response is delivered to the calling process. multicast() returns immediately
after the cast requests have been sent. Any failures beside bad arguments are
silently ignored.

 receive_response(RequestId)

 Equivalent to receive_response(RequestId, infinity).

 receive_response(RequestId, Timeout)

 Receive a response to a call request previously made by the calling process
using send_request/4.

 receive_response(RequestIdCollection, Timeout, Delete)

 Receive a response to a call request corresponding to a request identifier
saved in RequestIdCollection. All request identifiers of RequestIdCollection
must correspond to requests that have been made using send_request/4 or
send_request/6, and all requests must have been made by the process calling
this function.

 reqids_add(RequestId, Label, RequestIdCollection)

 Saves RequestId and associates a Label with the request identifier by adding
this information to RequestIdCollection and returning the resulting request
identifier collection.

 reqids_new()

 Returns a new empty request identifier collection. A request identifier
collection can be utilized in order the handle multiple outstanding requests.

 reqids_size(RequestIdCollection)

 Returns the amount of request identifiers saved in RequestIdCollection.

 reqids_to_list(RequestIdCollection)

 Returns a list of {RequestId, Label} tuples which corresponds to all request
identifiers with their associated labels present in the RequestIdCollection
collection.

 send_request(Node, Fun)

 Equivalent to
erpc:send_request(Node, erlang, apply, [Fun, []]).

 send_request/4

 Send an asynchronous call request to the node Node.

 send_request(Node, Module, Function, Args, Label, RequestIdCollection)

 Send an asynchronous call request to the node Node. The Label will be
associated with the request identifier of the operation and added to the
returned request identifier collection NewRequestIdCollection. The collection
can later be used in order to get one response corresponding to a request in the
collection by passing the collection as argument to receive_response/3,
wait_response/3, or, check_response/3.

 wait_response(RequestId)

 Equivalent to erpc:wait_response(RequestId, 0).
That is, poll for a response message to a call request previously made by the
calling process.

 wait_response(RequestId, WaitTime)

 Wait or poll for a response message to a call request previously made by the
calling process using send_request/4.

 wait_response(RequestIdCollection, WaitTime, Delete)

 Wait or poll for a response to a call request corresponding to a request
identifier saved in RequestIdCollection. All request identifiers of
RequestIdCollection must correspond to requests that have been made using
send_request/4 or send_request/6, and all requests must have been made by
the process calling this function.

 Types

 call_options()

 (since OTP 28.0)

 -type call_options() ::
 #{timeout => Timeout :: timeout_time(), always_spawn => AlwaysSpawn :: boolean()}.

Options to be used in call/3,5 and
multicall/3,5 functions.
	timeout - Upper time limit for call operations to complete, see
timeout_time/0. Default: infinity.

	always_spawn - If true, the apply() will always be performed
in a freshly spawned process. If false, the calling process may be
used instead, if possible. Default: false.

 caught_call_exception()

 (not exported)

 (since OTP 23.0)

 -type caught_call_exception() ::
 {throw, Throw :: term()} |
 {exit, {exception, Reason :: term()}} |
 {error, {exception, Reason :: term(), StackTrace :: [stack_item()]}} |
 {exit, {signal, Reason :: term()}} |
 {error, {erpc, Reason :: term()}}.

 request_id()

 (since OTP 23.0)

 -opaque request_id()

An opaque request identifier. For more information see send_request/4.

 request_id_collection()

 (since OTP 23.0)

 -opaque request_id_collection()

An opaque collection of request identifiers (request_id/0) where each
request identifier can be associated with a label chosen by the user. For more
information see reqids_new/0.

 stack_item()

 (not exported)

 (since OTP 23.0)

 -type stack_item() ::
 {Module :: atom(),
 Function :: atom(),
 Arity :: arity() | (Args :: [term()]),
 Location :: [{file, Filename :: string()} | {line, Line :: pos_integer()}]}.

 timeout_time()

 (since OTP 23.0)

 -type timeout_time() :: 0..4294967295 | infinity | {abs, integer()}.

The timeout time used by erpc functions.
The value can be:
	0..4294967295 - Timeout relative to current time in milliseconds.

	infinity - Infinite timeout. That is, the operation will never time out.

	{abs, Timeout} - An absolute
Erlang monotonic time timeout in milliseconds.
That is, the operation will time out when
erlang:monotonic_time(millisecond) returns a
value larger than or equal to Timeout. Timeout is not allowed to identify
a time further into the future than 4294967295 milliseconds. Identifying the
timeout using an absolute timeout value is especially handy when you have a
deadline for responses corresponding to a complete collection of requests
(request_id_collection/0), since you do not have to recalculate the
relative time until the deadline over and over again.

 Functions

 call(Node, Fun)

 (since OTP 23.0)

 -spec call(Node, Fun) -> Result when Node :: node(), Fun :: function(), Result :: term().

Equivalent to call(Node, Fun, #{timeout => infinity}).

 call(Node, Fun, TimeoutOrOptions)

 (since OTP 23.0)

 -spec call(Node, Fun, TimeoutOrOptions) -> Result
 when
 Node :: node(),
 Fun :: function(),
 TimeoutOrOptions :: timeout_time() | call_options(),
 Result :: term().

Equivalent to
erpc:call(Node, erlang, apply, [Fun,[]], #{timeout => Timeout}).
May raise all the same exceptions as call/5 plus an {erpc, badarg}
error exception if Fun is not a fun of zero arity.

 call(Node, Module, Function, Args)

 (since OTP 23.0)

 -spec call(Node, Module, Function, Args) -> Result
 when
 Node :: node(),
 Module :: atom(),
 Function :: atom(),
 Args :: [term()],
 Result :: term().

Equivalent to call(Node, Module, Function, Args, #{timeout => infinity}).

 call(Node, Module, Function, Args, TimeoutOrOptions)

 (since OTP 23.0)

 -spec call(Node, Module, Function, Args, TimeoutOrOptions) -> Result
 when
 Node :: node(),
 Module :: atom(),
 Function :: atom(),
 Args :: [term()],
 TimeoutOrOptions :: timeout_time() | call_options(),
 Result :: term().

Evaluates apply(Module, Function, Args) on node Node and
returns the corresponding value Result.
TimeoutOrOptions can be either a timeout time or a
call options map (since OTP 28.0).
The call() function only returns if the applied function successfully returned
without raising any uncaught exceptions, the operation did not time out, and no
failures occurred. In all other cases an exception is raised. The following
exceptions, listed by exception class, can currently be raised by call():
	throw - The applied function called throw(Value) and did
not catch this exception. The exception reason Value equals the argument
passed to throw/1.

	exit - Exception reason:
	{exception, ExitReason} - The applied function called
exit(ExitReason) and did not catch this exception. The exit
reason ExitReason equals the argument passed to exit/1.

	{signal, ExitReason} - The process that applied the function received
an exit signal and terminated due to this signal. The process terminated
with exit reason ExitReason.

	error - Exception reason:
	{exception, ErrorReason, StackTrace} - A runtime error occurred which
raised an error exception while applying the function, and the applied
function did not catch the exception. The error reason ErrorReason
indicates the type of error that occurred. StackTrace is formatted as when
caught in a try/catch construct. The StackTrace is limited to the
applied function and functions called by it.

	{erpc, ERpcErrorReason} - The erpc operation failed. The following
ERpcErrorReasons are the most common ones:
	badarg - If any one of these are true:
	Node is not an atom.
	Module is not an atom.
	Function is not an atom.
	Args is not a list. Note that the list is not verified to be a proper
list at the client side.
	Timeout is invalid.

	noconnection - The connection to Node was lost or could not be
established. The function may or may not be applied.

	system_limit - The erpc operation failed due to some system limit
being reached. This typically due to failure to create a process on the
remote node Node, but can be other things as well.

	timeout - The erpc operation timed out. The function may or may
not be applied.

	notsup - The remote node Node does not support this erpc
operation.

If the erpc operation fails, but it is unknown if the function is/will be
applied (that is, a timeout or a connection loss), the caller will not receive
any further information about the result if/when the applied function completes.
If the applied function explicitly communicates with the calling process, such
communication may, of course, reach the calling process.
Note
If the always_spawn option is false (which is the default), you cannot make
any assumptions about the process that will perform the apply(). It may be
the calling process itself, or a freshly spawned process.

 cast(Node, Fun)

 (since OTP 23.0)

 -spec cast(Node, Fun) -> ok when Node :: node(), Fun :: function().

Equivalent to erpc:cast(Node,erlang,apply,[Fun,[]]).
cast/2 fails with an {erpc, badarg} error exception if:
	Node is not an atom.
	Fun is not a a fun of zero arity.

 cast(Node, Module, Function, Args)

 (since OTP 23.0)

 -spec cast(Node, Module, Function, Args) -> ok
 when Node :: node(), Module :: atom(), Function :: atom(), Args :: [term()].

Evaluates apply(Module, Function, Args) on node Node. No
response is delivered to the calling process. cast() returns immediately after
the cast request has been sent. Any failures beside bad arguments are silently
ignored.
cast/4 fails with an {erpc, badarg} error exception if:
	Node is not an atom.
	Module is not an atom.
	Function is not an atom.
	Args is not a list. Note that the list is not verified to be a proper list
at the client side.

 check_response(Message, RequestId)

 (since OTP 23.0)

 -spec check_response(Message, RequestId) -> {response, Result} | no_response
 when Message :: term(), RequestId :: request_id(), Result :: term().

Check if a message is a response to a call request previously made by the
calling process using send_request/4.
RequestId should be the value returned from the previously made
send_request/4 call, and the
corresponding response should not already have been received and handled to
completion by check_response/2, receive_response/2, or
wait_response/2. Message is the message to check.
If Message does not correspond to the response, the atom no_response is
returned. If Message corresponds to the response, the call operation is
completed and either the result is returned as {response, Result} where
Result corresponds to the value returned from the applied function or an
exception is raised. The exceptions that can be raised corresponds to the same
exceptions as can be raised by call/4. That is, no {erpc, timeout} error
exception can be raised. check_response() will fail with an {erpc, badarg}
exception if/when an invalid RequestId is detected.
If the erpc operation fails, but it is unknown if the function is/will be
applied (that is, a connection loss), the caller will not receive any further
information about the result if/when the applied function completes. If the
applied function explicitly communicates with the calling process, such
communication may, of course, reach the calling process.

 check_response(Message, RequestIdCollection, Delete)

 (since OTP 25.0)

 -spec check_response(Message, RequestIdCollection, Delete) ->
 {{response, Result}, Label, NewRequestIdCollection} | no_response | no_request
 when
 Message :: term(),
 RequestIdCollection :: request_id_collection(),
 Delete :: boolean(),
 Result :: term(),
 Label :: term(),
 NewRequestIdCollection :: request_id_collection().

Check if a message is a response to a call request corresponding to a request
identifier saved in RequestIdCollection. All request identifiers of
RequestIdCollection must correspond to requests that have been made using
send_request/4 or send_request/6, and all requests must have been made by
the process calling this function.
Label is the label associated with the request identifier of the request that
the response corresponds to. A request identifier is associated with a label
when adding a request identifier in a
request identifier collection, or when sending
the request using send_request/6.
Compared to check_response/2, the returned result associated with a specific
request identifier or an exception associated with a specific request identifier
will be wrapped in a 3-tuple. The first element of this tuple equals the value
that would have been produced by check_response/2, the
second element equals the Label associated with the specific request
identifier, and the third element NewRequestIdCollection is a possibly
modified request identifier collection. The error exception {erpc, badarg}
is not associated with any specific request identifier, and will hence not be
wrapped.
If RequestIdCollection is empty, the atom no_request will be returned. If
Message does not correspond to any of the request identifiers in
RequestIdCollection, the atom no_response is returned.
If Delete equals true, the association with Label will have been deleted
from RequestIdCollection in the resulting NewRequestIdCollection. If
Delete equals false, NewRequestIdCollection will equal
RequestIdCollection. Note that deleting an association is not for free and
that a collection containing already handled requests can still be used by
subsequent calls to check_response/3,
receive_response/3, and wait_response/3. However, without deleting handled
associations, the above calls will not be able to detect when there are no more
outstanding requests to handle, so you will have to keep track of this some
other way than relying on a no_request return. Note that if you pass a
collection only containing associations of already handled or abandoned requests
to check_response/3, it will always return
no_response.
Note that a response might have been consumed uppon an {erpc, badarg}
exception and if so, will be lost for ever.

 multicall(Nodes, Fun)

 (since OTP 23.0)

 -spec multicall(Nodes, Fun) -> Result when Nodes :: [atom()], Fun :: function(), Result :: term().

Equivalent to multicall(Nodes, Fun, #{timeout => infinity}).

 multicall(Nodes, Fun, TimeoutOrOptions)

 (since OTP 23.0)

 -spec multicall(Nodes, Fun, TimeoutOrOptions) -> Result
 when
 Nodes :: [atom()],
 Fun :: function(),
 TimeoutOrOptions :: timeout_time() | call_options(),
 Result :: term().

Equivalent to
erpc:multicall(Nodes, erlang, apply, [Fun,[]], #{timeout => Timeout}).
May raise all the same exceptions as multicall/5 plus an
{erpc, badarg} error exception if Fun is not a fun of zero arity.

 multicall(Nodes, Module, Function, Args)

 (since OTP 23.0)

 -spec multicall(Nodes, Module, Function, Args) -> Result
 when
 Nodes :: [atom()],
 Module :: atom(),
 Function :: atom(),
 Args :: [term()],
 Result :: [{ok, ReturnValue :: term()} | caught_call_exception()].

Equivalent to multicall(Nodes, Module, Function, Args, #{timeout => infinity}).

 multicall(Nodes, Module, Function, Args, TimeoutOrOptions)

 (since OTP 23.0)

 -spec multicall(Nodes, Module, Function, Args, TimeoutOrOptions) -> Result
 when
 Nodes :: [atom()],
 Module :: atom(),
 Function :: atom(),
 Args :: [term()],
 TimeoutOrOptions :: timeout_time() | call_options(),
 Result :: [{ok, ReturnValue :: term()} | caught_call_exception()].

Performs multiple call operations in parallel on multiple nodes.
That is, evaluates apply(Module, Function, Args) on the nodes Nodes in
parallel.
TimeoutOrOptions can be either a timeout time or a
call options map (since OTP 28.0).
The result is returned as a list where the result from each node is
placed at the same position as the node name is placed in Nodes. Each item in
the resulting list is formatted as either:
	{ok, Result} - The call operation for this specific node returned
Result.

	{Class, ExceptionReason} - The call operation for this specific node
raised an exception of class Class with exception reason ExceptionReason.
These correspond to the exceptions that call/5 can raise.

multicall/5 fails with an {erpc, badarg} error exception
if:
	Nodes is not a proper list of atoms. Note that some requests may already
have been sent when the failure occurs. That is, the function may or may not
be applied on some nodes.
	Module is not an atom.
	Function is not an atom.
	Args is not a list. Note that the list is not verified to be a proper list
at the client side.

The call erpc:multicall(Nodes, Module, Function, Args) is equivalent to the
call erpc:multicall(Nodes, Module, Function, Args, infinity). These calls are
also equivalent to calling my_multicall(Nodes, Module, Function, Args) below
if one disregard performance and failure behavior. multicall() can utilize a
selective receive optimization which removes the need to scan the message queue
from the beginning in order to find a matching message. The
send_request()/receive_response() combination can, however, not utilize this
optimization.
my_multicall(Nodes, Module, Function, Args) ->
 ReqIds = lists:map(fun (Node) ->
 erpc:send_request(Node, Module, Function, Args)
 end,
 Nodes),
 lists:map(fun (ReqId) ->
 try
 {ok, erpc:receive_response(ReqId, infinity)}
 catch
 Class:Reason ->
 {Class, Reason}
 end
 end,
 ReqIds).
If an erpc operation fails, but it is unknown if the function is/will be
applied (that is, a timeout, connection loss, or an improper Nodes list), the
caller will not receive any further information about the result if/when the
applied function completes. If the applied function communicates with the
calling process, such communication may, of course, reach the calling process.
Note
If the always_spawn option is false (which is the default), you cannot make
any assumptions about the processes that will perform the apply()s. It may be
the calling process itself, or freshly spawned processes, or a mix of both.

 multicast(Nodes, Fun)

 (since OTP 23.0)

 -spec multicast(Nodes, Fun) -> ok when Nodes :: [node()], Fun :: function().

Equivalent to
erpc:multicast(Nodes,erlang,apply,[Fun,[]]).
multicast/2 fails with an {erpc, badarg} error exception
if:
	Nodes is not a proper list of atoms.
	Fun is not a a fun of zero arity.

 multicast(Nodes, Module, Function, Args)

 (since OTP 23.0)

 -spec multicast(Nodes, Module, Function, Args) -> ok
 when Nodes :: [node()], Module :: atom(), Function :: atom(), Args :: [term()].

Evaluates apply(Module, Function, Args) on the nodes Nodes. No
response is delivered to the calling process. multicast() returns immediately
after the cast requests have been sent. Any failures beside bad arguments are
silently ignored.
multicast/4 fails with an {erpc, badarg} error exception
if:
	Nodes is not a proper list of atoms. Note that some requests may already
have been sent when the failure occurs. That is, the function may or may not
be applied on some nodes.
	Module is not an atom.
	Function is not an atom.
	Args is not a list. Note that the list is not verified to be a proper list
at the client side.

 receive_response(RequestId)

 (since OTP 23.0)

 -spec receive_response(RequestId) -> Result when RequestId :: request_id(), Result :: term().

Equivalent to receive_response(RequestId, infinity).

 receive_response(RequestId, Timeout)

 (since OTP 23.0)

 -spec receive_response(RequestId, Timeout) -> Result
 when RequestId :: request_id(), Timeout :: timeout_time(), Result :: term().

Receive a response to a call request previously made by the calling process
using send_request/4.
RequestId should be the value returned from the
previously made send_request/4 call, and the corresponding
response should not already have been received and handled to completion by
receive_response(), check_response/4, or
wait_response/4.
Timeout sets an upper time limit on how long to wait for a response. If the
operation times out, the request identified by RequestId will be abandoned,
then an {erpc, timeout} error exception will be raised. That is, no response
corresponding to the request will ever be received after a timeout. If a
response is received, the call operation is completed and either the result is
returned or an exception is raised. The exceptions that can be raised
corresponds to the same exceptions as can be raised by call/5.
receive_response/2 will fail with an {erpc, badarg}
exception if/when an invalid RequestId is detected or if an invalid Timeout
is passed.
A call to the function my_call(Node, Module, Function, Args, Timeout) below is
equivalent to the call
erpc:call(Node, Module, Function, Args, Timeout) if one disregards
performance. call() can utilize a selective receive optimization which removes
the need to scan the message queue from the beginning in order to find a
matching message. The send_request()/receive_response() combination can,
however, not utilize this optimization.
my_call(Node, Module, Function, Args, Timeout) ->
 RequestId = erpc:send_request(Node, Module, Function, Args),
 erpc:receive_response(RequestId, Timeout).
If the erpc operation fails, but it is unknown if the function is/will be
applied (that is, a timeout, or a connection loss), the caller will not receive
any further information about the result if/when the applied function completes.
If the applied function explicitly communicates with the calling process, such
communication may, of course, reach the calling process.

 receive_response(RequestIdCollection, Timeout, Delete)

 (since OTP 25.0)

 -spec receive_response(RequestIdCollection, Timeout, Delete) ->
 {Result, Label, NewRequestIdCollection} | no_request
 when
 RequestIdCollection :: request_id_collection(),
 Timeout :: timeout_time(),
 Delete :: boolean(),
 Result :: term(),
 Label :: term(),
 NewRequestIdCollection :: request_id_collection().

Receive a response to a call request corresponding to a request identifier
saved in RequestIdCollection. All request identifiers of RequestIdCollection
must correspond to requests that have been made using send_request/4 or
send_request/6, and all requests must have been made by the process calling
this function.
Label is the label associated with the request identifier of the request that
the response corresponds to. A request identifier is associated with a label
when adding a request identifier in a
request identifier collection, or when sending
the request using send_request/6.
Compared to receive_response/2, the returned result associated with a specific
request identifier or an exception associated with a specific request identifier
will be wrapped in a 3-tuple. The first element of this tuple equals the value
that would have been produced by receive_response/2,
the second element equals the Label associated with the specific request
identifier, and the third element NewRequestIdCollection is a possibly
modified request identifier collection. The error exceptions {erpc, badarg}
and {erpc, timeout} are not associated with any specific request identifiers,
and will hence not be wrapped.
If RequestIdCollection is empty, the atom no_request will be returned.
If the operation times out, all requests identified by RequestIdCollection
will be abandoned, then an {erpc, timeout} error exception will be raised.
That is, no responses corresponding to any of the request identifiers in
RequestIdCollection will ever be received after a timeout. The difference
between receive_response/3 and wait_response/3 is
that receive_response/3 abandons the requests at
timeout so that any potential future responses are ignored, while
wait_response/3 does not.
If Delete equals true, the association with Label will have been deleted
from RequestIdCollection in the resulting NewRequestIdCollection. If
Delete equals false, NewRequestIdCollection will equal
RequestIdCollection. Note that deleting an association is not for free and
that a collection containing already handled requests can still be used by
subsequent calls to receive_response/3,
check_response/3, and wait_response/3. However, without deleting handled
associations, the above calls will not be able to detect when there are no more
outstanding requests to handle, so you will have to keep track of this some
other way than relying on a no_request return. Note that if you pass a
collection only containing associations of already handled or abandoned requests
to receive_response/3, it will always block until a
timeout determined by Timeout is triggered.
Note that a response might have been consumed uppon an {erpc, badarg}
exception and if so, will be lost for ever.

 reqids_add(RequestId, Label, RequestIdCollection)

 (since OTP 25.0)

 -spec reqids_add(RequestId :: request_id(),
 Label :: term(),
 RequestIdCollection :: request_id_collection()) ->
 NewRequestIdCollection :: request_id_collection().

Saves RequestId and associates a Label with the request identifier by adding
this information to RequestIdCollection and returning the resulting request
identifier collection.

 reqids_new()

 (since OTP 25.0)

 -spec reqids_new() -> NewRequestIdCollection :: request_id_collection().

Returns a new empty request identifier collection. A request identifier
collection can be utilized in order the handle multiple outstanding requests.
Request identifiers of requests made by send_request/4 can be saved in a
request identifier collection using reqids_add/3. Such a collection of request
identifiers can later be used in order to get one response corresponding to a
request in the collection by passing the collection as argument to
check_response/3, receive_response/3, and wait_response/3.
reqids_size/1 can be used to determine the amount of request identifiers in a
request identifier collection.

 reqids_size(RequestIdCollection)

 (since OTP 25.0)

 -spec reqids_size(RequestIdCollection :: request_id_collection()) -> non_neg_integer().

Returns the amount of request identifiers saved in RequestIdCollection.

 reqids_to_list(RequestIdCollection)

 (since OTP 25.0)

 -spec reqids_to_list(RequestIdCollection :: request_id_collection()) ->
 [{RequestId :: request_id(), Label :: term()}].

Returns a list of {RequestId, Label} tuples which corresponds to all request
identifiers with their associated labels present in the RequestIdCollection
collection.

 send_request(Node, Fun)

 (since OTP 23.0)

 -spec send_request(Node, Fun) -> RequestId
 when Node :: node(), Fun :: function(), RequestId :: request_id().

Equivalent to
erpc:send_request(Node, erlang, apply, [Fun, []]).
Fails with an {erpc, badarg} error exception if:
	Node is not an atom.
	Fun is not a fun of zero arity.

 send_request/4

 (since OTP 23.0)

 -spec send_request(Node, Module, Function, Args) -> RequestId
 when
 Node :: node(),
 Module :: atom(),
 Function :: atom(),
 Args :: [term()],
 RequestId :: request_id();
 (Node, Fun, Label, RequestIdCollection) -> NewRequestIdCollection
 when
 Node :: node(),
 Fun :: function(),
 Label :: term(),
 RequestIdCollection :: request_id_collection(),
 NewRequestIdCollection :: request_id_collection().

Send an asynchronous call request to the node Node.
send_request/4 returns a request identifier that later is
to be passed to either receive_response/2, wait_response/2, or,
check_response/2 in order to get the response of the call request. Besides
passing the request identifier directly to these functions, it can also be added
in a request identifier collection using reqids_add/3. Such a collection of
request identifiers can later be used in order to get one response corresponding
to a request in the collection by passing the collection as argument to
receive_response/3, wait_response/3, or, check_response/3. If you are
about to save the request identifier in a request identifier collection, you may
want to consider using send_request/6 instead.
A call to the function my_call(Node, Module, Function, Args, Timeout) below is
equivalent to the call
erpc:call(Node, Module, Function, Args, Timeout) if one disregards
performance. call() can utilize a selective receive optimization which removes
the need to scan the message queue from the beginning in order to find a
matching message. The send_request()/receive_response() combination can,
however, not utilize this optimization.
my_call(Node, Module, Function, Args, Timeout) ->
 RequestId = erpc:send_request(Node, Module, Function, Args),
 erpc:receive_response(RequestId, Timeout).
Fails with an {erpc, badarg} error exception if:
	Node is not an atom.
	Module is not an atom.
	Function is not an atom.
	Args is not a list. Note that the list is not verified to be a proper list
at the client side.

Equivalent to
erpc:send_request(Node, erlang, apply, [Fun,[]]), Label, RequestIdCollection).
Fails with an {erpc, badarg} error exception if:
	Node is not an atom.
	Fun is not a fun of zero arity.
	RequestIdCollection is detected not to be request identifier collection.

 send_request(Node, Module, Function, Args, Label, RequestIdCollection)

 (since OTP 25.0)

 -spec send_request(Node, Module, Function, Args, Label, RequestIdCollection) -> NewRequestIdCollection
 when
 Node :: node(),
 Module :: atom(),
 Function :: atom(),
 Args :: [term()],
 Label :: term(),
 RequestIdCollection :: request_id_collection(),
 NewRequestIdCollection :: request_id_collection().

Send an asynchronous call request to the node Node. The Label will be
associated with the request identifier of the operation and added to the
returned request identifier collection NewRequestIdCollection. The collection
can later be used in order to get one response corresponding to a request in the
collection by passing the collection as argument to receive_response/3,
wait_response/3, or, check_response/3.
Equivalent to
erpc:reqids_add(erpc:send_request(Node, Module, Function, Args), Label, RequestIdCollection),
but calling send_request/6 is slightly more efficient.
Fails with an {erpc, badarg} error exception if:
	Node is not an atom.
	Module is not an atom.
	Function is not an atom.
	Args is not a list. Note that the list is not verified to be a proper list
at the client side.
	RequestIdCollection is detected not to be request identifier collection.

 wait_response(RequestId)

 (since OTP 23.0)

 -spec wait_response(RequestId) -> {response, Result} | no_response
 when RequestId :: request_id(), Result :: term().

Equivalent to erpc:wait_response(RequestId, 0).
That is, poll for a response message to a call request previously made by the
calling process.

 wait_response(RequestId, WaitTime)

 (since OTP 23.0)

 -spec wait_response(RequestId, WaitTime) -> {response, Result} | no_response
 when RequestId :: request_id(), WaitTime :: timeout_time(), Result :: term().

Wait or poll for a response message to a call request previously made by the
calling process using send_request/4.
RequestId should be the value returned from the previously made send_request()
call, and the corresponding response should not already have been received and
handled to completion by check_response/2, receive_response/2, or wait_response().
WaitTime sets an upper time limit on how long to wait for a response. If no
response is received before the WaitTime timeout has triggered, the atom
no_response is returned. It is valid to continue waiting for a response as
many times as needed up until a response has been received and completed by
check_response(), receive_response(), or wait_response(). If a response is
received, the call operation is completed and either the result is returned as
{response, Result} where Result corresponds to the value returned from the
applied function or an exception is raised. The exceptions that can be raised
corresponds to the same exceptions as can be raised by call/4. That is, no
{erpc, timeout} error exception can be raised.
wait_response/2 will fail with an {erpc, badarg}
exception if/when an invalid RequestId is detected or if an invalid WaitTime
is passed.
If the erpc operation fails, but it is unknown if the function is/will be
applied (that is, a too large wait time value, or a connection loss), the caller
will not receive any further information about the result if/when the applied
function completes. If the applied function explicitly communicates with the
calling process, such communication may, of course, reach the calling process.

 wait_response(RequestIdCollection, WaitTime, Delete)

 (since OTP 25.0)

 -spec wait_response(RequestIdCollection, WaitTime, Delete) ->
 {{response, Result}, Label, NewRequestIdCollection} | no_response | no_request
 when
 RequestIdCollection :: request_id_collection(),
 WaitTime :: timeout_time(),
 Delete :: boolean(),
 Label :: term(),
 NewRequestIdCollection :: request_id_collection(),
 Result :: term().

Wait or poll for a response to a call request corresponding to a request
identifier saved in RequestIdCollection. All request identifiers of
RequestIdCollection must correspond to requests that have been made using
send_request/4 or send_request/6, and all requests must have been made by
the process calling this function.
Label is the label associated with the request identifier of the request that
the response corresponds to. A request identifier is associated with a label
when adding a request identifier in a
request identifier collection, or when sending
the request using send_request/6.
Compared to wait_response/2, the returned result associated with a specific
request identifier or an exception associated with a specific request identifier
will be wrapped in a 3-tuple. The first element of this tuple equals the value
that would have been produced by wait_response/2, the
second element equals the Label associated with the specific request
identifier, and the third element NewRequestIdCollection is a possibly
modified request identifier collection. The error exception {erpc, badarg}
is not associated with any specific request identifier, and will hence not be
wrapped.
If RequestIdCollection is empty, no_request will be returned. If no response
is received before the WaitTime timeout has triggered, the atom no_response
is returned. It is valid to continue waiting for a response as many times as
needed up until a response has been received and completed by
check_response(), receive_response(), or wait_response(). The difference
between receive_response/3 and wait_response/3 is that
receive_response/3 abandons requests at timeout so
that any potential future responses are ignored, while
wait_response/3 does not.
If Delete equals true, the association with Label will have been deleted
from RequestIdCollection in the resulting NewRequestIdCollection. If
Delete equals false, NewRequestIdCollection will equal
RequestIdCollection. Note that deleting an association is not for free and
that a collection containing already handled requests can still be used by
subsequent calls to wait_response/3, check_response/3,
and receive_response/3. However, without deleting handled associations, the
above calls will not be able to detect when there are no more outstanding
requests to handle, so you will have to keep track of this some other way than
relying on a no_request return. Note that if you pass a collection only
containing associations of already handled or abandoned requests to
wait_response/3, it will always block until a timeout
determined by WaitTime is triggered and then return no_response.
Note that a response might have been consumed uppon an {erpc, badarg}
exception and if so, will be lost for ever.

 global - kernel v10.4

global

A global name registration facility.
This module consists of the following services:
	Registration of global names
	Global locks
	Maintenance of the fully connected network

As of OTP 25, global will by default prevent overlapping partitions due to
network issues by actively disconnecting from nodes that reports that they have
lost connections to other nodes. This will cause fully connected partitions to
form instead of leaving the network in a state with overlapping partitions.
Warning
Prevention of overlapping partitions can be disabled using the
prevent_overlapping_partitions
Kernel parameter, making global behave like it used to do. This is,
however, problematic for all applications expecting a fully connected network
to be provided, such as for example mnesia, but also for global itself. A
network of overlapping partitions might cause the internal state of global
to become inconsistent. Such an inconsistency can remain even after such
partitions have been brought together to form a fully connected network again.
The effect on other applications that expects that a fully connected network
is maintained may vary, but they might misbehave in very subtle hard to detect
ways during such a partitioning. Since you might get hard to detect issues
without this fix, you are strongly advised not to disable this fix. Also
note that this fix has to be enabled on all nodes in the network in order
to work properly.
Note
None of the above services will be reliably delivered unless both of the
kernel parameters connect_all and
prevent_overlapping_partitions
are enabled. Calls to the global API will, however, not fail even though
one or both of them are disabled. You will just get unreliable results.
These services are controlled through the process global_name_server that
exists on every node. The global name server starts automatically when a node is
started. With the term global is meant over a system consisting of many Erlang
nodes.
The ability to globally register names is a central concept in the programming
of distributed Erlang systems. In this module, the equivalent of the
register/2 and whereis/1 BIFs (for local name
registration) are provided, but for a network of Erlang nodes. A registered name
is an alias for a process identifier (pid). The global name server monitors
globally registered pids. If a process terminates, the name is also globally
unregistered.
The registered names are stored in replica global name tables on every node.
There is no central storage point. Thus, the translation of a name to a pid is
fast, as it is always done locally. For any action resulting in a change to the
global name table, all tables on other nodes are automatically updated.
Global locks have lock identities and are set on a specific resource. For
example, the specified resource can be a pid. When a global lock is set, access
to the locked resource is denied for all resources other than the lock
requester.
Both the registration and lock services are atomic. All nodes involved in these
actions have the same view of the information.
The global name server also performs the critical task of continuously
monitoring changes in node configuration. If a node that runs a globally
registered process goes down, the name is globally unregistered. To this end,
the global name server subscribes to nodeup and nodedown messages sent from
module net_kernel. Relevant Kernel application variables in this context are
net_setuptime, net_ticktime,
and dist_auto_connect.
The name server also maintains a fully connected network. For example, if node
N1 connects to node N2 (which is already connected to N3), the global name
servers on the nodes N1 and N3 ensure that also N1 and N3 are connected.
In this case, the name registration service cannot be used, but the lock
mechanism still works.
If the global name server fails to connect nodes (N1 and N3 in the example),
a warning event is sent to the error logger. The presence of such an event does
not exclude the nodes to connect later (you can, for example, try command
rpc:call(N1, net_adm, ping, [N2]) in the Erlang shell), but it indicates a
network problem.
Note
If the fully connected network is not set up properly, try first to increase
the value of net_setuptime.
See Also
global_group, net_kernel

 Summary

 Types

 id()

 A lock id used to set or delete lock ResourceId on behalf of LockRequesterId.

 method()

 retries()

 trans_fun()

 Functions

 del_lock(Id)

 Equivalent to del_lock(Id, [node() | nodes()]).

 del_lock(Id, Nodes)

 Deletes the lock Id synchronously.

 disconnect()

 Disconnect from all other nodes known to global.

 notify_all_name(Name, Pid1, Pid2)

 The function unregisters both pids and sends the message
{global_name_conflict, Name, OtherPid} to both processes.

 random_exit_name(Name, Pid1, Pid2)

 The function randomly selects one of the pids for registration and kills the
other one.

 random_notify_name(Name, Pid1, Pid2)

 The function randomly selects one of the pids for registration, and sends the
message {global_name_conflict, Name} to the other pid.

 re_register_name(Name, Pid)

 Equivalent to re_register_name(Name, Pid, fun random_exit_name/3).

 re_register_name(Name, Pid, Resolve)

 Atomically changes the registered name Name on all nodes to refer to Pid.

 register_name(Name, Pid)

 Equivalent to register_name(Name, Pid, fun random_exit_name/3).

 register_name(Name, Pid, Resolve)

 Globally associates name Name with a pid, that is, globally notifies all nodes
of a new global name in a network of Erlang nodes.

 registered_names()

 Returns a list of all globally registered names.

 send(Name, Msg)

 Sends message Msg to the pid globally registered as Name.

 set_lock(Id)

 Equivalent to set_lock(Id, [node() | nodes()], infinity).

 set_lock(Id, Nodes)

 Equivalent to set_lock(Id, Nodes, infinity).

 set_lock(Id, Nodes, Retries)

 Sets a lock on the specified nodes on using id/0.

 sync()

 Synchronizes the global name server with all nodes known to this node.

 trans(Id, Fun)

 Equivalent to trans(Id, Fun, [node() | nodes()], infinity).

 trans(Id, Fun, Nodes)

 Equivalent to trans(Id, Fun, Nodes, infinity).

 trans(Id, Fun, Nodes, Retries)

 Sets a lock on Id (using set_lock/3).

 unregister_name(Name)

 Removes the globally registered name Name from the network of Erlang nodes.

 whereis_name(Name)

 Returns the pid with the globally registered name Name. Returns undefined if
the name is not globally registered.

 Types

 id()

 (not exported)

 -type id() :: {ResourceId :: term(), LockRequesterId :: term()}.

A lock id used to set or delete lock ResourceId on behalf of LockRequesterId.

 method()

 (not exported)

 -type method() :: fun((Name :: term(), Pid :: pid(), Pid2 :: pid()) -> pid() | none).

 retries()

 (not exported)

 -type retries() :: non_neg_integer() | infinity.

 trans_fun()

 (not exported)

 -type trans_fun() :: function() | {module(), atom()}.

 Functions

 del_lock(Id)

 -spec del_lock(Id) -> true when Id :: id().

Equivalent to del_lock(Id, [node() | nodes()]).

 del_lock(Id, Nodes)

 -spec del_lock(Id, Nodes) -> true when Id :: id(), Nodes :: [node()].

Deletes the lock Id synchronously.

 disconnect()

 (since OTP 25.1)

 -spec disconnect() -> [node()].

Disconnect from all other nodes known to global.
A list of node names (in an unspecified order) is returned which corresponds to
the nodes that were disconnected. All disconnect operations performed have completed when
global:disconnect/0 returns.
The disconnects will be made in such a way that only the current node will be
removed from the cluster of global nodes. If
prevent_overlapping_partitions is
enabled and you disconnect, from other nodes in the cluster of global nodes,
by other means, global on the other nodes may partition the remaining nodes in
order to ensure that no overlapping partitions appear. Even if
prevent_overlapping_partitions is disabled, you should preferably use
global:disconnect/0 in order to remove current node from a cluster of global
nodes, since you otherwise likely will create overlapping partitions which
might cause problems.
Note that if the node is going to be halted, there is no need to remove it
from a cluster of global nodes explicitly by calling global:disconnect/0
before halting it. The removal from the cluster is taken care of automatically
when the node halts regardless of whether prevent_overlapping_partitions is
enabled or not.
If current node has been configured to be part of a
global group, only connected and/or synchronized nodes in
that group are known to global, so global:disconnect/0 will only
disconnect from those nodes. If current node is not part of a global group,
all connected visible nodes will be known to global, so
global:disconnect/0 will disconnect from all those nodes.
Note that information about connected nodes does not instantaneously reach
global, so the caller might see a node part of the result returned by
nodes() while it still is not known to global. The
disconnect operation will, however, still not cause any overlapping partitions
when prevent_overlapping_partitions is enabled. If
prevent_overlapping_partitions is disabled, overlapping partitions might form
in this case.
Note that when prevent_overlapping_partitions is enabled, you may see warning
reports on other nodes when they detect that current node has disconnected.
These are in this case completely harmless and can be ignored.

 notify_all_name(Name, Pid1, Pid2)

 -spec notify_all_name(Name, Pid1, Pid2) -> none when Name :: term(), Pid1 :: pid(), Pid2 :: pid().

The function unregisters both pids and sends the message
{global_name_conflict, Name, OtherPid} to both processes.
Can be used as a name resolving function for register_name/3 and
re_register_name/3.

 random_exit_name(Name, Pid1, Pid2)

 -spec random_exit_name(Name, Pid1, Pid2) -> pid() when Name :: term(), Pid1 :: pid(), Pid2 :: pid().

The function randomly selects one of the pids for registration and kills the
other one.
Can be used as a name resolving function for register_name/3 and
re_register_name/3.

 random_notify_name(Name, Pid1, Pid2)

 -spec random_notify_name(Name, Pid1, Pid2) -> pid() when Name :: term(), Pid1 :: pid(), Pid2 :: pid().

The function randomly selects one of the pids for registration, and sends the
message {global_name_conflict, Name} to the other pid.
Can be used as a name resolving function for register_name/3 and
re_register_name/3.

 re_register_name(Name, Pid)

 -spec re_register_name(Name, Pid) -> yes when Name :: term(), Pid :: pid().

Equivalent to re_register_name(Name, Pid, fun random_exit_name/3).

 re_register_name(Name, Pid, Resolve)

 -spec re_register_name(Name, Pid, Resolve) -> yes when Name :: term(), Pid :: pid(), Resolve :: method().

Atomically changes the registered name Name on all nodes to refer to Pid.
Function Resolve has the same behavior as in
register_name/2,3.

 register_name(Name, Pid)

 -spec register_name(Name, Pid) -> yes | no when Name :: term(), Pid :: pid().

Equivalent to register_name(Name, Pid, fun random_exit_name/3).

 register_name(Name, Pid, Resolve)

 -spec register_name(Name, Pid, Resolve) -> yes | no
 when Name :: term(), Pid :: pid(), Resolve :: method().

Globally associates name Name with a pid, that is, globally notifies all nodes
of a new global name in a network of Erlang nodes.
When new nodes are added to the network, they are informed of the globally
registered names that already exist. The network is also informed of any global
names in newly connected nodes. If any name clashes are discovered, function
Resolve is called. Its purpose is to decide which pid is correct. If the
function crashes, or returns anything other than one of the pids, the name is
unregistered. This function is called once for each name clash.
Warning
If you plan to change code without restarting your system, you must use an
external fun (fun Module:Function/Arity) as function Resolve. If you use a
local fun, you can never replace the code for the module that the fun belongs
to.
Three predefined resolve functions exist:
random_exit_name/3,
random_notify_name/3, and
notify_all_name/3.
This function is completely synchronous, that is, when this function returns,
the name is either registered on all nodes or none.
The function returns yes if successful, no if it fails. For example, no is
returned if an attempt is made to register an already registered process or to
register a process with a name that is already in use.
Note
Releases up to and including Erlang/OTP R10 did not check if the process was
already registered. The global name table could therefore become inconsistent.
The old (buggy) behavior can be chosen by giving the Kernel application
variable global_multi_name_action the value allow.
If a process with a registered name dies, or the node goes down, the name is
unregistered on all nodes.

 registered_names()

 -spec registered_names() -> [Name] when Name :: term().

Returns a list of all globally registered names.

 send(Name, Msg)

 -spec send(Name, Msg) -> Pid when Name :: term(), Msg :: term(), Pid :: pid().

Sends message Msg to the pid globally registered as Name.
If Name is not a globally registered name, the calling function exits with
reason {badarg, {Name, Msg}}.

 set_lock(Id)

 -spec set_lock(Id) -> boolean() when Id :: id().

Equivalent to set_lock(Id, [node() | nodes()], infinity).

 set_lock(Id, Nodes)

 -spec set_lock(Id, Nodes) -> boolean() when Id :: id(), Nodes :: [node()].

Equivalent to set_lock(Id, Nodes, infinity).

 set_lock(Id, Nodes, Retries)

 -spec set_lock(Id, Nodes, Retries) -> boolean() when Id :: id(), Nodes :: [node()], Retries :: retries().

Sets a lock on the specified nodes on using id/0.
If a lock already exists on ResourceId for another requester than LockRequesterId,
and Retries is not equal to 0, the process sleeps for a while and tries to
execute the action later. When Retries attempts have been made, false is
returned, otherwise true. If Retries is infinity, true is eventually
returned (unless the lock is never released).
This function is completely synchronous.
If a process that holds a lock dies, or the node goes down, the locks held by
the process are deleted.
The global name server keeps track of all processes sharing the same lock, that
is, if two processes set the same lock, both processes must delete the lock.
This function does not address the problem of a deadlock. A deadlock can never
occur as long as processes only lock one resource at a time. A deadlock can
occur if some processes try to lock two or more resources. It is up to the
application to detect and rectify a deadlock.
Note
Avoid the following values of ResourceId, otherwise Erlang/OTP does not work
properly:
	dist_ac
	global
	mnesia_adjust_log_writes
	mnesia_table_lock

 sync()

 -spec sync() -> ok | {error, Reason :: term()}.

Synchronizes the global name server with all nodes known to this node.
These are the nodes that are returned from nodes(). When
this function returns, the global name server receives global information from
all nodes. This function can be called when new nodes are added to the network.
The only possible error reason Reason is
{"global_groups definition error", Error}.

 trans(Id, Fun)

 -spec trans(Id, Fun) -> Res | aborted when Id :: id(), Fun :: trans_fun(), Res :: term().

Equivalent to trans(Id, Fun, [node() | nodes()], infinity).

 trans(Id, Fun, Nodes)

 -spec trans(Id, Fun, Nodes) -> Res | aborted
 when Id :: id(), Fun :: trans_fun(), Nodes :: [node()], Res :: term().

Equivalent to trans(Id, Fun, Nodes, infinity).

 trans(Id, Fun, Nodes, Retries)

 -spec trans(Id, Fun, Nodes, Retries) -> Res | aborted
 when
 Id :: id(),
 Fun :: trans_fun(),
 Nodes :: [node()],
 Retries :: retries(),
 Res :: term().

Sets a lock on Id (using set_lock/3).
If this succeeds, Fun() is evaluated and the result Res is returned.
Returns aborted if the lock attempt fails. If Retries is set to infinity,
the transaction does not abort.
infinity is the default setting and is used if no value is specified for
Retries.

 unregister_name(Name)

 -spec unregister_name(Name) -> _ when Name :: term().

Removes the globally registered name Name from the network of Erlang nodes.

 whereis_name(Name)

 -spec whereis_name(Name) -> pid() | undefined when Name :: term().

Returns the pid with the globally registered name Name. Returns undefined if
the name is not globally registered.

 global_group - kernel v10.4

global_group

Grouping nodes to global name registration groups.
This module makes it possible to partition the nodes of a system into global
groups. Each global group has its own global namespace, see global.
The main advantage of dividing systems into global groups is that the background
load decreases while the number of nodes to be updated is reduced when
manipulating globally registered names.
The Kernel configuration parameter global_groups
defines the global groups:
{global_groups, [GroupTuple :: group_tuple()]}
For the processes and nodes to run smoothly using the global group
functionality, the following criteria must be met:
	An instance of the global group server, global_group, must be running on
each node. The processes are automatically started and synchronized when a
node is started.
	All involved nodes must agree on the global group definition, otherwise the
behavior of the system is undefined.
	All nodes in the system must belong to exactly one global group.

In the following descriptions, a group node is a node belonging to the same
global group as the local node.
Notes
	In the situation where a node has lost its connections to other nodes in its
global group, but has connections to nodes in other global groups, a request
from another global group can produce an incorrect or misleading result. For
example, the isolated node can have inaccurate information about registered
names in its global group.
	Function send/2,3 is not secure.
	Distribution of applications is highly dependent of the global group
definitions. It is not recommended that an application is distributed over
many global groups, as the registered names can be moved to another global
group at failover/takeover. Nothing prevents this to be done, but the
application code must then handle the situation.

See Also
global, erl

 Summary

 Types

 group_name()

 group_tuple()

 A GroupTuple without PublishType is the same as a GroupTuple with
PublishType equal to normal.

 info_item()

 name()

 A registered name.

 publish_type()

 A node started with command-line flag -hidden (see
erl) is said to be a hidden node. A hidden node
establishes hidden connections to nodes not part of the same global group, but
normal (visible) connections to nodes part of the same global group.

 sync_state()

 where()

 Functions

 global_groups()

 Returns a tuple containing the name of the global group that the local node
belongs to, and the list of all other known group names.

 info()

 Returns a list containing information about the global groups. Each list element
is a tuple. The order of the tuples is undefined.

 monitor_nodes(Flag)

 Alter the calling process' subscription of node status change messages.

 own_nodes()

 Returns the names of all group nodes, regardless of their current status.

 registered_names(Where)

 Returns a list of all names that are globally registered on the specified node
or in the specified global group.

 send(Name, Msg)

 Sends Msg to the pid represented by the globally registered name Name.

 send(Where, Name, Msg)

 Equivalent to send(Name, Msg) except that he search is limited
to the node or global group specified by Where.

 sync()

 Synchronizes the group nodes, that is, the global name servers on the group
nodes. Also checks the names globally registered in the current global group and
unregisters them on any known node not part of the group.

 whereis_name(Name)

 Searched for Name in any global group.

 whereis_name(Where, Name)

 Equivalent to whereis_name(Name) except that he search is limited
to the node or global group specified by Where.

 Types

 group_name()

 (not exported)

 -type group_name() :: atom().

 group_tuple()

 (not exported)

 -type group_tuple() ::
 {GroupName :: group_name(), [node()]} |
 {GroupName :: group_name(), PublishType :: publish_type(), [node()]}.

A GroupTuple without PublishType is the same as a GroupTuple with
PublishType equal to normal.

 info_item()

 (not exported)

 -type info_item() ::
 {state, State :: sync_state()} |
 {own_group_name, GroupName :: group_name()} |
 {own_group_nodes, Nodes :: [node()]} |
 {synched_nodes, Nodes :: [node()]} |
 {sync_error, Nodes :: [node()]} |
 {no_contact, Nodes :: [node()]} |
 {other_groups, Groups :: [group_tuple()]} |
 {monitoring, Pids :: [pid()]}.

 name()

 (not exported)

 -type name() :: atom().

A registered name.

 publish_type()

 (not exported)

 -type publish_type() :: hidden | normal.

A node started with command-line flag -hidden (see
erl) is said to be a hidden node. A hidden node
establishes hidden connections to nodes not part of the same global group, but
normal (visible) connections to nodes part of the same global group.
A global group defined with PublishType equal to hidden is said to be a
hidden global group. All nodes in a hidden global group are hidden nodes,
whether they are started with command-line flag -hidden or not.

 sync_state()

 (not exported)

 -type sync_state() :: no_conf | synced.

 where()

 (not exported)

 -type where() :: {node, node()} | {group, group_name()}.

 Functions

 global_groups()

 -spec global_groups() -> {GroupName, GroupNames} | undefined
 when GroupName :: group_name(), GroupNames :: [GroupName].

Returns a tuple containing the name of the global group that the local node
belongs to, and the list of all other known group names.
Returns undefined if no global groups are defined.

 info()

 -spec info() -> [info_item()].

Returns a list containing information about the global groups. Each list element
is a tuple. The order of the tuples is undefined.
	{state, State} - If the local node is part of a global group, State is
equal to synced. If no global groups are defined, State is equal to
no_conf.

	{own_group_name, GroupName} - The name (atom) of the group that the
local node belongs to.

	{own_group_nodes, Nodes} - A list of node names (atoms), the group
nodes.

	{synced_nodes, Nodes} - A list of node names, the group nodes currently
synchronized with the local node.

	{sync_error, Nodes} - A list of node names, the group nodes with which
the local node has failed to synchronize.

	{no_contact, Nodes} - A list of node names, the group nodes to which
there are currently no connections.

	{other_groups, Groups} - Groups is a list of tuples
{GroupName, Nodes}, specifying the name and nodes of the other global
groups.

	{monitoring, Pids} - A list of pids, specifying the processes that have
subscribed to nodeup and nodedown messages.

 monitor_nodes(Flag)

 -spec monitor_nodes(Flag) -> ok when Flag :: boolean().

Alter the calling process' subscription of node status change messages.
If Flag is equal to true the calling process starts subscribing to
node status change messages. If equal to false it stops subscribing.
A process that has subscribed receives the messages {nodeup, Node} and
{nodedown, Node} when a group node connects or disconnects, respectively.

 own_nodes()

 -spec own_nodes() -> Nodes when Nodes :: [Node :: node()].

Returns the names of all group nodes, regardless of their current status.

 registered_names(Where)

 -spec registered_names(Where) -> Names when Where :: where(), Names :: [Name :: name()].

Returns a list of all names that are globally registered on the specified node
or in the specified global group.

 send(Name, Msg)

 -spec send(Name, Msg) -> pid() | {badarg, {Name, Msg}} when Name :: name(), Msg :: term().

Sends Msg to the pid represented by the globally registered name Name.
send/2 searches for Name any any global group. The global groups are searched
in the order that they appear in the value of configuration parameter
global_groups.
If Name is found, message Msg is sent to the corresponding pid. The pid is
also the return value of the function. If the name is not found, the function
returns {badarg, {Name, Msg}}.

 send(Where, Name, Msg)

 -spec send(Where, Name, Msg) -> pid() | {badarg, {Name, Msg}}
 when Where :: where(), Name :: name(), Msg :: term().

Equivalent to send(Name, Msg) except that he search is limited
to the node or global group specified by Where.

 sync()

 -spec sync() -> ok.

Synchronizes the group nodes, that is, the global name servers on the group
nodes. Also checks the names globally registered in the current global group and
unregisters them on any known node not part of the group.
If synchronization is not possible, an error report is sent to the error logger
(see also error_logger.
Returns {error, {'invalid global_groups definition', Bad}} if configuration
parameter global_groups has an invalid value Bad.

 whereis_name(Name)

 -spec whereis_name(Name) -> pid() | undefined when Name :: name().

Searched for Name in any global group.
The global groups are searched in the order that they appear in the value
of configuration parameter global_groups.
If Name is found, the corresponding pid is returned. If the name is not found,
the function returns undefined.

 whereis_name(Where, Name)

 -spec whereis_name(Where, Name) -> pid() | undefined when Where :: where(), Name :: name().

Equivalent to whereis_name(Name) except that he search is limited
to the node or global group specified by Where.

 net_adm - kernel v10.4

net_adm

Various Erlang net administration routines.
This module contains various network utility functions.
Files
File .hosts.erlang consists of a number of host names written as Erlang terms.
It is looked for in the current work directory, the user's home directory, and
$OTPROOT (the root directory of Erlang/OTP), in that order.
The format of file .hosts.erlang must be one host name per line. The host
names must be within quotes.
Example:
'super.eua.ericsson.se'.
'renat.eua.ericsson.se'.
'grouse.eua.ericsson.se'.
'gauffin1.eua.ericsson.se'.
^ (new line)

 Summary

 Types

 verbosity()

 Functions

 dns_hostname(Host)

 Returns the official name of Host, or {error, Host} if no such name is
found. See also inet.

 host_file()

 Reads file .hosts.erlang, see section Files. Returns the
hosts in this file as a list. Returns {error, Reason} if the file cannot be
read or the Erlang terms on the file cannot be interpreted.

 localhost()

 Returns the name of the local host. If Erlang was started with command-line flag
-name, Name is the fully qualified name.

 names()

 Equivalent to names(net_adm:localhost()).

 names(Host)

 Returns the names and associated port numbers of the Erlang nodes that epmd
registered at the specified host.

 ping(Node)

 Sets up a connection to Node. Returns pong if it is successful, otherwise
pang.

 world()

 Equivalent to world(silent).

 world(Arg)

 Calls names(Host) for all hosts that are specified in the Erlang
host file .hosts.erlang, collects the replies, and then evaluates
ping(Node) on all those nodes. Returns the list of all nodes that
are successfully pinged.

 world_list(Hosts)

 Equivalent to world_list(Hosts, silent).

 world_list(Hosts, Arg)

 Same as world/0,1, but the hosts are specified as argument
instead of being read from .hosts.erlang.

 Types

 verbosity()

 (not exported)

 -type verbosity() :: silent | verbose.

 Functions

 dns_hostname(Host)

 -spec dns_hostname(Host) -> {ok, Name} | {error, Host} when Host :: atom() | string(), Name :: string().

Returns the official name of Host, or {error, Host} if no such name is
found. See also inet.

 host_file()

 -spec host_file() -> Hosts | {error, Reason}
 when
 Hosts :: [Host :: atom()],
 Reason ::
 file:posix() |
 badarg | terminated | system_limit |
 {Line :: integer(), Mod :: module(), Term :: term()}.

Reads file .hosts.erlang, see section Files. Returns the
hosts in this file as a list. Returns {error, Reason} if the file cannot be
read or the Erlang terms on the file cannot be interpreted.

 localhost()

 -spec localhost() -> Name when Name :: string().

Returns the name of the local host. If Erlang was started with command-line flag
-name, Name is the fully qualified name.

 names()

 -spec names() -> {ok, [{Name, Port}]} | {error, Reason}
 when Name :: string(), Port :: non_neg_integer(), Reason :: address | file:posix().

Equivalent to names(net_adm:localhost()).

 names(Host)

 -spec names(Host) -> {ok, [{Name, Port}]} | {error, Reason}
 when
 Host :: atom() | string() | inet:ip_address(),
 Name :: string(),
 Port :: non_neg_integer(),
 Reason :: address | file:posix().

Returns the names and associated port numbers of the Erlang nodes that epmd
registered at the specified host.
Similar to epmd -names, see erts:epmd.
Returns {error, address} if epmd is not operational.
Example:
(arne@dunn)1> net_adm:names().
{ok,[{"arne",40262}]}

 ping(Node)

 -spec ping(Node) -> pong | pang when Node :: atom().

Sets up a connection to Node. Returns pong if it is successful, otherwise
pang.

 world()

 -spec world() -> [node()].

Equivalent to world(silent).

 world(Arg)

 -spec world(Arg) -> [node()] when Arg :: verbosity().

Calls names(Host) for all hosts that are specified in the Erlang
host file .hosts.erlang, collects the replies, and then evaluates
ping(Node) on all those nodes. Returns the list of all nodes that
are successfully pinged.
If Arg == verbose, the function writes information about which nodes it is
pinging to stdout.
This function can be useful when a node is started, and the names of the other
network nodes are not initially known.
Returns {error, Reason} if host_file/0 returns {error, Reason}.

 world_list(Hosts)

 -spec world_list(Hosts) -> [node()] when Hosts :: [atom()].

Equivalent to world_list(Hosts, silent).

 world_list(Hosts, Arg)

 -spec world_list(Hosts, Arg) -> [node()] when Hosts :: [atom()], Arg :: verbosity().

Same as world/0,1, but the hosts are specified as argument
instead of being read from .hosts.erlang.

 net_kernel - kernel v10.4

net_kernel

Erlang networking kernel.
The net kernel is a system process, registered as net_kernel, which must be
operational for distributed Erlang to work. The purpose of this process is to
implement parts of the BIFs spawn/4 and
spawn_link/4, and to provide monitoring of the network.
An Erlang node is started using command-line flag -name or -sname:
$ erl -sname foobar
It is also possible to call net_kernel:start(foobar, #{})
directly from the normal Erlang shell prompt:
1> net_kernel:start(foobar, #{name_domain => shortnames}).
{ok,<0.64.0>}
(foobar@gringotts)2>
If the node is started with command-line flag -sname, the node name is
foobar@Host, where Host is the short name of the host (not the fully
qualified domain name). If started with flag -name, the node name is
foobar@Host, where Host is the fully qualified domain name. For more
information, see erl.
Normally, connections are established automatically when another node is
referenced. This functionality can be disabled by setting Kernel configuration
parameter dist_auto_connect to never, see kernel(6). In
this case, connections must be established explicitly by calling
connect_node/1.
Which nodes that are allowed to communicate with each other is handled by the
magic cookie system, see section Distributed Erlang
in the Erlang Reference Manual.
Warning
Starting a distributed node without also specifying
-proto_dist inet_tls will expose the node
to attacks that may give the attacker complete access to the node and in
extension the cluster. When using un-secure distributed nodes, make sure that
the network is configured to keep potential attackers out. See the
Using SSL for Erlang Distribution User's Guide
for details on how to setup a secure distributed node.

 Summary

 Types

 connection_state()

 connection_type()

 Functions

 allow(Nodes)

 Permits access to the specified set of nodes.

 allowed()

 Returns a list of nodes that are explicitly allowed to connect to the node by calling
allow/1. If empty list is returned, it means that any node using the
same cookie will be able to connect.

 connect_node(Node)

 Establishes a connection to Node.

 get_net_ticktime()

 Returns currently used net tick time in seconds.

 get_state()

 Get the current state of the distribution for the local node.

 getopts(Node, Options)

 Get one or more options for the distribution socket connected to Node.

 monitor_nodes(Flag)

 Equivalent to monitor_nodes(Flag, []).

 monitor_nodes(Flag, Options)

 The calling process subscribes or unsubscribes to node status change messages. A
nodeup message is delivered to all subscribing processes when a new node is
connected, and a nodedown message is delivered when a node is disconnected.

 set_net_ticktime(NetTicktime)

 Equivalent to set_net_ticktime(NetTicktime, 60).

 set_net_ticktime(NetTicktime, TransitionPeriod)

 Sets net_ticktime (see kernel(6)) to NetTicktime seconds.
TransitionPeriod defaults to 60.

 setopts(Node, Options)

 Set one or more options for distribution sockets. Argument Node can be either
one node name or the atom new to affect the distribution sockets of all future
connected nodes.

 start(Options)

 deprecated

 Turns a non-distributed node into a distributed node by starting net_kernel
and other necessary processes.

 start(Name, Options)

 Turns a non-distributed node into a distributed node by starting net_kernel
and other necessary processes.

 stop()

 Turns a distributed node into a non-distributed node.

 Types

 connection_state()

 (not exported)

 -type connection_state() :: check_pending | pending | up | up_pending.

 connection_type()

 (not exported)

 -type connection_type() :: normal | hidden.

 Functions

 allow(Nodes)

 -spec allow(Nodes) -> ok | error | ignored when Nodes :: [node()].

Permits access to the specified set of nodes.
Before the first call to allow/1, any node with the correct
cookie can be connected. When allow/1 is called, a list of
allowed nodes is established. Any access attempts made from (or to) nodes not in
that list will be rejected.
Subsequent calls to allow/1 will add the specified nodes to the
list of allowed nodes. It is not possible to remove nodes from the list.
Disallowing an already connected node will not cause it to be disconnected. It
will, however, prevent any future reconnection attempts.
Passing Nodes as an empty list has never any affect at all.
Returns error if any element in Nodes is not an atom, and ignored if the
local node is not alive.

 allowed()

 (since OTP 28.0)

 -spec allowed() -> {ok, Nodes} | ignored when Nodes :: [node()].

Returns a list of nodes that are explicitly allowed to connect to the node by calling
allow/1. If empty list is returned, it means that any node using the
same cookie will be able to connect.

 connect_node(Node)

 -spec connect_node(Node) -> boolean() | ignored when Node :: node().

Establishes a connection to Node.
Returns true if a connection was established or was already established or if
Node is the local node itself. Returns false if the connection attempt failed,
and ignored if the local node is not alive.

 get_net_ticktime()

 -spec get_net_ticktime() -> Res
 when
 Res :: NetTicktime | {ongoing_change_to, NetTicktime} | ignored,
 NetTicktime :: pos_integer().

Returns currently used net tick time in seconds.
For more information see the net_ticktime
Kernel parameter.
Defined return values (Res):
	NetTicktime - net_ticktime is NetTicktime seconds.

	{ongoing_change_to, NetTicktime} - net_kernel is currently changing
net_ticktime to NetTicktime seconds.

	ignored - The local node is not alive.

 get_state()

 (since OTP 25.0)

 -spec get_state() ->
 #{started => no | static | dynamic,
 name => atom(),
 name_type => static | dynamic,
 name_domain => shortnames | longnames}.

Get the current state of the distribution for the local node.
Returns a map with (at least) the following key-value pairs:
	started => Started - Valid values for Started:
	no - The distribution is not started. In this state none of the other
keys below are present in the map.

	static - The distribution was started with command line arguments
-name or
-sname.

	dynamic - The distribution was started with
net_kernel:start/1 and can be stopped with
net_kernel:stop/0.

	name => Name - The name of the node. Same as returned by erlang:node/0
except when name_type is dynamic in which case Name may be undefined
(instead of nonode@nohost).

	name_type => NameType - Valid values for NameType:
	static - The node has a static node name set by the node itself.

	dynamic - The distribution was started in
dynamic node name mode, and will
get its node name assigned from the first node it connects to. If key name
has value undefined that has not happened yet.

	name_domain => NameDomain - Valid values for NameDomain:
	shortnames - The distribution was started to use node names with a
short host portion (not fully qualified).

	longnames - The distribution was started to use node names with a long
fully qualified host portion.

 getopts(Node, Options)

 (since OTP 19.1)

 -spec getopts(Node, Options) -> {ok, OptionValues} | {error, Reason} | ignored
 when
 Node :: node(),
 Options :: [inet:socket_getopt()],
 OptionValues :: [inet:socket_setopt()],
 Reason :: inet:posix() | noconnection.

Get one or more options for the distribution socket connected to Node.
If Node is a connected node the return value is the same as from
inet:getopts(Sock, Options) where Sock is the
distribution socket for Node.
Returns ignored if the local node is not alive or {error, noconnection} if
Node is not connected.

 monitor_nodes(Flag)

 -spec monitor_nodes(Flag) -> ok | Error when Flag :: boolean(), Error :: error | {error, term()}.

Equivalent to monitor_nodes(Flag, []).

 monitor_nodes(Flag, Options)

 -spec monitor_nodes(Flag, Options) -> ok | Error
 when
 Flag :: boolean(),
 Options :: OptionsList | OptionsMap,
 OptionsList :: [ListOption],
 ListOption :: connection_id | {node_type, NodeType} | nodedown_reason,
 OptionsMap ::
 #{connection_id => boolean(),
 node_type => NodeType,
 nodedown_reason => boolean()},
 NodeType :: visible | hidden | all,
 Error :: error | {error, term()}.

The calling process subscribes or unsubscribes to node status change messages. A
nodeup message is delivered to all subscribing processes when a new node is
connected, and a nodedown message is delivered when a node is disconnected.
If Flag is true, a new subscription is started. If Flag is false, all
previous subscriptions started with the same Options are stopped. Two option
lists are considered the same if they contain the same set of options.
Delivery guarantees of nodeup/nodedown messages:
	nodeup messages are delivered before delivery of any signals from the remote
node through the newly established connection.
	nodedown messages are delivered after all the signals from the remote node
over the connection have been delivered.
	nodeup messages are delivered after the corresponding node appears in
results from erlang:nodes().
	nodedown messages are delivered after the corresponding node has disappeared
in results from erlang:nodes().
	As of OTP 23.0, a nodedown message for a connection being taken down will be
delivered before a nodeup message due to a new connection to the same node.
Prior to OTP 23.0, this was not guaranteed to be the case.

The format of the node status change messages depends on Options. If Options
is the empty list or if net_kernel:monitor_nodes/1 is called, the format is as
follows:
{nodeup, Node} | {nodedown, Node}
 Node = node()
When Options is the empty map or empty list, the caller will only subscribe
for status change messages for visible nodes. That is, only nodes that appear in
the result of erlang:nodes/0.
If Options equals anything other than the empty list, the format of the status
change messages is as follows:
{nodeup, Node, Info} | {nodedown, Node, Info}
 Node = node()
 Info = #{Tag => Val} | [{Tag, Val}]
Info is either a map or a list of 2-tuples. Its content depends on Options.
If Options is a map, Info will also be a map. If Options is a list, Info
will also be a list.
When Options is a map, currently the following associations are allowed:
	connection_id => boolean() - If the value of the association equals
true, a connection_id => ConnectionId association will be included in the
Info map where ConnectionId is the connection identifier of the connection
coming up or going down. For more info about this connection identifier see
the documentation of erlang:nodes/2.

	node_type => NodeType - Valid values for NodeType:
	visible - Subscribe to node status change messages for visible nodes
only. The association node_type => visible will be included in the Info
map.

	hidden - Subscribe to node status change messages for hidden nodes
only. The association node_type => hidden will be included in the Info
map.

	all - Subscribe to node status change messages for both visible and
hidden nodes. The association node_type => visible | hidden will be
included in the Info map.

If no node_type => NodeType association is included in the Options map,
the caller will subscribe for status change messages for visible nodes only,
but no node_type => visible association will be included in the Info
map.

	nodedown_reason => boolean() - If the value of the association equals
true, a nodedown_reason => Reason association will be included in the
Info map for nodedown messages.
 Reason can, depending on which distribution
module or process that is used, be any term, but for the standard TCP
distribution module it is one of the following:
	connection_setup_failed - The connection setup failed (after nodeup
messages were sent).

	no_network - No network is available.

	net_kernel_terminated - The net_kernel process terminated.

	shutdown - Unspecified connection shutdown.

	connection_closed - The connection was closed.

	disconnect - The connection was disconnected (forced from the current
node).

	net_tick_timeout - Net tick time-out.

	send_net_tick_failed - Failed to send net tick over the connection.

	get_status_failed - Status information retrieval from the Port
holding the connection failed.

When Options is a list, currently ListOption can be one of the following:
	connection_id - A {connection_id, ConnectionId} tuple will be included
in Info where ConnectionId is the connection identifier of the connection
coming up or going down. For more info about this connection identifier see
the documentation of erlang:nodes/2.

	{node_type, NodeType} - Valid values for NodeType:
	visible - Subscribe to node status change messages for visible nodes
only. The tuple {node_type, visible} will be included in the Info list.

	hidden - Subscribe to node status change messages for hidden nodes
only. The tuple {node_type, hidden} will be included in the Info list.

	all - Subscribe to node status change messages for both visible and
hidden nodes. The tuple {node_type, visible | hidden} will be included in
the Info list.

If no {node_type, NodeType} option has been given. The caller will subscribe
for status change messages for visible nodes only, but no
{node_type, visible} tuple will be included in the Info list.

	nodedown_reason - The tuple {nodedown_reason, Reason} will be included
in the Info list for nodedown messages.
See the documentation of the
nodedown_reason => boolean() association
above for information about possible Reason values.

Example:
(a@localhost)1> net_kernel:monitor_nodes(true, #{connection_id=>true, node_type=>all, nodedown_reason=>true}).
ok
(a@localhost)2> flush().
Shell got {nodeup,b@localhost,
 #{connection_id => 3067552,node_type => visible}}
Shell got {nodeup,c@localhost,
 #{connection_id => 13892107,node_type => hidden}}
Shell got {nodedown,b@localhost,
 #{connection_id => 3067552,node_type => visible,
 nodedown_reason => connection_closed}}
Shell got {nodedown,c@localhost,
 #{connection_id => 13892107,node_type => hidden,
 nodedown_reason => net_tick_timeout}}
Shell got {nodeup,b@localhost,
 #{connection_id => 3067553,node_type => visible}}
ok
(a@localhost)3>

 set_net_ticktime(NetTicktime)

 -spec set_net_ticktime(NetTicktime) -> Res
 when
 NetTicktime :: pos_integer(),
 Res :: unchanged | change_initiated | {ongoing_change_to, NewNetTicktime},
 NewNetTicktime :: pos_integer().

Equivalent to set_net_ticktime(NetTicktime, 60).

 set_net_ticktime(NetTicktime, TransitionPeriod)

 -spec set_net_ticktime(NetTicktime, TransitionPeriod) -> Res
 when
 NetTicktime :: pos_integer(),
 TransitionPeriod :: non_neg_integer(),
 Res :: unchanged | change_initiated | {ongoing_change_to, NewNetTicktime},
 NewNetTicktime :: pos_integer().

Sets net_ticktime (see kernel(6)) to NetTicktime seconds.
TransitionPeriod defaults to 60.
Some definitions:
	Minimum transition traffic interval (MTTI) -
minimum(NetTicktime, PreviousNetTicktime)*1000 div 4 milliseconds.

	Transition period - The time of the least number of consecutive MTTIs to
cover TransitionPeriod seconds following the call to
set_net_ticktime/2 (that is,
((TransitionPeriod*1000 - 1) div MTTI + 1)*MTTI milliseconds).

If NetTicktime < PreviousNetTicktime, the net_ticktime change is done at the
end of the transition period; otherwise at the beginning. During the transition
period, net_kernel ensures that there is outgoing traffic on all connections
at least every MTTI millisecond.
Note
The net_ticktime changes must be initiated on all nodes in the network (with
the same NetTicktime) before the end of any transition period on any node;
otherwise connections can erroneously be disconnected.
Returns one of the following:
	unchanged - net_ticktime already has the value of NetTicktime and is
left unchanged.

	change_initiated - net_kernel initiated the change of net_ticktime
to NetTicktime seconds.

	{ongoing_change_to, NewNetTicktime} - The request is ignored because
net_kernel is busy changing net_ticktime to NewNetTicktime seconds.

 setopts(Node, Options)

 (since OTP 19.1)

 -spec setopts(Node, Options) -> ok | {error, Reason} | ignored
 when
 Node :: node() | new,
 Options :: [inet:socket_setopt()],
 Reason :: inet:posix() | noconnection.

Set one or more options for distribution sockets. Argument Node can be either
one node name or the atom new to affect the distribution sockets of all future
connected nodes.
The return value is the same as from inet:setopts/2 or {error, noconnection}
if Node is not a connected node or new.
If Node is new the Options will then also be added to kernel configuration
parameters inet_dist_listen_options
and inet_dist_connect_options.
Returns ignored if the local node is not alive.

 start(Options)

 This function is deprecated. Use start/2 instead.

 -spec start(Options) -> {ok, pid()} | {error, Reason}
 when
 Options :: [Name | NameDomain | TickTime, ...],
 Name :: atom(),
 NameDomain :: shortnames | longnames,
 TickTime :: pos_integer(),
 Reason :: {already_started, pid()} | term().

Turns a non-distributed node into a distributed node by starting net_kernel
and other necessary processes.
Options list can only be exactly one of the following lists (order is
imporant):
	[Name] - The same as net_kernel:start([Name, longnames, 15000]).

	[Name, NameDomain] - The same as
net_kernel:start([Name, NameDomain, 15000]).

	[Name, NameDomain, TickTime] - The same as
net_kernel:start(Name, #{name_domain => NameDomain, net_ticktime => ((TickTime*4-1) div 1000) + 1, net_tickintensity => 4}).
Note that TickTime is not the same as net tick time expressed in
milliseconds. TickTime is the time between ticks when net tick intensity
equals 4.

 start(Name, Options)

 (since OTP 24.3)

 -spec start(Name, Options) -> {ok, pid()} | {error, Reason}
 when
 Options ::
 #{name_domain => NameDomain,
 net_ticktime => NetTickTime,
 net_tickintensity => NetTickIntensity,
 dist_listen => boolean(),
 hidden => boolean()},
 Name :: atom(),
 NameDomain :: shortnames | longnames,
 NetTickTime :: pos_integer(),
 NetTickIntensity :: 4..1000,
 Reason :: {already_started, pid()} | term().

Turns a non-distributed node into a distributed node by starting net_kernel
and other necessary processes.
If Name is set to undefined the distribution will be started to request a
dynamic node name from the first node it connects to. See
Dynamic Node Name. Setting Name to
undefined implies options dist_listen => false and hidden => true.
Currently supported options:
	name_domain => NameDomain - Determines the host name part of the node
name. If NameDomain equals longnames, fully qualified domain names will be
used which also is the default. If NameDomain equals shortnames, only the
short name of the host will be used.

	net_ticktime => NetTickTime - Net tick time to use in seconds.
Defaults to the value of the net_ticktime
kernel(6) parameter. For more information about net tick time, see the
kernel parameter. However, note that if the value of the kernel parameter
is invalid, it will silently be replaced by a valid value, but if an invalid
NetTickTime value is passed as option value to this function, the call will
fail.

	net_tickintensity => NetTickIntensity - Net tick intensity to use.
Defaults to the value of the
net_tickintensity kernel(6) parameter.
For more information about net tick intensity, see the kernel parameter.
However, note that if the value of the kernel parameter is invalid, it will
silently be replaced by a valid value, but if an invalid NetTickIntensity
value is passed as option value to this function, the call will fail.

	dist_listen => boolean() - Enable or disable listening for incoming
connections. Defaults to the value of the
-dist_listen erl command line argument.
Note that dist_listen => false implies hidden => true.
If undefined has been passed as Name, the dist_listen option will be
overridden with dist_listen => false.

	hidden => boolean() - Enable or disable hidden node. Defaults to true
if the -hidden erl command line argument has
been passed; otherwise false.
If undefined has been passed as Name, or the option dist_listen equals
false, the hidden option will be overridden with hidden => true.

 stop()

 -spec stop() -> ok | {error, Reason} when Reason :: not_allowed | not_found.

Turns a distributed node into a non-distributed node.
For other nodes in the network, this is the same as the node going down.
Only possible when the net kernel was started using start/2, otherwise
{error, not_allowed} is returned. Returns {error, not_found} if the local
node is not alive.

 pg - kernel v10.4

pg

Distributed named process groups.
This module implements process groups. A message can be sent to one, some, or
all group members.
Up until OTP 17 there used to exist an experimental pg module in stdlib.
This pg module is not the same module as that experimental pg module, and
only share the same module name.
A group of processes can be accessed by a common name. For example, if there is
a group named foobar, there can be a set of processes (which can be located on
different nodes) that are all members of the group foobar. There are no
special functions for sending a message to the group. Instead, client functions
are to be written with the functions get_members/1 and get_local_members/1
to determine which processes are members of the group. Then the message can be
sent to one or more group members.
If a member terminates, it is automatically removed from the group.
A process may join multiple groups. It may join the same group multiple times.
It is only allowed to join processes running on local node.
Process Groups implement strong eventual consistency. Process Groups membership
view may temporarily diverge. For example, when processes on node1 and node2
join concurrently, node3 and node4 may receive updates in a different order.
Membership view is not transitive. If node1 is not directly connected to
node2, they will not see each other groups. But if both are connected to
node3, node3 will have the full view.
Groups are automatically created when any process joins, and are removed when
all processes leave the group. Non-existing group is considered empty
(containing no processes).
Process groups can be organised into multiple scopes. Scopes are completely
independent of each other. A process may join any number of groups in any number
of scopes. Scopes are designed to decouple single mesh into a set of overlay
networks, reducing amount of traffic required to propagate group membership
information. Default scope pg is started automatically when
Kernel is configured to do so.
Note
Scope name is used to register process locally, and to name an ETS table. If
there is another process registered under this name, or another ETS table
exists, scope fails to start.
Local membership is not preserved if scope process exits and restarts.
A scope can be kept local-only by using a scope name that is unique
cluster-wide, e.g. the node name: pg:start_link(node()).
See Also
Kernel

 Summary

 Types

 group()

 The identifier of a process group.

 Functions

 demonitor(Ref)

 Equivalent to demonitor(pg, Ref).

 demonitor(Scope, Ref)

 Unsubscribes the caller from updates (scope or group). Flushes all outstanding
updates that were already in the message queue of the calling process.

 get_local_members(Group)

 Equivalent to get_local_members(pg, Group).

 get_local_members(Scope, Group)

 Returns all processes running on the local node in the group Group. Processes
are returned in no specific order. This function is optimised for speed.

 get_members(Group)

 Equivalent to get_members(pg, Group).

 get_members(Scope, Group)

 Returns all processes in the group Group. Processes are returned in no
specific order. This function is optimised for speed.

 join(Group, PidOrPids)

 Equivalent to join(pg, Group, PidOrPids).

 join(Scope, Group, PidOrPids)

 Joins single process or multiple processes to the group Group. A process can
join a group many times and must then leave the group the same number of times.

 leave(Group, PidOrPids)

 Equivalent to leave(pg, Group, PidOrPids).

 leave(Scope, Group, PidOrPids)

 Makes the process PidOrPids leave the group Group. If the process is not a
member of the group, not_joined is returned.

 monitor(Group)

 Equivalent to monitor(pg, Group).

 monitor(Scope, Group)

 Subscribes the caller to updates for the specified group.

 monitor_scope()

 Equivalent to monitor_scope(pg).

 monitor_scope(Scope)

 Subscribes the caller to updates from the specified scope.

 start(Scope)

 Starts additional scope.

 start_link()

 Starts the default pg scope within supervision tree.

 start_link(Scope)

 Equivalent to start(Scope), except that it also creates
a link/1 with the calling process.

 which_groups()

 Equivalent to which_groups(pg).

 which_groups(Scope)

 Returns a list of all known groups.

