

 observer

 v2.18.1

 [image: Logo]

 Table of contents

 	Observer Application

 	Observer Release Notes

 	User's Guides

 	Introduction

 	Observer

 	Trace Tool Builder

 	Erlang Top

 	Crashdump Viewer

 	Command Line Tools

 	cdv

 	
 Modules

 	crashdump_viewer

 	etop

 	observer

 	ttb

 Observer Application

Description
The Observer application contains tools for tracing and investigation of
distributed systems.
Configuration
No configuration parameters are available for this application.

 Observer Release Notes

This document describes the changes made to the Observer application.
Observer 2.18.1
Fixed Bugs and Malfunctions
	etop will now fully stop before returning from etop:stop/0.
Own Id: OTP-19754 Aux Id: PR-9815

Observer 2.18
Fixed Bugs and Malfunctions
	Enhance specs of timeout for improving documentation and dialyzer analysis.
Own Id: OTP-19604 Aux Id: PR-9574

Improvements and New Features
	With this change etop from observer application will scroll as top from shell
Own Id: OTP-19528 Aux Id: PR-9659

	The license and copyright header has changed format to include an SPDX-License-Identifier. At the same time, most files have been updated to follow a uniform standard for license headers.
Own Id: OTP-19575 Aux Id: PR-9670

Observer 2.17
Fixed Bugs and Malfunctions
	In the Memory tab of crashdump_viewer, the blocks sizes in Allocator Summary would all be N/A.
Own Id: OTP-19353 Aux Id: PR-8532

Improvements and New Features
	The Kernel application now recognizes the epmd_module and erl_epmd_listen_port parameters, similar to -kernel:connect_all.
Own Id: OTP-19253 Aux Id: PR-8671

Observer 2.16
Fixed Bugs and Malfunctions
	The dependencies for this application are now listed in the app file.
Own Id: OTP-18831 Aux Id: PR-7441

Improvements and New Features
	The new function proc_lib:set_label/1 can be used to add a descriptive term to any process that does not have a registered name. The name will be shown by tools such as c:i/0, observer, and it will be included in crash reports produced by processes using gen_server, gen_statem, gen_event, and gen_fsm.
The label for a process can be retrieved by calling proc_lib:get_label/1.
Note that those functions work on any process, not only processes that use proc_lib.
Example:
1> self().
<0.90.0>
2> proc_lib:set_label(my_label).
ok
3> i().
 .
 .
 .
<0.90.0> erlang:apply/2 2586 75011 0
my_label c:pinfo/2 51
4> proc_lib:get_label(self()).
my_label
Own Id: OTP-18789 Aux Id: PR-7720, PR-8003

	The documentation has been migrated to use Markdown and ExDoc.
Own Id: OTP-18955 Aux Id: PR-8026

	etop has been updated to use dbg:session/2 in order to not interfere with any other tracing.
Own Id: OTP-19082 Aux Id: PR-8363

Observer 2.15.1
Fixed Bugs and Malfunctions
	Closing the trace log window via the menu did not work.
Own Id: OTP-18722 Aux Id: PR-7462

Observer 2.15
Improvements and New Features
	Runtime dependencies have been updated.
Own Id: OTP-18350

	Added start/1, start_and_wait functions/1|2 functions.
Own Id: OTP-18430 Aux Id: PR-6397

	Deprecates dbg:stop_clear/0 because it is simply a function alias to
dbg:stop/0
Own Id: OTP-18478 Aux Id: GH-6903

Observer 2.14.0.1
Fixed Bugs and Malfunctions
	Fixed runtime dependencies.
Own Id: OTP-19064

Observer 2.14
Fixed Bugs and Malfunctions
	A WX event race could causes a crash in when handling socket or port info.
Own Id: OTP-18339

Improvements and New Features
	Improve the nodes menu to include more nodes.
Own Id: OTP-18269 Aux Id: PR-6030

Observer 2.13
Improvements and New Features
	Fixed units in gui.
Own Id: OTP-18151 Aux Id: PR-6063

Observer 2.12
Fixed Bugs and Malfunctions
	Fixed default handling of Mac specific menus.
Own Id: OTP-17996 Aux Id: PR-5795

	Reading port socket options on macOS and Windows "skips" invalid options.
Own Id: OTP-18012 Aux Id: #5798

Improvements and New Features
	The configuration files .erlang,
.erlang.cookie and
.erlang.crypt can now be located in the XDG
Config Home directory.
See the documentation for each file and filename:basedir/2 for more details.
Own Id: OTP-17554 Aux Id: GH-5016 PR-5408 OTP-17821

Observer 2.11.1
Fixed Bugs and Malfunctions
	Fixed node information lookup for remote process identifiers in
crashdump_viewer.
Own Id: OTP-17995 Aux Id: PR-5804

Observer 2.11
Improvements and New Features
	Calculate the display width in etop, instead of hard-coding it to 89
characters.
Own Id: OTP-17880 Aux Id: PR-5557

Observer 2.10.1
Fixed Bugs and Malfunctions
	Fix bug in crash dumps where the stackframe of a process would be printed
using an incorrect format.
Crash dump viewer has also been fixed to be able read the broken stack format.
The bug has existed since Erlang/OTP 23.0.
Own Id: OTP-17814 Aux Id: PR-5462

Observer 2.10
Fixed Bugs and Malfunctions
	Atoms with Unicode code points greater than 255 (for example Greek or Cyrillic
characters) would not be displayed correctly by crashdump_viewer.
Own Id: OTP-17377

	Fix the crashdump_viewer to be able to parse
monitor_node/2 monitors correctly.
Own Id: OTP-17425 Aux Id: PR-4799

Improvements and New Features
	Observer now has a sectiion for new socket.
Own Id: OTP-17346

	Added a trace all button to the trace window.
Own Id: OTP-17520 Aux Id: PR-4962

Observer 2.9.6
Improvements and New Features
	Updated gui parts to work with the new wx version.
Own Id: OTP-17214

Observer 2.9.5
Fixed Bugs and Malfunctions
	Fix graph windows flickering on windows.
Own Id: OTP-16778

Observer 2.9.4
Improvements and New Features
	Minor updates due to the new spawn improvements made.
Own Id: OTP-16368 Aux Id: OTP-15251

Observer 2.9.3
Fixed Bugs and Malfunctions
	Crashdump Viewer how handles crash dumps where the Old Binary VHeap has
overflowed.
Own Id: OTP-16296

Observer 2.9.2
Fixed Bugs and Malfunctions
	Fix bug after a user followed link on a pid from an expanded term window.
Own Id: OTP-15980 Aux Id: PR-2201

Improvements and New Features
	Improved dark mode colors on Linux.
Own Id: OTP-15916 Aux Id: ERL-921

Observer 2.9.1
Fixed Bugs and Malfunctions
	All incorrect (that is, all) uses of "can not" has been corrected to "cannot"
in source code comments, documentation, examples, and so on.
Own Id: OTP-14282 Aux Id: PR-1891

Observer 2.9
Fixed Bugs and Malfunctions
	Since Logger was introduced in OTP-21.0, menu choice Log > Toggle Log View
in observer would cause a crash unless an error_logger event handler was
explicitly installed. This is now corrected.
Own Id: OTP-15553 Aux Id: ERL-848

Improvements and New Features
	Since persistent_term was introduced, observer would sometimes crash when
expanding a term from a process state. This is now corrected.
Own Id: OTP-15493 Aux Id: ERL-810

	Add OBSERVER_SCALE environment variable for HiDPI support.
Own Id: OTP-15586 Aux Id: PR-2105

Observer 2.8.2
Fixed Bugs and Malfunctions
	Literals such as #{"one"=>1} dumped to a crash dump would cause
crashdump_viewer to crash.
Own Id: OTP-15365 Aux Id: ERL-722

	crashdump_viewer would sometimes crash when processing a dump which was
truncated in the literals area. This is now corrected.
Own Id: OTP-15377

	Since OTP-20.2, crashdump_viewer was very slow when opening a crash dump
with many processes. An ets:select per process could be removed, which
improved the performance a lot.
A bug when parsing heap data in a crashdump caused crashdump_viewer to crash
when multiple Yc lines referenced the same reference counted binary. This is
now corrected.
Own Id: OTP-15391

Observer 2.8.1
Fixed Bugs and Malfunctions
	Improved documentation.
Own Id: OTP-15190

Observer 2.8
Fixed Bugs and Malfunctions
	Added possibility to garbage collect selected processes and fixed a crash when
the saved config file contained bad data.
Own Id: OTP-14993 Aux Id: PR-1666

Improvements and New Features
	Use uri_string module instead of http_uri.
Own Id: OTP-14902

Observer 2.7
Fixed Bugs and Malfunctions
	etop.hrl used a relative path to include observer_backend.hrl, this is now
changed to use include_lib instead. runtime_tools/include is added to the
tertiary bootstrap.
Own Id: OTP-14842 Aux Id: ERL-534

	If a crashdump was truncated in the attributes section for a module,
crashdump_viewer would crash when a module view was opened from the GUI. This
bug was introduced in OTP-20.2 and is now corrected.
Own Id: OTP-14846 Aux Id: ERL-537

	Optimized ets and mnesia table view tab in observer gui, listing 10000 tables
was previously very slow.
Own Id: OTP-14856 Aux Id: ERIERL-117

Improvements and New Features
	When a process has many links and/or monitors, it could earlier take very long
time to display the process information window. This is now improved by only
showing a few links and monitors, and then an link named "more..." to expand
the rest.
Own Id: OTP-14725

	More crash dump info such as: process binary virtual heap stats, full info for
process causing out-of-mem during GC, more port related info, and dirty
scheduler info.
Own Id: OTP-14820

Observer 2.6
Fixed Bugs and Malfunctions
	A bug introduced in OTP-20 would make Crashdump Viewer crash when trying to
expand an empty binary. This is now corrected.
Own Id: OTP-14642

	If a match spec in the config file contained more than one clause, observer
would earlier crash when trying to display it in the GUI. This is now
corrected.
Own Id: OTP-14643 Aux Id: ERL-489

	Writing of crash dumps is significantly faster.
Maps are now included in crash dumps.
Constants terms would only be shown in one process, while other processes
referencing the same constant term would show a marker for incomplete heap.
Own Id: OTP-14685 Aux Id: OTP-14611, OTP-14603, OTP-14595

Improvements and New Features
	Binaries and some other data in crash dumps are now encoded in base64 (instead
of in hex), which will reduce the size of crash dumps.
A few bugs in the handling of sub binaries in crashdump_viewer have been
fixed.
Own Id: OTP-14686

	In order to allow future improvements, Crashdump Viewer now checks the version
tag of the crashdump to see that it is a known format. If the crashdump
version is newer than Crashdump Viewer is prepared to read, then an
information dialog is displayed before Crashdump Viewer terminates.
If an incomplete process heap is discovered in a crashdump, Crashdump Viewer
will now display a warning for this, similar to the warning displayed when a
crashdump is truncated. Incomplete heaps can occur if for instance the
literals are not included, which is the case for all dumps prior to OTP-20.2.
Own Id: OTP-14755

Observer 2.5
Improvements and New Features
	The following improvements are done to Crashdump Viewer:
	Reading of crash dumps with many binaries is optimized.
	A progress bar is shown when the detail view for a process is opened.
	The cdv script now sets ERL_CRASH_DUMP_SECONDS=0 to avoid generating a
new crash dump from the node running the Crashdump Viewer.
	A warning dialog is shown if the node running the Crashdump Viewer could
potentially overwrite the crash dump under inspection.
	Bugfix: In some situations, Crashdump Viewer could not find the end of the
'Last calls' section in a crash dump, and would erroneously mark the crash
dump as truncated. This is now corrected.
	Bugfix: In some situations, process info for a specific process would be
marked as truncated by Crashdump Viewer, even if the crash dump was
truncated in the binary section - and not related to the process in
question. This is now corrected.

