

 snmp

 v5.19.1

 [image: Logo]

 Table of contents

 	SNMP Application

 	SNMP Release Notes

 	User's Guides

 	SNMP Introduction

 	Agent Functional Description

 	Manager Functional Description

 	The MIB Compiler

 	Running the application

 	Definition of Agent Configuration Files

 	Definition of Manager Configuration Files

 	Agent Implementation Example

 	Manager Implementation Example

 	Instrumentation Functions

 	Definition of Instrumentation Functions

 	Definition of Agent Net if

 	Definition of Manager Net if

 	Audit Trail Log

 	Advanced Agent Topics

 	SNMP Appendix A

 	SNMP Appendix B

 	SNMP Appendix C

 	Command Line Tools

 	snmpc

 	
 Modules

 	snmp

 	snmp_community_mib

 	snmp_framework_mib

 	snmp_generic

 	snmp_index

 	snmp_notification_mib

 	snmp_pdus

 	snmp_standard_mib

 	snmp_target_mib

 	snmp_user_based_sm_mib

 	snmp_view_based_acm_mib

 	snmpa

 	snmpa_conf

 	snmpa_discovery_handler

 	snmpa_error

 	snmpa_error_io

 	snmpa_error_logger

 	snmpa_error_report

 	snmpa_local_db

 	snmpa_mib_data

 	snmpa_mib_storage

 	snmpa_mpd

 	snmpa_network_interface

 	snmpa_network_interface_filter

 	snmpa_notification_delivery_info_receiver

 	snmpa_notification_filter

 	snmpa_supervisor

 	snmpc

 	snmpm

 	snmpm_conf

 	snmpm_mpd

 	snmpm_network_interface

 	snmpm_network_interface_filter

 	snmpm_user

 SNMP Application

Description
This chapter describes the snmp application in OTP. The SNMP application
provides the following services:
	a multilingual extensible SNMP agent
	a SNMP manager
	a MIB compiler

Configuration
The following configuration parameters are defined for the SNMP application.
Refer to application(3) for more information about configuration parameters.
The snmp part of the config file specifying the configuration parameters is
basically the following tuple:
 {snmp, snmp_components_config()}
A minimal config file for starting a node with both a manager and an agent:
 [{snmp,
 [{agent, [{db_dir, "/tmp/snmp/agent/db"},
 {config, [{dir, "/tmp/snmp/agent/conf"}]}]},
 {manager, [{config, [{dir, "/tmp/snmp/manager/conf"},
 {db_dir, "/tmp/snmp/manager/db"}]}]}]}
]
 }
].
Each snmp component has its own set of configuration parameters, even though
some of the types are common to both components.
 snmp_components_config() -> [snmp_component_config()]
 snmp_component_config() -> {agent, agent_options()} | {manager, manager_options()}
 agent_options() = [agent_option()]
 agent_option() = {restart_type, restart_type()} |
 {agent_type, agent_type()} |
 {agent_verbosity, verbosity()} |
 {discovery, agent_discovery()} |
 {versions, versions()} |
 {gb_max_vbs, gb_max_vbs()} |
 {priority, priority()} |
 {multi_threaded, multi_threaded()} |
 {db_dir, db_dir()} |
 {db_init_error, db_init_error()} |
 {local_db, local_db()} |
 {net_if, agent_net_if()} |
 {mibs, mibs()} |
 {mib_storage, mib_storage()} |
 {mib_server, mib_server()} |
 {audit_trail_log, audit_trail_log()} |
 {error_report_mod, error_report_mod()} |
 {note_store, note_store()} |
 {symbolic_store, symbolic_store()} |
 {target_cache, target_cache()} |
 {config, agent_config()}
 manager_options() = [manager_option()]
 manager_option() = {restart_type, restart_type()} |
 {net_if, manager_net_if()} |
 {server, server()} |
 {note_store, note_store()} |
 {config, manager_config()} |
 {inform_request_behaviour, manager_irb()} |
 {mibs, manager_mibs()} |
 {priority, priority()} |
 {audit_trail_log, audit_trail_log()} |
 {versions, versions()} |
 {def_user_mod, def_user_module() |
 {def_user_data, def_user_data()}

Agent specific config options and types:
	agent_type() = master | sub <optional> - If master,
one master agent is started. Otherwise, no agents are started.
Default is master.

	agent_discovery() = [agent_discovery_opt()] <optional> -
agent_discovery_opt() = {terminating, agent_terminating_discovery_opts()} | {originating, agent_originating_discovery_opts()}
The terminating options effects discovery initiated by a manager.
The originating options effects discovery initiated by this agent.
For defaults see the options in agent_discovery_opt().

	agent_terminating_discovery_opts() = [agent_terminating_discovery_opt()] <optional> -
agent_terminating_discovery_opt() = {enable, boolean()} | {stage2, discovery | plain} | {trigger_username, string()}
These are options effecting discovery terminating in this agent (i.e.
initiated by a manager).
The default values for the terminating discovery options are:
	enable: true
	stage2: discovery
	trigger_username: ""

	agent_originating_discovery_opts() = [agent_originating_discovery_opt()] <optional> -
agent_originating_discovery_opt() = {enable, boolean()}
These are options effecting discovery originating in this agent.
The default values for the originating discovery options are:
	enable: true

	multi_threaded() = bool() | extended <optional> - If
true (or extended), the agent is multi-threaded, with one thread for each
get request.
The value extended means that a special 'process' is also created intended
to handle all notifications.
	true - One worker dedicated to 'set-requests' and one (main) worker for
all other requests ('get-request' and notifications).
If the 'main' worker is busy, a temporary process is spawned to handle that
job ('get-request' or notification).

	extended - One worker dedicated to 'set-requests', one worker dedicated
to notifications and one (main) worker for all 'get-requests'.
If the 'main' worker is busy, a temporary process is spawned to handle that
'get-request'.

Note
Even with multi-threaded set to extended there is still a risk for
'reorder' when sending inform-requsts, which require a response (and may
therefore require resending).
Also, there is of course no way to guarantee order once the package is on
the network.
Default is false.

	db_dir() = string() <mandatory> - Defines where the
SNMP agent internal db files are stored.

	gb_max_vbs() = pos_integer() | infinity <optional> - Defines the maximum number of varbinds allowed in a Get-BULK response.
Default is 1000.

	local_db() = [local_db_opt()] <optional> -
local_db_opt() = {repair, agent_repair()} | {auto_save, agent_auto_save()} | {verbosity, verbosity()}
Defines options specific for the SNMP agent local database.
For defaults see the options in local_db_opt().

	agent_repair() = false | true | force <optional> -
When starting snmpa_local_db it always tries to open an existing database. If
false, and some errors occur, a new database is created instead. If true,
an existing file will be repaired. If force, the table will be repaired even
if it was properly closed.
Default is true.

	agent_auto_save() = integer() | infinity <optional> - The auto save interval. The table is flushed to disk whenever not
accessed for this amount of time.
Default is 5000.

	agent_net_if() = [agent_net_if_opt()] <optional> -
agent_net_if_opt() = {module, agent_net_if_module()} | {verbosity, verbosity()} | {options, agent_net_if_options()}
Defines options specific for the SNMP agent network interface entity.
For defaults see the options in agent_net_if_opt().

	agent_net_if_module() = atom() <optional> - Module
which handles the network interface part for the SNMP agent. Must implement
the snmpa_network_interface behaviour.
Default is snmpa_net_if.

	agent_net_if_options() = [agent_net_if_option()] <optional> -
agent_net_if_option() = {bind_to, bind_to()} | {sndbuf, sndbuf()} | {recbuf, recbuf()} | {no_reuse, no_reuse()} | {req_limit, req_limit()} | {filter, agent_net_if_filter_options()} | {open_err_filters, agent_net_if_open_err_filters()} | {extra_sock_opts, extra_socket_options()} | {inet_backend, inet_backend()}
These options are actually specific to the used module. The ones shown here
are applicable to the default agent_net_if_module().
Note
If the user has configured transports with options then those will take
precedence over these options. See
agent information for more
info.
For defaults see the options in agent_net_if_option().

	req_limit() = integer() | infinity <optional> -
Max number of simultaneous requests handled by the agent.
Default is infinity.

	agent_net_if_filter_options() = [agent_net_if_filter_option()] <optional> -
agent_net_if_filter_option() = {module, agent_net_if_filter_module()}
These options are actually specific to the used module. The ones shown here
are applicable to the default agent_net_if_filter_module().
For defaults see the options in agent_net_if_filter_option().

	agent_net_if_filter_module() = atom() <optional> - Module which handles the network interface filter part for the SNMP
agent. Must implement the snmpa_network_interface_filter behaviour.
Default is snmpa_net_if_filter.

	agent_net_if_open_err_filters() = [agent_net_if_open_err_filter()] <optional> - agent_net_if_open_err_filter() = atom()
During agent initiation, the transports UDP sockets are opened. If this
operation fails, the net-if (and the agent) fails to start (crash). This
(filter) list contains error (reasons) that will make net-if fail "nicely".
This (filter) list, is supposed to contain errors that can be returned by
gen_udp:open/1,2. The effect is that any error returned by
gen_udp:open which are in this list, will be considered
"non-fatal" and will only result in an info message, rather than an error
message. Net If, and the agent, will still crash, but will produce a less
obnoxious message.

	agent_mibs() = [string()] <optional> - Specifies a list
of MIBs (including path) that defines which MIBs are initially loaded into the
SNMP master agent.
Note that the following mibs will always be loaded:
	version v1: STANDARD-MIB
	version v2: SNMPv2
	version v3: SNMPv2, SNMP-FRAMEWORK-MIB and SNMP-MPD-MIB

Default is [].

	mib_storage() = [mib_storage_opt()] <optional> -
mib_storage_opt() = {module, mib_storage_module()} | {options, mib_storage_options()}
This option specifies how basic mib data is stored. This option is used by two
parts of the snmp agent: The mib-server and the symbolic-store.
Default is [{module, snmpa_mib_storage_ets}].

	mib_storage_module() = snmpa_mib_data_ets | snmpa_mib_data_dets | snmpa_mib_data_mnesia | module() - Defines the mib storage module of the SNMP agent as
defined by the snmpa_mib_storage behaviour.
Several entities (mib-server via the its data module and the
symbolic-store) of the snmp agent uses this for storage of miscellaneous mib
related data retrieved while loading a mib.
There are several implementations provided with the agent:
snmpa_mib_storage_ets, snmpa_mib_storage_dets and
snmpa_mib_storage_mnesia.
Default module is snmpa_mib_storage_ets.

	mib_storage_options() = list() <optional> - This
is implementation depended. That is, it depends on the module. For each module
a specific set of options are valid. For the module provided with the app,
these options are supported:
	snmpa_mib_storage_ets:
{dir, filename()} | {action, keep | clear}, {checksum, boolean()}
	dir - If present, points to a directory where a file to which all data
in the ets table is "synced".
Also, when a table is opened this file is read, if it exists.
By default, this will not be used.

	action - Specifies the behaviour when a non-empty file is found: Keep
its content or clear it out.
Default is keep.

	checksum - Defines if the file is checksummed or not.
Default is false.

	snmpa_mib_storage_dets:
{dir, filename()} | {action, keep | clear}, {auto_save, default | pos_integer()} | {repair, force | boolean()}
	dir - This mandatory option points to a directory where to place the
file of a dets table.

	action - Specifies the behaviour when a non-empty file is found: Keep
its content or clear it out.
Default is keep.

	auto_save - Defines the dets auto-save frequency.
Default is default.

	repair - Defines the dets repair behaviour.
Default is false.

	snmpa_mib_storage_mnesia: {action, keep | clear}, {nodes, [node()]}
	action - Specifies the behaviour when a non-empty, already existing,
table: Keep its content or clear it out.
Default is keep.

	nodes - A list of node names (or an atom describing a list of nodes)
defining where to open the table. Its up to the user to ensure that mnesia
is actually running on the specified nodes.
The following distinct values are recognised:
	[] - Translated into a list of the own node: [node()]
	all - erlang:nodes()
	visible - erlang:nodes(visible)
	connected - erlang:nodes(connected)
	db_nodes - mnesia:system_info(db_nodes)

Default is the result of the call: erlang:nodes().

	mib_server() = [mib_server_opt()] <optional> -
mib_server_opt() = {mibentry_override, mibentry_override()} | {trapentry_override, trapentry_override()} | {verbosity, verbosity()} | {cache, mibs_cache()} | {data_module, mib_server_data_module()}
Defines options specific for the SNMP agent mib server.
For defaults see the options in mib_server_opt().

	mibentry_override() = bool() <optional> - If this
value is false, then when loading a mib each mib- entry is checked prior to
installation of the mib. The purpose of the check is to prevent that the same
symbolic mibentry name is used for different oid's.
Default is false.

	trapentry_override() = bool() <optional> - If this
value is false, then when loading a mib each trap is checked prior to
installation of the mib. The purpose of the check is to prevent that the same
symbolic trap name is used for different trap's.
Default is false.

	mib_server_data_module() = snmpa_mib_data_tttn | module() <optional> - Defines the backend data module of the SNMP agent
mib-server as defined by the snmpa_mib_data behaviour.
At present only the default module is provided with the agent,
snmpa_mib_data_tttn.
Default module is snmpa_mib_data_tttn.

	mibs_cache() = bool() | mibs_cache_opts() <optional> - Shall the agent utilize the mib server lookup cache or not.
Default is true (in which case the mibs_cache_opts() default values
apply).

	mibs_cache_opts() = [mibs_cache_opt()] <optional> -
mibs_cache_opt() = {autogc, mibs_cache_autogc()} | {gclimit, mibs_cache_gclimit()} | {age, mibs_cache_age()}
Defines options specific for the SNMP agent mib server cache.
For defaults see the options in mibs_cache_opt().

	mibs_cache_autogc() = bool() <optional> -
Defines if the mib server shall perform cache gc automatically or leave it to
the user (see gc_mibs_cache/0,1,2,3).
Default is true.

	mibs_cache_age() = integer() > 0 <optional> -
Defines how old the entries in the cache will be allowed to become before they
are GC'ed (assuming GC is performed). Each entry in the cache is "touched"
whenever it is accessed.
The age is defined in milliseconds.
Default is 10 timutes.

	mibs_cache_gclimit() = infinity | integer() > 0 <optional> - When performing a GC, this is the max number of
cache entries that will be deleted from the cache.
The reason why its possible to set a limit, is that if the cache is large, the
GC can potentially take a long time, during which the agent is "busy". But
on a heavily loaded system, we also risk not removing enough elements in the
cache, instead causing it to grow over time. This is the reason the default
value is infinity, which will ensure that all candidates are removed as
soon as possible.
Default is infinity.

	error_report_mod() = atom() <optional> -
Defines an error report module, implementing the snmpa_error_report
behaviour. Two modules are provided with the toolkit: snmpa_error_logger and
snmpa_error_io.
Default is snmpa_error_logger.

	symbolic_store() = [symbolic_store_opt()] -
symbolic_store_opt() = {verbosity, verbosity()}
Defines options specific for the SNMP agent symbolic store.
For defaults see the options in symbolic_store_opt().

	target_cache() = [target_cache_opt()] -
target_cache_opt() = {verbosity, verbosity()}
Defines options specific for the SNMP agent target cache.
For defaults see the options in target_cache_opt().

	agent_config() = [agent_config_opt()] <mandatory> -
agent_config_opt() = {dir, agent_config_dir()} | {force_load, force_load()} | {verbosity, verbosity()}
Defines specific config related options for the SNMP agent.
For defaults see the options in agent_config_opt().

	agent_config_dir = dir() <mandatory> - Defines
where the SNMP agent configuration files are stored.

	force_load() = bool() <optional> - If true the
configuration files are re-read during start-up, and the contents of the
configuration database ignored. Thus, if true, changes to the configuration
database are lost upon reboot of the agent.
Default is false.