 Types

 group()

 (not exported)

 (since OTP 23.0)

 -type group() :: any().

The identifier of a process group.

 Functions

 demonitor(Ref)

 (since OTP 25.1)

 -spec demonitor(Ref :: reference()) -> ok | false.

Equivalent to demonitor(pg, Ref).

 demonitor(Scope, Ref)

 (since OTP 25.1)

 -spec demonitor(Scope :: atom(), Ref :: reference()) -> ok | false.

Unsubscribes the caller from updates (scope or group). Flushes all outstanding
updates that were already in the message queue of the calling process.

 get_local_members(Group)

 (since OTP 23.0)

 -spec get_local_members(Group :: group()) -> [pid()].

Equivalent to get_local_members(pg, Group).

 get_local_members(Scope, Group)

 (since OTP 23.0)

 -spec get_local_members(Scope :: atom(), Group :: group()) -> [pid()].

Returns all processes running on the local node in the group Group. Processes
are returned in no specific order. This function is optimised for speed.

 get_members(Group)

 (since OTP 23.0)

 -spec get_members(Group :: group()) -> [pid()].

Equivalent to get_members(pg, Group).

 get_members(Scope, Group)

 (since OTP 23.0)

 -spec get_members(Scope :: atom(), Group :: group()) -> [pid()].

Returns all processes in the group Group. Processes are returned in no
specific order. This function is optimised for speed.

 join(Group, PidOrPids)

 (since OTP 23.0)

 -spec join(Group :: group(), PidOrPids :: pid() | [pid()]) -> ok.

Equivalent to join(pg, Group, PidOrPids).

 join(Scope, Group, PidOrPids)

 (since OTP 23.0)

 -spec join(Scope :: atom(), Group :: group(), PidOrPids :: pid() | [pid()]) -> ok.

Joins single process or multiple processes to the group Group. A process can
join a group many times and must then leave the group the same number of times.
PidOrPids may contain the same process multiple times.

 leave(Group, PidOrPids)

 (since OTP 23.0)

 -spec leave(Group :: group(), PidOrPids :: pid() | [pid()]) -> ok.

Equivalent to leave(pg, Group, PidOrPids).

 leave(Scope, Group, PidOrPids)

 (since OTP 23.0)

 -spec leave(Scope :: atom(), Group :: group(), PidOrPids :: pid() | [pid()]) -> ok | not_joined.

Makes the process PidOrPids leave the group Group. If the process is not a
member of the group, not_joined is returned.
When list of processes is passed as PidOrPids, function returns not_joined
only when all processes of the list are not joined.

 monitor(Group)

 (since OTP 25.1)

 -spec monitor(Group :: group()) -> {reference(), [pid()]}.

Equivalent to monitor(pg, Group).

 monitor(Scope, Group)

 (since OTP 25.1)

 -spec monitor(Scope :: atom(), Group :: group()) -> {reference(), [pid()]}.

Subscribes the caller to updates for the specified group.
Returns list of processes currently in the group, and a reference to match the
upcoming notifications.
See monitor_scope/0 for the update message structure.

 monitor_scope()

 (since OTP 25.1)

 -spec monitor_scope() -> {reference(), #{group() => [pid()]}}.

Equivalent to monitor_scope(pg).

 monitor_scope(Scope)

 (since OTP 25.1)

 -spec monitor_scope(Scope :: atom()) -> {reference(), #{group() => [pid()]}}.

Subscribes the caller to updates from the specified scope.
Returns content of the entire scope and a reference to match the upcoming
notifications.
Whenever any group membership changes, an update message is sent to the
subscriber:
{Ref, join, Group, [JoinPid1, JoinPid2]}
{Ref, leave, Group, [LeavePid1]}

 start(Scope)

 (since OTP 23.0)

 -spec start(Scope :: atom()) -> {ok, pid()} | {error, any()}.

Starts additional scope.

 start_link()

 (since OTP 23.0)

 -spec start_link() -> {ok, pid()} | {error, any()}.

Starts the default pg scope within supervision tree.
Kernel may be configured to do it automatically by setting
the Kernel configuration parameter start_pg.

 start_link(Scope)

 (since OTP 23.0)

 -spec start_link(Scope :: atom()) -> {ok, pid()} | {error, any()}.

Equivalent to start(Scope), except that it also creates
a link/1 with the calling process.

 which_groups()

 (since OTP 23.0)

 -spec which_groups() -> [Group :: group()].

Equivalent to which_groups(pg).

 which_groups(Scope)

 (since OTP 23.0)

 -spec which_groups(Scope :: atom()) -> [Group :: group()].

Returns a list of all known groups.

 rpc - kernel v10.4

rpc

Remote Procedure Call services.
This module contains services similar to Remote Procedure Calls. It also
contains broadcast facilities and parallel evaluators. A remote procedure call
is a method to call a function on a remote node and collect the answer. It is
used for collecting information on a remote node, or for running a function with
some specific side effects on the remote node.
Note
rpc:call/4 and related functions make it difficult to distinguish
between successful results, raised exceptions, and other errors. This
behavior cannot be changed for compatibility reasons.
The erpc module was introduced in Erlang/OTP 23 to provide an API
that allows clear distinction between these different outcomes. The
erpc module offers the core subset of the functionality provided by
the rpc module. It also features a more scalable and
higher-performance implementation compared to the original rpc module.
Since the introduction of erpc, the rpc module has been
updated to use erpc internally for most of its core
functionality. As a result, the rpc module does not fall short in
scalability or performance compared to erpc.
Note
For some important information about distributed signals, see the
Blocking Signaling Over Distribution
section in the Processes chapter of the Erlang Reference Manual. Blocking
signaling can, for example, cause timeouts in rpc to be significantly
delayed.

 Summary

 Types

 key()

 Opaque value returned by async_call/4.

 Functions

 abcast(Name, Msg)

 Equivalent to abcast([node()|nodes()], Name, Msg).

 abcast(Nodes, Name, Msg)

 Broadcasts the message Msg asynchronously to the registered process Name on
the specified nodes.

 async_call(Node, Module, Function, Args)

 Implements call streams with promises, a type of RPC that does not suspend the
caller until the result is finished. Instead, a key is returned, which can be
used later to collect the value. The key can be viewed as a promise to deliver
the answer.

 block_call(Node, Module, Function, Args)

 The same as calling
rpc:block_call(Node, Module, Function, Args, infinity).

 block_call(Node, Module, Function, Args, Timeout)

 The same as calling
rpc:call(Node, Module, Function, Args, Timeout) with the exception
that it also blocks other rpc:block_call/5 operations from executing
concurrently on the node Node.

 call(Node, Module, Function, Args)

 Evaluates apply(Module, Function, Args) on node Node and
returns the corresponding value Res, or {badrpc, Reason} if the call fails.
The same as calling
rpc:call(Node, Module, Function, Args, infinity).

 call(Node, Module, Function, Args, Timeout)

 Evaluates apply(Module, Function, Args) on node Node and
returns the corresponding value Res, or {badrpc, Reason} if the call fails.
Timeout is a time-out value in milliseconds. If the call times out, Reason
is timeout.

 cast(Node, Module, Function, Args)

 Evaluates apply(Module, Function, Args) on node Node. No
response is delivered and the calling process is not suspended until the
evaluation is complete, as is the case with call/4,5.

 eval_everywhere(Module, Function, Args)

 Equivalent to
eval_everywhere([node()|nodes()], Module, Function, Args).

 eval_everywhere(Nodes, Module, Function, Args)

 Evaluates apply(Module, Function, Args) on the specified nodes.
No answers are collected.

 multi_server_call(Name, Msg)

 Equivalent to
multi_server_call([node()|nodes()], Name, Msg).

 multi_server_call(Nodes, Name, Msg)

 Can be used when interacting with servers called Name on the specified nodes.
It is assumed that the servers receive messages in the format {From, Msg} and
reply using From ! {Name, Node, Reply}, where Node is the name of the node
where the server is located. The function returns {Replies, BadNodes}, where
Replies is a list of all Reply values, and BadNodes is one of the
following

 multicall(Module, Function, Args)

 Equivalent to
multicall([node()|nodes()], Module, Function, Args, infinity).

 multicall/4

 Equivalent to
multicall(Nodes, Module, Function, Args, infinity).

 multicall(Nodes, Module, Function, Args, Timeout)

 In contrast to an RPC, a multicall is an RPC that is sent concurrently from one
client to multiple servers. This is useful for collecting information from a set
of nodes, or for calling a function on a set of nodes to achieve some side
effects. It is semantically the same as iteratively making a series of RPCs on
all the nodes, but the multicall is faster, as all the requests are sent at the
same time and are collected one by one as they come back.

 nb_yield(Key)

 Equivalent to nb_yield(Key, 0).

 nb_yield(Key, Timeout)

 Non-blocking version of yield/1. It returns the tuple {value, Val} when the
computation is finished, or timeout when Timeout milliseconds has elapsed.

 parallel_eval(FuncCalls)

 Evaluates, for every tuple in FuncCalls,
apply(Module, Function, Args) on some node in the network.
Returns the list of return values, in the same order as in FuncCalls.

 pinfo(Pid)

 Location transparent version of the BIF erlang:process_info/1 in ERTS.

 pinfo/2

 Location transparent version of the BIF erlang:process_info/2 in ERTS.

 pmap(FuncSpec, ExtraArgs, List1)

 Evaluates apply(Module, Function, [Elem|ExtraArgs]) for every
element Elem in List1, in parallel. Returns the list of return values, in
the same order as in List1.

 sbcast(Name, Msg)

 Equivalent to sbcast([node()|nodes()], Name, Msg).

 sbcast(Nodes, Name, Msg)

 Broadcasts the message Msg synchronously to the registered process Name on
the specified nodes.

 server_call(Node, Name, ReplyWrapper, Msg)

 Can be used when interacting with a server called Name on node Node. It is
assumed that the server receives messages in the format {From, Msg} and
replies using From ! {ReplyWrapper, Node, Reply}. This function makes such a
server call and ensures that the entire call is packed into an atomic
transaction, which either succeeds or fails. It never hangs, unless the server
itself hangs.

 yield(Key)

 Returns the promised answer from a previous async_call/4. If the answer is
available, it is returned immediately. Otherwise, the calling process is
suspended until the answer arrives from Node.

 Types

 key()

 -opaque key()

Opaque value returned by async_call/4.

 Functions

 abcast(Name, Msg)

 -spec abcast(Name, Msg) -> abcast when Name :: atom(), Msg :: term().

Equivalent to abcast([node()|nodes()], Name, Msg).

 abcast(Nodes, Name, Msg)

 -spec abcast(Nodes, Name, Msg) -> abcast when Nodes :: [node()], Name :: atom(), Msg :: term().

Broadcasts the message Msg asynchronously to the registered process Name on
the specified nodes.

 async_call(Node, Module, Function, Args)

 -spec async_call(Node, Module, Function, Args) -> Key
 when
 Node :: node(),
 Module :: module(),
 Function :: atom(),
 Args :: [term()],
 Key :: key().

Implements call streams with promises, a type of RPC that does not suspend the
caller until the result is finished. Instead, a key is returned, which can be
used later to collect the value. The key can be viewed as a promise to deliver
the answer.
In this case, the key Key is returned, which can be used in a subsequent call
to yield/1 or nb_yield/1,2 to retrieve the value of
evaluating apply(Module, Function, Args) on node Node.
Note
If you want the ability to distinguish between results, you may want to
consider using the erpc:send_request() function
from the erpc module instead. This also gives you the ability retrieve the
results in other useful ways.
Note
yield/1 and nb_yield/1,2 must be called by the same
process from which this function was made otherwise they will never yield
correctly.
Note
You cannot make any assumptions about the process that will perform the
apply(). It may be an rpc server, another server, or a freshly spawned
process.

 block_call(Node, Module, Function, Args)

 -spec block_call(Node, Module, Function, Args) -> Res | {badrpc, Reason}
 when
 Node :: node(),
 Module :: module(),
 Function :: atom(),
 Args :: [term()],
 Res :: term(),
 Reason :: term().

The same as calling
rpc:block_call(Node, Module, Function, Args, infinity).

 block_call(Node, Module, Function, Args, Timeout)

 -spec block_call(Node, Module, Function, Args, Timeout) -> Res | {badrpc, Reason}
 when
 Node :: node(),
 Module :: module(),
 Function :: atom(),
 Args :: [term()],
 Res :: term(),
 Reason :: term(),
 Timeout :: 0..4294967295 | infinity.

The same as calling
rpc:call(Node, Module, Function, Args, Timeout) with the exception
that it also blocks other rpc:block_call/5 operations from executing
concurrently on the node Node.
Warning
Note that it also blocks other operations than just rpc:block_call/5
operations, so use it with care.

 call(Node, Module, Function, Args)

 -spec call(Node, Module, Function, Args) -> Res | {badrpc, Reason}
 when
 Node :: node(),
 Module :: module(),
 Function :: atom(),
 Args :: [term()],
 Res :: term(),
 Reason :: term().

Evaluates apply(Module, Function, Args) on node Node and
returns the corresponding value Res, or {badrpc, Reason} if the call fails.
The same as calling
rpc:call(Node, Module, Function, Args, infinity).

 call(Node, Module, Function, Args, Timeout)

 -spec call(Node, Module, Function, Args, Timeout) -> Res | {badrpc, Reason}
 when
 Node :: node(),
 Module :: module(),
 Function :: atom(),
 Args :: [term()],
 Res :: term(),
 Reason :: term(),
 Timeout :: 0..4294967295 | infinity.

Evaluates apply(Module, Function, Args) on node Node and
returns the corresponding value Res, or {badrpc, Reason} if the call fails.
Timeout is a time-out value in milliseconds. If the call times out, Reason
is timeout.
If the reply arrives after the call times out, no message contaminates the
caller's message queue.
Note
If you want the ability to distinguish between results, you may want to
consider using the erpc:call() function from the erpc
module instead.
Note
Here follows the details of what exactly is returned.
{badrpc, Reason} will be returned in the following circumstances:
	The called function fails with an exit exception.
	The called function fails with an error exception.
	The called function returns a term that matches {'EXIT', _}.
	The called function throws a term that matches {'EXIT', _}.

Res is returned in the following circumstances:
	The called function returns normally with a term that does not match
{'EXIT',_}.
	The called function throws a term that does not match {'EXIT',_}.

Note
You cannot make any assumptions about the process that will perform the
apply(). It may be the calling process itself, an rpc server, another
server, or a freshly spawned process.

 cast(Node, Module, Function, Args)

 -spec cast(Node, Module, Function, Args) -> true
 when Node :: node(), Module :: module(), Function :: atom(), Args :: [term()].

Evaluates apply(Module, Function, Args) on node Node. No
response is delivered and the calling process is not suspended until the
evaluation is complete, as is the case with call/4,5.
Note
You cannot make any assumptions about the process that will perform the
apply(). It may be an rpc server, another server, or a freshly spawned
process.

 eval_everywhere(Module, Function, Args)

 -spec eval_everywhere(Module, Function, Args) -> abcast
 when Module :: module(), Function :: atom(), Args :: [term()].

Equivalent to
eval_everywhere([node()|nodes()], Module, Function, Args).

 eval_everywhere(Nodes, Module, Function, Args)

 -spec eval_everywhere(Nodes, Module, Function, Args) -> abcast
 when
 Nodes :: [node()], Module :: module(), Function :: atom(), Args :: [term()].

Evaluates apply(Module, Function, Args) on the specified nodes.
No answers are collected.

 multi_server_call(Name, Msg)

 -spec multi_server_call(Name, Msg) -> {Replies, BadNodes}
 when
 Name :: atom(),
 Msg :: term(),
 Replies :: [Reply :: term()],
 BadNodes :: [node()].

Equivalent to
multi_server_call([node()|nodes()], Name, Msg).

 multi_server_call(Nodes, Name, Msg)

 -spec multi_server_call(Nodes, Name, Msg) -> {Replies, BadNodes}
 when
 Nodes :: [node()],
 Name :: atom(),
 Msg :: term(),
 Replies :: [Reply :: term()],
 BadNodes :: [node()].

Can be used when interacting with servers called Name on the specified nodes.
It is assumed that the servers receive messages in the format {From, Msg} and
reply using From ! {Name, Node, Reply}, where Node is the name of the node
where the server is located. The function returns {Replies, BadNodes}, where
Replies is a list of all Reply values, and BadNodes is one of the
following:
	A list of the nodes that do not exist
	A list of the nodes where the server does not exist
	A list of the nodes where the server terminated before sending any reply.

 multicall(Module, Function, Args)

 -spec multicall(Module, Function, Args) -> {ResL, BadNodes}
 when
 Module :: module(),
 Function :: atom(),
 Args :: [term()],
 ResL :: [Res :: term() | {badrpc, Reason :: term()}],
 BadNodes :: [node()].

Equivalent to
multicall([node()|nodes()], Module, Function, Args, infinity).

 multicall/4

 -spec multicall(Nodes, Module, Function, Args) -> {ResL, BadNodes}
 when
 Nodes :: [node()],
 Module :: module(),
 Function :: atom(),
 Args :: [term()],
 ResL :: [Res :: term() | {badrpc, Reason :: term()}],
 BadNodes :: [node()];
 (Module, Function, Args, Timeout) -> {ResL, BadNodes}
 when
 Module :: module(),
 Function :: atom(),
 Args :: [term()],
 Timeout :: 0..4294967295 | infinity,
 ResL :: [Res :: term() | {badrpc, Reason :: term()}],
 BadNodes :: [node()].

Equivalent to
multicall(Nodes, Module, Function, Args, infinity).
Equivalent to
multicall([node()|nodes()], Module, Function, Args, Timeout).

 multicall(Nodes, Module, Function, Args, Timeout)

 -spec multicall(Nodes, Module, Function, Args, Timeout) -> {ResL, BadNodes}
 when
 Nodes :: [node()],
 Module :: module(),
 Function :: atom(),
 Args :: [term()],
 Timeout :: 0..4294967295 | infinity,
 ResL :: [Res :: term() | {badrpc, Reason :: term()}],
 BadNodes :: [node()].

In contrast to an RPC, a multicall is an RPC that is sent concurrently from one
client to multiple servers. This is useful for collecting information from a set
of nodes, or for calling a function on a set of nodes to achieve some side
effects. It is semantically the same as iteratively making a series of RPCs on
all the nodes, but the multicall is faster, as all the requests are sent at the
same time and are collected one by one as they come back.
The function evaluates apply(Module, Function, Args) on the
specified nodes and collects the answers. It returns {ResL, BadNodes}, where
BadNodes is a list of the nodes that do not exist, and ResL is a list of the
return values, or {badrpc, Reason} for failing calls. Timeout is a time
(integer) in milliseconds, or infinity.
The following example is useful when new object code is to be loaded on all
nodes in the network, and indicates some side effects that RPCs can produce:
%% Find object code for module Mod
{Mod, Bin, File} = code:get_object_code(Mod),

%% and load it on all nodes including this one
{ResL, _} = rpc:multicall(code, load_binary, [Mod, File, Bin]),

%% and then maybe check the ResL list.
Note
If you want the ability to distinguish between results, you may want to
consider using the erpc:multicall() function from the
erpc module instead.
Note
You cannot make any assumptions about the process that will perform the
apply(). It may be the calling process itself, an rpc server, another
server, or a freshly spawned process.

 nb_yield(Key)

 -spec nb_yield(Key) -> {value, Val} | timeout
 when Key :: key(), Val :: (Res :: term()) | {badrpc, Reason :: term()}.

Equivalent to nb_yield(Key, 0).

 nb_yield(Key, Timeout)

 -spec nb_yield(Key, Timeout) -> {value, Val} | timeout
 when
 Key :: key(),
 Timeout :: 0..4294967295 | infinity,
 Val :: (Res :: term()) | {badrpc, Reason :: term()}.

Non-blocking version of yield/1. It returns the tuple {value, Val} when the
computation is finished, or timeout when Timeout milliseconds has elapsed.
See the note in call/4 for more details of Val.
Note
This function must be called by the same process from which async_call/4 was
made otherwise it will only return timeout.

 parallel_eval(FuncCalls)

 -spec parallel_eval(FuncCalls) -> ResL
 when
 FuncCalls :: [{Module, Function, Args}],
 Module :: module(),
 Function :: atom(),
 Args :: [term()],
 ResL :: [term()].

Evaluates, for every tuple in FuncCalls,
apply(Module, Function, Args) on some node in the network.
Returns the list of return values, in the same order as in FuncCalls.

 pinfo(Pid)

 -spec pinfo(Pid) -> [{Item, Info}] | undefined when Pid :: pid(), Item :: atom(), Info :: term().

Location transparent version of the BIF erlang:process_info/1 in ERTS.

 pinfo/2

 -spec pinfo(Pid, Item) -> {Item, Info} | undefined | []
 when Pid :: pid(), Item :: atom(), Info :: term();
 (Pid, ItemList) -> [{Item, Info}] | undefined | []
 when Pid :: pid(), Item :: atom(), ItemList :: [Item], Info :: term().

Location transparent version of the BIF erlang:process_info/2 in ERTS.

 pmap(FuncSpec, ExtraArgs, List1)

 -spec pmap(FuncSpec, ExtraArgs, List1) -> List2
 when
 FuncSpec :: {Module, Function},
 Module :: module(),
 Function :: atom(),
 ExtraArgs :: [term()],
 List1 :: [Elem :: term()],
 List2 :: [term()].

Evaluates apply(Module, Function, [Elem|ExtraArgs]) for every
element Elem in List1, in parallel. Returns the list of return values, in
the same order as in List1.

 sbcast(Name, Msg)

 -spec sbcast(Name, Msg) -> {GoodNodes, BadNodes}
 when Name :: atom(), Msg :: term(), GoodNodes :: [node()], BadNodes :: [node()].

Equivalent to sbcast([node()|nodes()], Name, Msg).

 sbcast(Nodes, Name, Msg)

 -spec sbcast(Nodes, Name, Msg) -> {GoodNodes, BadNodes}
 when
 Name :: atom(),
 Msg :: term(),
 Nodes :: [node()],
 GoodNodes :: [node()],
 BadNodes :: [node()].

Broadcasts the message Msg synchronously to the registered process Name on
the specified nodes.
Returns {GoodNodes, BadNodes}, where GoodNodes is the list of nodes that
have Name as a registered process.
The function is synchronous in the sense that it is known that all servers have
received the message when the call returns. It is not possible to know that the
servers have processed the message.
Any further messages sent to the servers, after this function has returned, are
received by all servers after this message.

 server_call(Node, Name, ReplyWrapper, Msg)

 -spec server_call(Node, Name, ReplyWrapper, Msg) -> Reply | {error, Reason}
 when
 Node :: node(),
 Name :: atom(),
 ReplyWrapper :: term(),
 Msg :: term(),
 Reply :: term(),
 Reason :: nodedown.

Can be used when interacting with a server called Name on node Node. It is
assumed that the server receives messages in the format {From, Msg} and
replies using From ! {ReplyWrapper, Node, Reply}. This function makes such a
server call and ensures that the entire call is packed into an atomic
transaction, which either succeeds or fails. It never hangs, unless the server
itself hangs.
The function returns the answer Reply as produced by the server Name, or
{error, Reason}.

 yield(Key)

 -spec yield(Key) -> Res | {badrpc, Reason} when Key :: key(), Res :: term(), Reason :: term().

Returns the promised answer from a previous async_call/4. If the answer is
available, it is returned immediately. Otherwise, the calling process is
suspended until the answer arrives from Node.
Note
This function must be called by the same process from which async_call/4 was
made otherwise it will never return.
See the note in call/4 for more details of the return value.

 file - kernel v10.4

file

File interface module.
This module provides an interface to the file system.
Warning
File operations are only guaranteed to appear atomic when going through the
same file server. A NIF or other OS process may observe intermediate steps on
certain operations on some operating systems, eg. renaming an existing file on
Windows, or write_file_info/2 on any OS at the time
of writing.
Regarding filename encoding, the Erlang VM can operate in two modes. The current
mode can be queried using function native_name_encoding/0. It returns latin1
or utf8.
In latin1 mode, the Erlang VM does not change the encoding of filenames. In
utf8 mode, filenames can contain Unicode characters greater than 255 and the
VM converts filenames back and forth to the native filename encoding (usually
UTF-8, but UTF-16 on Windows).
The default mode depends on the operating system. Windows, MacOS X and Android
enforce consistent filename encoding and therefore the VM uses utf8 mode.
On operating systems with transparent naming (for example, all Unix systems
except MacOS X), default is utf8 if the terminal supports UTF-8, otherwise
latin1. The default can be overridden using +fnl (to force latin1 mode) or
+fnu (to force utf8 mode) when starting erl.
On operating systems with transparent naming, files can be inconsistently named,
for example, some files are encoded in UTF-8 while others are encoded in ISO
Latin-1. The concept of raw filenames is introduced to handle file systems
with inconsistent naming when running in utf8 mode.
A raw filename is a filename specified as a binary. The Erlang VM does not
translate a filename specified as a binary on systems with transparent naming.
When running in utf8 mode, functions list_dir/1 and read_link/1 never
return raw filenames. To return all filenames including raw filenames, use
functions list_dir_all/1 and read_link_all/1.
See also section
Notes About Raw Filenames
in the STDLIB User's Guide.
Note
File operations used to accept filenames containing null characters (integer
value zero). This caused the name to be truncated and in some cases arguments
to primitive operations to be mixed up. Filenames containing null characters
inside the filename are now rejected and will cause primitive file
operations fail.
POSIX Error Codes
	eacces - Permission denied
	eagain - Resource temporarily unavailable
	ebadf - Bad file number
	ebusy - File busy
	edquot - Disk quota exceeded
	eexist - File already exists
	efault - Bad address in system call argument
	efbig - File too large
	eintr - Interrupted system call
	einval - Invalid argument
	eio - I/O error
	eisdir - Illegal operation on a directory
	eloop - Too many levels of symbolic links
	emfile - Too many open files
	emlink - Too many links
	enametoolong - Filename too long
	enfile - File table overflow
	enodev - No such device
	enoent - No such file or directory
	enomem - Not enough memory
	enospc - No space left on device
	enotblk - Block device required
	enotdir - Not a directory
	enotsup - Operation not supported
	enxio - No such device or address
	eperm - Not owner
	epipe - Broken pipe
	erofs - Read-only file system
	espipe - Invalid seek
	esrch - No such process
	estale - Stale remote file handle
	exdev - Cross-device link

Performance
For increased performance, raw files are recommended.
A normal file is really a process so it can be used as an I/O device (see
io). Therefore, when data is written to a normal file, the sending of the
data to the file process, copies all data that are not binaries. Opening the
file in binary mode and writing binaries is therefore recommended. If the file
is opened on another node, or if the file server runs as slave to the file
server of another node, also binaries are copied.
Note
Raw files use the file system of the host machine of the node. For normal
files (non-raw), the file server is used to find the files, and if the node is
running its file server as slave to the file server of another node, and the
other node runs on some other host machine, they can have different file
systems. However, this is seldom a problem.
open/2 can be given the options delayed_write and read_ahead to turn on
caching, which will reduce the number of operating system calls and greatly
improve performance for small reads and writes. However, the overhead won't
disappear completely and it's best to keep the number of file operations to a
minimum. As a contrived example, the following function writes 4MB in 2.5
seconds when tested:
create_file_slow(Name) ->
 {ok, Fd} = file:open(Name, [raw, write, delayed_write, binary]),
 create_file_slow_1(Fd, 4 bsl 20),
 file:close(Fd).

create_file_slow_1(_Fd, 0) ->
 ok;
create_file_slow_1(Fd, M) ->
 ok = file:write(Fd, <<0>>),
 create_file_slow_1(Fd, M - 1).
The following functionally equivalent code writes 128 bytes per call to
write/2 and so does the same work in 0.08 seconds, which is roughly 30 times
faster:
create_file(Name) ->
 {ok, Fd} = file:open(Name, [raw, write, delayed_write, binary]),
 create_file_1(Fd, 4 bsl 20),
 file:close(Fd),
 ok.

create_file_1(_Fd, 0) ->
 ok;
create_file_1(Fd, M) when M >= 128 ->
 ok = file:write(Fd, <<0:(128)/unit:8>>),
 create_file_1(Fd, M - 128);
create_file_1(Fd, M) ->
 ok = file:write(Fd, <<0:(M)/unit:8>>),
 create_file_1(Fd, M - 1).
When writing data it's generally more efficient to write a list of binaries
rather than a list of integers. It is not needed to flatten a deep list before
writing. On Unix hosts, scatter output, which writes a set of buffers in one
operation, is used when possible. In this way
write(FD, [Bin1, Bin2 | Bin3]) writes the contents of the
binaries without copying the data at all, except for perhaps deep down in the
operating system kernel.
Warning
If an error occurs when accessing an open file with module io, the process
handling the file exits. The dead file process can hang if a process tries to
access it later. This will be fixed in a future release.
See Also
filename

 Summary

 Types

 date_time()

 Must denote a valid date and time.

 deep_list()

 delete_option()

 fd()

 A file descriptor representing a file opened in raw mode.

 file_info()

 file_info_option()

 filename()

 A file name as returned from file API functions.

 filename_all()

 A file name as returned from file API functions.

 io_device()

 An IO device as returned by open/2.

 io_server()

 A process handling the I/O protocol.

 location()

 mode()

 name()

 A restricted file name used as input into file API functions.

 name_all()

 A file name used as input into file API functions.

 posix()

 An atom that is named from the POSIX error codes used in Unix, and in the
runtime libraries of most C compilers.

 posix_file_advise()

 read_file_option()

 sendfile_option()

 Functions

 advise(IoDevice, Offset, Length, Advise)

 advise/4 can be used to announce an intention to access file
data in a specific pattern in the future, thus allowing the operating system to
perform appropriate optimizations.

 allocate(File, Offset, Length)

 allocate/3 can be used to preallocate space for a file.

 change_group(Filename, Gid)

 Changes group of a file. See write_file_info/2.

 change_mode(Filename, Mode)

 Changes permissions of a file. See write_file_info/2.

 change_owner(Filename, Uid)

 Changes owner of a file. See write_file_info/2.

 change_owner(Filename, Uid, Gid)

 Changes owner and group of a file. See write_file_info/2.

 change_time(Filename, Mtime)

 Changes the modification and access times of a file. See write_file_info/2.

 change_time(Filename, Atime, Mtime)

 Changes the modification and last access times of a file. See
write_file_info/2.

 close(IoDevice)

 Closes the file referenced by IoDevice. It mostly returns ok, except for
some severe errors such as out of memory.

 consult(Filename)

 Reads Erlang terms, separated by ., from Filename. Returns one of the
following

 copy(Source, Destination)

 Equivalent to copy(Source, Destination, infinity).

 copy(Source, Destination, ByteCount)

 Copies ByteCount bytes from Source to Destination. Source and
Destination refer to either filenames or IO devices from, for example,
open/2.

 datasync(IoDevice)

 Ensures that any buffers kept by the operating system (not by the Erlang runtime
system) are written to disk. In many ways it resembles fsync but it does not
update some of the metadata of the file, such as the access time. On some
platforms this function has no effect.

 del_dir(Dir)

 Tries to delete directory Dir. The directory must be empty before it can be
deleted. Returns ok if successful.

 del_dir_r(File)

 Deletes file or directory File. If File is a directory, its contents is
first recursively deleted. Returns

 delete(Filename)

 Equivalent to delete(Filename, []).

 delete(Filename, Opts)

 Tries to delete file Filename. Returns ok if successful.

 eval(Filename)

 Reads and evaluates Erlang expressions, separated by . (or ,, a sequence of
expressions is also an expression) from Filename. The result of the evaluation
is not returned; any expression sequence in the file must be there for its side
effect.

 eval(Filename, Bindings)

 The same as eval/1, but the variable bindings Bindings are used
in the evaluation. For information about the variable bindings, see
erl_eval.

 format_error(Reason)

 Given the error reason returned by any function in this module, returns a
descriptive string of the error in English.

 get_cwd()

 Returns {ok, Dir}, where Dir is the current working directory of the file
server.

 get_cwd(Drive)

 Returns {ok, Dir} or {error, Reason}, where Dir is the current working
directory of the specified drive.

 list_dir(Dir)

 Lists all files in a directory, except files with raw filenames. Returns
{ok, Filenames} if successful, otherwise {error, Reason}. Filenames is a
list of the names of all the files in the directory. The names are not sorted.

 list_dir_all(Dir)

 Lists all the files in a directory, including files with
raw filenames. Returns {ok, Filenames} if successful, otherwise
{error, Reason}. Filenames is a list of the names of all the files in the
directory. The names are not sorted.

 make_dir(Dir)

 Tries to create directory Dir. Missing parent directories are not created.
Returns ok if successful.

 make_link(Existing, New)

 Makes a hard link from Existing to New on platforms supporting links (Unix
and Windows). This function returns ok if the link was successfully created,
otherwise {error, Reason}. On platforms not supporting links,
{error,enotsup} is returned.

 make_symlink(Existing, New)

 Creates a symbolic link New to the file or directory Existing on platforms
supporting symbolic links (most Unix systems and Windows, beginning with Vista).
Existing does not need to exist. Returns ok if the link is successfully
created, otherwise {error, Reason}. On platforms not supporting symbolic
links, {error, enotsup} is returned.

 native_name_encoding()

 Returns the filename encoding mode. If it is latin1, the system translates no
filenames. If it is utf8, filenames are converted back and forth to the native
filename encoding (usually UTF-8, but UTF-16 on Windows).

 open(File, Modes)

 Opens file File in the mode determined by Modes, which can contain one or
more of the following options

 path_consult(Path, Filename)

 Searches the path Path (a list of directory names) until the file Filename
is found. If Filename is an absolute filename, Path is ignored. Then reads
Erlang terms, separated by ., from the file.

 path_eval(Path, Filename)

 Searches the path Path (a list of directory names) until the file Filename
is found. If Filename is an absolute filename, Path is ignored. Then reads
and evaluates Erlang expressions, separated by . (or ,, a sequence of
expressions is also an expression), from the file. The result of evaluation is
not returned; any expression sequence in the file must be there for its side
effect.

 path_open(Path, Filename, Modes)

 Searches the path Path (a list of directory names) until the file Filename
is found. If Filename is an absolute filename, Path is ignored. Then opens
the file in the mode determined by Modes.

 path_script(Path, Filename)

 Searches the path Path (a list of directory names) until the file Filename
is found. If Filename is an absolute filename, Path is ignored. Then reads
and evaluates Erlang expressions, separated by . (or ,, a sequence of
expressions is also an expression), from the file.

 path_script(Path, Filename, Bindings)

 The same as path_script/2 but the variable bindings
Bindings are used in the evaluation. See erl_eval about variable bindings.

 position(IoDevice, Location)

 Sets the position of the file referenced by IoDevice to Location. Returns
{ok, NewPosition} (as absolute offset) if successful, otherwise
{error, Reason}. Location is one of the following

 pread(IoDevice, LocNums)

 Performs a sequence of pread/3 in one operation, which is more
efficient than calling them one at a time. Returns {ok, [Data, ...]} or
{error, Reason}, where each Data, the result of the corresponding pread,
is either a list or a binary depending on the mode of the file, or eof if the
requested position is beyond end of file.

 pread(IoDevice, Location, Number)

 Combines position/2 and read/2 in one operation,
which is more efficient than calling them one at a time.

 pwrite(IoDevice, LocBytes)

 Performs a sequence of pwrite/3 in one operation, which is more
efficient than calling them one at a time. Returns ok or
{error, {N, Reason}}, where N is the number of successful writes done before
the failure.

 pwrite(IoDevice, Location, Bytes)

 Combines position/2 and write/2 in one
operation, which is more efficient than calling them one at a time.

 read(IoDevice, Number)

 Reads Number bytes/characters from the file referenced by IoDevice.

 read_file(Filename)

 Equivalent to read_file(Filename, []).

 read_file(Filename, Opts)

 Returns {ok, Binary}, where Binary is a binary data object that contains the
contents of Filename, or {error, Reason} if an error occurs.

 read_file_info(File)

 Equivalent to read_file_info(File, []).

 read_file_info(File, Opts)

 Retrieves information about a file. Returns {ok, FileInfo} if successful,
otherwise {error, Reason}.

 read_line(IoDevice)

 Reads a line of bytes/characters from the file referenced by IoDevice.

 read_link(Name)

 Returns {ok, Filename} if Name refers to a symbolic
link that is not a raw filename, or {error, Reason} otherwise. On platforms
that do not support symbolic links, the return value is {error,enotsup}.

 read_link_all(Name)

 Returns {ok, Filename} if Name refers to a symbolic link or
{error, Reason} otherwise. On platforms that do not support symbolic links,
the return value is {error,enotsup}.

 read_link_info(Name)

 Equivalent to read_link_info(Name, []).

 read_link_info(Name, Opts)

 Works like read_file_info/1,2 except that if Name is a
symbolic link, information about the link is returned in the file_info record
and the type field of the record is set to symlink.

 rename(Source, Destination)

 Tries to rename the file Source to Destination. It can be used to move files
(and directories) between directories, but it is not sufficient to specify the
destination only. The destination filename must also be specified. For example,
if bar is a normal file and foo and baz are directories,
rename("foo/bar", "baz") returns an error, but
rename("foo/bar", "baz/bar") succeeds. Returns ok if it is
successful.

 script(Filename)

 Reads and evaluates Erlang expressions, separated by . (or ,, a sequence of
expressions is also an expression), from the file.

 script(Filename, Bindings)

 The same as script/1 but the variable bindings Bindings are
used in the evaluation. See erl_eval about variable bindings.

 sendfile(Filename, Socket)

 Sends the file Filename to Socket. Returns {ok, BytesSent} if successful,
otherwise {error, Reason}.

 sendfile(RawFile, Socket, Offset, Bytes, Opts)

 Sends Bytes from the file referenced by RawFile beginning at Offset to
Socket. Returns {ok, BytesSent} if successful, otherwise {error, Reason}.
If Bytes is set to 0 all data after the specified Offset is sent.

 set_cwd(Dir)

 Sets the current working directory of the file server to Dir. Returns ok if
successful.

 sync(IoDevice)

 Ensures that any buffers kept by the operating system (not by the Erlang runtime
system) are written to disk. On some platforms, this function might have no
effect.

 truncate(IoDevice)

 Truncates the file referenced by IoDevice at the current position. Returns
ok if successful, otherwise {error, Reason}.

 write(IoDevice, Bytes)

 Writes Bytes to the file referenced by IoDevice. This function is the only
way to write to a file opened in raw mode (although it works for normally
opened files too). Returns ok if successful, and {error, Reason} otherwise.

 write_file(Filename, Bytes)

 Writes the contents of the iodata term Bytes to file Filename. The file is
created if it does not exist. If it exists, the previous contents are
overwritten. Returns ok if successful, otherwise {error, Reason}.

 write_file(Filename, Bytes, Modes)

 Same as write_file/2, but takes a third argument Modes, a
list of possible modes, see open/2. The mode flags binary and write are
implicit, so they are not to be used.

 write_file_info(Filename, FileInfo)

 Equivalent to write_file_info(Filename, FileInfo, []).

 write_file_info(Filename, FileInfo, Opts)

 Changes file information. Returns ok if successful, otherwise
{error, Reason}.

 Types

 date_time()

 -type date_time() :: calendar:datetime().

Must denote a valid date and time.

 deep_list()

 (not exported)

 -type deep_list() :: [char() | atom() | deep_list()].

 delete_option()

 (not exported)

 -type delete_option() :: raw.

 fd()

 -type fd() :: file_descriptor().

A file descriptor representing a file opened in raw mode.

 file_info()

 -type file_info() ::
 #file_info{size :: non_neg_integer() | undefined,
 type :: device | directory | other | regular | symlink | undefined,
 access :: read | write | read_write | none | undefined,
 atime :: file:date_time() | non_neg_integer() | undefined,
 mtime :: file:date_time() | non_neg_integer() | undefined,
 ctime :: file:date_time() | non_neg_integer() | undefined,
 mode :: non_neg_integer() | undefined,
 links :: non_neg_integer() | undefined,
 major_device :: non_neg_integer() | undefined,
 minor_device :: non_neg_integer() | undefined,
 inode :: non_neg_integer() | undefined,
 uid :: non_neg_integer() | undefined,
 gid :: non_neg_integer() | undefined}.

 file_info_option()

 (not exported)

 -type file_info_option() :: {time, local} | {time, universal} | {time, posix} | raw.

 filename()

 -type filename() :: string().

A file name as returned from file API functions.
See the documentation of the name_all/0 type.

 filename_all()

 -type filename_all() :: string() | (RawFilename :: binary()).

A file name as returned from file API functions.
See the documentation of the name_all/0 type.

 io_device()

 -type io_device() :: io_server() | fd().

An IO device as returned by open/2.
io_server/0 is returned by default and fd/0 is returned if the raw option is given.

 io_server()

 -type io_server() :: pid().

A process handling the I/O protocol.

 location()

 -type location() ::
 integer() |
 {bof, Offset :: integer()} |
 {cur, Offset :: integer()} |
 {eof, Offset :: integer()} |
 bof | cur | eof.

 mode()

 -type mode() ::
 read | write | append | exclusive | raw | binary |
 {delayed_write, Size :: non_neg_integer(), Delay :: non_neg_integer()} |
 delayed_write |
 {read_ahead, Size :: pos_integer()} |
 read_ahead | compressed | compressed_one |
 {encoding, unicode:encoding()} |
 sync.

 name()

 -type name() :: string() | atom() | deep_list().

A restricted file name used as input into file API functions.
If VM is in Unicode filename mode, string/0 and char/0 are allowed to
be > 255. See also the documentation of the name_all/0 type.

 name_all()

 -type name_all() :: string() | atom() | deep_list() | (RawFilename :: binary()).

A file name used as input into file API functions.
If VM is in Unicode filename mode, characters are allowed to be > 255.
RawFilename is a filename not subject to Unicode translation, meaning that it
can contain characters not conforming to the Unicode encoding expected from the
file system (that is, non-UTF-8 characters although the VM is started in Unicode
filename mode). Null characters (integer value zero) are not allowed in
filenames (not even at the end).

 posix()

 -type posix() ::
 eacces | eagain | ebadf | ebadmsg | ebusy | edeadlk | edeadlock | edquot | eexist | efault |
 efbig | eftype | eintr | einval | eio | eisdir | eloop | emfile | emlink | emultihop |
 enametoolong | enfile | enobufs | enodev | enolck | enolink | enoent | enomem | enospc |
 enosr | enostr | enosys | enotblk | enotdir | enotsup | enxio | eopnotsupp | eoverflow |
 eperm | epipe | erange | erofs | espipe | esrch | estale | etxtbsy | exdev.

An atom that is named from the POSIX error codes used in Unix, and in the
runtime libraries of most C compilers.

 posix_file_advise()

 (not exported)

 -type posix_file_advise() :: normal | sequential | random | no_reuse | will_need | dont_need.

 read_file_option()

 (not exported)

 -type read_file_option() :: raw.

 sendfile_option()

 (not exported)

 -type sendfile_option() :: {chunk_size, non_neg_integer()} | {use_threads, boolean()}.

 Functions

 advise(IoDevice, Offset, Length, Advise)

 (since OTP R14B)

 -spec advise(IoDevice, Offset, Length, Advise) -> ok | {error, Reason}
 when
 IoDevice :: io_device(),
 Offset :: integer(),
 Length :: integer(),
 Advise :: posix_file_advise(),
 Reason :: posix() | badarg.

advise/4 can be used to announce an intention to access file
data in a specific pattern in the future, thus allowing the operating system to
perform appropriate optimizations.
On some platforms, this function might have no effect.

 allocate(File, Offset, Length)

 (since OTP R16B)

 -spec allocate(File, Offset, Length) -> ok | {error, posix()}
 when File :: io_device(), Offset :: non_neg_integer(), Length :: non_neg_integer().

allocate/3 can be used to preallocate space for a file.
This function only succeeds in platforms that provide this feature.

 change_group(Filename, Gid)

 -spec change_group(Filename, Gid) -> ok | {error, Reason}
 when Filename :: name_all(), Gid :: integer(), Reason :: posix() | badarg.

Changes group of a file. See write_file_info/2.

 change_mode(Filename, Mode)

 (since OTP R14B)

 -spec change_mode(Filename, Mode) -> ok | {error, Reason}
 when Filename :: name_all(), Mode :: integer(), Reason :: posix() | badarg.

Changes permissions of a file. See write_file_info/2.

 change_owner(Filename, Uid)

 -spec change_owner(Filename, Uid) -> ok | {error, Reason}
 when Filename :: name_all(), Uid :: integer(), Reason :: posix() | badarg.

Changes owner of a file. See write_file_info/2.

 change_owner(Filename, Uid, Gid)

 -spec change_owner(Filename, Uid, Gid) -> ok | {error, Reason}
 when
 Filename :: name_all(),
 Uid :: integer(),
 Gid :: integer(),
 Reason :: posix() | badarg.

Changes owner and group of a file. See write_file_info/2.

 change_time(Filename, Mtime)

 -spec change_time(Filename, Mtime) -> ok | {error, Reason}
 when Filename :: name_all(), Mtime :: date_time(), Reason :: posix() | badarg.

Changes the modification and access times of a file. See write_file_info/2.

 change_time(Filename, Atime, Mtime)

 -spec change_time(Filename, Atime, Mtime) -> ok | {error, Reason}
 when
 Filename :: name_all(),
 Atime :: date_time(),
 Mtime :: date_time(),
 Reason :: posix() | badarg.

Changes the modification and last access times of a file. See
write_file_info/2.

 close(IoDevice)

 -spec close(IoDevice) -> ok | {error, Reason}
 when IoDevice :: io_device(), Reason :: posix() | badarg | terminated.

Closes the file referenced by IoDevice. It mostly returns ok, except for
some severe errors such as out of memory.
Notice that if option delayed_write was used when opening the file,
close/1 can return an old write error and not even try to close
the file. See open/2.

 consult(Filename)

 -spec consult(Filename) -> {ok, Terms} | {error, Reason}
 when
 Filename :: name_all(),
 Terms :: [term()],
 Reason ::
 posix() |
 badarg | terminated | system_limit |
 {Line :: integer(), Mod :: module(), Term :: term()}.

Reads Erlang terms, separated by ., from Filename. Returns one of the
following:
	{ok, Terms} - The file was successfully read.

	{error, atom()} - An error occurred when opening the file or reading it.
For a list of typical error codes, see open/2.

	{error, {Line, Mod, Term}} - An error occurred when interpreting the
Erlang terms in the file. To convert the three-element tuple to an English
description of the error, use format_error/1.

Example:
f.txt: {person, "kalle", 25}.
 {person, "pelle", 30}.
1> file:consult("f.txt").
{ok,[{person,"kalle",25},{person,"pelle",30}]}
The encoding of Filename can be set by a comment, as described in
epp.

 copy(Source, Destination)

 -spec copy(Source, Destination) -> {ok, BytesCopied} | {error, Reason}
 when
 Source :: io_device() | Filename | {Filename, Modes},
 Destination :: io_device() | Filename | {Filename, Modes},
 Filename :: name_all(),
 Modes :: [mode()],
 BytesCopied :: non_neg_integer(),
 Reason :: posix() | badarg | terminated.

Equivalent to copy(Source, Destination, infinity).

 copy(Source, Destination, ByteCount)

 -spec copy(Source, Destination, ByteCount) -> {ok, BytesCopied} | {error, Reason}
 when
 Source :: io_device() | Filename | {Filename, Modes},
 Destination :: io_device() | Filename | {Filename, Modes},
 Filename :: name_all(),
 Modes :: [mode()],
 ByteCount :: non_neg_integer() | infinity,
 BytesCopied :: non_neg_integer(),
 Reason :: posix() | badarg | terminated.

Copies ByteCount bytes from Source to Destination. Source and
Destination refer to either filenames or IO devices from, for example,
open/2.
Argument Modes is a list of possible modes, see open/2, and defaults to
[].
If both Source and Destination refer to filenames, the files are opened with
[read, binary] and [write, binary] prepended to their mode lists,
respectively, to optimize the copy.
If Source refers to a filename, it is opened with read mode prepended to the
mode list before the copy, and closed when done.
If Destination refers to a filename, it is opened with write mode prepended
to the mode list before the copy, and closed when done.
Returns {ok, BytesCopied}, where BytesCopied is the number of bytes that was
copied, which can be less than ByteCount if end of file was encountered on the
source. If the operation fails, {error, Reason} is returned.
Typical error reasons: as for open/2 if a file had to be opened, and as for
read/2 and write/2.

 datasync(IoDevice)

 (since OTP R14B)

 -spec datasync(IoDevice) -> ok | {error, Reason}
 when IoDevice :: io_device(), Reason :: posix() | badarg | terminated.

Ensures that any buffers kept by the operating system (not by the Erlang runtime
system) are written to disk. In many ways it resembles fsync but it does not
update some of the metadata of the file, such as the access time. On some
platforms this function has no effect.
Applications that access databases or log files often write a tiny data fragment
(for example, one line in a log file) and then call fsync() immediately to
ensure that the written data is physically stored on the hard disk.
Unfortunately, fsync() always initiates two write operations: one for the
newly written data and another one to update the modification time stored in the
inode. If the modification time is not a part of the transaction concept,
fdatasync() can be used to avoid unnecessary inode disk write operations.
Available only in some POSIX systems, this call results in a call to fsync(),
or has no effect in systems not providing the fdatasync() syscall.

 del_dir(Dir)

 -spec del_dir(Dir) -> ok | {error, Reason} when Dir :: name_all(), Reason :: posix() | badarg.

Tries to delete directory Dir. The directory must be empty before it can be
deleted. Returns ok if successful.
Typical error reasons:
	eacces - Missing search or write permissions for the parent directories
of Dir.

	eexist - The directory is not empty.

	enoent - The directory does not exist.

	enotdir - A component of Dir is not a directory. On some platforms,
enoent is returned instead.

	einval - Attempt to delete the current directory. On some platforms,
eacces is returned instead.

 del_dir_r(File)

 (since OTP 23.0)

 -spec del_dir_r(File) -> ok | {error, Reason} when File :: name_all(), Reason :: posix() | badarg.

Deletes file or directory File. If File is a directory, its contents is
first recursively deleted. Returns:
	ok - The operation completed without errors.

	{error, posix()} - An error occurred when accessing or deleting File.
If some file or directory under File could not be deleted, File cannot be
deleted as it is non-empty, and {error, eexist} is returned.

 delete(Filename)

 -spec delete(Filename) -> ok | {error, Reason} when Filename :: name_all(), Reason :: posix() | badarg.

Equivalent to delete(Filename, []).

 delete(Filename, Opts)

 (since OTP 24.0)

 -spec delete(Filename, Opts) -> ok | {error, Reason}
 when Filename :: name_all(), Opts :: [delete_option()], Reason :: posix() | badarg.

Tries to delete file Filename. Returns ok if successful.
If the option raw is set, the file server is not called. This can be useful in
particular during the early boot stage when the file server is not yet
registered, to still be able to delete local files.
Typical error reasons:
	enoent - The file does not exist.

	eacces - Missing permission for the file or one of its parents.

	eperm - The file is a directory and the user is not superuser.

	enotdir - A component of the filename is not a directory. On some
platforms, enoent is returned instead.

	einval - Filename has an improper type, such as tuple.

Warning
In a future release, a bad type for argument Filename will probably generate
an exception.

 eval(Filename)

 -spec eval(Filename) -> ok | {error, Reason}
 when
 Filename :: name_all(),
 Reason ::
 posix() |
 badarg | terminated | system_limit |
 {Line :: integer(), Mod :: module(), Term :: term()}.

Reads and evaluates Erlang expressions, separated by . (or ,, a sequence of
expressions is also an expression) from Filename. The result of the evaluation
is not returned; any expression sequence in the file must be there for its side
effect.
Returns one of the following:
	ok - The file was read and evaluated.

	{error, atom()} - An error occurred when opening the file or reading it.
For a list of typical error codes, see open/2.

	{error, {Line, Mod, Term}} - An error occurred when interpreting the
Erlang expressions in the file. To convert the three-element tuple to an
English description of the error, use format_error/1.

The encoding of Filename can be set by a comment, as described in
epp.

 eval(Filename, Bindings)

 -spec eval(Filename, Bindings) -> ok | {error, Reason}
 when
 Filename :: name_all(),
 Bindings :: erl_eval:binding_struct(),
 Reason ::
 posix() |
 badarg | terminated | system_limit |
 {Line :: integer(), Mod :: module(), Term :: term()}.

The same as eval/1, but the variable bindings Bindings are used
in the evaluation. For information about the variable bindings, see
erl_eval.

 format_error(Reason)

 -spec format_error(Reason) -> Chars
 when
 Reason ::
 posix() |
 badarg | terminated | system_limit |
 {Line :: integer(), Mod :: module(), Term :: term()},
 Chars :: string().

Given the error reason returned by any function in this module, returns a
descriptive string of the error in English.

 get_cwd()

 -spec get_cwd() -> {ok, Dir} | {error, Reason} when Dir :: filename(), Reason :: posix().

Returns {ok, Dir}, where Dir is the current working directory of the file
server.
Note
In rare circumstances, this function can fail on Unix. It can occur if read
permission does not exist for the parent directories of the current directory.
A typical error reason:
	eacces - Missing read permission for one of the parents of the current
directory.

 get_cwd(Drive)

 -spec get_cwd(Drive) -> {ok, Dir} | {error, Reason}
 when Drive :: string(), Dir :: filename(), Reason :: posix() | badarg.

Returns {ok, Dir} or {error, Reason}, where Dir is the current working
directory of the specified drive.
Drive is to be of the form Letter:, for example, c:.
Returns {error, enotsup} on platforms that have no concept of current drive
(Unix, for example).
Typical error reasons:
	enotsup - The operating system has no concept of drives.

	eacces - The drive does not exist.

	einval - The format of Drive is invalid.

 list_dir(Dir)

 -spec list_dir(Dir) -> {ok, Filenames} | {error, Reason}
 when
 Dir :: name_all(),
 Filenames :: [filename()],
 Reason :: posix() | badarg | {no_translation, Filename :: unicode:latin1_binary()}.

Lists all files in a directory, except files with raw filenames. Returns
{ok, Filenames} if successful, otherwise {error, Reason}. Filenames is a
list of the names of all the files in the directory. The names are not sorted.
Typical error reasons:
	eacces - Missing search or write permissions for Dir or one of its
parent directories.

	enoent - The directory does not exist.

	{no_translation, Filename} - Filename is a binary/0 with
characters coded in ISO Latin-1 and the VM was started with parameter +fnue.

 list_dir_all(Dir)

 (since OTP R16B)

 -spec list_dir_all(Dir) -> {ok, Filenames} | {error, Reason}
 when Dir :: name_all(), Filenames :: [filename_all()], Reason :: posix() | badarg.

Lists all the files in a directory, including files with
raw filenames. Returns {ok, Filenames} if successful, otherwise
{error, Reason}. Filenames is a list of the names of all the files in the
directory. The names are not sorted.
Typical error reasons:
	eacces - Missing search or write permissions for Dir or one of its
parent directories.

	enoent - The directory does not exist.

 make_dir(Dir)

 -spec make_dir(Dir) -> ok | {error, Reason} when Dir :: name_all(), Reason :: posix() | badarg.

Tries to create directory Dir. Missing parent directories are not created.
Returns ok if successful.
Typical error reasons:
	eacces - Missing search or write permissions for the parent directories
of Dir.

	eexist - A file or directory named Dir exists already.

	enoent - A component of Dir does not exist.

	enospc - No space is left on the device.

	enotdir - A component of Dir is not a directory. On some platforms,
enoent is returned instead.

 make_link(Existing, New)

 -spec make_link(Existing, New) -> ok | {error, Reason}
 when Existing :: name_all(), New :: name_all(), Reason :: posix() | badarg.

Makes a hard link from Existing to New on platforms supporting links (Unix
and Windows). This function returns ok if the link was successfully created,
otherwise {error, Reason}. On platforms not supporting links,
{error,enotsup} is returned.
Typical error reasons:
	eacces - Missing read or write permissions for the parent directories of
Existing or New.

	eexist - New already exists.

	enotsup - Hard links are not supported on this platform.

 make_symlink(Existing, New)

 -spec make_symlink(Existing, New) -> ok | {error, Reason}
 when Existing :: name_all(), New :: name_all(), Reason :: posix() | badarg.

Creates a symbolic link New to the file or directory Existing on platforms
supporting symbolic links (most Unix systems and Windows, beginning with Vista).
Existing does not need to exist. Returns ok if the link is successfully
created, otherwise {error, Reason}. On platforms not supporting symbolic
links, {error, enotsup} is returned.
Typical error reasons:
	eacces - Missing read or write permissions for the parent directories of
Existing or New.

	eexist - New already exists.

	enotsup - Symbolic links are not supported on this platform.

	eperm - User does not have privileges to create symbolic links
(SeCreateSymbolicLinkPrivilege on Windows).

 native_name_encoding()

 (since OTP R14B01)

 -spec native_name_encoding() -> latin1 | utf8.

Returns the filename encoding mode. If it is latin1, the system translates no
filenames. If it is utf8, filenames are converted back and forth to the native
filename encoding (usually UTF-8, but UTF-16 on Windows).

 open(File, Modes)

 -spec open(File, Modes) -> {ok, IoDevice} | {error, Reason}
 when
 File :: Filename | iodata(),
 Filename :: name_all(),
 Modes :: [mode() | ram | directory],
 IoDevice :: io_device(),
 Reason :: posix() | badarg | system_limit.

Opens file File in the mode determined by Modes, which can contain one or
more of the following options:
	read - The file, which must exist, is opened for reading.

	write - The file is opened for writing. It is created if it does not
exist. If the file exists and write is not combined with read, the file is
truncated.

	append - The file is opened for writing. It is created if it does not
exist. Every write operation to a file opened with append takes place at the
end of the file.

	exclusive - The file is opened for writing. It is created if it does not
exist. If the file exists, {error, eexist} is returned.
Warning
This option does not guarantee exclusiveness on file systems not supporting
O_EXCL properly, such as NFS. Do not depend on this option unless you know
that the file system supports it (in general, local file systems are safe).

	raw - Allows faster access to a file, as no Erlang process
is needed to handle the file. However, a file opened in this way has the
following limitations:
	The functions in the io module cannot be used, as they can only talk to an
Erlang process. Instead, use functions read/2, read_line/1, and
write/2.
	Especially if read_line/1 is to be used on a raw file,
it is recommended to combine this option with option {read_ahead, Size} as
line-oriented I/O is inefficient without buffering.
	Only the Erlang process that opened the file can use it.
	A remote Erlang file server cannot be used. The computer on which the Erlang
node is running must have access to the file system (directly or through
NFS).

	binary - Read operations on the file return binaries rather than lists.

	{delayed_write, Size, Delay} - Data in subsequent write/2
calls is buffered until at least Size bytes are buffered, or until the
oldest buffered data is Delay milliseconds old. Then all buffered data is
written in one operating system call. The buffered data is also flushed before
some other file operation than write/2 is executed.
The purpose of this option is to increase performance by reducing the number
of operating system calls. Thus, the write/2 calls must be for
sizes significantly less than Size, and not interspersed by too many other
file operations.
When this option is used, the result of write/2 calls can
prematurely be reported as successful, and if a write error occurs, the error
is reported as the result of the next file operation, which is not executed.
For example, when delayed_write is used, after a number of
write/2 calls, close/1 can return
{error, enospc}, as there is not enough space on the disc for previously
written data. close/1 must probably be called again, as the
file is still open.

	delayed_write - The same as {delayed_write, Size, Delay} with
reasonable default values for Size and Delay (roughly some 64 KB, 2
seconds).

	{read_ahead, Size} - Activates read data buffering. If
read/2 calls are for significantly less than Size bytes, read
operations to the operating system are still performed for blocks of Size
bytes. The extra data is buffered and returned in subsequent
read/2 calls, giving a performance gain as the number of
operating system calls is reduced.
The read_ahead buffer is also highly used by function
read_line/1 in raw mode, therefore this option is
recommended (for performance reasons) when accessing raw files using that
function.
If read/2 calls are for sizes not significantly less than, or
even greater than Size bytes, no performance gain can be expected.

	read_ahead - The same as {read_ahead, Size} with a reasonable default
value for Size (roughly some 64 KB).

	compressed - Makes it possible to read or write gzip compressed files.
Option compressed must be combined with read or write, but not both.
Notice that the file size obtained with read_file_info/1 does probably not
match the number of bytes that can be read from a compressed file.

	compressed_one - Read one member of a gzip compressed file. Option
compressed_one can only be combined with read.

	{encoding, Encoding} - Makes the file perform automatic translation of
characters to and from a specific (Unicode) encoding. Notice that the data
supplied to write/2 or returned by read/2 still is byte-oriented; this
option denotes only how data is stored in the disk file.
Depending on the encoding, different methods of reading and writing data is
preferred. The default encoding of latin1 implies using this module (file)
for reading and writing data as the interfaces provided here work with
byte-oriented data. Using other (Unicode) encodings makes the io functions
get_chars, get_line, and put_chars more suitable, as they can work with
the full Unicode range.
If data is sent to an io_device/0 in a format that cannot be converted to
the specified encoding, or if data is read by a function that returns data in
a format that cannot cope with the character range of the data, an error
occurs and the file is closed.
Allowed values for Encoding:
	latin1 - The default encoding. Bytes supplied to the file, that is,
write/2 are written "as is" on the file. Likewise, bytes read from the
file, that is, read/2 are returned "as is". If module io is used for
writing, the file can only cope with Unicode characters up to code point 255
(the ISO Latin-1 range).

	unicode or utf8 - Characters are translated to and from UTF-8 encoding
before they are written to or read from the file. A file opened in this way
can be readable using function read/2, as long as no data stored on the
file lies beyond the ISO Latin-1 range (0..255), but failure occurs if the
data contains Unicode code points beyond that range. The file is best read
with the functions in the Unicode aware module io.
Bytes written to the file by any means are translated to UTF-8 encoding
before being stored on the disk file.

	utf16 or {utf16,big} - Works like unicode, but translation is done
to and from big endian UTF-16 instead of UTF-8.

	{utf16,little} - Works like unicode, but translation is done to and
from little endian UTF-16 instead of UTF-8.

	utf32 or {utf32,big} - Works like unicode, but translation is done
to and from big endian UTF-32 instead of UTF-8.

	{utf32,little} - Works like unicode, but translation is done to and
from little endian UTF-32 instead of UTF-8.

The Encoding can be changed for a file "on the fly" by using function
io:setopts/2. So a file can be analyzed in latin1 encoding for, for example,
a BOM, positioned beyond the BOM and then be set for the right encoding before
further reading. For functions identifying BOMs, see module unicode.
This option is not allowed on raw files.

	ram - File must be iodata/0. Returns an fd/0, which lets
module file operate on the data in-memory as if it is a file.

	sync - On platforms supporting it, enables the POSIX O_SYNC
synchronous I/O flag or its platform-dependent equivalent (for example,
FILE_FLAG_WRITE_THROUGH on Windows) so that writes to the file block until
the data is physically written to disk. However, be aware that the exact
semantics of this flag differ from platform to platform. For example, none of
Linux or Windows guarantees that all file metadata are also written before the
call returns. For precise semantics, check the details of your platform
documentation. On platforms with no support for POSIX O_SYNC or equivalent,
use of the sync flag causes open to return {error, enotsup}.

	directory - Allows open to work on directories.

Returns:
	{ok, IoDevice} - The file is opened in the requested mode. IoDevice is
a reference to the file.

	{error, Reason} - The file cannot be opened.

IoDevice is really the pid of the process that handles the file. This process
monitors the process that originally opened the file (the owner process). If the
owner process terminates, the file is closed and the process itself terminates
too. An IoDevice returned from this call can be used as an argument to the I/O
functions (see io).
Warning
While this function can be used to open any file, we recommend against using
it for NFS-mounted files, FIFOs, devices, or similar since they can cause IO
threads to hang forever.
If your application needs to interact with these kinds of files we recommend
breaking out those parts to a port program instead.
Note
In previous versions of file, modes were specified as one of the atoms
read, write, or read_write instead of a list. This is still allowed for
reasons of backwards compatibility, but is not to be used for new code. Also
note that read_write is not allowed in a mode list.
Typical error reasons:
	enoent - The file does not exist.

	eacces - Missing permission for reading the file or searching one of the
parent directories.

	eisdir - The named file is a directory.

	enotdir - A component of the filename is not a directory, or the
filename itself is not a directory if directory mode was specified. On some
platforms, enoent is returned instead.

	enospc - There is no space left on the device (if write access was
specified).

 path_consult(Path, Filename)

 -spec path_consult(Path, Filename) -> {ok, Terms, FullName} | {error, Reason}
 when
 Path :: [Dir],
 Dir :: name_all(),
 Filename :: name_all(),
 Terms :: [term()],
 FullName :: filename_all(),
 Reason ::
 posix() |
 badarg | terminated | system_limit |
 {Line :: integer(), Mod :: module(), Term :: term()}.

Searches the path Path (a list of directory names) until the file Filename
is found. If Filename is an absolute filename, Path is ignored. Then reads
Erlang terms, separated by ., from the file.
Returns one of the following:
	{ok, Terms, FullName} - The file is successfully read. FullName is the
full name of the file.

	{error, enoent} - The file cannot be found in any of the directories in
Path.

	{error, atom()} - An error occurred when opening the file or reading it.
For a list of typical error codes, see open/2.

	{error, {Line, Mod, Term}} - An error occurred when interpreting the
Erlang terms in the file. Use format_error/1 to convert the three-element
tuple to an English description of the error.

The encoding of Filename can be set by a comment as described in
epp.

 path_eval(Path, Filename)

 -spec path_eval(Path, Filename) -> {ok, FullName} | {error, Reason}
 when
 Path :: [Dir :: name_all()],
 Filename :: name_all(),
 FullName :: filename_all(),
 Reason ::
 posix() |
 badarg | terminated | system_limit |
 {Line :: integer(), Mod :: module(), Term :: term()}.

Searches the path Path (a list of directory names) until the file Filename
is found. If Filename is an absolute filename, Path is ignored. Then reads
and evaluates Erlang expressions, separated by . (or ,, a sequence of
expressions is also an expression), from the file. The result of evaluation is
not returned; any expression sequence in the file must be there for its side
effect.
Returns one of the following:
	{ok, FullName} - The file is read and evaluated. FullName is the full
name of the file.

	{error, enoent} - The file cannot be found in any of the directories in
Path.

	{error, atom()} - An error occurred when opening the file or reading it.
For a list of typical error codes, see open/2.

	{error, {Line, Mod, Term}} - An error occurred when interpreting the
Erlang expressions in the file. Use format_error/1 to convert the
three-element tuple to an English description of the error.

The encoding of Filename can be set by a comment as described in
epp.

 path_open(Path, Filename, Modes)

 -spec path_open(Path, Filename, Modes) -> {ok, IoDevice, FullName} | {error, Reason}
 when
 Path :: [Dir :: name_all()],
 Filename :: name_all(),
 Modes :: [mode() | directory],
 IoDevice :: io_device(),
 FullName :: filename_all(),
 Reason :: posix() | badarg | system_limit.

Searches the path Path (a list of directory names) until the file Filename
is found. If Filename is an absolute filename, Path is ignored. Then opens
the file in the mode determined by Modes.
Returns one of the following:
	{ok, IoDevice, FullName} - The file is opened in the requested mode.
IoDevice is a reference to the file and FullName is the full name of the
file.

	{error, enoent} - The file cannot be found in any of the directories in
Path.

	{error, atom()} - The file cannot be opened.

 path_script(Path, Filename)

 -spec path_script(Path, Filename) -> {ok, Value, FullName} | {error, Reason}
 when
 Path :: [Dir :: name_all()],
 Filename :: name_all(),
 Value :: term(),
 FullName :: filename_all(),
 Reason ::
 posix() |
 badarg | terminated | system_limit |
 {Line :: integer(), Mod :: module(), Term :: term()}.

Searches the path Path (a list of directory names) until the file Filename
is found. If Filename is an absolute filename, Path is ignored. Then reads
and evaluates Erlang expressions, separated by . (or ,, a sequence of
expressions is also an expression), from the file.
Returns one of the following:
	{ok, Value, FullName} - The file is read and evaluated. FullName is
the full name of the file and Value the value of the last expression.

	{error, enoent} - The file cannot be found in any of the directories in
Path.

	{error, atom()} - An error occurred when opening the file or reading it.
For a list of typical error codes, see open/2.

	{error, {Line, Mod, Term}} - An error occurred when interpreting the
Erlang expressions in the file. Use format_error/1 to convert the
three-element tuple to an English description of the error.

The encoding of Filename can be set by a comment as described in
epp.

 path_script(Path, Filename, Bindings)

 -spec path_script(Path, Filename, Bindings) -> {ok, Value, FullName} | {error, Reason}
 when
 Path :: [Dir :: name_all()],
 Filename :: name_all(),
 Bindings :: erl_eval:binding_struct(),
 Value :: term(),
 FullName :: filename_all(),
 Reason ::
 posix() |
 badarg | terminated | system_limit |
 {Line :: integer(), Mod :: module(), Term :: term()}.

The same as path_script/2 but the variable bindings
Bindings are used in the evaluation. See erl_eval about variable bindings.

 position(IoDevice, Location)

 -spec position(IoDevice, Location) -> {ok, NewPosition} | {error, Reason}
 when
 IoDevice :: io_device(),
 Location :: location(),
 NewPosition :: integer(),
 Reason :: posix() | badarg | terminated.

Sets the position of the file referenced by IoDevice to Location. Returns
{ok, NewPosition} (as absolute offset) if successful, otherwise
{error, Reason}. Location is one of the following:
	Offset - The same as {bof, Offset}.

	{bof, Offset} - Absolute offset.

	{cur, Offset} - Offset from the current position.

	{eof, Offset} - Offset from the end of file.

	bof | cur | eof - The same as above with Offset 0.

Notice that offsets are counted in bytes, not in characters. If the file is
opened using some other encoding than latin1, one byte does not correspond
to one character. Positioning in such a file can only be done to known character
boundaries. That is, to a position earlier retrieved by getting a current
position, to the beginning/end of the file or to some other position known to
be on a correct character boundary by some other means (typically beyond a byte
order mark in the file, which has a known byte-size).
A typical error reason is:
	einval - Either Location is illegal, or it is evaluated to a negative
offset in the file. Notice that if the resulting position is a negative value,
the result is an error, and after the call the file position is undefined.

 pread(IoDevice, LocNums)

 -spec pread(IoDevice, LocNums) -> {ok, DataL} | eof | {error, Reason}
 when
 IoDevice :: io_device(),
 LocNums :: [{Location :: location(), Number :: non_neg_integer()}],
 DataL :: [Data],
 Data :: string() | binary() | eof,
 Reason :: posix() | badarg | terminated.

Performs a sequence of pread/3 in one operation, which is more
efficient than calling them one at a time. Returns {ok, [Data, ...]} or
{error, Reason}, where each Data, the result of the corresponding pread,
is either a list or a binary depending on the mode of the file, or eof if the
requested position is beyond end of file.
As the position is specified as a byte-offset, take special caution when working
with files where encoding is set to something else than latin1, as not every
byte position is a valid character boundary on such a file.

 pread(IoDevice, Location, Number)

 -spec pread(IoDevice, Location, Number) -> {ok, Data} | eof | {error, Reason}
 when
 IoDevice :: io_device(),
 Location :: location(),
 Number :: non_neg_integer(),
 Data :: string() | binary(),
 Reason :: posix() | badarg | terminated.

Combines position/2 and read/2 in one operation,
which is more efficient than calling them one at a time.
Location is only allowed to be an integer for raw and ram modes.
The current position of the file after the operation is undefined for raw mode
and unchanged for ram mode.
As the position is specified as a byte-offset, take special caution when working
with files where encoding is set to something else than latin1, as not every
byte position is a valid character boundary on such a file.

 pwrite(IoDevice, LocBytes)

 -spec pwrite(IoDevice, LocBytes) -> ok | {error, {N, Reason}}
 when
 IoDevice :: io_device(),
 LocBytes :: [{Location :: location(), Bytes :: iodata()}],
 N :: non_neg_integer(),
 Reason :: posix() | badarg | terminated.

Performs a sequence of pwrite/3 in one operation, which is more
efficient than calling them one at a time. Returns ok or
{error, {N, Reason}}, where N is the number of successful writes done before
the failure.
When positioning in a file with other encoding than latin1, caution must be
taken to set the position on a correct character boundary. For details, see
position/2.

 pwrite(IoDevice, Location, Bytes)

 -spec pwrite(IoDevice, Location, Bytes) -> ok | {error, Reason}
 when
 IoDevice :: io_device(),
 Location :: location(),
 Bytes :: iodata(),
 Reason :: posix() | badarg | terminated.

Combines position/2 and write/2 in one
operation, which is more efficient than calling them one at a time.
Location is only allowed to be an integer for raw and ram modes.
The current position of the file after the operation is undefined for raw mode
and unchanged for ram mode.
When positioning in a file with other encoding than latin1, caution must be
taken to set the position on a correct character boundary. For details, see
position/2.

 read(IoDevice, Number)

 -spec read(IoDevice, Number) -> {ok, Data} | eof | {error, Reason}
 when
 IoDevice :: io_device() | io:device(),
 Number :: non_neg_integer(),
 Data :: string() | binary(),
 Reason :: posix() | badarg | terminated | {no_translation, unicode, latin1}.

Reads Number bytes/characters from the file referenced by IoDevice.
The functions read/2, pread/3, and read_line/1 are the only ways to read from
a file opened in raw mode (although they work for normally opened files, too).
For files where encoding is set to something else than latin1, one character
can be represented by more than one byte on the file. The parameter Number
always denotes the number of characters read from the file, while the position
in the file can be moved much more than this number when reading a Unicode file.
Also, if encoding is set to something else than latin1, the
read/2 call fails if the data contains characters larger than 255,
which is why io:get_chars/3 is to be preferred when reading such a file.
The function returns:
	{ok, Data} - If the file was opened in binary mode, the read bytes are
returned in a binary, otherwise in a list. The list or binary is shorter than
the number of bytes requested if end of file was reached.

	eof - Returned if Number>0 and end of file was reached before anything
at all could be read.

	{error, Reason} - An error occurred.

Typical error reasons:
	ebadf - The file is not opened for reading.

	{no_translation, unicode, latin1} - The file is opened with another
encoding than latin1 and the data in the file cannot be translated to the
byte-oriented data that this function returns.

 read_file(Filename)

 -spec read_file(Filename) -> {ok, Binary} | {error, Reason}
 when
 Filename :: name_all(),
 Binary :: binary(),
 Reason :: posix() | badarg | terminated | system_limit.

Equivalent to read_file(Filename, []).

 read_file(Filename, Opts)

 (since OTP 27.0)

 -spec read_file(Filename, Opts) -> {ok, Binary} | {error, Reason}
 when
 Filename :: name_all(),
 Opts :: [read_file_option()],
 Binary :: binary(),
 Reason :: posix() | badarg | terminated | system_limit.

Returns {ok, Binary}, where Binary is a binary data object that contains the
contents of Filename, or {error, Reason} if an error occurs.
If the option raw is set, the file server is not called.
Typical error reasons:
	enoent - The file does not exist.

	eacces - Missing permission for reading the file, or for searching one
of the parent directories.

	eisdir - The named file is a directory.

	enotdir - A component of the filename is not a directory. On some
platforms, enoent is returned instead.

	enomem - There is not enough memory for the contents of the file.

 read_file_info(File)

 -spec read_file_info(File) -> {ok, FileInfo} | {error, Reason}
 when
 File :: name_all() | io_device(),
 FileInfo :: file_info(),
 Reason :: posix() | badarg.

Equivalent to read_file_info(File, []).

 read_file_info(File, Opts)

 (since OTP R15B)

 -spec read_file_info(File, Opts) -> {ok, FileInfo} | {error, Reason}
 when
 File :: name_all() | io_device(),
 Opts :: [file_info_option()],
 FileInfo :: file_info(),
 Reason :: posix() | badarg.

Retrieves information about a file. Returns {ok, FileInfo} if successful,
otherwise {error, Reason}.
FileInfo is a record file_info, defined in the Kernel include file file.hrl.
Include the following directive in the module from which the function is called:
-include_lib("kernel/include/file.hrl").
The time type returned in atime, mtime, and ctime is dependent on the time
type set in Opts :: {time, Type} as follows:
	local - Returns local time.

	universal - Returns universal time.

	posix - Returns seconds since or before Unix time epoch, which is
1970-01-01 00:00 UTC.

Default is {time, local}.
If the option raw is set, the file server is not called and only information
about local files is returned. Note that this will break this module's atomicity
guarantees as it can race with a concurrent call to
write_file_info/1,2 .
This option has no effect when the function is given an I/O device instead of a
file name. Use open/2 with the raw mode to obtain a file descriptor first.
Note
As file times are stored in POSIX time on most OS, it is faster to query file
information with option posix.
The record file_info contains the following fields:
	size = non_neg_integer/0 - Size of file in bytes.

	type = device | directory | other | regular - The type of the file. Can
also contain symlink when returned from
read_link_info/1,2.

	access = read | write | read_write | none - The current system access to
the file.

	atime = date_time/0 | non_neg_integer/0 - The last time the file was
read.

	mtime = date_time/0 | non_neg_integer/0 - The last time the file was
written.

	ctime = date_time/0 | non_neg_integer/0 - The interpretation of this
time field depends on the operating system. On Unix, it is the last time the
file or the inode was changed. In Windows, it is the create time.

	mode = non_neg_integer/0 - The file permissions as the sum of the following
bit values:
	8#00400 - read permission: owner

	8#00200 - write permission: owner

	8#00100 - execute permission: owner

	8#00040 - read permission: group

	8#00020 - write permission: group

	8#00010 - execute permission: group

	8#00004 - read permission: other

	8#00002 - write permission: other

	8#00001 - execute permission: other

	16#800 - set user id on execution

	16#400 - set group id on execution

On Unix platforms, other bits than those listed above may be set.

	links = non_neg_integer/0 - Number of links to the file (this is always 1
for file systems that have no concept of links).

	major_device = non_neg_integer/0 - Identifies the file system where the
file is located. In Windows, the number indicates a drive as follows: 0 means
A:, 1 means B:, and so on.

	minor_device = non_neg_integer/0 - Only valid for character devices on
Unix. In all other cases, this field is zero.

	inode = non_neg_integer/0 - Gives the inode number. On non-Unix file
systems, this field is zero.

	uid = non_neg_integer/0 - Indicates the owner of the file. On non-Unix file
systems, this field is zero.

	gid = non_neg_integer/0 - Gives the group that the owner of the file
belongs to. On non-Unix file systems, this field is zero.