Own Id: OTP-14386

	General Unicode improvements.
Own Id: OTP-14462

	Tools are updated to show Unicode atoms correctly.
Own Id: OTP-14464

	Add system statistics and limits to frontpage in observer.
Own Id: OTP-14536

Observer 2.4
Fixed Bugs and Malfunctions
	etop had a hardcoded timeout value of 1 second when waiting for data from a
remote node. When this expired, which could happen for instance if there were
very many processes on the remote node, etop would exit with reason
connection_lost. To overcome this problem, the timeout is now changed to be
the same as the update interval, which is configurable.
Own Id: OTP-14393

Improvements and New Features
	Show dirty-scheduler threads in performance monitor graph and add a column
with maximum allocated memory in the Memory Allocators table.
Own Id: OTP-14137

	Keep table and port selection after refresh of tables. Store settings before
shutdown and restore when starting application.
Own Id: OTP-14270

	Miscellaneous updates due to atoms containing arbitrary Unicode characters.
Own Id: OTP-14285

	When observing a node older than OTP-19.0, a pop-up will be displayed when
trying to access port information. Earlier, observer would crash in this
situation.
Own Id: OTP-14345 Aux Id: ERL-399

Observer 2.3.1
Fixed Bugs and Malfunctions
	etop erroneously reported the average scheduler utilization since the tool was
first started instead of the scheduler utilization since last update. This is
now corrected.
Own Id: OTP-14090 Aux Id: seq13232

	crashdump_viewer crashed when the 'Slogan' had more than one line. This is now
corrected.
Own Id: OTP-14093 Aux Id: ERL-318

	When clicking an HTML-link to a port before the port tab has been opened for
the first time, observer would crash since port info is not initiated. This is
now corrected.
Own Id: OTP-14151 Aux Id: PR-1296

	The dialyzer and observer applications will now use a portable way to find the
home directory. That means that there is no longer any need to manually set
the HOME environment variable on Windows.
Own Id: OTP-14249 Aux Id: ERL-161

Observer 2.3
Fixed Bugs and Malfunctions
	The shell script (priv/bin/cdv) and bat file (priv/bin/cdv.bat) which can be
used for starting crashdump_viewer both started a distributed erlang node.
This would cause any attempt at starting a second instance of the
crashdump_viewer to fail. To solve this problem, cdv and cdv.bat now use
non-distributed nodes when starting the crashdump_viewer.
Own Id: OTP-14010

	A bug caused the number of buckets to be shown in the 'Objects' column, and
the number of objects to be shown in the 'Memory' column for ets table in
crashdump_viewer. This is now corrected.
Own Id: OTP-14064

Improvements and New Features
	Add option queue_size to ttb:tracer/2. This sets the maximum queue size for
the IP trace driver which is used when tracing to shell and/or {local,File}.
The default value for queue_size is specified by dbg, and it is now
changed from 50 to 200.
Own Id: OTP-13829 Aux Id: seq13171

	The port information page is updated to show more information per port.
Own Id: OTP-13948 Aux Id: ERL-272

Observer 2.2.2
Fixed Bugs and Malfunctions
	Fixed error handling in observer when mnesia tables was requested and not
available.
Own Id: OTP-13845 Aux Id: ERL-237

Observer 2.2.1
Fixed Bugs and Malfunctions
	Fixed a crash happening when observing another node, who have a different
number of schedulers than the current one.
Own Id: OTP-13702 Aux Id: ERL-171

Observer 2.2
Improvements and New Features
	Update observer GUI to support tracing on ports, and to set matchspecs for
send/receive. This required some minor bugfixes in runtime_tools/dbg.
Own Id: OTP-13481

	Update dbg and ttb to work with a tracer module as tracer and tracing on
ports.
Own Id: OTP-13500

	Added possibility to change update frequency and length of the graph windows.
Own Id: OTP-13555

	Improved background coloring to work with dark themes and other visual
improvements.
Own Id: OTP-13556

	Crashdump viewer now allows port info "Port controls forker process..."
Own Id: OTP-13647

Observer 2.1.2
Improvements and New Features
	Documentation corrections.
Own Id: OTP-12994

Observer 2.1.1
Fixed Bugs and Malfunctions
	Show ets owner pid in crashdump viewers popup window, thanks Leo Liu.
Own Id: OTP-13030

	Several initialisms (eg, ERTS, ETS, SMP) are used as headings. They were being
capitalized incorrectly.
Own Id: OTP-13044

	Fixed a crash in crashdump viewer when dump contained a truncated binary.
Own Id: OTP-13163

Observer 2.1
Fixed Bugs and Malfunctions
	Show run queue status in crashdump viewer.
Own Id: OTP-12401

	Don't refresh observer table view if there was no change
Own Id: OTP-12819

Improvements and New Features
	Added display of new crashdump information available in crashdumps from
Erlang/OTP 18.
Own Id: OTP-12363

	Added the possibility to view sasl log entries for processes.
Own Id: OTP-12504

	Add memory allocator usage and utilization graphs.
Own Id: OTP-12631

Observer 2.0.4
Fixed Bugs and Malfunctions
	Fix crash when opening a process information window.
Own Id: OTP-12634

Observer 2.0.3
Fixed Bugs and Malfunctions
	A note saying only R15B nodes can be observed is removed from the user guide.
Own Id: OTP-12078

Observer 2.0.2
Fixed Bugs and Malfunctions
	Fixed statusbar on Windows
Own Id: OTP-12162

Observer 2.0.1
Fixed Bugs and Malfunctions
	crashdump_viewer would crash if the owner of a timer was specified as the
process' registered name. This has been corrected.
Own Id: OTP-11919

	Fix crash and minor updates.
Own Id: OTP-11949

Observer 2.0
Fixed Bugs and Malfunctions
	etop trace handler now works in smp environment (Thanks to Péter Gömöri)
Own Id: OTP-11633

	Application upgrade (appup) files are corrected for the following
applications:
asn1, common_test, compiler, crypto, debugger, dialyzer, edoc, eldap, erl_docgen, et, eunit, gs, hipe, inets, observer, odbc, os_mon, otp_mibs, parsetools, percept, public_key, reltool, runtime_tools, ssh, syntax_tools, test_server, tools, typer, webtool, wx, xmerl
A new test utility for testing appup files is added to test_server. This is
now used by most applications in OTP.
(Thanks to Tobias Schlager)
Own Id: OTP-11744

Improvements and New Features
	Removed gs based applications and gs based backends. The observer
application replaces the removed applications.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-10915

	The crashdump_viewer is re-written using wx. The old webtool interface
for crashdump_viewer does no longer exist.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-11179

Observer 1.3.1.2
Fixed Bugs and Malfunctions
	The documentation for ttb:tracer/2 incorrectly stated that there was an
option named 'overload', while the correct name used in the implementation
is 'overload_check'.
Own Id: OTP-11335 Aux Id: seq12385

	Fixed typo in observer documentation. Thanks to Dave Parfitt.
Own Id: OTP-11475

Observer 1.3.1.1
Improvements and New Features
	The encoding of the notes.xml file has been changed from latin1 to utf-8 to
avoid future merge problems.
Own Id: OTP-11310

Observer 1.3.1
Fixed Bugs and Malfunctions
	Some bugs related to calculation of CPU/scheduler utilization in observer are
corrected.
Current function for a process is accepted to be 'undefined' when running
hipe.
Own Id: OTP-10894

Improvements and New Features
		The new Memory field from a crash dump is now presented by crashdump viewer,
both in the process overview and in the process detail page.
	A summary of blocks- and carriers sizes is added to the allocator
information page in the crashdump viewer.

Own Id: OTP-10604 Aux Id: kunagi-336 [247]

	Use "open" as default browser for crashdump viewer on Mac OS X. Thanks to
Magnus Henoch.
Own Id: OTP-10929

	Fix observer table viewer crash on formatting improper lists. Thanks to Andrey
Tsirulev
Own Id: OTP-10931

	Postscript files no longer needed for the generation of PDF files have been
removed.
Own Id: OTP-11016

	Add processes state view in observer. Thanks to Eric Pailleau.
Own Id: OTP-11136

Observer 1.3
Improvements and New Features
	Where necessary a comment stating encoding has been added to Erlang files. The
comment is meant to be removed in Erlang/OTP R17B when UTF-8 becomes the
default encoding.
Own Id: OTP-10630

Observer 1.2
Fixed Bugs and Malfunctions
	The module name in the link to the detail page for each loaded module was
earlier not URL encoded. If the module name contained e.g. a # this could
cause the crashdump viewer to crash when opening the link. This has been
corrected.
Own Id: OTP-10090 Aux Id: seq12068

	Escape control characters in Table Viewer
Similar behaviour to old tv. Objects in tables supposed to be printed in a
single line and it looks ugly when a [...,10,...] integer list creates a
new-line. Fix Table Viewer search crash on new|changed|deleted rows.
Fix Table Viewer crash after a 'Found' -> 'Not found' search sequence
Start position was lost after a 'Found' -> 'Not found' search sequence leading
an undefined position in the next search. Thanks to Peti Gömori
Own Id: OTP-10218

	observer: fix app file (Noticed-by: Motiejus Jakstys)
Add missing observer modules to observer.app.src. Thanks to Tuncer Ayaz.
Own Id: OTP-10221

	Make Table Viewer search a bit faster
Edit table row in a multiline text dialog. Thanks to Peti Gomori.
Own Id: OTP-10225

Improvements and New Features
	Allow tracing on bifs.
Ask epmd for local nodes, and remember users last input in connect.
Fix crashes when a table or process information could not be retrieved.
Own Id: OTP-10075

Observer 1.0
Fixed Bugs and Malfunctions
	The following bugs in ttb have been corrected:
	ttb:tracer/2 would earlier crash when trying to set up tracing for a
diskless node to wrap files, i.e. when option
{file,{local,{wrap,Filename,Size,Count}}} was used.
	ttb:stop([fetch]) would sometimes silently fail if multiple nodes with
different current working directories were traced.
	ttb:stop([fetch]) would crash if the tracer was started with option
{file,{local,Filename}}
	A deadlock would sometimes occur due to an information printout from the
ttb_control process when ttb was stopped.

Own Id: OTP-9431

	The file trace port to which the IP trace client relays all traces from
diskless nodes was not flushed and closed properly on ttb:stop. This has been
corrected.
Own Id: OTP-9665

Improvements and New Features
	A new GUI for Observer. Integrating pman, etop, appmon and tv into observer
with tracing facilities.
Own Id: OTP-4779

	The following new features are added to ttb:
	A one-command trace setup is added, ttb:start_trace/4.
	The following new options are added to ttb:tracer/2:	shell - Show trace messages on the console in real time
	timer - Time constrained tracing
	overload - Overload protection
	flush - Flush file trace port buffers with given frequency
	resume - Automatically resume tracing after node restart

	A new shortcut is added for common tracer settings similar to using the
dbg module directly, ttb:tracer(shell | dbg).
	Some shortcuts are added for commonly used match specifications in ttb:tp
and ttb:tpl.
	The Options argument to functions ttb:tracer, ttb:write_config,
ttb:stop and ttb:format may now be one single option instead of a list.
	The history buffer of the last trace is now always automatically dumped to
the file ttb_last_config when ttb:stop is called.
	The following new options are added to ttb:stop/1:	fetch_dir - Specify where to store fetched logs
	{format,FormatOpts} - Specify options to use when formatting the
fetched logs
	return_fetch_dir - Indicate that the return value from ttb:stop/1
should include the name of the directory where the fetched logs are stored

	The option disable_sort is added to ttb:format/2. When this option is
used, trace messages from different logs are not merged according to
timestamps, but just appended one log after the other.

Own Id: OTP-9403

	The following non backwards compatible changes are done in ttb:
	When setting up trace with ttb, the 'timestamp' trace flag will now always
be set.
	The 'fetch' option to ttb:stop/1 is removed since it is now default behavior
that trace logs are fetched when stopping ttb. Fetching can be disabled with
the 'nofetch' option to ttb:stop/1.
	The name of the upload directory is changed from ttb_upload-Timestamp to
ttb_upload_FileName-Timestamp.
	To format the output using 'et', you now need to provide the option
{handler,ttb:get_et_handler()} instead of {handler,et}.
	When formatting a trace log, the handler state was earlier reset after each
trace file, this is now changed so the handler state is passed not only from
one trace message to the next in the same file, but also from one file to
the next.

* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-9430

Observer 0.9.10
Fixed Bugs and Malfunctions
	Do not install *.bat files on non-win32 machines (Thanks to Hans Ulrich
Niedermann)
Own Id: OTP-9515

Observer 0.9.9
Improvements and New Features
	The time needed for loading a crashump into the crashdump viewer would earlier
grow exponentially with the size of the crashdump file. Reading a file of 20M
would take a couple of minutes, and for a dump of 250M it would take between 1
and 2 hours. This has been solved.
Earlier, all processes, timers, funs or ets-tables would be loaded into the
memory of the crashdump viewer node before sending it on to the web server.
This has been changed and the pages are now sent to the web server in chunks.
A security function in newer web browsers prevents a full file path to be sent
from an HTML file input field, i.e. the field needed to implement the "Browse"
button when loading a file into the crashdump viewer. To overcome this, the
file input field is no longer used. Instead a normal text input field is used,
and the user needs to manually insert the complete file path. For convenience,
a shell script and a batch file are added to the observer application. These
can be used to start the crashdump_viewer and a browser and load a file - with
the file name given from the command line. The shell script and batch file are
called cdv and cdv.bat respectively, and can be found in the priv dir of the
observer application.
Own Id: OTP-9051 Aux Id: seq11789

Observer 0.9.8.4
Improvements and New Features
	The multitrace.erl installation example file is now installed in the examples
directory. (Thanks to Peter Lemenkov.)
Own Id: OTP-8857

Observer 0.9.8.3
Improvements and New Features
	The test suite has been updated for R14A.
Own Id: OTP-8708

Observer 0.9.8.2
Improvements and New Features
	Misc updates
Own Id: OTP-8456

Observer 0.9.8.1
Improvements and New Features
	Major improvements of the Erlang distribution for Erlang runtime systems with
SMP support. Previously distribution port locks were heavily contended, and
all encoding and decoding for a specific distribution channel had to be done
in sequence. Lock contention due to the distribution is now negligible and
both encoding and decoding of Erlang messages can be done in parallel.
The old atom cache protocol used by the Erlang distribution has been dropped
since it effectively prevented all parallel encoding and decoding of messages
passed over the same distribution channel.
A new atom cache protocol has been introduced which isolates atom cache
accesses and makes parallel encoding and decoding of messages passed over the
same distribution channel possible. The new atom cache protocol also use an
atom cache size 8 times larger than before. The new atom cache protocol is
documented in the ERTS users guide.
Erlang messages received via the distribution are now decoded by the receiving
Erlang processes without holding any distribution channel specific locks.
Erlang messages and signals sent over the distribution are as before encoded
by the sending Erlang process, but now without holding any distribution
channel specific locks during the encoding. That is, both encoding and
decoding can be and are done in parallel regardless of distribution channel
used.
The part that cannot be parallelized is the atom cache updates. Atom cache
updates are therefore now scheduled on the distribution port. Since it is only
one entity per distribution channel doing this work there is no lock
contention due to the atom cache updates.
The new runtime system does not understand the old atom cache protocol. New
and old runtime systems can however still communicate, but no atom cache will
be used.
Own Id: OTP-7774

Observer 0.9.8
Improvements and New Features
	etop would crash if the emulator's custom allocators had been turned off
(e.g. using the +Meamin option).
Own Id: OTP-7519

	The copyright notices have been updated.
Own Id: OTP-7851

Observer 0.9.7.4
Improvements and New Features
	Minor Makefile changes.
Own Id: OTP-6689

	Obsolete guard tests (such as list()) have been replaced with the modern guard
tests (such as is_list()).
Own Id: OTP-6725

Observer 0.9.7.3
Improvements and New Features
	This application has been updated to eliminate warnings by Dialyzer.
Own Id: OTP-6551

Observer 0.9.7.2
Fixed Bugs and Malfunctions
	Several minor bugs and race conditions eliminated in the runtime_tools and
observer applications.
Own Id: OTP-6265

Observer 0.9.7.1
Fixed Bugs and Malfunctions
	Crash dump with large integers could crash the crashdump_viewer.
Own Id: OTP-6301

Observer 0.9.7 (R11B)
Fixed Bugs and Malfunctions
	Fixed a bug in etop which made the Load and Memory information in the header
incorrect -- for example the value shown for binary (memory allocated for
binaries) was actually the number of currently running processes. (Thanks to
Rikard Johansson.)
Own Id: OTP-6075

Observer 0.9.6.2
Fixed Bugs and Malfunctions
	The Observer application has been recompiled because of a compiler bug.
Own Id: OTP-5700

Observer 0.9.6.1
Fixed Bugs and Malfunctions
	crashdump_viewer is faster when showing message, dictionary, and stack dump
for large processes.
Own Id: OTP-5408

 Introduction

Scope
The Observer application is a container including the following tools for
tracing and investigation of distributed systems:
	Observer
	Trace Tool Builder
	Erlang Top
	Crashdump Viewer

Prerequisites
It is assumed that the reader is familiar with the Erlang programming language.

 Observer

Introduction
Observer is a graphical tool for observing the characteristics of Erlang
systems. Observer displays system information, application supervisor trees,
process information, ETS tables, Mnesia tables and contains a front end for
Erlang tracing.
Getting Started
Run Observer from a standalone node to minimize the impact of the system being
observed.
Example:
% erl -sname observer -hidden -setcookie MyCookie -run observer
Select the node to observe with menu Nodes. Menu View > Refresh interval
controls how often the view is to be updated. The refresh interval is set per
viewer so you can have different settings for each viewer. To minimize the
system impact, only the active viewer is updated. Other views are updated when
activated.
The mouse buttons behave as expected. Use left-click to select objects,
right-click to get a menu with the most used options, and double-click to
display information about the selected object. In most viewers with many
columns, you can change the sort order by left-clicking the column header.
System Tab
Tab System displays general information about the active Erlang node and its
runtime system, such as build configuration, system capabilities, and overall
use statistics.
Load Charts Tab
Tab Load Charts displays graphs of the current resource use on the active
Erlang node.
Graph Scheduler Utilization shows scheduler use per scheduler, where each
scheduler use has a unique color.
Graph Memory Usage shows the total memory use and per memory category use,
where each category has a unique color. The categories are as follows:
	Total - The sum of all memory categories.

	Processes - The sum of all process memory used.

	Atom - The size used by the atom table.

	Binary - The sum of all off-heap binaries allocated.

	Code - The memory allocated for code storage.

	Ets - The used memory for all ETS tables.

Graph IO Usage shows the current I/O load on the system.
Memory Allocators Tab
Tab Memory Allocators displays detailed information of the carrier size and
current memory carriers. For details about memory carriers, see module
erts_alloc in application ERTS.
The Max Carrier size column shows the maximum value seen by observer since the
last node change or since the start of the application, i.e. switching nodes
will reset the max column. Values are sampled so higher values may have existed
than what is shown.
Applications Tab
Tab Applications presents application information. Select an application in
the left list to display its supervisor tree. The right-click options in the
tree are as follows:
	Process info - Opens a detailed information window on the selected
process, including the following:
	Process Information - Shows the process information.

	Messages - Shows the process messages.

	Dictionary - Shows the process dictionary.

	Stack Trace - Shows the process current stack trace.

	State - Shows the process state.

	Log - If enabled and available, shows the process SASL log entries.

	Trace process - Adds the selected process identifier to tab Trace
Overview plus the node that the process resides on.

	Trace named process - Adds the registered name of the process. This can be
useful when tracing on many nodes, as processes with that name are then traced
on all traced nodes.

	Trace process tree - Adds the selected process and all processes below,
right of it, to tab Trace Overview.

	Trace named process tree - Adds the selected process and all processes
below, right of it, to tab Trace Overview.

Processes Tab
Tab Processes lists process information in columns. For each process the
following information is displayed:
	Pid - The process identifier.

	Description - Registered name, process label or
initial function.

	Reds - The number of reductions executed on the process. This can be
presented as accumulated values or as values since the last update.

	Memory - The size of the process, in bytes, obtained by a call to
process_info(Pid,memory).

	MsgQ - The length of the message queue for the process.

Option Process info opens a detailed information window on the process under
the mouse pointer, including the following:
	Process Information - Shows the process information.

	Messages - Shows the process messages.

	Dictionary - Shows the process dictionary.

	Stack Trace - Shows the process current stack trace.

	State - Shows the process state.

	Log - If enabled and available, shows the process SASL log entries.

Note
Log requires application SASL to be started on the observed node, with
log_mf_h as log handler. The Observed node must be Erlang/OTP R16B02 or
higher. The rb server must not be started on the observed node when clicking
menu Log > Toggle log view. The rb server is stopped on the observed node
when exiting or changing the observed node.
Option Trace selected processes adds the selected process identifiers to tab
Trace Overview plus the node that the processes reside on.
Option Trace selected processes by name adds the registered name of the
processes. This can be useful when tracing is done on many nodes, as processes
with that name are then traced on all traced nodes.
Option Kill process brutally kills the processes under the mouse pointer by
sending an exit signal with reason kill.
Ports Tab
Tab Ports lists port information in columns. For each port the following
information is displayed:
	Id - The port identifier.

	Connected - The process identifier for the process that owns the port.

	Name - The registered name of the port, if any.

	Controls - The name of the command set by erlang:open_port/2.

	Slot - The internal index of the port.

Option Port info opens a detailed information window for the port under the
mouse pointer. In addition to the information above, it also shows links and
monitors.
Option Trace selected ports adds the selected port identifiers, and the nodes
that the ports reside on, to tab Trace Overview.
Option Trace selected ports by name adds the registered name of the port to
tab Trace Overview. This can be useful when tracing is done on many nodes, as
ports with that name are then traced on all traced nodes.
Option Close executes erlang:port_close/1 on the port under the mouse
pointer.
Sockets Tab
Tab Sockets is divided into two parts. The first part contains general
socket information and the second part lists socket information in columns.
For each socket the following information is displayed:
	Id - The socket identifier.

	Owner - The process identifier for the process that owns the socket.

	Fd - The underlying file descriptor of the socket.

	Domain - The communication domain (e.g. inet or inet6) of this socket.

	Type - The type (e.g. stream or dgram) of this socket.

	Protocol - The protocol (e.g. tcp or udp) of this socket.

	Read State - The read state of the socket.

	Write State - The write state of the socket.

Option Socket info opens a detailed information window for the socket under
the mouse pointer. In addition to the information above, it also shows monitors.
Option Close executes socket:close/1 on the socket under the mouse pointer.
Table Viewer Tab
Tab Table Viewer lists tables. By default, ETS tables are displayed whereas
unreadable private ETS tables and tables created by OTP applications are not
displayed. Use menu View to view "system" ETS tables, unreadable ETS tables,
or Mnesia tables.
Double-click to view the table content, or right-click and select option Show
Table Content. To view table information, select the table and activate menu
View > Table information, or right-click and select option Table info.
You can use regular expressions and search for objects, and edit or
delete them.
Trace Overview Tab
Tab Trace Overview handles tracing. Trace by selecting the processes or ports
to be traced and how to trace them. For processes, you can trace messages,
function calls, scheduling, garbage collections, and process-related events such
as spawn, exit, and many others. For ports, you can trace messages,
scheduling and port-related events.
To trace function calls, you also need to set up trace patterns. Trace
patterns select the function calls to be traced. The number of traced function
calls can be further reduced with match specifications. Match specifications
can also be used to trigger more information in the trace messages.
You can also set match specifications on messages. By default, if tracing
messages, all messages sent and/or received by the process or port are traced.
Match specifications can be used to reduce the number of traced messages and/or
to trigger more information in the trace messages.
Note
Trace patterns only apply to the traced processes and ports.
Processes are added from the Applications or Processes tabs. Ports are added
from the Ports tab. A special new identifier, meaning all processes, or
ports, started after trace start, can be added with buttons Add 'new'
Processes and Add 'new' Ports, respectively.
When adding processes or ports, a window with trace options is displayed. The
chosen options are set for the selected processes/ports. To change the options,
right-click the process or port and select Edit process options. To remove a
process or port from the list, right-click and select Remove process or
Remove port, respectively.
Processes and ports added by process/port identifiers add the nodes these
processes/ports reside on in the node list. More nodes can be added by clicking
button Add Nodes, or by right-clicking in the Nodes list and select Add
Nodes. To remove nodes, select them, then right-click and choose Remove
nodes.
If function calls are traced, trace patterns must be added by clicking button
Add Trace Pattern. Select a module, function(s), and a match specification. If
no functions are selected, all functions in the module are traced.
Trace patterns can also be added for traced messages. Click button Add Trace
Pattern and select Messages sent or Messages received, and a match
specification.
A few basic match specifications are provided in the tool, and you can provide
your own match specifications. The syntax of match specifications is described
in the ERTS User's Guide. To simplify the writing of
a match specification, they can also be written as fun/1. For details, see
module ms_transform in application STDLIB.
Click button Start Trace to start the trace. By default, trace output is
written to a new window. Tracing is stopped when the window is closed, or when
clicking button Stop Trace. Trace output can be changed with menu Options >
Output. The trace settings, including match specifications, can be saved to, or
loaded from, a file.
For details about tracing, see module dbg in application Runtime_Tools and
in section "Match specifications in Erlang" in
ERTS User's Guide and in module ms_transform in
application STDLIB.

 Trace Tool Builder

Introduction
Trace Tool Builder is a base for building trace tools for single node or
distributed Erlang systems. It requires the Runtime_Tools application to be
available on the traced node.
The following are the main features of Trace Tool Builder:
	Start tracing to file ports on many nodes with one function call.
	Write more information to a trace information file, which is read during
formatting.
	Restore previous configuration by maintaining a history buffer and handling
configuration files.
	Provide some simple support for sequential tracing.
	Format binary trace logs and merge logs from multiple nodes.

The intention of Trace Tool Builder is to serve as a base for tailor-made trace
tools, but it can also be used directly from the Erlang shell (it can mimic
dbg behaviour while still providing useful additions, such as match
specification shortcuts). Trace Tool Builder only allows the use of file port
tracer, so to use other types of trace clients it is better to use dbg
directly.
Getting Started
Module ttb is the interface to all functions in Trace Tool Builder.
To get started, the least you need to do is to start a tracer with
ttb:tracer/0,1,2, and set the required trace flags on the
processes you want to trace with ttb:p/2.
When the tracing is completed, stop the tracer with
ttb:stop/0,1 and format the trace log with
ttb:format/1,2 (if there is anything to format).
Useful functions:
	ttb:tracer/0,1,2 - Opens a trace port on each node to
be traced. By default, trace messages are written to binary files on remote
nodes (the binary trace log).

	ttb:p/2 - Specifies the processes to be traced. Trace flags specified in
this call specify what to trace on each process. This function can be called
many times if you like different trace flags to be set on different processes.

	ttb:tp/2,3,4 or ttb:tpl/2,3,4 - If you
want to trace function calls (that is, if you have trace flag call set on
any process), you must also set trace patterns on the required function(s)
with ttb:tp/2,3,4 or ttb:tpl/2,3,4. A
function is only traced if it has a trace pattern. The trace pattern specifies
how to trace the function by using match specifications. Match specifications
are described in the ERTS User's Guide.

	ttb:stop/0,1 - Stops tracing on all nodes, deletes all
trace patterns, and flushes the trace port buffer.

	ttb:format/1/2 - Translates the binary trace logs into
something readable. By default, ttb presents each trace message as a line of
text, but you can also write your own handler to make more complex
interpretations of the trace information. A trace log can also be presented
graphically with application Event Tracer (ET).
If option format is specified to ttb:stop/1, the formatting is
automatically done when stopping ttb.