Manager specific config options and types:
	server() = [server_opt()] <optional> -
server_opt() = {timeout, server_timeout()} | {verbosity, verbosity()} | {cbproxy, server_cbproxy()} | {netif_sup, server_nis()}
Specifies the options for the manager server process.
Default is silence.

	server_timeout() = integer() <optional> -
Asynchronous request cleanup time. For every requests, some info is stored
internally, in order to be able to deliver the reply (when it arrives) to the
proper destination. If the reply arrives, this info will be deleted. But if
there is no reply (in time), the info has to be deleted after the best
before time has been passed. This cleanup will be performed at regular
intervals, defined by the server_timeout() time. The information will have
an best before time, defined by the Expire time given when calling the
request function (see async_get,
async_get_next and
async_set).
Time in milli-seconds.
Default is 30000.

	server_cbproxy() = temporary (default) | permanent <optional> - This option specifies how the server will handle
callback calls.
	temporary (default) - A
temporary process will be created for each callback call.

	permanent - With this the server
will create a permanent (named) process that in effect serializes all
callback calls.

Default is temporary.

	server_nis() = none (default) | {PingTO, PongTO} <optional> - This option specifies if the server should actively
supervise the net-if process. Note that this will only work if the used net-if
process actually supports the protocol. See snmpm_network_interface
behaviour for more info.
	none (default) - No active supervision of
the net-if process.

	{PingTO :: pos_integer(), PongTO :: pos_integer()} - The PingTO time specifies the between a
successful ping (or start) and the time when a ping message is to be sent to
the net-if process (basically the time between ping).
The PongTO time specifies how long time the net-if process has to respond
to a ping message, with a pong message. Its starts counting when the ping
message has been sent.
Both times are in milli seconds.

Default is none.

	manager_config() = [manager_config_opt()] <mandatory> -
manager_config_opt() = {dir, manager_config_dir()} | {db_dir, manager_db_dir()} | {db_init_error, db_init_error()} | {repair, manager_repair()} | {auto_save, manager_auto_save()} | {verbosity, verbosity()}
Defines specific config related options for the SNMP manager.
For defaults see the options in manager_config_opt().

	manager_config_dir = dir() <mandatory> - Defines
where the SNMP manager configuration files are stored.

	manager_db_dir = dir() <mandatory> - Defines
where the SNMP manager store persistent data.

	manager_repair() = false | true | force <optional> - Defines the repair option for the persistent
database (if and how the table is repaired when opened).
Default is true.

	manager_auto_save() = integer() | infinity <optional> - The auto save interval. The table is flushed
to disk whenever not accessed for this amount of time.
Default is 5000.

	manager_irb() = auto | user | {user, integer()} <optional> - This option defines how the manager will handle the sending of response
(acknowledgment) to received inform-requests.
	auto - The manager will autonomously send response (acknowledgment> to
inform-request messages.
	{user, integer()} - The manager will send response (acknowledgment) to
inform-request messages when the
handle_inform function completes. The
integer is the time, in milli-seconds, that the manager will consider the
stored inform-request info valid.
	user - Same as {user, integer()}, except that the default time, 15
seconds (15000), is used.

See snmpm_network_interface, handle_inform and
definition of the manager net if for more info.
Default is auto.

	manager_mibs() = [string()] <optional> - Specifies a
list of MIBs (including path) and defines which MIBs are initially loaded into
the SNMP manager.
Default is [].

	manager_net_if() = [manager_net_if_opt()] <optional> -
manager_net_if_opt() = {module, manager_net_if_module()} | {verbosity, verbosity()} | {options, manager_net_if_options()}
Defines options specific for the SNMP manager network interface entity.
For defaults see the options in manager_net_if_opt().

	manager_net_if_options() = [manager_net_if_option()] <optional> -
manager_net_if_option() = {bind_to, bind_to()} | {sndbuf, sndbuf()} | {recbuf, recbuf()} | {no_reuse, no_reuse()} | {filter, manager_net_if_filter_options()} | {extra_sock_opts, extra_socket_options()}} | {inet_backend, inet_backend()}
These options are actually specific to the used module. The ones shown here
are applicable to the default manager_net_if_module().
For defaults see the options in manager_net_if_option().

	manager_net_if_module() = atom() <optional> - The
module which handles the network interface part for the SNMP manager. It must
implement the snmpm_network_interface behaviour.
Default is snmpm_net_if.

	manager_net_if_filter_options() = [manager_net_if_filter_option()] <optional> -
manager_net_if_filter_option() = {module, manager_net_if_filter_module()}
These options are actually specific to the used module. The ones shown here
are applicable to the default manager_net_if_filter_module().
For defaults see the options in manager_net_if_filter_option().

	manager_net_if_filter_module() = atom() <optional> - Module which handles the network interface
filter part for the SNMP manager. Must implement the
snmpm_network_interface_filter behaviour.
Default is snmpm_net_if_filter.

	def_user_module() = atom() <optional> - The
module implementing the default user. See the snmpm_user behaviour.
Default is snmpm_user_default.

	def_user_data() = term() <optional> - Data
for the default user. Passed to the user module when calling the callback
functions.
Default is undefined.

Common config types:
	restart_type() = permanent | transient | temporary -
See supervisor documentation for more info.
Default is permanent for the agent and transient for the manager.

	db_init_error() = terminate | create | create_db_and_dir - Defines what to do if the agent or manager is unable to open an existing
database file. terminate means that the agent/manager will terminate and
create means that the agent/manager will remove the faulty file(s) and
create new ones, and create_db_and_dir means that the agent/manager will
create the database file along with any missing parent directories for the
database file.
Default is terminate.

	priority() = atom() <optional> - Defines the Erlang priority
for all SNMP processes.
Default is normal.

	versions() = [version()] <optional> -
version() = v1 | v2 | v3
Which SNMP versions shall be accepted/used.
Default is [v1,v2,v3].

	verbosity() = silence | info | log | debug | trace <optional> - Verbosity for a SNMP process. This specifies now much debug info is
printed.
Default is silence.

	bind_to() = bool() <optional> - If true, net_if binds to
the IP address. If false, net_if listens on any IP address on the host where
it is running.
Default is false.

	no_reuse() = bool() <optional> - If true, net_if does
not specify that the IP and port address should be reusable. If false, the
address is set to reusable.
Default is false.

	recbuf() = integer() <optional> - Receive buffer size.
Default value is defined by gen_udp.

	sndbuf() = integer() <optional> - Send buffer size.
Default value is defined by gen_udp.

	extra_socket_options() = list() <optional> - A list
of arbitrary socket options.
This list is not inspected by snmp (other then checking that its a list). Its
the users responsibility to ensure that these are valid options and does not
conflict with the "normal" options.
Default is [].

	inet_backend() = inet | socket <optional> - Choose the
inet-backend.
This option make it possible to use net_if (gen_udp) with a different
inet-backend ('inet' or 'socket').
Default is inet.

	note_store() = [note_store_opt()] <optional> -
note_store_opt() = {timeout, note_store_timeout()} | {verbosity, verbosity()}
Specifies the start-up verbosity for the SNMP note store.
For defaults see the options in note_store_opt().

	note_store_timeout() = integer() <optional> - Note
cleanup time. When storing a note in the note store, each note is given
lifetime. Every timeout the note_store process performs a GC to remove the
expired note's. Time in milli-seconds.
Default is 30000.

	audit_trail_log() = [audit_trail_log_opt()] <optional> -
audit_trail_log_opt() = {type, atl_type()} | {dir, atl_dir()} | {size, atl_size()} | {repair, atl_repair()} | {seqno, atl_seqno()}
If present, this option specifies the options for the audit trail logging. The
disk_log module is used to maintain a wrap log. If present, the dir and
size options are mandatory.
If not present, audit trail logging is not used.

	atl_type() = read | write | read_write <optional> -
Specifies what type of an audit trail log should be used. The effect of the
type is actually different for the the agent and the manager.
For the agent:
	If write is specified, only set requests are logged.
	If read is specified, only get requests are logged.
	If read_write, all requests are logged.

For the manager:
	If write is specified, only sent messages are logged.
	If read is specified, only received messages are logged.
	If read_write, both outgoing and incoming messages are logged.

Default is read_write.

	atl_dir = dir() <mandatory> - Specifies where the audit
trail log should be stored.
If audit_trail_log specifies that logging should take place, this parameter
must be defined.

	atl_size() = {integer(), integer()} <mandatory> -
Specifies the size of the audit trail log. This parameter is sent to
disk_log.
If audit_trail_log specifies that logging should take place, this parameter
must be defined.

	atl_repair() = true | false | truncate | snmp_repair <optional> - Specifies if and how the audit trail log shall be repaired
when opened. Unless this parameter has the value snmp_repair it is sent to
disk_log. If, on the other hand, the value is snmp_repair, snmp attempts
to handle certain faults on its own. And even if it cannot repair the file, it
does not truncate it directly, but instead moves it aside for later off-line
analysis.
Default is true.

	atl_seqno() = true | false <optional> - Specifies if the
audit trail log entries will be (sequence) numbered or not. The range of the
sequence numbers are according to RFC 5424, i.e. 1 through 2147483647.
Default is false.

See Also
application(3), disk_log(3)

 SNMP Release Notes

SNMP 5.19.1
Fixed Bugs and Malfunctions
	Using ASN.1 generated code for decode/encode of basic types, starting with Counter64.
Own Id: OTP-19619 Aux Id: GH-5756, PR-9869

Improvements and New Features
	Reworked the timer handling of the (SNMP) manager start notification feature.
Own Id: OTP-19696 Aux Id: PR-10014

	Added missing specs to already documented functions.
Own Id: OTP-19723 Aux Id: PR-10087

SNMP 5.19
Improvements and New Features
	EEP-69: Nominal Types has been implemented. As a side effect, nominal types can encode opaque types. We changed all opaque-handling logic and improved opaque warnings in Dialyzer.
All existing Erlang type systems are structural: two types are seen as equivalent if their structures are the same. Type comparisons are based on the structures of the types, not on how the user explicitly defines them. For example, in the following example, meter() and foot() are equivalent. The two types can be used interchangeably. Neither of them differ from the basic type integer().
-type meter() :: integer().
-type foot() :: integer().
Nominal typing is an alternative type system, where two types are equivalent if and only if they are declared with the same type name. The EEP proposes one new syntax -nominal for declaring nominal types. Under nominal typing, meter() and foot() are no longer compatible. Whenever a function expects type meter(), passing in type foot() would result in a Dialyzer error.
-nominal meter() :: integer().
-nominal foot() :: integer().
More nominal type-checking rules can be found in the EEP. It is worth noting that most work for adding nominal types and type-checking is in erl_types.erl. The rest are changes that removed the previous opaque type-checking, and added an improved version of it using nominal type-checking with reworked warnings.
Backwards compatibility for opaque type-checking is not preserved by this PR. Previous opaque warnings can appear with slightly different wordings. A new kind of opaque warning opaque_union is added, together with a Dialyzer option no_opaque_union to turn this kind of warnings off.
Own Id: OTP-19364 Aux Id: PR-9079

	Added support for compiling Erlang/OTP for Windows on ARM64.
Own Id: OTP-19480 Aux Id: PR-8734

	When compiling C/C++ code on Unix systems, the compiler hardening flags suggested by the Open Source Security Foundation are now enabled by default. To disable them, pass --disable-security-hardening-flags to configure.
Own Id: OTP-19519 Aux Id: PR-9441

	Add copyright notice to files that still had none.
Own Id: OTP-19572

	The license and copyright header has changed format to include an SPDX-License-Identifier. At the same time, most files have been updated to follow a uniform standard for license headers.
Own Id: OTP-19575 Aux Id: PR-9670

SNMP 5.18.2
Fixed Bugs and Malfunctions
	When manager receives an v3 inform (request) it used engine-id and full address (including port number) to check if engine was known. This did not work if agent used ephemeral ports for notifications. Has now been changed to only use (context) engine-id and address (without port).
Own Id: OTP-19562 Aux Id: ERIERL-1207

	Fixed snmp_generic (dialyzer) spec for function table_func.
Own Id: OTP-19568 Aux Id: ERIERL-1211

SNMP 5.18.1
Fixed Bugs and Malfunctions
	SNMP Agent transports type (intAgentTransports) was incorrectly not documented as a list of transports.
Also add a couple of config file generation examples.
Own Id: OTP-19438 Aux Id: ERIERL-1180

SNMP 5.18
Improvements and New Features
	Erlang/OTP type specifications has been updated to eliminate overlapping domains.
Own Id: OTP-19310 Aux Id: GH-8810, GH-8821, PR-8986

SNMP 5.17
Fixed Bugs and Malfunctions
	Man pages are now available for erl, erlc, dialyzer, and all other programs that are included in Erlang/OTP.
Own Id: OTP-19201 Aux Id: PR-8740

Improvements and New Features
	Figures in the documentation have been improved.
Own Id: OTP-19130 Aux Id: PR-7226