Typical error reasons:
	eacces - Missing search permission for one of the parent directories of
the file.

	enoent - The file does not exist.

	enotdir - A component of the filename is not a directory. On some
platforms, enoent is returned instead.

 read_line(IoDevice)

 -spec read_line(IoDevice) -> {ok, Data} | eof | {error, Reason}
 when
 IoDevice :: io_device() | io:device(),
 Data :: string() | binary(),
 Reason :: posix() | badarg | terminated | {no_translation, unicode, latin1}.

Reads a line of bytes/characters from the file referenced by IoDevice.
Lines are defined to be delimited by the linefeed (LF, \n) character, but any
carriage return (CR, \r) followed by a newline is also treated as a single LF
character (the carriage return is silently ignored). The line is returned
including the LF, but excluding any CR immediately followed by an LF. This
behaviour is consistent with the behaviour of io:get_line/2. If end of file is
reached without any LF ending the last line, a line with no trailing LF is
returned.
The function can be used on files opened in raw mode. However, it is
inefficient to use it on raw files if the file is not opened with option
{read_ahead, Size} specified. Thus, combining raw and {read_ahead, Size}
is highly recommended when opening a text file for raw line-oriented reading.
If encoding is set to something else than latin1, the
read_line/1 call fails if the data contains characters larger
than 255, why io:get_line/2 is to be preferred when reading such a file.
The function returns:
	{ok, Data} - One line from the file is returned, including the trailing
LF, but with CRLF sequences replaced by a single LF (see above).
If the file is opened in binary mode, the read bytes are returned in a binary,
otherwise in a list.

	eof - Returned if end of file was reached before anything at all could
be read.

	{error, Reason} - An error occurred.

Typical error reasons:
	ebadf - The file is not opened for reading.

	{no_translation, unicode, latin1} - The file is opened with another
encoding than latin1 and the data on the file cannot be translated to the
byte-oriented data that this function returns.

 read_link(Name)

 -spec read_link(Name) -> {ok, Filename} | {error, Reason}
 when Name :: name_all(), Filename :: filename(), Reason :: posix() | badarg.

Returns {ok, Filename} if Name refers to a symbolic
link that is not a raw filename, or {error, Reason} otherwise. On platforms
that do not support symbolic links, the return value is {error,enotsup}.
Typical error reasons:
	einval - Name does not refer to a symbolic link or the name of the
file that it refers to does not conform to the expected encoding.

	enoent - The file does not exist.

	enotsup - Symbolic links are not supported on this platform.

 read_link_all(Name)

 (since OTP R16B)

 -spec read_link_all(Name) -> {ok, Filename} | {error, Reason}
 when Name :: name_all(), Filename :: filename_all(), Reason :: posix() | badarg.

Returns {ok, Filename} if Name refers to a symbolic link or
{error, Reason} otherwise. On platforms that do not support symbolic links,
the return value is {error,enotsup}.
Notice that Filename can be either a list or a binary.
Typical error reasons:
	einval - Name does not refer to a symbolic link.

	enoent - The file does not exist.

	enotsup - Symbolic links are not supported on this platform.

 read_link_info(Name)

 -spec read_link_info(Name) -> {ok, FileInfo} | {error, Reason}
 when Name :: name_all(), FileInfo :: file_info(), Reason :: posix() | badarg.

Equivalent to read_link_info(Name, []).

 read_link_info(Name, Opts)

 (since OTP R15B)

 -spec read_link_info(Name, Opts) -> {ok, FileInfo} | {error, Reason}
 when
 Name :: name_all(),
 Opts :: [file_info_option()],
 FileInfo :: file_info(),
 Reason :: posix() | badarg.

Works like read_file_info/1,2 except that if Name is a
symbolic link, information about the link is returned in the file_info record
and the type field of the record is set to symlink.
If the option raw is set, the file server is not called and only information
about local files is returned. Note that this will break this module's atomicity
guarantees as it can race with a concurrent call to
write_file_info/1,2
If Name is not a symbolic link, this function returns the same result as
read_file_info/1. On platforms that do not support
symbolic links, this function is always equivalent to
read_file_info/1.

 rename(Source, Destination)

 -spec rename(Source, Destination) -> ok | {error, Reason}
 when Source :: name_all(), Destination :: name_all(), Reason :: posix() | badarg.

Tries to rename the file Source to Destination. It can be used to move files
(and directories) between directories, but it is not sufficient to specify the
destination only. The destination filename must also be specified. For example,
if bar is a normal file and foo and baz are directories,
rename("foo/bar", "baz") returns an error, but
rename("foo/bar", "baz/bar") succeeds. Returns ok if it is
successful.
Note
Renaming of open files is not allowed on most platforms (see eacces below).
Typical error reasons:
	eacces - Missing read or write permissions for the parent directories of
Source or Destination. On some platforms, this error is given if either
Source or Destination is open.

	eexist - Destination is not an empty directory. On some platforms,
also given when Source and Destination are not of the same type.

	einval - Source is a root directory, or Destination is a
subdirectory of Source.

	eisdir - Destination is a directory, but Source is not.

	enoent - Source does not exist.

	enotdir - Source is a directory, but Destination is not.

	exdev - Source and Destination are on different file systems.

 script(Filename)

 -spec script(Filename) -> {ok, Value} | {error, Reason}
 when
 Filename :: name_all(),
 Value :: term(),
 Reason ::
 posix() |
 badarg | terminated | system_limit |
 {Line :: integer(), Mod :: module(), Term :: term()}.

Reads and evaluates Erlang expressions, separated by . (or ,, a sequence of
expressions is also an expression), from the file.
Returns one of the following:
	{ok, Value} - The file is read and evaluated. Value is the value of
the last expression.

	{error, atom()} - An error occurred when opening the file or reading it.
For a list of typical error codes, see open/2.

	{error, {Line, Mod, Term}} - An error occurred when interpreting the
Erlang expressions in the file. Use format_error/1 to convert the
three-element tuple to an English description of the error.

The encoding of Filename can be set by a comment as described in
epp.

 script(Filename, Bindings)

 -spec script(Filename, Bindings) -> {ok, Value} | {error, Reason}
 when
 Filename :: name_all(),
 Bindings :: erl_eval:binding_struct(),
 Value :: term(),
 Reason ::
 posix() |
 badarg | terminated | system_limit |
 {Line :: integer(), Mod :: module(), Term :: term()}.

The same as script/1 but the variable bindings Bindings are
used in the evaluation. See erl_eval about variable bindings.

 sendfile(Filename, Socket)

 (since OTP R15B)

 -spec sendfile(Filename, Socket) ->
 {ok, non_neg_integer()} | {error, inet:posix() | closed | badarg | not_owner}
 when
 Filename :: name_all(),
 Socket ::
 inet:socket() |
 socket:socket() |
 fun((iolist()) -> ok | {error, inet:posix() | closed}).

Sends the file Filename to Socket. Returns {ok, BytesSent} if successful,
otherwise {error, Reason}.

 sendfile(RawFile, Socket, Offset, Bytes, Opts)

 (since OTP R15B)

 -spec sendfile(RawFile, Socket, Offset, Bytes, Opts) ->
 {ok, non_neg_integer()} | {error, inet:posix() | closed | badarg | not_owner}
 when
 RawFile :: fd(),
 Socket ::
 inet:socket() |
 socket:socket() |
 fun((iolist()) -> ok | {error, inet:posix() | closed}),
 Offset :: non_neg_integer(),
 Bytes :: non_neg_integer(),
 Opts :: [sendfile_option()].

Sends Bytes from the file referenced by RawFile beginning at Offset to
Socket. Returns {ok, BytesSent} if successful, otherwise {error, Reason}.
If Bytes is set to 0 all data after the specified Offset is sent.
The file used must be opened using the raw flag, and the process calling
sendfile must be the controlling process of the socket. See
gen_tcp:controlling_process/2 or module socket's
level otp socket option controlling_process.
If the OS used does not support non-blocking sendfile, an Erlang fallback
using read/2 and gen_tcp:send/2 is used.
The option list can contain the following options:
	chunk_size - The chunk size used by the Erlang fallback to send data. If
using the fallback, set this to a value that comfortably fits in the systems
memory. Default is 20 MB.

 set_cwd(Dir)

 -spec set_cwd(Dir) -> ok | {error, Reason}
 when
 Dir :: name() | EncodedBinary,
 EncodedBinary :: binary(),
 Reason :: posix() | badarg | no_translation.

Sets the current working directory of the file server to Dir. Returns ok if
successful.
The functions in the module file usually treat binaries as raw filenames, that
is, they are passed "as is" even when the encoding of the binary does not agree
with native_name_encoding(). However, this
function expects binaries to be encoded according to the value returned by
native_name_encoding/0.
Typical error reasons are:
	enoent - The directory does not exist.

	enotdir - A component of Dir is not a directory. On some platforms,
enoent is returned.

	eacces - Missing permission for the directory or one of its parents.

	badarg - Dir has an improper type, such as tuple.

	no_translation - Dir is a binary/0 with characters coded in
ISO-latin-1 and the VM is operating with unicode filename encoding.

Warning
In a future release, a bad type for argument Dir will probably generate an
exception.

 sync(IoDevice)

 -spec sync(IoDevice) -> ok | {error, Reason}
 when IoDevice :: io_device(), Reason :: posix() | badarg | terminated.

Ensures that any buffers kept by the operating system (not by the Erlang runtime
system) are written to disk. On some platforms, this function might have no
effect.
A typical error reason is:
	enospc - Not enough space left to write the file.

 truncate(IoDevice)

 -spec truncate(IoDevice) -> ok | {error, Reason}
 when IoDevice :: io_device(), Reason :: posix() | badarg | terminated.

Truncates the file referenced by IoDevice at the current position. Returns
ok if successful, otherwise {error, Reason}.

 write(IoDevice, Bytes)

 -spec write(IoDevice, Bytes) -> ok | {error, Reason}
 when
 IoDevice :: io_device() | io:device(),
 Bytes :: iodata(),
 Reason :: posix() | badarg | terminated.

Writes Bytes to the file referenced by IoDevice. This function is the only
way to write to a file opened in raw mode (although it works for normally
opened files too). Returns ok if successful, and {error, Reason} otherwise.
If the file is opened with encoding set to something else than latin1, each
byte written can result in many bytes being written to the file, as the byte
range 0..255 can represent anything between one and four bytes depending on
value and UTF encoding type. If you want to write unicode:chardata/0 to the
IoDevice you should use io:put_chars/2 instead.
Typical error reasons:
	ebadf - The file is not opened for writing.

	enospc - No space is left on the device.

 write_file(Filename, Bytes)

 -spec write_file(Filename, Bytes) -> ok | {error, Reason}
 when
 Filename :: name_all(),
 Bytes :: iodata(),
 Reason :: posix() | badarg | terminated | system_limit.

Writes the contents of the iodata term Bytes to file Filename. The file is
created if it does not exist. If it exists, the previous contents are
overwritten. Returns ok if successful, otherwise {error, Reason}.
Typical error reasons:
	enoent - A component of the filename does not exist.

	enotdir - A component of the filename is not a directory. On some
platforms, enoent is returned instead.

	enospc - No space is left on the device.

	eacces - Missing permission for writing the file or searching one of the
parent directories.

	eisdir - The named file is a directory.

 write_file(Filename, Bytes, Modes)

 -spec write_file(Filename, Bytes, Modes) -> ok | {error, Reason}
 when
 Filename :: name_all(),
 Bytes :: iodata(),
 Modes :: [mode()],
 Reason :: posix() | badarg | terminated | system_limit.

Same as write_file/2, but takes a third argument Modes, a
list of possible modes, see open/2. The mode flags binary and write are
implicit, so they are not to be used.

 write_file_info(Filename, FileInfo)

 -spec write_file_info(Filename, FileInfo) -> ok | {error, Reason}
 when
 Filename :: name_all(), FileInfo :: file_info(), Reason :: posix() | badarg.

Equivalent to write_file_info(Filename, FileInfo, []).

 write_file_info(Filename, FileInfo, Opts)

 (since OTP R15B)

 -spec write_file_info(Filename, FileInfo, Opts) -> ok | {error, Reason}
 when
 Filename :: name_all(),
 Opts :: [file_info_option()],
 FileInfo :: file_info(),
 Reason :: posix() | badarg.

Changes file information. Returns ok if successful, otherwise
{error, Reason}.
FileInfo is a record file_info, defined in the Kernel
include file file.hrl. Include the following directive in the module from
which the function is called:
-include_lib("kernel/include/file.hrl").
The time type set in atime, mtime, and ctime depends on the time type set
in Opts :: {time, Type} as follows:
	local - Interprets the time set as local.

	universal - Interprets it as universal time.

	posix - Must be seconds since or before Unix time epoch, which is
1970-01-01 00:00 UTC.

Default is {time, local}.
If the option raw is set, the file server is not called and only information
about local files is returned.
The following fields are used from the record, if they are specified:
	atime = date_time/0 | non_neg_integer/0 - The last time the file was
read.

	mtime = date_time/0 | non_neg_integer/0 - The last time the file was
written.

	ctime = date_time/0 | non_neg_integer/0 - On Unix, any value
specified for this field is ignored (the "ctime" for the file is set to the
current time). On Windows, this field is the new creation time to set for the
file.

	mode = non_neg_integer/0 - The file permissions as the sum of the following
bit values:
	8#00400 - Read permission: owner

	8#00200 - Write permission: owner

	8#00100 - Execute permission: owner

	8#00040 - Read permission: group

	8#00020 - Write permission: group

	8#00010 - Execute permission: group

	8#00004 - Read permission: other

	8#00002 - Write permission: other

	8#00001 - Execute permission: other

	16#800 - Set user id on execution

	16#400 - Set group id on execution

On Unix platforms, other bits than those listed above may be set.

	uid = non_neg_integer/0 - Indicates the file owner. Ignored for non-Unix
file systems.

	gid = non_neg_integer/0 - Gives the group that the file owner belongs to.
Ignored for non-Unix file systems.

Typical error reasons:
	eacces - Missing search permission for one of the parent directories of
the file.

	enoent - The file does not exist.

	enotdir - A component of the filename is not a directory. On some
platforms, enoent is returned instead.

 gen_sctp - kernel v10.4

gen_sctp

Interface to SCTP sockets.
This module provides functions for communicating over SCTP sockets.
The implementation assumes that the OS kernel supports SCTP
(RFC 2960)
through the user-level
Sockets API Extensions.
During development, this implementation was tested on:
	Linux Fedora Core 5.0 (kernel 2.6.15-2054 or later is needed)
	Solaris 10, 11

During OTP adaptation it was tested on:
	SUSE Linux Enterprise Server 10 (x86_64) kernel 2.6.16.27-0.6-smp, with
lksctp-tools-1.0.6
	Briefly on Solaris 10
	SUSE Linux Enterprise Server 10 Service Pack 1 (x86_64) kernel
2.6.16.54-0.2.3-smp with lksctp-tools-1.0.7
	FreeBSD 8.2

This module was written for one-to-many style sockets (type seqpacket).
With the addition of peeloff/2, one-to-one style sockets (type stream)
were introduced.
Record definitions for this module can be found using:
-include_lib("kernel/include/inet_sctp.hrl").
These record definitions use the "new" spelling 'adaptation',
not the deprecated 'adaption', regardless of which spelling
the underlying C API uses.
 SCTP Socket Options
The set of admissible SCTP socket options is by construction orthogonal
to the sets of TCP, UDP, and generic inet options. Here are only
options listed that are allowed for SCTP sockets.
Options can be set on the socket when calling open/1,2,
and changed when calling connect/4,5 or
by calling inet:setopts/2. They can be retrieved using inet:getopts/2.
	{mode, list|binary} | list | binary -
Determines the type of data returned from recv/1,2
or in active mode data messages.

	{active, false|true|once|N}
	If false (passive mode, the default), the caller must do an explicit
recv call to retrieve the available data from the socket.

	If true|once|N (active modes) received data or events are sent
to the owning process. See open/0..2 for the message format.

	If true (fully active mode) there is no flow control.
Note
Note that this can cause the message queue to overflow
causing for example the virtual machine to run out of memory and crash.

	If once, only one message is automatically placed in the message queue,
and the mode resets to passive. This provides flow control
and the possibility for the receiver to listen for incoming
SCTP data interleaved with other inter-process messages.

	If active is specified as an integer N in the range -32768 to 32767
(inclusive), that number is added to the socket's data messages counter.
If the result of the addition is negative, the counter is set to 0.
Once the counter reaches 0, either through the delivery of messages
or by being explicitly set with inet:setopts/2, the socket mode
resets to passive ({active, false}). When a socket in {active, N}
mode transitions to passive mode, the message {sctp_passive, Socket}
is sent to the controlling process to notify that if it wants to receive
more data messages from the socket, it must call inet:setopts/2
to set the socket back into an active mode.

	{tos, integer()} - Sets the Type-Of-Service field on the IP datagrams
that are sent, to the specified value. This effectively determines a
prioritization policy for the outbound packets. The acceptable values are
system-dependent.

	{priority, integer()} - A protocol-independent equivalent of tos
above. Setting priority implies setting tos as well.

	{dontroute, true|false} - Defaults to false.
If true, the kernel does not send packets through any gateway,
but only sends them to directly connected hosts.

	{reuseaddr, true|false} - Defaults to false.
If true, the local binding address {IP,Port} of the socket can be
reused immediately. No waiting in state CLOSE_WAIT is performed
(can be required for some types of servers).

	{sndbuf, integer()} - The size, in bytes, of the OS kernel send buffer
for this socket. Sending errors would occur for datagrams larger than
val(sndbuf). Setting this option also adjusts the size of
the driver buffer (see buffer above).

	{recbuf, integer()} - The size, in bytes, of the OS kernel receive
buffer for this socket. Sending errors would occur for datagrams
larger than val(recbuf). Setting this option also adjusts the size
of the driver buffer (see buffer above).

	{non_block_send, boolean()} - A send call that would otherwise block (hang),
will instead immediately return with e.g. {error, eagain}
if this option has been set to true.
Defaults to false.

	{sctp_module, module()} - Overrides which callback module is used.
Defaults to inet_sctp for IPv4 and inet6_sctp for IPv6.

	{sctp_rtoinfo, #sctp_rtoinfo{}}
#sctp_rtoinfo{
 assoc_id = assoc_id(),
 initial = integer(),
 max = integer(),
 min = integer()
}
Determines retransmission time-out parameters, in milliseconds, for the
association(s) specified by assoc_id.
assoc_id = 0 (default) indicates the whole endpoint. See
RFC 2960 and
Sockets API Extensions for SCTP
for the exact semantics of the field values.

	{sctp_associnfo, #sctp_assocparams{}}
#sctp_assocparams{
 assoc_id = assoc_id(),
 asocmaxrxt = integer(),
 number_peer_destinations = integer(),
 peer_rwnd = integer(),
 local_rwnd = integer(),
 cookie_life = integer()
}
Determines association parameters for the association(s) specified by
assoc_id.
assoc_id = 0 (default) indicates the whole endpoint. See
Sockets API Extensions for SCTP
for the discussion of their semantics. Rarely used.

	{sctp_initmsg, #sctp_initmsg{}}
#sctp_initmsg{
 num_ostreams = integer(),
 max_instreams = integer(),
 max_attempts = integer(),
 max_init_timeo = integer()
}
Determines the default parameters that this socket tries to negotiate
with its peer while establishing an association with it. Is to be set after
open/* but before the first connect/*.
#sctp_initmsg{} can also be used as ancillary data with the first call of
send/* to a new peer (when a new association is created).
	num_ostreams - Number of outbound streams

	max_instreams - Maximum number of inbound streams

	max_attempts - Maximum retransmissions while establishing an
association

	max_init_timeo - Time-out, in milliseconds, for establishing an
association

	{sctp_autoclose, integer() >= 0} - Determines the time, in seconds,
after which an idle association is automatically closed. 0 means that the
association is never automatically closed.

	{sctp_nodelay, true|false} - Turns off (true) / on (false) the Nagle
algorithm for merging small packets into larger ones. This improves throughput
at the expense of latency.

	{sctp_disable_fragments, true|false} - If true, induces an error on an
attempt to send a message larger than the current PMTU size (which would
require fragmentation/reassembling). Notice that message fragmentation does
not affect the logical atomicity of its delivery; this option is provided for
performance reasons only.

	{sctp_i_want_mapped_v4_addr, true|false} - Turns on|off automatic
mapping of IPv4 addresses into IPv6 ones (if the socket address family is
AF_INET6).

	{sctp_maxseg, integer()} - Determines the maximum chunk size if message
fragmentation is used. If 0, the chunk size is limited by the Path MTU only.

	{sctp_primary_addr, #sctp_prim{}}
#sctp_prim{
 assoc_id = assoc_id(),
 addr = {IP, Port}
}
 IP = ip_address()
 Port = port_number()
For the association specified by assoc_id, {IP,Port} must be one of the
peer addresses. This option determines that the specified address is treated
by the local SCTP stack as the primary address of the peer.

	{sctp_set_peer_primary_addr, #sctp_setpeerprim{}}
#sctp_setpeerprim{
 assoc_id = assoc_id(),
 addr = {IP, Port}
}
 IP = ip_address()
 Port = port_number()
When set, informs the peer to use {IP, Port} as the primary address of the
local endpoint for the association specified by assoc_id.

	{sctp_adaptation_layer, #sctp_setadaptation{}}
#sctp_setadaptation{
 adaptation_ind = integer()
}
When set, requests that the local endpoint uses the value specified by
adaptation_ind as the Adaptation Indication parameter for establishing
new associations. For details, see
RFC 2960 and
Sockets API Extensions for SCTP.

	{sctp_peer_addr_params, #sctp_paddrparams{}}
#sctp_paddrparams{
 assoc_id = assoc_id(),
 address = {IP, Port},
 hbinterval = integer(),
 pathmaxrxt = integer(),
 pathmtu = integer(),
 sackdelay = integer(),
 flags = list()
}
IP = ip_address()
Port = port_number()
Determines various per-address parameters for the association specified by
assoc_id and the peer address address (the SCTP protocol supports
multi-homing, so more than one address can correspond to a specified
association).
	hbinterval - Heartbeat interval, in milliseconds

	pathmaxrxt - Maximum number of retransmissions before this address is
considered unreachable (and an alternative address is selected)

	pathmtu - Fixed Path MTU, if automatic discovery is disabled (see
flags below)

	sackdelay - Delay, in milliseconds, for SAC messages (if the delay is
enabled, see flags below)

	flags - The following flags are available:
	hb_enable - Enables heartbeat

	hb_disable - Disables heartbeat

	hb_demand - Initiates heartbeat immediately

	pmtud_enable - Enables automatic Path MTU discovery

	pmtud_disable - Disables automatic Path MTU discovery

	sackdelay_enable - Enables SAC delay

	sackdelay_disable - Disables SAC delay

	{sctp_default_send_param, #sctp_sndrcvinfo{}}

#sctp_sndrcvinfo{
 stream = integer(),
 ssn = integer(),
 flags = list(),
 ppid = integer(),
 context = integer(),
 timetolive = integer(),
 tsn = integer(),
 cumtsn = integer(),
 assoc_id = assoc_id()
}
#sctp_sndrcvinfo{} is used both in this socket option, and as
ancillary data while sending or receiving SCTP messages. When set
as an option, it provides default values for subsequent
send calls on the association specified by assoc_id.
assoc_id = 0 (default) indicates the whole endpoint.
The following fields typically must be specified by the sender:
	sinfo_stream - Stream number (0-base) within the association to send
the messages through;

	sinfo_flags - The following flags are recognised:
	unordered - The message is to be sent unordered

	addr_over - The address specified in send overwrites
the primary peer address

	abort - Aborts the current association without flushing any unsent
data

	eof - Gracefully shuts down the current association, with flushing
of unsent data

Other fields are rarely used. For complete information, see
RFC 2960 and
Sockets API Extensions for SCTP.

	{sctp_events, #sctp_event_subscribe{}}
#sctp_event_subscribe{
 data_io_event = true | false,
 association_event = true | false,
 address_event = true | false,
 send_failure_event = true | false,
 peer_error_event = true | false,
 shutdown_event = true | false,
 partial_delivery_event = true | false,
 adaptation_layer_event = true | false
}
This option determines which SCTP Events that are to be
received (through recv/*) along with the data. The only
exception is data_io_event, which enables or disables receiving of
#sctp_sndrcvinfo{} ancillary data,
not events. By default, all flags except adaptation_layer_event are enabled,
although sctp_data_io_event and association_event are used by the driver
itself and not exported to the user level.

	{sctp_delayed_ack_time, #sctp_assoc_value{}}
#sctp_assoc_value{
 assoc_id = assoc_id(),
 assoc_value = integer()
}
Rarely used. Determines the ACK time (specified by assoc_value, in
milliseconds) for the specified association or the whole endpoint if
assoc_value = 0 (default).

	{sctp_status, #sctp_status{}}
#sctp_status{
 assoc_id = assoc_id(),
 state = atom(),
 rwnd = integer(),
 unackdata = integer(),
 penddata = integer(),
 instrms = integer(),
 outstrms = integer(),
 fragmentation_point = integer(),
 primary = #sctp_paddrinfo{}
}
This option is read-only. It determines the status of the SCTP association
specified by assoc_id. The following are the possible values of state
(the state designations are mostly self-explanatory):
	sctp_state_empty - Default. Means that no other state is active.

	sctp_state_closed

	sctp_state_cookie_wait

	sctp_state_cookie_echoed

	sctp_state_established

	sctp_state_shutdown_pending

	sctp_state_shutdown_sent

	sctp_state_shutdown_received

	sctp_state_shutdown_ack_sent

Semantics of the other fields:
	sstat_rwnd - Current receiver window size of the association

	sstat_unackdata - Number of unacked data chunks

	sstat_penddata - Number of data chunks pending receipt

	sstat_instrms - Number of inbound streams

	sstat_outstrms - Number of outbound streams

	sstat_fragmentation_point - Message size at which SCTP fragmentation
occurs

	sstat_primary - Information on the current primary peer address (see
below for the format of #sctp_paddrinfo{})

	{sctp_get_peer_addr_info, #sctp_paddrinfo{}}
#sctp_paddrinfo{
 assoc_id = assoc_id(),
 address = {IP, Port},
 state = inactive | active | unconfirmed,
 cwnd = integer(),
 srtt = integer(),
 rto = integer(),
 mtu = integer()
}
IP = ip_address()
Port = port_number()
This option is read-only. It determines the parameters specific to
the peer address specified by address within the association specified
by assoc_id. Field address fmust be set by the caller; all other fields
are filled in on return. If assoc_id = 0 (default), the address
is automatically translated into the corresponding association ID.
This option is rarely used. For the semantics of all fields, see
RFC 2960 and
Sockets API Extensions for SCTP.

 SCTP Examples
Example of an Erlang SCTP server that receives SCTP messages
and prints them on the standard output:
-module(sctp_server).

-export([server/0,server/1,server/2]).
-include_lib("kernel/include/inet.hrl").
-include_lib("kernel/include/inet_sctp.hrl").

server() ->
 server(any, 2006).

server([Host,Port]) when is_list(Host), is_list(Port) ->
 {ok, #hostent{h_addr_list = [IP|_]}} = inet:gethostbyname(Host),
 io:format("~w -> ~w~n", [Host, IP]),
 server([IP, list_to_integer(Port)]).

server(IP, Port) when is_tuple(IP) orelse IP == any orelse IP == loopback,
 is_integer(Port) ->
 {ok,S} = gen_sctp:open(Port, [{recbuf,65536}, {ip,IP}]),
 io:format("Listening on ~w:~w. ~w~n", [IP,Port,S]),
 ok = gen_sctp:listen(S, true),
 server_loop(S).

server_loop(S) ->
 case gen_sctp:recv(S) of
 {error, Error} ->
 io:format("SCTP RECV ERROR: ~p~n", [Error]);
 Data ->
 io:format("Received: ~p~n", [Data])
 end,
 server_loop(S).
Example of an Erlang SCTP client interacting with the above server.
Note that in this example the client creates an association with
the server with 5 outbound streams. Therefore, sending of "Test 0"
over stream 0 succeeds, but sending of "Test 5" over stream 5 fails.
The client then aborts the association, which results in that
the corresponding event is received on the server side.
-module(sctp_client).

-export([client/0, client/1, client/2]).
-include_lib("kernel/include/inet.hrl").
-include_lib("kernel/include/inet_sctp.hrl").

client() ->
 client([localhost]).

client([Host]) ->
 client(Host, 2006);

client([Host, Port]) when is_list(Host), is_list(Port) ->
 client(Host,list_to_integer(Port)),
 init:stop().

client(Host, Port) when is_integer(Port) ->
 {ok,S} = gen_sctp:open(),
 {ok,Assoc} = gen_sctp:connect
 (S, Host, Port, [{sctp_initmsg,#sctp_initmsg{num_ostreams=5}}]),
 io:format("Connection Successful, Assoc=~p~n", [Assoc]),

 io:write(gen_sctp:send(S, Assoc, 0, <<"Test 0">>)),
 io:nl(),
 timer:sleep(10000),
 io:write(gen_sctp:send(S, Assoc, 5, <<"Test 5">>)),
 io:nl(),
 timer:sleep(10000),
 io:write(gen_sctp:abort(S, Assoc)),
 io:nl(),

 timer:sleep(1000),
 gen_sctp:close(S).
A simple Erlang SCTP client that uses the connect_init API:
-module(ex3).

-export([client/4]).
-include_lib("kernel/include/inet.hrl").
-include_lib("kernel/include/inet_sctp.hrl").

client(Peer1, Port1, Peer2, Port2)
 when is_tuple(Peer1), is_integer(Port1), is_tuple(Peer2), is_integer(Port2) ->
 {ok,S} = gen_sctp:open(),
 SctpInitMsgOpt = {sctp_initmsg,#sctp_initmsg{num_ostreams=5}},
 ActiveOpt = {active, true},
 Opts = [SctpInitMsgOpt, ActiveOpt],
 ok = gen_sctp:connect(S, Peer1, Port1, Opts),
 ok = gen_sctp:connect(S, Peer2, Port2, Opts),
 io:format("Connections initiated~n", []),
 client_loop(S, Peer1, Port1, undefined, Peer2, Port2, undefined).

client_loop(S, Peer1, Port1, AssocId1, Peer2, Port2, AssocId2) ->
 receive
 {sctp, S, Peer1, Port1, {_Anc, SAC}}
 when is_record(SAC, sctp_assoc_change), AssocId1 == undefined ->
 io:format("Association 1 connect result: ~p. AssocId: ~p~n",
 [SAC#sctp_assoc_change.state,
 SAC#sctp_assoc_change.assoc_id]),
 client_loop(S, Peer1, Port1, SAC#sctp_assoc_change.assoc_id,
 Peer2, Port2, AssocId2);

 {sctp, S, Peer2, Port2, {_Anc, SAC}}
 when is_record(SAC, sctp_assoc_change), AssocId2 == undefined ->
 io:format("Association 2 connect result: ~p. AssocId: ~p~n",
 [SAC#sctp_assoc_change.state, SAC#sctp_assoc_change.assoc_id]),
 client_loop(S, Peer1, Port1, AssocId1, Peer2, Port2,
 SAC#sctp_assoc_change.assoc_id);

 {sctp, S, Peer1, Port1, Data} ->
 io:format("Association 1: received ~p~n", [Data]),
 client_loop(S, Peer1, Port1, AssocId1,
 Peer2, Port2, AssocId2);

 {sctp, S, Peer2, Port2, Data} ->
 io:format("Association 2: received ~p~n", [Data]),
 client_loop(S, Peer1, Port1, AssocId1,
 Peer2, Port2, AssocId2);

 Other ->
 io:format("Other ~p~n", [Other]),
 client_loop(S, Peer1, Port1, AssocId1,
 Peer2, Port2, AssocId2)

 after 5000 ->
 ok
 end.
 See Also
gen_tcp, gen_udp, inet,
RFC 2960 (Stream Control
Transmission Protocol),
Sockets API Extensions for SCTP

 Summary

 Types: Exported data types

 assoc_id()

 Association ID.

 option()

 SCTP Socket Option name and value, to set.

 option_name()

 SCTP Socket Option name, to get.

 option_value()

 SCTP Socket Option name and value, what you get.

 sctp_socket()

 Socket identifier returned from open/*.

 Types: Internal data types

 elementary_option()

 elementary_option_name()

 record_option()

 ro_option()

 Functions

 abort(Socket, Assoc)

 Abort an association.

 close(Socket)

 Close an SCTP socket.

 connect(Socket, SockAddr, Opts)

 Equivalent to connect(Socket, SockAddr, Opts, infinity).

 connect/4

 Establish an association with a peer.

 connect(Socket, Addr, Port, Opts, Timeout)

 Establish an association with a peer.

 connect_init(Socket, SockAddr, Opts)

 Equivalent to connect_init(Socket, SockAddr, Opts, infinity).

 connect_init/4

 Start establishing an association with a peer.

 connect_init(Socket, Addr, Port, Opts, Timeout)

 Start establishing an association with a peer.

 connectx_init(Socket, SockAddrs, Opts)

 Start establishing an association with a peer (multiple addresses).

 connectx_init(Socket, Addrs, Port, Opts)

 Equivalent to connectx_init(Socket, Addrs, Port, Opts, infinity).

 connectx_init(Socket, Addrs, Port, Opts, Timeout)

 Start establishing an association with a peer (multiple addresses).

 controlling_process(Socket, Pid)

 Change the controlling process (owner) of a socket.

 eof(Socket, Assoc)

 Terminate an association gracefully.

 error_string(ErrorNumber)

 Translate an error number into a string or atom.

 listen/2

 Make an SCTP socket listen to incoming associations.

 open()

 Equivalent to open([]).

 open/1

 Create an SCTP socket.

 open(Port, Opts)

 Equivalent to open([{port, Port} | Opts]).

 peeloff(Socket, Assoc)

 Branch off an association into a new socket of type stream.

 recv(Socket)

 Equivalent to recv(Socket, infinity).

 recv(Socket, Timeout)

 Receive a Data message.

 send(Socket, SndRcvInfo, Data)

 Send a Data message, full-featured.

 send(Socket, Assoc, Stream, Data)

 Send a data message.

 Types: Exported data types

 assoc_id()

 -type assoc_id() :: term().

Association ID.
An opaque term returned in, for example, #sctp_paddr_change{}, which
identifies an association for an SCTP socket. The term is opaque except for the
special value 0, which has a meaning such as "the whole endpoint" or "all
future associations".

 option()

 -type option() :: elementary_option() | record_option().

SCTP Socket Option name and value, to set.

 option_name()

 -type option_name() :: elementary_option_name() | record_option() | ro_option().

SCTP Socket Option name, to get.

 option_value()

 -type option_value() :: elementary_option() | record_option() | ro_option().

SCTP Socket Option name and value, what you get.

 sctp_socket()

 -type sctp_socket() :: port().

Socket identifier returned from open/*.

 Types: Internal data types

 elementary_option()

 (not exported)

 -type elementary_option() ::
 {active, true | false | once | -32768..32767} |
 {buffer, non_neg_integer()} |
 {non_block_send, boolean()} |
 {debug, boolean()} |
 {dontroute, boolean()} |
 {exclusiveaddruse, boolean()} |
 {high_msgq_watermark, pos_integer()} |
 {linger, {boolean(), non_neg_integer()}} |
 {low_msgq_watermark, pos_integer()} |
 {mode, list | binary} |
 list | binary |
 {priority, non_neg_integer()} |
 {recbuf, non_neg_integer()} |
 {reuseaddr, boolean()} |
 {reuseport, boolean()} |
 {reuseport_lb, boolean()} |
 {ipv6_v6only, boolean()} |
 {sndbuf, non_neg_integer()} |
 {sctp_autoclose, non_neg_integer()} |
 {sctp_disable_fragments, boolean()} |
 {sctp_i_want_mapped_v4_addr, boolean()} |
 {sctp_maxseg, non_neg_integer()} |
 {sctp_nodelay, boolean()} |
 {tos, non_neg_integer()} |
 {tclass, non_neg_integer()} |
 {ttl, non_neg_integer()} |
 {recvtos, boolean()} |
 {recvtclass, boolean()} |
 {recvttl, boolean()}.

 elementary_option_name()

 (not exported)

 -type elementary_option_name() ::
 active | buffer | non_block_send | debug | dontroute | exclusiveaddruse |
 high_msgq_watermark | linger | low_msgq_watermark | mode | priority | recbuf | reuseaddr |
 reuseport | reuseport_lb | ipv6_v6only | sctp_autoclose | sctp_disable_fragments |
 sctp_i_want_mapped_v4_addr | sctp_maxseg | sctp_nodelay | sndbuf | tos | tclass | ttl |
 recvtos | recvtclass | recvttl.

 record_option()

 (not exported)

 -type record_option() ::
 {sctp_adaptation_layer, #sctp_setadaptation{adaptation_ind :: term()}} |
 {sctp_associnfo,
 #sctp_assocparams{assoc_id :: term(),
 asocmaxrxt :: term(),
 number_peer_destinations :: term(),
 peer_rwnd :: term(),
 local_rwnd :: term(),
 cookie_life :: term()}} |
 {sctp_default_send_param,
 #sctp_sndrcvinfo{stream :: term(),
 ssn :: term(),
 flags :: term(),
 ppid :: term(),
 context :: term(),
 timetolive :: term(),
 tsn :: term(),
 cumtsn :: term(),
 assoc_id :: term()}} |
 {sctp_delayed_ack_time, #sctp_assoc_value{assoc_id :: term(), assoc_value :: term()}} |
 {sctp_events,
 #sctp_event_subscribe{data_io_event :: term(),
 association_event :: term(),
 address_event :: term(),
 send_failure_event :: term(),
 peer_error_event :: term(),
 shutdown_event :: term(),
 partial_delivery_event :: term(),
 adaptation_layer_event :: term(),
 authentication_event :: term()}} |
 {sctp_initmsg,
 #sctp_initmsg{num_ostreams :: term(),
 max_instreams :: term(),
 max_attempts :: term(),
 max_init_timeo :: term()}} |
 {sctp_peer_addr_params,
 #sctp_paddrparams{assoc_id :: term(),
 address :: term(),
 hbinterval :: term(),
 pathmaxrxt :: term(),
 pathmtu :: term(),
 sackdelay :: term(),
 flags :: term()}} |
 {sctp_primary_addr, #sctp_prim{assoc_id :: term(), addr :: term()}} |
 {sctp_rtoinfo,
 #sctp_rtoinfo{assoc_id :: term(), initial :: term(), max :: term(), min :: term()}} |
 {sctp_set_peer_primary_addr, #sctp_setpeerprim{assoc_id :: term(), addr :: term()}}.

 ro_option()

 (not exported)

 -type ro_option() ::
 {sctp_get_peer_addr_info,
 #sctp_paddrinfo{assoc_id :: term(),
 address :: term(),
 state :: term(),
 cwnd :: term(),
 srtt :: term(),
 rto :: term(),
 mtu :: term()}} |
 {sctp_status,
 #sctp_status{assoc_id :: term(),
 state :: term(),
 rwnd :: term(),
 unackdata :: term(),
 penddata :: term(),
 instrms :: term(),
 outstrms :: term(),
 fragmentation_point :: term(),
 primary :: term()}}.

 Functions

 abort(Socket, Assoc)

 -spec abort(Socket, Assoc) -> ok | {error, inet:posix()}
 when
 Socket :: sctp_socket(),
 Assoc ::
 #sctp_assoc_change{state :: term(),
 error :: term(),
 outbound_streams :: term(),
 inbound_streams :: term(),
 assoc_id :: term()}.

Abort an association.
Abnormally terminates the association specified by Assoc,
without flushing unsent data. The socket itself remains open.
Other associations opened on this socket are still valid,
and the socket can be used in new associations.

 close(Socket)

 -spec close(Socket) -> ok | {error, inet:posix()} when Socket :: sctp_socket().

Close an SCTP socket.
Closes the socket and all associations on it. The unsent data is flushed
as for eof/2. The close/1 call is blocking
depending of the value of the linger
socket [option]. If it is false or the linger time-out expires,
the call returns and unsent data is flushed in the background.

 connect(Socket, SockAddr, Opts)

 (since OTP 24.3)

 -spec connect(Socket, SockAddr, Opts) ->
 {ok,
 #sctp_assoc_change{state :: comm_up,
 error :: term(),
 outbound_streams :: term(),
 inbound_streams :: term(),
 assoc_id :: term()}} |
 {error,
 #sctp_assoc_change{state :: cant_assoc,
 error :: term(),
 outbound_streams :: term(),
 inbound_streams :: term(),
 assoc_id :: term()}} |
 {error, inet:posix()}
 when
 Socket :: sctp_socket(),
 SockAddr :: socket:sockaddr_in() | socket:sockaddr_in6(),
 Opts :: [Opt :: option()].

Equivalent to connect(Socket, SockAddr, Opts, infinity).

 connect/4

 -spec connect(Socket, SockAddr, Opts, Timeout) ->
 {ok,
 #sctp_assoc_change{state :: comm_up,
 error :: term(),
 outbound_streams :: term(),
 inbound_streams :: term(),
 assoc_id :: term()}} |
 {error,
 #sctp_assoc_change{state :: cant_assoc,
 error :: term(),
 outbound_streams :: term(),
 inbound_streams :: term(),
 assoc_id :: term()}} |
 {error, inet:posix()}
 when
 Socket :: sctp_socket(),
 SockAddr :: socket:sockaddr_in() | socket:sockaddr_in6(),
 Opts :: [Opt :: option()],
 Timeout :: timeout();
 (Socket, Addr, Port, Opts) ->
 {ok,
 #sctp_assoc_change{state :: comm_up,
 error :: term(),
 outbound_streams :: term(),
 inbound_streams :: term(),
 assoc_id :: term()}} |
 {error,
 #sctp_assoc_change{state :: cant_assoc,
 error :: term(),
 outbound_streams :: term(),
 inbound_streams :: term(),
 assoc_id :: term()}} |
 {error, inet:posix()}
 when
 Socket :: sctp_socket(),
 Addr :: inet:ip_address() | inet:hostname(),
 Port :: inet:port_number(),
 Opts :: [Opt :: option()].

Establish an association with a peer.
With arguments Addr and Port, equivalent to
connect(Socket, Addr, Port, Opts, infinity).
With arguments SockAddr and Opts (since OTP 24.3), equivalent to
connect(Socket, Addr, Port, Opts, Timeout)
where Addr and Port are extracted from SockAddr.

 connect(Socket, Addr, Port, Opts, Timeout)

 -spec connect(Socket, Addr, Port, Opts, Timeout) ->
 {ok,
 #sctp_assoc_change{state :: comm_up,
 error :: term(),
 outbound_streams :: term(),
 inbound_streams :: term(),
 assoc_id :: term()}} |
 {error,
 #sctp_assoc_change{state :: cant_assoc,
 error :: term(),
 outbound_streams :: term(),
 inbound_streams :: term(),
 assoc_id :: term()}} |
 {error, inet:posix()}
 when
 Socket :: sctp_socket(),
 Addr :: inet:ip_address() | inet:hostname(),
 Port :: inet:port_number(),
 Opts :: [Opt :: option()],
 Timeout :: timeout().

Establish an association with a peer.
Establishes a new association for socket Socket, with the peer
(SCTP server socket) specified by Addr and Port.
Timeout, is expressed in milliseconds.
A socket can be associated with multiple peers.
The socket has to be of type seqpacket.
Warning
Using a value of Timeout less than the maximum time taken by the OS to
establish an association (around 4.5 minutes if the default values from
RFC 4960 are used), can result in
inconsistent or incorrect return values. This is especially relevant for
associations sharing the same Socket (that is, source address and port), as
the controlling process blocks until connect/* returns.
connect_init/* provides an alternative without this
limitation.
 #sctp_assoc_change{}
The result of connect/* is an #sctp_assoc_change{} event that contains,
in particular, the new Association ID:
l
#sctp_assoc_change{
 state = atom(),
 error = integer(),
 outbound_streams = integer(),
 inbound_streams = integer(),
 assoc_id = assoc_id()
}
The number of outbound and inbound streams for the association
can be set by giving an sctp_initmsg option to connect as in:
connect(Socket, Ip, Port>,
 [{sctp_initmsg,#sctp_initmsg{num_ostreams=OutStreams,
 max_instreams=MaxInStreams}}])
All options Opt are set on the socket before the association is attempted.
If an option record has undefined field values, the options record
is first read from the socket for those values. In effect,
Opt option records only need to define field values to change
before connecting.
The returned outbound_streams and inbound_streams are the number of
stream on the socket. These can be different from the requested values
(OutStreams and MaxInStreams, respectively), if the peer
requires lower values.
state can have the following values:
	comm_up - Association is successfully established. This indicates
a successful completion of connect.

	cant_assoc - The association cannot be established
(connect/* failure).

Other states do not normally occur in the output from connect/*.
Rather, they can occur in #sctp_assoc_change{} events received
instead of data from recv/* calls or socket messages.
All of them indicate losing the association because of various
error conditions, and are listed here for the sake of completeness:
	comm_lost

	restart

	shutdown_comp

The field error can provide more detailed diagnostics. Its value
can be converted into a string using error_string/1.

 connect_init(Socket, SockAddr, Opts)

 (since OTP 24.3)

 -spec connect_init(Socket, SockAddr, Opts) -> ok | {error, inet:posix()}
 when
 Socket :: sctp_socket(),
 SockAddr :: socket:sockaddr_in() | socket:sockaddr_in6(),
 Opts :: [option()].

Equivalent to connect_init(Socket, SockAddr, Opts, infinity).

 connect_init/4

 (since OTP R13B04)

 -spec connect_init(Socket, SockAddr, Opts, Timeout) -> ok | {error, inet:posix()}
 when
 Socket :: sctp_socket(),
 SockAddr :: socket:sockaddr_in() | socket:sockaddr_in6(),
 Opts :: [option()],
 Timeout :: timeout();
 (Socket, Addr, Port, Opts) -> ok | {error, inet:posix()}
 when
 Socket :: sctp_socket(),
 Addr :: inet:ip_address() | inet:hostname(),
 Port :: inet:port_number(),
 Opts :: [option()].

Start establishing an association with a peer.
With arguments Addr and Port, equivalent to
connect_init(Socket, Addr, Port, Opts, infinity).
With arguments SockAddr and Opts (since OTP 24.3), equivalent to
connect_init(Socket, Addr, Port, Opts, Timeout)
where Addr and Port are extracted from SockAddr.

 connect_init(Socket, Addr, Port, Opts, Timeout)

 (since OTP R13B04)

 -spec connect_init(Socket, Addr, Port, Opts, Timeout) -> ok | {error, inet:posix()}
 when
 Socket :: sctp_socket(),
 Addr :: inet:ip_address() | inet:hostname(),
 Port :: inet:port_number(),
 Opts :: [option()],
 Timeout :: timeout().

Start establishing an association with a peer.
Initiates a new association for socket Socket, with the peer
(SCTP server socket) specified by Addr and Port.
The fundamental difference between this API and connect/* is that
the return value is that of the underlying OS connect(2) system call.
If ok is returned, the operation has been succesfully initiated,
and the final result result of the association establishment
is sent to the socket owner (controlling process) as an
#sctp_assoc_change{} event.
The socket owner must be prepared to receive this, the
recv/* call has to be polled, depending on the value
of the active option.
The parameters are as described for connect/*,
except the Timeout value since for this function, the time-out only
applies to the name resolving of Addr when it is a inet:hostname/0.

 connectx_init(Socket, SockAddrs, Opts)

 (since OTP 25.0)

 -spec connectx_init(Socket, SockAddrs, Opts) -> {ok, assoc_id()} | {error, inet:posix()}
 when
 Socket :: sctp_socket(),
 SockAddrs ::
 [{inet:ip_address(), inet:port_number()} |
 inet:family_address() |
 socket:sockaddr_in() |
 socket:sockaddr_in6()],
 Opts :: [option()].

Start establishing an association with a peer (multiple addresses).
Similar to connectx_init/5 except using socket addresses, and not having a
Timeout. Since the addresses do not need lookup and the connect is
non-blocking this call returns immediately.
The value of each socket address port must be the same or zero.
At least one socket address must have a non-zero port

 connectx_init(Socket, Addrs, Port, Opts)

 (since OTP 25.0)

 -spec connectx_init(Socket, Addrs, Port, Opts) -> {ok, assoc_id()} | {error, inet:posix()}
 when
 Socket :: sctp_socket(),
 Addrs :: [inet:ip_address() | inet:hostname()],
 Port :: inet:port_number() | atom(),
 Opts :: [option()].

Equivalent to connectx_init(Socket, Addrs, Port, Opts, infinity).

 connectx_init(Socket, Addrs, Port, Opts, Timeout)

 (since OTP 25.0)

 -spec connectx_init(Socket, Addrs, Port, Opts, Timeout) -> {ok, assoc_id()} | {error, inet:posix()}
 when
 Socket :: sctp_socket(),
 Addrs :: [inet:ip_address() | inet:hostname()],
 Port :: inet:port_number() | atom(),
 Opts :: [option()],
 Timeout :: timeout().

Start establishing an association with a peer (multiple addresses).
Initiates a new association for socket Socket, with the peer
(SCTP server socket) specified by Addrs and Port.
This API is similar to connect_init/* except the underlying OS
sctp_connectx(3) system call is used, that accepts multiple
destination addresses.
If successful, the association ID is returned which will be received in a
subsequent #sctp_assoc_change{}
event.
The parameters are as described in connect_init/5
Note
This API allows the OS to use all Addrs when establishing an association,
but does not guarantee it will. Therefore, if the connection fails,
the user may want to rotate the order of addresses for a subsequent call.

 controlling_process(Socket, Pid)

 -spec controlling_process(Socket, Pid) -> ok | {error, Reason}
 when
 Socket :: sctp_socket(),
 Pid :: pid(),
 Reason :: closed | not_owner | badarg | inet:posix().

Change the controlling process (owner) of a socket.
Assigns a new controlling process Pid to Socket.
See gen_udp:controlling_process/2.

 eof(Socket, Assoc)

 -spec eof(Socket, Assoc) -> ok | {error, Reason}
 when
 Socket :: sctp_socket(),
 Assoc ::
 #sctp_assoc_change{state :: term(),
 error :: term(),
 outbound_streams :: term(),
 inbound_streams :: term(),
 assoc_id :: term()},
 Reason :: term().

Terminate an association gracefully.
Gracefully terminates the association specified by Assoc, flushing
all unsent data. The socket itself remains open. Other associations
opened on this socket are still valid. The socket can be used
in new associations.

 error_string(ErrorNumber)

 -spec error_string(ErrorNumber) -> ok | string() | unknown_error when ErrorNumber :: integer().

Translate an error number into a string or atom.
Translates an SCTP error number from, for example, #sctp_remote_error{}
or #sctp_send_failed{} into an explanatory string, or into
one of the atoms ok for no error, or unknown_error
for an unrecognized integer.

 listen/2

 -spec listen(Socket, IsServer) -> ok | {error, Reason}
 when Socket :: sctp_socket(), IsServer :: boolean(), Reason :: term();
 (Socket, Backlog) -> ok | {error, Reason}
 when Socket :: sctp_socket(), Backlog :: integer(), Reason :: term().

Make an SCTP socket listen to incoming associations.
The socket will listen on the IP address(es) and port number it is bound to.
For type seqpacket, sockets (the default), the argumentIsServer
must be a boolean/0. In contrast to stream sockets, there is
no listening queue length. If IsServer is true, the socket accepts
new associations, that is, it becomes an SCTP server socket.
For type stream sockets, the argument Backlog sets
the backlog queue length just like for TCP.

 open()

 -spec open() -> {ok, Socket} | {error, inet:posix()} when Socket :: sctp_socket().

Equivalent to open([]).

 open/1

 -spec open(Port) -> {ok, Socket} | {error, inet:posix()}
 when Port :: inet:port_number(), Socket :: sctp_socket();
 (Opts) -> {ok, Socket} | {error, inet:posix()}
 when
 Opts :: [Opt],
 Opt ::
 {ifaddr, IP | SockAddr} |
 {ip, IP} |
 {port, Port} |
 inet:address_family() |
 {type, SockType} |
 {netns, file:filename_all()} |
 {bind_to_device, binary()} |
 option(),
 IP :: inet:ip_address() | any | loopback,
 SockAddr :: socket:sockaddr_in() | socket:sockaddr_in6(),
 Port :: inet:port_number(),
 SockType :: seqpacket | stream,
 Socket :: sctp_socket().

Create an SCTP socket.
With argument Port,
equivalent toopen([{port, Port}].
Creates an SCTP socket and binds it to the local addresses specified by all
{ip,IP} (or synonymously {ifaddr,IP}) options (this feature is called
SCTP multi-homing). The default IP and Port are any and 0,
meaning bind to all local addresses on any free port.
It is also possible to use {ifaddr, SockAddr}, in which case it takes
precedence over the ip and port options. These options can however
be used to update the address and port of ifaddr (if they occur
after ifaddr in the options list), although this is not recommended.
Other options:
	inet6 - Sets up the socket for IPv6.

	inet - Sets up the socket for IPv4. This is the default.

A default set of socket options is used.
In particular, the socket is opened in binary
and passive mode, with SockType seqpacket,
and with reasonably large kernel and driver
buffers.
When the socket is in passive mode,
data can be received through the recv/1,2 calls.
When the socket is in active mode,
data received data is delivered to the controlling process as messages:
{sctp, Socket, FromIP, FromPort, {AncData, Data}}
See recv/1,2 for a description of the message fields.
Note
This message format unfortunately differs slightly from the
gen_udp message format with ancillary data,
and from the recv/1,2 return tuple format.

 open(Port, Opts)

 -spec open(Port :: integer(), Opts :: [term()]) -> _.

Equivalent to open([{port, Port} | Opts]).

 peeloff(Socket, Assoc)

 (since OTP R15B)

 -spec peeloff(Socket, Assoc) -> {ok, NewSocket} | {error, Reason}
 when
 Socket :: sctp_socket(),
 Assoc ::
 #sctp_assoc_change{state :: term(),
 error :: term(),
 outbound_streams :: term(),
 inbound_streams :: term(),
 assoc_id :: term()} |
 assoc_id(),
 NewSocket :: sctp_socket(),
 Reason :: term().

Branch off an association into a new socket of type stream.
The existing association Assoc in the socket Socket (that has to
be of type seqpacket; one-to-many style) is branched off into
a new socket NewSocket of type stream (one-to-one style).
The existing association argument Assoc can be a
#sctp_assoc_change{} record as
returned from, for example, recv/*, connect/*,
or from a listening socket in active mode.
It can also be just the field assoc_id integer/0 from such a record.

 recv(Socket)

 -spec recv(Socket) -> {ok, {FromIP, FromPort, AncData, Data}} | {error, Reason}
 when
 Socket :: sctp_socket(),
 FromIP :: inet:ip_address(),
 FromPort :: inet:port_number(),
 AncData ::
 [#sctp_sndrcvinfo{stream :: term(),
 ssn :: term(),
 flags :: term(),
 ppid :: term(),
 context :: term(),
 timetolive :: term(),
 tsn :: term(),
 cumtsn :: term(),
 assoc_id :: term()} |
 inet:ancillary_data()],
 Data ::
 binary() |
 string() |
 #sctp_sndrcvinfo{stream :: term(),
 ssn :: term(),
 flags :: term(),
 ppid :: term(),
 context :: term(),
 timetolive :: term(),
 tsn :: term(),
 cumtsn :: term(),
 assoc_id :: term()} |
 #sctp_assoc_change{state :: term(),
 error :: term(),
 outbound_streams :: term(),
 inbound_streams :: term(),
 assoc_id :: term()} |
 #sctp_paddr_change{addr :: term(),
 state :: term(),
 error :: term(),
 assoc_id :: term()} |
 #sctp_adaptation_event{adaptation_ind :: term(), assoc_id :: term()},
 Reason ::
 inet:posix() |
 #sctp_send_failed{flags :: term(),
 error :: term(),
 info :: term(),
 assoc_id :: term(),
 data :: term()} |
 #sctp_paddr_change{addr :: term(),
 state :: term(),
 error :: term(),
 assoc_id :: term()} |
 #sctp_pdapi_event{indication :: term(), assoc_id :: term()} |
 #sctp_remote_error{error :: term(), assoc_id :: term(), data :: term()} |
 #sctp_shutdown_event{assoc_id :: term()}.

Equivalent to recv(Socket, infinity).

 recv(Socket, Timeout)

 -spec recv(Socket, Timeout) -> {ok, {FromIP, FromPort, AncData, Data}} | {error, Reason}
 when
 Socket :: sctp_socket(),
 Timeout :: timeout(),
 FromIP :: inet:ip_address(),
 FromPort :: inet:port_number(),
 AncData ::
 [#sctp_sndrcvinfo{stream :: term(),
 ssn :: term(),
 flags :: term(),
 ppid :: term(),
 context :: term(),
 timetolive :: term(),
 tsn :: term(),
 cumtsn :: term(),
 assoc_id :: term()} |
 inet:ancillary_data()],
 Data ::
 binary() |
 string() |
 #sctp_sndrcvinfo{stream :: term(),
 ssn :: term(),
 flags :: term(),
 ppid :: term(),
 context :: term(),
 timetolive :: term(),
 tsn :: term(),
 cumtsn :: term(),
 assoc_id :: term()} |
 #sctp_assoc_change{state :: term(),
 error :: term(),
 outbound_streams :: term(),
 inbound_streams :: term(),
 assoc_id :: term()} |
 #sctp_paddr_change{addr :: term(),
 state :: term(),
 error :: term(),
 assoc_id :: term()} |
 #sctp_adaptation_event{adaptation_ind :: term(), assoc_id :: term()},
 Reason ::
 inet:posix() |
 #sctp_send_failed{flags :: term(),
 error :: term(),
 info :: term(),
 assoc_id :: term(),
 data :: term()} |
 #sctp_paddr_change{addr :: term(),
 state :: term(),
 error :: term(),
 assoc_id :: term()} |
 #sctp_pdapi_event{indication :: term(), assoc_id :: term()} |
 #sctp_remote_error{error :: term(), assoc_id :: term(), data :: term()} |
 #sctp_shutdown_event{assoc_id :: term()}.

Receive a Data message.
Receives the Data message from any association of the socket.
If the receive times out, {error,timeout} is returned. The default
time-out is infinity. FromIP and FromPort indicate the address
of the sender.
AncData is a list of ancillary data items received with the main Data.
This list can be empty, or contain a single
#sctp_sndrcvinfo{} record,
if receiving ancillary data is enabled
(see option sctp_events).
Per default, it is enabled, as such ancillary data provides an easy way
to determine the association and stream over which the message was received.
(An alternative way is to get the association ID from FromIP and FromPort
using socket option
sctp_get_peer_addr_info,
but this does still not give the stream number).
AncData may also contain ancillary data
from the socket options
recvtos,
recvtclass or
recvttl, if that is supported for the socket
by the platform.
The Data received can, depending on the socket mode
be a binary/0 or a list/0 of bytes (integers in the range
0 through 255), or it can be an SCTP event.
 Possible SCTP events
	#sctp_sndrcvinfo{}

	#sctp_assoc_change{}

	#sctp_paddr_change{
 addr = {ip_address(),port()},
 state = atom(),
 error = integer(),
 assoc_id = assoc_id()
}
Indicates change of the status of the IP address of the peer specified by
addr within association assoc_id. Possible values of state (mostly
self-explanatory) include:
	addr_unreachable

	addr_available

	addr_removed

	addr_added

	addr_made_prim

	addr_confirmed

In case of an error (for example, addr_unreachable), the field error
provides more diagnostics. In such cases, event #sctp_paddr_change{}
is automatically converted into an error term returned by
recv. The error field value can be converted
into a string using error_string/1.

	#sctp_send_failed{
 flags = true | false,
 error = integer(),
 info = #sctp_sndrcvinfo{},
 assoc_id = assoc_id()
 data = binary()
}
The sender can receive this event if a send operation fails.
	flags - A Boolean specifying if the data has been transmitted
over the wire.

	error - Provides extended diagnostics, use
error_string/1.

	info - The original
#sctp_sndrcvinfo{} record
used in the failed send/*.

	data - The whole original data chunk attempted to be sent.

In the current implementation of the Erlang/SCTP binding, this event is
internally converted into an error term returned by recv/*.

	#sctp_adaptation_event{
 adaptation_ind = integer(),
 assoc_id = assoc_id()
}
Delivered when a peer sends an adaptation layer indication parameter
(configured through option
sctp_adaptation_layer).
Notie that with the current implementation of the Erlang/SCTP binding,
this event is disabled by default.

	#sctp_pdapi_event{
 indication = sctp_partial_delivery_aborted,
 assoc_id = assoc_id()
}
A partial delivery failure. In the current implementation
of the Erlang/SCTP binding, this event is internally converted
into an error term returned by recv/*.

 send(Socket, SndRcvInfo, Data)

 -spec send(Socket, SndRcvInfo, Data) -> ok | {error, Reason}
 when
 Socket :: sctp_socket(),
 SndRcvInfo ::
 #sctp_sndrcvinfo{stream :: term(),
 ssn :: term(),
 flags :: term(),
 ppid :: term(),
 context :: term(),
 timetolive :: term(),
 tsn :: term(),
 cumtsn :: term(),
 assoc_id :: term()},
 Data :: binary() | iolist(),
 Reason :: term().

Send a Data message, full-featured.
Sends the Data message with all sending parameters from a
#sctp_sndrcvinfo{} record.
This way, the user can specify the PPID (passed to the remote end)
and context (passed to the local SCTP layer), which can be used,
for example, for error identification. However, such a fine grained
user control is rarely required. The function send/4
is sufficient for most applications.
Note
Send is normally blocking, but if the socket option
non_block_send is set to true,
the function will return with e.g. {error, eagain}
in the case when the function would otherwise block.
It is then up to the user to try again later.

 send(Socket, Assoc, Stream, Data)

 -spec send(Socket, Assoc, Stream, Data) -> ok | {error, Reason}
 when
 Socket :: sctp_socket(),
 Assoc ::
 #sctp_assoc_change{state :: term(),
 error :: term(),
 outbound_streams :: term(),
 inbound_streams :: term(),
 assoc_id :: term()} |
 assoc_id(),
 Stream :: integer(),
 Data :: binary() | iolist(),
 Reason :: term().

Send a data message.
Sends a Data message on the association Assoc and Stream.
Assoc can be specified with a
#sctp_assoc_change{} record
from an association establishment, or as the assoc_id/0
integer/0 field value.
Note
Send is normally blocking, but if the socket option
non_block_send is set to true,
the function will return with e.g. {error, eagain}
in the case when the function would otherwise block.
It is then up to the user to try again later.

 gen_tcp - kernel v10.4

gen_tcp

Interface to TCP/IP sockets.
This module provides functions for communicating over TCP/IP
protocol sockets.
The following code fragment is a simple example of a client connecting to a
server at port 5678, transferring a binary, and closing the connection:
client() ->
 SomeHostInNet = "localhost", % to make it runnable on one machine
 {ok, Sock} = gen_tcp:connect(SomeHostInNet, 5678,
 [binary, {packet, 0}]),
 ok = gen_tcp:send(Sock, "Some Data"),
 ok = gen_tcp:close(Sock).
At the other end, a server is listening on port 5678, accepts the connection,
and receives the binary:
server() ->
 {ok, LSock} = gen_tcp:listen(5678, [binary, {packet, 0},
 {active, false}]),
 {ok, Sock} = gen_tcp:accept(LSock),
 {ok, Bin} = do_recv(Sock, []),
 ok = gen_tcp:close(Sock),
 ok = gen_tcp:close(LSock),
 Bin.

do_recv(Sock, Bs) ->
 case gen_tcp:recv(Sock, 0) of
 {ok, B} ->
 do_recv(Sock, [Bs, B]);
 {error, closed} ->
 {ok, list_to_binary(Bs)}
 end.
For more examples, see section Examples.
Note
Functions that create sockets can take an optional option;
{inet_backend, Backend} that, if specified, has to be the first option. This
selects the implementation backend towards the platform's socket API.
This is a temporary option that will be ignored in a future release.
The default is Backend = inet that selects the traditional inet_drv.c
driver. The other choice is Backend = socket that selects the new socket
module and its NIF implementation.
The system default can be changed when the node is started with the
application kernel's configuration variable inet_backend.
For gen_tcp with inet_backend = socket we have tried to be as "compatible"
as possible which has sometimes been impossible. Here is a list of cases when
the behaviour of inet-backend inet (default) and socket are different:
	Non-blocking send
If a user calling gen_tcp:send/2 with inet_backend = inet,
tries to send more data than there is room for in the OS buffers, the "rest
data" is buffered by the inet driver (and later sent in the background). The
effect for the user is that the call is non-blocking.
This is not the effect when inet_backend = socket, since there is no
buffering. Instead the user hangs either until all data has been sent or the
send_timeout timeout has been reached.

	shutdown/2 may hide errors
The call does not involve the receive process state, and is done
right on the underlying socket. On for example Linux, it is a known
misbehaviour that it skips some checks so doing shutdown on a
listen socket returns ok while the logical result should have been
{error, enotconn}. The inet_drv.c driver did an extra check
and simulated the correct error, but with Backend = socket
it would introduce overhead to involve the receive process.

	The option nodelay is a TCP specific option that
is not compatible with domain = local.
When using inet_backend = socket, trying to create a socket (via listen or
connect) with domain = local (for example with option {ifaddr,
{local,"/tmp/test"}}) will fail with {error, enotsup}.
This does not actually work for inet_backend = inet either, but in that
case the error is simply ignored, which is a bad idea. We have chosen to
not ignore this error for inet_backend = socket.

	Async shutdown write
Calling gen_tcp:shutdown(Socket, write | read_write) on a
socket created with inet_backend = socket will take immediate effect,
unlike for a socket created with inet_backend = inet.
See async shutdown write for more info.

	Windows require sockets (domain = inet | inet6) to be bound.
Currently all sockets created on Windows with inet_backend = socket will
be bound. If the user does not provide an address, gen_tcp will try to
'figure out' an address itself.

Examples
The following example illustrates use of option {active,once} and multiple
accepts by implementing a server as a number of worker processes doing accept on
a single listening socket. Function start/2 takes the number of worker
processes and the port number on which to listen for incoming connections. If
LPort is specified as 0, an ephemeral port number is used, which is why the
start function returns the actual port number allocated:
start(Num,LPort) ->
 case gen_tcp:listen(LPort,[{active, false},{packet,2}]) of
 {ok, ListenSock} ->
 start_servers(Num,ListenSock),
 {ok, Port} = inet:port(ListenSock),
 Port;
 {error,Reason} ->
 {error,Reason}
 end.

start_servers(0,_) ->
 ok;
start_servers(Num,LS) ->
 spawn(?MODULE,server,[LS]),
 start_servers(Num-1,LS).

server(LS) ->
 case gen_tcp:accept(LS) of
 {ok,S} ->
 loop(S),
 server(LS);
 Other ->
 io:format("accept returned ~w - goodbye!~n",[Other]),
 ok
 end.

loop(S) ->
 inet:setopts(S,[{active,once}]),
 receive
 {tcp,S,Data} ->
 Answer = process(Data), % Not implemented in this example
 gen_tcp:send(S,Answer),
 loop(S);
 {tcp_closed,S} ->
 io:format("Socket ~w closed [~w]~n",[S,self()]),
 ok
 end.
Example of a simple client:
client(PortNo,Message) ->
 {ok,Sock} = gen_tcp:connect("localhost",PortNo,[{active,false},
 {packet,2}]),
 gen_tcp:send(Sock,Message),
 A = gen_tcp:recv(Sock,0),
 gen_tcp:close(Sock),
 A.
The send call does not accept a time-out option because time-outs on send is
handled through socket option send_timeout. The behavior of a send operation
with no receiver is mainly defined by the underlying TCP stack and the network
infrastructure. To write code that handles a hanging receiver that can
eventually cause the sender to hang on a send do like the following.
Consider a process that receives data from a client process to be forwarded to a
server on the network. The process is connected to the server through TCP/IP and
does not get any acknowledge for each message it sends, but has to rely on the
send time-out option to detect that the other end is unresponsive. Option
send_timeout can be used when connecting:
...
{ok,Sock} = gen_tcp:connect(HostAddress, Port,
 [{active,false},
 {send_timeout, 5000},
 {packet,2}]),
 loop(Sock), % See below
...
In the loop where requests are handled, send time-outs can now be detected:
loop(Sock) ->
 receive
 {Client, send_data, Binary} ->
 case gen_tcp:send(Sock,[Binary]) of
 {error, timeout} ->
 io:format("Send timeout, closing!~n",
 []),
 handle_send_timeout(), % Not implemented here
 Client ! {self(),{error_sending, timeout}},
 %% Usually, it's a good idea to give up in case of a
 %% send timeout, as you never know how much actually
 %% reached the server, maybe only a packet header?!
 gen_tcp:close(Sock);
 {error, OtherSendError} ->
 io:format("Some other error on socket (~p), closing",
 [OtherSendError]),
 Client ! {self(),{error_sending, OtherSendError}},
 gen_tcp:close(Sock);
 ok ->
 Client ! {self(), data_sent},
 loop(Sock)
 end
 end.
Usually it suffices to detect time-outs on receive, as most protocols include
some sort of acknowledgment from the server, but if the protocol is strictly one
way, option send_timeout comes in handy.

 Summary

 Types

 connect_option()

 listen_option()

 option()

 option_name()

 pktoptions_value()

 Value from socket option pktoptions.

 socket()

 As returned by accept/1,2 and connect/3,4.

 Functions

 accept(ListenSocket)

 Equivalent to accept(ListenSocket, infinity).

 accept(ListenSocket, Timeout)

 Accept an incoming connection request on a listen socket.

 close(Socket)

 Close a TCP socket.

 connect(SockAddr, Opts)

 Equivalent to connect(SockAddr, Opts, infinity).

 connect/3

 Create a socket connected to the specified address.

 connect(Address, Port, Opts, Timeout)

 Create a socket connected to the specified address.

 controlling_process(Socket, Pid)

 Change the controlling process (owner) of a socket.

 listen(Port, Options)

 Create a listen socket.

 recv(Socket, Length)

 Equivalent to recv(Socket, Length, infinity).

 recv(Socket, Length, Timeout)

 Receive a packet, from a socket in passive mode.

 send(Socket, Packet)

 Send a packet on a socket.

 shutdown(Socket, How)

 Close the socket in one or both directions.

 Types

 connect_option()

 -type connect_option() ::
 {fd, Fd :: non_neg_integer()} |
 inet:address_family() |
 {ifaddr, socket:sockaddr_in() | socket:sockaddr_in6() | inet:socket_address()} |
 {ip, inet:socket_address()} |
 {port, inet:port_number()} |
 {tcp_module, module()} |
 {netns, file:filename_all()} |
 {bind_to_device, binary()} |
 option().

 listen_option()

 -type listen_option() ::
 {fd, Fd :: non_neg_integer()} |
 inet:address_family() |
 {ifaddr, socket:sockaddr_in() | socket:sockaddr_in6() | inet:socket_address()} |
 {ip, inet:socket_address()} |
 {port, inet:port_number()} |
 {backlog, B :: non_neg_integer()} |
 {tcp_module, module()} |
 {netns, file:filename_all()} |
 {bind_to_device, binary()} |
 option().

 option()

 -type option() ::
 {active, true | false | once | -32768..32767} |
 {buffer, non_neg_integer()} |
 {debug, boolean()} |
 {delay_send, boolean()} |
 {deliver, port | term} |
 {dontroute, boolean()} |
 {exit_on_close, boolean()} |
 {exclusiveaddruse, boolean()} |
 {header, non_neg_integer()} |
 {high_msgq_watermark, pos_integer()} |
 {high_watermark, non_neg_integer()} |
 {keepalive, boolean()} |
 {linger, {boolean(), non_neg_integer()}} |
 {low_msgq_watermark, pos_integer()} |
 {low_watermark, non_neg_integer()} |
 {mode, list | binary} |
 list | binary |
 {nodelay, boolean()} |
 {packet,
 0 | 1 | 2 | 4 | raw | sunrm | asn1 | cdr | fcgi | line | tpkt | http | httph | http_bin |
 httph_bin} |
 {packet_size, non_neg_integer()} |
 {priority, non_neg_integer()} |
 {raw, Protocol :: non_neg_integer(), OptionNum :: non_neg_integer(), ValueBin :: binary()} |
 {recbuf, non_neg_integer()} |
 {reuseaddr, boolean()} |
 {reuseport, boolean()} |
 {reuseport_lb, boolean()} |
 {send_timeout, timeout()} |
 {send_timeout_close, boolean()} |
 {show_econnreset, boolean()} |
 {sndbuf, non_neg_integer()} |
 {tos, non_neg_integer()} |
 {tclass, non_neg_integer()} |
 {ttl, non_neg_integer()} |
 {recvtos, boolean()} |
 {recvtclass, boolean()} |
 {recvttl, boolean()} |
 {ipv6_v6only, boolean()}.

 option_name()

 -type option_name() ::
 active | buffer | debug | delay_send | deliver | dontroute | exit_on_close |
 exclusiveaddruse | header | high_msgq_watermark | high_watermark | keepalive | linger |
 low_msgq_watermark | low_watermark | mode | nodelay | packet | packet_size | priority |
 {raw,
 Protocol :: non_neg_integer(),
 OptionNum :: non_neg_integer(),
 ValueSpec :: (ValueSize :: non_neg_integer()) | (ValueBin :: binary())} |
 recbuf | reuseaddr | reuseport | reuseport_lb | send_timeout | send_timeout_close |
 show_econnreset | sndbuf | tos | tclass | ttl | recvtos | recvtclass | recvttl | pktoptions |
 ipv6_v6only.

 pktoptions_value()

 -type pktoptions_value() :: {pktoptions, inet:ancillary_data()}.

Value from socket option pktoptions.
If the platform implements the IPv4 option IP_PKTOPTIONS,
or the IPv6 option IPV6_PKTOPTIONS or IPV6_2292PKTOPTIONS for the socket;
this value is returned from inet:getopts/2 when called with the option name
pktoptions.
Note
This option appears to be VERY Linux specific, and its existence in future
Linux kernel versions is also worrying since the option is part of RFC 2292
which is since long (2003) obsoleted by RFC 3542 that explicitly removes
this possibility to get packet information from a stream socket. For
comparison: it has existed in FreeBSD but is now removed, at least since
FreeBSD 10.

 socket()

 -type socket() :: inet:socket().

As returned by accept/1,2 and connect/3,4.

 Functions

 accept(ListenSocket)

 -spec accept(ListenSocket) -> {ok, Socket} | {error, Reason}
 when
 ListenSocket :: socket(),
 Socket :: socket(),
 Reason :: closed | system_limit | inet:posix().

Equivalent to accept(ListenSocket, infinity).

 accept(ListenSocket, Timeout)

 -spec accept(ListenSocket, Timeout) -> {ok, Socket} | {error, Reason}
 when
 ListenSocket :: socket(),
 Timeout :: timeout(),
 Socket :: socket(),
 Reason :: closed | timeout | system_limit | inet:posix().

Accept an incoming connection request on a listen socket.
Socket must be a socket returned from listen/2. Timeout specifies
a time-out value in milliseconds. Defaults to infinity.
Returns:
	{ok, Socket} if a connection is established
	{error, closed} if ListenSocket is closed
	{error, timeout} if no connection is established within Timeout
	{error, system_limit} if all available ports in the Erlang emulator
are in use
	A POSIX error value if something else goes wrong, see inet
about possible values

To send packets (outbound) on the returned Socket, use send/2.
Packets sent from the peer (inbound) are delivered as messages
to the socket owner; the process that created the socket.
Unless {active, false} is specified in the option list when creating
the listening socket.
See connect/4 about active mode socket messages and passive mode.
Note
The accept call doesn't have to be issued from the socket owner process.
Using version 5.5.3 and higher of the emulator, multiple simultaneous accept
calls can be issued from different processes, which allows for a pool of
acceptor processes handling incoming connections.

 close(Socket)

 -spec close(Socket) -> ok when Socket :: socket().

Close a TCP socket.
Note that in most implementations of TCP, doing a close does not guarantee
that the data sent is delivered to the recipient. It is guaranteed that
the recepient will see all sent data before getting the close, but the
sender gets no indication of that.
If the sender needs to know that the recepient has received all data
there are two common ways to achieve this:
	Use gen_tcp:shutdown(Sock, write) to signal that no more
data is to be sent and wait for the other side to acknowledge seeing
its read side being closed, by closing its write side, which shows
as a socket close on this side.
	Implement an acknowledgement in the protocol on top of TCP
that both connection ends adhere to, indicating that all data
has been seen. The socket option {packet, N}
may be useful.

 connect(SockAddr, Opts)

 (since OTP 24.3)

 -spec connect(SockAddr, Opts) -> {ok, Socket} | {error, Reason}
 when
 SockAddr :: socket:sockaddr_in() | socket:sockaddr_in6(),
 Opts :: [inet:inet_backend() | connect_option()],
 Socket :: socket(),
 Reason :: inet:posix().

Equivalent to connect(SockAddr, Opts, infinity).

 connect/3

 -spec connect(Address, Port, Opts) -> {ok, Socket} | {error, Reason}
 when
 Address :: inet:socket_address() | inet:hostname(),
 Port :: inet:port_number(),
 Opts :: [inet:inet_backend() | connect_option()],
 Socket :: socket(),
 Reason :: inet:posix();
 (SockAddr, Opts, Timeout) -> {ok, Socket} | {error, Reason}
 when
 SockAddr :: socket:sockaddr_in() | socket:sockaddr_in6(),
 Opts :: [inet:inet_backend() | connect_option()],
 Timeout :: timeout(),
 Socket :: socket(),
 Reason :: timeout | inet:posix().