Tracing Local Node from Erlang Shell
The following small module is used in the subsequent example:
-module(m).
-export([f/0]).
f() ->
 receive
 From when is_pid(From) ->
 Now = erlang:now(),
 From ! {self(),Now}
 end.
The following example shows the basic use of ttb from the Erlang shell.
Default options are used both for starting the tracer and for formatting (the
custom fetch directory is however provided). This gives a trace log named
Node-ttb in the newly created directory, where Node is the node name. The
default handler prints the formatted trace messages in the shell:
(tiger@durin)47> %% First I spawn a process running my test function
(tiger@durin)47> Pid = spawn(m,f,[]).
<0.125.0>
(tiger@durin)48>
(tiger@durin)48> %% Then I start a tracer...
(tiger@durin)48> ttb:tracer().
{ok,[tiger@durin]}
(tiger@durin)49>
(tiger@durin)49> %% and activate the new process for tracing
(tiger@durin)49> %% function calls and sent messages.
(tiger@durin)49> ttb:p(Pid,[call,send]).
{ok,[{<0.125.0>,[{matched,tiger@durin,1}]}]}
(tiger@durin)50>
(tiger@durin)50> %% Here I set a trace pattern on erlang:now/0
(tiger@durin)50> %% The trace pattern is a simple match spec
(tiger@durin)50> %% indicating that the return value should be
(tiger@durin)50> %% traced. Refer to the reference_manual for
(tiger@durin)50> %% the full list of match spec shortcuts
(tiger@durin)50> %% available.
(tiger@durin)51> ttb:tp(erlang,now,return).
{ok,[{matched,tiger@durin,1},{saved,1}]}
(tiger@durin)52>
(tiger@durin)52> %% I run my test (i.e. send a message to
(tiger@durin)52> %% my new process)
(tiger@durin)52> Pid ! self().
<0.72.0>
(tiger@durin)53>
(tiger@durin)53> %% And then I have to stop ttb in order to flush
(tiger@durin)53> %% the trace port buffer
(tiger@durin)53> ttb:stop([return, {fetch_dir, "fetch"}]).
{stopped, "fetch"}
(tiger@durin)54>
(tiger@durin)54> %% Finally I format my trace log
(tiger@durin)54> ttb:format("fetch").
({<0.125.0>,{m,f,0},tiger@durin}) call erlang:now()
({<0.125.0>,{m,f,0},tiger@durin}) returned from erlang:now/0 ->
{1031,133451,667611}
({<0.125.0>,{m,f,0},tiger@durin}) <0.72.0> !
{<0.125.0>,{1031,133451,667611}}
ok
Build Your Own Tool
The following example shows a simple tool for "debug tracing", that is, tracing
of function calls with return values:
-module(mydebug).
-export([start/0,trc/1,stop/0,format/1]).
-export([print/4]).
%% Include ms_transform.hrl so that I can use dbg:fun2ms/2 to
%% generate match specifications.
-include_lib("stdlib/include/ms_transform.hrl").
%%% -------------Tool API-------------
%%% ----------------------------------
%%% Star the "mydebug" tool
start() ->
 %% The options specify that the binary log shall be named
 %% <Node>-debug_log and that the print/4 function in this
 %% module shall be used as format handler
 ttb:tracer(all,[{file,"debug_log"},{handler,{{?MODULE,print},0}}]),
 %% All processes (existing and new) shall trace function calls
 %% We want trace messages to be sorted upon format, which requires
 %% timestamp flag. The flag is however enabled by default in ttb.
 ttb:p(all,call).

%%% Set trace pattern on function(s)
trc(M) when is_atom(M) ->
 trc({M,'_','_'});
trc({M,F}) when is_atom(M), is_atom(F) ->
 trc({M,F,'_'});
trc({M,F,_A}=MFA) when is_atom(M), is_atom(F) ->
 %% This match spec shortcut specifies that return values shall
 %% be traced.
 MatchSpec = dbg:fun2ms(fun(_) -> return_trace() end),
 ttb:tpl(MFA,MatchSpec).

%%% Format a binary trace log
format(Dir) ->
 ttb:format(Dir).

%%% Stop the "mydebug" tool
stop() ->
 ttb:stop(return).

%%% --------Internal functions--------
%%% ----------------------------------
%%% Format handler
print(_Out,end_of_trace,_TI,N) ->
 N;
print(Out,Trace,_TI,N) ->
 do_print(Out,Trace,N),
 N+1.

do_print(Out,{trace_ts,P,call,{M,F,A},Ts},N) ->
 io:format(Out,
 "~w: ~w, ~w:~n"
 "Call : ~w:~w/~w~n"
 "Arguments :~p~n~n",
 [N,Ts,P,M,F,length(A),A]);
do_print(Out,{trace_ts,P,return_from,{M,F,A},R,Ts},N) ->
 io:format(Out,
 "~w: ~w, ~w:~n"
 "Return from : ~w:~w/~w~n"
 "Return value :~p~n~n",
 [N,Ts,P,M,F,A,R]).
To distinguish trace logs produced with this tool from other logs, option file
is used in tracer/2. The logs are therefore fetched to a
directory named ttb_upload_debug_log-YYYYMMDD-HHMMSS
By using option handler when starting the tracer, the information about how to
format the file is stored in the trace information file (.ti). This is not
necessary, as it can be specified when formatting instead. However, It can be
useful if you, for example, want to format trace logs automatically using option
format in ttb:stop/1. Also, you do not need any knowledge of the content of
a binary log to format it the way it is intended. If option handler is
specified both when starting the tracer and when formatting, the one specified
when formatting is used.
Trace flag call is set on all processes. This means that any function
activated with command trc/1 is traced on all existing and new processes.
Running Trace Tool Builder against Remote Node
The Observer application might not always be available on the node to be traced
(in the following called the "traced node"). However, Trace Tool Builder can
still be run from another node (in the following called the "trace control
node") as long as the following is fulfilled:
	The Observer application is available on the trace control node.
	The Runtime_Tools application is available on both the trace control node and
the traced node.

If Trace Tool Builder is to be used against a remote node, it is highly
recommended to start the trace control node as hidden. This way it can connect
to the traced node without being "seen" by it, that is, if the nodes/0 BIF is
called on the traced node, the trace control node does not show. To start a
hidden node, add option -hidden to the erl command, for example:
% erl -sname trace_control -hidden
Diskless Node
If the traced node is diskless, ttb must be started from a trace control node
with disk access, and option file must be specified to function tracer/2
with value {local, File}, for example:
(trace_control@durin)1> ttb:tracer(mynode@diskless,
 {file,{local,{wrap,"mytrace"}}}).
{ok,[mynode@diskless]}
More Tracing Options
When setting up a trace, the following features can also be activated:
	Time-constrained tracing
	Overload protection
	Autoresume
	dbg mode

Time-Constrained Tracing
It can sometimes be helpful to enable trace for a specified period of time (for
example, to monitor a system for 24 hours or half a second). This can be done
with option {timer, TimerSpec}. If TimerSpec has the form of MSec, the
trace is stopped after MSec milliseconds using ttb:stop/0. If more options
are provided (TimerSpec = {MSec, Opts}), ttb:stop/1 is called instead with
Opts as argument.
The timer is started with ttb:p/2, so any trace patterns must be set up in
advance. ttb:start_trace/4 always sets up all patterns before invoking
ttb:p/2.
The following example shows how to set up a trace that is automatically stopped
and formatted after 5 seconds:
(tiger@durin)1> ttb:start_trace([node()],
 [{erlang, now,[]}],
 {all, call},
 [{timer, {5000, format}}]).
Note
Because of network and processing delays, the period of tracing is
approximate.
Overload Protection
When tracing live systems, always take special care to not overload a node with
too heavy tracing. ttb provides option overload to address this problem.
{overload, MSec, Module, Function} instructs the ttb back end (a part of the
Runtime_Tools application) to perform overload
check every MSec millisecond. If the check (named Module:Function(check))
returns true, tracing is disabled on the selected node.
Overload protection activated on one node does not affect other nodes, where the
tracing continues as normal. ttb:stop/0 fetches data from all clients,
including everything collected before the activation of overload protection.
Note
It is not allowed to change trace details (with ttb:p/2 and ttb:tp/tpl...)
once overload protection is activated in one of the traced nodes. This is to
avoid trace setup being inconsistent between nodes.
Module:Function provided with option overload must handle three calls:
init, check, and stop. init and stop allow some setup and teardown
required by the check. An overload check module can look as follows:
-module(overload).
-export([check/1]).

check(init) ->
 Pid = sophisticated_module:start(),
 put(pid, Pid);
check(check) ->
 get(pid) ! is_overloaded,
 receive
 Reply ->
 Reply
 after 5000 ->
 true
 end;
check(stop) ->
 get(pid) ! stop.
Note
check is always called by the same process, so put and get are possible.
Autoresume
A node can crash (probably a buggy one, hence traced). Use resume to resume
tracing on the node automatically when it gets back. The failing node then tries
to reconnect to trace control node when Runtime_Tools is started. This implies
that Runtime_Tools must be included in the startup chain of other nodes (if
not, you can still resume tracing by starting Runtime_Tools manually, that is,
by an RPC call).
To not lose the data that the failing node stored up to the point of crash, the
control node tries to fetch it before restarting trace. This must occur within
the allowed time frame, otherwise it is aborted (default is 10 seconds, but it
can be changed with {resume, MSec}). The data fetched this way is then merged
with all other traces.
The autostart feature requires more data to be stored on traced nodes. By
default, the data is stored automatically to the file named "ttb_autostart.bin"
in the current working directory (cwd) of the traced node. Users can change this
behaviour (that is, on diskless nodes) by specifying their own module to handle
autostart data storage and retrieval (ttb_autostart_module environment
variable of runtime_tools). For information about the API, see module ttb.
The following example shows the default handler:
-module(ttb_autostart).
-export([read_config/0,
 write_config/1,
 delete_config/0]).

-define(AUTOSTART_FILENAME, "ttb_autostart.bin").

delete_config() ->
 file:delete(?AUTOSTART_FILENAME).

read_config() ->
 case file:read_file(?AUTOSTART_FILENAME) of
 {ok, Data} -> {ok, binary_to_term(Data)};
 Error -> Error
 end.

write_config(Data) ->
 file:write_file(?AUTOSTART_FILENAME, term_to_binary(Data)).
Note
Remember that file trace ports buffer the data by default. If the node
crashes, trace messages are not flushed to the binary log. If the risk of
failure is high, it can be a good idea to flush the buffers every now and then
automatically. Passing {flush, MSec} as an option of ttb:tracer/2 flushes
all buffers every MSec millisecond.
dbg Mode
Option {shell, ShellType} allows making ttb operation similar to dbg.
Using {shell, true} displays all trace messages in the shell before storing
them. {shell, only} additionally disables message storage (making the tool to
behave exactly like dbg). This is allowed only with IP trace ports
({trace, {local, File}}).
Command ttb:tracer(dbg) is a shortcut for the pure dbg mode
({shell, only}).

Trace Information and File .ti
In addition to the trace log file(s), a file with extension .ti is created
when Trace Tool Builder is started. This is the trace information file. It is a
binary file, which contains the process information, trace flags used, the name
of the node to which it belongs, and all information written with function
ttb:write_trace_info/2. .ti files are always fetched with other logs when
the trace is stopped.
Except for the process information, everything in the trace information file is
passed on to the handler function when formatting. Parameter TI is a list of
{Key,ValueList} tuples. The keys flags, handler, file, and node are
used for information written directly by ttb.
Information to the trace information file by can be added by calling
ttb:write_trace_info/2. Notice that ValueList always is a list, and if you
call write_trace_info/2 many times with the same Key, the ValueList is
extended with a new value each time.
Example:
ttb:write_trace_info(mykey,1) gives the entry {mykey,[1]} in TI. Another
call, ttb:write_trace_info(mykey,2), changes this entry to {mykey,[1,2]}.
Wrap Logs
If you want to limit the size of the trace logs, you can use wrap logs. This
works almost like a circular buffer. You can specify the maximum number of
binary logs and the maximum size of each log. ttb then creates a new binary
log each time a log reaches the maximum size. When the maximum number of logs
are reached, the oldest log is deleted before a new one is created.
Note
The overall size of data generated by ttb can be greater than the wrap
specification suggests. If a traced node restarts and autoresume is enabled,
the old wrap log is always stored and a new one is created.
Wrap logs can be formatted one by one or all at once. See
Formatting.