SNMP 5.16
Improvements and New Features
	-callback attributes have been added to modules snmpa_network_interface_filter, snmpa_notification_filter, snmpm_network_interface_filter, snmpm_user, and snmpa_notification_delivery_info_receiver.
New -type attributes have also been added to modules snmp, snmpa, snmpm, and snmpa_conf to support the previously mentioned callbacks.
Own Id: OTP-18785 Aux Id: PR-7702

	Updated types and specs for all API modules.
Own Id: OTP-18934 Aux Id: BL-312

	The documentation has been migrated to use Markdown and ExDoc.
Own Id: OTP-18955 Aux Id: PR-8026

SNMP 5.15
Improvements and New Features
	Make snmp handle gen_udp with socket backend on Windows (completion).
Own Id: OTP-18598 Aux Id: OTP-18029

SNMP 5.14
Improvements and New Features
	The implementation has been fixed to use proc_lib:init_fail/2,3 where
appropriate, instead of proc_lib:init_ack/1,2.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18490 Aux Id: OTP-18471, GH-6339, PR-6843

SNMP 5.13.5
Improvements and New Features
	Attempts to minimize the number of the error reports during a failed agent
init.
Own Id: OTP-18422 Aux Id: ERIERL-873

SNMP 5.13.4
Improvements and New Features
	Replace size/1 with either tuple_size/1 or byte_size/1
The size/1 BIF is not optimized by the JIT, and its use can
result in worse types for Dialyzer.
When one knows that the value being tested must be a tuple,
tuple_size/1 should always be preferred.
When one knows that the value being tested must be a binary,
byte_size/1 should be preferred. However,
byte_size/1 also accepts a bitstring (rounding up size to a
whole number of bytes), so one must make sure that the call to byte_size/ is
preceded by a call to is_binary/1 to ensure that bitstrings
are rejected. Note that the compiler removes redundant calls to
is_binary/1, so if one is not sure whether previous code
had made sure that the argument is a binary, it does not harm to add an
is_binary/1 test immediately before the call to
byte_size/1.
Own Id: OTP-18432 Aux Id:
GH-6672,PR-6793,PR-6784,PR-6787,PR-6785,PR-6682,PR-6800,PR-6797,PR-6798,PR-6799,PR-6796,PR-6813,PR-6671,PR-6673,PR-6684,PR-6694,GH-6677,PR-6696,PR-6670,PR-6674

SNMP 5.13.3
Fixed Bugs and Malfunctions
	Single threaded agent crash when vacm table not properly initiated.
Own Id: OTP-18379 Aux Id: ERIERL-904

SNMP 5.13.2
Fixed Bugs and Malfunctions
	Explicitly close the socket(s) when terminating (default-) net-if process.
Own Id: OTP-18352 Aux Id: ERIERL-881

SNMP 5.13.1.1
Fixed Bugs and Malfunctions
	Single threaded agent crash when vacm table not properly initiated.
Own Id: OTP-18379 Aux Id: ERIERL-904

SNMP 5.13.1
Fixed Bugs and Malfunctions
	Improved the get-bulk response max size calculation. Its now possible to
configure 'empty pdu size', see appendix c for more info.
Own Id: OTP-17115 Aux Id: ERIERL-456

	Fix various example dialyzer issues
Own Id: OTP-18180 Aux Id: ERIERL-837

SNMP 5.13
Improvements and New Features
	Input for configure scripts adapted to autoconf 2.71.
Own Id: OTP-17414 Aux Id: PR-4967

	Removed deprecated functions slated for removal in OTP-25. Also removed "dead"
code, kept for backward compatibility reasons.
Own Id: OTP-17612

SNMP 5.12.0.3
Improvements and New Features
	Attempts to minimize the number of the error reports during a failed agent
init.
Own Id: OTP-18422 Aux Id: ERIERL-873

SNMP 5.12.0.2
Fixed Bugs and Malfunctions
	Single threaded agent crash when vacm table not properly initiated.
Own Id: OTP-18379 Aux Id: ERIERL-904

SNMP 5.12.0.1
Fixed Bugs and Malfunctions
	Explicitly close the socket(s) when terminating (default-) net-if process.
Own Id: OTP-18352 Aux Id: ERIERL-881

SNMP 5.12
Fixed Bugs and Malfunctions
	The compilation time is no longer recorded in BEAM files. There remained
several undocumented functions that attempted to retrieve compilation times.
Those have now been removed.
Own Id: OTP-17962

Improvements and New Features
	[agent] Remove expectation of socket being a port.
Own Id: OTP-16559

SNMP 5.11
Fixed Bugs and Malfunctions
	Handling of test config flag when starting "empty".
Own Id: OTP-17671

Improvements and New Features
	Add support for new authentication algorithms (SHA-224, SHA-256, SHA-384 and
SHA-512), according to RFC 7860.
Own Id: OTP-17615 Aux Id: MR9501-1

	Improve debug info for (snmp) manager.
Own Id: OTP-17783

SNMP 5.10.1
Fixed Bugs and Malfunctions
	Sockets are monitored, but the handling of the 'DOWN' message expected a new
style socket ('socket'), old style (port) was not handled.
Own Id: OTP-17641 Aux Id: OTP-17640

SNMP 5.10
Improvements and New Features
	It is now possible to configure the built-in net-if processes (both agent and
manager) to use the new (gen_udp-) option 'inet_backend'.
Own Id: OTP-17526

SNMP 5.9.1
Fixed Bugs and Malfunctions
	Commit of generated configure script.
Own Id: OTP-17420 Aux Id: OTP-17398, GH-4821

SNMP 5.9
Improvements and New Features
	Removed deprecated functions marked for removal.
Own Id: OTP-17049

	Removed timestamps from files generated by snmp to enable deterministic
builds.
Own Id: OTP-17354

	Fixed warnings in code matching on underscore prefixed variables.
Own Id: OTP-17385 Aux Id: OTP-17123

SNMP 5.8.0.1
Fixed Bugs and Malfunctions
	Commit of generated configure script.
Own Id: OTP-17420 Aux Id: OTP-17398, GH-4821

SNMP 5.8
Improvements and New Features
	Add function to get a list of configured agent transports. Also improved agent
info with regards to transports.
Own Id: OTP-17109 Aux Id: ERIERL-583

SNMP 5.7.3
Fixed Bugs and Malfunctions
	[manager] In a function handling snmp errors, an unused result (_Error)
could result in matching issues and therefore case clause runtime errors
(crash). Note that this would only happen in very unusual error cases.
Own Id: OTP-17161

SNMP 5.7.2
Fixed Bugs and Malfunctions
	[manager] Misspelled priv protocol (atom) made it impossible to update usm
user 'priv_key' configuration for usmAesCfb128Protocol via function calls.
Own Id: OTP-17110 Aux Id: ERIERL-586

SNMP 5.7.1
Fixed Bugs and Malfunctions
	Fixed usage of AC_CONFIG_AUX_DIRS() macros in configure script sources.
Own Id: OTP-17093 Aux Id: ERL-1447, PR-2948

SNMP 5.7
Fixed Bugs and Malfunctions
	If an attempt was made to send a v1 trap on a IPv6 transport this could cause
a master agent crash (if the agent was not multi-threaded).
Own Id: OTP-16920 Aux Id: OTP-16649

	The deprecation info for a couple of the deprecated MIB compiler functions
where incorrect. Referred to functions in the 'snmpa' module instead of
'snmpc'.
Own Id: OTP-17056 Aux Id: OTP-17049

Improvements and New Features
	Make it possible for the agent to configure separate transports (sockets) for
request-responder and trap-sender.
Own Id: OTP-16649

	The mib server cache handling has been improved. First, the default gclimit
has been changed from 100 to infinity (to ensure the size is as small as
possible). Also, the method of removing old elements has been optimized.
Own Id: OTP-16989 Aux Id: ERIERL-544

	It is now possible to configure the agent in such a way that the order of
outgoing notifications are processed in order in the agent. What happens after
the notification message has left the agent (been sent) is of course still out
of our control.
Own Id: OTP-17022 Aux Id: ERIERL-492

	Improve handling of the udp_error message. Basically an improved error/warning
message.
Own Id: OTP-17033

SNMP 5.6.1
Fixed Bugs and Malfunctions
	For agent fix PrivParams for SNMPv3 USM with AES privacy, as earlier fixed for
the manager in OTP_16541.
Own Id: OTP-15130 Aux Id: ERIERL-524, OTP-16541

	The SNMP Agent missed to re-activate datagram reception in an odd timeout case
and went deaf. This bug has been fixed.
Own Id: OTP-15767 Aux Id: ERIERL-523

	Use of deprecated functions in example 2 has been removed (no more compiler
warnings).
Own Id: OTP-16716

	A file descriptor leak has been plugged. When calling the reconfigure function
of a mib, it opened the config file(s) but never closed them on successful
read.
Own Id: OTP-16760 Aux Id: ERIERL-511

SNMP 5.6
Fixed Bugs and Malfunctions
	For manager, fix PrivParams for SNMPv3 USM with AES privacy; In
`snmp_usm:do_decrypt/3`, pass full UsmSecParams to
`snmp_usm:try_decrypt/5` as expected by AES clause. Change
`snmpm_usm:aes_encrypt/3` to use EngineBoots and EngineTime as cached by
`snmpm_config:get_usm_eboots/1` and `snmpm_config:get_usm_etime/1` instead
of `snmpm_config:get_engine_boots/0` and `snmpm_config:get_engine_time/0`.
This ensures correct msgPrivacyParameters are sent when AES is used. * Add
test `snmp.snmp_manager_SUITE.usm_priv_aes/1` to avoid regression.
Own Id: OTP-16541 Aux Id: #2544

	Invalid character in (manager) usm config entry generator function.
Own Id: OTP-16552 Aux Id: ERL-1196

Improvements and New Features
	Remove usage and documentation of old requests of the I/O-protocol.
Own Id: OTP-15695

	Calls of deprecated functions in the
Old Crypto API are replaced by calls of
their substitutions.
Own Id: OTP-16346

	Finalize deprecation. Already deprecated functions has a "remove version 24"
set and "new" functions added to list of deprecated functions.
Own Id: OTP-16463

	Refactored the internal handling of deprecated and removed functions.
Own Id: OTP-16469

SNMP 5.5.0.5
Fixed Bugs and Malfunctions
	Commit of generated configure script.
Own Id: OTP-17420 Aux Id: OTP-17398, GH-4821

SNMP 5.5.0.4
Improvements and New Features
	The mib server cache handling has been improved. First, the default gclimit
has been changed from 100 to infinity (in order to ensure the size is as small
as possible). Also the method of removing old elements has been optimized.
Own Id: OTP-16989 Aux Id: ERIERL-544

	It is now possible to configure the agent in such a way that the order of
outgoing notifications are processed in order in the agent. What happens after
the notification message has left the agent (been sent) is of course still out
of our control.
Own Id: OTP-17022 Aux Id: ERIERL-492

SNMP 5.5.0.3
Fixed Bugs and Malfunctions
	For agent fix PrivParams for SNMPv3 USM with AES privacy, as earlier fixed for
the manager in OTP_16541.
Own Id: OTP-15130 Aux Id: ERIERL-524, OTP-16541

SNMP 5.5.0.2
Fixed Bugs and Malfunctions
	The SNMP Agent missed to re-activate datagram reception in an odd timeout case
and went deaf. This bug has been fixed.
Own Id: OTP-15767 Aux Id: ERIERL-523

SNMP 5.5.0.1
Fixed Bugs and Malfunctions
	A file descriptor leak has been plugged. When calling the reconfigure function
of a mib, it opened the config file(s) but never closed them on successful
read.
Own Id: OTP-16760 Aux Id: ERIERL-511

SNMP 5.5
Improvements and New Features
	A simple supervision of the snmp manager net-if process has been added. Also,
a way to forcibly restart the net-if process has been added. This could be
useful if the net-if process hangs for some reason.
Own Id: OTP-16447 Aux Id: ERIERL-455, OTP-16382

	Misc documentation corrections
Own Id: OTP-16450

SNMP 5.4.5
Improvements and New Features
	Its now possible to remove selected varbinds (from the final message) when
sending a notification. This is done by setting the 'value' (in the varbind(s)
of the varbinds list) to '?NOTIFICATION_IGNORE_VB_VALUE'.
Own Id: OTP-16349 Aux Id: ERIERL-444

	Its now possible to specify that an oid shall be "truncated" (trailing ".0" to
be removed) when sending an notification.
Own Id: OTP-16360 Aux Id: ERIERL-451

SNMP 5.4.4
Improvements and New Features
	[manager] The callbacks where executed in a (new) 'temporary' process, that
executed the callback call and then exited. This has now been made
configurable so that is also possible to specify a 'permanent' callback proxy
process. All callback calls will then be executed in this (permanent) process
(in sequence).
Own Id: OTP-15947 Aux Id: ERIERL-378

SNMP 5.4.3.1
Improvements and New Features
	Its now possible to remove selected varbinds (from the final message) when
sending a notification. This is done by setting the 'value' (in the varbind(s)
of the varbinds list) to '?NOTIFICATION_IGNORE_VB_VALUE'.
Own Id: OTP-16349 Aux Id: ERIERL-444

	Its now possible to specify that an oid shall be "truncated" (trailing ".0" to
be removed) when sending an notification.
Own Id: OTP-16360 Aux Id: ERIERL-451

SNMP 5.4.3
Fixed Bugs and Malfunctions
	Agent discovery cleanup. If there is no receiver of INFORM then #state.reqs in
snmpa_net_if keeps on growing for DISCOVERY.
Own Id: OTP-16228 Aux Id: ERIERL-427

SNMP 5.4.2
Fixed Bugs and Malfunctions
	The agent discovery process has been made to work with snmptrapd..
Own Id: OTP-16207 Aux Id: ERIERL-427

SNMP 5.4.1
Improvements and New Features
	Made it possible to add 'extra socket options' to the (gen_udp) socket open
call (for both manager and agent). A new option has been added,
extra_sock_opts, which makes it possible for the user to add a list of extra
socket options that will be appended to the other socket options for the open
call. See the snmp application config man page (erl -man 6 snmp) or the
"Configuring the application" chapter of the Users Guide for more info.
Own Id: OTP-16092 Aux Id: ERIERL-410

SNMP 5.4
Fixed Bugs and Malfunctions
	Fix various minor issues related to Dialyzer. Mostly these are dialyzer
warnings, but there was also some minor bugs detected by Dialyzer.
Own Id: OTP-15932

Improvements and New Features
	Fixed a dets usage problem detected by dialyzer.
Own Id: OTP-10400 Aux Id: kunagi-253 [164]

	The function snmp:print_version_info() prints various version info. For each
module a number of items are printed, such as app vsn and md5 digest. And an
attempt was also made to print "compile time". This used to be available in
the module_info for each module, but has now been removed.
Own Id: OTP-15330

	The use of the deprecated random module has been replaced the with rand
module.
Own Id: OTP-15331

	Removed use of the deprecated function erlang:get_stacktrace(). Instead make
use of the 'catch Class:Error:Stacktrace' feature.
Own Id: OTP-15332

SNMP 5.3
Improvements and New Features
	The application otp_mibs has been removed from OTP. Some of its components
(mibs) have been moved to other apps (snmp), or removed completely (os_mon).
Own Id: OTP-14984 Aux Id: OTP-15329

	[snmp|agent] Add a get-mechanism callback module (and a corresponding
behaviour). The agent calls this module to handle each get (get, get-next and
get-bulk) request.
Own Id: OTP-15691 Aux Id: ERIERL-324

SNMP 5.2.12
Fixed Bugs and Malfunctions
	Conversion of (agent) Audit Trail Log (ATL) failed due to invalid log entries.
The conversion aborted completely midway because the ATL contained invalid
entries. The conversion has been improved so that it now firstly handles
encountered errors and write an informative message (into the converted
stream) and secondly keeps count of the number of successful or failed entry
conversions. See log_to_txt for more info.
The reason the ATL contained invalid entries have also been fixed. The reason
was that for some outgoing messages (not response):
	encrypted (v3 messages)
Was logged "as is" (encrypted) without the info to decrypt, making
conversion impossible (which was the reason the log contained bad entries).

	un-encrypted
Was not logged at all.