Create a socket connected to the specified address.
With arguments Address and Port
Equivalent to connect(Address, Port, Opts, infinity).
With argument SockAddr (since OTP 24.3)
Connects to a remote listen socket specified by SockAddr
where socket:sockaddr_in6/0 for example allows specifying
the scope_id for link local IPv6 addresses.
IPv4 addresses on the same
map/0 format is also allowed.
Equivalent to connect/4, besides the format of the destination address.

 connect(Address, Port, Opts, Timeout)

 -spec connect(Address, Port, Opts, Timeout) -> {ok, Socket} | {error, Reason}
 when
 Address :: inet:socket_address() | inet:hostname(),
 Port :: inet:port_number(),
 Opts :: [inet:inet_backend() | connect_option()],
 Timeout :: timeout(),
 Socket :: socket(),
 Reason :: timeout | inet:posix().

Create a socket connected to the specified address.
Creates a socket and connects it to a server on TCP port Port
on the host with IP address Address, that may also be a hostname.
Opts (connect options)
	{ip, Address} - If the local host has many IP addresses,
this option specifies which one to use.

	{ifaddr, Address} - Same as {ip, Address}.
However, if Address instead is a socket:sockaddr_in/0 or
socket:sockaddr_in6/0 this takes precedence over any value
previously set with the ip and port options. If these options
(ip or/and port) however comes after this option,
they may be used to update the corresponding fields of this option
(for ip, the addr field, and for port, the port field).

	{fd, integer() >= 0} - If a socket has somehow been connected without
using gen_tcp, use this option to pass the file descriptor for it.
If {ip, Address} and/or {port, port_number()} is combined
with this option, the fd is bound to the specified interface
and port before connecting. If these options are not specified,
it is assumed that the fd is already bound appropriately.

	inet - Sets up the socket for IPv4.

	inet6 - Sets up the socket for IPv6.

	local - Sets up a Unix Domain Socket. See inet:local_address/0

	{port, Port} - Specifies which local port number to use.

	{tcp_module, module()} - Overrides which callback module is used.
Defaults to inet_tcp for IPv4 and inet6_tcp for IPv6.

	option/0 - See inet:setopts/2.

Socket Data
Packets can be sent to the peer (outbound) with
send(Socket, Packet). Packets sent from the peer
(inbound) are delivered as messages to the socket owner;
the process that created the socket, unless {active, false}
is specified in the Options list.
Active mode socket messages
	{tcp, Socket, Data} - Inbound data from the socket.

	{tcp_passive, Socket} -
The socket was in {active, N} mode (see inet:setopts/2 for details)
and its message counter reached 0, indicating that
the socket has transitioned to passive ({active, false}) mode.

	{tcp_closed, Socket} - The socket was closed.

	{tcp_error, Socket, Reason} A socket error occurred.

Passive mode
If {active, false} is specified in the option list for the socket,
packets and errors are retrieved by calling recv/2,3
(send/2 may also return errors).
Timeout
The optional Timeout parameter specifies a connect time-out in milliseconds.
Defaults to infinity.
Note
Keep in mind that if the underlying OS connect() call returns a timeout,
gen_tcp:connect will also return a timeout (i.e. {error, etimedout}),
even if a larger Timeout was specified (for example infinity).
Note
The default values for options specified to connect can be affected by the
Kernel configuration parameter inet_default_connect_options.
For details, see inet.

 controlling_process(Socket, Pid)

 -spec controlling_process(Socket, Pid) -> ok | {error, Reason}
 when
 Socket :: socket(),
 Pid :: pid(),
 Reason :: closed | not_owner | badarg | inet:posix().

Change the controlling process (owner) of a socket.
Assigns a new controlling process Pid to Socket. The controlling process
is the process that the socket sends messages to. If this function
is called from any other process than the current controlling process,
{error, not_owner} is returned.
If the process identified by Pid is not an existing local pid/0,
{error, badarg} is returned. {error, badarg} may also be returned
in some cases when Socket is closed during the execution of this function.
If the socket is in active mode, this function will transfer any messages
from the socket in the mailbox of the caller to the new controlling process.
If any other process is interacting with the socket during the transfer,
it may not work correctly and messages may remain in the caller's mailbox.
For instance, changing the sockets active mode during the transfer
could cause this.

 listen(Port, Options)

 -spec listen(Port, Options) -> {ok, ListenSocket} | {error, Reason}
 when
 Port :: inet:port_number(),
 Options :: [inet:inet_backend() | listen_option()],
 ListenSocket :: socket(),
 Reason :: system_limit | inet:posix().

Create a listen socket.
Creates a socket and sets it to listen on port Port on the local host.
If Port == 0, the underlying OS assigns an available (ephemeral)
port number, use inet:port/1 to retrieve it.
The following options are available:
	list - Received Packets are delivered as lists of bytes,
[byte/0].

	binary - Received Packets are delivered as binary/0s.

	{backlog, B} - B :: non_neg_integer/0. The backlog value
defines the maximum length that the queue of pending connections
can grow to. Defaults to 5.

	inet6 - Sets up the socket for IPv6.

	inet - Sets up the socket for IPv4.

	{fd, Fd} - If a socket has somehow been created without using
gen_tcp, use this option to pass the file descriptor for it.

	{ip, Address} - If the host has many IP addresses, this option
specifies which one to listen on.

	{port, Port} - Specifies which local port number to use.

	{ifaddr, Address} - Same as {ip, Address}.
However, if this instead is an socket:sockaddr_in/0 or
socket:sockaddr_in6/0 this takes precedence over any value
previously set with the ip and port options. If these options
(ip or/and port) however comes after this option,
they may be used to update their corresponding fields of this option
(for ip, the addr field, and for port, the port field).

	{tcp_module, module()} - Overrides which callback module is used.
Defaults to inet_tcp for IPv4 and inet6_tcp for IPv6.

	option/0 - See inet:setopts/2.

The returned socket ListenSocket should be used when calling
accept/1,2 to accept an incoming connection request.
Note
The default values for options specified to listen can be affected by the
Kernel configuration parameter inet_default_listen_options. For details, see
inet.

 recv(Socket, Length)

 -spec recv(Socket, Length) -> {ok, Packet} | {error, Reason}
 when
 Socket :: socket(),
 Length :: non_neg_integer(),
 Packet :: string() | binary() | HttpPacket,
 Reason :: closed | inet:posix(),
 HttpPacket :: term().

Equivalent to recv(Socket, Length, infinity).

 recv(Socket, Length, Timeout)

 -spec recv(Socket, Length, Timeout) -> {ok, Packet} | {error, Reason}
 when
 Socket :: socket(),
 Length :: non_neg_integer(),
 Timeout :: timeout(),
 Packet :: string() | binary() | HttpPacket,
 Reason :: closed | timeout | inet:posix(),
 HttpPacket :: term().

Receive a packet, from a socket in passive mode.
A closed socket is indicated by the return value {error, closed}.
If the socket is not in passive mode, the return value is {error, einval}.
Argument Length is only meaningful when the socket is in raw mode and
denotes the number of bytes to read. If Length is 0, all available
bytes are returned. If Length > 0, exactly Length bytes are returned,
or an error; except if the socket is closed from the other side,
then the last read before the one returning {error, closed}
may return less than Length bytes of data.
The optional Timeout parameter specifies a time-out in milliseconds.
Defaults to infinity.
Any process can receive data from a passive socket, even if that process is not
the controlling process of the socket. However, only one process can call this
function on a socket at any given time. Using simultaneous calls to recv is
not recommended as the behavior depends on the socket implementation,
and could return errors such as {error, ealready}.

 send(Socket, Packet)

 -spec send(Socket, Packet) -> ok | {error, Reason}
 when
 Socket :: socket(),
 Packet :: iodata(),
 Reason :: closed | {timeout, RestData} | inet:posix(),
 RestData :: binary() | erlang:iovec().

Send a packet on a socket.
There is no send/2 call with a time-out option; use socket option
send_timeout if time-outs are desired. See section
Examples.
The return value {error, {timeout, RestData}} can only be returned when
inet_backend = socket.

Note
Non-blocking send.
If the user tries to send more data than there is room for in the OS send
buffers, the 'rest data' is stored in (inet driver) internal buffers and later
sent in the background. The function immediately returns ok (not informing
the caller that some date isn'nt sent yet). Any issue while
sending the 'rest data' may be returned later.
When using inet_backend = socket, the behaviour is different. There is
no buffering, instead the caller will "hang" until all of the data
has been sent or the send timeout (as specified by the send_timeout
option) expires (the function can "hang" even when using the inet
backend if the internal buffers are full).
If this happens when using packet =/= raw, a partial packet has been
written. A new packet therefore mustn't be written at this point,
as there is no way for the peer to distinguish this from data in
the current packet. Instead, set the packet option to raw, send the
rest data (as raw data) and then set packet back to the correct type.

 shutdown(Socket, How)

 -spec shutdown(Socket, How) -> ok | {error, Reason}
 when Socket :: socket(), How :: read | write | read_write, Reason :: inet:posix().

Close the socket in one or both directions.
How == write means closing the socket for writing, reading from it is still
possible.
If How == read or there is no outgoing data buffered in the Socket port, the
shutdown is performed immediately and any error encountered is returned in
Reason.
If there is data buffered in the socket port, shutdown isn't performed
on the socket until that buffered data has been written to the OS
protocol stack. If any errors are encountered, the socket is closed
and {error, closed} is returned by the next recv/2 or send/2 call.
Option {exit_on_close, false} is useful if the peer performs a shutdown
of its write side. Then the socket stays open for writing after
receive has indicated that the socket was closed.

Note
Async shutdown write (How :: write | read_write).
If the shutdown attempt is made while the inet driver is sending
buffered data in the background, the shutdown is postponed until
all buffered data has been sent. This function immediately returns ok,
and the caller isn't informed (that the shutdown has been postponed).
When using inet_backend = socket, the behaviour is different. A shutdown
with How :: write | read_write will always be performed immediately.

 gen_udp - kernel v10.4

gen_udp

Interface to UDP sockets.
This module provides functions for communicating over UDP
protocol sockets.
Note
Functions that create sockets can take an optional option;
{inet_backend, Backend} that, if specified, has to be the first option. This
selects the implementation backend towards the platform's socket API.
This is a temporary option that will be ignored in a future release.
The default is Backend = inet that selects the traditional inet_drv.c
driver. The other choice is Backend = socket that selects the new socket
module and its NIF implementation.
The system default can be changed when the node is started with the
application kernel's configuration variable inet_backend.
For gen_udp with inet_backend = socket we have tried to be as "compatible"
as possible which has sometimes been impossible. Here is a list of cases when
the behaviour of inet-backend inet (default) and socket are different:
	The option read_packets is currently
ignored.

	Windows require sockets (domain = inet | inet6) to be bound.
Currently all sockets created on Windows with inet_backend = socket will
be bound. If the user does not provide an address, gen_udp will try to
'figure out' an address itself.

 Summary

 Types

 ip6_membership()

 ip6_multicast_if()

 IPv6 this multicast interface index (an integer).

 ip_membership()

 IP multicast membership.

 ip_multicast_if()

 membership()

 multicast_if()

 open_option()

 option()

 option_name()

 socket()

 A socket as returned by open/1,2.

 Functions

 close(Socket)

 Closes a UDP socket.

 connect(Socket, SockAddr)

 Connect a UDP socket.

 connect(Socket, Address, Port)

 Connect a UDP socket.

 controlling_process(Socket, Pid)

 Change the controlling process (owner) of a socket.

 open(Port)

 Equivalent to open(Port, []).

 open(Port, Opts)

 Open a UDP socket.

 recv(Socket, Length)

 Equivalent to recv(Socket, Length, infinity).

 recv(Socket, Length, Timeout)

 Receive a packet from a socket in passive mode.

 send(Socket, Packet)

 Send a packet on a connected UDP socket.

 send(Socket, Destination, Packet)

 Equivalent to send(Socket, Destination, [], Packet).

 send/4

 Send a UDP packet to the specified destination.

 send(Socket, Host, Port, AncData, Packet)

 Send a packet to the specified destination, with ancillary data.

 Types

 ip6_membership()

 -type ip6_membership() :: {MultiAddress :: inet:ip6_address(), IfIndex :: integer()}.

 ip6_multicast_if()

 -type ip6_multicast_if() :: integer().

IPv6 this multicast interface index (an integer).

 ip_membership()

 -type ip_membership() ::
 {MultiAddress :: inet:ip4_address(), Interface :: inet:ip4_address()} |
 {MultiAddress :: inet:ip4_address(), Address :: inet:ip4_address(), IfIndex :: integer()}.

IP multicast membership.
The 3-tuple form isn't supported on all platforms.
'ifindex' defaults to zero (0) on platforms that supports the 3-tuple variant.

 ip_multicast_if()

 -type ip_multicast_if() :: inet:ip4_address().

 membership()

 -type membership() :: ip_membership() | ip6_membership().

 multicast_if()

 -type multicast_if() :: ip_multicast_if() | ip6_multicast_if().

 open_option()

 -type open_option() ::
 {ip, inet:socket_address()} |
 {fd, non_neg_integer()} |
 {ifaddr, socket:sockaddr_in() | socket:sockaddr_in6() | inet:socket_address()} |
 inet:address_family() |
 {port, inet:port_number()} |
 {netns, file:filename_all()} |
 {bind_to_device, binary()} |
 option().

 option()

 -type option() ::
 {active, true | false | once | -32768..32767} |
 {add_membership, membership()} |
 {broadcast, boolean()} |
 {buffer, non_neg_integer()} |
 {debug, boolean()} |
 {deliver, port | term} |
 {dontroute, boolean()} |
 {drop_membership, membership()} |
 {exclusiveaddruse, boolean()} |
 {header, non_neg_integer()} |
 {high_msgq_watermark, pos_integer()} |
 {low_msgq_watermark, pos_integer()} |
 {mode, list | binary} |
 list | binary |
 {multicast_if, multicast_if()} |
 {multicast_loop, boolean()} |
 {multicast_ttl, non_neg_integer()} |
 {priority, non_neg_integer()} |
 {raw, Protocol :: non_neg_integer(), OptionNum :: non_neg_integer(), ValueBin :: binary()} |
 {read_packets, non_neg_integer()} |
 {recbuf, non_neg_integer()} |
 {reuseaddr, boolean()} |
 {reuseport, boolean()} |
 {reuseport_lb, boolean()} |
 {sndbuf, non_neg_integer()} |
 {tos, non_neg_integer()} |
 {tclass, non_neg_integer()} |
 {ttl, non_neg_integer()} |
 {recvtos, boolean()} |
 {recvtclass, boolean()} |
 {recvttl, boolean()} |
 {ipv6_v6only, boolean()}.

 option_name()

 -type option_name() ::
 active | broadcast | buffer | debug | deliver | dontroute | exclusiveaddruse | header |
 high_msgq_watermark | low_msgq_watermark | mode | multicast_if | multicast_loop |
 multicast_ttl | priority |
 {raw,
 Protocol :: non_neg_integer(),
 OptionNum :: non_neg_integer(),
 ValueSpec :: (ValueSize :: non_neg_integer()) | (ValueBin :: binary())} |
 read_packets | recbuf | reuseaddr | reuseport | reuseport_lb | sndbuf | tos | tclass | ttl |
 recvtos | recvtclass | recvttl | pktoptions | ipv6_v6only.

 socket()

 -type socket() :: inet:socket().

A socket as returned by open/1,2.

 Functions

 close(Socket)

 -spec close(Socket) -> ok when Socket :: socket().

Closes a UDP socket.

 connect(Socket, SockAddr)

 (since OTP 24.3)

 -spec connect(Socket, SockAddr) -> ok | {error, Reason}
 when
 Socket :: socket(),
 SockAddr :: socket:sockaddr_in() | socket:sockaddr_in6(),
 Reason :: inet:posix().

Connect a UDP socket.
Connecting a UDP socket only means storing the specified (destination) socket
address, as specified by SockAddr, so that the system knows where to send
data.
When the socket is "connected" it is not necessary to specify
the destination address when sending a datagram.
That is; send/2 may be used.
It also means that the socket will only receive data from
the connected address. Other messages are discarded on arrival
by the OS protocol stack.

 connect(Socket, Address, Port)

 (since OTP 24.3)

 -spec connect(Socket, Address, Port) -> ok | {error, Reason}
 when
 Socket :: socket(),
 Address :: inet:socket_address() | inet:hostname(),
 Port :: inet:port_number(),
 Reason :: inet:posix().

Connect a UDP socket.
See connect/2.
With this function the destination is specified
with separate Address and Port arguments where Address may be
an IP address
or a host name.

 controlling_process(Socket, Pid)

 -spec controlling_process(Socket, Pid) -> ok | {error, Reason}
 when
 Socket :: socket(),
 Pid :: pid(),
 Reason :: closed | not_owner | badarg | inet:posix().

Change the controlling process (owner) of a socket.
Assigns a new controlling process Pid to Socket. The controlling process
is the process that the socket sends messages to. If this function
is called from any other process than the current controlling process,
{error, not_owner} is returned.
If the process identified by Pid is not an existing local pid/0,
{error, badarg} is returned. {error, badarg} may also be returned
in some cases when Socket is closed during the execution of this function.
If the socket is in active mode, this function will transfer any messages
from the socket in the mailbox of the caller to the new controlling process.
If any other process is interacting with the socket during the transfer,
it may not work correctly and messages may remain in the caller's mailbox.
For instance, changing the sockets active mode during the transfer
could cause this.

 open(Port)

 -spec open(Port) -> {ok, Socket} | {error, Reason}
 when Port :: inet:port_number(), Socket :: socket(), Reason :: system_limit | inet:posix().

Equivalent to open(Port, []).

 open(Port, Opts)

 -spec open(Port, Opts) -> {ok, Socket} | {error, Reason}
 when
 Port :: inet:port_number(),
 Opts :: [inet:inet_backend() | open_option()],
 Socket :: socket(),
 Reason :: system_limit | inet:posix().

Open a UDP socket.
The created socket is bound to the UDP port number Port.
If Port == 0, the underlying OS assigns a free (ephemeral) UDP port;
use inet:port/1 to retrieve it.
The process that calls this function becomes the Socket's
controlling process (socket owner).
UDP socket options
	list - Received Packet is delivered as a list.

	binary - Received Packet is delivered as a binary.

	{ip, Address} - If the local host has many IP addresses,
this option specifies which one to use.

	{ifaddr, Address} - Same as {ip, Address}.
However, if this instead is a socket:sockaddr_in/0 or
socket:sockaddr_in6/0 this takes precedence over any value
previously set with the ip options. If the ip option comes
after the ifaddr option, it may be used to update its corresponding
field of the ifaddr option (the addr field).

	{fd, integer() >= 0} - If a socket has somehow been opened without
using gen_udp, use this option to pass the file descriptor for it.
If Port is not set to 0 and/or {ip, ip_address()} is combined
with this option, the fd is bound to the specified interface
and port after it is being opened. If these options are not specified,
it is assumed that the fd is already bound appropriately.

	inet6 - Sets up the socket for IPv6.

	inet - Sets up the socket for IPv4.

	local - Sets up a Unix Domain Socket. See inet:local_address/0

	{udp_module, module()} - Overrides which callback module is used.
Defaults to inet_udp for IPv4 and inet6_udp for IPv6.

	{multicast_if, Address} - Sets the local device for a multicast socket.

	{multicast_loop, true | false} - When true, sent multicast packets
are looped back to the local sockets.

	{multicast_ttl, Integer} - Option multicast_ttl changes the
time-to-live (TTL) for outgoing multicast datagrams to control the scope of
the multicasts.
Datagrams with a TTL of 1 are not forwarded beyond the local network.
Defaults to 1.

	{add_membership, {MultiAddress, InterfaceAddress}} -
Joins a multicast group.

	{drop_membership, {MultiAddress, InterfaceAddress}} -
Leaves a multicast group.

	option/0 - See inet:setopts/2.

UDP packets are sent with this socket using send(Socket, ...).
When UDP packets arrive to the Socket's UDP port, and the socket is in
an active mode, the packets are delivered as messages to the
controlling process (socket owner):
{udp, Socket, PeerIP, PeerPort, Packet} % Without ancillary data
{udp, Socket, PeerIP, PeerPort, AncData, Packet} % With ancillary data
PeerIP and PeerPort are the address from which Packet was sent.
Packet is a list of bytes ([byte/0] if option list
is active and a binary/0 if option binaryis active
(they are mutually exclusive).
The message contains an AncData field only if any of the socket
options recvtos,
recvtclass or
recvttl are active.
When a socket in {active, N} mode (see inet:setopts/2 for details),
transitions to passive ({active, false}) mode (N counts down to 0),
the controlling process is notified by a message on this form:
{udp_passive, Socket}
If the OS protocol stack reports an error for the socket, the following
message is sent to the controlling process:
{udp_error, Socket, Reason}
Reason is mostly a POSIX Error Code.
If the socket is in passive mode (not in an active mode), received data
can be retrieved with therecv/2,3](recv/2) calls. Note that incoming
UDP packets that are longer than the receive buffer option specifies
can be truncated without warning.
The default value for the receive buffer option is {recbuf, 9216}.

 recv(Socket, Length)

 -spec recv(Socket, Length) -> {ok, RecvData} | {error, Reason}
 when
 Socket :: socket(),
 Length :: non_neg_integer(),
 RecvData :: {Address, Port, Packet} | {Address, Port, AncData, Packet},
 Address :: inet:ip_address() | inet:returned_non_ip_address(),
 Port :: inet:port_number(),
 AncData :: inet:ancillary_data(),
 Packet :: string() | binary(),
 Reason :: not_owner | inet:posix().

Equivalent to recv(Socket, Length, infinity).

 recv(Socket, Length, Timeout)

 -spec recv(Socket, Length, Timeout) -> {ok, RecvData} | {error, Reason}
 when
 Socket :: socket(),
 Length :: non_neg_integer(),
 Timeout :: timeout(),
 RecvData :: {Address, Port, Packet} | {Address, Port, AncData, Packet},
 Address :: inet:ip_address() | inet:returned_non_ip_address(),
 Port :: inet:port_number(),
 AncData :: inet:ancillary_data(),
 Packet :: string() | binary(),
 Reason :: not_owner | timeout | inet:posix().

Receive a packet from a socket in passive mode.
Timeout specifies a time-out in milliseconds.
If any of the socket options
recvtos,
recvtclass
or recvttl are active,
the RecvData tuple contains an AncData field,
otherwise it doesn't.

 send(Socket, Packet)

 (since OTP 24.3)

 -spec send(Socket, Packet) -> ok | {error, Reason}
 when Socket :: socket(), Packet :: iodata(), Reason :: not_owner | inet:posix().

Send a packet on a connected UDP socket.
To connect a UDP socket, use connect/2 or connect/3.

 send(Socket, Destination, Packet)

 (since OTP 22.1)

 -spec send(Socket, Destination, Packet) -> ok | {error, Reason}
 when
 Socket :: socket(),
 Destination ::
 {inet:ip_address(), inet:port_number()} |
 inet:family_address() |
 socket:sockaddr_in() |
 socket:sockaddr_in6(),
 Packet :: iodata(),
 Reason :: not_owner | inet:posix().

Equivalent to send(Socket, Destination, [], Packet).

 send/4

 -spec send(Socket, Host, Port, Packet) -> ok | {error, Reason}
 when
 Socket :: socket(),
 Host :: inet:hostname() | inet:ip_address(),
 Port :: inet:port_number() | atom(),
 Packet :: iodata(),
 Reason :: not_owner | inet:posix();
 (Socket, Destination, AncData, Packet) -> ok | {error, Reason}
 when
 Socket :: socket(),
 Destination ::
 {inet:ip_address(), inet:port_number()} |
 inet:family_address() |
 socket:sockaddr_in() |
 socket:sockaddr_in6(),
 AncData :: inet:ancillary_data(),
 Packet :: iodata(),
 Reason :: not_owner | inet:posix();
 (Socket, Destination, PortZero, Packet) -> ok | {error, Reason}
 when
 Socket :: socket(),
 Destination :: {inet:ip_address(), inet:port_number()} | inet:family_address(),
 PortZero :: inet:port_number(),
 Packet :: iodata(),
 Reason :: not_owner | inet:posix().

Send a UDP packet to the specified destination.
With arguments Host and Port
Argument Host can be a hostname or a socket address, and Port
can be a port number or a service name atom. These are resolved to
a Destination and then this function is equivalent to
send(Socket, Destination, [], Packet)
just below.
 With arguments Destination and AncData (since OTP 22.1)
Sends a packet to the specified Destination with ancillary data AncData.
Note
The ancillary data AncData contains options that for this single message
override the default options for the socket, an operation that may not be
supported on all platforms, and if so return {error, einval}. Using more
than one of an ancillary data item type may also not be supported.
AncData =:= [] is always supported.
With arguments Destination and PortZero (since OTP 22.1)
Sends a packet to the specified Destination. Since Destination
is a complete address, PortZero is redundant and has to be 0.
This is a legacy clause mostly for Destination = {local, Binary}
where PortZero is superfluous. Equivalent to
send(Socket, Destination, [], Packet), right above here.

 send(Socket, Host, Port, AncData, Packet)

 (since OTP 22.1)

 -spec send(Socket, Host, Port, AncData, Packet) -> ok | {error, Reason}
 when
 Socket :: socket(),
 Host :: inet:hostname() | inet:ip_address() | inet:local_address(),
 Port :: inet:port_number() | atom(),
 AncData :: inet:ancillary_data(),
 Packet :: iodata(),
 Reason :: not_owner | inet:posix().

Send a packet to the specified destination, with ancillary data.
Equivalent to send(Socket, Host, Port, Packet)
regarding Host and Port and also equivalent to
send(Socket, Destination, AncData, Packet)
regarding the ancillary data: AncData.

 inet - kernel v10.4

inet

Access to Network protocols.
This module, together with gen_tcp, gen_udp and gen_sctp
provides access to the Network protocols TCP, SCTP and UDP over IP,
as well as stream and datagram protocols over the local (unix)
address domain / protocol domain.
See also ERTS User's Guide: Inet Configuration
or more information about how to configure an Erlang runtime system
for IP communication.
The following four Kernel configuration parameters affect the behavior of all
gen_tcp, gen_udp and gen_sctp sockets opened on an Erlang node:
	inet_default_connect_options can contain a list of
default options used for all sockets created by
a gen_tcp:connect/2,3,4](gen_tcp:connect/2) call.
	inet_default_listen_options can contain a list of default options
used for sockets created by a gen_tcp:listen/2 call.
	inet_default_udp_options can contain a list of
default options used for all sockets created by
a gen_udp:open/1,2](gen_udp:open/2) call.
	inet_default_sctp_options can contain a list of
default options used for all sockets created by
a gen_sctp:open/0,1](gen_sctp:open/1) call.

For the gen_tcp:accept/1,2 call,
the values of the listening socket options are inherited.
Therefore there is no corresponding application variable for accept.
Using the Kernel configuration parameters above, one can set default options
for all TCP sockets on a node, but use this with care. Options such as
{delay_send,true} can be specified in this way. The following is an example
of starting an Erlang node with all sockets using delayed send:
$ erl -sname test -kernel \
inet_default_connect_options '[{delay_send,true}]' \
inet_default_listen_options '[{delay_send,true}]'
Please note that the default option {active, true} cannot be changed,
for internal implementation reasons.
Addresses as inputs to functions can be either a string or a tuple.
For example, the IP address 150.236.20.73 can be passed to
gethostbyaddr/1, either as a string "150.236.20.73"
or as a tuple {150, 236, 20, 73}.
IPv4 address examples:
Address ip_address()
------- ------------
127.0.0.1 {127,0,0,1}
192.168.42.2 {192,168,42,2}
IPv6 address examples:
Address ip_address()
------- ------------
::1 {0,0,0,0,0,0,0,1}
::192.168.42.2 {0,0,0,0,0,0,(192 bsl 8) bor 168,(42 bsl 8) bor 2}
::FFFF:192.168.42.2
 {0,0,0,0,0,16#FFFF,(192 bsl 8) bor 168,(42 bsl 8) bor 2}
3ffe:b80:1f8d:2:204:acff:fe17:bf38
 {16#3ffe,16#b80,16#1f8d,16#2,16#204,16#acff,16#fe17,16#bf38}
fe80::204:acff:fe17:bf38
 {16#fe80,0,0,0,16#204,16#acff,16#fe17,16#bf38}
Function parse_address/1 can be useful:
1> inet:parse_address("192.168.42.2").
{ok,{192,168,42,2}}
2> inet:parse_address("::FFFF:192.168.42.2").
{ok,{0,0,0,0,0,65535,49320,10754}}
 POSIX Error Codes
	e2big - Too long argument list
	eacces - Permission denied
	eaddrinuse - Address already in use
	eaddrnotavail - Cannot assign requested address
	eadv - Advertise error
	eafnosupport - Address family not supported by protocol family
	eagain - Resource temporarily unavailable
	ealign - EALIGN
	ealready - Operation already in progress
	ebade - Bad exchange descriptor
	ebadf - Bad file number
	ebadfd - File descriptor in bad state
	ebadmsg - Not a data message
	ebadr - Bad request descriptor
	ebadrpc - Bad RPC structure
	ebadrqc - Bad request code
	ebadslt - Invalid slot
	ebfont - Bad font file format
	ebusy - File busy
	echild - No children
	echrng - Channel number out of range
	ecomm - Communication error on send
	econnaborted - Software caused connection abort
	econnrefused - Connection refused
	econnreset - Connection reset by peer
	edeadlk - Resource deadlock avoided
	edeadlock - Resource deadlock avoided
	edestaddrreq - Destination address required
	edirty - Mounting a dirty fs without force
	edom - Math argument out of range
	edotdot - Cross mount point
	edquot - Disk quota exceeded
	eduppkg - Duplicate package name
	eexist - File already exists
	efault - Bad address in system call argument
	efbig - File too large
	ehostdown - Host is down
	ehostunreach - Host is unreachable
	eidrm - Identifier removed
	einit - Initialization error
	einprogress - Operation now in progress
	eintr - Interrupted system call
	einval - Invalid argument
	eio - I/O error
	eisconn - Socket is already connected
	eisdir - Illegal operation on a directory
	eisnam - Is a named file
	el2hlt - Level 2 halted
	el2nsync - Level 2 not synchronized
	el3hlt - Level 3 halted
	el3rst - Level 3 reset
	elbin - ELBIN
	elibacc - Cannot access a needed shared library
	elibbad - Accessing a corrupted shared library
	elibexec - Cannot exec a shared library directly
	elibmax - Attempting to link in more shared libraries than system limit
	elibscn - .lib section in a.out corrupted
	elnrng - Link number out of range
	eloop - Too many levels of symbolic links
	emfile - Too many open files
	emlink - Too many links
	emsgsize - Message too long
	emultihop - Multihop attempted
	enametoolong - Filename too long
	enavail - Unavailable
	enet - ENET
	enetdown - Network is down
	enetreset - Network dropped connection on reset
	enetunreach - Network is unreachable
	enfile - File table overflow
	enoano - Anode table overflow
	enobufs - No buffer space available
	enocsi - No CSI structure available
	enodata - No data available
	enodev - No such device
	enoent - No such file or directory
	enoexec - Exec format error
	enolck - No locks available
	enolink - Link has been severed
	enomem - Not enough memory
	enomsg - No message of desired type
	enonet - Machine is not on the network
	enopkg - Package not installed
	enoprotoopt - Bad protocol option
	enospc - No space left on device
	enosr - Out of stream resources or not a stream device
	enosym - Unresolved symbol name
	enosys - Function not implemented
	enotblk - Block device required
	enotconn - Socket is not connected
	enotdir - Not a directory
	enotempty - Directory not empty
	enotnam - Not a named file
	enotsock - Socket operation on non-socket
	enotsup - Operation not supported
	enotty - Inappropriate device for ioctl
	enotuniq - Name not unique on network
	enxio - No such device or address
	eopnotsupp - Operation not supported on socket
	eperm - Not owner
	epfnosupport - Protocol family not supported
	epipe - Broken pipe
	eproclim - Too many processes
	eprocunavail - Bad procedure for program
	eprogmismatch - Wrong program version
	eprogunavail - RPC program unavailable
	eproto - Protocol error
	eprotonosupport - Protocol not supported
	eprototype - Wrong protocol type for socket
	erange - Math result unrepresentable
	erefused - EREFUSED
	eremchg - Remote address changed
	eremdev - Remote device
	eremote - Pathname hit remote filesystem
	eremoteio - Remote I/O error
	eremoterelease - EREMOTERELEASE
	erofs - Read-only filesystem
	erpcmismatch - Wrong RPC version
	erremote - Object is remote
	eshutdown - Cannot send after socket shutdown
	esocktnosupport - Socket type not supported
	espipe - Invalid seek
	esrch - No such process
	esrmnt - Srmount error
	estale - Stale remote file handle
	esuccess - Error 0
	etime - Timer expired
	etimedout - Connection timed out
	etoomanyrefs - Too many references
	etxtbsy - Text file or pseudo-device busy
	euclean - Structure needs cleaning
	eunatch - Protocol driver not attached
	eusers - Too many users
	eversion - Version mismatch
	ewouldblock - Operation would block
	exdev - Cross-device link
	exfull - Message tables full
	nxdomain - Hostname or domain name cannot be found

 Summary

 Types: Exported data types

 address_family()

 ancillary_data()

 Ancillary data / control messages.

 family_address()

 A general network address.

 hostent()

 A record describing a host; name and address.

 hostname()

 inet_backend()

 Implementation backend selector for socket/0.

 ip4_address()

 ip6_address()

 ip_address()

 local_address()

 A network address for the local family (AF_LOCAL | AF_UNIX)

 port_number()

 posix()

 POSIX Error Code atom/0.

 returned_non_ip_address()

 a non-IP network address.

 socket()

 A socket recognized by this module and its siblings.

 socket_address()

 socket_getopt()

 socket_optval()

 socket_protocol()

 socket_setopt()

 stat_option()

 Types: Internal data types

 getifaddrs_ifopts()

 Interface address description list.

 inet6_address()

 A network address for the inet6 family (AF_INET6, IPv6)

 inet_address()

 A network address for the inet family (AF_INET, IPv4)

 Types

 ether_address()

 i_option()

 Options for selecting statistics items.

 module_socket()

 Functions

 cancel_monitor(MRef)

 Cancel a socket monitor.

 close(Socket)

 Close a socket of any type.

 format_error(Reason)

 Format an error code into a string/0.

 get_rc()

 Get the inet configuration.

 getaddr(Host, Family)

 Resolve a host to an address, in a specific addresss family.

 getaddrs(Host, Family)

 Resolve a host to a list of addresses, in a specific address family.

 gethostbyaddr(Address)

 Resolve (reverse) an address to a #hostent{} record.

 gethostbyname(Hostname)

 Resolve a hostname to a #hostent{} record.

 gethostbyname(Hostname, Family)

 Resolve a hostname to a #hostent{} record,
in a specific address family.

 gethostname()

 Get the local hostname.

 getifaddrs()

 Get interface names and addresses.

 getifaddrs/1

 Get interface names and addresses, in a specific namespace.

 getopts(Socket, Options)

 Get one or more options for a socket.

 getstat(Socket)

 Equivalent to getstat/2.

 getstat(Socket, Options)

 Get one or more statistics options for a socket.

 i()

 Equivalent to i/1 for the protocols tcp, udp, and sctp

 i/1

 List network sockets.

 i/2

 List network sockets.

 info(Socket)

 Get information about a socket.

 ipv4_mapped_ipv6_address/1

 Convert between an IPv4 address and an IPv4-mapped IPv6 address.

 is_ip_address(IPAddress)

 Test for an IP address.

 is_ipv4_address(IPv4Address)

 Test for an IPv4 address.

 is_ipv6_address(IPv6Address)

 Test for an IPv6 address.

 monitor(Socket)

 Start a socket monitor.

 ntoa(IpAddress)

 Parse an ip_address/0 to an IPv4 or IPv6 address string.

 parse_address(Address)

 Parse an IP address string to an ip_address/0.

 parse_ipv4_address(Address)

 Parse (relaxed) an IPv4 address string to an ip4_address/0.

 parse_ipv4strict_address(Address)

 Parse an IPv4 address string to an ip4_address/0.

 parse_ipv6_address(Address)

 Parse (relaxed) an IPv6 address string to an ip6_address/0.

 parse_ipv6strict_address(Address)

 Parse an IPv6 address string to an ip6_address/0.

 parse_strict_address(Address)

 Parse an IP address string to an ip_address/0.

 peername(Socket)

 Return the address of the socket's remote end.

 peernames(Socket)

 Equivalent to peernames(Socket, 0).

 peernames(Socket, Assoc)

 Return the addresses of all remote ends of a socket.

 port(Socket)

 Return the local port number for a socket.

 setopts(Socket, Options)

 Set one or more options for a socket.

 sockname(Socket)

 Return the local address and port number for a socket.

 socknames(Socket)

 Equivalent to socknames(Socket, 0).

 socknames(Socket, Assoc)

 Return all localaddresses for a socket.

 Types: Exported data types

 address_family()

 -type address_family() :: inet | inet6 | local.

 ancillary_data()

 -type ancillary_data() :: [{tos, byte()} | {tclass, byte()} | {ttl, byte()}].

Ancillary data / control messages.
Ancillary data received with a data packet, read with the socket option
pktoptions from a TCP socket,
or to set in a call to gen_udp:send/4
or gen_udp:send/5.
The value(s) correspond to the currently active socket
options recvtos,
recvtclass and recvttl,
or for a single send operation the option(s) to override
the currently active socket option(s).

 family_address()

 -type family_address() :: inet_address() | inet6_address() | local_address().

A general network address.
A general network address format of the form {Family, Destination}
where Family is an atom such as local and the format of Destination
depends on Family. Destination is a complete address (for example
an IP address with port number).

 hostent()

 -type hostent() ::
 #hostent{h_name :: inet:hostname(),
 h_aliases :: [inet:hostname()],
 h_addrtype :: inet | inet6,
 h_length :: non_neg_integer(),
 h_addr_list :: [inet:ip_address()]}.

A record describing a host; name and address.
Corresponds to the C: struct hostent as returned by for example
gethostbyname(3).
The record is defined in the Kernel include file "inet.hrl".
Add the following directive to the module:
-include_lib("kernel/include/inet.hrl").

 hostname()

 -type hostname() :: atom() | string().

 inet_backend()

 -type inet_backend() :: {inet_backend, inet | socket}.

Implementation backend selector for socket/0.
Selects the implementation backend for sockets.
The current default is inet which uses inet_drv.c to call
the platform's socket API. The value socket instead uses
the socket module and its NIF implementation.
This is a temporary option that will be ignored in a future release.

 ip4_address()

 -type ip4_address() :: {0..255, 0..255, 0..255, 0..255}.

 ip6_address()

 -type ip6_address() :: {0..65535, 0..65535, 0..65535, 0..65535, 0..65535, 0..65535, 0..65535, 0..65535}.

 ip_address()

 -type ip_address() :: ip4_address() | ip6_address().

 local_address()

 -type local_address() :: {local, File :: binary() | string()}.

A network address for the local family (AF_LOCAL | AF_UNIX)
This address family, also known as "Unix domain sockets" only works
on Unix-like systems.
File is normally a file pathname in a local filesystem. It is limited in
length by the operating system, traditionally to 108 bytes.
A binary/0 is passed as is to the operating system,
but a string/0 is encoded according to the
system filename encoding mode.
Other addresses are possible, for example Linux implements
"Abstract Addresses". See the documentation for Unix Domain Sockets
on your system, normally unix in manual section 7.
In most API functions where you can use this address family
the port number must be 0.

 port_number()

 -type port_number() :: 0..65535.

 posix()

 -type posix() ::
 eaddrinuse | eaddrnotavail | eafnosupport | ealready | econnaborted | econnrefused |
 econnreset | edestaddrreq | ehostdown | ehostunreach | einprogress | eisconn | emsgsize |
 enetdown | enetunreach | enopkg | enoprotoopt | enotconn | enotty | enotsock | eproto |
 eprotonosupport | eprototype | esocktnosupport | etimedout | ewouldblock | exbadport |
 exbadseq |
 file:posix().

POSIX Error Code atom/0.
An atom that is named from the POSIX error codes used in Unix,
and in the runtime libraries of most C compilers.
See section POSIX Error Codes.

 returned_non_ip_address()

 -type returned_non_ip_address() :: {local, binary()} | {unspec,

 inet_res - kernel v10.4

inet_res

A rudimentary DNS client.
This module performs DNS name resolving towards recursive name servers.
See also ERTS User's Guide: Inet Configuration
or more information about how to configure an Erlang runtime system for IP
communication, and how to enable this DNS client by defining 'dns'
as a lookup method. The DNS client then acts as a backend for
the resolving functions in inet.
This DNS client can resolve DNS records even if it is not used
for normal name resolving in the node.
This is not a full-fledged resolver, only a DNS client that relies on asking
trusted recursive name servers.
Name Resolving
UDP queries are used unless resolver option usevc is true,
which forces TCP queries. If the query is too large for UDP,
TCP is used instead. For regular DNS queries, 512 bytes is the size limit.
When EDNS is enabled (resolver option edns is set to the EDNS version
(that is; 0 instead of false), resolver option udp_payload_size
sets the payload size limit. If a name server replies with the TC bit set
(truncation), indicating that the answer is incomplete, the query is retried
towards the same name server using TCP. Resolver option udp_payload_size
also sets the advertised size for the maximum allowed reply size,
if EDNS is enabled, otherwise the name server uses the limit 512 bytes.
If the reply is larger, it gets truncated, forcing a TCP requery.
For UDP queries, resolver options timeout and retry control
retransmission. Each name server in the nameservers list is tried
with a time-out of timeout/retry. Then all name servers are tried again,
doubling the time-out, for a total of retry times.

But before all name servers are tried again, there is a (user configurable)
time-out, servfail_retry_timeout. The point of this is to prevent
the new query to be handled by a server's servfail cache (a client
that is too eager will actually only get what is in the servfail cache).
If there is too little time left of the resolver call's time-out
to do a retry, the resolver call may return before the call's time-out
has expired.
For queries not using the search list, if the query to all nameservers
results in {error,nxdomain} or an empty answer, the same query is tried for
alt_nameservers.
Resolver Types
The following data types concern the resolver:
DNS Types
The following data types concern the DNS client:
Example
This access functions example shows how lookup/3 can be implemented using
resolve/3 from outside the module:
example_lookup(Name, Class, Type) ->
 case inet_res:resolve(Name, Class, Type) of
 {ok,Msg} ->
 [inet_dns:rr(RR, data)
 || RR <- inet_dns:msg(Msg, anlist),
 inet_dns:rr(RR, type) =:= Type,
 inet_dns:rr(RR, class) =:= Class];
 {error,_} ->
 []
 end.

 Summary

 Types

 dns_class()

 dns_data()

 DNS record data (content)

 dns_msg()

 A DNS message.

 dns_name()

 A string with no adjacent dots.

 dns_rr_type()

 hostent()

 Extended variant of inet:hostent/0.

 nameserver()

 res_error()

 res_option()

 Legacy Functions

 nnslookup(Name, Class, Type, Nameservers)

 Equivalent to nnslookup(Name, Class, Type, NSs, infinity).

 nnslookup(Name, Class, Type, Nameservers, Timeout)

 Resolve a DNS query.

 nslookup(Name, Class, Type)

 Equivalent to nslookup(Name, Class, Type, infinity).

 nslookup/4

 Resolve a DNS query.

 Functions

 getbyname(Name, Type)

 Equivalent to getbyname(Name, Type, [], infinity).

 getbyname(Name, Type, Timeout)

 Equivalent to getbyname(Name, Type, [], Timeout).

 getbyname(Name, Type, Opts, Timeout)

 Resolve a DNS query.

 gethostbyaddr(Address)

 Equivalent to gethostbyaddr(Address, infinity).

 gethostbyaddr(Address, Timeout)

 Backend function used by inet:gethostbyaddr/1.

 gethostbyaddr(Address, Opts, Timeout)

 Backend function used by inet:gethostbyaddr/1.

 gethostbyname(Name)

 Backend functions used by inet:gethostbyname/1,2.

 gethostbyname(Name, Family)

 Equivalent to gethostbyname(Name, Family, infinity).

 gethostbyname(Name, Family, Timeout)

 Equivalent to gethostbyname(Name, Family, [], Timeout).

 gethostbyname(Name, Family, Opts, Timeout)

 Backend functions used by inet:gethostbyname/1,2.

 lookup(Name, Class, Type)

 Equivalent to lookup(Name, Class, Type, [], infinity).

 lookup(Name, Class, Type, Opts)

 Equivalent to lookup(Name, Class, Type, Opts, infinity).

 lookup(Name, Class, Type, Opts, Timeout)

 Look up DNS data.

 resolve(Name, Class, Type)

 Equivalent to resolve(Name, Class, Type, [], infinity).

 resolve(Name, Class, Type, Opts)

 Equivalent to resolve(Name, Class, Type, Opts, infinity).

 resolve(Name, Class, Type, Opts, Timeout)

 Resolve a DNS query.

 Types

 dns_class()

 (not exported)

 -type dns_class() :: in | chaos | hs | any.

 dns_data()

 (not exported)

 -type dns_data() ::
 dns_name() |
 inet:ip4_address() |
 inet:ip6_address() |
 {MName :: dns_name(),
 RName :: dns_name(),
 Serial :: integer(),
 Refresh :: integer(),
 Retry :: integer(),
 Expiry :: integer(),
 Minimum :: integer()} |
 {inet:ip4_address(), Proto :: integer(), BitMap :: binary()} |
 {CpuString :: string(), OsString :: string()} |
 {RM :: dns_name(), EM :: dns_name()} |
 {Prio :: integer(), dns_name()} |
 {Prio :: integer(), Weight :: integer(), Port :: integer(), dns_name()} |
 {Order :: integer(),
 Preference :: integer(),
 Flags :: string(),
 Services :: string(),
 Regexp :: string(),
 dns_name()} |
 [string()] |
 binary().

DNS record data (content)
The basic type of each data element is specified in this type.
Regexp is a UTF-8 string/0. The other string/0s
are actually Latin-1 strings.

 dns_msg()

 (not exported)

 -type dns_msg() :: term().

A DNS message.
This is the start of a hierarchy of opaque data structures that can be
examined with access functions in inet_dns, which return lists of
{Field,Value} tuples. The arity 2 functions return the value
for a specified field.
dns_msg() = DnsMsg
 inet_dns:msg(DnsMsg) ->
 [{header, dns_header()}
 | {qdlist, dns_query()}
 | {anlist, dns_rr()}
 | {nslist, dns_rr()}
 | {arlist, dns_rr()}]
 inet_dns:msg(DnsMsg, header) -> dns_header() % for example
 inet_dns:msg(DnsMsg, Field) -> Value

dns_header() = DnsHeader
 inet_dns:header(DnsHeader) ->
 [{id, integer()}
 | {qr, boolean()}
 | {opcode, query | iquery | status | integer()}
 | {aa, boolean()}
 | {tc, boolean()}
 | {rd, boolean()}
 | {ra, boolean()}
 | {pr, boolean()}
 | {rcode, integer(0..16)}]
 inet_dns:header(DnsHeader, Field) -> Value

query_type() = axfr | mailb | maila | any | dns_rr_type()

dns_query() = DnsQuery
 inet_dns:dns_query(DnsQuery) ->
 [{domain, dns_name()}
 | {type, query_type()}
 | {class, dns_class()}]
 inet_dns:dns_query(DnsQuery, Field) -> Value

dns_rr() = DnsRr
 inet_dns:rr(DnsRr) -> DnsRrFields | DnsRrOptFields
 DnsRrFields = [{domain, dns_name()}
 | {type, dns_rr_type()}
 | {class, dns_class()}
 | {ttl, integer()}
 | {data, dns_data()}]
 DnsRrOptFields = [{domain, dns_name()}
 | {type, opt}
 | {udp_payload_size, integer()}
 | {ext_rcode, integer()}
 | {version, integer()}
 | {z, integer()}
 | {data, dns_data()}]
 inet_dns:rr(DnsRr, Field) -> Value
There is an information function for the types above:
inet_dns:record_type(dns_msg()) -> msg;
inet_dns:record_type(dns_header()) -> header;
inet_dns:record_type(dns_query()) -> dns_query;
inet_dns:record_type(dns_rr()) -> rr;
inet_dns:record_type(_) -> undefined.
So, inet_dns:(inet_dns:record_type(X))(X) converts any of these data
structures into a {Field,Value} list.

 dns_name()

 (not exported)

 -type dns_name() :: string().

A string with no adjacent dots.

 dns_rr_type()

 (not exported)

 -type dns_rr_type() ::
 a | aaaa | caa | cname | gid | hinfo | ns | mb | md | mg | mf | minfo | mx | naptr | null |
 ptr | soa | spf | srv | txt | uid | uinfo | unspec | uri | wks.

 hostent()

 -type hostent() ::
 inet:hostent() |
 {hostent,
 H_name :: inet:hostname(),
 H_aliases :: [inet:hostname()],
 H_addrtype :: dns_rr_type(),
 H_length :: non_neg_integer(),
 H_addr_list :: [dns_data()]}.

Extended variant of inet:hostent/0.
Allows dns_rr_type/0 for the
#hostent{}.h_addrtype field, and
[dns_data/0] for the
#hostent{}.h_addr_list field.

 nameserver()

 -type nameserver() :: {inet:ip_address(), Port :: 1..65535}.

 res_error()

 -type res_error() :: formerr | qfmterror | servfail | nxdomain | notimp | refused | badvers | timeout.

 res_option()

 -type res_option() ::
 {alt_nameservers, [nameserver()]} |
 {edns, 0 | false} |
 {inet6, boolean()} |
 {nameservers, [nameserver()]} |
 {recurse, boolean()} |
 {retry, integer()} |
 {timeout, integer()} |
 {udp_payload_size, integer()} |
 {dnssec_ok, boolean()} |
 {usevc, boolean()} |
 {nxdomain_reply, boolean()}.

 Legacy Functions

 nnslookup(Name, Class, Type, Nameservers)

 -spec nnslookup(Name, Class, Type, Nameservers) -> {ok, dns_msg()} | {error, Reason}
 when
 Name :: dns_name() | inet:ip_address(),
 Class :: dns_class(),
 Type :: dns_rr_type(),
 Nameservers :: [nameserver()],
 Reason :: inet:posix().

Equivalent to nnslookup(Name, Class, Type, NSs, infinity).

 nnslookup(Name, Class, Type, Nameservers, Timeout)

 -spec nnslookup(Name, Class, Type, Nameservers, Timeout) -> {ok, dns_msg()} | {error, Reason}
 when
 Name :: dns_name() | inet:ip_address(),
 Class :: dns_class(),
 Type :: dns_rr_type(),
 Timeout :: timeout(),
 Nameservers :: [nameserver()],
 Reason :: inet:posix().

Resolve a DNS query.
Like nslookup/4 but calls resolve/5 with both the arguments
Opts = [{nameservers, Nameservers}] and Timeout.

 nslookup(Name, Class, Type)

 -spec nslookup(Name, Class, Type) -> {ok, dns_msg()} | {error, Reason}
 when
 Name :: dns_name() | inet:ip_address(),
 Class :: dns_class(),
 Type :: dns_rr_type(),
 Reason :: inet:posix() | res_error().

Equivalent to nslookup(Name, Class, Type, infinity).

 nslookup/4

 -spec nslookup(Name, Class, Type, Timeout) -> {ok, dns_msg()} | {error, Reason}
 when
 Name :: dns_name() | inet:ip_address(),
 Class :: dns_class(),
 Type :: dns_rr_type(),
 Timeout :: timeout(),
 Reason :: inet:posix() | res_error();
 (Name, Class, Type, Nameservers) -> {ok, dns_msg()} | {error, Reason}
 when
 Name :: dns_name() | inet:ip_address(),
 Class :: dns_class(),
 Type :: dns_rr_type(),
 Nameservers :: [nameserver()],
 Reason :: inet:posix() | res_error().

Resolve a DNS query.
This function is a legacy wrapper to resolve/5 that simplifies
errors matching {error, {Reason, _}} into {error, Reason}
or {error, einval}.
With argument Timeout calls resolve/5 with Opts = [].
With argument Nameservers calls resolve/5 with
Opts = [{nameservers, Nameservers}] and Timeout = infinity.

 Functions

 getbyname(Name, Type)

 -spec getbyname(Name, Type) -> {ok, Hostent} | {error, Reason}
 when
 Name :: dns_name(),
 Type :: dns_rr_type(),
 Hostent :: inet:hostent() | hostent(),
 Reason :: inet:posix() | res_error().

Equivalent to getbyname(Name, Type, [], infinity).

 getbyname(Name, Type, Timeout)

 -spec getbyname(Name, Type, Timeout) -> {ok, Hostent} | {error, Reason}
 when
 Name :: dns_name(),
 Type :: dns_rr_type(),
 Timeout :: timeout(),
 Hostent :: inet:hostent() | hostent(),
 Reason :: inet:posix() | res_error().

Equivalent to getbyname(Name, Type, [], Timeout).

 getbyname(Name, Type, Opts, Timeout)

 (since OTP 28.1)

 -spec getbyname(Name, Type, Opts, Timeout) -> {ok, Hostent} | {error, Reason}
 when
 Name :: dns_name(),
 Type :: dns_rr_type(),
 Opts :: [Opt],
 Opt :: res_option() | verbose | atom(),
 Timeout :: timeout(),
 Hostent :: inet:hostent() | hostent(),
 Reason :: inet:posix() | res_error().

Resolve a DNS query.
Resolves a DNS query of the specified Type for the specified host,
of classin. Returns, on success, when resolving a Type = a|aaaa
DNS record, a #hostent{} record with #hostent.h_addrtype = inet|inet6,
respectively; see inet:hostent/0.
When resolving other Type = dns_rr_type():s (of class in), also returns
a #hostent{} record but with dns_rr_type/0 in #hostent.h_addrtype,
and the resolved dns_data/0 in #hostent.h_addr_list; see hostent/0.
This function uses resolver option search that is a list of domain names.
If the name to resolve contains no dots, it is prepended to each domain
name in the search list, and they are tried in order. If the name
contains dots, it is first tried as an absolute name and if that fails,
the search list is used. If the name has a trailing dot, it is supposed
to be an absolute name and the search list is not used.
See resolve/5 about Opts.

 gethostbyaddr(Address)

 -spec gethostbyaddr(Address) -> {ok, Hostent} | {error, Reason}
 when
 Address :: inet:ip_address(),
 Hostent :: inet:hostent(),
 Reason :: inet:posix() | res_error().

Equivalent to gethostbyaddr(Address, infinity).

 gethostbyaddr(Address, Timeout)

 -spec gethostbyaddr(Address, Timeout) -> {ok, Hostent} | {error, Reason}
 when
 Address :: inet:ip_address(),
 Timeout :: timeout(),
 Hostent :: inet:hostent(),
 Reason :: inet:posix() | res_error().

Backend function used by inet:gethostbyaddr/1.

 gethostbyaddr(Address, Opts, Timeout)

 (since OTP 28.1)

 -spec gethostbyaddr(Address, Opts, Timeout) -> {ok, Hostent} | {error, Reason}
 when
 Address :: inet:ip_address(),
 Opts :: [Opt],
 Opt :: res_option() | verbose | atom(),
 Timeout :: timeout(),
 Hostent :: inet:hostent(),
 Reason :: inet:posix() | res_error().

Backend function used by inet:gethostbyaddr/1.

 gethostbyname(Name)

 -spec gethostbyname(Name) -> {ok, Hostent} | {error, Reason}
 when
 Name :: dns_name(),
 Hostent :: inet:hostent(),
 Reason :: inet:posix() | res_error().

Backend functions used by inet:gethostbyname/1,2.
If resolver option inet6 is true, equivalent to
gethostbyname(Name, inet6, infinity),
otherwise gethostbyname(Name, inet, infinity).

 gethostbyname(Name, Family)

 -spec gethostbyname(Name, Family) -> {ok, Hostent} | {error, Reason}
 when
 Name :: dns_name(),
 Family :: inet:address_family(),
 Hostent :: inet:hostent(),
 Reason :: inet:posix() | res_error().

Equivalent to gethostbyname(Name, Family, infinity).

 gethostbyname(Name, Family, Timeout)

 -spec gethostbyname(Name, Family, Timeout) -> {ok, Hostent} | {error, Reason}
 when
 Name :: dns_name(),
 Family :: inet:address_family(),
 Timeout :: timeout(),
 Hostent :: inet:hostent(),
 Reason :: inet:posix() | res_error().

Equivalent to gethostbyname(Name, Family, [], Timeout).

 gethostbyname(Name, Family, Opts, Timeout)

 (since OTP 28.1)

 -spec gethostbyname(Name, Family, Opts, Timeout) -> {ok, Hostent} | {error, Reason}
 when
 Name :: dns_name(),
 Family :: inet:address_family(),
 Opts :: [Opt],
 Opt :: res_option() | verbose | atom(),
 Timeout :: timeout(),
 Hostent :: inet:hostent(),
 Reason :: inet:posix() | res_error().

Backend functions used by inet:gethostbyname/1,2.
This function uses resolver option search just like
getbyname/2,3.

 lookup(Name, Class, Type)

 -spec lookup(Name, Class, Type) -> [dns_data()]
 when Name :: dns_name() | inet:ip_address(), Class :: dns_class(), Type :: dns_rr_type().

Equivalent to lookup(Name, Class, Type, [], infinity).

 lookup(Name, Class, Type, Opts)

 -spec lookup(Name, Class, Type, Opts) -> [dns_data()]
 when
 Name :: dns_name() | inet:ip_address(),
 Class :: dns_class(),
 Type :: dns_rr_type(),
 Opts :: [res_option() | verbose].

Equivalent to lookup(Name, Class, Type, Opts, infinity).

 lookup(Name, Class, Type, Opts, Timeout)

 -spec lookup(Name, Class, Type, Opts, Timeout) -> [dns_data()]
 when
 Name :: dns_name() | inet:ip_address(),
 Class :: dns_class(),
 Type :: dns_rr_type(),
 Opts :: [res_option() | verbose],
 Timeout :: timeout().

Look up DNS data.
Resolves the DNS data for the record Name of the specified
Type and Class. On success, filters out the answer records
with the correct Class and Type, and returns a list of their data fields.
So, a lookup for type any gives an empty answer, as the answer records
have specific types that are not any. An empty answer or a failed lookup
returns an empty list.
Calls resolve/* with the same arguments and filters the result,
so Opts is described for those functions.

 resolve(Name, Class, Type)

 -spec resolve(Name, Class, Type) -> {ok, dns_msg()} | Error
 when
 Name :: dns_name() | inet:ip_address(),
 Class :: dns_class(),
 Type :: dns_rr_type(),
 Error :: {error, Reason} | {error, {Reason, dns_msg()}},
 Reason :: inet:posix() | res_error().

Equivalent to resolve(Name, Class, Type, [], infinity).

 resolve(Name, Class, Type, Opts)

 -spec resolve(Name, Class, Type, Opts) -> {ok, dns_msg()} | Error
 when
 Name :: dns_name() | inet:ip_address(),
 Class :: dns_class(),
 Type :: dns_rr_type(),
 Opts :: [Opt],
 Opt :: res_option() | verbose | atom(),
 Error :: {error, Reason} | {error, {Reason, dns_msg()}},
 Reason :: inet:posix() | res_error().

Equivalent to resolve(Name, Class, Type, Opts, infinity).

 resolve(Name, Class, Type, Opts, Timeout)

 -spec resolve(Name, Class, Type, Opts, Timeout) -> {ok, dns_msg()} | Error
 when
 Name :: dns_name() | inet:ip_address(),
 Class :: dns_class(),
 Type :: dns_rr_type(),
 Opts :: [Opt],
 Opt :: res_option() | verbose | atom(),
 Timeout :: timeout(),
 Error :: {error, Reason} | {error, {Reason, dns_msg()}},
 Reason :: inet:posix() | res_error().

Resolve a DNS query.
Resolves a DNS query for the specified Type, Class, and Name,
into a DNS message possibly containing Resource Records.
The returned dns_msg/0 can be examined using access functions
in inet_db, as described in section in DNS Types.
If Name is an ip_address(), the domain name to query about is generated
as the standard reverse ".IN-ADDR.ARPA." name for an IPv4 address, or the
".IP6.ARPA." name for an IPv6 address. In this case, you most probably
want to use Class = in and Type = ptr, but it is not done automatically.
Opts overrides the corresponding resolver options. If option nameservers
is specified, it is assumed that it is the complete list of name serves,
so resolver option alt_nameserves is ignored. However, if option
alt_nameserves is also specified to this function, it is used.
Option verbose (or rather {verbose,true}) causes diagnostics printout
through io:format/2 of queries, replies, retransmissions,
and so on, similar to utilities such as dig and nslookup.
Option nxdomain_reply (or rather {nxdomain_reply, true}) causes NXDOMAIN
errors from DNS servers to be returned as {error, {nxdomain, dns_msg()}}.
dns_msg/0 contains the additional sections that where included by the
answering server. This is mainly useful to inspect the SOA record
to get the TTL for negative caching.
If Opt is any atom, it is interpreted as {Opt,true} unless
the atom string starts with "no", making the interpretation {Opt,false}.
For example, usevc is an alias for {usevc, true} and nousevc
is an alias for {usevc, false}.
Option inet6 has no effect on this function. You probably want to use
Type = a | aaaa instead.

 net - kernel v10.4

net

Network interface.
This module provides an API for the network interface.

 Summary

 Types

 address_info()

 ifaddrs()

 Interface addresses and flags.

 ifaddrs_filter()

 Interface address filtering selector.

 ifaddrs_filter_fun()

 Interface address filtering selector function/0.

 ifaddrs_filter_map()

 Interface address filtering selector map.

 ifaddrs_flag()

 ifaddrs_flags()

 name_info()

 name_info_flag()

 name_info_flag_ext()

 name_info_flags()

 network_interface_index()

 network_interface_name()

 Functions

 getaddrinfo(Host)

 Equivalent to getaddrinfo(Host, undefined).

 getaddrinfo(Host, Service)

 Network address and service translation.

 gethostname()

 Return the name of the current host.

 getifaddrs()

 Equivalent to getifaddrs(default).

 getifaddrs/1

 Get interface addresses.

 getifaddrs(Filter, Namespace)

 Get interface addresses in a namespace.

 getnameinfo(SockAddr)

 Equivalent to getnameinfo(SockAddr, undefined).

 getnameinfo(SockAddr, Flags)

 Address-to-name translation in a protocol-independant manner.

 getservbyname(Name)

 Equivalent to getservbyname(Name, any).

 getservbyname(Name, Protocol)

 Get service by name.

 getservbyport(PortNumber)

 Equivalent to getservbyport(PortNumber, any).

 getservbyport(PortNumber, Protocol)

 Get service by name.

 if_index2name(Idx)

 Mappings between network interface index and names.

 if_name2index(Name)

 Mappings between network interface names and indexes.

 if_names()

 Get network interface names and indexes.

 Types

 address_info()

 (since OTP 22.0)

 -type address_info() ::
 #{family := socket:domain(),
 socktype := any | socket:type() | integer(),
 protocol := socket:protocol(),
 address := socket:sockaddr()}.

 ifaddrs()

 (since OTP 22.0)

 -type ifaddrs() ::
 #{name := string(),
 flags := ifaddrs_flags(),
 addr => socket:sockaddr(),
 netmask => socket:sockaddr(),
 broadaddr => socket:sockaddr(),
 dstaddr => socket:sockaddr()}.

Interface addresses and flags.
This type defines addresses and flags for an interface.
Note
Not all fields of this map has to be present. The flags field can be used to
test for some of the fields. For example broadaddr will only be present if
the broadcast flag is present in flags.

 ifaddrs_filter()

 (not exported)

 (since OTP 22.0)

 -type ifaddrs_filter() ::
 all | default | inet | inet6 | packet | link | hwaddr |
 ifaddrs_filter_map() |
 ifaddrs_filter_fun().

Interface address filtering selector.
	all - All interfaces

	default - Interfaces with address family inet or inet6

	inet | inet6 | packet | link - Interfaces with only the specified
address family

	hwaddr - Interfaces with address family packet or link

 ifaddrs_filter_fun()

 (not exported)

 (since OTP 22.0)

 -type ifaddrs_filter_fun() :: fun((ifaddrs()) -> boolean()).

Interface address filtering selector function/0.
For each ifaddrs entry, return either true to keep the entry
or false to discard the entry.
For example, to get an interface list which only contains
non-loopback inet interfaces:
net:getifaddrs(
 fun (#{ addr := #{family := inet},
 flags := Flags}) ->
 not lists:member(loopback, Flags);
 (_) ->
 false
 end).

 ifaddrs_filter_map()

 (not exported)

 (since OTP 22.0)

 -type ifaddrs_filter_map() ::
 #{family :=
 all | default | local | inet | inet6 | packet | link |
 [local | inet | inet6 | packet | link],
 flags := any | [ifaddrs_flag()]}.

Interface address filtering selector map.
The family field can only have the (above) specified values
(and not all the values of socket:domain()).
It can also be a list of values, to cover the situation when
any of the specified families are accepted.
For example, family can be set to [inet,inet6] if either inet or inet6
is accepted.
The use of the flags field is that any flag provided must exist for the
interface.
For example, if family is set to inet and flags to
[broadcast, multicast] only interfaces with address family inet
and the flags broadcast and multicast will be listed.

 ifaddrs_flag()

 (since OTP 22.0)

 -type ifaddrs_flag() ::
 up | broadcast | debug | loopback | pointopoint | notrailers | running | noarp | promisc |
 master | slave | multicast | portsel | automedia | dynamic.

 ifaddrs_flags()

 (since OTP 22.0)

 -type ifaddrs_flags() :: [ifaddrs_flag()].

 name_info()

 (since OTP 22.0)

 -type name_info() :: #{host := string(), service := string()}.

 name_info_flag()

 (since OTP 22.0)

 -type name_info_flag() :: namereqd | dgram | nofqdn | numerichost | numericserv.

 name_info_flag_ext()

 (since OTP 22.0)

 -type name_info_flag_ext() :: idn.

 name_info_flags()

 (since OTP 22.0)

 -type name_info_flags() :: [name_info_flag() | name_info_flag_ext()].

 network_interface_index()

 (since OTP 22.0)

 -type network_interface_index() :: non_neg_integer().

 network_interface_name()

 (since OTP 22.0)

 -type network_interface_name() :: string().

 Functions

 getaddrinfo(Host)

 (since OTP 22.0)

 -spec getaddrinfo(Host) -> {ok, Info} | {error, Reason}
 when Host :: string(), Info :: [address_info()], Reason :: term().

Equivalent to getaddrinfo(Host, undefined).

 getaddrinfo(Host, Service)

 (since OTP 22.0)

 -spec getaddrinfo(Host, undefined) -> {ok, Info} | {error, Reason}
 when Host :: string(), Info :: [address_info()], Reason :: term();
 (undefined, Service) -> {ok, Info} | {error, Reason}
 when Service :: string(), Info :: [address_info()], Reason :: term();
 (Host, Service) -> {ok, Info} | {error, Reason}
 when
 Host :: string(),
 Service :: string(),
 Info :: [address_info()],
 Reason :: term().

Network address and service translation.
This function is the inverse of getnameinfo. It converts
host and service to a corresponding socket address.
One of the Host and Service may be undefined but not both.

 gethostname()

 (since OTP 22.0)

 -spec gethostname() -> {ok, HostName} | {error, Reason} when HostName :: string(), Reason :: term().

Return the name of the current host.

 getifaddrs()

 (since OTP 22.3)

 -spec getifaddrs() -> {ok, IfAddrs} | {error, Reason} when IfAddrs :: [ifaddrs()], Reason :: term().

Equivalent to getifaddrs(default).

 getifaddrs/1

 (since OTP 22.3)

 -spec getifaddrs(Filter) -> {ok, IfAddrs} | {error, Reason}
 when Filter :: ifaddrs_filter(), IfAddrs :: [ifaddrs()], Reason :: term();
 (Namespace) -> {ok, IfAddrs} | {error, Reason}
 when Namespace :: file:filename_all(), IfAddrs :: [ifaddrs()], Reason :: term().

Get interface addresses.
With argument 'Filter: get the machines interface addresses,
filtered according to Filter.
With argument Namespace: equivalent to
getifaddrs(default, Namespace).

 getifaddrs(Filter, Namespace)

 (since OTP 22.3)

 -spec getifaddrs(Filter, Namespace) -> {ok, IfAddrs} | {error, Reason}
 when
 Filter :: ifaddrs_filter(),
 Namespace :: file:filename_all(),
 IfAddrs :: [ifaddrs()],
 Reason :: term().

Get interface addresses in a namespace.
The same as getifaddrs(Filter) but
in the specified Namespace.

 getnameinfo(SockAddr)

 (since OTP 22.0)

 -spec getnameinfo(SockAddr) -> {ok, Info} | {error, Reason}
 when SockAddr :: socket:sockaddr(), Info :: name_info(), Reason :: term().

Equivalent to getnameinfo(SockAddr, undefined).

 getnameinfo(SockAddr, Flags)

 (since OTP 22.0)

 -spec getnameinfo(SockAddr, Flags) -> {ok, Info} | {error, Reason}
 when
 SockAddr :: socket:sockaddr(),
 Flags :: name_info_flags() | undefined,
 Info :: name_info(),
 Reason :: term().

Address-to-name translation in a protocol-independant manner.
This function is the inverse of getaddrinfo. It converts a
socket address to a corresponding host and service.

 getservbyname(Name)

 (since OTP 27.1)

 -spec getservbyname(Name) -> {ok, PortNumber} | {error, Reason}
 when
 Name :: atom() | string(),
 PortNumber :: socket:port_number(),
 Reason :: term().

Equivalent to getservbyname(Name, any).

 getservbyname(Name, Protocol)

 (since OTP 27.1)

 -spec getservbyname(Name, Protocol) -> {ok, PortNumber} | {error, Reason}
 when
 Name :: atom() | string(),
 PortNumber :: socket:port_number(),
 Protocol :: any | socket:protocol(),
 Reason :: term().

Get service by name.
This function is used to get the port number of the specified protocol
for the named service.

 getservbyport(PortNumber)

 (since OTP 27.1)

 -spec getservbyport(PortNumber) -> {ok, Name} | {error, Reason}
 when
 PortNumber :: socket:port_number(),
 Name :: atom() | string(),
 Reason :: term().

Equivalent to getservbyport(PortNumber, any).

 getservbyport(PortNumber, Protocol)

 (since OTP 27.1)

 -spec getservbyport(PortNumber, Protocol) -> {ok, Name} | {error, Reason}
 when
 PortNumber :: socket:port_number(),
 Protocol :: any | socket:protocol(),
 Name :: atom() | string(),
 Reason :: term().

Get service by name.
This function is used to get the service name of the specified protocol
for the given port number.

 if_index2name(Idx)

 (since OTP 22.0)

 -spec if_index2name(Idx) -> {ok, Name} | {error, Reason}
 when
 Idx :: network_interface_index(),
 Name :: network_interface_name(),
 Reason :: term().

Mappings between network interface index and names.

 if_name2index(Name)

 (since OTP 22.0)

 -spec if_name2index(Name) -> {ok, Idx} | {error, Reason}
 when
 Name :: network_interface_name(),
 Idx :: network_interface_index(),
 Reason :: term().

Mappings between network interface names and indexes.

 if_names()

 (since OTP 22.0)

 -spec if_names() -> {ok, Names} | {error, Reason}
 when
 Names :: [{Idx, If}],
 Idx :: network_interface_index(),
 If :: network_interface_name(),
 Reason :: term().

Get network interface names and indexes.

 socket - kernel v10.4

socket

Socket interface.
This module provides an API for network sockets. Functions are provided to
create, delete and manipulate the sockets as well as sending and receiving data
on them.
The intent is that it shall be as "close as possible" to the OS level socket
interface. The only significant additions are that some of the functions, e.g.
recv/3, have a time-out argument, and that recv/* for a
stream socket iterates until the requested amount of data
has been received.

Note
Asynchronous Calls
Some functions feature asynchronous calls. This is achieved by setting
the Timeout argument to nowait or to a Handle :: reference/0.
See the respective function's type specification.
This module has two different implementations of asynchronous calls.
One on the Unix family of operating systems:
select - based on the standard socket interface's
select(3)/poll(3) calls, and one on Windows: completion -
based on asynchronous I/O Completion Ports.
The difference shows in the return values and message formats
because they have slightly different semantics.
The completion and select Return Values
For instance, the call recv(Socket, 0, nowait),
when there is no data available for reading, will,
depending on the operating system, return one of:
	{completion,CompletionInfo}
	{select,SelectInfo}

Where CompletionInfo is
{completion_info, _,CompletionHandle}
and SelectInfo is
{select_info, _,SelectHandle}.
Both the CompletionHandle and the SelectHandle
are of type reference/0.
When the operation can continue, a completion message containing
the CompletionHandle or a select message containing
the SelectHandle is sent to the calling process.
On select systems, recv/2,3,4 may also return:
	{select, {SelectInfo, Data}

This may happen for sockets of type stream
when Length > 1 since the OS may split a data stream at any point
and deliver just the first part of the requested data.
For the next recv/2,3,4 call; the Length to receive
will probably have to be adjusted due to the already delivered data
in this return value.
On select systems, when the {otp, select_read} option is true,
the asynchronous recv/3,4,
recvfrom/3,4, and
recvmsg/3,4,5 functions may also return:
	{select_read, {SelectInfo, Data}

This indicates that the receive operation was completed;
all requested data has been delivered, and that the calling process
will get a select message when there is data available
for the next receive operation.
The completion and select Messages
The completion message has the format:
	{'$socket',Socket, completion, {CompletionHandle, CompletionStatus}}

The select message has the format:
	{'$socket',Socket, select,SelectHandle}

When a completion message is received (which contains the result
of the operation), it means that the operation has been completed and
CompletionStatus is the return value for the operation,
which is what the function that initiated the operation
could have returned, with the nowait argument,
except for the completion and select return values.
When a select message is received, it only means that the operation
may now continue, by retrying the operation (which may return
a new {select, _} value). Some operations are retried by repeating
the same function call, and some have a dedicated function variant
to be used for the retry. See the respective function's documentation.
Operation Queuing on select Systems
On select systems, all other processes are locked out until the
current process has completed the operation as in a continuation
call has returned a value indicating success or failure
(not a select or select_read return). Other processes are queued
and get a select return which makes them wait for their turn.
Note that receiving data from parallel processes is only suitable
for some protocols. For a stream socket
it is in general a recipe for disaster.
Cancelling an operation
An operation that is in progress (not completed) may be canceled
using cancel/2 both on completion and select systems.
Cancelling an operation ensures that there is no completion,
select, nor abort message in the inbox after the cancel/2 call.
Using a Handle
If creating a reference/0 with make_ref()
and using that as the Timeout | Handle argument, the same Handle
will then be the SelectHandle in the returned
select_info/0 and the received select message, or be
the CompletionHandle in the returned
completion_info/0 and the received completion message.
The compiler may then optimize a following receive statement
to only scan the messages that arrive after the reference/0
is created. If the message queue is large this is a big optimization.
It is not possible to have more than one operation in progress
with the same reference/0.
Repeating an Operation on a select Systems
Onselect systems, if a call would be repeated before the select
message has been received it replaces the operation in progress:
 {select, {select_info, Handle}} = socket:accept(LSock, nowait),
 {ok, Socket} = socket:accept(LSock, 1000),
 :
Above, Handle is no longer valid once the second accept/2, call
has been made (the first call is automatically canceled).
After the second accept/2 call returns, the accept operation
has completed.
Note that there is a race here; there is no way to know if the call
is repeated before the select message is sent since it may
have been sent just before the repeated call. So now there
might be a select message containing Handle in the inbox.
The abort Message
Another message the user must be prepared for
(when using nowait | Handle) is the abort message:
	{'$socket',Socket, abort, Info}

This message indicates that the operation in progress has been aborted.
For instance, if the socket has been closed by another process;
Info will be {Handle, closed}.
Note
Support for IPv6 has been implemented but not fully tested.
SCTP has only been partly implemented (and not tested).
This module was introduced in OTP 22.0, as experimental code.
	In OTP 22.1, the nowait argument was added for many functions,
and the cancel/2 and info/1 functions were also added.
	In OTP 22.3, the number_of/0 function was added.
	In OTP 23.0, the functions is_supported/1,2
and the open/1,2 functions with an FD argument were added.
	In OTP 23.1, the use_registry/1 function was added.
	In OTP 24.0, the select_handle/0 argument was added for many functions,
the cancel/1, cancel_monitor/1, getopt/3 with tuple options,
getopt_native/3, info/0, monitor/1, open/3 with an option list,
many variants of the recv/*,
recvfrom/*, recvmsg/*,
send/*, sendmsg/*,
the sendto/* functions,
the sendfile/* functions,
and the setopt/3, setopt_native/3 functions, were added.
	In OTP 24.1, the i/* functions were added.
	In OTP 24.2, the ioctl/* functions were added.
	In OTP 26.0, the completion_handle/0 argument was added for
many functions, and the cancel/2 function with completion_info/0
argument was added. That is: support for Windows asynchronous
I/O Completion Ports was added. The Unix-ish flavored
(select handle) API features could be considered
no longer experimental.
	In OTP 27.0, the Windows flavored
(completion handle)
API features could be considered no longer experimental.

Examples
client(SAddr, SPort) ->
 {ok, Sock} = socket:open(inet, stream, tcp),
 ok = socket:connect(Sock, #{family => inet,
 addr => SAddr,
 port => SPort}),
 Msg = <<"hello">>,
 ok = socket:send(Sock, Msg),
 ok = socket:shutdown(Sock, write),
 {ok, Msg} = socket:recv(Sock),
 ok = socket:close(Sock).

server(Addr, Port) ->
 {ok, LSock} = socket:open(inet, stream, tcp),
 ok = socket:bind(LSock, #{family => inet,
 port => Port,
 addr => Addr}),
 ok = socket:listen(LSock),
 {ok, Sock} = socket:accept(LSock),
 {ok, Msg} = socket:recv(Sock),
 ok = socket:send(Sock, Msg),
 ok = socket:close(Sock),
 ok = socket:close(LSock).