Formatting
Formatting can be done automatically when stopping ttb (see section
Automatically Collect and Format Logs from All Nodes),
or explicitly by calling function ttb:format/1,2.
Formatting means to read a binary log and present it in a readable format. You
can use the default format handler in ttb to present each trace message as a
line of text, or write your own handler to make more complex interpretations of
the trace information. You can also use application ET to present the trace log
graphically (see section
Presenting Trace Logs with Event Tracer).
The first argument to ttb:format/1,2 specifies which binary log(s) to format.
This is usually the name of a directory that ttb created during log fetch.
Unless option disable_sort is provided, the logs from different files are
always sorted according to time-stamp in traces.
The second argument to ttb:format/2 is a list of options as follows:
	out - Specifies the destination to write the formatted text. Default
destination is standard_io, but a filename can also be specified.

	handler - Specifies the format handler to use. If this option is not
specified, option handler that is specified when starting the tracer is
used. If option handler is not specified when starting the tracer either, a
default handler is used, which prints each trace message as a text line.

	disable_sort - Indicates that the logs are not to be merged according to
time-stamp, but processed one file after another (this can be a bit faster).

A format handler is a fun taking four arguments. This fun is called for each
trace message in the binary log(s). A simple example that only prints each trace
message can be as follows:
fun(Fd, Trace, _TraceInfo, State) ->
 io:format(Fd, "Trace: ~p~n", [Trace]),
 State
end.
Here, Fd is the file descriptor for the destination file, or the atom
standard_io. _TraceInfo contains information from the trace information file
(see section Trace Information and File .ti). State is
a state variable for the format handler fun. The initial value of variable
State is specified with the handler option, for example:
ttb:format("tiger@durin-ttb", [{handler, {{Mod,Fun}, initial_state}}])
 ^^^^^^^^^^^^^
Another format handler can be used to calculate the time spent by the garbage
collector:
fun(_Fd,{trace_ts,P,gc_start,_Info,StartTs},_TraceInfo,State) ->
 [{P,StartTs}|State];
 (Fd,{trace_ts,P,gc_end,_Info,EndTs},_TraceInfo,State) ->
 {value,{P,StartTs}} = lists:keysearch(P,1,State),
 Time = diff(StartTs,EndTs),
 io:format("GC in process ~w: ~w milliseconds~n", [P,Time]),
 State -- [{P,StartTs}]
end
A more refined version of this format handler is function handle_gc/4 in
module multitrace.erl included in directory src of the Observer application.
The trace message is passed as the second argument (Trace). The possible
values of Trace are the following:
	All trace messages described in erlang:trace/3
	{drop, N} if IP tracer is used (see dbg:trace_port/2)
	end_of_trace received once when all trace messages are processed

By giving the format handler ttb:get_et_handler(),
you can have the trace log presented graphically with et_viewer in the ET
application (see section
Presenting Trace Logs with Event Tracer).
You can always decide not to format the whole trace data contained in the fetch
directory, but analyze single files instead. To do so, a single file (or list of
files) must be passed as the first argument to format/1,2.
Wrap logs can be formatted one by one or all at once. To format one of the wrap
logs in a set, specify the exact file name. To format the whole set of wrap
logs, specify the name with * instead of the wrap count.
Example:
Start tracing:
(tiger@durin)1> ttb:tracer(node(),{file,{wrap,"trace"}}).
{ok,[tiger@durin]}
(tiger@durin)2> ttb:p(...)
...
This gives a set of binary logs, for example:
tiger@durin-trace.0.wrp
tiger@durin-trace.1.wrp
tiger@durin-trace.2.wrp
...
Format the whole set of logs:
1> ttb:format("tiger@durin-trace.*.wrp").
....
ok
2>
Format only the first log:
1> ttb:format("tiger@durin-trace.0.wrp").
....
ok
2>
To merge all wrap logs from two nodes:
1> ttb:format(["tiger@durin-trace.*.wrp","lion@durin-trace.*.wrp"]).
....
ok
2>

Presenting Trace Logs with Event Tracer
For detailed information about the Event Tracer, see the ET
application.
By giving the format handler ttb:get_et_handler(),
you can have the trace log presented graphically with et_viewer in the ET
application. ttb provides filters that can be selected from the menu Filter
in the et_viewer window. The filters are names according to the type of actors
they present (that is, what each vertical line in the sequence diagram
represents). Interaction between actors is shown as red arrows between two
vertical lines, and activities within an actor are shown as blue text to the
right of the actors line.
The processes filter is the only filter showing all trace messages from a
trace log. Each vertical line in the sequence diagram represents a process.
Erlang messages, spawn, and link/unlink are typical interactions between
processes. Function calls, scheduling, and garbage collection, are typical
activities within a process. processes is the default filter.
The remaining filters only show function calls and function returns. All other
trace message are discarded. To get the most out of these filters, et_viewer
must know the caller of each function and the time of return. This can be
obtained using both the call and return_to flags when tracing. Notice that
flag return_to only works with local call trace, that is, when trace patterns
are set with ttb:tpl.
The same result can be obtained by using the flag call only and setting a
match specification on local or global function calls as follows:
1> dbg:fun2ms(fun(_) -> return_trace(),message(caller()) end).
[{'_',[],[{return_trace},{message,{caller}}]}]
This must however be done with care, as function {return_trace} in the match
specification destroys tail recursiveness.
The modules filter shows each module as a vertical line in the sequence
diagram. External function calls/returns are shown as interactions between
modules, and internal function calls/returns are shown as activities within a
module.
The functions filter shows each function as a vertical line in the sequence
diagram. A function calling itself is shown as an activity within a function,
and all other function calls are shown as interactions between functions.
The mods_and_procs and funcs_and_procs filters are equivalent to the
modules and functions filters respectively, except that each module or
function can have many vertical lines, one for each process it resides on.
In the following example, modules foo and bar are used:
-module(foo).
-export([start/0,go/0]).

start() ->
 spawn(?MODULE, go, []).

go() ->
 receive
 stop ->
 ok;
 go ->
 bar:f1(),
 go()
 end.
-module(bar).
-export([f1/0,f3/0]).
f1() ->
 f2(),
 ok.
f2() ->
 spawn(?MODULE,f3,[]).
f3() ->
 ok.
Setting up the trace:
(tiger@durin)1> %%First we retrieve the Pid to limit traced processes set
(tiger@durin)1> Pid = foo:start().
(tiger@durin)2> %%Now we set up tracing
(tiger@durin)2> ttb:tracer().
(tiger@durin)3> ttb:p(Pid, [call, return_to, procs, set_on_spawn]).
(tiger@durin)4> ttb:tpl(bar, []).
(tiger@durin)5> %%Invoke our test function and see output with et viewer
(tiger@durin)5> Pid ! go.
(tiger@durin)6> ttb:stop({format, {handler, ttb:get_et_handler()}}).
This renders a result similar to the following:

 Erlang Top - observer v2.18.1

 Erlang Top

Introduction
Erlang Top, etop, is a tool for presenting information about Erlang processes
similar to the information presented by top in UNIX.
Getting Started
Start Erlang Top in either of the following ways:
	Use script etop.
	Use batch file etop.bat, for example, etop -node tiger@durin.

Output
The output from Erlang Top is as follows:
==
 tiger@durin 13:40:32
 Load: cpu 0 Memory: total 1997 binary 33
 procs 197 processes 0 code 173
 runq 135 atom 1002 ets 95

Pid Name or Initial Func Time Reds Memory MsgQ Current Function
--
<127.23.0> code_server 0 59585 78064 0 gen_server:loop/6
<127.21.0> file_server_2 0 36380 44276 0 gen_server:loop/6
<127.2.0> erl_prim_loader 0 27962 3740 0 erl_prim_loader:loop
<127.9.0> kernel_sup 0 6998 4676 0 gen_server:loop/6
<127.17.0> net_kernel 62 6018 3136 0 gen_server:loop/6
<127.0.0> init 0 4156 4352 0 init:loop/1
<127.16.0> auth 0 1765 1264 0 gen_server:loop/6
<127.18.0> inet_tcp_dist:accept 0 660 1416 0 prim_inet:accept0/2
<127.5.0> application_controll 0 569 6756 0 gen_server:loop/6
<127.137.0> net_kernel:do_spawn_ 0 553 5840 0 dbg:do_relay_1/1
==
The header includes some system information:
	Load
	cpu - Runtime/Wallclock, that is, the percentage of time where the
node has been active.

	procs - The number of processes on the node.

	runq - The number of processes that are ready to run.

	Memory - The memory allocated by the node in kilobytes.

For each process the following information is presented:
	Time - The runtime for the process, that is, the time that the process
has been scheduled in.

	Reds - The number of reductions executed on the process.

	Memory - The size of the process in bytes, obtained by a call to
process_info(Pid,memory).

	MsgQ - The length of the message queue for the process.

Note
Time and Reds can be presented as accumulated values or as values since
the last update.
Configuration
All configuration parameters can be set at start by adding -OptName Value to
the command line, for example:
% etop -node tiger@durin -setcookie mycookie -lines 15
A list of all valid Erlang Top configuration parameters is available in module
etop.
The parameters lines, interval, accumulate, and sort can be changed
during runtime with function etop:config/2.
Example:
Change configuration parameter lines with text-based presentation. Before the
change, 10 lines are presented as follows:
==
 tiger@durin 10:12:39
 Load: cpu 0 Memory: total 1858 binary 33
 procs 191 processes 0 code 173
 runq 2 atom 1002 ets 95

Pid Name or Initial Func Time Reds Memory MsgQ Current Function
--
<127.23.0> code_server 0 60350 71176 0 gen_server:loop/6
<127.21.0> file_server_2 0 36380 44276 0 gen_server:loop/6
<127.2.0> erl_prim_loader 0 27962 3740 0 erl_prim_loader:loop
<127.17.0> net_kernel 0 13808 3916 0 gen_server:loop/6
<127.9.0> kernel_sup 0 6998 4676 0 gen_server:loop/6
<127.0.0> init 0 4156 4352 0 init:loop/1
<127.18.0> inet_tcp_dist:accept 0 2196 1416 0 prim_inet:accept0/2
<127.16.0> auth 0 1893 1264 0 gen_server:loop/6
<127.43.0> ddll_server 0 582 3744 0 gen_server:loop/6
<127.5.0> application_controll 0 569 6756 0 gen_server:loop/6
==
Function etop:config/2 is called to change the number of showed lines to 5:
> etop:config(lines,5).
ok
After the change, 5 lines are presented as follows:
(etop@durin)2>
==
 tiger@durin 10:12:44
 Load: cpu 0 Memory: total 1859 binary 33
 procs 192 processes 0 code 173
 runq 2 atom 1002 ets 95

Pid Name or Initial Func Time Reds Memory MsgQ Current Function
--
<127.17.0> net_kernel 183 70 4092 0 gen_server:loop/6
<127.335.0> inet_tcp_dist:do_acc 141 22 1856 0 dist_util:con_loop/9
<127.19.0> net_kernel:ticker/2 155 6 1244 0 net_kernel:ticker1/2
<127.341.0> net_kernel:do_spawn_ 0 0 5840 0 dbg:do_relay_1/1
<127.43.0> ddll_server 0 0 3744 0 gen_server:loop/6
==
Print to File
At any time, the current Erlang Top display can be dumped to a text file with
function etop:dump/1.
Stop
To stop Erlang Top, use function etop:stop/0.

 Crashdump Viewer - observer v2.18.1

 Crashdump Viewer

Introduction
The Crashdump Viewer is a WxWidgets based tool for browsing Erlang crashdumps.
Getting Started
The easiest way to start Crashdump Viewer is to use shell script cdv with the
full path to the Erlang crashdump as argument. The script is located in
directory priv of the Observer application. This starts the Crashdump Viewer
GUI and loads the specified file. If no filename is specified, a file dialog is
opened where the file can be selected.
Under Windows, the batch file cdv.bat can be used.
Crashdump Viewer can also be started from an Erlang node by calling
crashdump_viewer:start/0 or crashdump_viewer:start/1.
GUI
The GUI main window is opened when Crashdump Viewer has loaded a crashdump. It
contains a title bar, a menu bar, information tabs, and a status bar.
The title bar shows the name of the currently loaded crashdump.
The menu bar contains a File menu and a Help menu. From the File menu, a
new crashdump can be loaded or the tool can be terminated. From the Help menu,
this User's Guide and section "How to interpret the Erlang crash dumps" from the
ERTS application can be opened. "How to interpret the Erlang crash dumps"
describes the raw crashdumps in detail and includes information about each field
in the information pages."How to interpret the Erlang crash dumps" is also
available in the OTP online documentation.
The status bar at the bottom of the window shows a warning if the currently
loaded dump is truncated.
The center area of the main window contains the information tabs. Each tab
displays information about a specific item or a list of items. Select a tab by
clicking the tab title.
From tabs displaying lists of items, for example, the Processes tab or the
Ports tab, a new window with more information can be opened by double-clicking
a row or by right- clicking the row and selecting an item from the drop-down
menu. The new window is called a detail window. Detail windows can be opened for
processes, ports, nodes, and modules.
The information shown in a detail window can contain links to processes or
ports. Clicking one of these links opens the detail window for the process or
port in question. If the process or port resides on a remote node, no
information is available. Clicking the link then displays a dialog where you can
choose to open the detail window for the remote node.
Some tabs contain a left-hand menu where subitems of the information area can be
selected. Click one of the rows, and the information is displayed in the
right-hand information area.
Tab Content
Each tab in the main window contains an information page. If no information is
found for an item, the page is empty. The reason for not finding information
about an item can be the following:
	It is a dump from an old OTP release in which this item was not written.
	The item was not present in the system at the point of failure.
	The dump is truncated. In this case, a warning is displayed in the status bar
of the main window.