Own Id: OTP-15287 Aux Id: ERIERL-206

	[compiler] Spurious version message removed. The snmp mib compiler printed an
spurious version message if the 'version' option was provided.
Own Id: OTP-15290

SNMP 5.2.11.2
Improvements and New Features
	[manager] The callbacks where executed in a (new) 'temporary' process, that
executed the callback call and then exited. This has now been made
configurable so that is also possible to specify a 'permanent' callback proxy
process. All callback calls will then be executed in this (permanent) process
(in sequence).
Own Id: OTP-15947 Aux Id: ERIERL-378

SNMP 5.2.11.1
Improvements and New Features
	[snmp|agent] Add a get-mechanism callback module (and a corresponding
behaviour). The agent calls this module to handle each get (get, get-next and
get-bulk) request.
Own Id: OTP-15691 Aux Id: ERIERL-324

SNMP 5.2.11
Fixed Bugs and Malfunctions
	The Snmp MIB compiler now allows using a TEXTUAL-CONVENTION type before
defining it.
Own Id: OTP-14196 Aux Id: ERIERL-161

SNMP 5.2.10
Fixed Bugs and Malfunctions
	The example MIB EX1-MIB in the SNMP application has been corrected to match
its example.
Own Id: OTP-14204 Aux Id: PR-1726

SNMP 5.2.9
Fixed Bugs and Malfunctions
	Removed all old unused files in the documentation.
Own Id: OTP-14475 Aux Id: ERL-409, PR-1493

SNMP 5.2.8
Fixed Bugs and Malfunctions
	The recbuf configuration option was not propagated correctly to the socket
for the SNMP Manager.
Own Id: OTP-13372 Aux Id: ERIERL-73

SNMP 5.2.7
Fixed Bugs and Malfunctions
	A bug in the SNMP MIB compiler has been fixed. An AUGMENTS referring to a
table defined later in the MIB did not work.
Own Id: OTP-13014 Aux Id: ERL-375

SNMP 5.2.6
Fixed Bugs and Malfunctions
	Internal code change: Calls to catch followed by a call to
erlang:get_stacktrace/0 has been rewritten to use try instead of catch
to make the code future-proof.
Own Id: OTP-14400

SNMP 5.2.5
Fixed Bugs and Malfunctions
	The SNMP MIB compiler has been fixed to compile MIBS with refinements on user
types such as in RFC 4669 RADIUS-AUTH-SERVER-MIB.mib. Problem reported and
researched by Kenneth Lakin and Daniel Goertzen.
See also: https://bugs.erlang.org/browse/ERL-325
Own Id: OTP-14145 Aux Id: ERL-325

SNMP 5.2.4
Fixed Bugs and Malfunctions
	Correct bugs when path to mib or idl spec files contains UTF-8 characters.
Own Id: OTP-13718 Aux Id: ERL-179

Improvements and New Features
	Solves snmp config string handling as reported by ERL-164 and solved by
PR-1100
Own Id: OTP-13706

SNMP 5.2.3
Improvements and New Features
	Internal changes
Own Id: OTP-13551

SNMP 5.2.2
Fixed Bugs and Malfunctions
	Snmp agent now properly handles vacmViewTreeFamily masks.
Own Id: OTP-13264

SNMP 5.2.1
Fixed Bugs and Malfunctions
	Small documentation fixes
Own Id: OTP-13017

Improvements and New Features
	Update configuration check of imask (list of ones and zeros) to allow the
empty list.
Own Id: OTP-13101

SNMP 5.2
Improvements and New Features
	The runtime dependencies in the application resource file have been updated.
Own Id: OTP-12762

SNMP 5.1.2
Fixed Bugs and Malfunctions
	A bug in the SNMP Agent has been corrected; when opening a port using the
command line argument -snmpa_fd the Port should be 0 when calling
gen_udp:open.
A bug in the SNMP manager has been corrected; it should not look at the
-snmp_fd command line argument, but instead at -snmpm_fd.
Own Id: OTP-12669 Aux Id: seq12841

Improvements and New Features
	Improved cryptographic capability.
Own Id: OTP-12452

SNMP Development Toolkit 5.1.1
Version 5.1.1 supports code replacement in runtime from/to version 5.1.
Improvements and new features
	[compiler] Refinement of type Opaque was not allowed.
MIB constructs such as 'SYNTAX Opaque (SIZE(0..65535))' was previously not
allowed, see the standard ALARM-MIB for eaxmple.
Own Id: OTP-12066
Aux Id: Seq 12669

Fixed Bugs and Malfunctions
-
Incompatibilities
-
SNMP 5.1
Improvements and New Features
	The SNMP manager has been enhanced with dual stack IPv4+IPv6, as the agent
just was. The documentation is also now updated for both the agent and the
manager.
Own Id: OTP-12108 Aux Id: OTP-12020

SNMP 5.0
Improvements and New Features
	SNMP has been improved to handle IPv6. The agent can handle dual stack IPv4 +
IPv6, but not yet the manager. The documentation also still lags behind... If
you do such advanced stuff like writing a custom net_if module, the interface
for it has changed, but other than that SNMP is backwards compatible.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-12020 Aux Id: OTP-11518

-

 SNMP Introduction

The SNMP development toolkit contains the following parts:
	An Extensible multi-lingual SNMP agent, which understands SNMPv1 (RFC1157),
SNMPv2c (RFC1901, 1905, 1906 and 1907), SNMPv3 (RFC2271, 2272, 2273, 2274 and
2275), or any combination of these protocols.
	A multi-lingual SNMP manager.
	A MIB compiler, which understands SMIv1 (RFC1155, 1212, and 1215) and SMIv2
(RFC1902, 1903, and 1904).

The SNMP development tool provides an environment for rapid agent/manager
prototyping and construction. With the following information provided, this tool
is used to set up a running multi-lingual SNMP agent/manager:
	a description of a Management Information Base (MIB) in Abstract Syntax
Notation One (ASN.1)
	instrumentation functions for the managed objects in the MIB, written in
Erlang.

The advantage of using an extensible (agent/manager) toolkit is to remove
details such as type-checking, access rights, Protocol Data Unit (PDU),
encoding, decoding, and trap distribution from the programmer, who only has to
write the instrumentation functions, which implement the MIBs. The get-next
function only has to be implemented for tables, and not for every variable in
the global naming tree. This information can be deduced from the ASN.1 file.
Scope and Purpose
This manual describes the SNMP development tool, as a component of the
Erlang/Open Telecom Platform development environment. It is assumed that the
reader is familiar with the Erlang Development Environment, which is described
in a separate User's Guide.
Prerequisites
The following prerequisites are required for understanding the material in the
SNMP User's Guide:
	the basics of the Simple Network Management Protocol version 1 (SNMPv1)
	the basics of the community-based Simple Network Management Protocol version 2
(SNMPv2c)
	the basics of the Simple Network Management Protocol version 3 (SNMPv3)
	the knowledge of defining MIBs using SMIv1 and SMIv2
	familiarity with the Erlang system and Erlang programming

The tool requires Erlang release 4.7 or later.
Definitions
The following definitions are used in the SNMP User's Guide.
	MIB - The conceptual repository for management information is called the
Management Information Base (MIB). It does not hold any data, merely a
definition of what data can be accessed. A definition of an MIB is a
description of a collection of managed objects.

	SMI - The MIB is specified in an adapted subset of the Abstract Syntax
Notation One (ASN.1) language. This adapted subset is called the Structure of
Management Information (SMI).

	ASN.1 - ASN.1 is used in two different ways in SNMP. The SMI is based on
ASN.1, and the messages in the protocol are defined by using ASN.1.

	Managed object - A resource to be managed is represented by a managed
object, which resides in the MIB. In an SNMP MIB, the managed objects are
either:
	scalar variables, which have only one instance per context. They have
single values, not multiple values like vectors or structures.
	tables, which can grow dynamically.
	a table element, which is a special type of scalar variable.

	Operations - SNMP relies on the three basic operations: get (object), set
(object, value) and get-next (object).

	Instrumentation function - An instrumentation function is associated with
each managed object. This is the function, which actually implements the
operations and will be called by the agent when it receives a request from the
management station.

	Manager - A manager generates commands and receives notifications from
agents. There usually are only a few managers in a system.

	Agent - An agent responds to commands from the manager, and sends
notification to the manager. There are potentially many agents in a system.

About This Manual
In addition to this introductory chapter, the SNMP User's Guide contains the
following chapters:
	Chapter 2: "Functional Description" describes the features and operation of
the SNMP development toolkit. It includes topics on Sub-agents and MIB
loading, Internal MIBs, and Traps.
	Chapter 3: "The MIB Compiler" describes the features and the operation of the
MIB compiler.
	Chapter 4: "Running the application" describes how to start and configure the
application. Topics on how to debug the application are also included.
	Chapter 5: "Definition of Agent Configuration Files" is a reference chapter,
which contains more detailed information about the agent configuration files.
	Chapter 6: "Definition of Manager Configuration Files" is a reference chapter,
which contains more detailed information about the manager configuration
files.
	Chapter 7: "Agent Implementation Example" describes how an MIB can be
implemented with the SNMP Development Toolkit. Implementation examples are
included.
	Chapter 8: "Instrumentation Functions" describes how instrumentation functions
should be defined in Erlang for the different operations.
	Chapter 9: "Definition of Instrumentation Functions" is a reference chapter
which contains more detailed information about the instrumentation functions.
	Chapter 10: "Definition of Agent Net if" is a reference chapter, which
describes the Agent Net if function in detail.
	Chapter 11: "Definition of Manager Net if" is a reference chapter, which
describes the Manager Net if function in detail.
	Chapter 12: "Advanced Agent Topics" describes sub-agents, agent semantics,
audit trail logging, and the consideration of distributed tables.
	Appendix A describes the conversion of SNMPv2 to SNMPv1 error messages.
	Appendix B contains the RFC1903 text on RowStatus.

Where to Find More Information
Refer to the following documentation for more information about SNMP and about
the Erlang/OTP development system:
	Marshall T. Rose (1991), "The Simple Book - An Introduction to Internet
Management", Prentice-Hall
	Evan McGinnis and David Perkins (1997), "Understanding SNMP MIBs",
Prentice-Hall
	RFC1155, 1157, 1212 and 1215 (SNMPv1)
	RFC1901-1907 (SNMPv2c)
	RFC1908, 2089 (coexistence between SNMPv1 and SNMPv2)
	RFC2271, RFC2273 (SNMP std MIBs)
	the Mnesia User's Guide
	the Erlang 4.4 Extensions User's Guide
	the Reference Manual
	the Erlang Embedded Systems User's Guide
	the System Architecture Support Libraries (SASL) User's Guide
	the Installation Guide
	the Asn1 User's Guide
	Concurrent Programming in Erlang, 2nd Edition (1996), Prentice-Hall, ISBN
0-13-508301-X.

 Agent Functional Description

The SNMP agent system consists of one Master Agent and optional Sub-agents.
The tool makes it easy to dynamically extend an SNMP agent in run-time. MIBs can
be loaded and unloaded at any time. It is also easy to change the implementation
of an MIB in run-time, without having to recompile the MIB. The MIB
implementation is clearly separated from the agent.
To facilitate incremental MIB implementation, the tool can generate a prototype
implementation for a whole MIB, or parts thereof. This allows different MIBs and
management applications to be developed at the same time.
Features
To implement an agent, the programmer writes instrumentation functions for the
variables and the tables in the MIBs that the agent is going to support. A
running prototype which handles set, get, and get-next can be created
without any programming.
The toolkit provides the following:
	multi-lingual multi-threaded extensible SNMP agent
	easy writing of instrumentation functions with a high-level programming
language
	basic fault handling such as automatic type checking
	access control
	authentication
	privacy through encryption
	loading and unloading of MIBs in run-time
	the ability to change instrumentation functions without recompiling the MIB
	rapid prototyping environment where the MIB compiler can use generic
instrumentation functions, which later can be refined by the programmer
	a simple and extensible model for transaction handling and consistency
checking of set-requests
	support of the sub-agent concept via distributed Erlang
	a mechanism for sending notifications (traps and informs)
	support for implementing SNMP tables in the Mnesia DBMS.