 Summary

 Types

 cmsg()

 Control messages (ancillary messages).

 cmsg_recv()

 Control messages (ancillary messages) returned by
recvmsg/1,2,3,5.

 cmsg_send()

 Control messages (ancillary messages) accepted by
sendmsg/2,3,4.

 completion_handle()

 Completion operation handle.

 completion_info()

 Completion operation info.

 completion_tag()

 Completion operation tag.

 domain()

 Protocol domain a.k.a address family.

 ee_origin()

 eei()

 Extended Error Information.

 extended_err()

 hatype()

 icmp_dest_unreach()

 icmpv6_dest_unreach()

 in6_addr()

 in6_flow_info()

 in6_scope_id()

 in_addr()

 info()

 Platform dependent information items.

 info_keys()

 Information element designators for the i/1 and i/2 functions.

 interface_type()

 The interface type (of the datalink). We only translate a few values to atoms,
the rest are left as (unsigned) integer values.

 invalid()

 ioctl_device_flag()

 ioctl_device_map()

 ip_mreq()

 C: struct ip_mreq

 ip_mreq_source()

 C: struct ip_mreq_source

 ip_msfilter()

 C: struct ip_msfilter

 ip_pktinfo()

 C: struct ip_pktinfo

 ip_pmtudisc()

 C: IP_PMTUDISC_* values.

 ip_tos()

 C: IPTOS_* values.

 ipv6_hops()

 IPv6 hop limit value.

 ipv6_mreq()

 C: struct ipv6_mreq

 ipv6_pktinfo()

 C: struct in6_pktinfo

 ipv6_pmtudisc()

 C: IPV6_PMTUDISC_* values

 level()

 Protocol level.

 linger()

 C: struct linger

 msg()

 C: struct msghdr

 msg_flag()

 Platform dependent message flags.

 msg_recv()

 Message returned by recvmsg/1,2,3,5.

 msg_send()

 Message sent by sendmsg/2,3,4.

 native_value()

 otp_socket_option()

 Protocol level otp socket option.

 packet_type()

 port_number()

 posix()

 Posix error codes.

 protocol()

 Protocol name.

 sctp_assocparams()

 C: struct sctp_assocparams

 sctp_event_subscribe()

 C: struct sctp_event_subscribe.

 sctp_initmsg()

 C: struct sctp_initmsg.

 sctp_rtoinfo()

 C: struct sctp_rtoinfo.

 select_handle()

 Select operation handle.

 select_info()

 Select operation info.

 select_tag()

 Select operation tag.

 sockaddr()

 sockaddr_dl()

 C: struct sockaddr_dl

 sockaddr_in6()

 C: struct sockaddr_in6

 sockaddr_in()

 C: struct sockaddr_in

 sockaddr_ll()

 C: struct sockaddr_ll

 sockaddr_native()

 C: struct sockaddr

 sockaddr_recv()

 sockaddr_un()

 C: struct sockaddr_un.

 sockaddr_unspec()

 C: struct sockaddr of AF_UNSPEC

 socket()

 A socket, according to this module.

 socket_counters()

 A map/0 of Name := Counter associations.

 socket_handle()

 Opaque socket handle unique for the socket.

 socket_info()

 socket_option()

 Socket option.

 timeval()

 C: struct timeval

 type()

 Protocol type.

 Functions

 accept(ListenSocket)

 Equivalent to accept(ListenSocket, infinity).

 accept/2

 Accept a connection on a listening socket.

 bind(Socket, Addr)

 Bind a name to a socket.

 cancel/2

 Cancel an asynchronous call in progress.

 cancel_monitor(MRef)

 Cancel a socket monitor.

 close(Socket)

 Close a socket.

 connect(Socket)

 Finalize a connect/3 operation.

 connect(Socket, SockAddr)

 Equivalent to
connect(Socket, SockAddr, infinity).

 connect/3

 Connect the socket to the given address.

 getopt/2

 Get the value of a socket option.

 getopt(Socket, Level, Opt)

 Get a socket option (backwards compatibility function).

 getopt_native/3

 Get a "native" socket option.

 i()

 Print information to the erlang shell in table format
for all sockets.

 i/1

 Print information to the erlang shell in table format
for all sockets.

 i/2

 Print information to the erlang shell in table format
for a selection of sockets.

 info()

 Get miscellaneous information about this socket library.

 info(Socket)

 Get miscellaneous info about a socket.

 ioctl/2

 Set socket (device) parameters.

 ioctl/3

 Get or set socket (device) parameters.

 ioctl(Socket, SetRequest, Name, Value)

 Set socket (device) parameters.

 is_supported(Key1)

 Check if a socket feature is supported.

 is_supported(Key1, Key2)

 Check if a socket feature is supported.

 listen(Socket)

 Make a socket listen for connections.

 listen(Socket, Backlog)

 Make a socket listen for connections.

 monitor(Socket)

 Start a socket monitor.

 number_of()

 Return the number of active sockets.

 open(FD)

 Equivalent to open(FD, #{}).

 open/2

 Create a socket.

 open/3

 Create a socket.

 open(Domain, Type, Protocol, Opts)

 Create a socket.

 peername(Socket)

 Return the remote address of a socket.

 recv(Socket)

 Equivalent to recv(Socket, 0, [], infinity).

 recv/2

 Receive data on a connected socket.

 recv/3

 Receive data on a connected socket.

 recv/4

 Receive data on a connected socket.

 recvfrom(Socket)

 Equivalent to recvfrom(Socket, 0, [], infinity).

 recvfrom/2

 Receive a message on a socket.

 recvfrom/3

 Receive a message on a socket.

 recvfrom/4

 Receive a message on a socket.

 recvmsg(Socket)

 Equivalent to recvmsg(Socket, 0, 0, [], infinity).

 recvmsg/2

 Receive a message on a socket.

 recvmsg/3

 Receive a message on a socket.

 recvmsg(Socket, BufSz, CtrlSz, TimeoutOrHandle)

 Equivalent to
recvmsg(Socket, BufSz, CtrlSz, [], TimeoutOrHandle).

 recvmsg/5

 Receive a message on a socket.

 rest_iov(Written, IOV)

 Calculate the rest I/O vector after a partially successful sendv
(CompletionStatus was {ok, Written}).

 send(Socket, Data)

 Equivalent to send(Socket, Data, [], infinity).

 send/3

 Send data on a connected socket.

 send/4

 Send data on a connected socket.

 sendfile(Socket, FileHandle_Cont)

 Send a file on a socket.

 sendfile(Socket, FileHandle_Cont, Timeout_Handle)

 Send a file on a socket.

 sendfile(Socket, FileHandle_Cont, Offset, Count)

 Send a file on a socket.

 sendfile/5

 Send a file on a socket.

 sendmsg(Socket, Msg)

 Equivalent to sendmsg(Socket, Msg, [], infinity).

 sendmsg/3

 Send data and control messages on a socket.

 sendmsg/4

 Send data and control messages on a socket.

 sendto/3

 Send data on a socket.

 sendto/4

 Send data on a socket.

 sendto/5

 Send data on a socket.

 sendv(Socket, IOV)

 Equivalent to sendv(Socket, IOV, infinity).

 sendv/3

 Send erlang:iovec/0 data on a connected socket.

 sendv/4

 Send data on a connected socket, continuation.

 setopt/3

 Set a socket option.

 setopt/4

 Set a socket option (backwards compatibility function).

 setopt_native(Socket, Option, Value)

 Set a "native" socket option.

 shutdown(Socket, How)

 Shut down all or part of a full-duplex connection.

 sockname(Socket)

 Get the socket's address.

 supports()

 Retrieve information about what socket features
the module and the platform supports.

 supports(Key1)

 Retrieve information about what socket features
the module and the platform supports.

 supports(Key1, Key2)

 Retrieve information about what socket features
the module and the platform supports.

 use_registry(D)

 Set the global use_registry
option default value.

 which_sockets()

 Return a list of all known sockets.

 which_sockets(FilterRule)

 Return a filtered list of known sockets.

 Types

 cmsg()

 (since OTP 22.0)

 -type cmsg() :: cmsg_recv() | cmsg_send().

Control messages (ancillary messages).

 cmsg_recv()

 (since OTP 22.0)

 -type cmsg_recv() ::
 #{level := socket, type := timestamp, data := binary(), value => timeval()} |
 #{level := socket, type := rights, data := binary()} |
 #{level := socket, type := credentials, data := binary()} |
 #{level := ip, type := tos, data := binary(), value => ip_tos() | integer()} |
 #{level := ip, type := recvtos, data := binary(), value := ip_tos() | integer()} |
 #{level := ip, type := ttl, data := binary(), value => integer()} |
 #{level := ip, type := recvttl, data := binary(), value := integer()} |
 #{level := ip, type := pktinfo, data := binary(), value => ip_pktinfo()} |
 #{level := ip, type := origdstaddr, data := binary(), value => sockaddr_recv()} |
 #{level := ip, type := recverr, data := binary(), value => extended_err()} |
 #{level := ipv6, type := hoplimit, data := binary(), value => integer()} |
 #{level := ipv6, type := pktinfo, data := binary(), value => ipv6_pktinfo()} |
 #{level := ipv6, type := recverr, data := binary(), value => extended_err()} |
 #{level := ipv6, type := tclass, data := binary(), value => integer()}.

Control messages (ancillary messages) returned by
recvmsg/1,2,3,5.
A control message has got a data field with a native (binary) value for the
message data, and may also have a decoded value field if this socket library
successfully decoded the data.

 cmsg_send()

 (since OTP 22.0)

 -type cmsg_send() ::
 #{level := socket, type := timestamp, data => native_value(), value => timeval()} |
 #{level := socket, type := rights, data := native_value()} |
 #{level := socket, type := credentials, data := native_value()} |
 #{level := ip, type := tos, data => native_value(), value => ip_tos() | integer()} |
 #{level := ip, type := ttl, data => native_value(), value => integer()} |
 #{level := ip, type := hoplimit, data => native_value(), value => integer()} |
 #{level := ipv6, type := tclass, data => native_value(), value => integer()}.

Control messages (ancillary messages) accepted by
sendmsg/2,3,4.
A control message may for some message types have a value field with a
symbolic value, or a data field with a native value, that has to be binary
compatible what is defined in the platform's header files.

 completion_handle()

 (since OTP 26.0)

 -type completion_handle() :: reference().

Completion operation handle.
A reference/0 that uniquely identifies the (completion) operation,
contained in the returned completion_info/0.

 completion_info()

 (since OTP 26.0)

 -type completion_info() ::
 {completion_info, CompletionTag :: completion_tag(), CompletionHandle :: completion_handle()}.

Completion operation info.
Returned by an operation that requires the caller to wait for a
completion message containing the
CompletionHandle and the result of the operation;
the CompletionStatus.

 completion_tag()

 (since OTP 26.0)

 -type completion_tag() ::
 accept | connect | recv | recvfrom | recvmsg | send | sendv | sendto | sendmsg | sendfile.

Completion operation tag.
A tag that describes the ongoing (completion) operation (= function name),
contained in the returned completion_info/0.

 domain()

 (since OTP 22.0)

 -type domain() :: inet | inet6 | local | unspec.

Protocol domain a.k.a address family.
A lowercase atom/0 representing a protocol domain
on the platform named AF_* (or PF_*). For example
inet corresponds to AF_INET.
is_supported(ipv6) tells if the IPv6 protocol,
protocol domain inet6, is supported.
is_supported(local) tells if the
protocol domain local is supported.
supports/0 reports both values, but also many more, with a single call.

 ee_origin()

 (since OTP 22.0)

 -type ee_origin() :: none | local | icmp | icmp6.

 eei()

 (since OTP 22.0)

 -type eei() ::
 #{info := econnreset | econnaborted | netname_deleted | too_many_cmds | atom(),
 raw_info := term()}.

Extended Error Information.
A term containing additional (error) information
if the socket NIF has been configured to produce it.

 extended_err()

 (since OTP 22.0)

 -type extended_err() ::
 #{error := posix(),
 origin := icmp,
 type := dest_unreach,
 code := icmp_dest_unreach() | 0..255,
 info := 0..4294967295,
 data := 0..4294967295,
 offender := sockaddr_recv()} |
 #{error := posix(),
 origin := icmp,
 type := time_exceeded | 0..255,
 code := 0..255,
 info := 0..4294967295,
 data := 0..4294967295,
 offender := sockaddr_recv()} |
 #{error := posix(),
 origin := icmp6,
 type := dest_unreach,
 code := icmpv6_dest_unreach() | 0..255,
 info := 0..4294967295,
 data := 0..4294967295,
 offender := sockaddr_recv()} |
 #{error := posix(),
 origin := icmp6,
 type := pkt_toobig | time_exceeded | 0..255,
 code := 0..255,
 info := 0..4294967295,
 data := 0..4294967295,
 offender := sockaddr_recv()} |
 #{error := posix(),
 origin := ee_origin() | 0..255,
 type := 0..255,
 code := 0..255,
 info := 0..4294967295,
 data := 0..4294967295,
 offender := sockaddr_recv()}.

 hatype()

 (not exported)

 (since OTP 22.0)

 -type hatype() ::
 netrom | eether | ether | ax25 | pronet | chaos | ieee802 | arcnet | appletlk | dlci | atm |
 metricom | ieee1394 | eui64 | infiniband | tunnel | tunnel6 | loopback | localtlk | none |
 void |
 non_neg_integer().

 icmp_dest_unreach()

 (since OTP 22.0)

 -type icmp_dest_unreach() ::
 net_unreach | host_unreach | port_unreach | frag_needed | net_unknown | host_unknown.

 icmpv6_dest_unreach()

 (since OTP 22.0)

 -type icmpv6_dest_unreach() ::
 noroute | adm_prohibited | not_neighbour | addr_unreach | port_unreach | policy_fail |
 reject_route.

 in6_addr()

 (since OTP 22.0)

 -type in6_addr() :: {0..65535, 0..65535, 0..65535, 0..65535, 0..65535, 0..65535, 0..65535, 0..65535}.

 in6_flow_info()

 (not exported)

 (since OTP 22.0)

 -type in6_flow_info() :: 0..1048575.

 in6_scope_id()

 (not exported)

 (since OTP 22.0)

 -type in6_scope_id() :: 0..4294967295.

 in_addr()

 (since OTP 22.0)

 -type in_addr() :: {0..255, 0..255, 0..255, 0..255}.

 info()

 (not exported)

 (since OTP 22.0)

 -type info() ::
 #{counters := #{atom() := non_neg_integer()},
 iov_max := non_neg_integer(),
 use_registry := boolean(),
 io_backend := #{name := atom()}}.

Platform dependent information items.
The value of iov_max is the value of the IOV_MAX constant
in the system headers, which is the largest allowed I/O vector.
See also sendmsg/4 regarding the iov key of msg_send/0.
The smallest allowed IOV_MAX value according to POSIX is 16,
but check your platform documentation to be sure.
About the use_registry key, see use_registry/1
and the otp_socket_option/0 with the same name.

 info_keys()

 (since OTP 22.0)

 -type info_keys() ::
 [domain | type | protocol | fd | owner | local_address | remote_address | recv | sent | state].

Information element designators for the i/1 and i/2 functions.

 interface_type()

 (since OTP 22.0)

 -type interface_type() ::
 other | hdh1822 | x25ddh | x25 | ether | ppp | loop | ipv4 | ipv6 | '6to4' | gif | faith |
 stf | bridge | cellular |
 non_neg_integer().

The interface type (of the datalink). We only translate a few values to atoms,
the rest are left as (unsigned) integer values.

 invalid()

 (since OTP 22.0)

 -type invalid() :: {invalid, What :: term()}.

 ioctl_device_flag()

 (since OTP 22.0)

 -type ioctl_device_flag() ::
 up | broadcast | debug | loopback | pointopoint | notrailers | knowsepoch | running | noarp |
 promisc | allmulti | master | oactive | slave | simplex | link0 | link1 | link2 | multicast |
 portsel | automedia | cantconfig | ppromisc | dynamic | monitor | staticarp | dying |
 renaming | nogroup | lower_up | dormant | echo.

 ioctl_device_map()

 (since OTP 22.0)

 -type ioctl_device_map() ::
 #{mem_start := non_neg_integer(),
 mem_end := non_neg_integer(),
 base_addr := non_neg_integer(),
 irq := non_neg_integer(),
 dma := non_neg_integer(),
 port := non_neg_integer()}.

 ip_mreq()

 (since OTP 22.0)

 -type ip_mreq() :: #{multiaddr := in_addr(), interface := in_addr()}.

C: struct ip_mreq
Corresponds to the C struct ip_mreq for managing multicast groups.

 ip_mreq_source()

 (since OTP 22.0)

 -type ip_mreq_source() :: #{multiaddr := in_addr(), interface := in_addr(), sourceaddr := in_addr()}.

C: struct ip_mreq_source
Corresponds to the C struct ip_mreq_source for managing multicast groups.

 ip_msfilter()

 (since OTP 22.0)

 -type ip_msfilter() ::
 #{multiaddr := in_addr(),
 interface := in_addr(),
 mode := include | exclude,
 slist := [in_addr()]}.

C: struct ip_msfilter
Corresponds to the C struct ip_msfilter for managing
multicast source filtering (RFC 3376).

 ip_pktinfo()

 (since OTP 22.0)

 -type ip_pktinfo() :: #{ifindex := non_neg_integer(), spec_dst := in_addr(), addr := in_addr()}.

C: struct ip_pktinfo

 ip_pmtudisc()

 (since OTP 22.0)

 -type ip_pmtudisc() :: want | dont | do | probe.

C: IP_PMTUDISC_* values.
Lowercase atom/0 values corresponding to the C library constants
IP_PMTUDISC_*. Some constant(s) may be unsupported by the platform.

 ip_tos()

 (since OTP 22.0)

 -type ip_tos() :: lowdelay | throughput | reliability | mincost.

C: IPTOS_* values.
Lowercase atom/0 values corresponding to the C library constants IPTOS_*.
Some constant(s) may be unsupported by the platform.

 ipv6_hops()

 (since OTP 22.0)

 -type ipv6_hops() :: default | 0..255.

IPv6 hop limit value.
The value default is only valid to set and is translated to the C value
-1, meaning the route default.

 ipv6_mreq()

 (since OTP 22.0)

 -type ipv6_mreq() :: #{multiaddr := in6_addr(), interface := non_neg_integer()}.

C: struct ipv6_mreq
Corresponds to the C struct ipv6_mreq for managing multicast groups. See also
RFC 2553.

 ipv6_pktinfo()

 (since OTP 22.0)

 -type ipv6_pktinfo() :: #{addr := in6_addr(), ifindex := integer()}.

C: struct in6_pktinfo

 ipv6_pmtudisc()

 (since OTP 22.0)

 -type ipv6_pmtudisc() :: want | dont | do | probe.

C: IPV6_PMTUDISC_* values
Lowercase atom/0 values corresponding to the C library constants
IPV6_PMTUDISC_*. Some constant(s) may be unsupported by the platform.

 level()

 (since OTP 22.0)

 -type level() :: socket | protocol().

Protocol level.
A lowercase atom/0 OS protocol level, that is:
socket or a protocol/0 name.
socket is the SOL_SOCKET protocol level in the OS header files,
with options named SO_* .

 linger()

 (since OTP 22.0)

 -type linger() :: #{onoff := boolean(), linger := non_neg_integer()}.

C: struct linger
Corresponds to the C struct linger for managing the
socket option {socket, linger}.

 msg()

 (since OTP 22.0)

 -type msg() :: msg_send() | msg_recv().

C: struct msghdr

 msg_flag()

 (since OTP 22.0)

 -type msg_flag() ::
 cmsg_cloexec | confirm | ctrunc | dontroute | eor | errqueue | more | oob | peek | trunc.

Platform dependent message flags.
Translates to/from message flag constants on the platform.
These flags are lowercase while the constants are uppercase
with prefix MSG_; for example oob translates to MSG_OOB.
Some flags are only used for sending, some only for receiving, some in received
control messages, and some for several of these. Not all flags are supported on
all platforms. See the platform's documentation,
supports(msg_flags), and
is_supported(msg_flags, MsgFlag).

 msg_recv()

 (since OTP 22.0)

 -type msg_recv() ::
 #{addr => sockaddr_recv(),
 iov := erlang:iovec(),
 ctrl := [cmsg_recv() | #{level := level() | integer(), type := integer(), data := binary()}],
 flags := [msg_flag() | integer()]}.

Message returned by recvmsg/1,2,3,5.
Corresponds to a C struct msghdr, see your platform documentation for
recvmsg(2).
	addr - Optional peer address, used on unconnected sockets. Corresponds
to msg_name and msg_namelen fields of a struct msghdr. If NULL the map
key is not present.

	iov - Data as a list of binaries. The msg_iov and msg_iovlen fields
of a struct msghdr.

	ctrl - A possibly empty list of control messages (CMSG). Corresponds to
the msg_control and msg_controllen fields of a struct msghdr.

	flags - Message flags. Corresponds to the msg_flags field of a
struct msghdr. Unknown flags, if any, are returned in one integer/0,
last in the containing list.

 msg_send()

 (since OTP 22.0)

 -type msg_send() ::
 #{addr => sockaddr(),
 iov := erlang:iovec(),
 ctrl => [cmsg_send() | #{level := level() | integer(), type := integer(), data := binary()}]}.

Message sent by sendmsg/2,3,4.
Corresponds to a C struct msghdr, see your platform documentation for
sendmsg(2).
	addr - Optional peer address, used on unconnected sockets. Corresponds
to msg_name and msg_namelen fields of a struct msghdr. If not used they
are set to NULL, 0.

	iov - Mandatory data as a list of binaries. The msg_iov and
msg_iovlen fields of a struct msghdr.

	ctrl - Optional list of control messages (CMSG). Corresponds to the
msg_control and msg_controllen fields of a struct msghdr. If not used
they are set to NULL, 0.

The msg_flags field of the struct msghdr is set to 0.

 native_value()

 (not exported)

 (since OTP 22.0)

 -type native_value() :: integer() | boolean() | binary().

 otp_socket_option()

 (since OTP 22.0)

 -type otp_socket_option() ::
 debug | iow | controlling_process | rcvbuf | rcvctrlbuf | sndctrlbuf | select_read | meta |
 use_registry | fd | domain.

Protocol level otp socket option.
Socket options for the otp pseudo protocol level,
that is: {otp, Name} options.
This protocol level is the Erlang/OTP's socket implementation layer,
hence above all OS protocol levels.
	debug - boolean/0 - Activate debug logging.

	iow - boolean/0 - Inform On Wrap of statistics counters.

	controlling_process - pid/0 - The socket "owner". Only the current
controlling process can set this option.

	rcvbuf -
BufSize :: (default | integer()>0) | {N :: integer()>0, BufSize :: (default | integer()>0)}-
Receive buffer size.
The value default is only valid to set.
N specifies the number of read attempts to do in a tight loop before
assuming no more data is pending.
This is the allocation size for the receive buffer used when calling the OS
protocol stack's receive API, when no specific size (size 0) is requested.
When the receive function returns the receive buffer is reallocated to the
actually received size. If the data is copied or shrunk in place is up to
the allocator, and can to some extent be configured in the Erlang VM.
The similar socket option; {socket,rcvbuf} is a related option for the OS'
protocol stack that on Unix corresponds to SOL_SOCKET,SO_RCVBUF.

	rcvctrlbuf - BufSize :: (default | integer()>0)- Allocation size for
the ancillary data buffer used when calling the OS protocol stack's receive
API.
The value default is only valid to set.

	sndctrlbuf - BufSize :: (default | integer()>0)- Allocation size for
the ancillary data buffer used when calling the OS protocol stack's
sendmsg API.
The value default is only valid to set.
It is the user's responsibility to set a buffer size that has room for the
encoded ancillary data in the message to send.
See sendmsg and also the ctrl field of the msg_send/0
type.

	select_read - boolean/0 -
On select implementations, see Asynchronous Calls,
automatically activate select after a completed read.
Instead of {ok, Data} the receive operation returns
{select_read, {SelectInfo, Data}},
and the calling process can wait for a select message
containing SelectInfo when there is data available again.
Setting this option locks out other processes from receiving any data
since the current process continues its operation, so it effectively
disables receive operation queuing.

	fd - integer/0 - Only valid to get. The OS protocol levels'
socket descriptor. Functions open/1,2 can be used to create a
socket according to this module from an existing OS socket descriptor.

	use_registry - boolean/0 - Only valid to get. The value is set
when the socket is created with open/2 or open/4.

Options not described here are intentionally undocumented and for Erlang/OTP
internal use only.

 packet_type()

 (not exported)

 (since OTP 22.0)

 -type packet_type() ::
 host | broadcast | multicast | otherhost | outgoing | loopback | user | kernel | fastroute |
 non_neg_integer().

 port_number()

 (since OTP 22.0)

 -type port_number() :: 0..65535.

 posix()

 (not exported)

 (since OTP 22.0)

 -type posix() :: inet:posix().

Posix error codes.
Local alias for inet:posix/0, a set of atom/0s.

 protocol()

 (since OTP 22.0)

 -type protocol() :: atom().

Protocol name.
A lowercase atom/0 representing an OS protocol name.
To be used for example in socket_option/0
in control messages.
They have the following names in the OS header files:
	ip - IPPROTO_IP a.k.a SOL_IP with options named IP_*.

	ipv6 - IPPROTO_IPV6 a.k.a SOL_IPV6 with options named IPV6_*.

	tcp - IPPROTO_TCP with options named TCP_*.

	udp - IPPROTO_UDP with options named UDP_*.

	sctp - IPPROTO_SCTP with options named SCTP_*.

There are many other possible protocols, but the ones above are those for which
this socket library implements socket options and/or control messages.
All protocols known to the OS are enumerated when the Erlang VM is started,
through the C library call getprotoent(). See the OS man page for
protocols(5). Those in the list above are valid if supported by the platform,
even if they aren't enumerated.
The calls is_supported(ipv6)
and is_supported(sctp) can be used to find out
if the protocols ipv6 and sctp are supported on the platform
as in appropriate header file and library exists.
The call is_supported(protocols, Protocol)
can only be used to find out if the platform knows the protocol number
for a named Protocol.
See open/2,3,4

 sctp_assocparams()

 (since OTP 22.0)

 -type sctp_assocparams() ::
 #{assoc_id := integer(),
 asocmaxrxt := 0..65535,
 numbe_peer_destinations := 0..65535,
 peer_rwnd := 0..4294967295,
 local_rwnd := 0..4294967295,
 cookie_life := 0..4294967295}.

C: struct sctp_assocparams

 sctp_event_subscribe()

 (since OTP 22.0)

 -type sctp_event_subscribe() ::
 #{data_io := boolean(),
 association := boolean(),
 address := boolean(),
 send_failure := boolean(),
 peer_error := boolean(),
 shutdown := boolean(),
 partial_delivery := boolean(),
 adaptation_layer => boolean(),
 sender_dry => boolean()}.

C: struct sctp_event_subscribe.
Not all fields are implemented on all platforms; unimplemented fields are
ignored, but implemented fields are mandatory. Note that the '_event' suffixes
have been stripped from the C struct field names, for convenience.

 sctp_initmsg()

 (since OTP 22.0)

 -type sctp_initmsg() ::
 #{num_ostreams := 0..65535,
 max_instreams := 0..65535,
 max_attempts := 0..65535,
 max_init_timeo := 0..65535}.

C: struct sctp_initmsg.

 sctp_rtoinfo()

 (since OTP 22.0)

 -type sctp_rtoinfo() ::
 #{assoc_id := integer(), initial := 0..4294967295, max := 0..4294967295, min := 0..4294967295}.

C: struct sctp_rtoinfo.

 select_handle()

 (since OTP 22.0)

 -type select_handle() :: reference().

Select operation handle.
A reference/0 that uniquely identifies the (select) operation,
contained in the returned select_info/0.

 select_info()

 (since OTP 22.0)

 -type select_info() :: {select_info, SelectTag :: select_tag(), SelectHandle :: select_handle()}.

Select operation info.
Returned by an operation that requires the caller to wait for a
select message containing the
SelectHandle.
On select systems, if the option
{otp, select_read} is set,
{select_read, {select_info(), _}}
is returned instead of {ok, _} to indicate that a new
asynchronous receive operation has been initiated
and the caller should wait for a
select message containing the
SelectHandle.

 select_tag()

 (since OTP 22.0)

 -type select_tag() ::
 accept | connect | recv | recvfrom | recvmsg | send | sendv | sendto | sendmsg | sendfile |
 {recv | recvfrom | recvmsg | send | sendv | sendto | sendmsg | sendfile, ContData :: term()}.

Select operation tag.
A tag that describes the (select) operation (= function name),
contained in the returned select_info/0.

 sockaddr()

 (since OTP 22.0)

 -type sockaddr() ::
 sockaddr_in() |
 sockaddr_in6() |
 sockaddr_un() |
 sockaddr_ll() |
 sockaddr_dl() |
 sockaddr_unspec() |
 sockaddr_native().

 sockaddr_dl()

 (since OTP 22.0)

 -type sockaddr_dl() ::
 #{family := link,
 index := non_neg_integer(),
 type := interface_type(),
 nlen := non_neg_integer(),
 alen := non_neg_integer(),
 slen := non_neg_integer(),
 data := binary()}.

C: struct sockaddr_dl
Link level address (PF_LINK) on BSD:s.

 sockaddr_in6()

 (since OTP 22.0)

 -type sockaddr_in6() ::
 #{family := inet6,
 port := port_number(),
 addr := any | loopback | in6_addr(),
 flowinfo := in6_flow_info(),
 scope_id := in6_scope_id()}.

C: struct sockaddr_in6
Domain inet6 (IPv6) address.

 sockaddr_in()

 (since OTP 22.0)

 -type sockaddr_in() ::
 #{family := inet, port := port_number(), addr := any | broadcast | loopback | in_addr()}.

C: struct sockaddr_in
Domain inet (IPv4) address.

 sockaddr_ll()

 (since OTP 22.0)

 -type sockaddr_ll() ::
 #{family := packet,
 protocol := non_neg_integer(),
 ifindex := integer(),
 pkttype := packet_type(),
 hatype := hatype(),
 addr := binary()}.

C: struct sockaddr_ll
Domain packet, type raw
(link level) address.

 sockaddr_native()

 (since OTP 22.0)

 -type sockaddr_native() :: #{family := integer(), addr := binary()}.

C: struct sockaddr
In C, a struct sockaddr with the integer value of sa_family
in the map/0 key family,
and the content of sa_data in the map/0 key addr.

 sockaddr_recv()

 (since OTP 22.0)

 -type sockaddr_recv() :: sockaddr() | binary().

 sockaddr_un()

 (since OTP 22.0)

 -type sockaddr_un() :: #{family := local, path := binary() | string()}.

C: struct sockaddr_un.
A Unix Domain socket address, a.k.a local address (AF_LOCAL).
The path element will always be a binary when returned from this module.
When supplied to an API function in this module it may be a string/0, which
will be encoded into a binary according to the
native file name encoding on the platform.
A terminating zero character will be appended before the address path is given
to the OS, and the terminating zero will be stripped before giving the address
path to the caller.
Linux's non-portable abstract socket address extension is handled by not doing
any terminating zero processing in either direction, if the first byte of the
address is zero.

 sockaddr_unspec()

 (since OTP 22.0)

 -type sockaddr_unspec() :: #{family := unspec, addr := binary()}.

C: struct sockaddr of AF_UNSPEC
In C, a struct sockaddr with sa_family = AF_UNSPEC
and the content of sa_data in the map/0 key addr.

 socket()

 (since OTP 22.0)

 -type socket() :: {'$socket', socket_handle()}.

A socket, according to this module.
Created and returned by open/1,2,3,4
and accept/1,2.

 socket_counters()

 (since OTP 22.0)

 -type socket_counters() ::
 #{read_byte := non_neg_integer(),
 read_fails := non_neg_integer(),
 read_pkg := non_neg_integer(),
 read_pkg_max := non_neg_integer(),
 read_tries := non_neg_integer(),
 read_waits := non_neg_integer(),
 write_byte := non_neg_integer(),
 write_fails := non_neg_integer(),
 write_pkg := non_neg_integer(),
 write_pkg_max := non_neg_integer(),
 write_tries := non_neg_integer(),
 write_waits := non_neg_integer(),
 sendfile => non_neg_integer(),
 sendfile_byte => non_neg_integer(),
 sendfile_fails => non_neg_integer(),
 sendfile_max => non_neg_integer(),
 sendfile_pkg => non_neg_integer(),
 sendfile_pkg_max => non_neg_integer(),
 sendfile_tries => non_neg_integer(),
 sendfile_waits => non_neg_integer(),
 acc_success := non_neg_integer(),
 acc_fails := non_neg_integer(),
 acc_tries := non_neg_integer(),
 acc_waits := non_neg_integer()}.

A map/0 of Name := Counter associations.

 socket_handle()

 (since OTP 22.0)

 -opaque socket_handle()

Opaque socket handle unique for the socket.

 socket_info()

 (since OTP 22.0)

 -type socket_info() ::
 #{domain := domain() | integer(),
 type := type() | integer(),
 protocol := protocol() | integer(),
 owner := pid(),
 ctype := normal | fromfd | {fromfd, integer()},
 counters := socket_counters(),
 num_readers := non_neg_integer(),
 num_writers := non_neg_integer(),
 num_acceptors := non_neg_integer(),
 writable := boolean(),
 readable := boolean(),
 rstates := [atom()],
 wstates := [atom()]}.

 socket_option()

 (since OTP 22.0)

 -type socket_option() ::
 {Level :: socket,
 Opt ::
 acceptconn | acceptfilter | bindtodevice | broadcast | bsp_state | busy_poll | debug |
 domain | dontroute | error | exclusiveaddruse | keepalive | linger | mark | maxdg |
 max_msg_size | oobinline | passcred | peek_off | peercred | priority | protocol |
 rcvbuf | rcvbufforce | rcvlowat | rcvtimeo | reuseaddr | reuseport | rxq_ovfl | setfib |
 sndbuf | sndbufforce | sndlowat | sndtimeo | timestamp | type} |
 {Level :: ip,
 Opt ::
 add_membership | add_source_membership | block_source | dontfrag | drop_membership |
 drop_source_membership | freebind | hdrincl | minttl | msfilter | mtu | mtu_discover |
 multicast_all | multicast_if | multicast_loop | multicast_ttl | nodefrag | options |
 pktinfo | recvdstaddr | recverr | recvif | recvopts | recvorigdstaddr | recvtos |
 recvttl | retopts | router_alert | sndsrcaddr | tos | transparent | ttl | unblock_source} |
 {Level :: ipv6,
 Opt ::
 addrform | add_membership | authhdr | auth_level | checksum | drop_membership | dstopts |
 esp_trans_level | esp_network_level | faith | flowinfo | hopopts | ipcomp_level |
 join_group | leave_group | mtu | mtu_discover | multicast_hops | multicast_if |
 multicast_loop | portrange | pktoptions | recverr | recvhoplimit | hoplimit |
 recvpktinfo | pktinfo | recvtclass | router_alert | rthdr | tclass | unicast_hops |
 use_min_mtu | v6only} |
 {Level :: tcp,
 Opt ::
 congestion | cork | info | keepcnt | keepidle | keepintvl | maxseg | md5sig | nodelay |
 noopt | nopush | syncnt | user_timeout} |
 {Level :: udp, Opt :: cork} |
 {Level :: sctp,
 Opt ::
 adaption_layer | associnfo | auth_active_key | auth_asconf | auth_chunk | auth_key |
 auth_delete_key | autoclose | context | default_send_params | delayed_ack_time |
 disable_fragments | hmac_ident | events | explicit_eor | fragment_interleave |
 get_peer_addr_info | initmsg | i_want_mapped_v4_addr | local_auth_chunks | maxseg |
 maxburst | nodelay | partial_delivery_point | peer_addr_params | peer_auth_chunks |
 primary_addr | reset_streams | rtoinfo | set_peer_primary_addr | status |
 use_ext_recvinfo}.

Socket option.
Socket options of the form {Level, Opt} where the OS protocol Level =
level/0 and Opt is a socket option on that protocol level.
The OS name for an options is, except where otherwise noted, the Opt atom, in
capitals, with prefix according to level/0.
Note
The IPv6 option pktoptions is a special (barf) case. It is intended for
backward compatibility usage only.
Do not use this option.
Note
See the OS documentation for every socket option.
An option below that has the value type boolean/0 will translate the value
false to a C int with value 0, and the value true to !!0 (not (not
false)).
An option with value type integer/0 will be translated to a C int that may
have a restricted range, for example byte: 0..255. See the OS documentation.
The calls supports(options),
supports(options, Level) and
is_supported(options, {Level, Opt}) can be used to find
out which socket options that are supported by the platform.
Options for protocol level socket:
	{socket, acceptconn} - Value = boolean()

	{socket, bindtodevice} - Value = string()

	{socket, broadcast} - Value = boolean()

	{socket, debug} - Value = integer()

	{socket, domain} - Value = domain/0
Only valid to get.
The socket's protocol domain. Does not work on for instance FreeBSD.

	{socket, dontroute} - Value = boolean()

	{socket, keepalive} - Value = boolean()

	{socket, linger} - Value = abort | linger/0
The value abort is shorthand for #{onoff => true, linger => 0}, and only
valid to set.

	{socket, oobinline} - Value = boolean()

	{socket, passcred} - Value = boolean()

	{socket, peek_off} - Value = integer()
Currently disabled due to a possible infinite loop when calling
recv/1-4 with peek in Flags.

	{socket, priority} - Value = integer()

	{socket, protocol} - Value = protocol/0
Only valid to get.
The socket's protocol. Does not work on for instance Darwin.

	{socket, rcvbuf} - Value = integer()

	{socket, rcvlowat} - Value = integer()

	{socket, rcvtimeo} - Value = timeval/0
This option is unsupported per default; OTP has to be explicitly built with
the --enable-esock-rcvsndtimeo configure option for this to be available.
Since our implementation uses non-blocking sockets, it is unknown if and how
this option works, or even if it may cause malfunction. Therefore, we do not
recommend setting this option.
Instead, use the Timeout argument to, for instance, the recv/3 function.

	{socket, reuseaddr} - Value = boolean()

	{socket, reuseport} - Value = boolean()

	{socket, sndbuf} - Value = integer()

	{socket, sndlowat} - Value = integer()

	{socket, sndtimeo} - Value = timeval/0
This option is unsupported per default; OTP has to be explicitly built with
the --enable-esock-rcvsndtimeo configure option for this to be available.
Since our implementation uses non-blocking sockets, it is unknown if and how
this option works, or even if it may cause malfunction. Therefore, we do not
recommend setting this option.
Instead, use the Timeout argument to, for instance, the send/3 function.

	{socket, timestamp} - Value = boolean()

	{socket, type} - Value = type/0
Only valid to get.
The socket's type.

Options for protocol level ip:
	{ip, add_membership} - Value = ip_mreq/0
Only valid to set.

	{ip, add_source_membership} - Value = ip_mreq_source/0
Only valid to set.

	{ip, block_source} - Value = ip_mreq_source/0
Only valid to set.

	{ip, drop_membership} - Value = ip_mreq/0
Only valid to set.

	{ip, drop_source_membership} - Value = ip_mreq_source/0
Only valid to set.

	{ip, freebind} - Value = boolean()

	{ip, hdrincl} - Value = boolean()

	{ip, minttl} - Value = integer()

	{ip, msfilter} - Value = null | ip_msfilter/0
Only valid to set.
The value null passes a NULL pointer and size 0 to the C library call.

	{ip, mtu} - Value = integer()
Only valid to get.

	{ip, mtu_discover} - Value =
ip_pmtudisc() | integer()
An integer/0 value according to the platform's header files.

	{ip, multicast_all} - Value = boolean()

	{ip, multicast_if} - Value = any | in_addr/0

	{ip, multicast_loop} - Value = boolean()

	{ip, multicast_ttl} - Value = integer()

	{ip, nodefrag} - Value = boolean()

	{ip, pktinfo} - Value = boolean()

	{ip, recvdstaddr} - Value = boolean()

	{ip, recverr} - Value = boolean()
Enable extended reliable error message passing.
Warning! When this option is enabled, error messages may arrive on the
socket's error queue, which should be read using the message flag
errqueue, and using recvmsg/1,2,3,4,5 to
get all error information in the message's ctrl field as a
control message #{level := ip, type := recverr}.
A working strategy should be to first poll the error queue using
recvmsg/2,3,4 with Timeout =:= 0 and Flags
containing errqueue (ignore the return value {error, timeout}) before
reading the actual data to ensure that the error queue gets cleared. And read
the data using one of the nowait |
select_handle() recv functions:
recv/3,4,
recvfrom/3,4 or
recvmsg/3,4,5. Otherwise you might accidentally
cause a busy loop in and out of 'select' for the socket.

	{ip, recvif} - Value = boolean()

	{ip, recvopts} - Value = boolean()

	{ip, recvorigdstaddr} - Value = boolean()

	{ip, recvtos} - Value = boolean()

	{ip, recvttl} - Value = boolean()

	{ip, retopts} - Value = boolean()

	{ip, router_alert} - Value = integer()

	{ip, sendsrcaddr} - Value = boolean()

	{ip, tos} - Value = ip_tos() | integer()
An integer/0 value is according to the platform's header files.

	{ip, transparent} - Value = boolean()

	{ip, ttl} - Value = integer()

	{ip, unblock_source} - Value = ip_mreq_source/0
Only valid to set.

Options for protocol level ipv6:
	{ipv6, addrform} - Value = domain/0
As far as we know the only valid value is inet and it is only allowed for an
IPv6 socket that is connected and bound to an IPv4-mapped IPv6 address.

	{ipv6, add_membership} - Value = ipv6_mreq/0
Only valid to set.

	{ipv6, authhdr} - Value = boolean()

	{ipv6, drop_membership} - Value = ipv6_mreq/0
Only valid to set.

	{ipv6, dstopts} - Value = boolean()

	{ipv6, flowinfo} - Value = boolean()

	{ipv6, hoplimit} - Value = boolean()

	{ipv6, hopopts} - Value = boolean()

	{ipv6, mtu} - Value = integer()

	{ipv6, mtu_discover} - Value =
ipv6_pmtudisc() | integer()
An integer/0 value is according to the platform's header files.

	{ipv6, multicast_hops} - Value = ipv6_hops/0

	{ipv6, multicast_if} - Value = integer()

	{ipv6, multicast_loop} - Value = boolean()

	{ipv6, recverr} - Value = boolean()
Warning! See the socket option {ip, recverr} regarding the socket's error
queue. The same warning applies for this option.

	{ipv6, recvhoplimit} - Value = boolean()

	{ipv6, recvpktinfo} - Value = boolean()

	{ipv6, recvtclass} - Value = boolean()

	{ipv6, router_alert} - Value = integer()

	{ipv6, rthdr} - Value = boolean()

	{ipv6, tclass} - Value = boolean()

	{ipv6, unicast_hops} - Value = ipv6_hops/0

	{ipv6, v6only} - Value = boolean()

Options for protocol level sctp. See also RFC 6458.
	{sctp, associnfo} - Value = sctp_assocparams/0

	{sctp, autoclose} - Value = integer()

	{sctp, disable_fragments} - Value = boolean()

	{sctp, events} - Value = sctp_event_subscribe/0
Only valid to set.

	{sctp, initmsg} - Value = sctp_initmsg/0

	{sctp, maxseg} - Value = integer()

	{sctp, nodelay} - Value = boolean()

	{sctp, rtoinfo} - Value = sctp_rtoinfo/0

Options for protocol level tcp:
	{tcp, congestion} - Value = string()

	{tcp, cork} - Value = boolean()

	{tcp, maxseg} - Value = integer()

	{tcp, nodelay} - Value = boolean()

Options for protocol level udp:
	{udp, cork} - Value = boolean()

 timeval()

 (since OTP 22.0)

 -type timeval() :: #{sec := integer(), usec := integer()}.

C: struct timeval
Corresponds to the C struct timeval. The field sec holds seconds, and usec
microseconds.

 type()

 (since OTP 22.0)

 -type type() :: stream | dgram | raw | rdm | seqpacket.

Protocol type.
A lowercase atom/0 representing a protocol type
on the platform named SOCK_*. For example
stream corresponds to SOCK_STREAM.

 Functions

 accept(ListenSocket)

 (since OTP 22.0)

 -spec accept(ListenSocket) -> Result
 when
 Result :: {ok, Socket} | {error, Reason},
 ListenSocket :: socket(),
 Socket :: socket(),
 Reason :: dynamic().

Equivalent to accept(ListenSocket, infinity).

 accept/2

 (since OTP 22.0)

 -spec accept(ListenSocket, Timeout :: infinity) -> {ok, Socket} | {error, Reason}
 when
 ListenSocket :: socket(),
 Socket :: socket(),
 Reason ::
 posix() |
 closed |
 invalid() |
 {create_accept_socket, posix()} |
 {add_socket, posix()} |
 {update_accept_context, posix()};
 (ListenSocket, Timeout :: non_neg_integer()) -> {ok, Socket} | {error, Reason}
 when
 ListenSocket :: socket(),
 Socket :: socket(),
 Reason ::
 posix() |
 closed |
 invalid() |
 timeout |
 {create_accept_socket, posix()} |
 {add_socket, posix()} |
 {update_accept_context, posix()};
 (ListenSocket, nowait | (Handle :: select_handle() | completion_handle())) ->
 {ok, Socket} | {select, SelectInfo} | {completion, CompletionInfo} | {error, Reason}
 when
 ListenSocket :: socket(),
 Socket :: socket(),
 SelectInfo :: select_info(),
 CompletionInfo :: completion_info(),
 Reason ::
 posix() |
 closed |
 invalid() |
 {create_accept_socket, posix()} |
 {add_accept_socket, posix()} |
 {update_accept_context, posix()}.

Accept a connection on a listening socket.
ListenSocket has to be of a connection oriented type
(types stream or seqpacket, see open/1), and set to listen
(see listen/1).

If the Timeout argument is infinity; accepts the first pending
incoming connection for the listen socket or wait for one to arrive,
and return the new connection socket.

If the Timeout argument is a time-out value (non_neg_integer/0);
returns {error, timeout} if no connection has arrived
after Timeout milliseconds.

If the Handle argument nowait (since OTP 22.1),
starts an asynchronous call if the operation
couldn't be completed immediately.
If the Handle argument is a select_handle/0,
(since OTP 24.0), or on Windows, the equivalent
completion_handle/0 (since OTP 26.0), starts
an asynchronous call like for nowait.

The possible values for CompletionStatus in the completion message are:
	{ok, NewSocket} - Success; A connection has been accepted.
	{error, Reason} - An error occured and no connection was
established.

See the note Asynchronous Calls
at the start of this module reference manual page.

 bind(Socket, Addr)

 (since OTP 22.0)

 -spec bind(Socket, Addr) -> ok | {error, Reason}
 when
 Socket :: socket(),
 Addr :: sockaddr() | any | broadcast | loopback,
 Reason :: posix() | closed | invalid().

Bind a name to a socket.
When a socket is created (with open), it has no address assigned
to it. bind assigns the address specified by the Addr argument.
The rules used for name binding vary between domains.
If you bind a socket to an address in for example the inet or inet6
address families, with an ephemeral port number (0), and want to know
which port that was chosen, you can find out using something like:
{ok, #{port := Port}} =socket:sockname(Socket)

 cancel/2

 (since OTP 22.1)

 -spec cancel(Socket, SelectInfo | CompletionInfo) -> ok | {error, Reason}
 when
 Socket :: socket(),
 SelectInfo :: select_info(),
 CompletionInfo :: completion_info(),
 Reason :: closed | invalid().

Cancel an asynchronous call in progress.
Call this function to cancel an asynchronous call
in progress, that is; it returned a value containing
a completion_info/0 or select_info/0.
See the note Asynchronous Calls
at the start of this module reference manual page.
If another process tries an operation of the same basic type
(accept/1 | send/2 | recv/2) it will be enqueued and notified
through a select or completion message
when the current operation and all enqueued before it has been completed.
If the current operation is canceled by this function it is treated
as a completed operation; the process first in queue is notified.
If SelectInfo |
CompletionInfo does not match
an operation in progress for the calling process, this function returns
{error, {invalid, SelectInfo | CompletionInfo}}.

 cancel_monitor(MRef)

 (since OTP 24.0)

 -spec cancel_monitor(MRef :: reference()) -> boolean().

Cancel a socket monitor.
If MRef is a reference that the calling process obtained by calling
monitor/1, this monitor is removed. If there is no such monitor
for the calling process (or MRef doesn't correspond to a monitor),
nothing happens.
The returned value is one of the following:
	true - The monitor was found and removed. In this case, no 'DOWN'
message corresponding to this monitor has been delivered and will not be
delivered.

	false - The monitor was not found so it couldn't be removed. This
might be because the monitor has already triggered and there is
a 'DOWN' message from this monitor in the caller message queue.

 close(Socket)

 (since OTP 22.0)

 -spec close(Socket) -> ok | {error, Reason}
 when Socket :: socket(), Reason :: posix() | closed | timeout.

Close a socket.
Note
Note that for Protocol = tcp (see open/3), although
TCP guarantees that when the other side sees the stream close
all data that we sent before closing has been delivered,
there is no way for us to know that the other side got all data
and the stream close. All kinds of network and OS issues
may obliterate that.
To get such a guarantee we need to implement an in-band acknowledge
protocol on the connection, or we can use the shutdown
function to signal that no more data will be sent and then wait
for the other end to close the socket. Then we will see our read side
getting a socket close. In this way we implement a small
acknowledge protocol using shutdown/2. The other side cannot
know that we ever saw the socket close, but in a client/server
scenario that is often not relevant.

 connect(Socket)

 (since OTP 24.0)

 -spec connect(Socket :: socket()) -> ok | {error, Reason} when Reason :: posix() | closed | invalid().

Finalize a connect/3 operation.
See the note Asynchronous Calls
at the start of this module reference manual page.
On select systems this function finalizes a connection setup
on a socket, after receiving a select message
{'$socket', Socket, select,SelectHandle},
and returns whether the connection setup was successful or not.
Instead of calling this function, for backwards compatibility,
it is allowed to call connect/2,3 again,
but that incurs more overhead since the connect address and
time-out argument are processed in vain.
The call that completes the connect operation, the second call,
cannot return a select return value.

 connect(Socket, SockAddr)

 (since OTP 22.0)

 -spec connect(Socket :: socket(), SockAddr :: sockaddr()) -> ok | {error, Reason :: dynamic()}.

Equivalent to
connect(Socket, SockAddr, infinity).

 connect/3

 (since OTP 22.0)

 -spec connect(Socket, SockAddr, Timeout :: infinity) -> ok | {error, Reason}
 when
 Socket :: socket(),
 SockAddr :: sockaddr(),
 Reason ::
 posix() |
 closed |
 invalid() |
 already | not_bound |
 {add_socket, posix()} |
 {update_connect_context, posix()};
 (Socket, SockAddr, Timeout :: non_neg_integer()) -> ok | {error, Reason}
 when
 Socket :: socket(),
 SockAddr :: sockaddr(),
 Reason ::
 posix() |
 closed |
 invalid() |
 already | not_bound | timeout |
 {add_socket, posix()} |
 {update_connect_context, posix()};
 (Socket, SockAddr, nowait | Handle) ->
 ok | {select, SelectInfo} | {completion, CompletionInfo} | {error, Reason}
 when
 Socket :: socket(),
 SockAddr :: sockaddr(),
 Handle :: select_handle() | completion_handle(),
 SelectInfo :: select_info(),
 CompletionInfo :: completion_info(),
 Reason ::
 posix() |
 closed |
 invalid() |
 already | not_bound |
 {add_socket, posix()} |
 {update_connect_context, posix()}.

Connect the socket to the given address.
This function connects the socket to the address specified
by the SockAddr argument.
If a connection attempt is already in progress (by another process),
{error, already} is returned.
Note
On Windows the socket has to be bound.

If the time-out argument (argument 3) is infinity it is
up to the OS implementation to decide when the connection
attempt failed and then what to return; probably {error, etimedout}.
The OS time-out may be very long.

If the time-out argument (argument 3) is a time-out value
(non_neg_integer/0); return {error, timeout}
if the connection hasn't been established within Timeout milliseconds.
Note
Note that when this call has returned {error, timeout}
the connection state of the socket is uncertain since the platform's
network stack may complete the connection at any time,
up to some platform specific time-out.
Repeating a connection attempt towards the same address would be ok, but
towards a different address could end up with a connection to either address.
The safe play is to close the socket and start over.
Also note that this applies to cancelling a nowait connect call
described below.

If the time-out argument (argument 2) is nowait (since OTP 22.1),
start an asynchronous call if the operation
couldn't be completed immediately.
If the time-out argument (argument 2) is a Handle :: select_handle/0,
(since OTP 24.0), or on Windows, the equivalent
Handle :: completion_handle/0 (since OTP 26.0),
start an asynchronous call like for nowait.
See the note Asynchronous Calls
at the start of this module reference manual page.
After receiving a select message; call connect/1
to complete the operation.
If cancelling the operation with cancel/2 see the note above
about connection time-out.

The possible values for CompletionStatus in the completion message are:
	ok - Complete success; A connection has been established.
	{error, Reason} - An error occured and no connection was
established.

 getopt/2

 (since OTP 24.0)

 -spec getopt(socket(), SocketOption :: {Level :: otp, Opt :: otp_socket_option()}) ->
 {ok, Value :: term()} | {error, invalid() | closed};
 (socket(), SocketOption :: socket_option()) ->
 {ok, Value :: term()} | {error, posix() | invalid() | closed}.

Get the value of a socket option.
Gets the value of an OS protocol level socket option, or from
the otp pseudo protocol level, which is this module's
implementation level above the OS protocol levels.
See the type otp_socket_option()
for a description of the otp protocol level.
See the type socket_option/0 for which OS protocol level options
that this implementation knows about, how they are related to OS option names,
and if there are known peculiarities with any of them.
What options that are valid depends on the OS, and on the kind of socket
(domain/0,type/0 and protocol/0). See the type
t:socket_option() and the
socket options chapter
in the User's Guide for more info.
Note
Not all options are valid, nor possible to get, on all platforms. That is,
even if this socket implementation support an option; it doesn't mean
that the underlying OS does.

 getopt(Socket, Level, Opt)

 (since OTP 22.0)

 -spec getopt(Socket :: term(), Level :: term(), Opt :: term()) -> _.

Get a socket option (backwards compatibility function).
Equivalent to getopt(Socket, {Level, Opt}),
or as a special case if
Opt = {NativeOpt ::integer/0, ValueSpec}
equivalent to
getopt_native(Socket, {Level, NativeOpt}, ValueSpec).
Use getopt/2 or getopt_native/3 instead to handle
the option level and name as a single term, and to make the
difference between known options and native options clear.

 getopt_native/3

 (since OTP 24.0)

 -spec getopt_native(socket(),
 SocketOption ::
 socket_option() |
 {Level :: level() | (NativeLevel :: integer()), NativeOpt :: integer()},
 ValueType :: integer) ->
 {ok, Value :: integer()} | {error, posix() | invalid() | closed};
 (socket(),
 SocketOption ::
 socket_option() |
 {Level :: level() | (NativeLevel :: integer()), NativeOpt :: integer()},
 ValueType :: boolean) ->
 {ok, Value :: boolean()} | {error, posix() | invalid() | closed};
 (socket(),
 SocketOption ::
 socket_option() |
 {Level :: level() | (NativeLevel :: integer()), NativeOpt :: integer()},
 ValueSize :: non_neg_integer()) ->
 {ok, Value :: binary()} | {error, posix() | invalid() | closed};
 (socket(),
 SocketOption ::
 socket_option() |
 {Level :: level() | (NativeLevel :: integer()), NativeOpt :: integer()},
 ValueSpec :: binary()) ->
 {ok, Value :: binary()} | {error, posix() | invalid() | closed}.

Get a "native" socket option.
Gets a socket option that may be unknown to our implementation, or that has a
type not compatible with our implementation, that is; in "native mode".
The socket option may be specified with an ordinary
socket_option() tuple, with a known
Level = level() and an integer NativeOpt,
or with both an integer NativeLevel and NativeOpt.
How to decode the option value has to be specified either with ValueType,
by specifying the ValueSize for a binary/0 that will contain the fetched
option value, or by specifying a binary/0 ValueSpec that will be copied
to a buffer for the getsockopt() call to write the value in which will be
returned as a new binary/0.
If ValueType is integer a C type (int) will be fetched, if it is
boolean a C type (int) will be fetched and converted into a boolean/0
according to the C implementation's notion about true and false.
If an option is valid depends both on the platform and on
what kind of socket it is (domain/0, type/0 and protocol/0).
The integer values for NativeLevel and NativeOpt as well as the Value
encoding has to be deduced from the header files for the running system.

 i()

 (since OTP 24.1)

 -spec i() -> ok.

Print information to the erlang shell in table format
for all sockets.
The information printed for each socket is specified by the default set
of info_keys/0 (all keys).
The sockets that are printed are all sockets created by this
socket module's implementation.

 i/1

 (since OTP 24.1)

 -spec i(InfoKeys :: info_keys()) -> ok;
 (Domain :: inet | inet6 | local) -> ok;
 (Proto :: sctp | tcp | udp) -> ok;
 (Type :: dgram | seqpacket | stream) -> ok.

Print information to the erlang shell in table format
for all sockets.
If the argument is a list of info_keys/0, print the specified
information for all sockets. See i/0.
Otherwise the same as i/2 with the same first argument
and the default information (see i/0).

 i/2

 (since OTP 24.1)

 -spec i(Domain :: inet | inet6 | local, InfoKeys) -> ok when InfoKeys :: info_keys();
 (Proto :: sctp | tcp | udp, InfoKeys) -> ok when InfoKeys :: info_keys();
 (Type :: dgram | seqpacket | stream, InfoKeys) -> ok when InfoKeys :: info_keys().

Print information to the erlang shell in table format
for a selection of sockets.
The argument InfoKeys specifies which information
is printed for each socket.
If the first argument is Domain print information for
all sockets of that specific domain/0.
If the first argument is Proto print information for
all sockets of that specific protocol/0.
If the first argument is Type print information for
all sockets of that specific type/0.

 info()

 (since OTP 24.0)

 -spec info() -> info().

Get miscellaneous information about this socket library.
The function returns a map with each information item as a key-value pair.
Note
In order to ensure data integrity, mutexes are taken when needed.
So, don't call this function often.

 info(Socket)

 (since OTP 22.1)

 -spec info(Socket) -> socket_info() when Socket :: socket().

Get miscellaneous info about a socket.
The function returns a map with each information item as a key-value pair
reflecting the "current" state of the socket.
Note
In order to ensure data integrity, mutexes are taken when needed.
So, don't call this function often.

 ioctl/2

 (since OTP 24.2)

 -spec ioctl(Socket, GetRequest :: gifconf) ->
 {ok, IFConf :: [#{name := string, addr := sockaddr()}]} | {error, Reason}
 when Socket :: socket(), Reason :: posix() | closed;
 (Socket, GetRequest :: nread | nwrite | nspace) ->
 {ok, NumBytes :: non_neg_integer()} | {error, Reason}
 when Socket :: socket(), Reason :: posix() | closed;
 (Socket, GetRequest :: atmark) -> {ok, Available :: boolean()} | {error, Reason}
 when Socket :: socket(), Reason :: posix() | closed;
 (Socket, GetRequest :: tcp_info) -> {ok, Info :: map()} | {error, Reason}
 when Socket :: socket(), Reason :: posix() | closed.

Set socket (device) parameters.
This function retrieves a specific parameter, according to
the GetRequest argument.
	gifconf - Get a list of interface (transport layer) addresses.
Result; a list of map/0s, one for each interface,
with its name and address.

	nread - Get the number of bytes immediately available for reading
(since OTP 26.1).
Result; the number of bytes, integer/0.

	nwrite - Get the number of bytes in the send queue
(since OTP 26.1).
Result; the number of bytes, integer/0.

	nspace - Get the free space in the send queue
(since OTP 26.1).
Result; the number of bytes, integer/0.

	atmark - Test if there is OOB (out-of-bound) data waiting to be read
(since OTP 26.1).
Result; a boolean/0.

	tcp_info - Get miscellaneous TCP related information for a
connected socket (since OTP 26.1).
Result; a map/0 with information items as key-value pairs.

Note
Not all requests are supported by all platforms.
To see if a ioctl request is supported on the current platform:
 Request = nread,
 true = socket:is_supported(ioctl_requests, Request),
 :

 ioctl/3

 (since OTP 24.2)

 -spec ioctl(Socket, GetRequest, NameOrIndex) -> {ok, Result} | {error, Reason}
 when
 Socket :: socket(),
 GetRequest ::
 gifname | gifindex | gifaddr | gifdstaddr | gifbrdaddr | gifnetmask | gifhwaddr |
 genaddr | gifmtu | giftxqlen | gifflags | tcp_info,
 NameOrIndex :: string() | integer(),
 Result :: dynamic(),
 Reason :: posix() | closed;
 (Socket, SetRequest, Value) -> ok | {error, Reason}
 when
 Socket :: socket(),
 SetRequest :: rcvall,
 Value :: off | on | iplevel,
 Reason :: posix() | closed;
 (Socket, SetRequest, Value) -> ok | {error, Reason}
 when
 Socket :: socket(),
 SetRequest :: rcvall_igmpmcast | rcvall_mcast,
 Value :: off | on,
 Reason :: posix() | closed.

Get or set socket (device) parameters.

This function retrieves a specific parameter, according to
one of the following GetRequest arguments. The third argument is
the (lookup) "key", identifying the interface, for most requests
the name of the interface as a string/0.
Also, see the note above.
	gifname - Get the name of the interface with the specified index
(integer/0).
Result; the name of the interface, string/0.

	gifindex - Get the index of the interface with the specified name.
Result; the interface index, integer/0.

	gifaddr - Get the address of the interface with the specified name.
Result; the address of the interface, sockaddr/0.

	gifdstaddr - Get the destination address of the point-to-point
interface with the specified name.
Result; the destination address of the interface, sockaddr/0.

	gifbrdaddr - Get the broadcast address of the interface with the
specified name.
Result; broadcast address of the interface, sockaddr/0.

	gifnetmask - Get the network mask of the interface with
the specified name.
Result; the network mask of the interface, sockaddr/0.

	gifhwaddr | genaddr - Get the hardware address for the interface with the
specified name.
Result; the hardware address of the interface, sockaddr/0 | binary/0.
The family field contains the 'ARPHRD' device type (or an integer).

	gifmtu - Get the MTU (Maximum Transfer Unit) for the interface with the
specified name.
Result; MTU of the interface, integer/0.

	giftxqlen - Get the transmit queue length of the interface with the
specified name.
Result; transmit queue length of the interface, integer/0.

	gifflags - Get the active flag word of the interface
with the specified name.
Result; the active flag word of the interface, is a list of
ioctl_device_flag/0 | t:integer().

With the following SetRequest argument this function sets
the Value for the request parameter (since OTP 26.1).
	rcvall - Enables (or disables) a socket to receive all IPv4 or IPv6
packages passing through a network interface.
The Socket has to be one of:
	An IPv4 socket - Created with the address
domain inet, socket type raw
and protocol ip.

	An IPv6 socket - Created with the address
domain inet6, socket type raw
and protocol ipv6.

The socket must also be bound to an (explicit) local IPv4 or IPv6 interface
(any isn't allowed).
Setting this IOCTL requires elevated privileges.

With the following SetRequest arguments this function sets
the Value for the request parameter (since OTP 26.1).
	rcvall_igmpmcall - Enables (or disables) a socket to receive IGMP
multicast IP traffic, without receiving any other IP traffic.
The socket has to be created with the address
domain inet, socket type raw
and protocol igmp.
The socket must also be bound to an (explicit) local interface
(any isn't allowed).
The receive buffer must be sufficiently large.
Setting this IOCTL requires elevated privileges.

	rcvall_mcall - Enables (or disables) a socket to receive all multicast
IP traffic (as in; all IP packets destined for IP addresses in the range
224.0.0.0 to 239.255.255.255).
The socket has to be created with the address
domain inet, socket type raw
and protocol udp.
The socket must also be bound to an (explicit) local interface
(any isn't allowed), And bound to port 0.
The receive buffer must be sufficiently large.
Setting this IOCTL requires elevated privileges.

 ioctl(Socket, SetRequest, Name, Value)

 (since OTP 24.2)

 -spec ioctl(Socket, SetRequest, Name, Value) -> ok | {error, Reason}
 when
 Socket :: socket(),
 SetRequest ::
 sifflags | sifaddr | sifdstaddr | sifbrdaddr | sifnetmask | sifhwaddr | sifmtu |
 siftxqlen,
 Name :: string(),
 Value :: dynamic(),
 Reason :: posix() | closed.

Set socket (device) parameters.
This function sets a specific parameter, according to the SetRequest
argument. The Name argument is the name of the interface,
and the Value argument is the value to set.
These operations require elevated privileges.
	sifflags - Set the the active flag word, #{Flag => boolean()}, of the
interface with the specified name.
Each flag to be changed should be added to the value map/0,
with the value true if the Flag should be set and false
if the flag should be cleared.

	sifaddr - Set the address, sockaddr/0, of the interface with the
specified name.

	sifdstaddr - Set the destination address, sockaddr/0, of a
point-to-point interface with the specified name.

	sifbrdaddr - Set the broadcast address, sockaddr/0,
of the interface with the specified name.

	sifnetmask - Set the network mask, sockaddr/0, of the interface
with the specified name.

	sifhwaddr - Set the hardware address, sockaddr/0,
of the interface with the specified name.

	sifmtu - Set the MTU (Maximum Transfer Unit), integer/0,
for the interface with the specified name.

	siftxqlen - Set the transmit queue length, integer/0,
of the interface with the specified name.

 is_supported(Key1)

 (since OTP 23.0)

 -spec is_supported(Key1 :: term()) -> boolean().

Check if a socket feature is supported.
Returns true if supports/0 has a {Key1, true} tuple
or a {Key1, list()} tuple in its returned list,
otherwise false (also for unknown keys).
Example:
true = socket:is_supported(local),

 is_supported(Key1, Key2)

 (since OTP 23.0)

 -spec is_supported(Key1 :: term(), Key2 :: term()) -> boolean().

Check if a socket feature is supported.
Returns true if supports(Key1) has a {Key2, true} tuple
in its returned list, otherwise false (also for unknown keys).
Example:
true = socket:is_supported(msg_flags, errqueue),

 listen(Socket)

 (since OTP 22.0)

 -spec listen(Socket :: socket()) -> ok | {error, Reason :: posix() | closed}.

Make a socket listen for connections.
Equivalent to listen(Socket, Backlog) with a default
value for Backlog (currently 5).

 listen(Socket, Backlog)

 (since OTP 22.0)

 -spec listen(Socket :: socket(), Backlog :: integer()) -> ok | {error, Reason :: posix() | closed}.

Make a socket listen for connections.
The Backlog argument states the length of the queue for
incoming not yet accepted connections.
Exactly how that number is interpreted is up to the OS'
protocol stack, but the resulting effective queue length
will most probably be perceived as at least that long.
Note
On Windows the socket has to be bound.

 monitor(Socket)

 (since OTP 24.0)

 -spec monitor(Socket :: socket()) -> MonitorRef :: reference().

Start a socket monitor.
If the Socket doesn't exist or when later the monitor is triggered,
a 'DOWN' message is sent to the process that called monitor/1
with the following pattern:
	 {'DOWN', MonitorRef, socket, Socket, Info}
Info is the termination reason of the socket or nosock if
Socket did not exist when the monitor was started.
Making several calls to socket:monitor/1 for the same Socket is not an
error; each call creates an independent monitor instance.

 number_of()

 (since OTP 22.3)

 -spec number_of() -> non_neg_integer().

Return the number of active sockets.

 open(FD)

 (since OTP 23.0)

 -spec open(FD :: integer()) -> dynamic().

Equivalent to open(FD, #{}).

 open/2

 (since OTP 22.0)

 -spec open(FD, Opts) -> {ok, Socket} | {error, Reason}
 when
 FD :: integer(),
 Opts ::
 #{domain => domain() | integer(),
 type => type() | integer(),
 protocol => default | protocol() | integer(),
 dup => boolean(),
 debug => boolean(),
 use_registry => boolean()},
 Socket :: socket(),
 Reason :: posix() | domain | type | protocol;
 (Domain, Type) -> {ok, Socket} | {error, Reason}
 when
 Domain :: domain(),
 Type :: type() | integer(),
 Socket :: socket(),
 Reason :: posix() | protocol.

Create a socket.
With arguments Domain and Type
Equivalent to open(Domain, Type, default, #{}).
With arguments FD and Opts (since OTP 23.0)
Creates an endpoint for communication (socket) based on
an already existing file descriptor that must be a socket.
This function attempts to retrieve the file descriptor's
domain, type and protocol from the system.
This is however not possible on all platforms;
in that case they should be specified in Opts.
The Opts argument can provide extra information:
	domain - The file descriptor's communication domain. See also
open/2,3,4.

	type - The file descriptor's socket type.
See also open/2,3,4.

	protocol - The file descriptor's protocol. The atom default is
equivalent to the integer protocol number 0 which means the default
protocol for a given domain and type.
If the protocol can not be retrieved from the platform for the socket, and
protocol is not specified, the default protocol is used, which may
or may not be correct.
See also open/2,3,4.

	dup - If false don't duplicate the provided file descriptor.
Defaults to true; do duplicate the file descriptor.

	debug - If true enable socket debug logging.
Defaults to false; don't enable socket debug logging.

	use_registry - Enable or disable use of the socket registry
for this socket. This overrides the global setting.
Defaults to the global setting, see use_registry/1.

Note
This function should be used with care!
On some platforms it is necessary to provide domain, type and protocol
since they cannot be retrieved from the platform.
On some platforms it is not easy to get hold of a file descriptor
to use in this function.

 open/3

 (since OTP 22.0)

 -spec open(Domain, Type, Opts | Protocol) -> {ok, Socket} | {error, Reason}
 when
 Domain :: domain() | integer(),
 Type :: type() | integer(),
 Opts :: map(),
 Protocol :: default | protocol() | integer(),
 Socket :: socket(),
 Reason :: posix() | protocol.

Create a socket.
With arguments Domain, Type and Protocol
Equivalent to open(Domain, Type, Protocol, #{}).
With arguments Domain, Type and Opts (since OTP 24.0)
Equivalent to open(Domain, Type, default, #{}).

 open(Domain, Type, Protocol, Opts)

 (since OTP 22.0)

 -spec open(Domain, Type, Protocol, Opts) -> {ok, Socket} | {error, Reason}
 when
 Domain :: domain() | integer(),
 Type :: type() | integer(),
 Protocol :: default | protocol() | integer(),
 Opts :: #{netns => string(), debug => boolean(), use_registry => boolean()},
 Socket :: socket(),
 Reason :: posix() | protocol.

Create a socket.
Creates an endpoint for communication (socket).
Domain and Type may be integer/0s, as defined in the platform's
header files. The same goes for Protocol as defined in the platform's
services(5) database. See also the OS man page for the library call
socket(2).
Note
For some combinations of Domain and Type the platform has got
a default protocol that can be selected with Protocol = default,
and the platform may allow or require selecting the default protocol,
or a specific protocol.
Examples:
	socket:open(inet, stream, tcp) - It is common that for
protocol domain and type inet,stream it is allowed to select
the tcp protocol although that mostly is the default.
	socket:open(local, dgram) - It is common that for
the protocol domain local it is mandatory to not select a protocol,
that is; to select the default protocol.

The Opts argument is intended for "other" options.
The supported option(s) are described below:
	netns: string() - Used to set the network namespace during the open
call. Only supported on Linux.

	debug: boolean() - Enable or disable debug logging.
Defaults to false.

	use_registry: boolean() - Enable or disable use of the socket registry
for this socket. This overrides the global value.
Defaults to the global value, see use_registry/1.

 peername(Socket)

 (since OTP 22.0)

 -spec peername(Socket :: socket()) -> {ok, SockAddr} | {error, Reason}
 when SockAddr :: sockaddr_recv(), Reason :: posix() | closed.

Return the remote address of a socket.
Returns the address of the connected peer, that is,
the remote end of the socket.

 recv(Socket)

 (since OTP 22.0)

 -spec recv(Socket :: socket()) -> dynamic().

Equivalent to recv(Socket, 0, [], infinity).

 recv/2

 (since OTP 22.0)

 -spec recv(Socket :: socket(), Flags :: [msg_flag() | integer()]) -> dynamic();
 (Socket :: socket(), Length :: non_neg_integer()) -> dynamic().

Receive data on a connected socket.
With argument Length; equivalent to
recv(Socket, Length, [], infinity).
With argument Flags; equivalent to
recv(Socket, 0, Flags, infinity) (since OTP 24.0).

 recv/3

 (since OTP 22.0)

 -spec recv(Socket, Flags, TimeoutOrHandle) -> dynamic()
 when
 Socket :: socket(),
 Flags :: [msg_flag() | integer()],
 TimeoutOrHandle :: timeout() | nowait | select_handle() | completion_handle();
 (Socket :: socket(), Length :: non_neg_integer(), Flags :: [msg_flag() | integer()]) ->
 dynamic();
 (Socket :: socket(), Length :: non_neg_integer(), TimeoutOrHandle) -> dynamic()
 when TimeoutOrHandle :: timeout() | nowait | select_handle() | completion_handle().

Receive data on a connected socket.
With arguments Length and Flags; equivalent to
recv(Socket, Length, Flags, infinity).
With arguments Length and TimeoutOrHandle; equivalent to
recv(Socket, Length, [], TimeoutOrHandle).
TimeoutOrHandle :: nowait has been allowed since OTP 22.1.
TimeoutOrHandle :: Handle has been allowed since OTP 24.0.
With arguments Flags and TimeoutOrHandle; equivalent to
recv(Socket, 0, Flags, TimeoutOrHandle)
(since OTP 24.0).

 recv/4

 (since OTP 22.0)

 -spec recv(Socket, Length, Flags, Timeout :: infinity) ->
 {ok, Data} | {error, Reason} | {error, {Reason, Data}}
 when
 Socket :: socket(),
 Length :: non_neg_integer(),
 Flags :: [msg_flag() | integer()],
 Data :: binary(),
 Reason :: posix() | closed | invalid();
 (Socket, Length, Flags, Timeout :: non_neg_integer()) ->
 {ok, Data} | {error, Reason} | {error, {Reason, Data}}
 when
 Socket :: socket(),
 Length :: non_neg_integer(),
 Flags :: [msg_flag() | integer()],
 Data :: binary(),
 Reason :: posix() | closed | invalid() | timeout;
 (Socket, Length, Flags, nowait | Handle) ->
 {ok, Data} |
 {select, SelectInfo} |
 {select, {SelectInfo, Data}} |
 {select_read, {SelectInfo, Data}} |
 {completion, CompletionInfo} |
 {error, Reason}
 when
 Socket :: socket(),
 Length :: non_neg_integer(),
 Flags :: [msg_flag() | integer()],
 Handle :: select_handle() | completion_handle(),
 Data :: binary(),
 SelectInfo :: select_info(),
 CompletionInfo :: completion_info(),
 Reason :: posix() | closed | invalid().

Receive data on a connected socket.
The argument Length specifies the size of the receive buffer.
Packet oriented sockets truncate the packet if the size is too small.
If Length == 0; a default buffer size is used, which can be set by
socket:setopt(Socket, {otp,recvbuf}, BufSz).
For a socket of type stream, when a Timeout argument
is used, the operation iterates until Length bytes has been received,
or the operation times out. If Length == 0 all readily available
data is returned.
On a select system, when the default receive buffer size option
{otp,recvbuf} special value {N,BufSize}
is used, N limits how many BufSize buffers that may be received
in a tight loop before the receive operation returns. The option value
{1,BufSize} is equivalent to just specifying a size value BufSize.
The message Flags may be symbolic msg_flag/0s and/or
integer/0s as in the platform's appropriate header files.
The values of all symbolic flags and integers are or:ed together.
When there is a socket error this function returns {error, Reason},
or if some data arrived before the error; {error, {Reason, Data}}
(can only happen for a socket of type stream).

If the Timeout argument is infinity; waits for the data to arrive.
For a socket of type stream this call
won't return until all requested data can be delivered,
or if "all available" was requested when the first data chunk arrives,
or if the OS reports an error for the operation.

If the Timeout argument is a time-out value
(non_neg_integer/0); return {error, timeout}
if no data has arrived after Timeout milliseconds,
or {error, {timeout, Data}} if some but not enough data
has been received on a socket of type stream with Length > 0.
It can also return directly with {ok, Data} (type dgram).
Timeout = 0 only polls the OS receive call and doesn't
engage the Asynchronous Calls mechanisms. If no data
is immediately available {error, timeout} is returned.On a socket of type stream, {error, {timeout, Data}}
is returned if there is an insufficient amount of data immediately available.

If the Handle argument is nowait (since OTP 22.1),
starts an asynchronous call if the operation
couldn't be completed immediately.
If the Handle argument is a select_handle/0,
(since OTP 24.0), or on Windows, the equivalent
completion_handle/0 (since OTP 26.0), starts
an asynchronous call like for nowait.
See the note Asynchronous Calls
at the start of this module reference manual page.

The possible values for CompletionStatus in the completion message are:
	{ok, Data} - Complete success; All requested data was read.
	{more, Data} - Partial success; Some, but not all, data was read.
	{error, Reason} - An error occured and no data was read.

On select systems, for a socket of type stream,
if Length > 0 and there is some but not enough data available,
this function will return {select, {SelectInfo, Data}}
with partial Data. A repeated call to complete the operation
may need an updated Length argument.
On select systems, if the option
{otp, select_read} is set,
{select_read, {SelectInfo, Data}}
is returned instead of {ok, Data} and a new asynchronous
receive operation has been initiated, which can be seen
as an automatic nowait call whenever
a receive operation is completed.

 recvfrom(Socket)

 (since OTP 22.0)

 -spec recvfrom(Socket :: socket()) -> dynamic().

Equivalent to recvfrom(Socket, 0, [], infinity).

 recvfrom/2

 (since OTP 22.0)

 -spec recvfrom(Socket :: socket(), Flags :: list()) -> dynamic();
 (Socket :: socket(), BufSz :: non_neg_integer()) -> dynamic().

Receive a message on a socket.
With argument BufSz; equivalent to
recvfrom(Socket, BufSz, [], infinity).
With argument Flags; equivalent to
recvfrom(Socket, 0, Flags, infinity) (since OTP 24.0).

 recvfrom/3

 (since OTP 22.0)

 -spec recvfrom(Socket :: socket(), Flags :: [msg_flag() | integer()], TimeoutOrHandle :: dynamic()) ->
 dynamic();
 (Socket :: socket(), BufSz :: non_neg_integer(), Flags :: [msg_flag() | integer()]) ->
 dynamic();
 (Socket :: socket(), BufSz :: non_neg_integer(), TimeoutOrHandle) -> dynamic()
 when TimeoutOrHandle :: timeout() | nowait | select_handle() | completion_handle().