Even if some information about an item exists, there can be empty fields if the
dump originates from an old OTP release.
The value -1 in any field means "unknown", and in most cases it means that the
dump was truncated somewhere around this field.
The following sections describe some of the fields in the information tabs.
These are fields that do not exist in the raw crashdump, or in some way differ
from the fields in the raw crashdump. For details about other fields, see the
ERTS User's Guide, section "How to interpret the Erlang
crash dumps". That section can also be opened from the Help menu in the main
window. There are also links from the following sections to related information
in "How to interpret the Erlang crash dumps".

General Tab
Tab General shows a short overview of the dump.
The following fields are not described in the ERTS User's Guide:
	Crashdump created on - Time of failure.

	Memory allocated - The total number of bytes allocated, equivalent to
c:memory(total).

	Memory maximum - The maximum number of bytes that has been allocated
during the lifetime of the originating node. This is only shown if the Erlang
runtime system is run instrumented.

	Atoms - If available in the dump, this is the total number of atoms in
the atom table. If the size of the atom table is unavailable, the number of
atoms visible in the dump is displayed.

	Processes - The number of processes visible in the dump.

	ETS tables - The number of ETS tables visible in the dump.

	Funs - The number of funs visible in the dump.

For details, see General Information in
section "How to Interpret the Erlang Crash Dumps" in ERTS.

Processes Tab
Tab Processes shows a list of all processes found in the crashdump, including
brief information about each process. By default, the processes are sorted by
their pids. To sort by another topic, click the desired column heading.
Column Memory shows the 'Memory' field that was added to crashdumps in
Erlang/OTP R16B01. This is the total amount of memory used by the process. For
crashdumps from earlier releases, this column shows the 'Stack+heap' field. The
value is always in bytes.
To view detailed information about a specific process, double- click the row in
the list, or right-click the row and select Properties for <pid>.
For details, see Process Information in
section "How to Interpret the Erlang Crash Dumps" in ERTS.

Ports Tab
Tab Ports is similar to the Processes tab, except it lists all ports found
in the crashdump.
To view more details about a specific port, double-click the row or right-click
it and select Properties for <port>. From the right-click menu, you can also
select Properties for <pid>, where <pid> is the process connected to the
port.
For details, see Port Information in section
"How to Interpret the Erlang Crash Dumps" in ERTS.

ETS Tables Tab
Tab ETS Tables shows all ETS table information found in the dump. Id is the
same as the 'Table' field in the raw crashdump. Memory is the 'Words' field
from the raw crashdump translated into bytes. For tree tables, there is no value
in the 'Objects' field.
To open the detailed information page about the table, double- click, or
right-click the row and select Properties for 'Identifier'.
To open the detailed information page about the owner process of an ETS table,
right-click the row and select Properties for <pid>.
For details, see ETS Tables in section "How
to Interpret the Erlang Crash Dumps" in ERTS.

Timers Tab
Tab Timers shows all timer information found in the dump.
To open the detailed information page about the owner process of a timer,
right-click the row and select Properties for <pid>.
Double-clicking a row in the Timers tab has no effect.
For details, see Timers in section "How to
Interpret the Erlang Crash Dumps" in ERTS.

Schedulers Tab
Tab Schedulers shows all scheduler information found in the dump.
To open the detailed information page about the scheduler, double-click, or
right-click the row and select Properties for 'Identifier'.
For details, see Scheduler Information in
section "How to Interpret the Erlang Crash Dumps" in ERTS.

Funs Tab
Tab Funs shows all fun information found in the dump.
To open the detailed information page about the module to which the fun belongs,
right-click the row and select Properties for <mod>.
Double-clicking a row in the Funs tab has no effect.
For details, see Fun Information in section "How
to Interpret the Erlang Crash Dumps" in ERTS.

Atoms Tab
Tab Atoms lists all atoms found in the dump. By default the atoms are sorted
in creation order from first to last. This is opposite of the raw crashdump
where atoms are listed from last to first, meaning that if the dump was
truncated in the middle of the atom list, only the last created atoms are
visible in the Atoms tab.
For details, see Atoms in section "How to
Interpret the Erlang Crash Dumps" in ERTS.

Nodes Tab
Tab Nodes shows a list of all external Erlang nodes that are referenced from
the crashdump.
If the page is empty, it means either of the following:
	The crashed node is not distributed.
	The crashed node is distributed but has no references to other nodes.
	The dump is truncated.

If the node is distributed, all referenced nodes are visible. Column Connection
type shows if the node is visible, hidden, or not connected. Visible nodes are
alive nodes with a living connection to the originating node. Hidden nodes are
the same as visible nodes, except they are started with flag -hidden. Not
connected nodes are nodes that are not connected to the originating node
anymore, but references (that is, process or port identifiers) exist.
To see more detailed information about a node, double-click the row, or
right-click the row and select Properties for node <node>. From the
right-click menu, you can also select Properties for <port>, to open the
detailed information window for the controlling port.
In the detailed information window for a node, any existing links and monitors
between processes on the originating node and the connected node are displayed.
Extra Info can contain debug information (that is, special information written
if the emulator is debug-compiled) or error information.
For details, see
Distribution Information in section
"How to Interpret the Erlang Crash Dumps" in ERTS.

Modules Tab
Tab Modules lists all modules loaded on the originating node, and the current
code size. If old code exists, the old size is also shown.
To view detailed information about a specific module, double- click the row, or
right-click it and select Properties for <mod>.
For details, see
Loaded Module Information in section
"How to Interpret the Erlang Crash Dumps" in ERTS.

Memory Tab
Tab Memory shows memory and allocator information. From the left-hand menu you
can select the following:
	Memory - See Memory Information in
section "How to Interpret the Erlang Crash Dumps" in ERTS.

	Allocator Summary - This page presents a summary of values from all
allocators underneath it.

	<Allocator> - One entry per allocator. See
Allocator in section "How to Interpret the
Erlang Crash Dumps" in ERTS.

	Allocated Areas - See
Allocated Areas in section "How to
Interpret the Erlang Crash Dumps" in ERTS.

Internal Tables Tab
On tab Internal Tables you can from the left-hand menu select Hash Tables,
Index Tables, or Internal ETS Tables.
For details, see
Internal Table Information in section
"How to Interpret the Erlang Crash Dumps" in ERTS.

 cdv - observer v2.18.1

 cdv

Script to start the Crashdump Viewer from the OS command line.
Description
The cdv shell script is located in directory priv of the Observer
application. The script is used for starting the Crashdump Viewer tool from the
OS command line.
For Windows users, cdv.bat is found in the same location.
cdv [file]
Argument file is optional. If not specified, a file dialog is displayed,
allowing you to select a crashdump from the file system.

 crashdump_viewer - observer v2.18.1

crashdump_viewer

A WxWidgets based tool for browsing Erlang crashdumps.
For details about how to get started with the Crashdump Viewer, see the
User's Guide.

 Summary

 Functions

 start()

 Starts the Crashdump Viewer GUI and opens a file dialog where the
crashdump can be selected.

 start(File)

 Starts the Crashdump Viewer GUI and loads the specified crashdump.

 stop()

 Terminates the Crashdump Viewer and closes all GUI windows.

 Functions

 start()

 -spec start() -> ok | {error, term()}.

Starts the Crashdump Viewer GUI and opens a file dialog where the
crashdump can be selected.

 start(File)

 (since OTP 17.0)

 -spec start(File :: string()) -> ok | {error, term()}.

Starts the Crashdump Viewer GUI and loads the specified crashdump.

 stop()

 -spec stop() -> ok.

Terminates the Crashdump Viewer and closes all GUI windows.

 etop - observer v2.18.1

etop

Erlang Top is a tool for presenting information about Erlang processes similar
to the information presented by "top" in UNIX.
Start Erlang Top with the provided scripts etop. This starts a hidden Erlang
node that connects to the node to be measured. The measured node is specified
with option -node. If the measured node has a different cookie than the
default cookie for the user who invokes the script, the cookie must be
explicitly specified with option -setcookie.
Under Windows, batch file etop.bat can be used.
When executing the etop script, configuration parameters can be specified as
command-line options, for example,
etop -node testnode@myhost -setcookie MyCookie. The following configuration
parameters exist for the tool:
	node - The measured node.
Value: atom/0
Mandatory

	setcookie - Cookie to use for the etop node. Must be same as the
cookie on the measured node.
Value: atom/0

	lines - Number of lines (processes) to display.
Value: integer/0
Default: 10

	interval - Time interval (in seconds) between each update of the
display.
Value: integer/0
Default: 5

	accumulate - If true, the execution time and reductions are
accumulated.
Value: boolean/0
Default: false

	sort - Identifies what information to sort by.
Value: runtime | reductions | memory | msg_q
Default: runtime (reductions if tracing=off)

	tracing - etop uses the Erlang trace facility, and thus no other
tracing is possible on the measured node while etop is running, unless this
option is set to off. Also helpful if the etop tracing causes too high
load on the measured node. With tracing off, runtime is not measured.
Value: on | off
Default: on

For details about Erlang Top, see the User's Guide.

 Summary

 Functions

 config(Key, Value)

 Changes the configuration parameters of the tool during runtime. Allowed
parameters are lines, interval, accumulate, and sort.

 dump(File)

 Dumps the current display to a text file.

 help()

 Displays the help of etop and its options.

 start()

 Starts etop. Notice that etop is preferably started with the etop script.

 start(Options)

 Starts etop. To view the possible options, use help/0.

 stop()

 Terminates etop.

 Functions

 config(Key, Value)

 -spec config(Key, Value) -> ok | {error, Reason}
 when Key :: lines | interval | accumulate | sort, Value :: term(), Reason :: term().

Changes the configuration parameters of the tool during runtime. Allowed
parameters are lines, interval, accumulate, and sort.

 dump(File)

 -spec dump(File) -> ok | {error, Reason} when File :: file:filename_all(), Reason :: term().

Dumps the current display to a text file.

 help()

 (since OTP R15B01)

 -spec help() -> ok.

Displays the help of etop and its options.

 start()

 (since OTP R15B01)

 -spec start() -> ok.

Starts etop. Notice that etop is preferably started with the etop script.

 start(Options)

 (since OTP R15B01)

 -spec start(Options) -> ok when Options :: [{Key, Value}], Key :: atom(), Value :: term().

Starts etop. To view the possible options, use help/0.

 stop()

 -spec stop() -> stop | not_started.

Terminates etop.

 observer - observer v2.18.1

observer

A GUI tool for observing an Erlang system.
Observer is a graphical tool for observing the characteristics of Erlang
systems. The tool Observer displays system information, application supervisor
trees, process information, ETS tables, Mnesia tables, and contains a front end
for Erlang tracing with module ttb.
For details about how to get started, see the User's Guide.

 Summary

 Functions

 start()

 Starts the Observer GUI. To stop the tool, close the window or call stop/0.

 start(Node)

 Starts the Observer GUI and tries to connect it to Node.

 start_and_wait()

 Starts the Observer GUI and only return when it is either stopped or the window
is closed

 start_and_wait(Node)

 Starts the Observer GUI and only return when it is either stopped or the window
is closed, connects it directly to Node like start/1.

 stop()

 Stops the Observer GUI.

 Functions

 start()

 (since OTP R15B)

 -spec start() -> ok | {error, term()}.

Starts the Observer GUI. To stop the tool, close the window or call stop/0.

 start(Node)

 (since OTP 26.0)

 -spec start(Node :: node() | [node()]) -> ok | {error, term()}.

Starts the Observer GUI and tries to connect it to Node.

 start_and_wait()

 (since OTP 26.0)

 -spec start_and_wait() -> ok.

Starts the Observer GUI and only return when it is either stopped or the window
is closed

 start_and_wait(Node)

 (since OTP 26.0)

 -spec start_and_wait(Node :: node() | [node()]) -> ok.

Starts the Observer GUI and only return when it is either stopped or the window
is closed, connects it directly to Node like start/1.

 stop()

 (since OTP 26.0)

 -spec stop() -> ok.

Stops the Observer GUI.

 ttb - observer v2.18.1

ttb

A base for building trace tools for distributed systems.
The Trace Tool Builder, ttb, is a base for building trace tools for
distributed systems.
When using ttb, do not use module dbg in application Runtime_Tools in
parallel.