SNMPv1, SNMPv2 and SNMPv3

The SNMP development toolkit works with all three versions of Standard Internet
Management Framework; SNMPv1, SNMPv2 and SNMPv3. They all share the same basic
structure and components. And they follow the same architecture.
The versions are defined in following RFCs
	SNMPv1 RFC 1555, 1157 1212, 1213 and 1215
	SNMPv2 RFC 1902 - 1907
	SNMPv3 RFC 2570 - 2575

Over time, as the Framework has evolved from SNMPv1 , through SNMPv2, to SNMPv3
the definitions of each of these architectural components have become richer and
more clearly defined, but the fundamental architecture has remained consistent.
The main features of SNMPv2 compared to SNMPv1 are:
	The get-bulk operation for transferring large amounts of data.
	Enhanced error codes.
	A more precise language for MIB specification

The standard documents that define SNMPv2 are incomplete, in the sense that they
do not specify how an SNMPv2 message looks like. The message format and security
issues are left to a special Administrative Framework. One such framework is the
Community-based SNMPv2 Framework (SNMPv2c), which uses the same message format
and framework as SNMPv1. Other experimental frameworks as exist, e.g. SNMPv2u
and SNMPv2*.
The SNMPv3 specifications take a modular approach to SNMP. All modules are
separated from each other, and can be extended or replaced individually.
Examples of modules are Message definition, Security and Access Control. The
main features of SNMPv3 are:
	Encryption and authentication is added.
	MIBs for agent configuration are defined.

All these specifications are commonly referred to as "SNMPv3", but it is
actually only the Message module, which defines a new message format, and
Security module, which takes care of encryption and authentication, that cannot
be used with SNMPv1 or SNMPv2c. In this version of the agent toolkit, all the
standard MIBs for agent configuration are used. This includes MIBs for
definition of management targets for notifications. These MIBs are used
regardless of which SNMP version the agent is configured to use.
The extensible agent in this toolkit understands the SNMPv1, SNMPv2c and SNMPv3.
Recall that SNMP consists of two separate parts, the MIB definition language
(SMI), and the protocol. On the protocol level, the agent can be configured to
speak v1, v2c, v3 or any combination of them at the same time, i.e. a v1 request
gets an v1 reply, a v2c request gets a v2c reply, and a v3 request gets a v3
reply. On the MIB level, the MIB compiler can compile both SMIv1 and SMIv2 MIBs.
Once compiled, any of the formats can be loaded into the agent, regardless of
which protocol version the agent is configured to use. This means that the agent
translates from v2 notifications to v1 traps, and vice versa. For example, v2
MIBs can be loaded into an agent that speaks v1 only. The procedures for the
translation between the two protocols are described in RFC 1908 and RFC 2089.
In order for an implementation to make full use of the enhanced SNMPv2 error
codes, it is essential that the instrumentation functions always return SNMPv2
error codes, in case of error. These are translated into the corresponding
SNMPv1 error codes by the agent, if necessary.
Note
The translation from an SMIv1 MIB to an SNMPv2c or SNMPv3 reply is always very
straightforward, but the translation from a v2 MIB to a v1 reply is somewhat
more complicated. There is one data type in SMIv2, called Counter64, that an
SNMPv1 manager cannot decode correctly. Therefore, an agent may never send a
Counter64 object to an SNMPv1 manager. The common practice in these
situations is to simple ignore any Counter64 objects, when sending a reply
or a trap to an SNMPv1 manager. For example, if an SNMPv1 manager tries to GET
an object of type Counter64, he will get a noSuchName error, while an
SNMPv2 manager would get a correct value.
Operation
The following steps are needed to get a running agent:
	Write your MIB in SMI in a text file.
	Write the instrumentation functions in Erlang and compile them.
	Put their names in the association file.
	Run the MIB together with the association file through the MIB compiler.
	Configure the application (agent).
	Start the application (agent).
	Load the compiled MIB into the agent.

The figures in this section illustrate the steps involved in the development of
an SNMP agent.

[image: MIB Compiler Principles]
The compiler parses the SMI file and associates each table or variable with an
instrumentation function (see the figure
MIB Compiler Principles). The actual
instrumentation functions are not needed at MIB compile time, only their names.
The binary output file produced by the compiler is read by the agent at MIB load
time (see the figure Starting the Agent).
The instrumentation is ordinary Erlang code which is loaded explicitly or
automatically the first time it is called.

[image: Starting the Agent]
The SNMP agent system consists of one Master Agent and optional sub-agents. The
Master Agent can be seen as a special kind of sub-agent. It implements the core
agent functionality, UDP packet processing, type checking, access control, trap
distribution, and so on. From a user perspective, it is used as an ordinary
sub-agent.
Sub-agents are only needed if your application requires special support for
distribution from the SNMP toolkit. A sub-agent can also be used if the
application requires a more complex set transaction scheme than is found in the
master agent.
The following illustration shows how a system can look in runtime.

[image: Architecture]
A typical operation could include the following steps:
	The Manager sends a request to the Agent.
	The Master Agent decodes the incoming UDP packet.
	The Master Agent determines which items in the request that should be
processed here and which items should be forwarded to its subagent.
	Step 3 is repeated by all subagents.
	Each sub-agent calls the instrumentation for its loaded MIBs.
	The results of calling the instrumentation are propagated back to the Master
Agent.
	The answer to the request is encoded to a UDP Protocol Data Unit (PDU).

The sequence of steps shown is probably more complex than normal, but it
illustrates the amount of functionality which is available. The following points
should be noted:
	An agent can have many MIBs loaded at the same time.
	Sub-agents can also have sub-agents. Each sub-agent can have an arbitrary
number of child sub-agents registered, forming a hierarchy.
	One MIB can communicate with many applications.
	Instrumentation can use Distributed Erlang to communicate with an application.

Most applications only need the Master Agent because an agent can have multiple
MIBs loaded at the same time.
Sub-agents and MIB Loading

Since applications tend to be transient (they are dynamically loaded and
unloaded), the management of these applications must be dynamic as well. For
example, if we have an equipment MIB for a rack and different MIBs for boards,
which can be installed in the rack, the MIB for a card should be loaded when the
card is inserted, and unloaded when the card is removed.
In this agent system, there are two ways to dynamically install management
information. The most common way is to load an MIB into an agent. The other way
is to use a sub-agent, which is controlled by the application and is able to
register and unregister itself. A sub-agent can register itself for managing a
sub-tree (not to be mixed up with erlang:register). The sub-tree is identified
by an Object Identifier. When a sub-agent is registered, it receives all
requests for this particular sub-tree and it is responsible for answering them.
It should also be noted that a sub-agent can be started and stopped at any time.
Compared to other SNMP agent packages, there is a significant difference in this
way of using sub-agents. Other packages normally use sub-agents to load and
unload MIBs in run-time. In Erlang, it is easy to load code in run-time and it
is possible to load an MIB into an existing sub-agent. It is not necessary to
create a new process for handling a new MIB.
Sub-agents are used for the following reasons:
	to provide a more complex set-transaction scheme than master agent
	to avoid unnecessary process communication
	to provide a more lightweight mechanism for loading and unloading MIBs in
run-time
	to provide interaction with other SNMP agent toolkits.

Refer to the chapter Advanced Agent Topics in this
User's Guide for more information about these topics.
The communication protocol between sub-agents is the normal message passing
which is used in distributed Erlang systems. This implies that sub-agent
communication is very efficient compared to SMUX, DPI, AgentX, and similar
protocols.
Contexts and Communities

A context is a collection of management information accessible by an SNMP
entity. An instance of a management object may exist in more than one context.
An SNMP entity potentially has access to many contexts.
Each managed object can exist in many instances within a SNMP entity. To
identify the instances, specified by an MIB module, a method to distinguish the
actual instance by its 'scope' or context is used. Often the context is a
physical or a logical device. It can include multiple devices, a subset of a
single device or a subset of multiple devices, but the context is always defined
as a subset of a single SNMP entity. To be able to identify a specific item of
management information within an SNMP entity, the context, the object type and
its instance must be used.
For example, the managed object type ifDescr from RFC1573, is defined as the
description of a network interface. To identify the description of device-X's
first network interface, four pieces of information are needed: the snmpEngineID
of the SNMP entity which provides access to the management information at
device-X, the contextName (device-X), the managed object type (ifDescr), and
the instance ("1").
In SNMPv1 and SNMPv2c, the community string in the message was used for (at
least) three different purposes:
	to identify the context
	to provide authentication
	to identify a set of trap targets

In SNMPv3, each of these usage areas has its own unique mechanism. A context is
identified by the name of the SNMP entity, contextEngineID, and the name of
the context, contextName. Each SNMPv3 message contains values for these two
parameters.
There is a MIB, SNMP-COMMUNITY-MIB, which maps a community string to a
contextEngineID and contextName. Thus, each message, an SNMPv1, SNMPv2c or
an SNMPv3 message, always uniquely identifies a context.
For an agent, the contextEngineID identified by a received message, is always
equal to the snmpEngineID of the agent. Otherwise, the message was not
intended for the agent. If the agent is configured with more than one context,
the instrumentation code must be able to figure out for which context the
request was intended. There is a function snmpa:current_context/0 provided for
this purpose.
By default, the agent has no knowledge of any other contexts than the default
context, "". If it is to support more contexts, these must be explicitly
added, by using an appropriate configuration file
Agent Configuration Files.
Management of the Agent

There is a set of standard MIBs, which are used to control and configure an SNMP
agent. All of these MIBs, with the exception of the optional SNMP-PROXY-MIB
(which is only used for proxy agents), are implemented in this agent. Further,
it is configurable which of these MIBs are actually loaded, and thus made
visible to SNMP managers. For example, in a non-secure environment, it might be
a good idea to not make MIBs that define access control visible. Note, the data
the MIBs define is used internally in the agent, even if the MIBs not are
loaded. This chapter describes these standard MIBs, and some aspects of their
implementation.
Any SNMP agent must implement the system group and the snmp group, defined
in MIB-II. The definitions of these groups have changed from SNMPv1 to SNMPv2.
MIBs and implementations for both of these versions are Provided in the
distribution. The MIB file for SNMPv1 is called STANDARD-MIB, and the
corresponding for SNMPv2 is called SNMPv2-MIB. If the agent is configured for
SNMPv1 only, the STANDARD-MIB is loaded by default; otherwise, the SNMPv2-MIB is
loaded by default. It is possible to override this default behavior, by
explicitly loading another version of this MIB, for example, you could choose to
implement the union of all objects in these two MIBs.
An SNMPv3 agent must implement the SNMP-FRAMEWORK-MIB and SNMP-MPD-MIB. These
MIBs are loaded by default, if the agent is configured for SNMPv3. These MIBs
can be loaded for other versions as well.
There are five other standard MIBs, which also may be loaded into the agent.
These MIBs are:
	SNMP-TARGET-MIB and SNMP-NOTIFICATION-MIB, which defines managed objects for
configuration of management targets, i.e. receivers of notifications (traps
and informs). These MIBs can be used with any SNMP version.
	SNMP-VIEW-BASED-ACM-MIB, which defined managed objects for access control.
This MIB can be used with any SNMP version.
	SNMP-COMMUNITY-MIB, which defines managed objects for coexistence of SNMPv1
and SNMPv2c with SNMPv3. This MIB is only useful if SNMPv1 or SNMPv2c is used,
possibly in combination with SNMPv3.
	SNMP-USER-BASED-SM-MIB, which defines managed objects for authentication and
privacy. This MIB is only useful with SNMPv3.

All of these MIBs should be loaded into the Master Agent. Once loaded, these
MIBs are always available in all contexts.
The ASN.1 code, the Erlang source code, and the generated .hrl files for them
are provided in the distribution and are placed in the directories mibs,
src, and include, respectively, in the snmp application.
The .hrl files are generated with snmpc:mib_to_hrl/1. Include these files in
your code as in the following example:
-include_lib("snmp/include/SNMPv2-MIB.hrl").
The initial values for the managed objects defined in these tables, are read at
start-up from a set of configuration files. These are described in
Configuration Files.
STANDARD-MIB and SNMPv2-MIB
These MIBs contain the snmp- and system groups from MIB-II which is defined
in RFC1213 (STANDARD-MIB) or RFC1907 (SNMPv2-MIB). They are implemented in the
snmp_standard_mib module. The snmp counters all reside in volatile memory
and the system and snmpEnableAuthenTraps variables in persistent memory,
using the SNMP built-in database (refer to the Reference Manual, section snmp,
module snmpa_local_db for more details).
If another implementation of any of these variables is needed, e.g. to store the
persistent variables in a Mnesia database, an own implementation of the
variables must be made. That MIB will be compiled and loaded instead of the
default MIB. The new compiled MIB must have the same name as the original MIB
(i.e. STANDARD-MIB or SNMPv2-MIB), and be located in the SNMP configuration
directory (see Configuration Files.)
One of these MIBs is always loaded. If only SNMPv1 is used, STANDARD-MIB is
loaded, otherwise SNMPv2-MIB is loaded.
Data Types
There are some new data types in SNMPv2 that are useful in SNMPv1 as well. In
the STANDARD-MIB, three data types are defined, RowStatus, TruthValue and
DateAndTime. These data types are originally defined as textual conventions in
SNMPv2-TC (RFC1903).
SNMP-FRAMEWORK-MIB and SNMP-MPD-MIB
The SNMP-FRAMEWORK-MIB and SNMP-MPD-MIB define additional read-only managed
objects, which is used in the generic SNMP framework defined in RFC2271 and the
generic message processing and dispatching module defined in RFC2272. They are
generic in the sense that they are not tied to any specific SNMP version.
The objects in these MIBs are implemented in the modules snmp_framework_mib
and snmp_standard_mib, respectively. All objects reside in volatile memory,
and the configuration files are always reread at start-up.
If SNMPv3 is used, these MIBs are loaded by default.
SNMP-TARGET-MIB and SNMP-NOTIFICATION-MIB
The SNMP-TARGET-MIB and SNMP-NOTIFICATION-MIB define managed objects for
configuration of notification receivers. They are described in detail in
RFC2273. Only a brief description is given here.
All tables in these MIBs have a column of type StorageType. The value of this
column specifies how each row is stored, and what happens in case of a restart
of the agent. The implementation supports the values volatile and
nonVolatile. When the tables are initially filled with data from the
configuration files, these rows will automatically have storage type
nonVolatile. Should the agent restart, all nonVolatile rows survive the
restart, while the volatile rows are lost. The configuration files are not
read at restart, by default.
These MIBs are not loaded by default.
snmpNotifyTable
An entry in the snmpNotifyTable selects a set of management targets, which
should receive notifications, as well as the type (trap or inform) of
notification that should be sent to each selected management target. When an
application sends a notification using the function send_notification/5 or the
function send_trap the parameter NotifyName, specified in the call, is used
as an index in the table. The notification is sent to the management targets
selected by that entry.
snmpTargetAddrTable
An entry in the snmpTargetAddrTable defines transport parameters (such as IP
address and UDP port) for each management target. Each row in the
snmpNotifyTable refers to potentially many rows in the snmpTargetAddrTable.
Each row in the snmpTargetAddrTable refers to an entry in the
snmpTargetParamsTable.
snmpTargetParamsTable
An entry in the snmpTargetParamsTable defines which SNMP version to use, and
which security parameters to use.
Which SNMP version to use is implicitly defined by specifying the Message
Processing Model. This version of the agent handles the models v1, v2c and
v3.
Each row specifies which security model to use, along with security level and
security parameters.
SNMP-VIEW-BASED-ACM-MIB
The SNMP-VIEW-BASED-ACM-MIB defines managed objects to control access to the the
managed objects for the managers. The View Based Access Control Module (VACM)
can be used with any SNMP version. However, if it is used with SNMPv1 or
SNMPv2c, the SNMP-COMMUNITY-MIB defines additional objects to map community
strings to VACM parameters.
All tables in this MIB have a column of type StorageType. The value of this
column specifies how each row is stored, and what happens in case of a restart
of the agent. The implementation supports the values volatile and
nonVolatile. When the tables are initially filled with data from the
configuration files, these rows will automatically have storage type
nonVolatile. Should the agent restart, all nonVolatile rows survive the
restart, while the volatile rows are lost. The configuration files are not
read at restart by default.
This MIB is not loaded by default.
VACM is described in detail in RFC2275. Here is only a brief description given.
The basic concept is that of a MIB view. An MIB view is a subset of all the
objects implemented by an agent. A manager has access to a certain MIB view,
depending on which security parameters are used, in which context the request is
made, and which type of request is made.
The following picture gives an overview of the mechanism to select an MIB view:
[image: Overview of the mechanism of MIB selection]
vacmContextTable
The vacmContextTable is a read-only table that lists all available contexts.
vacmSecurityToGroupTable
The vacmSecurityToGroupTable maps a securityModel and a securityName to a
groupName.
vacmAccessTable
The vacmAccessTable maps the groupName (found in
vacmSecurityToGroupTable), contextName, securityModel, and securityLevel
to an MIB view for each type of operation (read, write, or notify). The MIB view
is represented as a viewName. The definition of the MIB view represented by
the viewName is found in the vacmViewTreeFamilyTable
vacmViewTreeFamilyTable
The vacmViewTreeFamilyTable is indexed by the viewName, and defines which
objects are included in the MIB view.
The MIB definition for the table looks as follows:
VacmViewTreeFamilyEntry ::= SEQUENCE
 {
 vacmViewTreeFamilyViewName SnmpAdminString,
 vacmViewTreeFamilySubtree OBJECT IDENTIFIER,
 vacmViewTreeFamilyMask OCTET STRING,
 vacmViewTreeFamilyType INTEGER,
 vacmViewTreeFamilyStorageType StorageType,
 vacmViewTreeFamilyStatus RowStatus
 }