Receive a message on a socket.
With arguments BufSz and Flags; equivalent to
recvfrom(Socket, BufSz, Flags, infinity).
With arguments BufSz and TimeoutOrHandle; equivalent to
recvfrom(Socket, BufSz, [], TimeoutOrHandle).
With arguments Flags and TimeoutOrHandle; equivalent to
recvfrom(Socket, 0, Flags, TimeoutOrHandle)
TimeoutOrHandle :: 'nowait' has been allowed since OTP 22.1.
TimeoutOrHandle :: Handle has been allowed since OTP 24.0.

 recvfrom/4

 (since OTP 22.0)

 -spec recvfrom(Socket, BufSz, Flags, Timeout :: infinity) -> {ok, {Source, Data}} | {error, Reason}
 when
 Socket :: socket(),
 BufSz :: non_neg_integer(),
 Flags :: [msg_flag() | integer()],
 Source :: sockaddr_recv(),
 Data :: binary(),
 Reason :: posix() | closed | invalid();
 (Socket, BufSz, Flags, Timeout :: non_neg_integer()) ->
 {ok, {Source, Data}} | {error, Reason}
 when
 Socket :: socket(),
 BufSz :: non_neg_integer(),
 Flags :: [msg_flag() | integer()],
 Source :: sockaddr_recv(),
 Data :: binary(),
 Reason :: posix() | closed | invalid() | timeout;
 (Socket, BufSz, Flags, nowait | Handle) ->
 {ok, {Source, Data}} |
 {select, SelectInfo} |
 {select_read, {SelectInfo, {Source, Data}}} |
 {completion, CompletionInfo} |
 {error, Reason}
 when
 Socket :: socket(),
 BufSz :: non_neg_integer(),
 Flags :: [msg_flag() | integer()],
 Handle :: select_handle() | completion_handle(),
 Source :: sockaddr_recv(),
 Data :: binary(),
 SelectInfo :: select_info(),
 CompletionInfo :: completion_info(),
 Reason :: posix() | closed | invalid().

Receive a message on a socket.
This function is intended primarily for sockets that are not connection
oriented such as type dgram or seqpacket
where messages may arrive from different source addresses.
Argument BufSz specifies the number of bytes for the receive buffer.
If the buffer size is too small, the message will be truncated.
If BufSz is 0, a default buffer size is used, which can be set by
socket:setopt(Socket, {otp,recvbuf}, BufSz).
If there is no known appropriate buffer size, it may be possible
to use the receive message flag peek.
When this flag is used, the message is not "consumed" from
the underlying buffers, so another recvfrom/1,2,3,4 call
is needed, possibly with an adjusted buffer size.
The message Flags may be symbolic msg_flag/0s and/or
integer/0s, as in the platform's appropriate header files.
The values of all symbolic flags and integers are or:ed together.

If the Timeout argument is infinity; waits for a message
to arrive, or for a socket error.

If the Timeout argument is a time-out value
(non_neg_integer/0); returns {error, timeout}
if no message has arrived after Timeout milliseconds.
Timeout = 0 only polls the OS receive call and doesn't
engage the Asynchronous Calls mechanisms. If no message
is immediately available {error, timeout} is returned.

If the Handle argument is nowait (since OTP 22.1),
starts an asynchronous call if the operation
couldn't be completed immediately.
If the 'Handle' argument is a select_handle/0,
(since OTP 24.0), or on Windows, the equivalent
completion_handle/0 (since OTP 26.0),
starts an asynchronous call like for nowait.
See the note Asynchronous Calls
at the start of this module reference manual page.

The possible values for CompletionStatus in the completion message are:
	{ok, {Source, Data}} - Success.
	{error, Reason} - An error occured and no data was read.

 recvmsg(Socket)

 (since OTP 22.0)

 -spec recvmsg(Socket :: socket()) -> dynamic().

Equivalent to recvmsg(Socket, 0, 0, [], infinity).

 recvmsg/2

 (since OTP 22.0)

 -spec recvmsg(Socket :: socket(), Flags :: list()) -> dynamic();
 (Socket :: socket(), TimeoutOrHandle) -> dynamic()
 when
 TimeoutOrHandle :: timeout() | nowait | Handle,
 Handle :: select_handle() | completion_handle().

Receive a message on a socket.
With argument Flags; equivalent to
recvmsg(Socket, 0, 0, Flags, infinity).
With argument TimeoutOrHandle; equivalent to
recvmsg(Socket, 0, 0, [], TimeoutOrHandle).
TimeoutOrHandle :: nowait has been allowed since OTP 22.1.
TimeoutOrHandle :: Handle has been allowed since OTP 24.0.

 recvmsg/3

 (since OTP 22.0)

 -spec recvmsg(Socket :: dynamic(), Flags :: list(), TimeoutOrHandle :: dynamic()) -> dynamic();
 (Socket :: dynamic(), BufSz :: integer(), CtrlSz :: integer()) -> dynamic().

Receive a message on a socket.
With arguments Flags; equivalent to
recvmsg(Socket, 0, 0, Flags, infinity).
With argument TimeoutOrHandle; equivalent to
recvmsg(Socket, 0, 0, [], TimeoutOrHandle).
TimeoutOrHandle :: nowait has been allowed since OTP 22.1.
TimeoutOrHandle :: Handle has been allowed since OTP 24.0.

 recvmsg(Socket, BufSz, CtrlSz, TimeoutOrHandle)

 (since OTP 24.0)

 -spec recvmsg(Socket :: socket(),
 BufSz :: non_neg_integer(),
 CtrlSz :: non_neg_integer(),
 TimeoutOrHandle :: dynamic()) ->
 dynamic().

Equivalent to
recvmsg(Socket, BufSz, CtrlSz, [], TimeoutOrHandle).

 recvmsg/5

 (since OTP 22.0)

 -spec recvmsg(Socket, BufSz, CtrlSz, Flags, Timeout :: infinity) -> {ok, Msg} | {error, Reason}
 when
 Socket :: socket(),
 BufSz :: non_neg_integer(),
 CtrlSz :: non_neg_integer(),
 Flags :: [msg_flag() | integer()],
 Msg :: msg_recv(),
 Reason :: posix() | closed | invalid();
 (Socket, BufSz, CtrlSz, Flags, Timeout :: non_neg_integer()) -> {ok, Msg} | {error, Reason}
 when
 Socket :: socket(),
 BufSz :: non_neg_integer(),
 CtrlSz :: non_neg_integer(),
 Flags :: [msg_flag() | integer()],
 Msg :: msg_recv(),
 Reason :: posix() | closed | invalid() | timeout;
 (Socket, BufSz, CtrlSz, Flags, nowait | Handle) ->
 {ok, Msg} |
 {select, SelectInfo} |
 {select_read, {SelectInfo, Msg}} |
 {completion, CompletionInfo} |
 {error, Reason}
 when
 Socket :: socket(),
 BufSz :: non_neg_integer(),
 CtrlSz :: non_neg_integer(),
 Handle :: select_handle() | completion_handle(),
 Flags :: [msg_flag() | integer()],
 Msg :: msg_recv(),
 SelectInfo :: select_info(),
 CompletionInfo :: completion_info(),
 Reason :: posix() | closed | invalid().

Receive a message on a socket.
This function receives a data message with control messages
as well as its source address.
Arguments BufSz and CtrlSz specifies the number of bytes for the
receive buffer and the control message buffer. If the buffer size(s)
is(are) too small, the message and/or control message list will be truncated.
If BufSz is 0, a default buffer size is used, which can be set by
socket:setopt(Socket, {otp,recvbuf}, BufSz).
The same applies to CtrlSz and
socket:setopt(Socket, {otp,recvctrlbuf}, CtrlSz).
If there is no known appropriate buffer size, it may be possible
to use the receive message flag peek.
When this flag is used, the message is not "consumed" from
the underlying buffers, so another recvfrom/1,2,3,4 call
is needed, possibly with an adjusted buffer size.
The message Flags may be symbolic msg_flag/0s and/or
integer/0s, as in the platform's appropriate header files.
The values of all symbolic flags and integers are or:ed together.

If the Timeout argument is infinity; waits for the message
to arrive, or for a socket error.

If the Timeout argument is a time-out value
(non_neg_integer/0); return {error, timeout}
if no message has arrived after Timeout milliseconds.
Timeout = 0 only polls the OS receive call and doesn't
engage the Asynchronous Calls mechanisms. If no message
is immediately available {error, timeout} is returned.

If the Handle argument is nowait (since OTP 22.1),
starts an asynchronous call if the operation
couldn't be completed immediately.
If the 'Handle' argument is a select_handle/0,
(since OTP 24.0), or on Windows, the equivalent
completion_handle/0 (since OTP 26.0),
starts an asynchronous call like for nowait.
See the note Asynchronous Calls
at the start of this module reference manual page.

The possible values for CompletionStatus in the completion message are:
	{ok, Msg} - Success.
	{error, Reason} - An error occured and no data was read.

 rest_iov(Written, IOV)

 (since OTP 28.0.2)

 -spec rest_iov(Written, IOV) -> RestIOV
 when Written :: non_neg_integer(), IOV :: erlang:iovec(), RestIOV :: erlang:iovec().

Calculate the rest I/O vector after a partially successful sendv
(CompletionStatus was {ok, Written}).

 send(Socket, Data)

 (since OTP 22.0)

 -spec send(Socket, Data) -> Result
 when
 Socket :: socket(),
 Data :: iodata(),
 Result ::
 ok |
 {ok, RestData :: binary()} |
 {select, SelectInfo :: dynamic()} |
 {completion, CompletionInfo :: dynamic()} |
 {error, Reason :: dynamic()}.

Equivalent to send(Socket, Data, [], infinity).

 send/3

 (since OTP 22.0)

 -spec send(Socket :: term(), Data :: term(), Cont :: tuple()) -> _;
 (Socket :: term(), Data :: term(), Flags :: list()) -> _;
 (Socket :: term(), Data :: term(), Timeout :: timeout()) -> _.

Send data on a connected socket.
With argument Timeout; equivalent to
send(Socket, Data, [], Timeout).
With argument Flags; equivalent to
send(Socket, Data, Flags, infinity).
With argument Cont; equivalent to
send(Socket, Data, Cont, infinity) (since OTP 24.0).

 send/4

 (since OTP 22.0)

 -spec send(Socket, Data, Flags | Cont, Timeout :: infinity) ->
 ok | {ok, RestData} | {error, Reason} | {error, {Reason, RestData}}
 when
 Socket :: socket(),
 Data :: iodata(),
 Flags :: [msg_flag() | integer()],
 Cont :: select_info(),
 RestData :: binary(),
 Reason :: posix() | closed | invalid() | netname_deleted | too_many_cmds | eei();
 (Socket, Data, Flags | Cont, Timeout :: non_neg_integer()) ->
 ok | {ok, RestData} | {error, Reason | timeout} | {error, {Reason | timeout, RestData}}
 when
 Socket :: socket(),
 Data :: iodata(),
 Flags :: [msg_flag() | integer()],
 Cont :: select_info(),
 RestData :: binary(),
 Reason :: posix() | closed | invalid() | netname_deleted | too_many_cmds | eei();
 (Socket, Data, Flags | Cont, nowait | Handle) ->
 ok |
 {ok, RestData} |
 {select, SelectInfo} |
 {select, {SelectInfo, RestData}} |
 {completion, CompletionInfo} |
 {error, Reason}
 when
 Socket :: socket(),
 Data :: iodata(),
 Flags :: [msg_flag() | integer()],
 Cont :: select_info(),
 Handle :: select_handle() | completion_handle(),
 RestData :: binary(),
 SelectInfo :: select_info(),
 CompletionInfo :: completion_info(),
 Reason :: posix() | closed | invalid() | netname_deleted | too_many_cmds | eei().

Send data on a connected socket.
The message Flags may be symbolic msg_flag/0s and/or
integer/0s as in the platform's appropriate header files.
The values of all symbolic flags and integers are or:ed together.
The Data, if it is not a binary/0, is copied into one before
calling the platform network API, because a single buffer is required.
A returned RestData is a sub binary of it.
The return value indicates the result from the platform's network layer:
	ok - All data was accepted by the OS for delivery

	{ok, RestData} - Some but not all data was accepted,
but no error was reported (partially successful send). RestData
is the tail of Data that wasn't accepted.
This cannot happen for a socket of type stream where
such a partially successful send is retried until the data is either
accepted for delivery or there is an error.
For a socket of type dgram this should probably
also not happen since a message that cannot be passed atomically
should render an error.
It is nevertheless possible for the platform's network layer
to return this, surely more possible for a socket of
type seqpacket.

	{error, Reason} - An error has been reported and no data
was accepted for delivery. Reason :: posix/0
is what the platform's network layer reported. closed means
that this socket library was informed that the socket was closed,
and invalid/0 means that this socket library found
an argument to be invalid.

	{error, {Reason, RestData}} - An error was reported but before that
some data was accepted for delivery. RestData is the tail of Data
that wasn't accepted. See {error, Reason} above.
This can only happen for a socket of type stream
when a partially successful send is retried until there is an error.

If the Timeout argument is infinity; wait for the OS to
complete the send operation (take responsibility for the data),
or return an error.

If the Timeout argument is a time-out value
(non_neg_integer/0); return {error, timeout}
if no data has been sent within Timeout millisecond,
or {error, {timeout, RestData}} if some data was sent
(accepted by the OS for delivery). RestData is the tail of the data
that hasn't been sent.

If the Handle argument is nowait (since OTP 22.1),
starts an asynchronous call if the operation
couldn't be completed immediately.
If the Handle argument is a select_handle/0,
(since OTP 24.0), or on Windows, the equivalent
completion_handle/0 (since OTP 26.0), starts
an asynchronous call like for nowait.
See the note Asynchronous Calls
at the start of this module reference manual page.

The possible values for CompletionStatus in the completion message are:
	ok - Complete success; The data was written in its entirety.
	{ok, Written} - Partial success; Some but not all data was written,
but no error was reported. Written is the number of bytes that was written.
	{error, Reason} - An error occured and no data was sent.

If the function is called with a Cont argument, that is;
the SelectInfo from the previous
send/3,4 call; the send is continued with
preprocessed send parameters in the SelectInfo.
Using this argument variant avoids for example having to validate
and encode message flags in every call but the first.

 sendfile(Socket, FileHandle_Cont)

 (since OTP 24.0)

 -spec sendfile(Socket, FileHandle | Continuation) -> dynamic()
 when Socket :: socket(), FileHandle :: file:fd(), Continuation :: select_info().

Send a file on a socket.
Equivalent to
sendfile(Socket, FileHandle_or_Continuation, 0, 0, infinity).

 sendfile(Socket, FileHandle_Cont, Timeout_Handle)

 (since OTP 24.0)

 -spec sendfile(Socket, FileHandle | Continuation, Timeout | Handle) -> dynamic()
 when
 Socket :: socket(),
 FileHandle :: file:fd(),
 Continuation :: select_info(),
 Timeout :: infinity | non_neg_integer(),
 Handle :: nowait | select_handle().

Send a file on a socket.
Equivalent to
sendfile(Socket, FileHandle_or_Continuation, 0, 0, Timeout_or_Handle).

 sendfile(Socket, FileHandle_Cont, Offset, Count)

 (since OTP 24.0)

 -spec sendfile(Socket, FileHandle | Continuation, Offset, Count) -> dynamic()
 when
 Socket :: socket(),
 FileHandle :: file:fd(),
 Continuation :: select_info(),
 Offset :: integer(),
 Count :: non_neg_integer().

Send a file on a socket.
Equivalent to
sendfile(Socket, FileHandle_or_Continuation, Offset, Count, infinity).

 sendfile/5

 (since OTP 24.0)

 -spec sendfile(Socket, FileHandle | Continuation, Offset, Count, Timeout :: infinity) ->
 {ok, BytesSent} | {error, Reason} | {error, {Reason, BytesSent}}
 when
 Socket :: socket(),
 FileHandle :: file:fd(),
 Continuation :: select_info(),
 Offset :: integer(),
 Count :: non_neg_integer(),
 BytesSent :: non_neg_integer(),
 Reason :: posix() | closed | invalid();
 (Socket, FileHandle | Continuation, Offset, Count, Timeout :: non_neg_integer()) ->
 {ok, BytesSent} | {error, Reason} | {error, {Reason, BytesSent}}
 when
 Socket :: socket(),
 FileHandle :: file:fd(),
 Continuation :: select_info(),
 Offset :: integer(),
 Count :: non_neg_integer(),
 BytesSent :: non_neg_integer(),
 Reason :: posix() | closed | invalid() | timeout;
 (Socket,
 FileHandle | Continuation,
 Offset, Count,
 nowait | (SelectHandle :: select_handle())) ->
 {ok, BytesSent} |
 {select, SelectInfo} |
 {select, {SelectInfo, BytesSent}} |
 {error, Reason}
 when
 Socket :: socket(),
 FileHandle :: file:fd(),
 Continuation :: select_info(),
 Offset :: integer(),
 Count :: non_neg_integer(),
 BytesSent :: non_neg_integer(),
 SelectInfo :: select_info(),
 Reason :: posix() | closed | invalid().

Send a file on a socket.
Note
This function unsupported on Windows.
The FileHandle argument must refer to an open raw file
as described in file:open/2.
The Offset argument is the file offset to start reading from.
The default offset is 0.
The Count argument is the number of bytes to transfer
from FileHandle to Socket. If Count = 0 (the default)
the transfer stops at the end of file.
The return value indicates the result from the platform's network layer:
	{ok, BytesSent} - The transfer completed successfully after BytesSent
bytes of data.

	{error, Reason} - An error has been reported and no data
was transferred. Reason :: posix/0
is what the platform's network layer reported. closed means
that this socket library was informed that the socket was closed,
and invalid/0 means that this socket library found
an argument to be invalid.

	{error, {Reason, BytesSent}} - An error has been reported
but before that some data was transferred. See {error, Reason}
and {ok, BytesSent} above.

If the Timeout argument is infinity; wait for the OS to
complete the send operation (take responsibility for the data),
or return an error.

If the Timeout argument is a time-out value
(non_neg_integer/0); return {error, timeout}
if no data has been sent within Timeout millisecond,
or {error, {timeout, BytesSent}} if some but not all data was sent
(accepted by the OS for delivery).

If the Handle argument is nowait,
starts an asynchronous call if the operation
couldn't be completed immediately.
If the Handle argument is a select_handle/0, starts
an asynchronous call like for nowait.
See the note Asynchronous Calls
at the start of this module reference manual page.
After receiving a select message;
call sendfile/2,3,4,5
with SelectInfo as the Continuation argument,
to complete the operation.

If the function is called with a Continuation argument, that is;
the SelectInfo from the previous
sendfile/5 call; the transfer is continued with
preprocessed parameters in the SelectInfo.
The Offset and maybe Count arguments will probably
need to be updated between continuation calls.

 sendmsg(Socket, Msg)

 (since OTP 22.0)

 -spec sendmsg(Socket, Msg) -> Result
 when Socket :: socket(), Msg :: msg_send() | erlang:iovec(), Result :: dynamic().

Equivalent to sendmsg(Socket, Msg, [], infinity).

 sendmsg/3

 (since OTP 22.0)

 -spec sendmsg(Socket :: socket(), Msg :: msg_send(), Flags :: list()) -> dynamic();
 (Socket :: socket(), Data :: msg_send() | erlang:iovec(), Cont :: select_info()) ->
 dynamic();
 (Socket :: socket(), Msg :: msg_send(), Timeout :: infinity) -> dynamic().

Send data and control messages on a socket.
With arguments Msg and Timeout; equivalent to
sendmsg(Socket, Msg, [], Timeout).
With arguments Msg and Flags; equivalent to
sendmsg(Socket, Msg, Flags, infinity).
With arguments Data and Cont; equivalent to
sendmsg(Socket, Data, Cont, infinity) since OTP 24.0.

 sendmsg/4

 (since OTP 22.0)

 -spec sendmsg(Socket, Msg, Flags, Timeout :: infinity) ->
 ok | {ok, RestData} | {error, Reason} | {error, {Reason, RestData}}
 when
 Socket :: socket(),
 Msg :: msg_send(),
 Flags :: [msg_flag() | integer()],
 RestData :: erlang:iovec(),
 Reason :: posix() | closed | invalid();
 (Socket, Msg, Flags, Timeout :: non_neg_integer()) ->
 ok | {ok, RestData} | {error, Reason | timeout} | {error, {Reason | timeout, RestData}}
 when
 Socket :: socket(),
 Msg :: msg_send(),
 Flags :: [msg_flag() | integer()],
 RestData :: erlang:iovec(),
 Reason :: posix() | closed | invalid();
 (Socket, Msg, Flags, nowait | Handle) ->
 ok |
 {ok, RestData} |
 {select, SelectInfo} |
 {select, {SelectInfo, RestData}} |
 {completion, CompletionInfo} |
 {error, Reason} |
 {error, {Reason, RestData}}
 when
 Socket :: socket(),
 Msg :: msg_send(),
 Flags :: [msg_flag() | integer()],
 Handle :: select_handle() | completion_handle(),
 RestData :: erlang:iovec(),
 SelectInfo :: select_info(),
 CompletionInfo :: completion_info(),
 Reason :: posix() | closed | invalid();
 (Socket, Data, Cont, Timeout :: infinity) ->
 ok | {ok, RestData} | {error, Reason} | {error, {Reason, RestData}}
 when
 Socket :: socket(),
 Data :: msg_send() | erlang:iovec(),
 Cont :: select_info(),
 RestData :: erlang:iovec(),
 Reason :: posix() | closed | invalid();
 (Socket, Data, Cont, Timeout :: non_neg_integer()) ->
 ok | {ok, RestData} | {error, Reason | timeout} | {error, {Reason | timeout, RestData}}
 when
 Socket :: socket(),
 Data :: msg_send() | erlang:iovec(),
 Cont :: select_info(),
 RestData :: erlang:iovec(),
 Reason :: posix() | closed | invalid();
 (Socket, Data, Cont, nowait | Handle) ->
 ok |
 {ok, RestData} |
 {select, SelectInfo} |
 {select, {SelectInfo, RestData}} |
 {completion, CompletionInfo} |
 {error, Reason} |
 {error, {Reason, RestData}}
 when
 Socket :: socket(),
 Data :: msg_send() | erlang:iovec(),
 Cont :: select_info(),
 Handle :: select_handle(),
 RestData :: erlang:iovec(),
 SelectInfo :: select_info(),
 CompletionInfo :: completion_info(),
 Reason :: posix() | closed | invalid().

Send data and control messages on a socket.
The argument Msg is a map that contains the data to be sent
under the key iov as anerlang:iovec/0 (list of binary/0).
It may also contain the destination address under the key addr,
which is mandatory if the socket isn't connected. If the socket
is connected it is best to not have an addr key since
the platform may regard that as an error (or ignore it).
Under the key ctrl there may be a list of protocol and platform dependent
control messages (a.k.a ancillary data, a.k.a control information)
to send.

The message data is given to the platform's network layer as an
I/O vector without copying the content. If the number of elements
in the I/O vector is larger than allowed on the platform (reported
in the iov_max field from info/0), on a socket of
type stream the send is iterated over all elements,
but for other socket types the call fails.
See send/4 for a description of the Flags argument
and the return values.
Note
On Windows, this function can only be used with datagram and raw sockets.

If the Timeout argument is infinity; wait for the OS to
complete the send operation (take responsibility for the data),
or return an error.

If the Timeout argument is a time-out value
(non_neg_integer/0); return {error, timeout}
if no data has been sent within Timeout millisecond,
or {error, {timeout, RestData}} if some data was sent
(accepted by the OS for delivery). RestData is the tail of the data
that hasn't been sent.

If the Handle argument is nowait (since OTP 22.1),
starts an asynchronous call if the operation
couldn't be completed immediately.
If the Handle argument is a select_handle/0,
(since OTP 24.0), or on Windows, the equivalent
completion_handle/0 (since OTP 26.0), starts
an asynchronous call like for nowait.
See the note Asynchronous Calls
at the start of this module reference manual page.

The possible values for CompletionStatus in the completion message are:
	ok - Complete success; The data was written in its entirety.
	{ok, Written} - Partial success; Some but not all data was written,
but no error was reported. Written is the number of bytes that was written.
	{error, Reason} - An error occured and no data was sent.

After receiving a select message;
call sendmsg/3,4 with SelectInfo as the Cont argument,
to complete the operation.

With the arguments Data and Cont,
continues the send operation. Cont should be
the SelectInfo returned from the previous
sendmsg/2,3,4 call.
Data can be a Msg map/0
where only the key iov is used, or an erlang:iovec/0.

 sendto/3

 (since OTP 22.0)

 -spec sendto(Socket :: socket(), Data :: iodata(), Cont | Dest) -> Result
 when
 Cont :: select_info(),
 Dest :: sockaddr(),
 Result :: ok | {ok, RestData} | {error, Reason} | {error, {Reason, RestData}},
 RestData :: binary(),
 Reason :: posix() | closed | invalid().

Send data on a socket.
With argument Dest; equivalent to
sendto(Socket, Data, Dest, [], infinity).
With argument Cont; equivalent to
sendto(Socket, Data, Cont, infinity) since OTP 24.0.

 sendto/4

 (since OTP 22.0)

 -spec sendto(Socket :: socket(),
 Data :: iodata(),
 Dest :: sockaddr(),
 Flags :: [msg_flag() | integer()]) ->
 dynamic();
 (Socket :: socket(),
 Data :: iodata(),
 Cont :: select_info(),
 Timeout :: timeout() | nowait | (Handle :: select_handle())) ->
 dynamic();
 (Socket :: socket(),
 Data :: iodata(),
 Dest :: sockaddr(),
 Timeout :: timeout() | nowait | (Handle :: select_handle() | completion_handle())) ->
 dynamic().

Send data on a socket.
With arguments Dest and TimeoutOrHandle; equivalent to
sendto(Socket, Data, Dest, [], TimeoutOrHandle).
With arguments Dest and Flags; equivalent to
sendto(Socket, Data, Dest, Flags, infinity).
With arguments Cont and TimeoutOrHandle; Cont must be
the SelectInfo from the previous
sendto/3,4,5 call and the send is continued with
preprocessed send parameters in the SelectInfo.
Using this argument variant avoids for example having o validate
and encode message flags in every call but the first.
(Since OTP 24.0)
See the last argument (argument 5) of sendto/5 for
an explanation of TimeoutOrHandle.

 sendto/5

 (since OTP 22.0)

 -spec sendto(Socket, Data, Dest, Flags, Timeout :: infinity) ->
 ok | {ok, RestData} | {error, Reason} | {error, {Reason, RestData}}
 when
 Socket :: socket(),
 Data :: iodata(),
 Dest :: sockaddr(),
 Flags :: [msg_flag() | integer()],
 RestData :: binary(),
 Reason :: posix() | closed | invalid();
 (Socket, Data, Dest, Flags, Timeout :: non_neg_integer()) ->
 ok | {ok, RestData} | {error, Reason | timeout} | {error, {Reason | timeout, RestData}}
 when
 Socket :: socket(),
 Data :: iodata(),
 Dest :: sockaddr(),
 Flags :: [msg_flag() | integer()],
 RestData :: binary(),
 Reason :: posix() | closed | invalid();
 (Socket, Data, Dest, Flags, nowait | Handle) ->
 ok |
 {ok, RestData} |
 {select, SelectInfo} |
 {select, {SelectInfo, RestData}} |
 {completion, CompletionInfo} |
 {error, Reason}
 when
 Socket :: socket(),
 Data :: iodata(),
 Dest :: sockaddr(),
 Flags :: [msg_flag() | integer()],
 Handle :: select_handle() | completion_handle(),
 RestData :: binary(),
 SelectInfo :: select_info(),
 CompletionInfo :: completion_info(),
 Reason :: posix() | closed | invalid().

Send data on a socket.
The To argument is the destination address where to send the data.
For a connected socket this argument is still passed to the OS call
that may ignore the address or return an error.
See send/4 for a description of the Flags and Data arguments,
and the return values.

If the Timeout argument is infinity; wait for the OS to
complete the send operation (take responsibility for the data),
or return an error.

If the Timeout argument is a time-out value
(non_neg_integer/0); return {error, timeout}
if no data has been sent within Timeout millisecond,
or {error, {timeout, RestData}} if some data was sent
(accepted by the OS for delivery). RestData is the tail of the data
that hasn't been sent.

If the Handle argument is nowait (since OTP 22.1),
starts an asynchronous call if the operation
couldn't be completed immediately.
If the Handle argument is a select_handle/0,
(since OTP 24.0), or on Windows, the equivalent
completion_handle/0 (since OTP 26.0), starts
an asynchronous call like for nowait.
See the note Asynchronous Calls
at the start of this module reference manual page.

The possible values for CompletionStatus in the completion message are:
	ok - Complete success; The data was written in its entirety.
	{ok, Written} - Partial success; Some but not all data was written,
but no error was reported. Written is the number of bytes that was written.
	{error, Reason} - An error occured and no data was sent.

After receiving a select message;
call sendto/3,4 with SelectInfo as the Cont argument,
to complete the operation.

 sendv(Socket, IOV)

 (since OTP 27.0)

 -spec sendv(Socket, IOV) -> ok | {ok, RestIOV} | {error, Reason} | {error, {Reason, RestIOV}}
 when
 Socket :: socket(),
 IOV :: erlang:iovec(),
 RestIOV :: erlang:iovec(),
 Reason :: posix() | closed | invalid().

Equivalent to sendv(Socket, IOV, infinity).

 sendv/3

 (since OTP 27.0)

 -spec sendv(Socket, IOV, Timeout :: infinity) ->
 ok | {ok, RestIOV} | {error, Reason} | {error, {Reason, RestIOV}}
 when
 Socket :: socket(),
 IOV :: erlang:iovec(),
 RestIOV :: erlang:iovec(),
 Reason :: posix() | closed | invalid();
 (Socket, IOV, Timeout :: non_neg_integer()) ->
 ok | {ok, RestIOV} | {error, Reason} | {error, {Reason, RestIOV}}
 when
 Socket :: socket(),
 IOV :: erlang:iovec(),
 RestIOV :: erlang:iovec(),
 Reason :: posix() | closed | invalid() | timeout;
 (Socket, IOV, nowait | Handle) ->
 ok |
 {ok, RestIOV} |
 {select, SelectInfo} |
 {select, {SelectInfo, RestIOV}} |
 {completion, CompletionInfo} |
 {completion, {CompletionInfo, RestIOV}} |
 {error, Reason} |
 {error, {Reason, RestIOV}}
 when
 Socket :: socket(),
 IOV :: erlang:iovec(),
 Handle :: select_handle() | completion_handle(),
 RestIOV :: erlang:iovec(),
 SelectInfo :: select_info(),
 CompletionInfo :: completion_info(),
 Reason :: posix() | closed | invalid();
 (Socket, IOV, Cont) -> ok | {ok, RestIOV} | {error, Reason} | {error, {Reason, RestIOV}}
 when
 Socket :: socket(),
 IOV :: erlang:iovec(),
 Cont :: select_info(),
 RestIOV :: erlang:iovec(),
 Reason :: posix() | closed | invalid().

Send erlang:iovec/0 data on a connected socket.
See sendmsg/4 about how the IOV
data is handled towards the platform's network layer.
The return value indicates the result from the platform's network layer:
	ok - All data has been accepted by the OS for delivery.

	{ok, RestIOV} - Some but not all data was accepted,
but no error was reported (partially successful send). RestIOV
is the tail of IOV that wasn't accepted.

	{error, Reason} - An error has been reported and no data
was accepted for delivery. Reason :: posix/0
is what the platform's network layer reported. closed means
that this socket library was informed that the socket was closed,
and invalid/0 means that this socket library found
an argument to be invalid.

	{error, {Reason, RestIOV}} - - An error was reported but before that
some data was accepted for delivery. RestIOV is the tail of IOV
that wasn't accepted. See {error, Reason} above.

If the Timeout argument is infinity; wait for the OS to
complete the send operation (take responsibility for the data),
or return an error.

If the Timeout argument is a time-out value
(non_neg_integer/0); return {error, timeout}
if no data has been sent within Timeout millisecond,
or {error, {timeout, RestIOV}} if some data was sent
(accepted by the OS for delivery). RestIOV is the tail of the data
that hasn't been sent.

If the Handle argument is nowait,
starts an asynchronous call if the operation
couldn't be completed immediately.
If the Handle argument is a select_handle/0,
or on Windows, the equivalent completion_handle/0, starts
an asynchronous call like for nowait.
See the note Asynchronous Calls
at the start of this module reference manual page.

The possible values for CompletionStatus in the completion message are:
	ok - Complete success; The I/O vector was written in its entirety.
	{ok, Written} - Partial success; Some but not all data was written,
but no error was reported. Written is the number of bytes that was written.
rest_iov(Written, IOV) can be used to calculate the rest
I/O vector (from the original IOV).
	{error, Reason} - An error occured and no data was sent.

With the argument Cont, equivalent to
sendv(Socket, IOV, Cont, infinity).

 sendv/4

 (since OTP 27.0)

 -spec sendv(Socket, IOV, Cont, Timeout :: infinity) ->
 ok | {ok, RestIOV} | {error, Reason} | {error, {Reason, RestIOV}}
 when
 Socket :: socket(),
 IOV :: erlang:iovec(),
 Cont :: select_info(),
 RestIOV :: erlang:iovec(),
 Reason :: posix() | closed | invalid();
 (Socket, IOV, Cont, Timeout :: non_neg_integer()) ->
 ok | {ok, RestIOV} | {error, Reason} | {error, {Reason | RestIOV}}
 when
 Socket :: socket(),
 IOV :: erlang:iovec(),
 Cont :: select_info(),
 RestIOV :: erlang:iovec(),
 Reason :: posix() | closed | invalid() | timeout;
 (Socket, IOV, Cont, nowait | SelectHandle) ->
 ok |
 {ok, RestIOV} |
 {select, SelectInfo} |
 {select, {SelectInfo, RestIOV}} |
 {error, Reason} |
 {error, {Reason, RestIOV}}
 when
 Socket :: socket(),
 IOV :: erlang:iovec(),
 Cont :: select_info(),
 SelectHandle :: select_handle(),
 RestIOV :: erlang:iovec(),
 SelectInfo :: select_info(),
 Reason :: posix() | closed | invalid().

Send data on a connected socket, continuation.
Continues sending data on a connected socket.
Cont is the SelectInfo returned from
the previous sendv/2,3 call.
IOV should be the rest data that wasn't sent.
See asynchronous calls about continuing
unfinished calls.
See sendv/3 about the return values.

 setopt/3

 (since OTP 24.0)

 -spec setopt(Socket, SocketOption, Value) -> ok | {error, invalid() | closed}
 when
 Socket :: socket(),
 SocketOption :: {Level :: otp, Opt :: otp_socket_option()},
 Value :: dynamic();
 (Socket, SocketOption, Value) -> ok | {error, posix() | invalid() | closed}
 when Socket :: socket(), SocketOption :: socket_option(), Value :: dynamic().

Set a socket option.
Set an OS protocol level option, or an otp pseudo protocol level option.
The latter level is this module's implementation level above
the OS protocol levels.
See the type otp_socket_option()
for a description of the otp protocol level.
See the type socket_option/0 for which OS protocol level options
that this implementation knows about, how they are related to OS option names,
and if there are known peculiarities with any of them.
What options that are valid depends on the OS, and on the kind of socket
(domain/0,type/0 and protocol/0). See the type
t:socket_option() and the
socket options chapter
in the User's Guide for more info.
Note
Not all options are valid, nor possible to set, on all platforms. That is,
even if this socket implementation support an option; it doesn't mean
that the underlying OS does.

 setopt/4

 (since OTP 22.0)

 -spec setopt(socket(), Level :: term(), Opt :: term(), Value :: term()) -> _.

Set a socket option (backwards compatibility function).
Equivalent to setopt(Socket, {Level, Opt}, Value),
or as a special case if Opt = NativeOpt :: integer/0
and Value = binary/0 equivalent to
setopt_native(Socket, {Level, NativeOpt}, ValueSpec).
Use setopt/3 or setopt_native/3 instead to handle
the option level and name as a single term, and to make the
difference between known options and native options clear.

 setopt_native(Socket, Option, Value)

 (since OTP 24.0)

 -spec setopt_native(Socket, Option, Value) -> ok | {error, posix() | invalid() | closed}
 when
 Socket :: socket(),
 Option :: socket_option() | {Level, NativeOpt} | {NativeLevel, NativeOpt},
 Value :: native_value(),
 Level :: level(),
 NativeLevel :: integer(),
 NativeOpt :: integer().

Set a "native" socket option.
Sets a socket option that may be unknown to our implementation, or that has a
type not compatible with our implementation, that is; in "native mode".
If Value is an integer/0 it will be used as a C type (int),
if it is a boolean/0 it will be used as a C type (int)
with the C implementations values for false or true,
and if it is a binary/0 its content and size will be used
as the option value.
The socket option may be specified with an ordinary
socket_option/0 tuple, with a symbolic Level as
{Level :: level/0,NativeOpt :: integer/0},
or with integers for both NativeLevel and NativeOpt as
{NativeLevel :: integer/0,NativeOpt :: integer/0}.
If an option is valid depends both on the platform and on
what kind of socket it is (domain/0, type/0 and protocol/0).
The integer values for NativeLevel and NativeOpt as well as the Value
encoding has to be deduced from the header files for the running system.

 shutdown(Socket, How)

 (since OTP 22.0)

 -spec shutdown(Socket, How) -> ok | {error, Reason}
 when Socket :: socket(), How :: read | write | read_write, Reason :: posix() | closed.

Shut down all or part of a full-duplex connection.

 sockname(Socket)

 (since OTP 22.0)

 -spec sockname(Socket :: socket()) -> {ok, SockAddr} | {error, Reason}
 when SockAddr :: sockaddr_recv(), Reason :: posix() | closed.

Get the socket's address.
Returns the address to which the socket is currently bound.
If the bind address had the wildcard port 0,
the address returned by this function contains the ephemeral port
selected by the OS.

 supports()

 (since OTP 22.0)

 -spec supports() ->
 [{Key1 :: term(),
 boolean() | [{Key2 :: term(), boolean() | [{Key3 :: term(), boolean()}]}]}].

Retrieve information about what socket features
the module and the platform supports.
Returns a list of, in no particular order,
{Key1,supports(Key1)} tuples
for every Key1 described in supports/1,
and {Key, boolean()} tuples for each of the following keys:
	sctp - SCTP support

	ipv6 - IPv6 support

	local - Unix Domain sockets support (AF_UNIX | AF_LOCAL)

	netns - Network Namespaces support (Linux, setns(2))

	sendfile - Sendfile support (sendfile(2))

 supports(Key1)

 (since OTP 22.0)

 -spec supports(Key1 :: term()) -> [{Key2 :: term(), boolean() | [{Key3 :: term(), boolean()}]}].

Retrieve information about what socket features
the module and the platform supports.
If Key1 = msg_flags returns a list of {Flag, boolean()}
tuples for every Flag in msg_flag/0 with the boolean/0
indicating if the flag is supported on this platform.
If Key1 = protocols returns a list of {Name, boolean()}
tuples for every Name inprotocol/0 with the boolean/0
indicating if the protocol is supported on this platform.
If Key1 = options returns a list of {SocketOption, boolean()}
tuples for every SocketOption in socket_option/0 with the boolean/0
indicating if the socket option is supported on this platform.
There is no particular order of any of the returned lists.
For other values of Key1 returns [].
Note that in future versions of this module or on different platforms,
there might be more supported keys.

 supports(Key1, Key2)

 (since OTP 22.0)

 -spec supports(Key1 :: term(), Key2 :: term()) -> [{Key3 :: term(), boolean()}].

Retrieve information about what socket features
the module and the platform supports.
If Key1 = options, for a Key2 in level/0 returns
a list of {Opt, boolean()} tuples for all known socket options
Opt on that Level = Key2 with the boolean/0
indicating if the socket option is supported on this platform.
See setopt/3 and getopt/2.
There is no particular order of any of the returned lists.
For other values of Key1 or Key2 returns [].
Note that in future versions of this module or on different platforms,
there might be more supported keys.

 use_registry(D)

 (since OTP 23.1)

 -spec use_registry(D :: boolean()) -> ok.

Set the global use_registry
option default value.
Globally change if the socket registry is to be used or not.
Note that its still possible to override this explicitly
when creating an individual sockets, see open/2,3,4
for more info (the Opts :: map/0).

 which_sockets()

 (since OTP 22.3)

 -spec which_sockets() -> [socket()].

Return a list of all known sockets.
Equivalent to which_sockets(fun (_) -> true end).

 which_sockets(FilterRule)

 (since OTP 22.3)

 -spec which_sockets(FilterRule) -> [socket()]
 when
 FilterRule ::
 inet | inet6 | local | stream | dgram | seqpacket | sctp | tcp | udp |
 pid() |
 fun((socket_info()) -> boolean()).

Return a filtered list of known sockets.
There are several predefined FilterRules and one general:
	inet | inet6 - Only the sockets with matching domain/0
are returned.

	stream | dgram | seqpacket - Only the sockets with
matching type/0 are returned.

	sctp | tcp | udp - Only the sockets with
matching protocol/0 are returned.

	pid/0 - Only the sockets with matching Controlling Process
are returned. See the OTP socket option
controlling_process.

	fun((socket_info()) -> boolean()) - The general filter rule.
A fun that takes the socket info and returns a boolean/0
indicating if the socket should be returned or not.

 disk_log - kernel v10.4

disk_log

disk_log is a disk-based term logger that enables efficient logging of items
on files.
Three types of logs are supported:
	halt logs - Appends items to a single file, which size can be limited by
the disk_log module.

	wrap logs - Uses a sequence of wrap log files of limited size. As a wrap
log file is filled up, further items are logged on to the next file in the
sequence, starting all over with the first file when the last file is filled
up.

	rotate logs - Uses a sequence of rotate log files of limited size. As a
log file is filled up, it is rotated and then compressed. There is one active
log file and upto the configured number of compressed log files. Only
externally formatted logs are supported. It follows the same naming convention
as the handler logger_std_h for Logger. For more details about the naming
convention check the file parameter for open/1.
It follows the same naming convention as that for the compressed files for
Linux's logrotate and BSD's newsyslog.

For efficiency reasons, items are always written to files as binaries.
Two formats of the log files are supported:
	internal format - Supports automatic repair of log files that are not
properly closed and enables efficient reading of logged items in chunks
using a set of functions defined in this module. This is the only way to read
internally formatted logs. An item logged to an internally formatted log must
not occupy more than 4 GB of disk space (the size must fit in 4 bytes).

	external format - Leaves it up to the user to read and interpret the
logged data. The disk_log module cannot repair externally formatted logs.

For each open disk log, one process handles requests made to the disk log. This
process is created when open/1 is called, provided there exists no process
handling the disk log. A process that opens a disk log can be an owner or an
anonymous user of the disk log. Each owner is linked to the disk log process,
and an owner can close the disk log either explicitly (by calling
close/1) or by terminating.
Owners can subscribe to notifications, messages of the form
{disk_log, Node, Log, Info}, which are sent from the disk log process when
certain events occur, see the functions and in particular the
open/1 option notify. A log can have many
owners, but a process cannot own a log more than once. However, the same process
can open the log as a user more than once.
For a disk log process to close its file properly and terminate, it must be
closed by its owners and once by some non-owner process for each time the log
was used anonymously. The users are counted and there must not be any users left
when the disk log process terminates.
Items can be logged synchronously by using functions log/2, blog/2,
log_terms/2, and blog_terms/2. For each of these functions, the caller is
put on hold until the items are logged (but not necessarily written, use
sync/1 to ensure that). By adding an a to each of the mentioned
function names, we get functions that log items asynchronously. Asynchronous
functions do not wait for the disk log process to write the items to the file,
but return the control to the caller more or less immediately.
When using the internal format for logs, use functions log/2, log_terms/2,
alog/2, and alog_terms/2. These functions log one or more Erlang terms. By
prefixing each of the functions with a b (for "binary"), we get the
corresponding blog() functions for the external format. These functions log
one or more chunks of bytes. For example, to log the string "hello" in ASCII
format, you can use disk_log:blog(Log, "hello"), or
disk_log:blog(Log, list_to_binary("hello")). The two alternatives
are equally efficient.
The blog() functions can also be used for internally formatted logs, but in
this case they must be called with binaries constructed with calls to
term_to_binary/1. There is no check to ensure
this, it is entirely the responsibility of the caller. If these functions are
called with binaries that do not correspond to Erlang terms, the
chunk/2,3 and automatic repair functions fail. The corresponding
terms (not the binaries) are returned when chunk/2,3 is called.
An open disk log is only accessible from the node where the disk log process
runs. All processes on the node where the disk log process runs can log items or
otherwise change, inspect, or close the log.
Errors are reported differently for asynchronous log attempts and other uses of
the disk_log module. When used synchronously, this module replies with an
error message, but when called asynchronously, this module does not know where
to send the error message. Instead, owners subscribing to notifications receive
an error_status message.
The disk_log module does not report errors to the error_logger module. It
is up to the caller to decide whether to employ the error logger. Function
format_error/1 can be used to produce readable messages from error replies.
However, information events are sent to the error logger in two situations,
namely when a log is repaired, or when a file is missing while reading chunks.
Error message no_such_log means that the specified disk log is not open.
Nothing is said about whether the disk log files exist or not.
Note
If an attempt to reopen or truncate a log fails (see
reopen/2,3 and truncate/1,2) the disk log
process terminates immediately. Before the process terminates, links to owners
and blocking processes (see block/1,2) are removed. The effect
is that the links work in one direction only. Any process using a disk log
must check for error message no_such_log if some other process truncates or
reopens the log simultaneously.
See Also
file, wrap_log_reader

 Summary

 Types

 bchunk_ret()

 block_error_rsn()

 chunk_error_rsn()

 chunk_ret()

 close_error_rsn()

 continuation()

 Chunk continuation returned by chunk/2,3,
bchunk/2,3, or chunk_step/3.

 dlog_format()

 dlog_head_opt()

 dlog_info()

 dlog_mode()

 dlog_optattr()

 dlog_option()

 dlog_options()

 dlog_size()

 dlog_type()

 file_error()

 inc_wrap_error_rsn()

 invalid_header()

 log()

 log_error_rsn()

 next_file_error_rsn()

 notify_ret()

 open_error_rsn()

 open_ret()

 reopen_error_rsn()

 sync_error_rsn()

 trunc_error_rsn()

 unblock_error_rsn()

 Functions

 all()

 Returns the names of the disk logs accessible on the current node.

 alog(Log, Term)

 Asynchronously version of log/2.

 alog_terms(Log, TermList)

 Asynchronously version of log_terms/2.

 balog(Log, Bytes)

 Asynchronously version of blog/2.

 balog_terms(Log, ByteList)

 Asynchronously version of blog_terms/2.

 bchunk(Log, Continuation)

 Equivalent to bchunk(Log, Cont, infinity).

 bchunk(Log, Continuation, N)

 Equivalent to chunk(Log, Continuation, N) except that
it returns the binaries read from the file, that is it does not call
binary_to_term/1.

 block(Log)

 Equivalent to block(Log, true).

 block(Log, QueueLogRecords)

 With a call to block/2 a process can block a log.

 blog(Log, Bytes)

 Equivalent to log/2 except that it is used for externally formatted logs.

 blog_terms(Log, BytesList)

 Equivalent to log_terms/2 except that it is used for externally formatted logs.

 breopen(Log, File, BHead)

 Equivalent to reopen except that it is used for externally formatted logs.

 btruncate(Log, BHead)

 Equivalent to truncate/2 for externally formatted logs.

 change_header(Log, Header)

 Changes the value of option head or head_func for an owner of a disk log.

 change_notify(Log, Owner, Notify)

 Changes the value of option notify for an owner of a disk log.

 change_size(Log, Size)

 Changes the size of an open log. For a halt log, the size can always be
increased, but it cannot be decreased to something less than the current file
size.

 chunk(Log, Continuation)

 Equivalent to chunk(Log, Continuation, infinity).

 chunk(Log, Continuation, N)

 Efficiently reads the terms that are appended to an internally formatted log.

 chunk_info(Continuation)

 Returns the pair {node, Node}, describing the chunk continuation returned by
chunk/2,3, bchunk/2,3, or chunk_step/3.

 chunk_step(Log, Continuation, Step)

 Can be used with chunk/2,3 and bchunk/2,3 to
search through an internally formatted wrap log.

 close(Log)

 Closes a disk log properly.

 format_error(Error)

 Given the error returned by any function in this module, this function returns a
descriptive string of the error in English.

 inc_wrap_file(Log)

 deprecated

 Forces the internally formatted disk log to start logging to the next log file.
It can be used, for example, with change_size/2 to reduce
the amount of disk space allocated by the disk log.

 info(Log)

 Returns a list of {Tag, Value} pairs describing a log running on the node.

 log(Log, Term)

 Synchronously appends a term to a internally formatted disk log. Returns ok
or {error, Reason} when the term is written to disk.

 log_terms(Log, TermList)

 Synchronously appends a list of items to an internally formatted log.

 next_file(Log)

 For wrap logs, it forces the disk log to start logging to the next log file. It
can be used, for example, with change_size/2 to reduce the
amount of disk space allocated by the disk log.

 open(ArgL)

 Open a new disk_log file for reading or writing.

 pid2name(Pid)

 Returns the log name given the pid of a disk log process on the current node, or
undefined if the specified pid is not a disk log process.

 reopen(Log, File)

 Equivalent to reopen(Log, File, Head) where Head is
the Head specified in open/1.

 reopen(Log, File, Head)

 Renames an internally formatted log file to File and then recreates a new log file. If a
wrap/rotate log exists, File is used as the base name of the renamed files.

 sync(Log)

 Ensures that the contents of the log are written to the disk. This is usually a
rather expensive operation.

 truncate(Log)

 Equivalent to truncate(Log, Head) where Head is
the Head specified in open/1.

 truncate(Log, Head)

 Removes all items from an internally formatted disk log. The argument Head or
is written first in the newly truncated log.

 unblock(Log)

 Unblocks a log. A log can only be unblocked by the blocking process.

 Types

 bchunk_ret()

 (not exported)

 -type bchunk_ret() ::
 {Continuation2 :: continuation(), Binaries :: [binary()]} |
 {Continuation2 :: continuation(), Binaries :: [binary()], Badbytes :: non_neg_integer()} |
 eof |
 {error, Reason :: chunk_error_rsn()}.

 block_error_rsn()

 (not exported)

 -type block_error_rsn() :: no_such_log | nonode | {blocked_log, log()}.

 chunk_error_rsn()

 (not exported)

 -type chunk_error_rsn() ::
 no_such_log |
 {format_external, log()} |
 {blocked_log, log()} |
 {badarg, continuation} |
 {not_internal_wrap, log()} |
 {corrupt_log_file, FileName :: file:filename()} |
 {file_error, file:filename(), file_error()}.

 chunk_ret()

 (not exported)

 -type chunk_ret() ::
 {Continuation2 :: continuation(), Terms :: [term()]} |
 {Continuation2 :: continuation(), Terms :: [term()], Badbytes :: non_neg_integer()} |
 eof |
 {error, Reason :: chunk_error_rsn()}.

 close_error_rsn()

 (not exported)

 -type close_error_rsn() :: no_such_log | nonode | {file_error, file:filename(), file_error()}.

 continuation()

 -opaque continuation()

Chunk continuation returned by chunk/2,3,
bchunk/2,3, or chunk_step/3.

 dlog_format()

 (not exported)

 -type dlog_format() :: external | internal.

 dlog_head_opt()

 (not exported)

 -type dlog_head_opt() :: none | term() | iodata().

 dlog_info()

 (not exported)

 -type dlog_info() ::
 {name, Log :: log()} |
 {file, File :: file:filename()} |
 {type, Type :: dlog_type()} |
 {format, Format :: dlog_format()} |
 {size, Size :: dlog_size()} |
 {mode, Mode :: dlog_mode()} |
 {owners, [{pid(), Notify :: boolean()}]} |
 {users, Users :: non_neg_integer()} |
 {status, Status :: ok | {blocked, QueueLogRecords :: boolean()}} |
 {node, Node :: node()} |
 {head, Head :: none | {head, binary()} | (MFA :: {atom(), atom(), list()})} |
 {no_written_items, NoWrittenItems :: non_neg_integer()} |
 {full, Full :: boolean} |
 {no_current_bytes, non_neg_integer()} |
 {no_current_items, non_neg_integer()} |
 {no_items, non_neg_integer()} |
 {current_file, pos_integer()} |
 {no_overflows, {SinceLogWasOpened :: non_neg_integer(), SinceLastInfo :: non_neg_integer()}}.

 dlog_mode()

 (not exported)

 -type dlog_mode() :: read_only | read_write.

 dlog_optattr()

 (not exported)

 -type dlog_optattr() ::
 name | file | linkto | repair | type | format | size | notify | head | head_func | mode.

 dlog_option()

 (not exported)

 -type dlog_option() ::
 {name, Log :: log()} |
 {file, FileName :: file:filename()} |
 {linkto, LinkTo :: none | pid()} |
 {repair, Repair :: true | false | truncate} |
 {type, Type :: dlog_type()} |
 {format, Format :: dlog_format()} |
 {size, Size :: dlog_size()} |
 {notify, boolean()} |
 {head, Head :: dlog_head_opt()} |
 {head_func, MFA :: {atom(), atom(), list()}} |
 {quiet, boolean()} |
 {mode, Mode :: dlog_mode()}.

 dlog_options()

 (not exported)

 -type dlog_options() :: [dlog_option()].

 dlog_size()

 (not exported)

 -type dlog_size() ::
 infinity | pos_integer() | {MaxNoBytes :: pos_integer(), MaxNoFiles :: pos_integer()}.

 dlog_type()

 (not exported)

 -type dlog_type() :: halt | wrap | rotate.

 file_error()

 (not exported)

 -type file_error() :: term().

 inc_wrap_error_rsn()

 (not exported)

 -type inc_wrap_error_rsn() :: next_file_error_rsn().

 invalid_header()

 (not exported)

 -type invalid_header() :: term().

 log()

 (not exported)

 -type log() :: term().

 log_error_rsn()

 (not exported)

 -type log_error_rsn() ::
 no_such_log | nonode |
 {read_only_mode, log()} |
 {format_external, log()} |
 {blocked_log, log()} |
 {full, log()} |
 {invalid_header, invalid_header()} |
 {file_error, file:filename(), file_error()}.

 next_file_error_rsn()

 (not exported)

 -type next_file_error_rsn() ::
 no_such_log | nonode |
 {read_only_mode, log()} |
 {blocked_log, log()} |
 {halt_log, log()} |
 {rotate_log, log()} |
 {invalid_header, invalid_header()} |
 {file_error, file:filename(), file_error()}.

 notify_ret()

 (not exported)

 -type notify_ret() :: ok | {error, no_such_log}.

 open_error_rsn()

 (not exported)

 -type open_error_rsn() ::
 no_such_log |
 {badarg, term()} |
 {size_mismatch, CurrentSize :: dlog_size(), NewSize :: dlog_size()} |
 {arg_mismatch, OptionName :: dlog_optattr(), CurrentValue :: term(), Value :: term()} |
 {name_already_open, Log :: log()} |
 {open_read_write, Log :: log()} |
 {open_read_only, Log :: log()} |
 {need_repair, Log :: log()} |
 {not_a_log_file, FileName :: file:filename()} |
 {invalid_index_file, FileName :: file:filename()} |
 {invalid_header, invalid_header()} |
 {file_error, file:filename(), file_error()} |
 {node_already_open, Log :: log()}.

 open_ret()

 (not exported)

 -type open_ret() ::
 {ok, Log :: log()} |
 {repaired,
 Log :: log(),
 {recovered, Rec :: non_neg_integer()},
 {badbytes, Bad :: non_neg_integer()}} |
 {error, open_error_rsn()}.

 reopen_error_rsn()

 (not exported)

 -type reopen_error_rsn() ::
 no_such_log | nonode |
 {read_only_mode, log()} |
 {blocked_log, log()} |
 {same_file_name, log()} |
 {invalid_index_file, file:filename()} |
 {invalid_header, invalid_header()} |
 {file_error, file:filename(), file_error()}.

 sync_error_rsn()

 (not exported)

 -type sync_error_rsn() ::
 no_such_log | nonode |
 {read_only_mode, log()} |
 {blocked_log, log()} |
 {file_error, file:filename(), file_error()}.

 trunc_error_rsn()

 (not exported)

 -type trunc_error_rsn() ::
 no_such_log | nonode |
 {read_only_mode, log()} |
 {blocked_log, log()} |
 {invalid_header, invalid_header()} |
 {file_error, file:filename(), file_error()}.

 unblock_error_rsn()

 (not exported)

 -type unblock_error_rsn() :: no_such_log | nonode | {not_blocked, log()} | {not_blocked_by_pid, log()}.

 Functions

 all()

 (since OTP 24.0)

 -spec all() -> [Log] when Log :: log().

Returns the names of the disk logs accessible on the current node.

 alog(Log, Term)

 -spec alog(Log, Term) -> notify_ret() when Log :: log(), Term :: term().

Asynchronously version of log/2.
Owners subscribing to notifications receive message read_only, blocked_log,
or format_external if the item cannot be written on the log, and possibly one
of the messages wrap, full, or error_status if an item is written on the
log. Message error_status is sent if something is wrong with the header
function or if a file error occurs.

 alog_terms(Log, TermList)

 -spec alog_terms(Log, TermList) -> notify_ret() when Log :: log(), TermList :: [term()].

Asynchronously version of log_terms/2.
Owners subscribing to notifications receive message read_only, blocked_log,
or format_external if the items cannot be written on the log, and possibly one
or more of the messages wrap, full, and error_status if items are written
on the log. Message error_status is sent if something is wrong with the header
function or if a file error occurs.

 balog(Log, Bytes)

 -spec balog(Log, Bytes) -> notify_ret() when Log :: log(), Bytes :: iodata().

Asynchronously version of blog/2.
Owners subscribing to notifications receive message read_only, blocked_log,
or format_external if the item cannot be written on the log, and possibly one
of the messages wrap, full, or error_status if an item is written on the
log. Message error_status is sent if something is wrong with the header
function or if a file error occurs.

 balog_terms(Log, ByteList)

 -spec balog_terms(Log, ByteList) -> notify_ret() when Log :: log(), ByteList :: [iodata()].

Asynchronously version of blog_terms/2.
Owners subscribing to notifications receive message read_only, blocked_log,
or format_external if the items cannot be written on the log, and possibly one
or more of the messages wrap, full, and error_status if items are written
on the log. Message error_status is sent if something is wrong with the header
function or if a file error occurs.

 bchunk(Log, Continuation)

 -spec bchunk(Log, Continuation) -> bchunk_ret()
 when Log :: log(), Continuation :: start | continuation().

Equivalent to bchunk(Log, Cont, infinity).

 bchunk(Log, Continuation, N)

 -spec bchunk(Log, Continuation, N) -> bchunk_ret()
 when Log :: log(), Continuation :: start | continuation(), N :: pos_integer() | infinity.

Equivalent to chunk(Log, Continuation, N) except that
it returns the binaries read from the file, that is it does not call
binary_to_term/1.

 block(Log)

 -spec block(Log) -> ok | {error, block_error_rsn()} when Log :: log().

Equivalent to block(Log, true).

 block(Log, QueueLogRecords)

 -spec block(Log, QueueLogRecords) -> ok | {error, block_error_rsn()}
 when Log :: log(), QueueLogRecords :: boolean().

With a call to block/2 a process can block a log.
If the blocking process is not an owner of the log, a temporary link is created
between the disk log process and the blocking process. The link ensures that the disk log is
unblocked if the blocking process terminates without first closing or unblocking
the log.
Any process can probe a blocked log with info/1 or close it with
close/1. The blocking process can also use functions chunk/2,3,
bchunk/2,3, chunk_step/3, and unblock/1
without being affected by the block. Any other attempt than those mentioned so
far to update or read a blocked log suspends the calling process until the log
is unblocked or returns error message {blocked_log, Log}, depending on whether
the value of QueueLogRecords is true or false.

 blog(Log, Bytes)

 -spec blog(Log, Bytes) -> ok | {error, Reason :: log_error_rsn()} when Log :: log(), Bytes :: iodata().

Equivalent to log/2 except that it is used for externally formatted logs.
blog/2 can also be used for internally formatted logs
if the binaries are constructed with calls to term_to_binary/1.

 blog_terms(Log, BytesList)

 -spec blog_terms(Log, BytesList) -> ok | {error, Reason :: log_error_rsn()}
 when Log :: log(), BytesList :: [iodata()].

Equivalent to log_terms/2 except that it is used for externally formatted logs.
blog_terms/2 can also be used for internally formatted logs
if the binaries are constructed with calls to term_to_binary/1.

 breopen(Log, File, BHead)

 -spec breopen(Log, File, BHead) -> ok | {error, reopen_error_rsn()}
 when Log :: log(), File :: file:filename(), BHead :: iodata().

Equivalent to reopen except that it is used for externally formatted logs.

 btruncate(Log, BHead)

 -spec btruncate(Log, BHead) -> ok | {error, trunc_error_rsn()} when Log :: log(), BHead :: iodata().

Equivalent to truncate/2 for externally formatted logs.

 change_header(Log, Header)

 -spec change_header(Log, Header) -> ok | {error, Reason}
 when
 Log :: log(),
 Header ::
 {head, dlog_head_opt()} | {head_func, MFA :: {atom(), atom(), list()}},
 Reason ::
 no_such_log | nonode |
 {read_only_mode, Log} |
 {blocked_log, Log} |
 {badarg, head}.

Changes the value of option head or head_func for an owner of a disk log.

 change_notify(Log, Owner, Notify)

 -spec change_notify(Log, Owner, Notify) -> ok | {error, Reason}
 when
 Log :: log(),
 Owner :: pid(),
 Notify :: boolean(),
 Reason ::
 no_such_log | nonode |
 {blocked_log, Log} |
 {badarg, notify} |
 {not_owner, Owner}.

Changes the value of option notify for an owner of a disk log.

 change_size(Log, Size)

 -spec change_size(Log, Size) -> ok | {error, Reason}
 when
 Log :: log(),
 Size :: dlog_size(),
 Reason ::
 no_such_log | nonode |
 {read_only_mode, Log} |
 {blocked_log, Log} |
 {new_size_too_small, Log, CurrentSize :: pos_integer()} |
 {badarg, size} |
 {file_error, file:filename(), file_error()}.

Changes the size of an open log. For a halt log, the size can always be
increased, but it cannot be decreased to something less than the current file
size.
For a wrap or rotate log, both the size and the number of files can always be
increased, as long as the number of files does not exceed 65000. For wrap logs,
if the maximum number of files is decreased, the change is not valid until the
current file is full and the log wraps to the next file. The redundant files are
removed the next time the log wraps around, that is, starts to log to file
number 1.
As an example, assume that the old maximum number of files is 10 and that the
new maximum number of files is 6. If the current file number is not greater than
the new maximum number of files, files 7-10 are removed when file 6 is full and
the log starts to write to file number 1 again. Otherwise, the files greater
than the current file are removed when the current file is full (for example, if
the current file is 8, files 9 and 10 are removed). The files between the new
maximum number of files and the current file (that is, files 7 and 8) are
removed the next time file 6 is full.
For rotate logs, if the maximum number of files is decreased, the redundant
files are deleted instantly.
If the size of the files is decreased, the change immediately affects the
current log. It does not change the size of log files already full until the
next time they are used.
If the log size is decreased, for example, to save space, function
next_file/1, can be used to force the log to wrap.

 chunk(Log, Continuation)

 -spec chunk(Log, Continuation) -> chunk_ret() when Log :: log(), Continuation :: start | continuation().

Equivalent to chunk(Log, Continuation, infinity).

 chunk(Log, Continuation, N)

 -spec chunk(Log, Continuation, N) -> chunk_ret()
 when Log :: log(), Continuation :: start | continuation(), N :: pos_integer() | infinity.

Efficiently reads the terms that are appended to an internally formatted log.
It minimizes disk I/O by reading 64 kilobyte chunks from the file.
The first time chunk() is called, an initial continuation, the
atom start, must be provided.
When chunk/3 is called, N controls the maximum number of terms
that are read from the log in each chunk. infinity means
that all the terms contained in the 64 kilobyte chunk are read. If less than N
terms are returned, this does not necessarily mean that the end of the file is
reached.
chunk/3 returns a tuple {Continuation2, Terms}, where Terms is a list of
terms found in the log. Continuation2 is yet another continuation, which must
be passed on to any subsequent calls to chunk(). With a series of calls to
chunk(), all terms from a log can be extracted.
chunk/3 returns a tuple {Continuation2, Terms, Badbytes} if the log is
opened in read-only mode and the read chunk is corrupt. Badbytes is the number
of bytes in the file found not to be Erlang terms in the chunk. Notice that the
log is not repaired. When trying to read chunks from a log opened in read-write
mode, tuple {corrupt_log_file, FileName} is returned if the read chunk is
corrupt.
chunk/3 returns eof when the end of the log is reached, or {error, Reason}
if an error occurs. If a wrap log file is missing, a message is output on the
error log.
When chunk/2,3 is used with wrap logs, the returned continuation might not be
valid in the next call to chunk/3. This is because the log can wrap and delete
the file into which the continuation points. To prevent this, the log can be
blocked during the search.

 chunk_info(Continuation)

 -spec chunk_info(Continuation) -> InfoList | {error, Reason}
 when
 Continuation :: continuation(),
 InfoList :: [{node, Node :: node()}, ...],
 Reason :: {no_continuation, Continuation}.

Returns the pair {node, Node}, describing the chunk continuation returned by
chunk/2,3, bchunk/2,3, or chunk_step/3.
Terms are read from the disk log running on Node.

 chunk_step(Log, Continuation, Step)

 -spec chunk_step(Log, Continuation, Step) -> {ok, any()} | {error, Reason}
 when
 Log :: log(),
 Continuation :: start | continuation(),
 Step :: integer(),
 Reason ::
 no_such_log | end_of_log |
 {format_external, Log} |
 {blocked_log, Log} |
 {badarg, continuation} |
 {file_error, file:filename(), file_error()}.

Can be used with chunk/2,3 and bchunk/2,3 to
search through an internally formatted wrap log.
It takes as argument a continuation as returned by chunk/2,3,
bchunk/2,3, or chunk_step/3, and steps
forward (or backward) Step files in the wrap log. The continuation returned,
points to the first log item in the new current file.
If atom start is specified as continuation, the first file of the wrap log is
chosen as the new current file.
If the wrap log is not full because all files are not yet used,
{error, end_of_log} is returned if trying to step outside the log.

 close(Log)

 -spec close(Log) -> ok | {error, close_error_rsn()} when Log :: log().

Closes a disk log properly.
An internally formatted log must be closed before the Erlang system is stopped.
Otherwise, the log is regarded as unclosed and the automatic repair procedure is
activated next time the log is opened.
The disk log process is not terminated as long as there are owners or users of
the log. All owners must close the log, possibly by terminating. Also, any other
process, not only the processes that have opened the log anonymously, can
decrement the users counter by closing the log. Attempts to close a log by a
process that is not an owner are ignored if there are no users.
If the log is blocked by the closing process, the log is also unblocked.

 format_error(Error)

 -spec format_error(Error) -> io_lib:chars() when Error :: term().

Given the error returned by any function in this module, this function returns a
descriptive string of the error in English.
For file errors, function format_error/1 in module
file is called.

 inc_wrap_file(Log)

 This function is deprecated. disk_log:inc_wrap_file/1 is deprecated; use disk_log:next_file/1 instead.

 -spec inc_wrap_file(Log) -> ok | {error, inc_wrap_error_rsn()} when Log :: log().

Forces the internally formatted disk log to start logging to the next log file.
It can be used, for example, with change_size/2 to reduce
the amount of disk space allocated by the disk log.
Owners subscribing to notifications normally receive a wrap message, but if an
error occurs with a reason tag of invalid_header or file_error, an
error_status message is sent.

 info(Log)

 -spec info(Log) -> InfoList | {error, no_such_log} when Log :: log(), InfoList :: [dlog_info()].

Returns a list of {Tag, Value} pairs describing a log running on the node.
The following pairs are returned for all logs:
	{name, Log} - Log is the log name as specified by the
open/1 option name.

	{file, File} - For halt logs File is the filename, and for wrap logs
File is the base name.

	{type, Type} - Type is the log type as specified by the
open/1 option type.

	{format, Format} - Format is the log format as specified by the
open/1 option format.

	{size, Size} - Size is the log size as specified by the
open/1 option size, or the size set by
change_size/2. The value set by
change_size/2 is reflected immediately.

	{mode, Mode} - Mode is the log mode as specified by the
open/1 option mode.

	{owners, [{pid(), Notify}]} - Notify is the value set by the
open/1 option notify or function
change_notify/3 for the owners of the log.

	{users, Users} - Users is the number of anonymous users of the log,
see the open/1 option linkto.

	{status, Status} - Status is ok or {blocked, QueueLogRecords} as
set by functions block/1,2 and unblock/1.

	{node, Node} - The information returned by the current invocation of
function info/1 is gathered from the disk log process running on
Node.

The following pairs are returned for all logs opened in read_write mode:
	{head, Head} - Depending on the value of the open/1
options head and head_func, or set by function
change_header/2, the value of Head is none
(default), {head, H} (head option), or {M,F,A} (head_func option).

	{no_written_items, NoWrittenItems} - NoWrittenItems is the number of
items written to the log since the disk log process was created.

The following pair is returned for halt logs opened in read_write mode:
	{full, Full} - Full is true or false depending on whether the halt
log is full or not.

The following pairs are returned for wrap logs opened in read_write mode:
	{no_current_bytes, integer() >= 0} - The number of bytes written to the
current wrap log file.

	{no_current_items, integer() >= 0} - The number of items written to the
current wrap log file, header inclusive.

	{no_items, integer() >= 0} - The total number of items in all wrap log
files.

	{current_file, integer()} - The ordinal for the current wrap log file in
the range 1..MaxNoFiles, where MaxNoFiles is specified by the
open/1 option size or set by
change_size/2.

	{no_overflows, {SinceLogWasOpened, SinceLastInfo}} - SinceLogWasOpened
(SinceLastInfo) is the number of times a wrap log file has been filled up
and a new one is opened or inc_wrap_file/1 has been
called since the disk log was last opened (info/1 was last
called). The first time info/2 is called after a log was (re)opened or
truncated, the two values are equal.

Notice that functions chunk/2,3, bchunk/2,3, and
chunk_step/3 do not affect any value returned by
info/1.

 log(Log, Term)

 -spec log(Log, Term) -> ok | {error, Reason :: log_error_rsn()} when Log :: log(), Term :: term().

Synchronously appends a term to a internally formatted disk log. Returns ok
or {error, Reason} when the term is written to disk.
Terms are written by the ordinary write() function of the operating system.
Hence, it is not guaranteed that the term is written to disk, it can linger in
the operating system kernel for a while. To ensure that the item is written to disk,
function sync/1 must be called.
Owners subscribing to notifications are notified of an error with an
error_status message if the error reason tag is invalid_header or
file_error.

 log_terms(Log, TermList)

 -spec log_terms(Log, TermList) -> ok | {error, Reason :: log_error_rsn()}
 when Log :: log(), TermList :: [term()].

Synchronously appends a list of items to an internally formatted log.
It is more efficient to use this functions instead of log/2. The specified
list is split into as large sublists as possible (limited by the size of wrap log files),
and each sublist is logged as one single item, which reduces the overhead.
Owners subscribing to notifications are notified of an error with an
error_status message if the error reason tag is invalid_header or
file_error.

 next_file(Log)

 (since OTP 26.0)

 -spec next_file(Log) -> ok | {error, next_file_error_rsn()} when Log :: log().

For wrap logs, it forces the disk log to start logging to the next log file. It
can be used, for example, with change_size/2 to reduce the
amount of disk space allocated by the disk log.
Owners subscribing to notifications normally receive a wrap message, but if an
error occurs with a reason tag of invalid_header or file_error, an
error_status message is sent.
For rotate logs, it forces rotation of the currently active log file, compresses
it and opens a new active file for logging.

 open(ArgL)

 -spec open(ArgL) -> open_ret() when ArgL :: dlog_options().

Open a new disk_log file for reading or writing.
Parameter ArgL is a list of the following options:
	{name, Log} - Specifies the log name. This name must be passed on as a
parameter in all subsequent logging operations. A name must always be
supplied.

	{file, FileName} - Specifies the name of the file to be used for logged
terms. If this value is omitted and the log name is an atom or a string, the
filename defaults to lists:concat([Log, ".LOG"]) for halt logs.
For wrap logs, this is the base name of the files. Each file in a wrap log is
called <FileName>.N, where N is an integer. Each wrap log also has two
files called <FileName>.idx and <FileName>.siz.
For rotate logs, this is the name of the active log file. The compressed files
are named as <FileName>.N.gz, where N is an integer and <FileName>.0.gz
is the latest compressed log file. All the compressed files are renamed at
each rotation so that the latest files have the smallest index. The maximum
value for N is the value of MaxNoFiles minus 1.

	{linkto, LinkTo}
 If LinkTo is a pid, it becomes an owner of the log. If LinkTo is none, the
log records that it is used anonymously by some process by incrementing the users
counter. By default, the process that calls open/1 owns the log.

	{repair, Repair} - If Repair is true, the current log file is
repaired, if needed. As the restoration is initiated, a message is output on
the error log. If false is specified, no automatic repair is attempted.
Instead, the tuple {error, {need_repair, Log}} is returned if an attempt is
made to open a corrupt log file. If truncate is specified, the log file
becomes truncated, creating an empty log, regardless of previous content.
Defaults to true, which has no effect on logs opened in read-only mode.

	{type, Type} - The log type. Defaults to halt.

	{format, Format} - Disk log format. Defaults to internal.

	{size, Size} - Log size.
When a halt log has reached its maximum size, all attempts to log more items
are rejected. Defaults to infinity, which for halt implies that there is no
maximum size.
For wrap and rotate logs, parameter Size can be a pair
{MaxNoBytes, MaxNoFiles}. For wrap logs it can also be infinity. In the
latter case, if the files of an existing wrap log with the same name can be
found, the size is read from the existing wrap log, otherwise an error is
returned.
Wrap logs write at most MaxNoBytes bytes on each file and use MaxNoFiles
files before starting all over with the first wrap log file. Regardless of
MaxNoBytes, at least the header (if there is one) and one item are written
on each wrap log file before wrapping to the next file.
The first time an existing wrap log is opened, that is, when the disk log
process is created, the value of the option size is allowed to differ from
the current log size, and the size of the disk log is changed as per
change_size/2.
When opening an existing wrap log, it is not necessary to supply a value for
option size, but if the log is already open, that is, the disk log process
exists, the supplied value must equal the current log size, otherwise the
tuple {error, {size_mismatch, CurrentSize, NewSize}} is returned.
Note
Before Erlang/OTP 24.0, the supplied value of option size was to be equal
to the current log size when opening an existing wrap log for the first
time, that is, when creating the disk log process.
Rotate logs write at most MaxNoBytes bytes on the active log file and keep
the latest MaxNoFiles compressed files. Regardless of MaxNoBytes, at least
the header (if there is one) and one item are written on each rotate log file
before rotation.
When opening an already open halt log, option size is ignored.

	{notify, boolean()} - If true, the log owners are notified
when certain log events occur. Defaults to false. The owners are sent one of the
following messages when an event occurs:
	{disk_log, Node, Log, {wrap, NoLostItems}} - Sent when a wrap log has
filled up one of its files and a new file is opened. NoLostItems is the
number of previously logged items that were lost when truncating existing
files.

	{disk_log, Node, Log, {truncated, NoLostItems}} - Sent when a log is
truncated or reopened. For halt logs NoLostItems is the number of items
written on the log since the disk log process was created. For wrap logs
NoLostItems is the number of items on all wrap log files.

	{disk_log, Node, Log, {read_only, Items}} - Sent when an asynchronous
log attempt is made to a log file opened in read-only mode. Items is the
items from the log attempt.

	{disk_log, Node, Log, {blocked_log, Items}} - Sent when an
asynchronous log attempt is made to a blocked log that does not queue log
attempts. Items is the items from the log attempt.

	{disk_log, Node, Log, {format_external, Items}} - Sent when function
alog/2 or alog_terms/2 is used for
internally formatted logs. Items is the items from the log attempt.

	{disk_log, Node, Log, full} - Sent when an attempt to log items to a
wrap log would write more bytes than the limit set by option size.

	{disk_log, Node, Log, {error_status, Status}} - Sent when the error
status changes. The error status is defined by the outcome of the last
attempt to log items to the log, or to truncate the log, or the last use of
function sync/1, inc_wrap_file/1, or
change_size/2. Status is either ok or
{error, Error}, the former is the initial value.

	{head, Head} - Specifies a header to be written first on the log file.
If the log is a wrap or rotate log, the item Head is written first in each
new file. Head is to be a term if the format is internal, otherwise an
iodata/0. Defaults to none, which means that no header is written first
on the file.

	{head_func, {M,F,A}} - Specifies a function to be called each time a new
log file is opened. The call M:F(A) is assumed to return {ok, Head}. The
item Head is written first in each file. Head is to be a term if the
format is internal, otherwise an iodata/0.

	{mode, Mode} - Specifies if the log is to be opened in read-only or
read-write mode. Defaults to read_write.

	{quiet, Boolean} - Specifies if messages will be sent to error_logger
on recoverable errors with the log files. Defaults to false.

open/1 returns {ok, Log} if the log file is successfully opened.
If the file is successfully repaired, the tuple
{repaired, Log, {recovered, Rec}, {badbytes, Bad}} is returned, where Rec is
the number of whole Erlang terms found in the file and Bad is the number of
bytes in the file that are non-Erlang terms.
When a disk log is opened in read-write mode, any existing log file is checked
for. If there is none, a new empty log is created, otherwise the existing file
is opened at the position after the last logged item, and the logging of items
starts from there. If the format is internal and the existing file is not
recognized as an internally formatted log, a tuple
{error, {not_a_log_file, FileName}} is returned.
open/1 cannot be used for changing the values of options of an
open log. When there are prior owners or users of a log, all option values
except name, linkto, and notify are only checked against the values
supplied before as option values to function open/1,
change_header/2, change_notify/3,
or change_size/2. Thus, none of the options except name
is mandatory. If some specified value differs from the current value, a tuple
{error, {arg_mismatch, OptionName, CurrentValue, Value}} is returned.
Note
If an owner attempts to open a log as owner once again, it is acknowledged
with the return value {ok, Log}, but the state of the disk log is not
affected.
A log file can be opened more than once by giving different values to option
name or by using the same file when opening a log on different nodes. It is up
to the user of module disk_log to ensure that not more than one disk log
process has write access to any file, otherwise the file can be corrupted.
If an attempt to open a log file for the first time fails, the disk log process
terminates with the EXIT message {{failed,Reason},[{disk_log,open,1}]}. The
function returns {error, Reason} for all other errors.

 pid2name(Pid)

 -spec pid2name(Pid) -> {ok, Log} | undefined when Pid :: pid(), Log :: log().