 Summary

 Types

 format_fun()

 format_handler()

 format_opt()

 format_opts()

 item()

 match_desc()

 match_spec()

 mfas()

 nodes()

 stop_opt()

 stop_opts()

 tp_arity()

 tp_function()

 tp_module()

 trace_flag()

 Functions

 ctp()

 Equivalent to tpl/4.

 ctp(A)

 Equivalent to tpl/4.

 ctp(Module, Function)

 Equivalent to tpl/4.

 ctp(Module, Function, Arity)

 Equivalent to tpl/4.

 ctpe(Event)

 Equivalent to tpl/4.

 ctpg()

 Equivalent to tpl/4.

 ctpg(A)

 Equivalent to tpl/4.

 ctpg(Module, Function)

 Equivalent to tpl/4.

 ctpg(Module, Function, Arity)

 Equivalent to tpl/4.

 ctpl()

 Equivalent to tpl/4.

 ctpl(A)

 Equivalent to tpl/4.

 ctpl(Module, Function)

 Equivalent to tpl/4.

 ctpl(Module, Function, Arity)

 Equivalent to tpl/4.

 format(Files)

 Equivalent to format(Files, []).

 format(Files, Options)

 Reads the specified binary trace log(s). The logs are processed in the order of
their time stamps as long as option disable_sort is not specified.

 get_et_handler()

 Returns the et handler, which can be used with format/2 or
tracer/2.

 list_config(ConfigFile)

 Lists all entries in the specified configuration file.

 list_history()

 All calls to ttb is stored in the history. This function returns the current
content of the history. Any entry can be reexecuted with
run_history/1 or stored in a configuration file with
write_config/2,3.

 p(Item, Flags)

 Sets the specified trace flags on the specified processes or ports. Flag
timestamp is always turned on.

 run_config(ConfigFile)

 Executes all entries in the specified configuration file. Notice that the
history of the last trace is always available in file ttb_last_config.

 run_config(ConfigFile, NumList)

 Executes selected entries from the specified configuration file. NumList is a
list of integers pointing out the entries to be executed.

 run_history(Entries)

 Executes the specified entry or entries from the history list. To list history,
use list_history/0.

 seq_trigger_ms()

 Equivalent to seq_trigger_ms(all).

 seq_trigger_ms(Flags)

 A match specification can turn on or off sequential tracing. This function
returns a match specification, which turns on sequential tracing with the
specified Flags.

 start_trace(Nodes, Patterns, FlagSpec, TracerOpts)

 This function is a shortcut allowing to start a trace with one command. Each
tuple in Patterns is converted to a list, which in turn is passed to
ttb:tpl/2,3,4.

 stop()

 Equivalent to stop([]).

 stop(Opts)

 Stops tracing on all nodes. Logs and trace information files are sent to the
trace control node and stored in a directory named
ttb_upload_FileName-Timestamp, where Filename is the one provided with
{file, File} during trace setup and Timestamp is of the form
yyyymmdd-hhmmss. Even logs from nodes on the same machine as the trace control
node are moved to this directory. The history list is saved to a file named
ttb_last_config for further reference (as it is no longer accessible through
history and configuration management functions, like ttb:list_history/0).

 tp(A, B)

 Equivalent to tpl/4.

 tp(A, B, C)

 Equivalent to tpl/4.

 tp(A, B, C, D)

 Equivalent to tpl/4.

 tpe(Event, MatchSpec)

 Equivalent to tpl/4.

 tpl(A, B)

 Equivalent to tpl/4.

 tpl(A, B, C)

 Equivalent to tpl/4.

 tpl(Module, Function, Arity, MatchSpec)

 These functions are to be used with trace flag call, send, and 'receive'
for setting and clearing trace patterns.

 tracer()

 Equivalent to tracer(node()).

 tracer(Nodes)

 Handy shortcuts for common tracing settings.

 tracer(Nodes, Opts)

 Starts a file trace port on all specified nodes and points the system tracer for
sequential tracing to the same port.

 write_config(ConfigFile, Config)

 Equivalent to write_config(ConfigFile, Config, []).

 write_config(ConfigFile, Config, Opts)

 Creates or extends a configuration file, which can be used for restoring a
specific configuration later.

 write_trace_info(Key, Info)

 File .ti contains {Key,ValueList} tuples. This function adds Data to the
ValueList associated with Key. All information written with this function is
included in the call to the format handler.

 Types

 format_fun()

 (not exported)

 -type format_fun() ::
 fun((Fd :: standard_io | file:fd(),
 Trace :: tuple(),
 TraceInfo :: [{atom(), list()}],
 State :: term()) ->
 NewState :: term()).

 format_handler()

 (not exported)

 -type format_handler() :: {format_fun(), InitialState :: term()}.

 format_opt()

 (not exported)

 -type format_opt() :: {out, standard_io | file:filename()} | {handler, format_handler()} | disable_sort.

 format_opts()

 (not exported)

 -type format_opts() :: format_opt() | [format_opt()].

 item()

 (not exported)

 -type item() ::
 pid() |
 port() |
 atom() |
 {global, term()} |
 all | processes | ports | existing | existing_processes | existing_ports | new |
 new_processes | new_ports.

 match_desc()

 (not exported)

 -type match_desc() :: [{matched, node(), integer()} | {matched, node(), 0, term()} | {saved, integer()}].

 match_spec()

 (not exported)

 -type match_spec() :: pos_integer() | x | c | cx | [] | dbg:match_spec().

 mfas()

 (not exported)

 -type mfas() :: {Module :: atom(), Function :: atom(), [term()]}.

 nodes()

 (not exported)

 -type nodes() :: node() | [node()] | all.

 stop_opt()

 (not exported)

 -type stop_opt() ::
 nofetch | {fetch_dir, file:filename()} | format | {format, format_opts()} | return_fetch_dir.

 stop_opts()

 (not exported)

 -type stop_opts() :: stop_opt() | [stop_opt()].

 tp_arity()

 (not exported)

 -type tp_arity() :: arity() | '_'.

 tp_function()

 (not exported)

 -type tp_function() :: atom() | '_'.

 tp_module()

 (not exported)

 -type tp_module() :: module() | '_'.

 trace_flag()

 (not exported)

 -type trace_flag() ::
 s | r | m | c | p | sos | sol | sofs | all | clear | send | 'receive' | procs | ports | call |
 arity | return_to | silent | running | exiting | running_procs | running_ports |
 garbage_collection | timestamp | cpu_timestamp | monotonic_timestamp |
 strict_monotonic_timestamp | set_on_spawn | set_on_first_spawn | set_on_link |
 set_on_first_link |
 {tracer, pid() | port()} |
 {tracer, module(), term()}.

 Functions

 ctp()

 -spec ctp() -> {ok, MatchDesc :: match_desc()} | {error, term()}.

Equivalent to tpl/4.

 ctp(A)

 -spec ctp(Module | {Module, Function, Arity}) -> {ok, MatchDesc :: match_desc()} | {error, term()}
 when Module :: tp_module(), Function :: tp_function(), Arity :: tp_arity().

Equivalent to tpl/4.

 ctp(Module, Function)

 -spec ctp(Module :: tp_module(), Function :: tp_function()) ->
 {ok, MatchDesc :: match_desc()} | {error, term()}.

Equivalent to tpl/4.

 ctp(Module, Function, Arity)

 -spec ctp(Module :: tp_module(), Function :: tp_function(), Arity :: tp_arity()) ->
 {ok, MatchDesc :: match_desc()} | {error, term()}.

Equivalent to tpl/4.

 ctpe(Event)

 (since OTP 19.0)

 -spec ctpe(Event) -> {ok, MatchDesc} | {error, term()}
 when
 Event :: send | 'receive',
 MatchDesc :: [MatchNum],
 MatchNum :: {matched, node(), 1} | {matched, node(), 0, RPCError :: term()}.

Equivalent to tpl/4.

 ctpg()

 -spec ctpg() -> {ok, MatchDesc :: match_desc()} | {error, term()}.

Equivalent to tpl/4.

 ctpg(A)

 -spec ctpg(Module | {Module, Function :: tp_function(), Arity :: tp_arity()}) ->
 {ok, MatchDesc :: term()} | {error, term()}
 when Module :: tp_module().

Equivalent to tpl/4.

 ctpg(Module, Function)

 -spec ctpg(Module :: tp_module(), Function :: tp_function()) ->
 {ok, MatchDesc :: match_desc()} | {error, term()}.

Equivalent to tpl/4.

 ctpg(Module, Function, Arity)

 -spec ctpg(Module :: tp_module(), Function :: tp_function(), Arity :: tp_arity()) ->
 {ok, MatchDesc :: match_desc()} | {error, term()}.

Equivalent to tpl/4.

 ctpl()

 -spec ctpl() -> {ok, MatchDesc :: match_desc()} | {error, term()}.

Equivalent to tpl/4.

 ctpl(A)

 -spec ctpl(Module | {Module, Function :: tp_function(), Arity :: tp_arity()}) ->
 {ok, MatchDesc :: term()} | {error, term()}
 when Module :: tp_module().

Equivalent to tpl/4.

 ctpl(Module, Function)

 -spec ctpl(Module :: tp_module(), Function :: tp_function()) ->
 {ok, MatchDesc :: match_desc()} | {error, term()}.

Equivalent to tpl/4.

 ctpl(Module, Function, Arity)

 -spec ctpl(Module :: tp_module(), Function :: tp_function(), Arity :: tp_arity()) ->
 {ok, MatchDesc :: match_desc()} | {error, term()}.

Equivalent to tpl/4.

 format(Files)

 -spec format(Files) -> ok | {error, term()} when Files :: [file:filename()] | file:filename().

Equivalent to format(Files, []).

 format(Files, Options)

 -spec format(Files, Options) -> ok | {error, term()}
 when Files :: [file:filename()] | file:filename(), Options :: format_opts().

Reads the specified binary trace log(s). The logs are processed in the order of
their time stamps as long as option disable_sort is not specified.
If FormatHandler = {Function,InitialState}, Function is called for each
trace message.
If FormatHandler = get_et_handler(), et_viewer in application ET is used for
presenting the trace log graphically. ttb provides a few different filters
that can be selected from menu Filters and scaling in the et_viewer.
If FormatHandler is not specified, a default handler is used presenting each
trace message as a text line.
The state returned from each call of Function is passed to the next call, even
if the next call is to format a message from another log file.
If Out is specified, FormatHandler gets the file descriptor to Out as the
first parameter.
Out is ignored if the et format handler is used.
Wrap logs can be formatted one by one or all at once. To format one of the wrap
logs in a set, specify the exact file name. To format the whole set of wrap
logs, specify the name with * instead of the wrap count. For examples, see the
User's Guide.

 get_et_handler()

 (since OTP R15B)

 -spec get_et_handler() -> {Fun, InitState} when Fun :: fun(), InitState :: term().

Returns the et handler, which can be used with format/2 or
tracer/2.
Example: ttb:format(Dir, [{handler, ttb:get_et_handler()}]).

 list_config(ConfigFile)

 -spec list_config(ConfigFile) -> Result
 when
 ConfigFile :: file:filename(),
 Result :: Config | {error, term()},
 Config :: [{integer(), mfas()}].

Lists all entries in the specified configuration file.

 list_history()

 -spec list_history() -> History | {error, term()}
 when History :: [{N :: integer(), Func :: function(), Args :: integer()}].

All calls to ttb is stored in the history. This function returns the current
content of the history. Any entry can be reexecuted with
run_history/1 or stored in a configuration file with
write_config/2,3.

 p(Item, Flags)

 -spec p(Item, Flags) -> Result
 when
 Item :: item(),
 Flags :: trace_flag() | [trace_flag()],
 Result :: {ok, [{item(), match_desc()}]}.

Sets the specified trace flags on the specified processes or ports. Flag
timestamp is always turned on.
See the Reference Manual for module dbg for the possible trace flags.
Parameter MatchDesc is the same as returned from dbg:p/2.
Processes can be specified as registered names, globally registered names, or
process identifiers. Ports can be specified as registered names or port
identifiers. If a registered name is specified, the flags are set on
processes/ports with this name on all active nodes.
Issuing this command starts the timer for this trace if option timer is
specified with tracer/2.

 run_config(ConfigFile)

 -spec run_config(ConfigFile) -> Result
 when ConfigFile :: file:filename(), Result :: ok | {error, term()}.

Executes all entries in the specified configuration file. Notice that the
history of the last trace is always available in file ttb_last_config.

 run_config(ConfigFile, NumList)

 -spec run_config(ConfigFile, NumList) -> Result
 when
 ConfigFile :: file:filename(),
 NumList :: [integer()],
 Result :: ok | {error, term()}.

Executes selected entries from the specified configuration file. NumList is a
list of integers pointing out the entries to be executed.
To list the contents of a configuration file, use
list_config/1.
Notice that the history of the last trace is always available in file
ttb_last_config.

 run_history(Entries)

 -spec run_history(Entries) -> ok | {error, term()}
 when Entries :: [Entry] | Entry | all | all_silent, Entry :: integer().