INDEX { vacmViewTreeFamilyViewName,
 vacmViewTreeFamilySubtree
 }
Each vacmViewTreeFamilyViewName refers to a collection of sub-trees.
MIB View Semantics
An MIB view is a collection of included and excluded sub-trees. A sub-tree is
identified by an OBJECT IDENTIFIER. A mask is associated with each sub-tree.
For each possible MIB object instance, the instance belongs to a sub-tree if:
	the OBJECT IDENTIFIER name of that MIB object instance comprises at least as
many sub-identifiers as does the sub-tree, and
	each sub-identifier in the name of that MIB object instance matches the
corresponding sub-identifier of the sub-tree whenever the corresponding bit of
the associated mask is 1 (0 is a wild card that matches anything).

Membership of an object instance in an MIB view is determined by the following
algorithm:
	If an MIB object instance does not belong to any of the relevant sub-trees,
then the instance is not in the MIB view.
	If an MIB object instance belongs to exactly one sub-tree, then the instance
is included in, or excluded from, the relevant MIB view according to the type
of that entry.
	If an MIB object instance belongs to more than one sub-tree, then the sub-tree
which comprises the greatest number of sub-identifiers, and is the
lexicographically greatest, is used.

Note
If the OBJECT IDENTIFIER is longer than an OBJECT IDENTIFIER of an object type
in the MIB, it refers to object instances. Because of this, it is possible to
control whether or not particular rows in a table shall be visible.
SNMP-COMMUNITY-MIB
The SNMP-COMMUNITY-MIB defines managed objects that is used for coexistence
between SNMPv1 and SNMPv2c with SNMPv3. Specifically, it contains objects for
mapping between community strings and version-independent SNMP message
parameters. In addition, this MIB provides a mechanism for performing source
address validation on incoming requests, and for selecting community strings
based on target addresses for outgoing notifications.
All tables in this MIB have a column of type StorageType. The value of this
column specifies how each row is stored, and what happens in case of a restart
of the agent. The implementation supports the values volatile and
nonVolatile. When the tables are initially filled with data from the
configuration files, these rows will automatically have storage type
nonVolatile. Should the agent restart, all nonVolatile rows survive the
restart, while the volatile rows are lost. The configuration files are not
read at restart, by default.
This MIB is not loaded by default.
SNMP-USER-BASED-SM-MIB
The SNMP-USER-BASED-SM-MIB defines managed objects that is used for the
User-Based Security Model.
All tables in this MIB have a column of type StorageType. The value of the
column specifies how each row is stored, and what happens in case of a restart
of the agent. The implementation supports the values volatile and
nonVolatile. When the tables are initially filled with data from the
configuration files, these rows will automatically have storage type
nonVolatile. Should the agent restart, all nonVolatile rows survive the
restart, while the volatile rows are lost. The configuration files are not
read at restart, by default.
This MIB is not loaded by default.
OTP-SNMPEA-MIB
The OTP-SNMPEA-MIB was used in earlier versions of the agent, before standard
MIBs existed for access control, MIB views, and trap target specification. All
objects in this MIB are now obsolete.
Notifications
Notifications are defined in SMIv1 with the TRAP-TYPE macro in the definition of
an MIB (see RFC1215). The corresponding macro in SMIv2 is NOTIFICATION-TYPE.
When an application decides to send a notification, it calls one of the
following functions:
snmpa:send_notification(Agent, Notification, Receiver
 [, NotifyName, ContextName, Varbinds])
snmpa:send_trap(Agent, Notification, Community [, Receiver, Varbinds])
providing the registered name or process identifier of the agent where the MIB,
which defines the notification is loaded and the symbolic name of the
notification.
If the send_notification/3,4 function is used, all management targets are
selected, as defined in RFC2273. The Receiver parameter defines where the
agent should send information about the delivery of inform requests.
If the send_notification/5 function is used, an NotifyName must be provided.
This parameter is used as an index in the snmpNotifyTable, and the management
targets defined by that single entry is used.
The send_notification/6 function is the most general version of the function.
A ContextName must be specified, from which the notification will be sent. If
this parameter is not specified, the default context ("") is used.
The function send_trap is kept for backwards compatibility and should not be
used in new code. Applications that use this function will continue to work. The
snmpNotifyName is used as the community string by the agent when a
notification is sent.
Notification Sending
The simplest way to send a notification is to call the function
snmpa:send_notification(Agent, Notification, no_receiver). In this case, the
agent performs a get-operation to retrieve the object values that are defined in
the notification specification (with the TRAP-TYPE or NOTIFICATION-TYPE macros).
The notification is sent to all managers defined in the target and notify
tables, either unacknowledged as traps, or acknowledged as inform requests.
If the caller of the function wants to know whether or not acknowledgments are
received for a certain notification (provided it is sent as an inform), the
Receiver parameter can be specified as {Tag, ProcessName} (refer to the
Reference Manual, section snmp, module snmp for more details). In this case,
the agent send a message {snmp_notification, Tag, {got_response, ManagerAddr}}
or {snmp_notification, Tag, {no_response, ManagerAddr}} for each management
target.
Sometimes it is not possible to retrieve the values for some of the objects in
the notification specification with a get-operation. However, they are known
when the send_notification function is called. This is the case if an object
is an element in a table. It is possible to give the values of some objects to
the send_notification function
snmpa:send_notification(Agent, Notification, Receiver, Varbinds). In this
function, Varbinds is a list of Varbind, where each Varbind is one of:
	{Variable, Value}, where Variable is the symbolic name of a scalar
variable referred to in the notification specification.
	{Column, RowIndex, Value}, where Column is the symbolic name of a column
variable. RowIndex is a list of indices for the specified element. If this
is the case, the OBJECT IDENTIFIER sent in the trap is the RowIndex appended
to the OBJECT IDENTIFIER for the table column. This is the OBJECT IDENTIFIER
which specifies the element.
	{OID, Value}, where OID is the OBJECT IDENTIFIER for an instance of an
object, scalar variable or column variable.

For example, to specify that sysLocation should have the value "upstairs" in
the notification, we could use one of:
	{sysLocation, "upstairs"} or
	{[1,3,6,1,2,1,1,6,0], "upstairs"}

It is also possible to specify names and values for extra variables that should
be sent in the notification, but were not defined in the notification
specification.
The notification is sent to all management targets found in the tables. However,
make sure that each manager has access to the variables in the notification. If
a variable is outside a manager's MIB view, this manager will not receive the
notification.
Note
By definition, it is not possible to send objects with ACCESS not-accessible
in notifications. However, historically this is often done and for this reason
we allow it in notification sending. If a variable has ACCESS
not-accessible, the user must provide a value for the variable in the
Varbinds list. It is not possible for the agent to perform a get-operation
to retrieve this value.
Notification Filters
It is possible to add notification filters to an agent. These filters will be
called when a notification is to be sent. Their purpose is to allow
modification, suppression or other type of actions.
A notification filter is a module implementing the snmpa_notification_filter
behaviour. A filter is added/deleted using the functions:
snmpa:register_notification_filter/5 and
snmpa:unregister_notification_filter/2.
Unless otherwise specified, the order of the registered filters will be the
order in which they are registered.
Sub-agent Path
If a value for an object is not given to the send_notification function, the
sub-agent will perform a get-operation to retrieve it. If the object is not
implemented in this sub-agent, its parent agent tries to perform a get-operation
to retrieve it. If the object is not implemented in this agent either, it
forwards the object to its parent, and so on. Eventually the Master Agent is
reached and at this point all unknown object values must be resolved. If some
object is unknown even to the Master Agent, this is regarded as an error and is
reported with a call to user_err/2 of the error report module. No
notifications are sent in this case.
For a given notification, the variables, which are referred to in the
notification specification, must be implemented by the agent that has the MIB
loaded, or by some parent to this agent. If not, the application must provide
values for the unknown variables. The application must also provide values for
all elements in tables.
Discovery
The sender is authoritative for messages containing payload which does not
expect a response (for example SNMPv2-Trap, Response or Report PDU).
The receiver is authoritative for messages containing payload which expects
a response (for example Get, GetNext, Get-Bulk, Set or Inform PDU).
The agent can both perform and respond to discovery.
The agent responds to discovery autonomously, without interaction by the user.
Initiating discovery towards a manager is done by calling the
snmpa:discovery/6 function. The EngineId field of the target (manager) entry in the
target_addr.conf file has to have the
value discovery. Note that if the manager does not respond, the Timeout and
RetryCount fields decide how long the function will hang before it returns.
Discovery can only be performed towards one manager at a time.

 Manager Functional Description

Features
The manager provided with the tool is a lightweight manager that basically
provides a means to communicate with agents.
It does not really implement any management capabilities by itself. That is up
to the user.
A user in this context is basically a module implementing the snmpm_user
behaviour. A user can issue snmp requests and receive notification/traps.
Agents to be accessed by the manager needs to be registered by a user. Once
registered, they can be accessed by all registered users.
Notifications/traps from an agent is delivered to the user that did the
registration.
Any message from an agent that is not registered is delivered to the default
user.
By default, the default user is set to the snmpm_user_default module, which
simply sends an info message to the error_logger. It is however highly
recommended that this module be replaced by another that does something useful
(see configuration params for more info).
When using version 3, then (at least one) usm user has to be registered.
Requests can be issued in two different ways. Synchronous (see
sync_set, sync_get,
sync_get_next and
sync_get_bulk) and asynchronous (see
async_set, async_get,
async_get_next and
async_get_bulk). With synchronous the snmp reply is
returned by the function. With asynchronous, the reply will instead be delivered
through a call to one of the handle_pdu callback function defined by the
handle_pdu behaviour.
Operation
The following steps are needed to get the manager running:
	[optional] Implement the default user.
	Implement the user(s).
	Configure the application (manager).
	Start the application (manager).
	Register the user(s).
	The user(s) register their agents.

MIB loading
It is possible to load mibs into the manager, but this is not necessary for
normal operation, and not recommended.

 The MIB Compiler

The chapter The MIB Compiler describes the MIB compiler and contains the
following topics:
	Operation
	Import
	Consistency checking between MIBs
	.hrl file generation
	Emacs integration
	Deviations from the standard

Note
When importing MIBs, ensure that the imported MIBs as well as the importing
MIB are compiled using the same version of the SNMP-compiler.
Operation
The MIB must be written as a text file in SMIv1 or SMIv2 using an ASN.1 notation
before it will be compiled. This text file must have the same name as the MIB,
but with the suffix .mib. This is necessary for handling the IMPORT
statement.
The association file, which contains the names of instrumentation functions for
the MIB, should have the suffix .funcs. If the compiler does not find the
association file, it gives a warning message and uses default instrumentation
functions. (See Default Instrumentation for
more details).
The MIB compiler is started with a call to snmpc:compile(<mibname>). For
example:
snmpc:compile("RFC1213-MIB").
The output is a new file which is called <mibname>.bin.
The MIB compiler understands both SMIv1 and SMIv2 MIBs. It uses the
MODULE-IDENTITY statement to determinate if the MIB is written in SMI version 1
or 2.
Importing MIBs
The compiler handles the IMPORT statement. It is important to import the
compiled file and not the ASN.1 (source) file. A MIB must be recompiled to make
changes visible to other MIBs importing it.
The compiled files of the imported MIBs must be present in the current
directory, or a directory in the current path. The path is supplied with the
{i, Path} option, for example:
snmpc:compile("MY-MIB",
 [{i, ["friend_mibs/", "../standard_mibs/"]}]).
It is also possible to import MIBs from OTP applications in an "include_lib"
like fashion with the il option. Example:
snmpc:compile("MY-MIB",
 [{il, ["snmp/priv/mibs/", "myapp/priv/mibs/"]}]).
finds the latest version of the snmp and myapp applications in the OTP
system and uses the expanded paths as include paths.
Note that an SMIv2 MIB can import an SMIv1 MIB and vice versa.
The following MIBs are built-ins of the Erlang SNMP compiler: SNMPv2-SMI,
RFC-1215, RFC-1212, SNMPv2-TC, SNMPv2-CONF, and RFC1155-SMI. They cannot
therefore be compiled separately.
MIB Consistency Checking
When an MIB is compiled, the compiler detects if several managed objects use the
same OBJECT IDENTIFIER. If that is the case, it issues an error message.
However, the compiler cannot detect Oid conflicts between different MIBs. These
kinds of conflicts generate an error at load time. To avoid this, the following
function can be used to do consistency checking between MIBs:

erl>snmpc:is_consistent(ListOfMibNames).
ListOfMibNames is a list of compiled MIBs, for example
["RFC1213-MIB", "MY-MIB"]. The function also performs consistency checking of
trap definitions.
.hrl File Generation
It is possible to generate an .hrl file which contains definitions of Erlang
constants from a compiled MIB file. This file can then be included in Erlang
source code. The file will contain constants for:
	object Identifiers for tables, table entries and variables
	column numbers
	enumerated values
	default values for variables and table columns.