Returns the log name given the pid of a disk log process on the current node, or
undefined if the specified pid is not a disk log process.
This function is meant to be used for debugging only.

 reopen(Log, File)

 -spec reopen(Log, File) -> ok | {error, reopen_error_rsn()} when Log :: log(), File :: file:filename().

Equivalent to reopen(Log, File, Head) where Head is
the Head specified in open/1.

 reopen(Log, File, Head)

 -spec reopen(Log, File, Head) -> ok | {error, reopen_error_rsn()}
 when Log :: log(), File :: file:filename(), Head :: term().

Renames an internally formatted log file to File and then recreates a new log file. If a
wrap/rotate log exists, File is used as the base name of the renamed files.
Writes the value of Head first in the newly opened log file. The header argument
is used only once. Next time a wrap/rotate log file is opened, the header given to
open/1 is used.
Owners subscribing to notifications receive a truncate message.
Upon failure to reopen the log, the disk log process terminates with the EXIT
message {{failed,Error},[{disk_log,Fun,Arity}]}. Other processes having
requests queued receive the message
{disk_log, Node, {error, disk_log_stopped}}.

 sync(Log)

 -spec sync(Log) -> ok | {error, sync_error_rsn()} when Log :: log().

Ensures that the contents of the log are written to the disk. This is usually a
rather expensive operation.

 truncate(Log)

 -spec truncate(Log) -> ok | {error, trunc_error_rsn()} when Log :: log().

Equivalent to truncate(Log, Head) where Head is
the Head specified in open/1.
This function can be used for both internally and externally
formatted logs.

 truncate(Log, Head)

 -spec truncate(Log, Head) -> ok | {error, trunc_error_rsn()} when Log :: log(), Head :: term().

Removes all items from an internally formatted disk log. The argument Head or
is written first in the newly truncated log.
The header argument is used only once. Next time a wrap/rotate log file is opened,
the header given to open/1 is used.
Owners subscribing to notifications receive a truncate message.
If the attempt to truncate the log fails, the disk log process terminates with
the EXIT message {{failed,Reason},[{disk_log,Fun,Arity}]}. Other processes
having requests queued receive the message
{disk_log, Node, {error, disk_log_stopped}}.

 unblock(Log)

 -spec unblock(Log) -> ok | {error, unblock_error_rsn()} when Log :: log().

Unblocks a log. A log can only be unblocked by the blocking process.

 error_logger - kernel v10.4

error_logger

Erlang error logger.
Note
In Erlang/OTP 21.0, a new API for logging was added. The old error_logger
module can still be used by legacy code, but log events are redirected to the
new Logger API. New code should use the Logger API directly.
error_logger is no longer started by default, but is automatically started
when an event handler is added with error_logger:add_report_handler/1,2. The
error_logger module is then also added as a handler to the new logger.
See logger and the Logging chapter in the User's
Guide for more information.
The Erlang error logger is an event manager (see
OTP Design Principles and gen_event),
registered as error_logger.
Error logger is no longer started by default, but is automatically started when
an event handler is added with
add_report_handler/1,2. The error_logger module is
then also added as a handler to the new logger, causing log events to be
forwarded from logger to error logger, and consequently to all installed error
logger event handlers.
User-defined event handlers can be added to handle application-specific events.
Existing event handlers provided by STDLIB and SASL are still available, but are
no longer used by OTP.
Warning events were introduced in Erlang/OTP R9C and are enabled by default as
from Erlang/OTP 18.0. To retain backwards compatibility with existing
user-defined event handlers, the warning events can be tagged as errors or
info using command-line flag +W <e | i | w>, thus showing up as
ERROR REPORT or INFO REPORT in the logs.

Events
All event handlers added to the error logger must handle the following events.
Gleader is the group leader pid of the process that sent the event, and Pid
is the process that sent the event.
	{error, Gleader, {Pid, Format, Data}} -
Generated when error_msg/1,2 or format/2 is called.

	{error_report, Gleader, {Pid, std_error, Report}} -
Generated when error_report/1 is called.

	{error_report, Gleader, {Pid, Type, Report}} -
Generated when error_report/2 is called.

	{warning_msg, Gleader, {Pid, Format, Data}} -
Generated when warning_msg/1,2 is called if warnings are set to
be tagged as warnings.

	{warning_report, Gleader, {Pid, std_warning, Report}} -
Generated when warning_report/1 is called if warnings are
set to be tagged as warnings.

	{warning_report, Gleader, {Pid, Type, Report}} - Generated when
warning_report/2 is called if warnings are set to be
tagged as warnings.

	{info_msg, Gleader, {Pid, Format, Data}} -
Generated when info_msg/1,2 is called.

	{info_report, Gleader, {Pid, std_info, Report}} -
Generated when info_report/1 is called.

	{info_report, Gleader, {Pid, Type, Report}} -
Generated when info_report/2 is called.

Notice that some system-internal events can also be received. Therefore a
catch-all clause last in the definition of the event handler callback function
gen_event:handle_event/2 is necessary. This also applies for
gen_event:handle_info/2, as the event handler must also take care of some
system-internal messages.
See Also
gen_event, logger, log_mf_h, kernel,
sasl

 Summary

 Types

 open_error()

 report()

 Functions

 add_report_handler(Handler)

 Equivalent to add_report_handler(Handler, []).

 add_report_handler(Handler, Args)

 Adds a new event handler to the error logger. The event handler must be
implemented as a gen_event callback module.

 delete_report_handler(Handler)

 Deletes an event handler from the error logger by calling
gen_event:delete_handler(error_logger, Handler, []).

 error_msg(Format)

 Equivalent to error_msg(Format, []).

 error_msg(Format, Data)

 Log a standard error event. The Format and Data arguments are the same as
the arguments of io:format/2 in STDLIB.

 error_report(Report)

 Log a standard error event. Error logger forwards the event to Logger, including
metadata that allows backwards compatibility with legacy error logger event
handlers.

 error_report(Type, Report)

 Log a user-defined error event. Error logger forwards the event to Logger,
including metadata that allows backwards compatibility with legacy error logger
event handlers.

 format(Format, Data)

 Equivalent to error_msg(Format, Data).

 get_format_depth()

 Returns max(10, Depth), where Depth is the value of
error_logger_format_depth in the
Kernel application, if Depth is an integer. Otherwise, unlimited is returned.

 info_msg(Format)

 Equivalent to info_msg(Format, []).

 info_msg(Format, Data)

 Log a standard information event. The Format and Data arguments are the same
as the arguments of io:format/2 in STDLIB.

 info_report(Report)

 Log a standard information event. Error logger forwards the event to Logger,
including metadata that allows backwards compatibility with legacy error logger
event handlers.

 info_report(Type, Report)

 Log a user-defined information event. Error logger forwards the event to Logger,
including metadata that allows backwards compatibility with legacy error logger
event handlers.

 logfile/1

 Enables or disables printout of standard events to a file.

 tty(Flag)

 Enables (Flag == true) or disables (Flag == false) printout of standard
events to the terminal.

 warning_map()

 Returns the current mapping for warning events.

 warning_msg(Format)

 Equivalent to warning_msg(Format, []).

 warning_msg(Format, Data)

 Log a standard warning event. The Format and Data arguments are the same as
the arguments of io:format/2 in STDLIB.

 warning_report(Report)

 Log a standard warning event. Error logger forwards the event to Logger,
including metadata that allows backwards compatibility with legacy error logger
event handlers.

 warning_report(Type, Report)

 Log a user-defined warning event. Error logger forwards the event to Logger,
including metadata that allows backwards compatibility with legacy error logger
event handlers.

 Types

 open_error()

 (not exported)

 -type open_error() :: file:posix() | badarg | system_limit.

 report()

 (not exported)

 -type report() :: [{Tag :: term(), Data :: term()} | term()] | string() | term().

 Functions

 add_report_handler(Handler)

 -spec add_report_handler(Handler) -> any() when Handler :: module().

Equivalent to add_report_handler(Handler, []).

 add_report_handler(Handler, Args)

 -spec add_report_handler(Handler, Args) -> Result
 when
 Handler :: module(),
 Args :: gen_event:handler_args(),
 Result :: gen_event:add_handler_ret().

Adds a new event handler to the error logger. The event handler must be
implemented as a gen_event callback module.
Handler is typically the name of the callback module and Args is an optional
term (defaults to []) passed to the initialization callback function
gen_event:init/1. The function returns ok if successful.
The event handler must be able to handle the events in this module, see section
Events.
The first time this function is called, error_logger is added as a Logger
handler, and the error_logger process is started.

 delete_report_handler(Handler)

 -spec delete_report_handler(Handler) -> Result
 when Handler :: module(), Result :: gen_event:del_handler_ret().

Deletes an event handler from the error logger by calling
gen_event:delete_handler(error_logger, Handler, []).
If no more event handlers exist after the deletion, error_logger is removed as
a Logger handler, and the error_logger process is stopped.

 error_msg(Format)

 -spec error_msg(Format) -> ok when Format :: string().

Equivalent to error_msg(Format, []).

 error_msg(Format, Data)

 -spec error_msg(Format, Data) -> ok when Format :: string(), Data :: list().

Log a standard error event. The Format and Data arguments are the same as
the arguments of io:format/2 in STDLIB.
Error logger forwards the event to Logger, including metadata that allows
backwards compatibility with legacy error logger event handlers.
The event is handled by the default Logger handler.
This function is kept for backwards compatibility and must not be used by new
code. Use the ?LOG_ERROR macro or
logger:error/1,2,3 instead.
Example:
1> error_logger:error_msg("An error occurred in ~p", [a_module]).
=ERROR REPORT==== 22-May-2018::11:18:43.376917 ===
An error occurred in a_module
ok
Warning
If the Unicode translation modifier (t) is used in the format string, all
event handlers must ensure that the formatted output is correctly encoded for
the I/O device.

 error_report(Report)

 -spec error_report(Report) -> ok when Report :: report().

Log a standard error event. Error logger forwards the event to Logger, including
metadata that allows backwards compatibility with legacy error logger event
handlers.
The event is handled by the default Logger handler.
This functions is kept for backwards compatibility and must not be used by new
code. Use the ?LOG_ERROR macro or
logger:error/1,2,3 instead.
Example:
2> error_logger:error_report([{tag1,data1},a_term,{tag2,data}]).
=ERROR REPORT==== 22-May-2018::11:24:23.699306 ===
 tag1: data1
 a_term
 tag2: data
ok
3> error_logger:error_report("Serious error in my module").
=ERROR REPORT==== 22-May-2018::11:24:45.972445 ===
Serious error in my module
ok

 error_report(Type, Report)

 -spec error_report(Type, Report) -> ok when Type :: term(), Report :: report().

Log a user-defined error event. Error logger forwards the event to Logger,
including metadata that allows backwards compatibility with legacy error logger
event handlers.
Error logger also adds a domain field with value [Type] to this event's
metadata, causing the filters of the default Logger handler to discard the
event. A different Logger handler, or an error logger event handler, must be
added to handle this event.
It is recommended that Report follows the same structure as for
error_report/1.
This functions is kept for backwards compatibility and must not be used by new
code. Use the ?LOG_ERROR macro or
logger:error/1,2,3 instead.

 format(Format, Data)

 -spec format(Format, Data) -> ok when Format :: string(), Data :: list().

Equivalent to error_msg(Format, Data).

 get_format_depth()

 (since OTP 20.0)

 -spec get_format_depth() -> unlimited | pos_integer().

Returns max(10, Depth), where Depth is the value of
error_logger_format_depth in the
Kernel application, if Depth is an integer. Otherwise, unlimited is returned.
Note
The error_logger_format_depth variable is
deprecated since the
Logger API was introduced in Erlang/OTP 21.0. The variable, and
this function, are kept for backwards compatibility since they still might be
used by legacy report handlers.

 info_msg(Format)

 -spec info_msg(Format) -> ok when Format :: string().

Equivalent to info_msg(Format, []).

 info_msg(Format, Data)

 -spec info_msg(Format, Data) -> ok when Format :: string(), Data :: list().

Log a standard information event. The Format and Data arguments are the same
as the arguments of io:format/2 in STDLIB.
Error logger forwards the event to Logger, including metadata that allows
backwards compatibility with legacy error logger event handlers.
The event is handled by the default Logger handler.
These functions are kept for backwards compatibility and must not be used by new
code. Use the ?LOG_INFO macro or
logger:info/1,2,3 instead.
Example:
1> error_logger:info_msg("Something happened in ~p", [a_module]).
=INFO REPORT==== 22-May-2018::12:03:32.612462 ===
Something happened in a_module
ok
Warning
If the Unicode translation modifier (t) is used in the format string, all
event handlers must ensure that the formatted output is correctly encoded for
the I/O device.

 info_report(Report)

 -spec info_report(Report) -> ok when Report :: report().

Log a standard information event. Error logger forwards the event to Logger,
including metadata that allows backwards compatibility with legacy error logger
event handlers.
The event is handled by the default Logger handler.
This functions is kept for backwards compatibility and must not be used by new
code. Use the ?LOG_INFO macro or
logger:info/1,2,3 instead.
Example:
2> error_logger:info_report([{tag1,data1},a_term,{tag2,data}]).
=INFO REPORT==== 22-May-2018::12:06:35.994440 ===
 tag1: data1
 a_term
 tag2: data
ok
3> error_logger:info_report("Something strange happened").
=INFO REPORT==== 22-May-2018::12:06:49.066872 ===
Something strange happened
ok

 info_report(Type, Report)

 -spec info_report(Type, Report) -> ok when Type :: any(), Report :: report().

Log a user-defined information event. Error logger forwards the event to Logger,
including metadata that allows backwards compatibility with legacy error logger
event handlers.
Error logger also adds a domain field with value [Type] to this event's
metadata, causing the filters of the default Logger handler to discard the
event. A different Logger handler, or an error logger event handler, must be
added to handle this event.
It is recommended that Report follows the same structure as for
info_report/1.
This functions is kept for backwards compatibility and must not be used by new
code. Use the ?LOG_INFO macro or
logger:info/1,2,3 instead.

 logfile/1

 -spec logfile(Request :: {open, Filename}) -> ok | {error, OpenReason}
 when Filename :: file:name(), OpenReason :: allready_have_logfile | open_error();
 (Request :: close) -> ok | {error, CloseReason} when CloseReason :: module_not_found;
 (Request :: filename) -> Filename | {error, FilenameReason}
 when Filename :: file:name(), FilenameReason :: no_log_file.

Enables or disables printout of standard events to a file.
This is done by adding or deleting the error_logger_file_h event handler, and
thus indirectly adding error_logger as a Logger handler.
Notice that this function does not manipulate the Logger configuration directly,
meaning that if the default Logger handler is already logging to a file, this
function can potentially cause logging to a second file.
This function is useful as a shortcut during development and testing, but must
not be used in a production system. See section Logging in
the Kernel User's Guide, and the logger manual page for information about
how to configure Logger for live systems.
Request is one of the following:
	{open, Filename} - Opens log file Filename. Returns ok if
successful, or {error, allready_have_logfile} if logging to file is already
enabled, or an error tuple if another error occurred (for example, if
Filename cannot be opened). The file is opened with encoding UTF-8.

	close - Closes the current log file. Returns ok, or
{error, module_not_found}.

	filename - Returns the name of the log file Filename, or
{error, no_log_file} if logging to file is not enabled.

 tty(Flag)

 -spec tty(Flag) -> ok when Flag :: boolean().

Enables (Flag == true) or disables (Flag == false) printout of standard
events to the terminal.
This is done by manipulating the Logger configuration. The function is useful as
a shortcut during development and testing, but must not be used in a production
system. See section Logging in the Kernel User's Guide, and
the logger manual page for information about how to configure Logger for
live systems.

 warning_map()

 -spec warning_map() -> Tag when Tag :: error | warning | info.

Returns the current mapping for warning events.
Events sent using warning_msg/1,2 or
warning_report/1,2 are tagged as errors, warnings
(default), or info, depending on the value of command-line flag +W.
Example:
os$ erl
Erlang (BEAM) emulator version 5.4.8 [hipe] [threads:0] [kernel-poll]

Eshell V5.4.8 (abort with ^G)
1> error_logger:warning_map().
warning
2> error_logger:warning_msg("Warnings tagged as: ~p~n", [warning]).

=WARNING REPORT==== 11-Aug-2005::15:31:55 ===
Warnings tagged as: warning
ok
3>
User switch command
 --> q
os$ erl +W e
Erlang (BEAM) emulator version 5.4.8 [hipe] [threads:0] [kernel-poll]

Eshell V5.4.8 (abort with ^G)
1> error_logger:warning_map().
error
2> error_logger:warning_msg("Warnings tagged as: ~p~n", [error]).

=ERROR REPORT==== 11-Aug-2005::15:31:23 ===
Warnings tagged as: error
ok

 warning_msg(Format)

 -spec warning_msg(Format) -> ok when Format :: string().

Equivalent to warning_msg(Format, []).

 warning_msg(Format, Data)

 -spec warning_msg(Format, Data) -> ok when Format :: string(), Data :: list().

Log a standard warning event. The Format and Data arguments are the same as
the arguments of io:format/2 in STDLIB.
Error logger forwards the event to Logger, including metadata that allows
backwards compatibility with legacy error logger event handlers.
The event is handled by the default Logger handler. The log level can be changed
to error or info, see warning_map/0.
These functions are kept for backwards compatibility and must not be used by new
code. Use the ?LOG_WARNING macro or
logger:warning/1,2,3 instead.
Warning
If the Unicode translation modifier (t) is used in the format string, all
event handlers must ensure that the formatted output is correctly encoded for
the I/O device.

 warning_report(Report)

 -spec warning_report(Report) -> ok when Report :: report().

Log a standard warning event. Error logger forwards the event to Logger,
including metadata that allows backwards compatibility with legacy error logger
event handlers.
The event is handled by the default Logger handler. The log level can be changed
to error or info, see warning_map/0.
This functions is kept for backwards compatibility and must not be used by new
code. Use the ?LOG_WARNING macro or
logger:warning/1,2,3 instead.

 warning_report(Type, Report)

 -spec warning_report(Type, Report) -> ok when Type :: any(), Report :: report().

Log a user-defined warning event. Error logger forwards the event to Logger,
including metadata that allows backwards compatibility with legacy error logger
event handlers.
Error logger also adds a domain field with value [Type] to this event's
metadata, causing the filters of the default Logger handler to discard the
event. A different Logger handler, or an error logger event handler, must be
added to handle this event.
The log level can be changed to error or info, see warning_map/0.
It is recommended that Report follows the same structure as for
warning_report/1.
This functions is kept for backwards compatibility and must not be used by new
code. Use the ?LOG_WARNING macro or
logger:warning/1,2,3 instead.

 logger - kernel v10.4

logger

API module for Logger, the standard logging facility in Erlang/OTP.
This module implements the main API for logging in Erlang/OTP. To create a log
event, use the API functions or the log
macros, for example:
?LOG_ERROR("error happened because: ~p", [Reason]). % With macro
logger:error("error happened because: ~p", [Reason]). % Without macro
To configure the Logger backend, use
Kernel configuration parameters or
configuration functions in the Logger API.
By default, the Kernel application installs one log handler at system start.
This handler is named default. It receives and processes standard log events
produced by the Erlang runtime system, standard behaviours and different
Erlang/OTP applications. The log events are by default printed to the terminal.
If you want your systems logs to be printed to a file instead, you must
configure the default handler to do so. The simplest way is to include the
following in your sys.config:
[{kernel,
 [{logger,
 [{handler, default, logger_std_h,
 #{config => #{file => "path/to/file.log"}}}]}]}].
For more information about:
	the Logger facility in general, see the User's Guide.
	how to configure Logger, see the
Configuration section in the User's Guide.
	the built-in handlers, see logger_std_h and logger_disk_log_h.
	the built-in formatter, see logger_formatter.
	built-in filters, see logger_filters.

Macros
The following macros are defined in logger.hrl, which is included in a module
with the directive
 -include_lib("kernel/include/logger.hrl").
	?LOG_EMERGENCY(StringOrReport[,Metadata])
	?LOG_EMERGENCY(FunOrFormat,Args[,Metadata])
	?LOG_ALERT(StringOrReport[,Metadata])
	?LOG_ALERT(FunOrFormat,Args[,Metadata])
	?LOG_CRITICAL(StringOrReport[,Metadata])
	?LOG_CRITICAL(FunOrFormat,Args[,Metadata])
	?LOG_ERROR(StringOrReport[,Metadata])
	?LOG_ERROR(FunOrFormat,Args[,Metadata])
	?LOG_WARNING(StringOrReport[,Metadata])
	?LOG_WARNING(FunOrFormat,Args[,Metadata])
	?LOG_NOTICE(StringOrReport[,Metadata])
	?LOG_NOTICE(FunOrFormat,Args[,Metadata])
	?LOG_INFO(StringOrReport[,Metadata])
	?LOG_INFO(FunOrFormat,Args[,Metadata])
	?LOG_DEBUG(StringOrReport[,Metadata])
	?LOG_DEBUG(FunOrFormat,Args[,Metadata])
	?LOG(Level,StringOrReport[,Metadata])
	?LOG(Level,FunOrFormat,Args[,Metadata])

All macros expand to a call to Logger, where Level is taken from the macro
name, or from the first argument in the case of the ?LOG macro. Location data
is added to the metadata as described under the metadata/0 type definition.
The call is wrapped in a case statement and will be evaluated only if Level is
equal to or below the configured log level.
See Also
config, erlang, io, logger_disk_log_h,
logger_filters, logger_handler, logger_formatter, logger_std_h,
unicode

 Summary

 Types

 config_handler()

 Configuration used when adding or updating a handler.

 filter()

 A filter which can be installed as a handler filter, or as a primary filter in
Logger.

 filter_arg()

 The second argument to the filter fun.

 filter_id()

 A unique identifier for a filter.

 filter_return()

 The return value from the filter fun.

 formatter_config()

 Configuration data for the formatter. See logger_formatter for an example of
a formatter implementation.

 handler_config()

 Handler configuration data for Logger.

 handler_id()

 A unique identifier for a handler instance.

 level()

 The severity level for the message to be logged.

 log_event()

 A log event passed to filters and handlers

 metadata()

 Metadata for the log event.

 msg_fun()

 msg_fun_return()

 olp_config()

 Overload protection configuration.

 primary_config()

 Primary configuration data for Logger. The following default values apply

 report()

 A log report.

 report_cb()

 A fun which converts a report() to a format string and
arguments, or directly to a string.

 report_cb_config()

 timestamp()

 A timestamp produced with logger:timestamp().

 Configuration API functions

 add_handler(HandlerId, Module, Config)

 Add a handler with the given configuration.

 add_handler_filter(HandlerId, FilterId, Filter)

 Add a filter to the specified handler.

 add_handlers/1

 Reads the application configuration parameter logger and calls
add_handlers/1 with its contents.

 add_primary_filter(FilterId, Filter)

 Add a primary filter to Logger.

 get_config()

 Look up all current Logger configuration, including primary, handler, and proxy
configuration, and module level settings.

 get_handler_config()

 Look up the current configuration for all handlers.

 get_handler_config(HandlerId)

 Look up the current configuration for the given handler.

 get_handler_ids()

 Look up the identities for all installed handlers.

 get_module_level()

 Look up all current module levels. Returns a list containing one
{Module,Level} element for each module for which the module level was
previously set with set_module_level/2.

 get_module_level(Modules)

 Look up the current level for the given modules. Returns a list containing one
{Module,Level} element for each of the given modules for which the module
level was previously set with set_module_level/2.

 get_primary_config()

 Look up the current primary configuration for Logger.

 get_process_metadata()

 Retrieve data set with set_process_metadata/1 or update_process_metadata/1.

 get_proxy_config()

 Look up the current configuration for the Logger proxy.

 i()

 Pretty print all Logger configuration.

 i(What)

 Pretty print the Logger configuration.

 remove_handler(HandlerId)

 Remove the handler identified by HandlerId.

 remove_handler_filter(HandlerId, FilterId)

 Remove the filter identified by FilterId from the handler identified by
HandlerId.

 remove_primary_filter(FilterId)

 Remove the primary filter identified by FilterId from Logger.

 set_application_level(Application, Level)

 Set the log level for all the modules of the specified application.

 set_handler_config(HandlerId, Config)

 Set configuration data for the specified handler. This overwrites the current
handler configuration.

 set_handler_config(HandlerId, Key, Value)

 Add or update configuration data for the specified handler. If the given Key
already exists, its associated value will be changed to the given value. If it
does not exist, it will be added.

 set_module_level(Modules, Level)

 Set the log level for the specified modules.

 set_primary_config(Config)

 Set primary configuration data for Logger. This overwrites the current
configuration.

 set_primary_config(Key, Value)

 Add or update primary configuration data for Logger. If the given Key already
exists, its associated value will be changed to the given value. If it does not
exist, it will be added.

 set_process_metadata(Meta)

 Set metadata which Logger shall automatically insert in all log events produced
on the current process.

 set_proxy_config(Config)

 Set configuration data for the Logger proxy. This overwrites the current proxy
configuration. Keys that are not specified in the Config map gets default
values.

 unset_application_level(Application)

 Unset the log level for all the modules of the specified application.

 unset_module_level()

 Remove module specific log settings. After this, the primary log level is used
for all modules.

 unset_module_level(Modules)

 Remove module specific log settings. After this, the primary log level is used
for the specified modules.

 unset_process_metadata()

 Delete data set with set_process_metadata/1 or update_process_metadata/1.

 update_formatter_config(HandlerId, FormatterConfig)

 Update the formatter configuration for the specified handler.

 update_formatter_config(HandlerId, Key, Value)

 Equivalent to update_formatter_config(HandlerId, #{Key => Value}).

 update_handler_config(HandlerId, Config)

 Update configuration data for the specified handler. This function behaves as if
it was implemented as follows

 update_handler_config(HandlerId, Key, Value)

 Add or update configuration data for the specified handler. If the given Key
already exists, its associated value will be changed to the given value. If it
does not exist, it will be added.

 update_primary_config(Config)

 Update primary configuration data for Logger. This function behaves as if it was
implemented as follows

 update_process_metadata(Meta)

 Set or update metadata to use when logging from current process

 update_proxy_config(Config)

 Update configuration data for the Logger proxy. This function behaves as if it
was implemented as follows

 Logging API functions

 alert(StringOrReport)

 Equivalent to alert(StringOrReport, #{}).

 alert(FormatOrFun, Args)

 Create a alert log event.

 alert(FormatOrFun, Args, Metadata)

 Equivalent to log(alert, FormatOrFun, Args, Metadata).

 critical(StringOrReport)

 Equivalent to critical(StringOrReport, #{}).

 critical(FormatOrFun, Args)

 Create a critical log event.

 critical(FormatOrFun, Args, Metadata)

 Equivalent to log(critical, FormatOrFun, Args, Metadata).

 debug(StringOrReport)

 Equivalent to debug(StringOrReport, #{}).

 debug(FormatOrFun, Args)

 Create a debug log event.

 debug(FormatOrFun, Args, Metadata)

 Equivalent to log(debug, FormatOrFun, Args, Metadata).

 emergency(StringOrReport)

 Equivalent to emergency(StringOrReport, #{}).

 emergency(FormatOrFun, Args)

 Create a emergency log event.

 emergency(FormatOrFun, Args, Metadata)

 Equivalent to log(emergency, FormatOrFun, Args, Metadata).

 error(StringOrReport)

 Equivalent to error(StringOrReport, #{}).

 error(FormatOrFun, Args)

 Create a error log event.

 error(FormatOrFun, Args, Metadata)

 Equivalent to log(error, FormatOrFun, Args, Metadata).

 info(StringOrReport)

 Equivalent to info(StringOrReport, #{}).

 info(FormatOrFun, Args)

 Create a info log event.

 info(FormatOrFun, Args, Metadata)

 Equivalent to log(info, FormatOrFun, Args, Metadata).

 log(Level, StringOrReport)

 Equivalent to log(Level, StringOrReport, #{}).

 log/3

 Create a log event at the given log level, with
the given message to be logged and
metadata.

 log(Level, FunOrFormat, Args, Metadata)

 Create a log event at the given log level, with
the given message to be logged and
metadata.

 notice(StringOrReport)

 Equivalent to notice(StringOrReport, #{}).

 notice(FormatOrFun, Args)

 Create a notice log event.

 notice(FormatOrFun, Args, Metadata)

 Equivalent to log(notice, FormatOrFun, Args, Metadata).

 warning(StringOrReport)

 Equivalent to warning(StringOrReport, #{}).

 warning(FormatOrFun, Args)

 Create a warning log event.

 warning(FormatOrFun, Args, Metadata)

 Equivalent to log(warning, FormatOrFun, Args, Metadata).

 Miscellaneous API functions

 compare_levels(Level1, Level2)

 Compare the severity of two log levels. Returns gt if Level1 is more severe
than Level2, lt if Level1 is less severe, and eq if the levels are
equal.

 format_report(Report)

 Convert a log message on report form to {Format, Args}. This is the default
report callback used by logger_formatter when no custom report callback is
found. See section Log Message in the Kernel
User's Guide for information about report callbacks and valid forms of log
messages.

 reconfigure()

 Reconfigure Logger using updated kernel configuration that was set after
kernel application was loaded.

 timestamp()

 Return a timestamp that can be inserted as the time field in the meta data for
a log event. It is produced with
os:system_time(microsecond).

 Types

 config_handler()

 (since OTP 21.0)

 -type config_handler() :: {handler, logger_handler:id(), module(), logger_handler:config()}.

Configuration used when adding or updating a handler.

 filter()

 (since OTP 21.0)

 -type filter() :: {fun((log_event(), filter_arg()) -> filter_return()), filter_arg()}.

A filter which can be installed as a handler filter, or as a primary filter in
Logger.

 filter_arg()

 (since OTP 21.0)

 -type filter_arg() :: term().

The second argument to the filter fun.

 filter_id()

 (since OTP 21.0)

 -type filter_id() :: atom().

A unique identifier for a filter.

 filter_return()

 (since OTP 21.0)

 -type filter_return() :: stop | ignore | log_event().

The return value from the filter fun.

 formatter_config()

 (since OTP 21.0)

 -type formatter_config() :: #{atom() => term()}.

Configuration data for the formatter. See logger_formatter for an example of
a formatter implementation.

 handler_config()

 (since OTP 21.0)

 -type handler_config() :: logger_handler:config().

Handler configuration data for Logger.
Note
DEPRECATED: Use logger_handler:config/0 instead.

 handler_id()

 (since OTP 21.0)

 -type handler_id() :: logger_handler:id().

A unique identifier for a handler instance.
Note
DEPRECATED: Use logger_handler:id/0 instead.

 level()

 (since OTP 21.0)

 -type level() :: emergency | alert | critical | error | warning | notice | info | debug.

The severity level for the message to be logged.

 log_event()

 (since OTP 21.0)

 -type log_event() ::
 #{level := level(),
 msg := {io:format(), [term()]} | {report, report()} | {string, unicode:chardata()},
 meta := metadata()}.

A log event passed to filters and handlers

 metadata()

 (since OTP 21.0)

 -type metadata() ::
 #{pid => pid(),
 gl => pid(),
 time => timestamp(),
 mfa => {module(), atom(), non_neg_integer()},
 file => file:filename(),
 line => non_neg_integer(),
 domain => [atom()],
 report_cb => report_cb(),
 atom() => term()}.

Metadata for the log event.
Logger adds the following metadata to each log event:
	pid => self()
	gl => group_leader()
	time => logger:timestamp()

When a log macro is used, Logger also inserts location information:
	mfa => {?MODULE, ?FUNCTION_NAME, ?FUNCTION_ARITY}
	file => ?FILE
	line => ?LINE

You can add custom metadata, either by:
	specifying a map as the last parameter to any of the log macros or the logger
API functions.
	setting process metadata with set_process_metadata/1 or
update_process_metadata/1.
	setting primary metadata with set_primary_config/1 or through the kernel
configuration parameter logger_metadata

Note
When adding custom metadata, make sure not to use any of the keys mentioned
above as that may cause a lot of confusion about the log events.
Logger merges all the metadata maps before forwarding the log event to the
handlers. If the same keys occur, values from the log call overwrite process
metadata, which overwrites the primary metadata, which in turn overwrite values
set by Logger.
The following custom metadata keys have special meaning:
	domain - The value associated with this key is used by filters for
grouping log events originating from, for example, specific functional areas.
See logger_filters:domain/2 for a description of how this field can be used.

	report_cb - If the log message is specified as a report/0, the
report_cb key can be associated with a fun (report callback) that converts
the report to a format string and arguments, or directly to a string. See the
type definition of report_cb/0, and section
Log Message in the User's Guide for more
information about report callbacks.

 msg_fun()

 (since OTP 21.0)

 -type msg_fun() :: fun((term()) -> msg_fun_return() | {msg_fun_return(), metadata()}).

 msg_fun_return()

 (not exported)

 (since OTP 21.0)

 -type msg_fun_return() :: {io:format(), [term()]} | report() | unicode:chardata() | ignore.

 olp_config()

 (since OTP 21.0)

 -type olp_config() :: logger_handler:olp_config().

Overload protection configuration.
Note
DEPRECATED: Use logger_handler:olp_config/0 instead.

 primary_config()

 (since OTP 21.0)

 -type primary_config() ::
 #{level => level() | all | none,
 metadata => metadata(),
 filter_default => log | stop,
 filters => [{filter_id(), filter()}]}.

Primary configuration data for Logger. The following default values apply:
	level => info
	filter_default => log
	filters => []

 report()

 (since OTP 21.0)

 -type report() :: map() | [{atom(), term()}, ...].

A log report.

 report_cb()

 (since OTP 21.0)

 -type report_cb() ::
 fun((report()) -> {io:format(), [term()]}) |
 fun((report(), report_cb_config()) -> unicode:chardata()).

A fun which converts a report() to a format string and
arguments, or directly to a string.
See section Log Message in the User's Guide
for more information.

 report_cb_config()

 (since OTP 21.0)

 -type report_cb_config() ::
 #{depth := pos_integer() | unlimited,
 chars_limit := pos_integer() | unlimited,
 single_line := boolean()}.

 timestamp()

 (since OTP 21.0)

 -type timestamp() :: integer().

A timestamp produced with logger:timestamp().

 Configuration API functions

 add_handler(HandlerId, Module, Config)

 (since OTP 21.0)

 -spec add_handler(HandlerId, Module, Config) -> ok | {error, term()}
 when
 HandlerId :: logger_handler:id(),
 Module :: module(),
 Config :: logger_handler:config().

Add a handler with the given configuration.
HandlerId is a unique identifier which must be used in all subsequent calls
referring to this handler.

 add_handler_filter(HandlerId, FilterId, Filter)

 (since OTP 21.0)

 -spec add_handler_filter(HandlerId, FilterId, Filter) -> ok | {error, term()}
 when
 HandlerId :: logger_handler:id(),
 FilterId :: filter_id(),
 Filter :: filter().

Add a filter to the specified handler.
The filter fun is called with the log event as the first parameter, and the
specified filter_args() as the second parameter.
The return value of the fun specifies if a log event is to be discarded or
forwarded to the handler callback:
	log_event/0 - The filter passed. The next handler filter, if any, is
applied. If no more filters exist for this handler, the log event is forwarded
to the handler callback.

	stop - The filter did not pass, and the log event is immediately
discarded.

	ignore - The filter has no knowledge of the log event. The next handler
filter, if any, is applied. If no more filters exist for this handler, the
value of the filter_default configuration parameter for the handler
specifies if the log event shall be discarded or forwarded to the handler
callback.

See section Filters in the User's Guide for more
information about filters.
Some built-in filters exist. These are defined in logger_filters.

 add_handlers/1

 (since OTP 21.0)

 -spec add_handlers(Application) -> ok | {error, term()} when Application :: atom();
 (HandlerConfig) -> ok | {error, term()} when HandlerConfig :: [config_handler()].

Reads the application configuration parameter logger and calls
add_handlers/1 with its contents.
This function should be used by custom Logger handlers to make configuration
consistent no matter which handler the system uses. Normal usage is to add a
call to logger:add_handlers/1 just after the processes that the handler needs
are started, and pass the application's logger configuration as the argument.
For example:
-behaviour(application).
start(_, []) ->
 case supervisor:start_link({local, my_sup}, my_sup, []) of
 {ok, Pid} ->
 ok = logger:add_handlers(my_app),
 {ok, Pid, []};
 Error -> Error
 end.
This reads the logger configuration parameter from the my_app application
and starts the configured handlers. The contents of the configuration use the
same rules as the
logger handler configuration.
If the handler is meant to replace the default handler, the Kernel's default
handler have to be disabled before the new handler is added. A sys.config file
that disables the Kernel handler and adds a custom handler could look like this:
[{kernel,
 [{logger,
 %% Disable the default Kernel handler
 [{handler, default, undefined}]}]},
 {my_app,
 [{logger,
 %% Enable this handler as the default
 [{handler, default, my_handler, #{}}]}]}].

 add_primary_filter(FilterId, Filter)

 (since OTP 21.0)

 -spec add_primary_filter(FilterId, Filter) -> ok | {error, term()}
 when FilterId :: filter_id(), Filter :: filter().

Add a primary filter to Logger.
The filter fun is called with the log event as the first parameter, and the
specified filter_args() as the second parameter.
The return value of the fun specifies if a log event is to be discarded or
forwarded to the handlers:
	log_event/0 - The filter passed. The next primary filter, if any, is
applied. If no more primary filters exist, the log event is forwarded to the
handler part of Logger, where handler filters are applied.

	stop - The filter did not pass, and the log event is immediately
discarded.

	ignore - The filter has no knowledge of the log event. The next primary
filter, if any, is applied. If no more primary filters exist, the value of the
primary filter_default configuration parameter specifies if the log event
shall be discarded or forwarded to the handler part.

See section Filters in the User's Guide for more
information about filters.
Some built-in filters exist. These are defined in logger_filters.

 get_config()

 (since OTP 21.0)

 -spec get_config() ->
 #{primary => primary_config(),
 handlers => [logger_handler:config()],
 proxy => olp_config(),
 module_levels => [{module(), level() | all | none}]}.

Look up all current Logger configuration, including primary, handler, and proxy
configuration, and module level settings.

 get_handler_config()

 (since OTP 21.0)

 -spec get_handler_config() -> [Config] when Config :: logger_handler:config().

Look up the current configuration for all handlers.

 get_handler_config(HandlerId)

 (since OTP 21.0)

 -spec get_handler_config(HandlerId) -> {ok, Config} | {error, term()}
 when HandlerId :: logger_handler:id(), Config :: logger_handler:config().

Look up the current configuration for the given handler.

 get_handler_ids()

 (since OTP 21.0)

 -spec get_handler_ids() -> [HandlerId] when HandlerId :: logger_handler:id().

Look up the identities for all installed handlers.

 get_module_level()

 (since OTP 21.0)

 -spec get_module_level() -> [{Module, Level}] when Module :: module(), Level :: level() | all | none.

Look up all current module levels. Returns a list containing one
{Module,Level} element for each module for which the module level was
previously set with set_module_level/2.

 get_module_level(Modules)

 (since OTP 21.0)

 -spec get_module_level(Modules) -> [{Module, Level}]
 when
 Modules :: [Module] | Module,
 Module :: module(),
 Level :: level() | all | none.

Look up the current level for the given modules. Returns a list containing one
{Module,Level} element for each of the given modules for which the module
level was previously set with set_module_level/2.

 get_primary_config()

 (since OTP 21.0)

 -spec get_primary_config() -> Config when Config :: primary_config().

Look up the current primary configuration for Logger.

 get_process_metadata()

 (since OTP 21.0)

 -spec get_process_metadata() -> Meta | undefined when Meta :: metadata().

Retrieve data set with set_process_metadata/1 or update_process_metadata/1.

 get_proxy_config()

 (since OTP 21.3)

 -spec get_proxy_config() -> Config when Config :: olp_config().

Look up the current configuration for the Logger proxy.
For more information about the proxy, see section
Logger Proxy in the Kernel User's Guide.

 i()

 (since OTP 21.3)

 -spec i() -> ok.

Pretty print all Logger configuration.

 i(What)

 (since OTP 21.3)

 -spec i(What) -> ok when What :: primary | handlers | proxy | modules | logger_handler:id().

Pretty print the Logger configuration.

 remove_handler(HandlerId)

 (since OTP 21.0)

 -spec remove_handler(HandlerId) -> ok | {error, term()} when HandlerId :: logger_handler:id().

Remove the handler identified by HandlerId.

 remove_handler_filter(HandlerId, FilterId)

 (since OTP 21.0)

 -spec remove_handler_filter(HandlerId, FilterId) -> ok | {error, term()}
 when HandlerId :: logger_handler:id(), FilterId :: filter_id().

Remove the filter identified by FilterId from the handler identified by
HandlerId.

 remove_primary_filter(FilterId)

 (since OTP 21.0)

 -spec remove_primary_filter(FilterId) -> ok | {error, term()} when FilterId :: filter_id().

Remove the primary filter identified by FilterId from Logger.

 set_application_level(Application, Level)

 (since OTP 21.1)

 -spec set_application_level(Application, Level) -> ok | {error, not_loaded}
 when Application :: atom(), Level :: level() | all | none.

Set the log level for all the modules of the specified application.
This function is a convenience function that calls
logger:set_module_level/2 for each module associated
with an application.

 set_handler_config(HandlerId, Config)

 (since OTP 21.0)

 -spec set_handler_config(HandlerId, Config) -> ok | {error, term()}
 when HandlerId :: logger_handler:id(), Config :: logger_handler:config().

Set configuration data for the specified handler. This overwrites the current
handler configuration.
To modify the existing configuration, use update_handler_config/2, or, if a
more complex merge is needed, read the current configuration with
get_handler_config/1 , then do the merge before
writing the new configuration back with this function.
If a key is removed compared to the current configuration, and the key is known
by Logger, the default value is used. If it is a custom key, then it is up to
the handler implementation if the value is removed or a default value is
inserted.

 set_handler_config(HandlerId, Key, Value)

 (since OTP 21.0)

 -spec set_handler_config(HandlerId, level, Level) -> Return
 when
 HandlerId :: logger_handler:id(),
 Level :: level() | all | none,
 Return :: ok | {error, term()};
 (HandlerId, filter_default, FilterDefault) -> Return
 when
 HandlerId :: logger_handler:id(),
 FilterDefault :: log | stop,
 Return :: ok | {error, term()};
 (HandlerId, filters, Filters) -> Return
 when
 HandlerId :: logger_handler:id(),
 Filters :: [{filter_id(), filter()}],
 Return :: ok | {error, term()};
 (HandlerId, formatter, Formatter) -> Return
 when
 HandlerId :: logger_handler:id(),
 Formatter :: {module(), formatter_config()},
 Return :: ok | {error, term()};
 (HandlerId, config, Config) -> Return
 when
 HandlerId :: logger_handler:id(),
 Config :: term(),
 Return :: ok | {error, term()}.

Add or update configuration data for the specified handler. If the given Key
already exists, its associated value will be changed to the given value. If it
does not exist, it will be added.
If the value is incomplete, which for example can be the case for the config
key, it is up to the handler implementation how the unspecified parts are set.
For all handlers in the Kernel application, unspecified data for the config
key is set to default values. To update only specified data, and keep the
existing configuration for the rest, use update_handler_config/3.
See the definition of the logger_handler:config/0 type for more information
about the different parameters.

 set_module_level(Modules, Level)

 (since OTP 21.0)

 -spec set_module_level(Modules, Level) -> ok | {error, term()}
 when Modules :: [module()] | module(), Level :: level() | all | none.

Set the log level for the specified modules.
The log level for a module overrides the primary log level of Logger for log
events originating from the module in question. Notice, however, that it does
not override the level configuration for any handler.
For example: Assume that the primary log level for Logger is info, and there
is one handler, h1, with level info and one handler, h2, with level
debug.
With this configuration, no debug messages will be logged, since they are all
stopped by the primary log level.
If the level for mymodule is now set to debug, then debug events from this
module will be logged by the handler h2, but not by handler h1.
Debug events from other modules are still not logged.
To change the primary log level for Logger, use
set_primary_config(level, Level).
To change the log level for a handler, use
set_handler_config(HandlerId, level, Level) .
Note
The originating module for a log event is only detected if the key mfa
exists in the metadata, and is associated with {Module, Function, Arity}.
When log macros are used, this association is automatically added to all log
events. If an API function is called directly, without using a macro, the
logging client must explicitly add this information if module levels shall
have any effect.

 set_primary_config(Config)

 (since OTP 21.0)

 -spec set_primary_config(Config) -> ok | {error, term()} when Config :: primary_config().

Set primary configuration data for Logger. This overwrites the current
configuration.
To modify the existing configuration, use update_primary_config/1, or, if a
more complex merge is needed, read the current configuration with
get_primary_config/0 , then do the merge before
writing the new configuration back with this function.
If a key is removed compared to the current configuration, the default value is
used.

 set_primary_config(Key, Value)

 (since OTP 21.0)

 -spec set_primary_config(level, Level) -> ok | {error, term()} when Level :: level() | all | none;
 (filter_default, FilterDefault) -> ok | {error, term()}
 when FilterDefault :: log | stop;
 (filters, Filters) -> ok | {error, term()}
 when Filters :: [{filter_id(), filter()}];
 (metadata, Meta) -> ok | {error, term()} when Meta :: metadata().

Add or update primary configuration data for Logger. If the given Key already
exists, its associated value will be changed to the given value. If it does not
exist, it will be added.
The metadata key was added in OTP 24.0.

 set_process_metadata(Meta)

 (since OTP 21.0)

 -spec set_process_metadata(Meta) -> ok when Meta :: metadata().

Set metadata which Logger shall automatically insert in all log events produced
on the current process.
Location data produced by the log macros, and/or metadata given as argument to
the log call (API function or macro), are merged with the process metadata. If
the same keys occur, values from the metadata argument to the log call overwrite
values from the process metadata, which in turn overwrite values from the
location data.
Subsequent calls to this function overwrites previous data set. To update
existing data instead of overwriting it, see update_process_metadata/1.

 set_proxy_config(Config)

 (since OTP 21.3)

 -spec set_proxy_config(Config) -> ok | {error, term()} when Config :: olp_config().

Set configuration data for the Logger proxy. This overwrites the current proxy
configuration. Keys that are not specified in the Config map gets default
values.
To modify the existing configuration, use update_proxy_config/1, or, if a more
complex merge is needed, read the current configuration with
get_proxy_config/0 , then do the merge before writing
the new configuration back with this function.
For more information about the proxy, see section
Logger Proxy in the Kernel User's Guide.

 unset_application_level(Application)

 (since OTP 21.1)

 -spec unset_application_level(Application) -> ok | {error, {not_loaded, Application}}
 when Application :: atom().

Unset the log level for all the modules of the specified application.
This function is a utility function that calls
logger:unset_module_level/2 for each module associated
with an application.

 unset_module_level()

 (since OTP 21.0)

 -spec unset_module_level() -> ok.

Remove module specific log settings. After this, the primary log level is used
for all modules.

 unset_module_level(Modules)

 (since OTP 21.0)

 -spec unset_module_level(Modules) -> ok when Modules :: [module()] | module().

Remove module specific log settings. After this, the primary log level is used
for the specified modules.

 unset_process_metadata()

 (since OTP 21.0)

 -spec unset_process_metadata() -> ok.

Delete data set with set_process_metadata/1 or update_process_metadata/1.

 update_formatter_config(HandlerId, FormatterConfig)

 (since OTP 21.0)

 -spec update_formatter_config(HandlerId, FormatterConfig) -> ok | {error, term()}
 when
 HandlerId :: logger_handler:id(),
 FormatterConfig :: formatter_config().

Update the formatter configuration for the specified handler.
The new configuration is merged with the existing formatter configuration.
To overwrite the existing configuration without any merge, use
set_handler_config(HandlerId, formatter,
	 {FormatterModule, FormatterConfig}).

 update_formatter_config(HandlerId, Key, Value)

 (since OTP 21.0)

 -spec update_formatter_config(HandlerId, Key, Value) -> ok | {error, term()}
 when HandlerId :: logger_handler:id(), Key :: atom(), Value :: term().

Equivalent to update_formatter_config(HandlerId, #{Key => Value}).

 update_handler_config(HandlerId, Config)

 (since OTP 21.0)

 -spec update_handler_config(HandlerId, Config) -> ok | {error, term()}
 when HandlerId :: logger_handler:id(), Config :: logger_handler:config().

Update configuration data for the specified handler. This function behaves as if
it was implemented as follows:
{ok, {_, Old}} = logger:get_handler_config(HandlerId),
logger:set_handler_config(HandlerId, maps:merge(Old, Config)).
To overwrite the existing configuration without any merge, use
set_handler_config/2 .

 update_handler_config(HandlerId, Key, Value)

 (since OTP 21.2)

 -spec update_handler_config(HandlerId, level, Level) -> Return
 when
 HandlerId :: logger_handler:id(),
 Level :: level() | all | none,
 Return :: ok | {error, term()};
 (HandlerId, filter_default, FilterDefault) -> Return
 when
 HandlerId :: logger_handler:id(),
 FilterDefault :: log | stop,
 Return :: ok | {error, term()};
 (HandlerId, filters, Filters) -> Return
 when
 HandlerId :: logger_handler:id(),
 Filters :: [{filter_id(), filter()}],
 Return :: ok | {error, term()};
 (HandlerId, formatter, Formatter) -> Return
 when
 HandlerId :: logger_handler:id(),
 Formatter :: {module(), formatter_config()},
 Return :: ok | {error, term()};
 (HandlerId, config, Config) -> Return
 when
 HandlerId :: logger_handler:id(),
 Config :: term(),
 Return :: ok | {error, term()}.

Add or update configuration data for the specified handler. If the given Key
already exists, its associated value will be changed to the given value. If it
does not exist, it will be added.
If the value is incomplete, which for example can be the case for the config
key, it is up to the handler implementation how the unspecified parts are set.
For all handlers in the Kernel application, unspecified data for the config
key is not changed. To reset unspecified data to default values, use
set_handler_config/3.
See the definition of the logger_handler:config/0 type for more information
about the different parameters.

 update_primary_config(Config)

 (since OTP 21.0)

 -spec update_primary_config(Config) -> ok | {error, term()} when Config :: primary_config().

Update primary configuration data for Logger. This function behaves as if it was
implemented as follows:
Old = logger:get_primary_config(),
logger:set_primary_config(maps:merge(Old, Config)).
To overwrite the existing configuration without any merge, use
set_primary_config/1 .

 update_process_metadata(Meta)

 (since OTP 21.0)

 -spec update_process_metadata(Meta) -> ok when Meta :: metadata().

Set or update metadata to use when logging from current process
If process metadata exists for the current process, this function behaves as if
it was implemented as follows:
logger:set_process_metadata(maps:merge(logger:get_process_metadata(), Meta)).
If no process metadata exists, the function behaves as
set_process_metadata/1 .

 update_proxy_config(Config)

 (since OTP 21.3)

 -spec update_proxy_config(Config) -> ok | {error, term()} when Config :: olp_config().

Update configuration data for the Logger proxy. This function behaves as if it
was implemented as follows:
Old = logger:get_proxy_config(),
logger:set_proxy_config(maps:merge(Old, Config)).
To overwrite the existing configuration without any merge, use
set_proxy_config/1 .
For more information about the proxy, see section
Logger Proxy in the Kernel User's Guide.

 Logging API functions

 alert(StringOrReport)

 (since OTP 21.0)

 -spec alert(String :: unicode:chardata()) -> ok;
 (Report :: report()) -> ok.

Equivalent to alert(StringOrReport, #{}).

 alert(FormatOrFun, Args)

 (since OTP 21.0)

 -spec alert(String :: unicode:chardata(), Metadata :: metadata()) -> ok;
 (Report :: report(), Metadata :: metadata()) -> ok;
 (Format :: io:format(), Args :: [term()]) -> ok;
 (Fun :: msg_fun(), FunArgs :: term()) -> ok.

Create a alert log event.
Equivalent to log(alert, StringOrReport, Metadata) if called
as alert(StringOrReport, Metadata).
Equivalent to alert(FormatOrFun, Args, #{}) if called as
alert(FormatOrFun, Args).

 alert(FormatOrFun, Args, Metadata)

 (since OTP 21.0)

 -spec alert(Format :: io:format(), Args :: [term()], Metadata :: metadata()) -> ok;
 (Fun :: msg_fun(), FunArgs :: term(), Metadata :: metadata()) -> ok.

Equivalent to log(alert, FormatOrFun, Args, Metadata).

 critical(StringOrReport)

 (since OTP 21.0)

 -spec critical(String :: unicode:chardata()) -> ok;
 (Report :: report()) -> ok.

Equivalent to critical(StringOrReport, #{}).

 critical(FormatOrFun, Args)

 (since OTP 21.0)

 -spec critical(String :: unicode:chardata(), Metadata :: metadata()) -> ok;
 (Report :: report(), Metadata :: metadata()) -> ok;
 (Format :: io:format(), Args :: [term()]) -> ok;
 (Fun :: msg_fun(), FunArgs :: term()) -> ok.

Create a critical log event.
Equivalent to log(critical, StringOrReport, Metadata) if called
as critical(StringOrReport, Metadata).
Equivalent to critical(FormatOrFun, Args, #{}) if called as
critical(FormatOrFun, Args).

 critical(FormatOrFun, Args, Metadata)

 (since OTP 21.0)

 -spec critical(Format :: io:format(), Args :: [term()], Metadata :: metadata()) -> ok;
 (Fun :: msg_fun(), FunArgs :: term(), Metadata :: metadata()) -> ok.

Equivalent to log(critical, FormatOrFun, Args, Metadata).

 debug(StringOrReport)

 (since OTP 21.0)

 -spec debug(String :: unicode:chardata()) -> ok;
 (Report :: report()) -> ok.

Equivalent to debug(StringOrReport, #{}).

 debug(FormatOrFun, Args)

 (since OTP 21.0)

 -spec debug(String :: unicode:chardata(), Metadata :: metadata()) -> ok;
 (Report :: report(), Metadata :: metadata()) -> ok;
 (Format :: io:format(), Args :: [term()]) -> ok;
 (Fun :: msg_fun(), FunArgs :: term()) -> ok.

Create a debug log event.
Equivalent to log(debug, StringOrReport, Metadata) if called
as debug(StringOrReport, Metadata).
Equivalent to debug(FormatOrFun, Args, #{}) if called as
debug(FormatOrFun, Args).

 debug(FormatOrFun, Args, Metadata)

 (since OTP 21.0)

 -spec debug(Format :: io:format(), Args :: [term()], Metadata :: metadata()) -> ok;
 (Fun :: msg_fun(), FunArgs :: term(), Metadata :: metadata()) -> ok.

Equivalent to log(debug, FormatOrFun, Args, Metadata).

 emergency(StringOrReport)

 (since OTP 21.0)

 -spec emergency(String :: unicode:chardata()) -> ok;
 (Report :: report()) -> ok.

Equivalent to emergency(StringOrReport, #{}).

 emergency(FormatOrFun, Args)

 (since OTP 21.0)

 -spec emergency(String :: unicode:chardata(), Metadata :: metadata()) -> ok;
 (Report :: report(), Metadata :: metadata()) -> ok;
 (Format :: io:format(), Args :: [term()]) -> ok;
 (Fun :: msg_fun(), FunArgs :: term()) -> ok.

Create a emergency log event.
Equivalent to log(emergency, StringOrReport, Metadata) if called
as emergency(StringOrReport, Metadata).
Equivalent to emergency(FormatOrFun, Args, #{}) if called as
emergency(FormatOrFun, Args).

 emergency(FormatOrFun, Args, Metadata)

 (since OTP 21.0)

 -spec emergency(Format :: io:format(), Args :: [term()], Metadata :: metadata()) -> ok;
 (Fun :: msg_fun(), FunArgs :: term(), Metadata :: metadata()) -> ok.

Equivalent to log(emergency, FormatOrFun, Args, Metadata).

 error(StringOrReport)

 (since OTP 21.0)

 -spec error(String :: unicode:chardata()) -> ok;
 (Report :: report()) -> ok.

Equivalent to error(StringOrReport, #{}).

 error(FormatOrFun, Args)

 (since OTP 21.0)

 -spec error(String :: unicode:chardata(), Metadata :: metadata()) -> ok;
 (Report :: report(), Metadata :: metadata()) -> ok;
 (Format :: io:format(), Args :: [term()]) -> ok;
 (Fun :: msg_fun(), FunArgs :: term()) -> ok.

Create a error log event.
Equivalent to log(error, StringOrReport, Metadata) if called
as error(StringOrReport, Metadata).
Equivalent to error(FormatOrFun, Args, #{}) if called as
error(FormatOrFun, Args).

 error(FormatOrFun, Args, Metadata)

 (since OTP 21.0)

 -spec error(Format :: io:format(), Args :: [term()], Metadata :: metadata()) -> ok;
 (Fun :: msg_fun(), FunArgs :: term(), Metadata :: metadata()) -> ok.

Equivalent to log(error, FormatOrFun, Args, Metadata).

 info(StringOrReport)

 (since OTP 21.0)

 -spec info(String :: unicode:chardata()) -> ok;
 (Report :: report()) -> ok.

Equivalent to info(StringOrReport, #{}).

 info(FormatOrFun, Args)

 (since OTP 21.0)

 -spec info(String :: unicode:chardata(), Metadata :: metadata()) -> ok;
 (Report :: report(), Metadata :: metadata()) -> ok;
 (Format :: io:format(), Args :: [term()]) -> ok;
 (Fun :: msg_fun(), FunArgs :: term()) -> ok.

Create a info log event.
Equivalent to log(info, StringOrReport, Metadata) if called
as info(StringOrReport, Metadata).
Equivalent to info(FormatOrFun, Args, #{}) if called as
info(FormatOrFun, Args).

 info(FormatOrFun, Args, Metadata)

 (since OTP 21.0)

 -spec info(Format :: io:format(), Args :: [term()], Metadata :: metadata()) -> ok;
 (Fun :: msg_fun(), FunArgs :: term(), Metadata :: metadata()) -> ok.

Equivalent to log(info, FormatOrFun, Args, Metadata).

 log(Level, StringOrReport)

 (since OTP 21.0)

 -spec log(Level :: level(), String :: unicode:chardata()) -> ok;
 (Level :: level(), Report :: report()) -> ok.

Equivalent to log(Level, StringOrReport, #{}).

 log/3

 (since OTP 21.0)

 -spec log(Level :: level(), String :: unicode:chardata(), Metadata :: metadata()) -> ok;
 (Level :: level(), Report :: report(), Metadata :: metadata()) -> ok;
 (Level :: level(), Format :: io:format(), Args :: [term()]) -> ok;
 (Level :: level(), Fun :: msg_fun(), FunArgs :: term()) -> ok.

Create a log event at the given log level, with
the given message to be logged and
metadata.
Example:
%% A plain string
1> logger:log(info, "Hello World").
%% A plain string with metadata
2> logger:log(debug, "Hello World", #{ meta => data }).
%% A format string with arguments
3> logger:log(warning, "The roof is on ~ts",[Cause]).
%% A report
4> logger:log(warning, #{ what => roof, cause => Cause }).
Equivalent to log(Level, FormatOrFun, Args, #{}) if called as
log(Level, FormatOrFun, Args).

 log(Level, FunOrFormat, Args, Metadata)

 (since OTP 21.0)

 -spec log(Level :: level(), Format :: io:format(), Args :: [term()], Metadata :: metadata()) -> ok;
 (Level :: level(), Fun :: msg_fun(), FunArgs :: term(), Metadata :: metadata()) -> ok.

Create a log event at the given log level, with
the given message to be logged and
metadata.
The message and metadata can either be given directly in the arguments, or
returned from a fun. Passing a fun instead of the message/metadata directly is
useful in scenarios when the message/metadata is very expensive to compute. This
is because the fun is only evaluated when the message/metadata is actually
needed, which may be not at all if the log event is not to be logged. Examples:
%% A plain string with expensive metadata
1> logger:info(fun([]) -> {"Hello World", #{ meta => expensive() }} end,[]).
%% An expensive report
2> logger:debug(fun(What) -> #{ what => What, cause => expensive() } end,roof).
%% A plain string with expensive metadata and normal metadata
3> logger:debug(fun([]) -> {"Hello World", #{ meta => expensive() }} end,[],
 #{ meta => data }).
When metadata is given both as an argument and returned from the fun they are
merged. If equal keys exists the values are taken from the metadata returned by
the fun.

 notice(StringOrReport)

 (since OTP 21.0)

 -spec notice(String :: unicode:chardata()) -> ok;
 (Report :: report()) -> ok.

Equivalent to notice(StringOrReport, #{}).

 notice(FormatOrFun, Args)

 (since OTP 21.0)

 -spec notice(String :: unicode:chardata(), Metadata :: metadata()) -> ok;
 (Report :: report(), Metadata :: metadata()) -> ok;
 (Format :: io:format(), Args :: [term()]) -> ok;
 (Fun :: msg_fun(), FunArgs :: term()) -> ok.

Create a notice log event.
Equivalent to log(notice, StringOrReport, Metadata) if called
as notice(StringOrReport, Metadata).
Equivalent to notice(FormatOrFun, Args, #{}) if called as
notice(FormatOrFun, Args).

 notice(FormatOrFun, Args, Metadata)

 (since OTP 21.0)

 -spec notice(Format :: io:format(), Args :: [term()], Metadata :: metadata()) -> ok;
 (Fun :: msg_fun(), FunArgs :: term(), Metadata :: metadata()) -> ok.

Equivalent to log(notice, FormatOrFun, Args, Metadata).

 warning(StringOrReport)

 (since OTP 21.0)

 -spec warning(String :: unicode:chardata()) -> ok;
 (Report :: report()) -> ok.

Equivalent to warning(StringOrReport, #{}).

 warning(FormatOrFun, Args)

 (since OTP 21.0)

 -spec warning(String :: unicode:chardata(), Metadata :: metadata()) -> ok;
 (Report :: report(), Metadata :: metadata()) -> ok;
 (Format :: io:format(), Args :: [term()]) -> ok;
 (Fun :: msg_fun(), FunArgs :: term()) -> ok.

Create a warning log event.
Equivalent to log(warning, StringOrReport, Metadata) if called
as warning(StringOrReport, Metadata).
Equivalent to warning(FormatOrFun, Args, #{}) if called as
warning(FormatOrFun, Args).

 warning(FormatOrFun, Args, Metadata)

 (since OTP 21.0)

 -spec warning(Format :: io:format(), Args :: [term()], Metadata :: metadata()) -> ok;
 (Fun :: msg_fun(), FunArgs :: term(), Metadata :: metadata()) -> ok.

Equivalent to log(warning, FormatOrFun, Args, Metadata).

 Miscellaneous API functions

 compare_levels(Level1, Level2)

 (since OTP 21.0)

 -spec compare_levels(Level1, Level2) -> eq | gt | lt
 when Level1 :: level() | all | none, Level2 :: level() | all | none.

Compare the severity of two log levels. Returns gt if Level1 is more severe
than Level2, lt if Level1 is less severe, and eq if the levels are
equal.

 format_report(Report)

 (since OTP 21.0)

 -spec format_report(Report) -> FormatArgs when Report :: report(), FormatArgs :: {io:format(), [term()]}.

Convert a log message on report form to {Format, Args}. This is the default
report callback used by logger_formatter when no custom report callback is
found. See section Log Message in the Kernel
User's Guide for information about report callbacks and valid forms of log
messages.
The function produces lines of Key: Value from key-value lists. Strings are
printed with ~ts and other terms with ~tp.
If Report is a map, it is converted to a key-value list before formatting as
such.

 reconfigure()

 (since OTP 24.2)

 -spec reconfigure() -> ok | {error, term()}.

Reconfigure Logger using updated kernel configuration that was set after
kernel application was loaded.
Beware, that this is meant to be run only by the build tools, not manually
during application lifetime, as this may cause missing log entries.
Before reconfiguration, simple logger handler is added to capture log events
before the logging infrastructure is started and prints them to standard
output. After the default handler is added again, all log events captured by
the simple handler are replayed to the default handler, and the simple
handler is removed. Notice that if you don't add the default handler,
simple handler will persist.

 timestamp()

 (since OTP 21.3)

 -spec timestamp() -> timestamp().

Return a timestamp that can be inserted as the time field in the meta data for
a log event. It is produced with
os:system_time(microsecond).
Notice that Logger automatically inserts a timestamp in the meta data unless it
already exists. This function is exported for the rare case when the timestamp
must be taken at a different point in time than when the log event is issued.

 logger_disk_log_h - kernel v10.4

logger_disk_log_h

A disk_log based handler for Logger
This is a handler for Logger that offers circular (wrapped) logs by using
disk_log. Multiple instances of this handler can be added to Logger, and
each instance prints to its own disk log file, created with the name and
settings specified in the handler configuration.
The default standard handler, logger_std_h, can be replaced by a disk_log
handler at startup of the Kernel application. See an example of this below.
The handler has an overload protection mechanism that keeps the handler process
and the Kernel application alive during high loads of log events. How overload
protection works, and how to configure it, is described in the
User's Guide.
To add a new instance of the disk_log handler, use
logger:add_handler/3. The handler configuration
argument is a map which can contain general configuration parameters, as
documented in the User's Guide,
and handler specific parameters. The specific data is stored in a sub map with
the key config, and can contain the following parameters:
	file - This is the full name of the disk log file. The option
corresponds to the name property in the dlog_option()
datatype.
The value is set when the handler is added, and it cannot be changed in
runtime.
Defaults to the same name as the handler identity, in the current directory.

	type - This is the disk log type, wrap or halt. The option
corresponds to the type property in the dlog_option()
datatype.
The value is set when the handler is added, and it cannot be changed in
runtime.
Defaults to wrap.

	max_no_files - This is the maximum number of files that disk_log uses
for its circular logging. The option corresponds to the MaxNoFiles element
in the size property in the dlog_option() datatype.
The value is set when the handler is added, and it cannot be changed in
runtime.
Defaults to 10.
The setting has no effect on a halt log.

	max_no_bytes - This is the maximum number of bytes that is written to a
log file before disk_log proceeds with the next file in order, or generates an
error in case of a full halt log. The option corresponds to the MaxNoBytes
element in the size property in the dlog_option()
datatype.
The value is set when the handler is added, and it cannot be changed in
runtime.
Defaults to 1048576 bytes for a wrap log, and infinity for a halt log.

	filesync_repeat_interval - This value, in milliseconds, specifies how
often the handler does a disk_log sync operation to write buffered data to
disk. The handler attempts the operation repeatedly, but only performs a new
sync if something has actually been logged.
Defaults to 5000 milliseconds.
If no_repeat is set as value, the repeated sync operation is disabled. The
user can also call the filesync/1 function to perform a
disk_log sync.

Other configuration parameters exist, to be used for customizing the overload
protection behaviour. The same parameters are used both in the standard handler
and the disk_log handler, and are documented in the
User's Guide.
Notice that when changing the configuration of the handler in runtime, the
disk_log options (file, type, max_no_files, max_no_bytes) must not be
modified.
Example of adding a disk_log handler:
logger:add_handler(my_disk_log_h, logger_disk_log_h,
 #{config => #{file => "./my_disk_log",
 type => wrap,
 max_no_files => 4,
 max_no_bytes => 10000,
 filesync_repeat_interval => 1000}}).
To use the disk_log handler instead of the default standard handler when
starting an Erlang node, change the Kernel default logger to use
logger_disk_log_h. Example:
erl -kernel logger '[{handler,default,logger_disk_log_h,
 #{config => #{file => "./system_disk_log"}}}]'
See Also
logger, logger_std_h, disk_log

 Summary

 Functions

 filesync(Name)

 Write buffered data to disk.

 Functions

 filesync(Name)

 (since OTP 21.0)

 -spec filesync(Name) -> ok | {error, Reason}
 when Name :: atom(), Reason :: handler_busy | {badarg, term()}.

Write buffered data to disk.

 logger_filters - kernel v10.4

logger_filters

Filters to use with Logger.
All functions exported from this module can be used as primary or handler
filters. See logger:add_primary_filter/2 and logger:add_handler_filter/3 for
more information about how filters are added.
Filters are removed with logger:remove_primary_filter/1 and
logger:remove_handler_filter/2.
See Also
logger

 Summary

 Functions

 domain(LogEvent, Extra)

 This filter provides a way of filtering log events based on a domain field in
Metadata. This field is optional, and the purpose of using it is to group log
events from, for example, a specific functional area. This allows filtering or
other specialized treatment in a Logger handler.

 level(LogEvent, Extra)

 This filter provides a way of filtering log events based on the log level. It
matches log events by comparing the log level with a specified MatchLevel

 progress(LogEvent, Extra)

 This filter matches all progress reports from supervisor and
application_controller.

 remote_gl(LogEvent, Extra)

 This filter matches all events originating from a process that has its group
leader on a remote node.

 Functions

 domain(LogEvent, Extra)

 (since OTP 21.0)

 -spec domain(LogEvent, Extra) -> logger:filter_return()
 when
 LogEvent :: logger:log_event(),
 Extra :: {Action, Compare, MatchDomain},
 Action :: log | stop,
 Compare :: super | sub | equal | not_equal | undefined,
 MatchDomain :: [atom()].

This filter provides a way of filtering log events based on a domain field in
Metadata. This field is optional, and the purpose of using it is to group log
events from, for example, a specific functional area. This allows filtering or
other specialized treatment in a Logger handler.
A domain field must be a list of atoms, creating smaller and more specialized
domains as the list grows longer. The greatest domain is [], which comprises
all possible domains.
For example, consider the following domains:
D1 = [otp]
D2 = [otp, sasl]
D1 is the greatest of the two, and is said to be a super-domain of D2. D2
is a sub-domain D1. Both D1 and D2 are sub-domains of [].
The above domains are used for logs originating from Erlang/OTP. D1 specifies
that the log event comes from Erlang/OTP in general, and D2 indicates that the
log event is a so called SASL report.
The Extra parameter to the domain/2 function is specified when
adding the filter via logger:add_primary_filter/2 or
logger:add_handler_filter/3.
The filter compares the value of the domain field in the log event's metadata
(Domain) against MatchDomain. The filter matches if the value of Compare
is:
	sub - and Domain is equal to or a sub-domain of MatchDomain, that
is, if MatchDomain is a prefix of Domain.

	super - and Domain is equal to or a super-domain of MatchDomain,
that is, if Domain is a prefix of MatchDomain.

	equal - and Domain is equal to MatchDomain.

	not_equal - and Domain differs from MatchDomain, or if there is no
domain field in metadata.

	undefined - and there is no domain field in metadata. In this case
MatchDomain must be set to [].

If the filter matches and Action is log, the log event is allowed. If the
filter matches and Action is stop, the log event is stopped.
If the filter does not match, it returns ignore, meaning that other filters,
or the value of the configuration parameter filter_default, decide if the
event is allowed or not.
Log events that do not contain any domain field, match only when Compare is
equal to undefined or not_equal.
Example: stop all events with domain [otp, sasl | _]
1> logger:set_handler_config(h1, filter_default, log). % this is the default
ok
2> Filter = {fun logger_filters:domain/2, {stop, sub, [otp, sasl]}}.
...
3> logger:add_handler_filter(h1, no_sasl, Filter).
ok

 level(LogEvent, Extra)

 (since OTP 21.0)

 -spec level(LogEvent, Extra) -> logger:filter_return()
 when
 LogEvent :: logger:log_event(),
 Extra :: {Action, Operator, MatchLevel},
 Action :: log | stop,
 Operator :: neq | eq | lt | gt | lteq | gteq,
 MatchLevel :: logger:level().

This filter provides a way of filtering log events based on the log level. It
matches log events by comparing the log level with a specified MatchLevel
The Extra parameter is specified when adding the filter via
logger:add_primary_filter/2 or logger:add_handler_filter/3.
The filter compares the value of the event's log level (Level) to MatchLevel
by calling
logger:compare_levels(Level, MatchLevel). The
filter matches if the value of Operator is:
	neq - and the compare function returns lt or gt.

	eq - and the compare function returns eq.

	lt - and the compare function returns lt.

	gt - and the compare function returns gt.

	lteq - and the compare function returns lt or eq.

	gteq - and the compare function returns gt or eq.

If the filter matches and Action is log, the log event is allowed. If the
filter matches and Action is stop, the log event is stopped.
If the filter does not match, it returns ignore, meaning that other filters,
or the value of the configuration parameter filter_default, will decide if the
event is allowed or not.
Example: only allow debug level log events
logger:set_handler_config(h1, filter_default, stop).
Filter = {fun logger_filters:level/2, {log, eq, debug}}.
logger:add_handler_filter(h1, debug_only, Filter).
ok

 progress(LogEvent, Extra)

 (since OTP 21.0)

 -spec progress(LogEvent, Extra) -> logger:filter_return()
 when LogEvent :: logger:log_event(), Extra :: log | stop.

This filter matches all progress reports from supervisor and
application_controller.
If Extra is log, the progress reports are allowed. If Extra is stop, the
progress reports are stopped.
The filter returns ignore for all other log events.

 remote_gl(LogEvent, Extra)

 (since OTP 21.0)

 -spec remote_gl(LogEvent, Extra) -> logger:filter_return()
 when LogEvent :: logger:log_event(), Extra :: log | stop.

This filter matches all events originating from a process that has its group
leader on a remote node.
If Extra is log, the matching events are allowed. If Extra is stop, the
matching events are stopped.
The filter returns ignore for all other log events.

 logger_formatter - kernel v10.4

logger_formatter behaviour

Default formatter for Logger.
Each Logger handler has a configured formatter specified as a module and a
configuration term. The purpose of the formatter is to translate the log events
to a final printable string (unicode:chardata())
which can be written to the output device of the handler. See sections
Handlers and
Formatters in the Kernel User's Guide for more
information.
logger_formatter is the default formatter used by Logger.
See Also
calendar, error_logger, io, io_lib, logger, maps,
sasl(6), unicode

 Summary

 Types

 config()

 The configuration term for logger_formatter is a map, and the
following keys can be set as configuration parameters

 metakey()

 template()

 The template to be used by a logger formatter.

 Callbacks: Formatter Callback Functions

 check_config(Config)

 The function is called by a Logger when formatter configuration is set or
modified. The formatter must validate the given configuration and return ok if
it is correct, and {error,Reason} if it is faulty.

 format(LogEvent, Config)

 The function can be called by a log handler to convert a log event term to a
printable string. The returned value can, for example, be printed as a log entry
to the console or a file using io:put_chars/1,2.

 Functions

 check_config(Config)

 The function is called by Logger when the formatter configuration for a handler
is set or modified. It returns ok if the configuration is valid, and
{error,term()} if it is faulty.

 format(LogEvent, Config)

 This the formatter callback function to be called from handlers.

 Types

 config()

 (not exported)

 (since OTP 21.0)

 -type config() ::
 #{chars_limit => pos_integer() | unlimited,
 depth => pos_integer() | unlimited,
 legacy_header => boolean(),
 max_size => pos_integer() | unlimited,
 report_cb => logger:report_cb(),
 single_line => boolean(),
 template => template(),
 time_designator => byte(),
 time_offset => integer() | [byte()]}.

The configuration term for logger_formatter is a map, and the
following keys can be set as configuration parameters:
	chars_limit = integer() > 0 | unlimited - A positive
integer representing the value of the option with the same name to be used
when calling io_lib:format/3. This value limits the total number of
characters printed for each log event. Notice that this is a soft limit. For a
hard truncation limit, see option max_size.
Defaults to unlimited.

	depth = integer() > 0 | unlimited - A positive integer
representing the maximum depth to which terms shall be printed by this
formatter. Format strings passed to this formatter are rewritten. The format
controls ~p and ~w are replaced with ~P and ~W, respectively, and the value is
used as the depth parameter. For details, see io:format/2,3
in STDLIB.
Defaults to unlimited.

	legacy_header = boolean() - If set to true a header field is added to
logger_formatter's part of Metadata. The value of this field is a string
similar to the header created by the old error_logger event handlers. It
can be included in the log event by adding the list
[logger_formatter,header] to the template. See the description of the
template/0 type for more information.
Defaults to false.

	max_size = integer() > 0 | unlimited - A positive integer
representing the absolute maximum size a string returned from this formatter
can have. If the formatted string is longer, after possibly being limited by
chars_limit or depth, it is truncated.
Defaults to unlimited.

	report_cb = logger:report_cb/0 - A report callback is used by the
formatter to transform log messages on report form to a format string and
arguments. The report callback can be specified in the metadata for the log
event. If no report callback exists in metadata, logger_formatter will use
logger:format_report/1 as default callback.
If this configuration parameter is set, it replaces both the default report
callback, and any report callback found in metadata. That is, all reports are
converted by this configured function.

	single_line = boolean() - If set to true, each log event is printed as
a single line. To achieve this, logger_formatter sets the field width to 0
for all ~p and ~P control sequences in the format a string (see
io:format/2), and replaces all newlines in the message with ", ". White
spaces following directly after newlines are removed. Notice that newlines
added by the template parameter are not replaced.
Defaults to true.

	template =template/0 - The template describes how the
formatted string is composed by combining different data values from the log
event. See the description of the template/0 type for more information
about this.

	time_designator = byte() - Timestamps are formatted according to
RFC3339, and the time designator is the character used as date and time
separator.
Defaults to $T.
The value of this parameter is used as the time_designator option to
calendar:system_time_to_rfc3339/2.

	time_offset = integer() | [byte()] - The time offset, either a string or
an integer, to be used when formatting the timestamp.
An empty string is interpreted as local time. The values "Z", "z" or 0
are interpreted as Universal Coordinated Time (UTC).
Strings, other than "Z", "z", or "", must be of the form ±[hh]:[mm],
for example "-02:00" or "+00:00".
Integers must be in microseconds, meaning that the offset 7200000000 is
equivalent to "+02:00".
Defaults to an empty string, meaning that timestamps are displayed in local
time. However, for backwards compatibility, if the SASL configuration
parameter utc_log=true, the default is
changed to "Z", meaning that timestamps are displayed in UTC.
The value of this parameter is used as the offset option to
calendar:system_time_to_rfc3339/2.

 metakey()

 (not exported)

 (since OTP 21.0)

 -type metakey() :: atom() | [atom()].

 template()

 (not exported)

 (since OTP 21.0)

 -type template() :: [metakey() | {metakey(), template(), template()} | unicode:chardata()].