Executes the specified entry or entries from the history list. To list history,
use list_history/0.

 seq_trigger_ms()

 -spec seq_trigger_ms() -> match_spec().

Equivalent to seq_trigger_ms(all).

 seq_trigger_ms(Flags)

 -spec seq_trigger_ms(Flags) -> match_spec()
 when Flags :: all | SeqTraceFlag | [SeqTraceFlag], SeqTraceFlag :: atom().

A match specification can turn on or off sequential tracing. This function
returns a match specification, which turns on sequential tracing with the
specified Flags.
This match specification can be specified as the last argument to tp or tpl.
The activated Item then becomes a trigger for sequential tracing. This means
that if the item is called on a process with trace flag call set, the process
is "contaminated" with token seq_trace.
If Flags = all, all possible flags are set.
The possible values for SeqTraceFlag are available in seq_trace.
For a description of the match_spec() syntax, see section
Match Specifications in Erlang in ERTS, which
explains the general match specification "language".
Note
The system tracer for sequential tracing is automatically initiated by ttb
when a trace port is started with ttb:tracer/0,1,2.
An example of how to use function seq_trigger_ms/0,1 follows:
(tiger@durin)5> ttb:tracer().
{ok,[tiger@durin]}
(tiger@durin)6> ttb:p(all,call).
{ok,{[all],[call]}}
(tiger@durin)7> ttb:tp(mod,func,ttb:seq_trigger_ms()).
{ok,[{matched,1},{saved,1}]}
(tiger@durin)8>
Whenever mod:func(...) is called after this, token seq_trace is set on the
executing process.

 start_trace(Nodes, Patterns, FlagSpec, TracerOpts)

 (since OTP R15B)

 -spec start_trace(Nodes, Patterns, FlagSpec, TracerOpts) -> Result
 when
 Nodes :: nodes(),
 Patterns :: [tuple()],
 FlagSpec :: {item(), trace_flag() | [trace_flag()]},
 TracerOpts :: term(),
 Result :: {ok, [{item(), match_desc()}]}.

This function is a shortcut allowing to start a trace with one command. Each
tuple in Patterns is converted to a list, which in turn is passed to
ttb:tpl/2,3,4.
The call:
> ttb:start_trace([Node, OtherNode],
 [{mod, foo, []}, {mod, bar, 2}],
 {all, call},
 [{file, File}, {handler,{fun myhandler/4, S}}]).
is equivalent to:
> ttb:start_trace([Node, OtherNode],
 [{file, File}, {handler,{fun myhandler/4, S}}]),
ttb:tpl(mod, foo, []),
ttb:tpl(mod, bar, 2, []),
ttb:p(all, call).

 stop()

 -spec stop() -> stopped | {stopped, Dir :: file:filename()}.

Equivalent to stop([]).

 stop(Opts)

 -spec stop(Opts :: stop_opts()) -> stopped | {stopped, Dir :: file:filename()}.

Stops tracing on all nodes. Logs and trace information files are sent to the
trace control node and stored in a directory named
ttb_upload_FileName-Timestamp, where Filename is the one provided with
{file, File} during trace setup and Timestamp is of the form
yyyymmdd-hhmmss. Even logs from nodes on the same machine as the trace control
node are moved to this directory. The history list is saved to a file named
ttb_last_config for further reference (as it is no longer accessible through
history and configuration management functions, like ttb:list_history/0).
Options:
	nofetch - Indicates that trace logs are not to be collected after
tracing is stopped.

	{fetch, Dir} - Allows specification of the directory to fetch the data
to. If the directory already exists, an error is thrown.

	format - Indicates the trace logs to be formatted after tracing is
stopped. All logs in the fetch directory are merged.

	return_fetch_dir - Indicates the return value to be {stopped, Dir} and
not just stopped. This implies fetch.

 tp(A, B)

 -spec tp(tp_module(), match_spec()) -> {ok, match_desc()} | {error, term()}.

Equivalent to tpl/4.

 tp(A, B, C)

 -spec tp(tp_module(), tp_function(), match_spec()) -> {ok, match_desc()} | {error, term()}.

Equivalent to tpl/4.

 tp(A, B, C, D)

 -spec tp(tp_module(), tp_function(), tp_arity(), match_spec()) -> {ok, match_desc()} | {error, term()}.

Equivalent to tpl/4.

 tpe(Event, MatchSpec)

 (since OTP 19.0)

 -spec tpe(Event, MatchSpec) -> {ok, MatchDesc :: match_desc()} | {error, term()}
 when Event :: send | 'receive', MatchSpec :: match_spec().

Equivalent to tpl/4.

 tpl(A, B)

 -spec tpl(tp_module(), match_spec()) -> {ok, match_desc()} | {error, term()}.

Equivalent to tpl/4.

 tpl(A, B, C)

 -spec tpl(tp_module(), tp_function(), match_spec()) -> {ok, match_desc()} | {error, term()}.

Equivalent to tpl/4.

 tpl(Module, Function, Arity, MatchSpec)

 -spec tpl(tp_module(), tp_function(), tp_arity(), match_spec()) -> {ok, match_desc()} | {error, term()}.

These functions are to be used with trace flag call, send, and 'receive'
for setting and clearing trace patterns.
When trace flag call is set on a process, function calls are traced on that
process if a trace pattern is set for the called function.
The send and 'receive' flags enable tracing of all messages sent and
received by the process/port. Trace patterns set with tpe may limit traced
messages based on the message content, the sender, and/or the receiver.
Trace patterns specify how to trace a function or a message by using match
specifications. Match specifications are described in the
ERTS User's Guide.
These functions are equivalent to the corresponding functions in module dbg,
but all calls are stored in the history. The history buffer makes it easy to
create configuration files; the same trace environment can be set up many times,
for example, to compare two test runs. It also reduces the amount of typing when
using ttb from the Erlang shell.
	tp - Sets trace patterns on global function calls.

	tpl - Sets trace patterns on local and global function calls.

	tpe - Sets trace patterns on messages.

	ctp - Clears trace patterns on local and global function calls.

	ctpl - Clears trace patterns on local function calls.

	ctpg - Clears trace patterns on global function calls.

	ctpe - Clears trace patterns on messages.

With tp and tpl, one of the match specification shortcuts can be used (for
example, ttb:tp(foo_module, caller)).
The shortcuts are as follows:
	return - for [{'_',[],[{return_trace}]}] (report the return value from a
traced function)
	caller - for [{'_',[],[{message,{caller}}]}] (report the calling
function)
	{codestr, Str} - for dbg:fun2ms/1 arguments passed as strings (example:
"fun(_) -> return_trace() end")

 tracer()

 -spec tracer() -> {ok, [node()]} | {error, term()}.

Equivalent to tracer(node()).

 tracer(Nodes)

 -spec tracer(shell | dbg | nodes()) -> {ok, [node()]} | {error, term()}.

Handy shortcuts for common tracing settings.
shell is equivalent to
tracer(node(),[{file, {local, "ttb"}}, shell]).
dbg is equivalent to tracer(node(),[{shell, only}]).
Nodes is equivalent to tracer(Nodes,[]).

 tracer(Nodes, Opts)

 -spec tracer(Nodes, Opts) -> Result
 when
 Nodes :: nodes(),
 Opts :: Opt | [Opt],
 Opt ::
 {file, Client} |
 {handler, format_handler()} |
 {process_info, boolean()} |
 shell |
 {shell, ShellSpec} |
 {timer, TimerSpec} |
 {overload_check, {MSec, Module, Function}} |
 {flush, MSec} |
 resume |
 {resume, MSec} |
 {queue_size, non_neg_integer()},
 TimerSpec :: MSec | {MSec, stop_opts()},
 MSec :: timer:time(),
 Module :: atom(),
 Function :: atom(),
 Client :: File | {local, File},
 File :: file:filename() | Wrap,
 Wrap ::
 {wrap, file:filename()} |
 {wrap, file:filename(), Size :: integer(), Count :: integer()},
 ShellSpec :: true | false | only,
 Result :: {ok, [node()]} | {error, term()}.

Starts a file trace port on all specified nodes and points the system tracer for
sequential tracing to the same port.
Options:
	Filename - The specified Filename is prefixed with the node name.
Default Filename is ttb.

	File={wrap,Filename,Size,Count} - Can be used if the size of the trace
logs must be limited. Default values are Size=128*1024 and Count=8.

	Client - When tracing diskless nodes, ttb must be started from an
external "trace control node" with disk access, and Client must be
{local, File}. All trace information is then sent to the trace control node
where it is written to file.

	queue_size - When tracing to shell or {local,File}, an ip trace driver
is used internally. The ip trace driver has a queue of maximum QueueSize
messages waiting to be delivered. If the driver cannot deliver messages as
fast as they are produced, the queue size might be exceeded and messages are
dropped. This parameter is optional, and is only useful if many {drop,N}
trace messages are received by the trace handler. It has no meaning if shell
or {local,File} is not used. See dbg:trace_port/2 for more information
about the ip trace driver.

	process_info - Indicates if process information is to be collected. If
PI = true (which is default), each process identifier Pid is replaced by a
tuple {Pid,ProcessInfo,Node}, where ProcessInfo is the registered process
name, its globally registered name, or its initial function. To turn off this
functionality, set PI = false.

	{shell, ShellSpec} - Indicates that trace messages are to be printed on
the console as they are received by the tracing process. This implies trace
client {local, File}. If ShellSpec is only (instead of true), no trace
logs are stored.

	shell - Shortcut for {shell, true}.

	timer - Indicates that the trace is to be automatically stopped after
MSec milliseconds. StopOpts are passed to command ttb:stop/1 if
specified (default is []). Notice that the timing is approximate, as delays
related to network communication are always present. The timer starts after
ttb:p/2 is issued, so you can set up your trace patterns before.

	overload_check - Allows to enable overload checking on the nodes under
trace. Module:Function(check) is performed each MSec millisecond. If the
check returns true, the tracing is disabled on a specified node.
Module:Function must be able to handle at least three atoms: init,
check, and stop. init and stop allows you to initialize and clean up
the check environment.
When a node gets overloaded, it is not possible to issue ttb:p/2 or any
command from the ttb:tp/2,3,4 family, as it would lead to inconsistent
tracing state (different trace specifications on different nodes).

	flush - Periodically flushes all file trace port clients (see
dbg:flush_trace_port/1). When enabled, the buffers are freed each MSec
millisecond. This option is not allowed with {file, {local, File}} tracing.

	{resume, FetchTimeout} - Enables the autoresume feature. When enabled,
remote nodes try to reconnect to the controlling node if they are restarted.
The feature requires application Runtime_Tools to be started (so it has to be
present in the .boot scripts if the traced nodes run with embedded Erlang).
If this is not possible, resume can be performed manually by starting
Runtime_Tools remotely using rpc:call/4.
ttb tries to fetch all logs from a reconnecting node before reinitializing
the trace. This must finish within FetchTimeout milliseconds or is aborted.
By default, autostart information is stored in a file named
ttb_autostart.bin on each node. If this is not desired (for example, on
diskless nodes), a custom module handling autostart information storage and
retrieval can be provided by specifying environment variable
ttb_autostart_module for the application Runtime_Tools. The module must
respond to the following API:
	write_config(Data) -> ok - Stores the provided data for further
retrieval. It is important to realize that the data storage used must not be
affected by the node crash.

	read_config() -> {ok, Data} | {error, Error} - Retrieves configuration
stored with write_config(Data).

	delete_config() -> ok - Deletes configuration stored with
write_config(Data). Notice that after this call any subsequent calls to
read_config must return {error, Error}.

resume implies the default FetchTimeout, which is 10 seconds

 write_config(ConfigFile, Config)

 -spec write_config(ConfigFile, Config) -> Result
 when
 ConfigFile :: file:filename(),
 Config :: all | [integer()] | [mfas()],
 Result :: ok | {error, term()}.

Equivalent to write_config(ConfigFile, Config, []).

 write_config(ConfigFile, Config, Opts)

 -spec write_config(ConfigFile, Config, Opts) -> Result
 when
 ConfigFile :: file:filename(),
 Config :: all | [integer()] | [mfas()],
 Opts :: Opt | [Opt],
 Opt :: append,
 Result :: ok | {error, term()}.

Creates or extends a configuration file, which can be used for restoring a
specific configuration later.
The contents of the configuration file can either be fetched from the history or
specified directly as a list of {Mod,Func,Args}.
If the complete history is to be stored in the configuration file, Config must
be all. If only a selected number of entries from the history are to be
stored, Config must be a list of integers pointing out the entries to be
stored.
If Opts is not specified or if it is [], ConfigFile is deleted and a new
file is created. If Opts = [append], ConfigFile is not deleted. The new
information is appended at the end of the file.

 write_trace_info(Key, Info)

 -spec write_trace_info(Key :: term(), Info) -> ok
 when Info :: Data :: term() | fun(() -> Data :: term()).

File .ti contains {Key,ValueList} tuples. This function adds Data to the
ValueList associated with Key. All information written with this function is
included in the call to the format handler.

OEBPS/dist/epub-4WIP524F.js