Use the following command to generate a .hrl file from an MIB:
erl>snmpc:mib_to_hrl(MibName).
Emacs Integration
With the Emacs editor, the next-error (C-X `) function can be used
indicate where a compilation error occurred, provided the error message is
described by a line number.
Use M-x compile to compile an MIB from inside Emacs, and enter:
 erl -s snmpc compile <MibName> -noshell
An example of <MibName> is RFC1213-MIB.
Compiling from a Shell or a Makefile
The erlc commands can be used to compile SNMP MIBs. Example:
 erlc MY-MIB.mib
All the standard erlc flags are supported, e.g.
 erlc -I mymibs -o mymibs -W MY-MIB.mib
The flags specific to the MIB compiler can be specified by using the + syntax:
 erlc +'{group_check,false}' MY-MIB.mib
Deviations from the Standard
In some aspects the Erlang MIB compiler does not follow or implement the SMI
fully. Here are the differences:
	Tables must be written in the following order: tableObject, entryObject,
column1, ..., columnN (in order).
	Integer values, for example in the SIZE expression must be entered in
decimal syntax, not in hex or bit syntax.
	Symbolic names must be unique within a MIB and within a system.
	Hyphens are allowed in SMIv2 (a pragmatic approach). The reason for this is
that according to SMIv2, hyphens are allowed for objects converted from SMIv1,
but not for others. This is impossible to check for the compiler.
	If a word is a keyword in any of SMIv1 or SMIv2, it is a keyword in the
compiler (deviates from SMIv1 only).
	Indexes in a table must be objects, not types (deviates from SMIv1 only).
	A subset of all semantic checks on types are implemented. For example,
strictly the TimeTicks may not be sub-classed but the compiler allows this
(standard MIBs must pass through the compiler) (deviates from SMIv2 only).
	The MIB.Object syntax is not implemented (since all objects must be unique
anyway).
	Two different names cannot define the same OBJECT IDENTIFIER.
	The type checking in the SEQUENCE construct is non-strict (i.e. subtypes may
be specified). The reason for this is that some standard MIBs use this.
	A definition has normally a status field. When the status field has the value
deprecated, then the MIB-compiler will ignore this definition. With the
MIB-compiler option {deprecated,true} the MIB-compiler does not ignore the
deprecated definitions.
	An object has a DESCRIPTIONS field. The descriptions-field will not be
included in the compiled mib by default. In order to get the description, the
mib must be compiled with the option description.

 Running the application

The chapter Running the application describes how the application is
configured and started. The topics include:
	configuration directories and parameters
	modifying the configuration files
	starting the application (agent and/or manager)
	debugging the application (agent and/or manager)

Refer also to the chapter(s)
Definition of Agent Configuration Files and
Definition of Manager Configuration Files which
contains more detailed information about the agent and manager configuration
files.

Configuring the application
The following two directories must exist in the system to run the agent:
	the configuration directory stores all configuration files used by the agent
(refer to the chapter
Definition of Agent Configuration Files for more
information).
	the database directory stores the internal database files.

The following directory must exist in the system to run the manager:
	the configuration directory stores all configuration files used by the
manager (refer to the chapter
Definition of Manager Configuration Files for
more information).
	the database directory stores the internal database files.

The agent and manager uses (application) configuration parameters to find out
where these directories are located. The parameters should be defined in an
Erlang system configuration file. The following configuration parameters are
defined for the SNMP application:
 agent_options() = [agent_option()]
 agent_option() = {restart_type, restart_type()} |
 {agent_type, agent_type()} |
 {agent_verbosity, verbosity()} |
 {versions, versions()} |
 {discovery, agent_discovery()} |
 {gb_max_vbs, gb_max_vbs()} |
 {priority, priority()} |
 {multi_threaded, multi_threaded()} |
 {db_dir, db_dir()} |
 {db_init_error, db_init_error()} |
 {local_db, local_db()} |
 {net_if, agent_net_if()} |
 {mibs, mibs()} |
 {mib_storage, mib_storage()} |
 {mib_server, mib_server()} |
 {audit_trail_log, audit_trail_log()} |
 {error_report_mod, error_report_mod()} |
 {note_store, note_store()} |
 {symbolic_store, symbolic_store()} |
 {target_cache, target_cache()} |
 {config, agent_config()}
 manager_options() = [manager_option()]
 manager_option() = {restart_type, restart_type()} |
 {net_if, manager_net_if()} |
 {server, server()} |
 {note_store, note_store()} |
 {config, manager_config()} |
 {inform_request_behaviour, manager_irb()} |
 {mibs, manager_mibs()} |
 {priority, priority()} |
 {audit_trail_log, audit_trail_log()} |
 {versions, versions()} |
 {def_user_mod, def_user_module() |
 {def_user_data, def_user_data()}

Agent specific config options and types:
	agent_type() = master | sub <optional> - If master,
one master agent is started. Otherwise, no agents are started.
Default is master.

	agent_discovery() = [agent_discovery_opt()] <optional> -
agent_discovery_opt() = {terminating, agent_terminating_discovery_opts()} | {originating, agent_originating_discovery_opts()}
The terminating options effects discovery initiated by a manager.
The originating options effects discovery initiated by this agent.
For defaults see the options in agent_discovery_opt().

	agent_terminating_discovery_opts() = [agent_terminating_discovery_opt()] <optional> -
agent_terminating_discovery_opt() = {enable, boolean()} | {stage2, discovery | plain} | {trigger_username, string()}
These are options effecting discovery terminating in this agent (i.e.
initiated by a manager).
The default values for the terminating discovery options are:
	enable: true
	stage2: discovery
	trigger_username: ""

	agent_originating_discovery_opts() = [agent_originating_discovery_opt()] <optional> -
agent_originating_discovery_opt() = {enable, boolean()}
These are options effecting discovery originating in this agent.
The default values for the originating discovery options are:
	enable: true

	multi_threaded() = bool() | extended<optional> - If true
(or extended), the agent is multi-threaded, with one thread for each get
request.
The value extended means that a special 'process' is also created intended
to handle all notifications.
	true - One worker dedicated to 'set-requests' and one (main) worker for
all other requests ('get-request' and notifications).
If the 'main' worker is busy, a temporary process is spawned to handle that
job ('get-request' or notification).

	extended - One worker dedicated to 'set-requests', one worker dedicated
to notifications and one (main) worker for all 'get-requests'.
If the 'main' worker is busy, a temporary process is spawned to handle that
'get-request'.

Note
Even with multi-threaded set to extended there is still a risk for
'reorder' when sending inform-requsts, which require a response (and may
therefore require resending).
Also, there is of course no way to guarantee order once the package is on
the network.
Default is false.

	db_dir() = string() <mandatory> - Defines where the
SNMP agent internal db files are stored.

	gb_max_vbs() = pos_integer() | infinity <optional> - Defines the maximum number of varbinds allowed in a Get-BULK response.
Default is 1000.

	local_db() = [local_db_opt()] <optional> -
local_db_opt() = {repair, agent_repair()} | {auto_save, agent_auto_save()} | {verbosity, verbosity()}
Defines options specific for the SNMP agent local database.
For defaults see the options in local_db_opt().

	agent_repair() = false | true | force <optional> -
When starting snmpa_local_db it always tries to open an existing database. If
false, and some errors occur, a new database is created instead. If true,
an existing file will be repaired. If force, the table will be repaired even
if it was properly closed.
Default is true.

	agent_auto_save() = integer() | infinity <optional> - The auto save interval. The table is flushed to disk whenever not
accessed for this amount of time.
Default is 5000.

	agent_net_if() = [agent_net_if_opt()] <optional> -
agent_net_if_option() = {module, agent_net_if_module()} | {verbosity, verbosity()} | {options, agent_net_if_options()}
Defines options specific for the SNMP agent network interface entity.
For defaults see the options in agent_net_if_opt().

	agent_net_if_module() = atom() <optional> - Module
which handles the network interface part for the SNMP agent. Must implement
the snmpa_network_interface behaviour.
Default is snmpa_net_if.

	agent_net_if_options() = [agent_net_if_option()] <optional> -
agent_net_if_option() = {bind_to, bind_to()} | {sndbuf, sndbuf()} | {recbuf, recbuf()} | {no_reuse, no_reuse()} | {req_limit, req_limit()} | {filter, agent_net_if_filter_options()} | {open_err_filters, agent_net_if_open_err_filters()} | {extra_sock_opts, extra_socket_options()} | {inet_backend, inet_backend()}
These options are actually specific to the used module. The ones shown here
are applicable to the default agent_net_if_module().
Note
If the user has configured transports with options then those will take
precedence over these options. See
agent information for more
info.
For defaults see the options in agent_net_if_option().

	req_limit() = integer() | infinity <optional> -
Max number of simultaneous requests handled by the agent.
Default is infinity.

	agent_net_if_filter_options() = [agent_net_if_filter_option()] <optional> -
agent_net_if_filter_option() = {module, agent_net_if_filter_module()}
These options are actually specific to the used module. The ones shown here
are applicable to the default agent_net_if_filter_module().
For defaults see the options in agent_net_if_filter_option().

	agent_net_if_filter_module() = atom() <optional> - Module which handles the network interface filter part for the SNMP
agent. Must implement the
snmpa_network_interface_filter behaviour.
Default is snmpa_net_if_filter.

	agent_net_if_open_err_filters() = [agent_net_if_open_err_filter()] <optional> - agent_net_if_open_err_filter() = atom()
During agent initiation, the transports UDP sockets are opened. If this
operation fails, the net-if (and the agent) fails to start (crash). This
(filter) list contains error (reasons) that will make net-if fail "nicely".
This (filter) list, is supposed to contain errors that can be returned by
gen_udp:open/1,2. The effect is that any error returned by
gen_udp:open which are in this list, will be considered
"non-fatal" and will only result in an info message, rather than an error
message. Net If, and the agent, will still crash, but will produce a less
obnoxious message.

	agent_mibs() = [string()] <optional> - Specifies a list
of MIBs (including path) that defines which MIBs are initially loaded into the
SNMP master agent.
Note that the following will always be loaded:
	version v1: STANDARD-MIB
	version v2: SNMPv2
	version v3: SNMPv2, SNMP-FRAMEWORK-MIB and SNMP-MPD-MIB

Default is [].

	mib_storage() = [mib_storage_opt()] <optional> -
mib_storage_opt() = {module, mib_storage_module()} | {options, mib_storage_options()}
This option specifies how basic mib data is stored. This option is used by two
parts of the snmp agent: The mib-server and the symbolic-store.
Default is [{module, snmpa_mib_storage_ets}].

	mib_storage_module() = snmpa_mib_data_ets | snmpa_mib_data_dets | snmpa_mib_data_mnesia | module() - Defines the mib storage module of the SNMP agent as
defined by the snmpa_mib_storage behaviour.
Several entities (mib-server via the its data module and the
symbolic-store) of the snmp agent uses this for storage of miscellaneous mib
related data data retrieved while loading a mib.
There are several implementations provided with the agent:
snmpa_mib_storage_ets, snmpa_mib_storage_dets and
snmpa_mib_storage_mnesia.
Default module is snmpa_mib_storage_ets.

	mib_storage_options() = list() <optional> - This
is implementation depended. That is, it depends on the module. For each module
a specific set of options are valid. For the module provided with the app,
these options are supported:
	snmpa_mib_storage_ets:
{dir, filename()} | {action, keep | clear}, {checksum, boolean()}
	dir - If present, points to a directory where a file to which all data
in the ets table is "synced".
Also, when a table is opened this file is read, if it exists.
By default, this will not be used.

	action - Specifies the behaviour when a non-empty file is found: Keep
its content or clear it out.
Default is keep.

	checksum - Defines if the file is checksummed or not.
Default is false.

	snmpa_mib_storage_dets:
{dir, filename()} | {action, keep | clear}, {auto_save, default | pos_integer()} | {repair, force | boolean()}
	dir - This mandatory option points to a directory where to place the
file of a dets table.

	action - Specifies the behaviour when a non-empty file is found: Keep
its content or clear it out.
Default is keep.

	auto_save - Defines the dets auto-save frequency.
Default is default.

	repair - Defines the dets repair behaviour.
Default is false.

	snmpa_mib_storage_mnesia: {action, keep | clear}, {nodes, [node()]}
	action - Specifies the behaviour when a non-empty, already existing,
table: Keep its content or clear it out.
Default is keep.

	nodes - A list of node names (or an atom describing a list of nodes)
defining where to open the table. Its up to the user to ensure that mnesia
is actually running on the specified nodes.
The following distinct values are recognised:
	[] - Translated into a list of the own node: [node()]
	all - erlang:nodes()
	visible - erlang:nodes(visible)
	connected - erlang:nodes(connected)
	db_nodes - mnesia:system_info(db_nodes)

Default is the result of the call: erlang:nodes().

	mib_server() = [mib_server_opt()] <optional> -
mib_server_opt() = {mibentry_override, mibentry_override()} | {trapentry_override, trapentry_override()} | {verbosity, verbosity()} | {cache, mibs_cache()} | {data_module, mib_server_data_module()}
Defines options specific for the SNMP agent mib server.
For defaults see the options in mib_server_opt().

	mibentry_override() = bool() <optional> - If this
value is false, then when loading a mib each mib- entry is checked prior to
installation of the mib. The purpose of the check is to prevent that the same
symbolic mibentry name is used for different oid's.
Default is false.