The template to be used by a logger formatter.
The template is a list of atoms, atom lists, tuples and strings. The atoms
level or msg, are treated as placeholders for the severity level and the log
message, respectively. Other atoms or atom lists are interpreted as placeholders
for metadata, where atoms are expected to match top level keys, and atom lists
represent paths to sub keys when the metadata is a nested map. For example the
list [key1,key2] is replaced by the value of the key2 field in the nested
map below. The atom key1 on its own is replaced by the complete value of the
key1 field. The values are converted to strings.
#{key1 => #{key2 => my_value,
 ...}
 ...}
Tuples in the template express if-exist tests for metadata keys. For example,
the following tuple says that if key1 exists in the metadata map, print
"key1=Value", where Value is the value that key1 is associated with in the
metadata map. If key1 does not exist, print nothing.
{key1, ["key1=",key1], []}
Strings in the template are printed literally.
The default value for the template configuration parameter depends on the
value of the single_line and legacy_header configuration parameters as
follows.
The log event used in the examples is:
?LOG_ERROR("name: ~p~nexit_reason: ~p", [my_name, "It crashed"])
	legacy_header = true, single_line = false - Default template:
[[logger_formatter,header],"\n",msg,"\n"]
Example log entry:
=ERROR REPORT==== 17-May-2018::18:30:19.453447 ===
name: my_name
exit_reason: "It crashed"
Notice that all eight levels can occur in the heading, not only ERROR,
WARNING or INFO as error_logger produces. And microseconds are added
at the end of the timestamp.

	legacy_header = true, single_line = true - Default template:
[[logger_formatter,header],"\n",msg,"\n"]
Notice that the template is here the same as for single_line=false, but the
resulting log entry differs in that there is only one line after the heading:
=ERROR REPORT==== 17-May-2018::18:31:06.952665 ===
name: my_name, exit_reason: "It crashed"

	legacy_header = false, single_line = true - Default template:
[time," ",level,": ",msg,"\n"]
Example log entry:
2018-05-17T18:31:31.152864+02:00 error: name: my_name, exit_reason: "It crashed"

	legacy_header = false, single_line = false - Default template:
[time," ",level,":\n",msg,"\n"]
Example log entry:
2018-05-17T18:32:20.105422+02:00 error:
name: my_name
exit_reason: "It crashed"

 Callbacks: Formatter Callback Functions

 check_config(Config)

 (since OTP 21.0)

 -callback check_config(FConfig) -> ok | {error, Reason}
 when FConfig :: logger:formatter_config(), Reason :: term().

The function is called by a Logger when formatter configuration is set or
modified. The formatter must validate the given configuration and return ok if
it is correct, and {error,Reason} if it is faulty.
The following Logger API functions can trigger this callback:
	logger:add_handler/3
	logger:set_handler_config/2,3
	logger:update_handler_config/2,3
	logger:update_formatter_config/2

See logger_formatter for an example implementation. logger_formatter is
the default formatter used by Logger.

 format(LogEvent, Config)

 (since OTP 21.0)

 -callback format(LogEvent, FConfig) -> FormattedLogEntry
 when
 LogEvent :: logger:log_event(),
 FConfig :: logger:formatter_config(),
 FormattedLogEntry :: unicode:chardata().

The function can be called by a log handler to convert a log event term to a
printable string. The returned value can, for example, be printed as a log entry
to the console or a file using io:put_chars/1,2.
See logger_formatter for an example implementation. logger_formatter is
the default formatter used by Logger.

 Functions

 check_config(Config)

 (since OTP 21.0)

 -spec check_config(Config) -> ok | {error, term()} when Config :: config().

The function is called by Logger when the formatter configuration for a handler
is set or modified. It returns ok if the configuration is valid, and
{error,term()} if it is faulty.
The following Logger API functions can trigger this callback:
	logger:add_handler/3
	logger:set_handler_config/2,3
	logger:update_handler_config/2
	logger:update_formatter_config/2

 format(LogEvent, Config)

 (since OTP 21.0)

 -spec format(LogEvent, Config) -> unicode:chardata()
 when LogEvent :: logger:log_event(), Config :: config().

This the formatter callback function to be called from handlers.
The log event is processed as follows:
	If the message is on report form, it is converted to {Format,Args} by
calling the report callback. See section
Log Message in the Kernel User's Guide for
more information about report callbacks and valid forms of log messages.
	The message size is limited according to the values of configuration
parameters chars_limit and
depth.
	The full log entry is composed according to the
template.
	If the final string is too long, it is truncated according to the value of
configuration parameter max_size.

 logger_handler - kernel v10.4

logger_handler behaviour

logger_handler behavior module.
The behaviour module for logger handlers. A logger handler is a callback module
that is called when a log event has passed all filters and is ready to be logged
somewhere. For more information see Handlers in
the Users Guide.
See Also
logger_filters, logger_formatter, logger

 Summary

 Types

 config()

 Handler configuration data for Logger. The following default values apply

 id()

 A unique identifier for a handler instance.

 olp_config()

 Overload protection configuration.

 Callbacks

 adding_handler(Config1)

 The function is called on a temporary process when a new handler is about to be
added. The purpose is to verify the configuration and initiate all resources
needed by the handler.

 changing_config(SetOrUpdate, OldConfig, NewConfig)

 The function is called on a temporary process when the configuration for a
handler is about to change. The purpose is to verify and act on the new
configuration.

 filter_config(Config)

 The function is called when one of the Logger API functions for fetching the
handler configuration is called, for example logger:get_handler_config/1.

 log(LogEvent, Config)

 The function is called when all primary filters and all handler filters for the
handler in question have passed for the given log event. It is called on the
client process, that is, the process that issued the log event.

 removing_handler(Config)

 The function is called on a temporary process when a handler is about to be
removed. The purpose is to release all resources used by the handler.

 Types

 config()

 (since OTP 27.0)

 -type config() ::
 #{id => id(),
 config => term(),
 level => logger:level() | all | none,
 module => module(),
 filter_default => log | stop,
 filters => [{logger:filter_id(), logger:filter()}],
 formatter => {module(), logger:formatter_config()}}.

Handler configuration data for Logger. The following default values apply:
	level => all
	filter_default => log
	filters => []
	formatter => {logger_formatter, DefaultFormatterConfig}

In addition to these, the following fields are automatically inserted by Logger,
values taken from the two first parameters to logger:add_handler/3:
	id => HandlerId
	module => Module

These are read-only and cannot be changed in runtime.
Handler specific configuration data is inserted by the handler callback itself,
in a sub structure associated with the field named config. See the
logger_std_h and logger_disk_log_h manual pages for information about
the specific configuration for these handlers.
See the logger_formatter manual page for
information about the default configuration for this formatter.

 id()

 (since OTP 27.0)

 -type id() :: atom().

A unique identifier for a handler instance.

 olp_config()

 (since OTP 27.0)

 -type olp_config() ::
 #{sync_mode_qlen => non_neg_integer(),
 drop_mode_qlen => pos_integer(),
 flush_qlen => pos_integer(),
 burst_limit_enable => boolean(),
 burst_limit_max_count => pos_integer(),
 burst_limit_window_time => pos_integer(),
 overload_kill_enable => boolean(),
 overload_kill_qlen => pos_integer(),
 overload_kill_mem_size => pos_integer(),
 overload_kill_restart_after => non_neg_integer() | infinity}.

Overload protection configuration.
See Protecting the Handler from Overload
for more details.

 Callbacks

 adding_handler(Config1)

 (since OTP 21.0)

 (optional)

 -callback adding_handler(Config1) -> {ok, Config2} | {error, Reason}
 when Config1 :: config(), Config2 :: config(), Reason :: term().

The function is called on a temporary process when a new handler is about to be
added. The purpose is to verify the configuration and initiate all resources
needed by the handler.
The handler identity is associated with the id key in Config1.
If everything succeeds, the callback function can add possible default values or
internal state values to the configuration, and return the adjusted map in
{ok,Config2}.
If the configuration is faulty, or if the initiation fails, the callback
function must return {error,Reason}.

 changing_config(SetOrUpdate, OldConfig, NewConfig)

 (since OTP 21.2)

 (optional)

 -callback changing_config(SetOrUpdate, OldConfig, NewConfig) -> {ok, Config} | {error, Reason}
 when
 SetOrUpdate :: set | update,
 OldConfig :: config(),
 NewConfig :: config(),
 Config :: config(),
 Reason :: term().

The function is called on a temporary process when the configuration for a
handler is about to change. The purpose is to verify and act on the new
configuration.
OldConfig is the existing configuration and NewConfig is the new
configuration.
The handler identity is associated with the id key in OldConfig.
SetOrUpdate has the value set if the configuration change originates from a
call to logger:set_handler_config/2,3, and
update if it originates from
logger:update_handler_config/2,3. The
handler can use this parameter to decide how to update the value of the config
field, that is, the handler specific configuration data. Typically, if
SetOrUpdate equals set, values that are not specified must be given their
default values. If SetOrUpdate equals update, the values found in
OldConfig must be used instead.
If everything succeeds, the callback function must return a possibly adjusted
configuration in {ok,Config}.
If the configuration is faulty, the callback function must return
{error,Reason}.

 filter_config(Config)

 (since OTP 21.2)

 (optional)

 -callback filter_config(Config) -> FilteredConfig when Config :: config(), FilteredConfig :: config().

The function is called when one of the Logger API functions for fetching the
handler configuration is called, for example logger:get_handler_config/1.
It allows the handler to remove internal data fields from its configuration data
before it is returned to the caller.

 log(LogEvent, Config)

 (since OTP 21.0)

 -callback log(LogEvent, Config) -> term() when LogEvent :: logger:log_event(), Config :: config().

The function is called when all primary filters and all handler filters for the
handler in question have passed for the given log event. It is called on the
client process, that is, the process that issued the log event.
The handler identity is associated with the id key in Config.
The handler must log the event.
The return value from this function is ignored by Logger.

 removing_handler(Config)

 (since OTP 21.0)

 (optional)

 -callback removing_handler(Config) -> ok when Config :: config().

The function is called on a temporary process when a handler is about to be
removed. The purpose is to release all resources used by the handler.
The handler identity is associated with the id key in Config.
The return value is ignored by Logger.

 logger_std_h - kernel v10.4

logger_std_h

Standard handler for Logger.
This is the standard handler for Logger. Multiple instances of this handler can
be added to Logger, and each instance prints logs to
standard_io,
standard_error, or to file.
The handler has an overload protection mechanism that keeps the handler process
and the Kernel application alive during high loads of log events. How overload
protection works, and how to configure it, is described in the
User's Guide.
To add a new instance of the standard handler, use
logger:add_handler/3. The handler configuration
argument is a map which can contain general configuration parameters, as
documented in the User's Guide,
and handler specific parameters. The specific data is stored in a sub map with
the key config, and can contain the following parameters:
	type = io:standard_io/0 | io:standard_error/0 | file | {device, io:device/0 } -
Specifies the log destination.
The value is set when the handler is added, and it cannot be changed in
runtime.
Defaults to standard_io, unless parameter
file is given, in which case it defaults to file.

	file = file:filename/0 - This specifies the name of the
log file when the handler is of type file.
The value is set when the handler is added, and it cannot be changed in
runtime.
Defaults to the same name as the handler identity, in the current directory.

	modes = [file:mode/0] - This specifies the file modes
to use when opening the log file, see file:open/2. If modes are not
specified, the default list used is [raw,append,delayed_write]. If modes
are specified, the list replaces the default modes list with the following
adjustments:
	If raw is not found in the list, it is added.
	If none of write, append or exclusive is found in the list, append
is added.
	If none of delayed_write or {delayed_write,Size,Delay} is found in the
list, delayed_write is added.

Log files are always UTF-8 encoded. The encoding cannot be changed by setting
the mode {encoding,Encoding}.
The value is set when the handler is added, and it cannot be changed in
runtime.
Defaults to [raw,append,delayed_write].

	max_no_bytes = pos_integer/0 | infinity - This
parameter specifies if the log file should be rotated or not. The value
infinity means the log file will grow indefinitely, while an integer value
specifies at which file size (bytes) the file is rotated.
Defaults to infinity.

	max_no_files = non_neg_integer/0 - This parameter
specifies the number of rotated log file archives to keep. This has meaning
only if max_no_bytes is set to an integer
value.
The log archives are named FileName.0, FileName.1, ... FileName.N, where
FileName is the name of the current log file. FileName.0 is the newest of
the archives. The maximum value for N is the value of max_no_files
minus 1.
Notice that setting this value to 0 does not turn off rotation. It only
specifies that no archives are kept.
Defaults to 0.

	compress_on_rotate = boolean/0 - This parameter
specifies if the rotated log file archives shall be compressed or not. If set
to true, all archives are compressed with gzip, and renamed to
FileName.N.gz
compress_on_rotate has no meaning if
max_no_bytes has the value infinity.
Defaults to false.

	file_check = non_neg_integer/0 - When logger_std_h
logs to a file, it reads the file information of the log file prior to each
write operation. This is to make sure the file still exists and has the same
inode as when it was opened. This implies some performance loss, but ensures
that no log events are lost in the case when the file has been removed or
renamed by an external actor.
In order to allow minimizing the performance loss, the file_check parameter
can be set to a positive integer value, N. The handler will then skip
reading the file information prior to writing, as long as no more than N
milliseconds have passed since it was last read.
Notice that the risk of losing log events grows when the file_check value
grows.
Defaults to 0.

	filesync_repeat_interval = pos_integer/0 | no_repeat - This value, in
milliseconds, specifies how often the handler does a file sync operation to
write buffered data to disk. The handler attempts the operation repeatedly,
but only performs a new sync if something has actually been logged.
If no_repeat is set as value, the repeated file sync operation is disabled,
and it is the operating system settings that determine how quickly or slowly
data is written to disk. The user can also call the filesync/1 function to
perform a file sync.
Defaults to 5000 milliseconds.

Other configuration parameters exist, to be used for customizing the overload
protection behaviour. The same parameters are used both in the standard handler
and the disk_log handler, and are documented in the
User's Guide.
Notice that if changing the configuration of the handler in runtime, the type,
file, or modes parameters must not be modified.
Example of adding a standard handler:
logger:add_handler(my_standard_h, logger_std_h,
 #{config => #{file => "./system_info.log",
 filesync_repeat_interval => 1000}}).
To set the default handler, that starts initially with the Kernel application,
to log to file instead of standard_io, change the
Kernel default logger configuration. Example:
erl -kernel logger '[{handler,default,logger_std_h,
 #{config => #{file => "./log.log"}}}]'
An example of how to replace the standard handler with a disk_log handler at
startup is found in the logger_disk_log_h manual.
See Also
logger, logger_disk_log_h

 Summary

 Functions

 filesync(Name)

 Write buffered data to disk.

 Functions

 filesync(Name)

 (since OTP 21.0)

 -spec filesync(Name) -> ok | {error, Reason}
 when Name :: atom(), Reason :: handler_busy | {badarg, term()}.

Write buffered data to disk.

 wrap_log_reader - kernel v10.4

wrap_log_reader

A service to read internally formatted wrap disk logs.
This module makes it possible to read internally formatted wrap disk logs, see
disk_log. wrap_log_reader does not interfere with disk_log activities;
there is however a bug in this version of the wrap_log_reader, see section
Known Limitations.
A wrap disk log file consists of many files, called index files. A log file can
be opened and closed. Also, a single index file can be opened separately. If a
non-existent or non-internally formatted file is opened, an error message is
returned. If the file is corrupt, no attempt is made to repair it, but an error
message is returned.
If a log is configured to be distributed, it is possible that all items are not
logged on all nodes. wrap_log_reader only reads the log on the called node; it
is up to the user to be sure that all items are read.
Known Limitations
This version of wrap_log_reader does not detect if disk_log wraps to a new
index file between a call to wrap_log_reader:open/1 and the first call to
wrap_log_reader:chunk/1. If this occurs, the call to chunk/1 reads the last
logged items in the log file, as the opened index file was truncated by
disk_log.

 Summary

 Types

 chunk_ret()

 continuation()

 Continuation returned by open/1,2 or chunk/1,2.

 open_ret()

 Functions

 chunk(Continuation)

 Equivalent to chunk(Continuation, infinity).

 chunk(Continuation, N)

 Enables to efficiently read the terms that are appended to a log. Minimises disk
I/O by reading 64 kilobyte chunks from the file.

 close(Continuation)

 Closes a log file properly.

 open(Filename)

 Equivalent to open(Filename, ...) except that the whole
wrap log file is read.

 open(Filename, N)

 Filename specifies the name of the file to be read.

 Types

 chunk_ret()

 (not exported)

 -type chunk_ret() ::
 {Continuation2 :: term(), Terms :: [term()]} |
 {Continuation2 :: term(), Terms :: [term()], Badbytes :: non_neg_integer()} |
 {Continuation2 :: term(), eof} |
 {error, Reason :: term()}.

 continuation()

 -opaque continuation()

Continuation returned by open/1,2 or chunk/1,2.

 open_ret()

 (not exported)

 -type open_ret() :: {ok, Continuation :: continuation()} | {error, Reason :: tuple()}.

 Functions

 chunk(Continuation)

 -spec chunk(Continuation) -> chunk_ret() when Continuation :: continuation().

Equivalent to chunk(Continuation, infinity).

 chunk(Continuation, N)

 -spec chunk(Continuation, N) -> chunk_ret()
 when Continuation :: continuation(), N :: infinity | pos_integer().

Enables to efficiently read the terms that are appended to a log. Minimises disk
I/O by reading 64 kilobyte chunks from the file.
The first time chunk/2 is called, an initial continuation returned from
open/1 or open/2 must be provided.
When chunk/2 is called, N controls the maximum number of terms that are read
from the log in each chunk. infinity means that all the
terms contained in the 8K chunk are read. If less than N terms are returned,
this does not necessarily mean that end of file is reached.
Returns a tuple {Continuation2, Terms}, where Terms is a list of terms found
in the log. Continuation2 is yet another continuation that must be passed on
to any subsequent calls to chunk(). With a series of calls to chunk(), it is
then possible to extract all terms from a log.
Returns a tuple {Continuation2, Terms, Badbytes} if the log is opened in read
only mode and the read chunk is corrupt. Badbytes indicates the number of
non-Erlang terms found in the chunk. Notice that the log is not repaired.
Returns {Continuation2, eof} when the end of the log is reached, and
{error, Reason} if an error occurs.
The returned continuation either is or is not valid in the next call to this
function. This is because the log can wrap and delete the file into which the
continuation points. To ensure this does not occur, the log can be blocked
during the search.

 close(Continuation)

 -spec close(Continuation) -> ok | {error, Reason}
 when Continuation :: continuation(), Reason :: file:posix().

Closes a log file properly.

 open(Filename)

 -spec open(Filename) -> open_ret() when Filename :: string() | atom().

Equivalent to open(Filename, ...) except that the whole
wrap log file is read.

 open(Filename, N)

 -spec open(Filename, N) -> open_ret() when Filename :: string() | atom(), N :: integer().

Filename specifies the name of the file to be read.
N specifies the index of the file to be read. Use open/1 to read the entire
wrap log.
Returns {ok, Continuation} if the log/index file is opened successfully.
Continuation is to be used when chunking or closing the file.
Returns {error, Reason} for all errors.

 seq_trace - kernel v10.4

seq_trace

Sequential tracing of information transfers.
Sequential tracing makes it possible to trace information flows between
processes resulting from one initial transfer of information. Sequential tracing
is independent of the ordinary tracing in Erlang, which is controlled by the
erlang:trace/3 BIF. For more information about what sequential tracing is and
how it can be used, see section Sequential Tracing.
seq_trace provides functions that control all aspects of sequential tracing.
There are functions for activation, deactivation, inspection, and for collection
of the trace output.
Trace Messages Sent to the System Tracer
The format of the messages is one of the following, depending on if flag
timestamp of the trace token is set to true or false:
{seq_trace, Label, SeqTraceInfo, TimeStamp}
or
{seq_trace, Label, SeqTraceInfo}
Where:
Label = int()
TimeStamp = {Seconds, Milliseconds, Microseconds}
 Seconds = Milliseconds = Microseconds = int()
SeqTraceInfo can have the following formats:
	{send, Serial, From, To, Message} - Used when a process From with its
trace token flag send set to true has sent information. To may be a
process identifier, a registered name on a node represented as
{NameAtom, NodeAtom}, or a node name represented as an atom. From may be a
process identifier or a node name represented as an atom. Message contains
the information passed along in this information transfer. If the transfer is
done via message passing, it is the actual message.

	{'receive', Serial, From, To, Message} - Used when a process To
receives information with a trace token that has flag 'receive' set to
true. To may be a process identifier, or a node name represented as an
atom. From may be a process identifier or a node name represented as an
atom. Message contains the information passed along in this information
transfer. If the transfer is done via message passing, it is the actual
message.

	{print, Serial, From, _, Info} - Used when a process From has called
seq_trace:print(Label, TraceInfo) and has a trace token with flag print
set to true, and label set to Label.

Serial is a tuple {PreviousSerial, ThisSerial}, where:
	Integer PreviousSerial denotes the serial counter passed in the last
received information that carried a trace token. If the process is the first
in a new sequential trace, PreviousSerial is set to the value of the process
internal "trace clock".
	Integer ThisSerial is the serial counter that a process sets on outgoing
messages. It is based on the process internal "trace clock", which is
incremented by one before it is attached to the trace token in the message.

Sequential Tracing
Sequential tracing is a way to trace a sequence of information transfers between
different local or remote processes, where the sequence is initiated by a single
transfer. The typical information transfer is an ordinary Erlang message passed
between two processes, but information is transferred also in other ways. In
short, it works as follows:
Each process has a trace token, which can be empty or not empty. When not
empty, the trace token can be seen as the tuple {Label, Flags, Serial, From}.
The trace token is passed invisibly when information is passed between
processes. In most cases the information is passed in ordinary messages between
processes, but information is also passed between processes by other means. For
example, by spawning a new process. An information transfer between two
processes is represented by a send event and a receive event regardless of how
it is passed.
To start a sequential trace, the user must explicitly set the trace token in the
process that will send the first information in a sequence.
The trace token of a process is set each time the process receives information.
This is typically when the process matches a message in a receive statement,
according to the trace token carried by the received message, empty or not.
On each Erlang node, a process can be set as the system tracer. This process
will receive trace messages each time information with a trace token is sent or
received (if the trace token flag send or 'receive' is set). The system
tracer can then print each trace event, write it to a file, or whatever
suitable.
Note
The system tracer only receives those trace events that occur locally within
the Erlang node. To get the whole picture of a sequential trace, involving
processes on many Erlang nodes, the output from the system tracer on each
involved node must be merged (offline).
The following sections describe sequential tracing and its most fundamental
concepts.
Different Information Transfers
Information flows between processes in a lot of different ways. Not all flows of
information will be covered by sequential tracing. One example is information
passed via ETS tables. Below is a list of information paths that are covered by
sequential tracing:
	Message Passing - All ordinary messages passed between Erlang processes.

	Exit signals - An exit signal is represented as an {'EXIT', Pid, Reason}
tuple.

	Process Spawn - A process spawn is represented as multiple information
transfers. At least one spawn request and one spawn reply. The actual amount
of information transfers depends on what type of spawn it is and may also
change in future implementations. Note that this is more or less an internal
protocol that you are peeking at. The spawn request will be represented as a
tuple with the first element containing the atom spawn_request, but this is
more or less all that you can depend on.

Note
If you do ordinary send or receive trace on the system, you will only see
ordinary message passing, not the other information transfers listed above.
Note
When a send event and corresponding receive event do not both correspond to
ordinary Erlang messages, the Message part of the trace messages may not be
identical. This since all information not necessarily are available when
generating the trace messages.
Trace Token
Each process has a current trace token which is "invisibly" passed from the
parent process on creation of the process.
The current token of a process is set in one of the following two ways:
	Explicitly by the process itself, through a call to seq_trace:set_token/1,2
	When information is received. This is typically when a received message is
matched out in a receive expression, but also when information is received in
other ways.

In both cases, the current token is set. In particular, if the token of a
received message is empty, the current token of the process is set to empty.
A trace token contains a label and a set of flags. Both the label and the flags
are set in both alternatives above.
Serial
The trace token contains a component called serial. It consists of two
integers, Previous and Current. The purpose is to uniquely identify each
traced event within a trace sequence, as well as to order the messages
chronologically and in the different branches, if any.
The algorithm for updating Serial can be described as follows:
Let each process have two counters, prev_cnt and curr_cnt, both are set to
0 when a process is created outside of a trace sequence. The counters are
updated at the following occasions:
	When the process is about to pass along information to another process and
the trace token is not empty. This typically occurs when sending a message,
but also, for example, when spawning another process.
Let the serial of the trace token be tprev and tcurr.
curr_cnt := curr_cnt + 1
tprev := prev_cnt
tcurr := curr_cnt
The trace token with tprev and tcurr is then passed along with the
information passed to the other process.

	When the process calls seq_trace:print(Label, Info), Label matches the
label part of the trace token and the trace token print flag is true.
The algorithm is the same as for send above.

	When information is received that also contains a non-empty trace token. For
example, when a message is matched out in a receive expression, or when a new
process is spawned.
The process trace token is set to the trace token from the message.
Let the serial of the trace token be tprev and tcurr.
if (curr_cnt < tcurr)
 curr_cnt := tcurr
prev_cnt := tcurr

curr_cnt of a process is incremented each time the process is involved in a
sequential trace. The counter can reach its limit (27 bits) if a process is very
long-lived and is involved in much sequential tracing. If the counter overflows,
the serial for ordering of the trace events cannot be used. To prevent the
counter from overflowing in the middle of a sequential trace, function
seq_trace:reset_trace/0 can be called to reset prev_cnt and curr_cnt of
all processes in the Erlang node. This function also sets all trace tokens in
processes and their message queues to empty, and thus stops all ongoing
sequential tracing.
Performance Considerations
The performance degradation for a system that is enabled for sequential tracing
is negligible as long as no tracing is activated. When tracing is activated,
there is an extra cost for each traced message, but all other messages are
unaffected.
Ports
Sequential tracing is not performed across ports.
If the user for some reason wants to pass the trace token to a port, this must
be done manually in the code of the port controlling process. The port
controlling processes have to check the appropriate sequential trace settings
(as obtained from seq_trace:get_token/1) and include trace information in the
message data sent to their respective ports.
Similarly, for messages received from a port, a port controller has to retrieve
trace-specific information, and set appropriate sequential trace flags through
calls to seq_trace:set_token/2.
Distribution
Sequential tracing between nodes is performed transparently. This applies to
C-nodes built with Erl_Interface too. A C-node built with Erl_Interface only
maintains one trace token, which means that the C-node appears as one process
from the sequential tracing point of view.
Example of Use
This example gives a rough idea of how the new primitives can be used and what
kind of output it produces.
Assume that you have an initiating process with Pid == <0.30.0> like this:
-module(seqex).
-compile(export_all).

loop(Port) ->
 receive
 {Port,Message} ->
 seq_trace:set_token(label,17),
 seq_trace:set_token('receive',true),
 seq_trace:set_token(print,true),
 seq_trace:print(17,"**** Trace Started ****"),
 call_server ! {self(),the_message};
 {ack,Ack} ->
 ok
 end,
 loop(Port).
And a registered process call_server with Pid == <0.31.0> like this:
loop() ->
 receive
 {PortController,Message} ->
 Ack = {received, Message},
 seq_trace:print(17,"We are here now"),
 PortController ! {ack,Ack}
 end,
 loop().
A possible output from the system's sequential_tracer can be like this:
17:<0.30.0> Info {0,1} WITH
"**** Trace Started ****"
17:<0.31.0> Received {0,2} FROM <0.30.0> WITH
{<0.30.0>,the_message}
17:<0.31.0> Info {2,3} WITH
"We are here now"
17:<0.30.0> Received {2,4} FROM <0.31.0> WITH
{ack,{received,the_message}}
The implementation of a system tracer process that produces this printout can
look like this:
tracer() ->
 receive
 {seq_trace,Label,TraceInfo} ->
 print_trace(Label,TraceInfo,false);
 {seq_trace,Label,TraceInfo,Ts} ->
 print_trace(Label,TraceInfo,Ts);
 _Other -> ignore
 end,
 tracer().

print_trace(Label,TraceInfo,false) ->
 io:format("~p:",[Label]),
 print_trace(TraceInfo);
print_trace(Label,TraceInfo,Ts) ->
 io:format("~p ~p:",[Label,Ts]),
 print_trace(TraceInfo).

print_trace({print,Serial,From,_,Info}) ->
 io:format("~p Info ~p WITH~n~p~n", [From,Serial,Info]);
print_trace({'receive',Serial,From,To,Message}) ->
 io:format("~p Received ~p FROM ~p WITH~n~p~n",
 [To,Serial,From,Message]);
print_trace({send,Serial,From,To,Message}) ->
 io:format("~p Sent ~p TO ~p WITH~n~p~n",
 [From,Serial,To,Message]).
The code that creates a process that runs this tracer function and sets that
process as the system tracer can look like this:
start() ->
 Pid = spawn(?MODULE,tracer,[]),
 seq_trace:set_system_tracer(Pid), % set Pid as the system tracer
 ok.
With a function like test/0, the whole example can be started:
test() ->
 P = spawn(?MODULE, loop, [port]),
 register(call_server, spawn(?MODULE, loop, [])),
 start(),
 P ! {port,message}.

 Summary

 Types

 component()

 flag()

 token()

 An opaque term (a tuple) representing a trace token.

 tracer()

 value()

 Functions

 get_system_tracer()

 Returns the pid, port identifier or tracer module of the current system tracer
or false if no system tracer is activated.

 get_token()

 Returns the value of the trace token for the calling process. If [] is
returned, it means that tracing is not active. Any other value returned is the
value of an active trace token. The value returned can be used as input to the
set_token/1 function.

 get_token(Component)

 Returns the value of the trace token component Component. See set_token/2
for possible values of Component and Val.

 print(TraceInfo)

 Puts the Erlang term TraceInfo into the sequential trace output if the calling
process currently is executing within a sequential trace and the print flag of
the trace token is set.

 print(Label, TraceInfo)

 Same as print/1 with the additional condition that TraceInfo is
output only if Label is equal to the label component of the trace token.

 reset_trace()

 Sets the trace token to empty for all processes on the local node. The process
internal counters used to create the serial of the trace token is set to 0. The
trace token is set to empty for all messages in message queues. Together this
will effectively stop all ongoing sequential tracing in the local node.

 set_system_tracer(Tracer)

 Sets the system tracer. The system tracer can be either a process, port or
tracer module denoted by Tracer. Returns the previous value
(which can be false if no system tracer is active).

 set_token(Token)

 Sets the trace token for the calling process to Token. If Token == [] then
tracing is disabled, otherwise Token should be an Erlang term returned from
get_token/0 or set_token/1. set_token/1
can be used to temporarily exclude message passing from the trace by setting the
trace token to empty like this

 set_token(Component, Val)

 Sets the individual Component of the trace token to Val. Returns the
previous value of the component.

 Types

 component()

 (not exported)

 -type component() :: label | serial | flag().

 flag()

 (not exported)

 -type flag() :: send | 'receive' | print | timestamp | monotonic_timestamp | strict_monotonic_timestamp.

 token()

 (not exported)

 -type token() :: {integer(), boolean(), _, _, _}.

An opaque term (a tuple) representing a trace token.

 tracer()

 (not exported)

 -type tracer() :: (Pid :: pid()) | port() | (TracerModule :: {module(), term()}) | false.

 value()

 (not exported)

 -type value() ::
 (Label :: term()) |
 {Previous :: non_neg_integer(), Current :: non_neg_integer()} |
 (Bool :: boolean()).

 Functions

 get_system_tracer()

 -spec get_system_tracer() -> Tracer when Tracer :: tracer().

Returns the pid, port identifier or tracer module of the current system tracer
or false if no system tracer is activated.

 get_token()

 -spec get_token() -> [] | token().

Returns the value of the trace token for the calling process. If [] is
returned, it means that tracing is not active. Any other value returned is the
value of an active trace token. The value returned can be used as input to the
set_token/1 function.

 get_token(Component)

 -spec get_token(Component) -> [] | {Component, Val} when Component :: component(), Val :: value().

Returns the value of the trace token component Component. See set_token/2
for possible values of Component and Val.

 print(TraceInfo)

 -spec print(TraceInfo) -> ok when TraceInfo :: term().

Puts the Erlang term TraceInfo into the sequential trace output if the calling
process currently is executing within a sequential trace and the print flag of
the trace token is set.

 print(Label, TraceInfo)

 -spec print(Label, TraceInfo) -> ok when Label :: integer(), TraceInfo :: term().

Same as print/1 with the additional condition that TraceInfo is
output only if Label is equal to the label component of the trace token.

 reset_trace()

 -spec reset_trace() -> true.

Sets the trace token to empty for all processes on the local node. The process
internal counters used to create the serial of the trace token is set to 0. The
trace token is set to empty for all messages in message queues. Together this
will effectively stop all ongoing sequential tracing in the local node.

 set_system_tracer(Tracer)

 -spec set_system_tracer(Tracer) -> OldTracer when Tracer :: tracer(), OldTracer :: tracer().

Sets the system tracer. The system tracer can be either a process, port or
tracer module denoted by Tracer. Returns the previous value
(which can be false if no system tracer is active).
Failure: {badarg, Info}} if Pid is not an existing local pid.

 set_token(Token)

 -spec set_token(Token) -> PreviousToken | ok when Token :: [] | token(), PreviousToken :: [] | token().

Sets the trace token for the calling process to Token. If Token == [] then
tracing is disabled, otherwise Token should be an Erlang term returned from
get_token/0 or set_token/1. set_token/1
can be used to temporarily exclude message passing from the trace by setting the
trace token to empty like this:
OldToken = seq_trace:set_token([]), % set to empty and save
 % old value
% do something that should not be part of the trace
io:format("Exclude the signalling caused by this~n"),
seq_trace:set_token(OldToken), % activate the trace token again
...
Returns the previous value of the trace token.

 set_token(Component, Val)

 -spec set_token(Component, Val) -> OldVal
 when Component :: component(), Val :: value(), OldVal :: value().

Sets the individual Component of the trace token to Val. Returns the
previous value of the component.
	set_token(label, Label) - The label component is a
term which identifies all events belonging to the same sequential trace. If
several sequential traces can be active simultaneously, label is used to
identify the separate traces. Default is 0.
Warning
Labels were restricted to small signed integers (28 bits) prior to OTP 21.
The trace token will be silently dropped if it crosses over to a node that
does not support the label.

	set_token(serial, SerialValue) -
SerialValue = {Previous, Current}. The serial component contains counters
which enables the traced messages to be sorted, should never be set explicitly
by the user as these counters are updated automatically. Default is {0, 0}.

	set_token(send, Bool) - A trace token flag
(true | false) which enables/disables tracing on information sending.
Default is false.

	set_token('receive', Bool) - A trace token flag
(true | false) which enables/disables tracing on information reception.
Default is false.

	set_token(print, Bool) - A trace token flag
(true | false) which enables/disables tracing on explicit calls to
seq_trace:print/1. Default is false.

	set_token(timestamp, Bool) - A trace token flag
(true | false) which enables/disables a timestamp to be generated for each
traced event. Default is false.

	set_token(strict_monotonic_timestamp, Bool) - A trace
token flag (true | false) which enables/disables a strict monotonic
timestamp to be generated for each traced event. Default is false.
Timestamps will consist of
Erlang monotonic time and
a monotonically increasing integer. The time-stamp has the same format and
value as produced by
{erlang:monotonic_time(nanosecond), erlang:unique_integer([monotonic])}.

	set_token(monotonic_timestamp, Bool) - A trace token
flag (true | false) which enables/disables a strict monotonic timestamp to
be generated for each traced event. Default is false. Timestamps will use
Erlang monotonic time.
The time-stamp has the same format and value as produced by
erlang:monotonic_time(nanosecond).

If multiple timestamp flags are passed, timestamp has precedence over
strict_monotonic_timestamp which in turn has precedence over
monotonic_timestamp. All timestamp flags are remembered, so if two are passed
and the one with highest precedence later is disabled the other one will become
active.

 trace - kernel v10.4

trace

The Erlang trace interface.
The Erlang run-time system exposes several trace points that allow users
to be notified when they are triggered. Trace points are things such as
function calls, message sending and receiving, garbage collection, and
process scheduling.
The functions in this module can be used directly, but can also be
used as building blocks to build more sophisticated debugging or
profiling tools. For debugging Erlang code it is recommended to use
dbg and for profiling to use tprof.
Trace Sessions
All tracing is done within a trace session. Trace sessions can be
created and destroyed
dynamically. Each session has its own tracer that will receive all trace
messages. Several sessions can exist at the same time without interfering with
each other. When a trace session is destroyed, all its trace settings are
automatically cleaned up.
Example:
%% Create a tracer process that will receive the trace events
1> Tracer = spawn(fun F() -> receive M -> io:format("~p~n",[M]), F() end end).
<0.91.0>
%% Create a session using the Tracer
2> Session = trace:session_create(my_session, Tracer, []).
{#Ref<0.1543805153.1548353537.92331>,{my_session, 0}}
%% Setup call tracing on self()
3> trace:process(Session, self(), true, [call]).
1
%% Setup call tracing on lists:seq/2
4> trace:function(Session, {lists,seq,2}, [], []).
1
%% Call the traced function
5> lists:seq(1, 10).
{trace,<0.89.0>,call,{lists,seq,[1,10]}} % The trace message
[1,2,3,4,5,6,7,8,9,10] % The return value
%% Cleanup the trace session
6> trace:session_destroy(Session).
ok
Node Local Tracing Only
The functions in this module only operates on the local node. That is, both the
traced processes/ports as well as the tracer process/port/module must all reside
on the same local node as the call is made. To trace remote nodes use dbg or
ttb.
Change
This trace module was introduced in OTP 27.0. The interface and semantics are
similar to the older functions erlang:trace/3, erlang:trace_pattern/3,
and erlang:trace_info/2.
The main difference is the old functions operate on a single static
trace session per node. That could impose the problem that different
users and tools would interfere with each other's trace settings. The new trace
functions in this module all operate on dynamically created trace sesssions
isolated from each other. Also, this makes it easier to safely disable all trace
settings when done by a single call to session_destroy/1.
To change an existing tool to use the interface the following table can be
useful:
	Old function call	corresponds to
	erlang:trace(Pid, ...)	process(S, Pid, ...)
	erlang:trace(processes, ...)	process(S, all, ...)
	erlang:trace(existing_processes, ...)	process(S, existing, ...)
	erlang:trace(new_processes, ...)	process(S, new, ...)
	erlang:trace(Port, ...)	port(S, Port, ...)
	erlang:trace(ports, ...)	port(S, all, ...)
	erlang:trace(existing_ports, ...)	port(S, existing, ...)
	erlang:trace(new_ports, ...)	port(S, new, ...)
	erlang:trace(all, ...)	process(S, all, ...) and port(S, all, ...)
	erlang:trace(existing, ...)	process(S, existing, ...) and port(S, existing, ...)
	erlang:trace(new, ...)	process(S, new, ...) and port(S, new, ...)
	erlang:trace_pattern(MFA, ...)	function(S, MFA, ...)
	erlang:trace_pattern(send, ...)	send(S, ...)
	erlang:trace_pattern('receive', ...)	recv(S, ...)
	erlang:trace_info(...)	info(S, ...)

Argument S is the trace session that must first be created with
session_create/3. The other arguments (implied by ...) are mostly the
same. The only other difference is that the tracer is always the tracer
specified when the session was created. Options {tracer,T}, {tracer,M,S},
{meta,T}, and {meta,M,S} are therefore not allowed, and the default tracer is
never the calling process.

 Summary

 Types

 match_variable()

 session()

 A handle to an isolated trace session.

 session_strong_ref()

 session_weak_ref()

 A weak session handle as returned by session_info/1. A weak session handle can
be used like a full session handle, but it will not prevent the session from
being destroyed when the last strong handle is garbage collected.

 system_event()

 system_value()

 trace_flag()

 trace_info_flag()

 trace_info_item_result()

 trace_info_return()

 trace_info_system_item()

 trace_match_spec()

 trace_pattern_flag()

 trace_pattern_mfa()

 Functions

 delivered(Session, Tracee)

 Equivalent to erlang:trace_delivered(Tracee)
except that it is run within the given session/0.

 function(Session, MFA, MatchSpec, FlagList)

 Enable or disable call tracing for one or more functions.

 info(Session, PidPortFuncEvent, Item)

 Return trace information about a port, process, function, or event.

 port(Session, Ports, How, FlagList)

 Turn on or off trace flags for one or more ports.

 process(Session, Procs, How, FlagList)

 Turn on or off trace flags for one or more processes.

 recv(Session, MatchSpec, FlagList)

 Set trace pattern for message receiving.

 send(Session, MatchSpec, FlagList)

 Set trace pattern for message sending.

 session_create(Name, Tracer, Opts)

 Create a new trace session.

 session_destroy(Session)

 Destroy a trace session and cleanup all its settings on processes, ports, and
functions.

 session_info(PidPortFuncEvent)

 Return which trace sessions that affect a port, process, function, or event.

 system(Session, Event, Value)

 Enable/disable monitoring of system events.

 Types

 match_variable()

 (not exported)

 (since OTP 27.0)

 -type match_variable() :: atom().

 session()

 (since OTP 27.0)

 -type session() :: {session_strong_ref(), session_weak_ref()} | session_weak_ref().

A handle to an isolated trace session.

 session_strong_ref()

 (since OTP 27.0)

 -opaque session_strong_ref()

 session_weak_ref()

 (since OTP 27.0)

 -opaque session_weak_ref()

A weak session handle as returned by session_info/1. A weak session handle can
be used like a full session handle, but it will not prevent the session from
being destroyed when the last strong handle is garbage collected.

 system_event()

 (not exported)

 (since OTP 27.0)

 -type system_event() ::
 busy_port | busy_dist_port | long_gc | long_message_queue | long_schedule | large_heap.

 system_value()

 (not exported)

 (since OTP 27.0)

 -type system_value() ::
 true | false | non_neg_integer() | {Disable :: non_neg_integer(), Enable :: pos_integer()}.

 trace_flag()

 (not exported)

 (since OTP 27.0)

 -type trace_flag() :: trace_info_flag() | all | cpu_timestamp.

 trace_info_flag()

 (not exported)

 (since OTP 27.0)

 -type trace_info_flag() ::
 arity | call | exiting | garbage_collection | monotonic_timestamp | procs | ports |
 'receive' | return_to | running | running_procs | running_ports | send | set_on_first_link |
 set_on_first_spawn | set_on_link | set_on_spawn | silent | strict_monotonic_timestamp |
 timestamp.

 trace_info_item_result()

 (not exported)

 (since OTP 27.0)

 -type trace_info_item_result() ::
 {traced, global | local | false | undefined} |
 {match_spec, trace_match_spec() | false | undefined} |
 {meta, pid() | port() | false | undefined | []} |
 {meta, module(), term()} |
 {meta_match_spec, trace_match_spec() | false | undefined} |
 {call_count, non_neg_integer() | boolean() | undefined} |
 {call_time,
 [{pid(), non_neg_integer(), non_neg_integer(), non_neg_integer()}] | boolean() | undefined} |
 {call_memory, [{pid(), non_neg_integer(), non_neg_integer()}] | boolean() | undefined}.

 trace_info_return()

 (not exported)

 (since OTP 27.0)

 -type trace_info_return() ::
 undefined |
 {flags, [trace_info_flag()]} |
 {tracer, pid() | port() | []} |
 {tracer, module(), term()} |
 trace_info_item_result() |
 {all, [trace_info_item_result()] | false | undefined} |
 {system, [trace_info_system_item()]}.

 trace_info_system_item()

 (not exported)

 (since OTP 27.0)

 -type trace_info_system_item() ::
 busy_port | busy_dist_port |
 {long_gc, non_neg_integer()} |
 {long_message_queue, {Disable :: non_neg_integer(), Enable :: pos_integer()}} |
 {long_schedule, non_neg_integer()} |
 {large_heap, non_neg_integer()}.

 trace_match_spec()

 (not exported)

 (since OTP 27.0)

 -type trace_match_spec() :: [{[term()] | '_' | match_variable(), [term()], [term()]}].

 trace_pattern_flag()

 (not exported)

 (since OTP 27.0)

 -type trace_pattern_flag() :: global | local | meta | call_count | call_time | call_memory.

 trace_pattern_mfa()

 (not exported)

 (since OTP 27.0)

 -type trace_pattern_mfa() :: {atom(), atom(), arity() | '_'}.

 Functions

 delivered(Session, Tracee)

 (since OTP 27.0)

 -spec delivered(Session :: session(), Tracee :: pid() | all) -> reference().

Equivalent to erlang:trace_delivered(Tracee)
except that it is run within the given session/0.

 function(Session, MFA, MatchSpec, FlagList)

 (since OTP 27.0)

 -spec function(Session, MFA, MatchSpec, FlagList) -> non_neg_integer()
 when
 Session :: session(),
 MFA :: trace_pattern_mfa() | on_load,
 MatchSpec :: trace_match_spec() | boolean() | restart | pause,
 FlagList :: [trace_pattern_flag()].

Enable or disable call tracing for one or more functions.
Must be combined with process/4 to set the call trace flag for one or more
processes.
Conceptually, call tracing works as follows. In each trace session, a
set of processes and a set of functions have been marked for
tracing. If a traced process calls a traced function, the trace action
is taken. Otherwise, nothing happens.
To add or remove one or more processes to the set of traced processes, use
process/4.
Use this function to add or remove functions to the set of traced functions
in a trace session.
Argument Session is the trace session to operate on as returned by
session_create/3.
Argument MFA is to be a tuple, such as {Module, Function, Arity}, or the
atom on_load (described below). The MFA tuple specifies the module,
function, and arity for the functions to be traced. The atom '_' can be used
as a wildcard in any of the following ways:
	{Module,Function,'_'} - All functions of any arity named Function in
module Module.

	{Module,'_','_'} - All functions in module Module.

	{'_','_','_'} - All functions in all loaded modules.

Other combinations, such as {Module,'_',Arity}, are not allowed.
If argument MFA is the atom on_load, the match specification and flag list
are used on all functions in all modules that are newly loaded.
Argument MatchSpec can take the following forms:
	true - Enable tracing for the matching functions. Any match
specification is removed.

	false - Disable tracing for the matching functions. Any match
specification is removed.

	MatchExpression - A match specification. An empty list is equivalent to
true. For a description of match specifications, see section
Match Specifications in Erlang in the User's Guide
for the ERTS application.

	restart - For the FlagList options call_count, call_time and
call_memory: restarts the existing counters. The behavior is undefined for
other FlagList options.

	pause - For the FlagList options call_count, call_time and
call_memory: pauses the existing counters. The behavior is undefined for
other FlagList options.

Argument FlagList is a list of options. The following are the valid options:
	global - Turn on or off call tracing for global function calls (that
is, calls specifying the module explicitly). Only exported functions match and
only global calls generate trace messages. This is the default if FlagList
is empty.

	local - Turn on or off call tracing for all types of function calls.
Trace messages are sent whenever any of the specified functions are called,
regardless of how they are called. If flag return_to is set for the process,
a return_to message is also sent when this function returns to its caller.

	meta - Turn on or off meta-tracing for all types of function
calls. Trace messages are sent to the tracer whenever any of the specified
functions are called.
Meta-tracing traces all processes and does not care about the process trace
flags set by process/4, the trace flags are instead fixed to
[call, timestamp].
The match specification function {return_trace} works with meta-trace.

	call_count - Start (MatchSpec == true) or stop
(MatchSpec == false) call count tracing for all types of function calls. For
every function, a counter is incremented when the function is called, in any
process. No process trace flags need to be activated.
If call count tracing is started while already running, the count is restarted
from zero. To pause running counters, use MatchSpec == pause. Paused and
running counters can be restarted from zero with MatchSpec == restart.
To read the counter value for a function, call
trace:info(_, MFA, call_count).

	call_time - Start (MatchSpec is true) or stops (MatchSpec is false)
call time tracing for all types of function calls. For every function, a
counter is incremented when the function is called and the time spent in the
function is measured and accumulated in another counter. The counters are
stored for each call traced process.
If call time tracing is started while already running, the count and time
restart from zero. To pause running counters, use MatchSpec == pause. Paused
and running counters can be restarted from zero with MatchSpec == restart.
To read the counter values, use info/3.

	call_memory - Start (MatchSpec == true) or stop
(MatchSpec == false) call memory tracing for all types of function calls.
For every function, a counter is incremented when the function is called and
the memory consumed by the function is measured and accumulated in another
counter. Separate counters are stored for each call traced process.
If call memory tracing is started while already running, counters and
allocations restart from zero. To pause running counters, use
MatchSpec == pause. Paused and running counters can be restarted from zero
with MatchSpec == restart.
To read the counter value, use info/3.

Option global cannot be combined with any of the other options, which all
perform some kind of local tracing. If global tracing is specified for
a set of functions, then local, meta, call_count, call_time,
and call_memory tracing for the matching set of functions are
disabled, and vice versa.
When disabling trace, the option must match the type of trace set on the
function. That is, local tracing must be disabled with option local and global
tracing with option global (or no option), and so on.
Part of a match specification cannot be changed directly. If a function has
a match specification, it can be replaced with a new one. Function info/3 can
be used to retrieve the existing match specification.
Returns the number of functions matching argument MFA. Zero is returned if
none matched or if on_load was specified.
Fails by raising an error exception with an error reason of:
	badarg - If an argument is invalid.

	system_limit - If a match specification passed as argument has excessive
nesting which causes scheduler stack exhaustion for the scheduler that the
calling process is executing on.
Scheduler stack size can be configured
when starting the runtime system.

 info(Session, PidPortFuncEvent, Item)

 (since OTP 27.0)

 -spec info(Session, PidPortFuncEvent, Item) -> Res
 when
 Session :: session(),
 PidPortFuncEvent ::
 pid() |
 port() |
 new | new_processes | new_ports | MFA | on_load | send | 'receive' | system,
 MFA :: {module(), atom(), arity()},
 Item ::
 flags | tracer | traced | match_spec | meta | meta_match_spec | call_count |
 call_time | call_memory | all,
 Res :: trace_info_return().

Return trace information about a port, process, function, or event.
Argument Session is the trace session to inspect as returned by
session_create/3 or session_info/1.
To get information about a port or process, PidPortFuncEvent is to be a
process identifier (pid), port identifier, or one of the atoms new,
new_processes, or new_ports. The atom new or new_processes means that
the default trace state for processes to be created is returned. The atom
new_ports means that the default trace state for ports to be created is
returned.
Valid Item values for ports and processes:
	flags - Returns a list of atoms indicating what kind of traces is
enabled for the process. The list is empty if no traces are enabled, and one
or more of trace_info_flag() if traces are enabled.
The order is arbitrary.

	tracer - Returns the identifier for process, port, or a tuple containing
the tracer module and tracer state tracing this process. If this process is
not traced, the return value is [].

To get information about a function, PidPortFuncEvent is to be the
three-element tuple {Module, Function, Arity} or the atom on_load. No
wildcards are allowed. Returns undefined if the function does not exist or
false if the function is not traced. If PidPortFuncEvent is on_load, the
information returned refers to the default value for code that will be loaded.
Valid Item values for functions:
	traced - Returns global if this function is traced on global function
calls, local if this function is traced on local function calls (that is,
local and global function calls), and false if local or global function
calls are not traced.

	match_spec - Returns the match specification for this function, if it
has one. If the function is locally or globally traced but has no match
specification defined, the returned value is [].

	meta - Returns the meta-trace tracer process, port, or trace module for
this function, if it has one. If the function is not meta-traced, the returned
value is false. If the function is meta-traced but has once detected that
the tracer process is invalid, the returned value is [].

	meta_match_spec - Returns the meta-trace match specification for this
function, if it has one. If the function is meta-traced but has no match
specification defined, the returned value is [].

	call_count - Returns the call count value for this function or true
for the pseudo function on_load if call count tracing is active. Otherwise
false is returned.
See also function/4.

	call_time - Returns the call time values for this function or true for
the pseudo function on_load if call time tracing is active. Otherwise
false is returned. The call time values returned, [{Pid, Count, S, Us}],
is a list of each process that executed the function and its specific
counters. Count is the call count. S and Us are the accumulated call
time expressed in seconds and microseconds.
See also function/4.

	call_memory - Returns the accumulated number of words allocated by this
function. Accumulation stops at the next memory traced function: if there are
outer, middle and inner functions each allocating 3 words, but only
outer is traced, it will report 9 allocated words. If outer and inner
are traced, 6 words are reported for outer and 3 for inner. When function
is not traced, false is returned. Returned tuple is [{Pid, Count, Words}],
for each process that executed the function.
See also function/4.

	all - Returns a list containing the {Item, Value} tuples for all other
items, or returns false if no tracing is active for this function.

To get information about an event, PidPortFuncEvent is to be one of the
atoms send or 'receive'.
One valid Item for events exists:
	match_spec - Returns the match specification for this event, if it has
one, or true if no match specification has been set.

To get information about monitored system events, PidPortFuncEvent is to
 be the atom system.
Only valid Item for system is
	all - Returns a list of all monitored system events enabled by
 system/3.

The return value is {Item, Value}, where Value is the requested information
as described earlier. If a pid for a dead process was specified, or the name of
a non-existing function, Value is undefined.

 port(Session, Ports, How, FlagList)

 (since OTP 27.0)

 -spec port(Session, Ports, How, FlagList) -> integer()
 when
 Session :: session(),
 Ports :: port() | all | existing | new,
 How :: boolean(),
 FlagList :: [trace_flag()].

Turn on or off trace flags for one or more ports.
Argument Session is the trace session to operate on as returned by
session_create/3.
Ports is either a port identifier for a local port or one of the following atoms:
	all - All currently existing ports and all that will be
created in the future.

	existing - All currently existing ports.

	new - All ports that will be created in the future.

FlagList can contain any number of the following flags (the "message tags"
refers to the list of trace messages):
	all - Sets all trace flags except cpu_timestamp, which are in its
 nature different than the others.

	send - Traces sending of messages.
Message tags: send and
send_to_non_existing_process.

	'receive' - Traces receiving of messages.
Message tags: 'receive'.

	ports - Traces port-related events.
Message tags: open,
closed,
register,
unregister,
getting_linked, and
getting_unlinked.

	running_ports - Traces scheduling of ports.
Message tags: in and
out.

	timestamp, cpu_timestamp, monotonic_timestamp,
strict_monotonic_timestamp - Same as for timestamps in
process/4.

The tracing process receives the trace messages described in the following
list. Port is the port identifier of the traced port in which the traced
event has occurred. The third tuple element is the message tag.
If flag timestamp, strict_monotonic_timestamp, or monotonic_timestamp is
specified, the first tuple element is trace_ts instead, and the time stamp is
added as an extra element last in the message tuple. If multiple time stamp
flags are passed, timestamp has precedence over strict_monotonic_timestamp,
which in turn has precedence over monotonic_timestamp. All time stamp flags
are remembered, so if two are passed and the one with highest precedence later
is disabled, the other one becomes active.
If a match specification (applicable only for send and 'receive'
tracing) contains a {message} action function with a non-boolean value, that
value is added as an extra element to the message tuple either in the last
position or before the timestamp (if it is present).
Trace messages:

	{trace, Port, send, Msg, To} - When
Port sends message Msg to process To.

	{trace, Port, send_to_non_existing_process, Msg, To} - When Port
sends message Msg to the non-existing process To.

	{trace, Port, 'receive', Msg} -
When Port receives message Msg. If Msg is set to time-out, a receive
statement can have timed out, or the process received a message with the
payload timeout.

	{trace, Port, register, RegName} - When Port gets the name RegName registered.

	{trace, Port, unregister, RegName} - When Port gets the name RegName unregistered. This is done
automatically when a registered process or port exits.

	{trace, Port, getting_linked, Pid2} - When Port gets linked to a
process Pid2.

	{trace, Port, getting_unlinked, Pid2} - When Port gets unlinked
from a process Pid2.

	{trace, Port, open, Pid, Driver} - When
Pid opens a new port Port with the running Driver.
Driver is the name of the driver as an atom.

	{trace, Port, closed, Reason} - When
Port closes with Reason.

	{trace, Port, in, Command | 0} -
When Port is scheduled to run. Command is the first thing the port will
execute, it can however run several commands before being scheduled out. On
some rare occasions, the current function cannot be determined, then the last
element is 0.
The possible commands are call, close, command, connect, control,
flush, info, link, open, and unlink.

	{trace, Port, out, Command | 0} -
When Port is scheduled out. The last command run was Command. On some rare
occasions, the current function cannot be determined, then the last element is
0. Command can contain the same commands as in

If the tracing process/port dies or the tracer module returns remove, the
flags are silently removed.
Returns a number indicating the number of ports that matched Ports.
If Ports is a port identifier, the return value is 1. If
Ports is all or existing, the return value is the number of
existing ports. If Ports is new, the return value is 0.
Failure: badarg if the specified arguments are not supported. For example,
cpu_timestamp is not supported on all platforms.

 process(Session, Procs, How, FlagList)

 (since OTP 27.0)

 -spec process(Session, Procs, How, FlagList) -> integer()
 when
 Session :: session(),
 Procs :: pid() | all | existing | new,
 How :: boolean(),
 FlagList :: [trace_flag()].

Turn on or off trace flags for one or more processes.
Argument Session is the trace session to operate on as returned by
session_create/3.
Argument Procs is either a process identifier (pid) for a local process or
one of the following atoms:
	all - All currently existing processes and all that will be
created in the future.

	existing - All currently existing processes.

	new - All processes that will be created in the future.

Argument How is either true to turn on trace flags or false to turn them off.
Argument FlagList can contain any number of the following flags (the "message
tags" refers to the list of trace messages):
	all - Sets all trace flags except cpu_timestamp, which
is in its nature different than the others.

	send - Traces sending of messages. Limit which sent messages to trace by
 calling send/3.
Message tags: send and
send_to_non_existing_process.

	'receive' - Traces receiving of messages. Limit which received messages
 to trace by calling recv/3.
Message tags: 'receive'.

	call - Traces certain function calls. Specify which function calls to
trace by calling function/4.
Message tags: call and
return_from.

	silent - Used with the call trace flag. The call, return_from, and
return_to trace messages are inhibited if this flag is set, but they are
executed as normal if there are match specifications.
Silent mode is inhibited by executing trace:process(_, _, false, [silent|_]), or
by a match specification executing the function {silent, false}.
The silent trace flag facilitates setting up a trace on many or even all
processes in the system. The trace can then be activated and deactivated using
the match specification function {silent,Bool}, giving a high degree of
control of which functions with which arguments that trigger the trace.
Message tags: call,
return_from, and
return_to. Or rather, the
absence of.

	return_to - Used with the call trace flag. Traces the exit from
call traced functions back to where the execution resumes. Only works for
functions traced with option local to function/4.
The semantics is that a return_to trace message is sent when a call traced
function returns or throws and exception that is caught. For tail calls, only
one trace message is sent per chain of tail calls, so the properties of tail
recursiveness for function calls are kept while tracing with this
flag. Similar for exceptions, only one return_to trace message is sent, even
if the exception passed more than one call traced function before it was
caught.
Using call and return_to trace together makes it possible to know exactly
in which function a process executes at any time.
To get trace messages containing return values from functions, use the
{return_trace} match specification action instead.
Message tags: return_to.

	procs - Traces process-related events.
Message tags: spawn,
spawned,
exit,
register,
unregister,
link,
unlink,
getting_linked, and
getting_unlinked.

	running - Traces scheduling of processes.
Message tags: in and
out.

	exiting - Traces scheduling of exiting processes.
Message tags:
in_exiting,
out_exiting, and
out_exited.

	running_procs - Traces scheduling of processes just like running.
However, this option also includes schedule events when the process executes
within the context of a port without being scheduled out itself.
Message tags: in and
out.

	garbage_collection - Traces garbage collections of processes.
Message tags:
gc_minor_start,
gc_max_heap_size, and
gc_minor_end.

	timestamp - Includes a time stamp in all trace
messages. The time stamp (Ts) has the same form as returned by
erlang:now/0.

	cpu_timestamp - A global trace flag for the Erlang node that makes all
trace time stamps using flag timestamp to be in CPU time, not wall clock
time. That is, cpu_timestamp is not be used if monotonic_timestamp or
strict_monotonic_timestamp is enabled. Only allowed with Procs==all.
If the host machine OS does not support high-resolution CPU time measurements,
process/4 exits with badarg. Notice that most OS do not
synchronize this value across cores, so be prepared that time can seem to go
backwards when using this option.

	monotonic_timestamp - Includes an
Erlang monotonic time time stamp
in all trace messages. The time stamp (Ts) has the same format and value as
produced by erlang:monotonic_time(nanosecond). This
flag overrides flag cpu_timestamp.

	strict_monotonic_timestamp - Includes an time stamp consisting of
Erlang monotonic time and a
monotonically increasing integer in all trace messages. The time stamp (Ts)
has the same format and value as produced by {
erlang:monotonic_time(nanosecond),
erlang:unique_integer([monotonic])}. This flag
overrides flag cpu_timestamp.
If multiple time stamp flags are passed, timestamp has precedence over
strict_monotonic_timestamp, which in turn has precedence over
monotonic_timestamp. All time stamp flags are remembered, so if two are
passed and the one with highest precedence later is disabled, the other one
becomes active.

	arity - Used with the call trace flag. {M, F, Arity} is specified
instead of {M, F, Args} in call trace messages.

	set_on_spawn - Makes any process created by a traced process inherit all
its trace flags, including flag set_on_spawn itself.

	set_on_first_spawn - Makes the first process created by a traced process
inherit all its trace flags, excluding flag set_on_first_spawn itself. That
is, after the first spawn is done, set_on_first_spawn will be cleared in
both the spawned process and the spawning process.
If both are set, set_on_first_spawn will supersede set_on_spawn.

	set_on_link - Makes any process linked by a traced process inherit all
its trace flags, including flag set_on_link itself.

	set_on_first_link - Makes the first process linked to by a traced
process inherit all its trace flags, excluding flag set_on_first_link
itself. That is, after the first link is done, set_on_first_link will be
cleared in both the linked process and the linking process.
If both are set, set_on_first_link will supersede set_on_link.

The tracing process receives the trace messages described in the following
list. Pid is the process identifier of the traced process in which the traced
event has occurred. The third tuple element is the message tag.
If flag timestamp, strict_monotonic_timestamp, or monotonic_timestamp is
specified, the first tuple element is trace_ts instead, and the time stamp is
added as an extra element last in the message tuple.
If a match specification (applicable only for call, send, and 'receive'
tracing) contains a {message} action function with a non-boolean value, that
value is added as an extra element to the message tuple either in the last
position or before the timestamp (if it is present).
Trace messages:

	{trace, Pid, send, Msg, To} - When
process Pid sends message Msg to process To.

	{trace, Pid, send_to_non_existing_process, Msg, To} - When process Pid
sends message Msg to the non-existing process To.

	{trace, Pid, 'receive', Msg} -
When process Pid receives message Msg. If Msg is set to time-out, a receive
statement can have timed out, or the process received a message with the
payload timeout.

	{trace, Pid, call, {M, F, Args}} - When
process Pid calls a traced function. The return values of calls are never
supplied, only the call and its arguments.
Trace flag arity can be used to change the contents of this message, so that
Arity is specified instead of Args.

	{trace, Pid, return_to, {M, F, Arity}} - When process Pid returns to the specified function. This trace
message is sent if both the flags call and return_to are set, and the
function is set to be traced on local function calls. The message is only
sent when returning from a chain of tail recursive function calls, where at
least one call generated a call trace message (that is, the functions match
specification matched, and {message, false} was not an action).

	{trace, Pid, return_from, {M, F, Arity}, ReturnValue} - When Pid returns from the
specified function. This trace message is sent if flag call is set, and the
function has a match specification with a return_trace or exception_trace
action.

	{trace, Pid, exception_from, {M, F, Arity}, {Class, Value}} - When Pid exits from the
specified function because of an exception. This trace message is sent if flag
call is set, and the function has a match specification with an
exception_trace action.

	{trace, Pid, spawn, Pid2, {M, F, Args}} - When Pid spawns a new process Pid2 with the specified function call
as entry point.
Args is supposed to be the argument list, but can be any term if the spawn
is erroneous.

	{trace, Pid, spawned, Pid2, {M, F, Args}} - When Pid is spawned by process Pid2
with the specified function call as entry point.
Args is supposed to be the argument list, but can be any term if the spawn
is erroneous.

	{trace, Pid, exit, Reason} - When Pid
exits with reason Reason.

	{trace, Pid, register, RegName} - When process Pid gets the name RegName registered.

	{trace, Pid, unregister, RegName} - When process Pid gets the name RegName unregistered. This is done
automatically when a registered process or port exits.

	{trace, Pid, link, Pid2} - When Pid
links to a process Pid2.

	{trace, Pid, unlink, Pid2} - When
Pid removes the link from a process Pid2.

	{trace, Pid, getting_linked, Pid2} - When Pid gets linked to a
process Pid2.

	{trace, Pid, getting_unlinked, Pid2} - When Pid gets unlinked
from a process Pid2.

	{trace, Port, open, Pid, Driver} - When
Pid opens a new port Port with the running Driver.
Driver is the name of the driver as an atom.

	
{trace, Pid, in | in_exiting, {M, F, Arity} | 0}
When Pid is scheduled to run. The process runs in function {M, F, Arity}.
On some rare occasions, the current function cannot be determined, then the
last element is 0.

	
{trace, Pid, out | out_exiting | out_exited, {M, F, Arity} | 0}
When Pid is scheduled out. The process was running in function {M, F, Arity}. On some rare occasions, the current function cannot be determined,
then the last element is 0.

	{trace, Pid, gc_minor_start, Info} - Sent
when a garbage collection of the young generation is about to be started.
Info is a list of two-element tuples, where the first element is a key,
and the second is the value. Do not depend on any order of the tuples.
The following keys are defined:
	heap_size - The size of the used part of the heap.

	heap_block_size - The size of the memory block used for storing the
heap and the stack.

	old_heap_size - The size of the used part of the old heap.

	old_heap_block_size - The size of the memory block used for storing
the old heap.

	stack_size - The size of the stack.

	recent_size - The size of the data that survived the previous garbage
collection.

	mbuf_size - The combined size of message buffers associated with the
process.

	bin_vheap_size - The total size of unique off-heap binaries referenced
from the process heap.

	bin_vheap_block_size - The total size of binaries allowed in the
virtual heap in the process before doing a garbage collection.

	bin_old_vheap_size - The total size of unique off-heap binaries
referenced from the process old heap.

	bin_old_vheap_block_size - The total size of binaries allowed in the
virtual old heap in the process before doing a garbage collection.

	wordsize - For the gc_minor_start event it is the size of the need
that triggered the GC. For the corresponding gc_minor_end event it is the
size of reclaimed memory = start heap_size - end heap_size.

All sizes are in words.

	{trace, Pid, gc_max_heap_size, Info} - Sent when the
max_heap_size is reached during
garbage collection. Info contains the same kind of list as in message
gc_start, but the sizes reflect the sizes that triggered max_heap_size to
be reached.

	{trace, Pid, gc_minor_end, Info} - Sent when young garbage collection is finished. Info contains the same
kind of list as in message gc_minor_start, but the sizes reflect the new
sizes after garbage collection.

	{trace, Pid, gc_major_start, Info} - Sent when fullsweep garbage
collection is about to be started. Info contains the same kind of list as in
message gc_minor_start.

	{trace, Pid, gc_major_end, Info} - Sent when fullsweep garbage collection is finished. Info contains the
same kind of list as in message gc_minor_start, but the sizes reflect the
new sizes after a fullsweep garbage collection.

If the tracing process dies or the tracer module returns remove, the
flags are silently removed.
Returns a number indicating the number of processes that matched Procs.
If Procs is a process identifier, the return value is 1. If
Procs is all or existing, the return value is the number of
processes running. If Procs is new, the return value is 0.
Failure: badarg if the specified arguments are not supported. For example,
cpu_timestamp is not supported on all platforms.

 recv(Session, MatchSpec, FlagList)

 (since OTP 27.0)

 -spec recv(Session, MatchSpec, FlagList) -> non_neg_integer()
 when Session :: session(), MatchSpec :: trace_match_spec() | boolean(), FlagList :: [].

Set trace pattern for message receiving.
Must be combined with process/4 or port/4 to set the 'receive' trace flag
for one or more processes or ports.
Argument Session is the trace session to operate on as returned by
session_create/3.
The default value for the receive trace pattern in each session is
true. That is, all messages received by processes having 'receive'
trace enabled will be traced. Use this function to limit traced
'receive' events based on the message content, the sender, and/or the
receiver.
Argument MatchSpec can take the following forms:
	MatchExpression - A match specification. The matching is done on
the list [Node, Sender, Msg]. Node is the node name of the sender.
Sender is the process or port identity of the sender, or the atom
undefined if the sender is not known (which can be the case for remote
senders). Msg is the message term. The pid of the receiving process can be
accessed with the guard function self/0. An empty list is the same as
true. For more information, see section
Match Specifications in Erlang in the User's Guide
for the ERTS application.

	true - Enable tracing for all received messages (to 'receive' traced
processes). Any match specification is removed. This is the default.

	false - Disable tracing for all received messages. Any match
specification is removed.

Argument FlagList must be [] for receive tracing.
The return value is always 1.
Examples:
Only trace messages from a specific process Pid:
> trace:recv(Session, [{['_',Pid, '_'],[],[]}], []).
1
Only trace messages matching {reply, _}:
> trace:recv(Session, [{['_','_', {reply,'_'}],[],[]}], []).
1
Only trace messages from other nodes:
> trace:recv(Session, [{['$1', '_', '_'],[{'=/=','$1',{node}}],[]}], []).
1
Note
A match specification for 'receive' trace can use all guard and body
functions except caller, is_seq_trace, get_seq_token, set_seq_token,
enable_trace, disable_trace, trace, silent, and process_dump.
Fails by raising an error exception with an error reason of:
	badarg - If an argument is invalid.

	system_limit - If a match specification passed as argument has excessive
nesting which causes scheduler stack exhaustion for the scheduler that the
calling process is executing on.
Scheduler stack size can be configured
when starting the runtime system.

 send(Session, MatchSpec, FlagList)

 (since OTP 27.0)

 -spec send(Session, MatchSpec, FlagList) -> non_neg_integer()
 when Session :: session(), MatchSpec :: trace_match_spec() | boolean(), FlagList :: [].

Set trace pattern for message sending.
Must be combined with process/4 or port/4 to set the send trace flag for
one or more processes or ports.
Argument Session is the trace session to operate on as returned by
session_create/3.
The default value for the send trace pattern in each session is
true. That is, all messages sent from processes having send trace
enabled will be traced. Use this function to limit traced send
events based on the message content, the sender, and/or the receiver.
Argument MatchSpec can take the following forms:
	MatchExpression - A match specification. The matching is done on
the list [Receiver, Msg]. Receiver is the process or port identity of the
receiver and Msg is the message term. The pid of the sending process can be
accessed with the guard function self/0. An empty list is the same as
true. For more information, see section
Match Specifications in Erlang in the User's Guide
for the ERTS application.

	true - Enable tracing for all sent messages (from send traced
processes). Any match specification is removed.

	false - Disable tracing for all sent messages. Any match specification
is removed.

Argument FlagList must be [].
The return value is always 1.
Examples:
Only trace messages to a specific process Pid:
> trace:send(Session, [{[Pid, '_'],[],[]}], []).
1
Only trace messages matching {reply, _}:
> trace:send(Session, [{['_', {reply,'_'}],[],[]}], []).
1
Only trace messages sent to the sender itself:
> trace:send(Session, [{['$1', '_'],[{'=:=','$1',{self}}],[]}], []).
1
Only trace messages sent to other nodes:
> trace:send(Session, [{['$1', '_'],[{'=/=',{node,'$1'},{node}}],[]}], []).
1
Note
A match specification for send trace can use all guard and body functions
except caller.
Fails by raising an error exception with an error reason of:
	badarg - If an argument is invalid.

	system_limit - If a match specification passed as argument has excessive
nesting which causes scheduler stack exhaustion for the scheduler that the
calling process is executing on.
Scheduler stack size can be configured
when starting the runtime system.

 session_create(Name, Tracer, Opts)

 (since OTP 27.0)

 -spec session_create(Name, Tracer, Opts) -> session()
 when Name :: atom(), Tracer :: pid() | port() | {module(), term()}, Opts :: [].

Create a new trace session.
Argument Name is an atom name for the session. It will be returned when
inspecting with session_info/1.
Argument Tracer specifies the consumer of all trace events for the session. It
can be an identifier of a local process or port to receive all trace
messages.
Tracer can also be a tuple {TracerModule, TracerState} for a tracer module
to be called instead of sending a trace message. The tracer module can then
ignore or change the trace message. For more details on how to write a tracer
module, see module erl_tracer.
Argument Opts must be [].
Returns an opaque handle to the trace session. The handle will keep the session
alive. If the handle is dropped and garbage collected, the session will be
destroyed and cleaned up as if session_destroy/1 was called.

 session_destroy(Session)

 (since OTP 27.0)

 -spec session_destroy(Session) -> true | false when Session :: session().

Destroy a trace session and cleanup all its settings on processes, ports, and
functions.
The only things not cleaned up are trace messages that have already been sent.
Returns true if the session was active. Returns false if the session had
already been destroyed by either an earler call to this function or the garbage
collector.

 session_info(PidPortFuncEvent)

 (since OTP 27.0)

 -spec session_info(PidPortFuncEvent) -> Res
 when
 PidPortFuncEvent ::
 all |
 pid() |
 port() |
 new | new_processes | new_ports | MFA | on_load | send | 'receive',
 MFA :: {module(), atom(), arity()},
 Res :: undefined | [session_weak_ref()].

Return which trace sessions that affect a port, process, function, or event.
Argument all returns all active trace sessions that exists on the node.
Returns a list of weak session handles or undefined if the
process/port/function does not exists.

 system(Session, Event, Value)

 (since OTP 28.0)

 -spec system(Session :: session(), Event :: system_event(), Value :: system_value()) -> ok.

Enable/disable monitoring of system events.
Argument Session is the trace session to operate on as returned by
session_create/3.
Argument Event is an atom describing the kind of system event to
monitor. To enable monitoring argument Value is, depending on event, either a
limit of that event or the atom true. To disable monitoring pass Value as the
atom false.
When a monitored system event happens, a message is sent to the session
tracer. The session tracer must be a process otherwise the function call will
fail.
The following Events with Values can be monitored:
	long_gc, Time - If a garbage collection in the system takes at least
Time wall clock milliseconds, a message {monitor, GcPid, long_gc, Info} is
sent. GcPid is the pid that was garbage collected. Info is a list of
two-element tuples describing the result of the garbage collection.
One of the tuples is {timeout, GcTime}, where GcTime is the time for the
garbage collection in milliseconds. The other tuples are tagged with
heap_size, heap_block_size, stack_size, mbuf_size, old_heap_size,
and old_heap_block_size. These tuples are explained in the description of
trace message gc_minor_start (see
trace:process/4). New tuples can be added, and the order of the tuples in
the Info list can be changed at any time without prior notice.

	long_message_queue, {Disable, Enable} - If the number of messages in the
message queue of a process reach Enable, a message {monitor, Pid, long_message_queue, Long} is sent. Pid is the process identifier of the
process that got a long message queue and Long will equal true indicating
that it is in a long message queue state. No more long_message_queue
monitor messages will be sent due to the process identified by Pid until its
message queue length falls down to a length of Disable length. When this
happens, a long_message_queue monitor message with Long equal to false
will be sent indicating that the process is no longer in a long message
queue state. As of this, if the message queue length should again reach
Enable length, a new long_message_queue monitor message with Long set to
true will again be sent. That is, a long_message_queue monitor message is
sent when a process enters or leaves a long message queue state where these
state changes are defined by the Enable and Disable parameters.
Enable must be an integer larger than zero. Disable must be an integer
larger than or equal to zero and smaller than Enable. If the above is not
satisfied the operation will fail with a badarg error exception. You are
recommended to use a much smaller value for Disable length than Enable
length in order not to be flooded with long_message_queue monitor messages.

	long_schedule, Time - If a process or port in the system runs
uninterrupted for at least Time wall clock milliseconds, a message
{monitor, PidOrPort, long_schedule, Info} is sent.
PidOrPort is the process or port that was running. Info is a list of
two-element tuples describing the event.
If a pid/0, the tuples {timeout, Millis}, {in, Location}, and
{out, Location} are present, where Location is either an MFA
({Module, Function, Arity}) describing the function where the process was
scheduled in/out, or the atom undefined.
If a port/0, the tuples {timeout, Millis} and {port_op,Op} are
present. Op is one of proc_sig, timeout, input, output, event, or
dist_cmd, depending on which driver callback was executing.
proc_sig is an internal operation and is never to appear, while the others
represent the corresponding driver callbacks timeout, ready_input,
ready_output, event, and outputv (when the port is used by
distribution). Value Millis in tuple timeout informs about the
uninterrupted execution time of the process or port, which always is equal to
or higher than the Time value supplied when starting the trace. New tuples
can be added to the Info list in a future release. The order of the tuples
in the list can be changed at any time without prior notice.
This can be used to detect problems with NIFs or drivers that take too long to
execute. 1 ms is considered a good maximum time for a driver callback or a
NIF. However, a time-sharing system is usually to consider everything < 100 ms
as "possible" and fairly "normal". However, longer schedule times can indicate
swapping or a misbehaving NIF/driver. Misbehaving NIFs and drivers can cause
bad resource utilization and bad overall system performance.

	large_heap, Size - If a garbage collection in the system results in
the allocated size of a heap being at least Size words, a message
{monitor, GcPid, large_heap, Info} is sent. GcPid and Info are the same
as for long_gc described above, except that the tuple tagged with timeout
is not present.
The monitor message is sent if the sum of the sizes of all memory blocks
allocated for all heap generations after a garbage collection is equal to or
higher than Size.
When a process is killed by
max_heap_size, it is killed before
the garbage collection is complete and thus no large heap message is sent.

	busy_port, true - If a process in the system gets suspended because it sends
to a busy port, a message {monitor, SusPid, busy_port, Port} is
sent. SusPid is the pid that got suspended when sending to Port.

	busy_dist_port, true
If a process in the system gets suspended because it sends to a process on a remote
node whose inter-node communication was handled by a busy port, a message
{monitor, SusPid, busy_dist_port, Port} is sent. SusPid is the pid that
got suspended when sending through the inter-node communication port Port.

To disable system monitoring of a event pass the value as false. There are no
other special values (like zero) to disable monitoring of an event. Some of the
events have an unspecified minimum value. Lower values will be adjusted to the
minimum value. For example, it is currently not possible to monitor all garbage
collections with {long_gc, 0}.
Note
If the session tracer process gets so large that it itself starts to cause
system monitor messages when garbage collecting, the messages enlarge the
process message queue and probably make the problem worse.
Keep the tracer process neat and do not set the system monitor limits too
tight.
Failures:
	badarg - If the session tracer is not a local process.

OEBPS/dist/epub-4WIP524F.js