	trapentry_override() = bool() <optional> - If this
value is false, then when loading a mib each trap is checked prior to
installation of the mib. The purpose of the check is to prevent that the same
symbolic trap name is used for different trap's.
Default is false.

	mib_server_data_module() = snmpa_mib_data_tttn | module() <optional> - Defines the backend data module of the SNMP agent
mib-server as defined by the snmpa_mib_data behaviour.
At present only the default module is provided with the agent,
snmpa_mib_data_tttn.
Default module is snmpa_mib_data_tttn.

	mibs_cache() = bool() | mibs_cache_opts() <optional> - Shall the agent utilize the mib server lookup cache or not.
Default is true (in which case the mibs_cache_opts() default values
apply).

	mibs_cache_opts() = [mibs_cache_opt()] <optional> -
mibs_cache_opt() = {autogc, mibs_cache_autogc()} | {gclimit, mibs_cache_gclimit()} | {age, mibs_cache_age()}
Defines options specific for the SNMP agent mib server cache.
For defaults see the options in mibs_cache_opt().

	mibs_cache_autogc() = bool() <optional> -
Defines if the mib server shall perform cache gc automatically or leave it to
the user (see gc_mibs_cache/0,1,2,3).
Default is true.

	mibs_cache_age() = integer() > 0 <optional> -
Defines how old the entries in the cache will be allowed to become before they
are GC'ed (assuming GC is performed). Each entry in the cache is "touched"
whenever it is accessed.
The age is defined in milliseconds.
Default is 10 timutes.

	mibs_cache_gclimit() = infinity | integer() > 0 <optional> - When performing a GC, this is the max number of
cache entries that will be deleted from the cache.
The reason why its possible to set a limit, is that if the cache is large, the
GC can potentially take a long time, during which the agent is "busy". But
on a heavily loaded system, we also risk not removing enough elements in the
cache, instead causing it to grow over time. This is the reason the default
value is infinity, which will ensure that all candidates are removed as
soon as possible.
Default is infinity.

	error_report_mod() = atom() <optional> -
Defines an error report module, implementing the snmpa_error_report
behaviour. Two modules are provided with the toolkit: snmpa_error_logger and
snmpa_error_io.
Default is snmpa_error_logger.

	symbolic_store() = [symbolic_store_opt()] -
symbolic_store_opt() = {verbosity, verbosity()}
Defines options specific for the SNMP agent symbolic store.
For defaults see the options in symbolic_store_opt().

	target_cache() = [target_cache_opt()] -
target_cache_opt() = {verbosity, verbosity()}
Defines options specific for the SNMP agent target cache.
For defaults see the options in target_cache_opt().

	agent_config() = [agent_config_opt()] <mandatory> -
agent_config_opt() = {dir, agent_config_dir()} | {force_load, force_load()} | {verbosity, verbosity()}
Defines specific config related options for the SNMP agent.
For defaults see the options in agent_config_opt().

	agent_config_dir = dir() <mandatory> - Defines
where the SNMP agent configuration files are stored.

	force_load() = bool() <optional> - If true the
configuration files are re-read during start-up, and the contents of the
configuration database ignored. Thus, if true, changes to the configuration
database are lost upon reboot of the agent.
Default is false.

Manager specific config options and types:
	server() = [server_opt()] <optional> -
server_opt() = {timeout, server_timeout()} | {verbosity, verbosity()} | {cbproxy, server_cbproxy()} | {netif_sup, server_nis()}
Specifies the options for the manager server process.
Default is silence.

	server_timeout() = integer() <optional> -
Asynchronous request cleanup time. For every request, some info is stored
internally, in order to be able to deliver the reply (when it arrives) to the
proper destination. If the reply arrives, this info will be deleted. But if
there is no reply (in time), the info has to be deleted after the best
before time has been passed. This cleanup will be performed at regular
intervals, defined by the server_timeout() time. The information will have a
best before time, defined by the Expire time given when calling the
request function (see async_get,
async_get_next and
async_set).
Time in milli-seconds.
Default is 30000.

	server_cbproxy() = temporary (default) | permanent <optional> - This option specifies how the server will handle
callback calls.
	temporary (default) - A
temporary process will be created for each callback call.

	permanent - With this the server
will create a permanent (named) process that in effect serializes all
callback calls.

Default is temporary.

	server_nis() = none (default) | {PingTO, PongTO} <optional> - This option specifies if the server should actively
supervise the net-if process. Note that this will only work if the used net-if
process actually supports the protocol. See snmpm_network_interface
behaviour for more info.
	none (default) - No active supervision of
the net-if process.

	{PingTO :: pos_integer(), PongTO :: pos_integer()} - The PingTO time specifies the between a
successful ping (or start) and the time when a
ping message is to be sent to the net-if
process (basically the time between ping:s).
The PongTO time specifies how long time the net-if process has to respond
to a ping message, with a pong message. It
starts counting when the ping message has been sent.
Both times are in milli seconds.

Default is none.

	manager_config() = [manager_config_opt()] <mandatory> -
manager_config_opt() = {dir, manager_config_dir()} | {db_dir, manager_db_dir()} | {db_init_error, db_init_error()} | {repair, manager_repair()} | {auto_save, manager_auto_save()} | {verbosity, verbosity()}
Defines specific config related options for the SNMP manager.
For defaults see the options in manager_config_opt().

	manager_config_dir = dir() <mandatory> - Defines
where the SNMP manager configuration files are stored.

	manager_db_dir = dir() <mandatory> - Defines
where the SNMP manager store persistent data.

	manager_repair() = false | true | force <optional> - Defines the repair option for the persistent
database (if and how the table is repaired when opened).
Default is true.

	manager_auto_save() = integer() | infinity <optional> - The auto save interval. The table is flushed
to disk whenever not accessed for this amount of time.
Default is 5000.

	manager_irb() = auto | user | {user, integer()} <optional> - This option defines how the manager will handle the sending of response
(acknowledgment) to received inform-requests.
	auto - The manager will autonomously send response (acknowledgment> to
inform-request messages.
	{user, integer()} - The manager will send response (acknowledgment) to
inform-request messages when the
handle_inform function completes. The
integer is the time, in milli-seconds, that the manager will consider the
stored inform-request info valid.
	user - Same as {user, integer()}, except that the default time, 15000
milli-seconds, is used.

See snmpm_network_interface, handle_inform and
definition of the manager net if for more info.
Default is auto.

	manager_mibs() = [string()] <optional> - Specifies a
list of MIBs (including path) and defines which MIBs are initially loaded into
the SNMP manager.
Default is [].

	manager_net_if() = [manager_net_if_opt()] <optional> -
manager_net_if_opt() = {module, manager_net_if_module()} | {verbosity, verbosity()} | {options, manager_net_if_options()}
Defines options specific for the SNMP manager network interface entity.
For defaults see the options in manager_net_if_opt().

	manager_net_if_options() = [manager_net_if_option()] <optional> -
manager_net_if_option() = {bind_to, bind_to()} | {sndbuf, sndbuf()} | {recbuf, recbuf()} | {no_reuse, no_reuse()} | {filter, manager_net_if_filter_options()} | {extra_sock_opts, extra_socket_options()} | {inet_backend, inet_backend()}
These options are actually specific to the used module. The ones shown here
are applicable to the default manager_net_if_module().
For defaults see the options in manager_net_if_option().

	manager_net_if_module() = atom() <optional> - The
module which handles the network interface part for the SNMP manager. It must
implement the snmpm_network_interface behaviour.
Default is snmpm_net_if.

	manager_net_if_filter_options() = [manager_net_if_filter_option()] <optional> -
manager_net_if_filter_option() = {module, manager_net_if_filter_module()}
These options are actually specific to the used module. The ones shown here
are applicable to the default manager_net_if_filter_module().
For defaults see the options in manager_net_if_filter_option().

	manager_net_if_filter_module() = atom() <optional> - Module which handles the network interface
filter part for the SNMP manager. Must implement the
snmpm_network_interface_filter behaviour.
Default is snmpm_net_if_filter.

	def_user_module() = atom() <optional> - The
module implementing the default user. See the snmpm_user behaviour.
Default is snmpm_user_default.

	def_user_data() = term() <optional> - Data
for the default user. Passed to the user when calling the callback functions.
Default is undefined.

Common config types:
	restart_type() = permanent | transient | temporary -
See supervisor documentation for more info.
Default is permanent for the agent and transient for the manager.

	db_init_error() = terminate | create | create_db_and_dir - Defines what to do if the agent is unable to open an existing database
file. terminate means that the agent/manager will terminate, create means
that the agent/manager will remove the faulty file(s) and create new ones, and
create_db_and_dir means that the agent/manager will create the database file
along with any missing parent directories for the database file.
Default is terminate.

	priority() = atom() <optional> - Defines the Erlang priority
for all SNMP processes.
Default is normal.

	versions() = [version()] <optional> -
version() = v1 | v2 | v3
Which SNMP versions shall be accepted/used.
Default is [v1,v2,v3].

	verbosity() = silence | info | log | debug | trace <optional> - Verbosity for a SNMP process. This specifies now much debug info is
printed.
Default is silence.

	bind_to() = bool() <optional> - If true, net_if binds to
the IP address. If false, net_if listens on any IP address on the host where
it is running.
Default is false.

	no_reuse() = bool() <optional> - If true, net_if does
not specify that the IP and port address should be reusable. If false, the
address is set to reusable.
Default is false.

	recbuf() = integer() <optional> - Receive buffer size.
Default value is defined by gen_udp.

	sndbuf() = integer() <optional> - Send buffer size.
Default value is defined by gen_udp.

	extra_socket_options() = list() <optional> - A list
of arbitrary socket options.
This list is not inspected by snmp (other then checking that its a list). Its
the users responsibility to ensure that these are valid options and does not
conflict with the "normal" options.
Default is [].

	inet_backend() = inet | socket <optional> - Choose the
inet-backend.
This option make it possible to use net_if (gen_udp) with a different
inet-backend ('inet' or 'socket').
Default is inet.

	note_store() = [note_store_opt()] <optional> -
note_store_opt() = {timeout, note_store_timeout()} | {verbosity, verbosity()}
Specifies the options for the SNMP note store.
For defaults see the options in note_store_opt().

	note_store_timeout() = integer() <optional> - Note
cleanup time. When storing a note in the note store, each note is given
lifetime. Every timeout the note_store process performs a GC to remove the
expired note's. Time in milli-seconds.
Default is 30000.

	audit_trail_log() [audit_trail_log_opt()] <optional> -
audit_trail_log_opt() = {type, atl_type()} | {dir, atl_dir()} | {size, atl_size()} | {repair, atl_repair()} | {seqno, atl_seqno()}
If present, this option specifies the options for the audit trail logging.
The disk_log module is used to maintain a wrap log. If present, the dir
and size options are mandatory.
If not present, audit trail logging is not used.

	atl_type() = read | write | read_write <optional> -
Specifies what type of an audit trail log should be used. The effect of the
type is actually different for the the agent and the manager.
For the agent:
	If write is specified, only set requests are logged.
	If read is specified, only get requests are logged.
	If read_write, all requests are logged.

For the manager:
	If write is specified, only sent messages are logged.
	If read is specified, only received messages are logged.
	If read_write, both outgoing and incoming messages are logged.

Default is read_write.

	atl_dir = dir() <mandatory> - Specifies where the audit
trail log should be stored.
If audit_trail_log specifies that logging should take place, this parameter
must be defined.

	atl_size() = {integer(), integer()} <mandatory> -
Specifies the size of the audit trail log. This parameter is sent to
disk_log.
If audit_trail_log specifies that logging should take place, this parameter
must be defined.

	atl_repair() = true | false | truncate | snmp_repair <optional> - Specifies if and how the audit trail log shall be repaired
when opened. Unless this parameter has the value snmp_repair it is sent to
disk_log. If, on the other hand, the value is snmp_repair, snmp attempts
to handle certain faults on its own. And even if it cannot repair the file, it
does not truncate it directly, but instead moves it aside for later off-line
analysis.
Default is true.

	atl_seqno() = true | false <optional> - Specifies if the
audit trail log entries will be (sequence) numbered or not. The range of the
sequence numbers are according to RFC 5424, i.e. 1 through 2147483647.
Default is false.

Modifying the Configuration Files
To to start the application (agent and/or manager), the configuration files must
be modified and there are two ways of doing this. Either edit the files
manually, or run the configuration tool as follows.
If authentication or encryption is used (SNMPv3 only), start the crypto
application.
1> snmp:config().

Simple SNMP configuration tool (version 4.0)
--
Note: Non-trivial configurations still has to be
 done manually. IP addresses may be entered
 as dront.ericsson.se (UNIX only) or
 123.12.13.23
--

Configure an agent (y/n)? [y]

Agent system config:

1. Agent process priority (low/normal/high) [normal]
2. What SNMP version(s) should be used (1,2,3,1&2,1&2&3,2&3)? [3] 1&2&3
3. Configuration directory (absolute path)? [/ldisk/snmp] /ldisk/snmp/agent/conf
4. Config verbosity (silence/info/log/debug/trace)? [silence]
5. Database directory (absolute path)? [/ldisk/snmp] /ldisk/snmp/agent/db
6. Mib storage type (ets/dets/mnesia)? [ets]
7. Target cache verbosity (silence/info/log/debug/trace)? [silence]
8. Symbolic store verbosity (silence/info/log/debug/trace)? [silence]
9. Local DB verbosity (silence/info/log/debug/trace)? [silence]
10. Local DB repair (true/false/force)? [true]
11. Local DB auto save (infinity/milli seconds)? [5000]
12. Error report module? [snmpa_error_logger]
13. Agent type (master/sub)? [master]
14. Master-agent verbosity (silence/info/log/debug/trace)? [silence] log
15. Shall the agent re-read the configuration files during startup
 (and ignore the configuration database) (true/false)? [true]
16. Multi threaded agent (true/false)? [false] true
17. Check for duplicate mib entries when installing a mib (true/false)? [false]
18. Check for duplicate trap names when installing a mib (true/false)? [false]
19. Mib server verbosity (silence/info/log/debug/trace)? [silence]
20. Mib server cache (true/false)? [true]
21. Note store verbosity (silence/info/log/debug/trace)? [silence]
22. Note store GC timeout? [30000]
23. Shall the agent use an audit trail log (y/n)? [n] y
23b. Audit trail log type (write/read_write)? [read_write]
23c. Where to store the audit trail log? [/ldisk/snmp] /ldisk/snmp/agent/log
23d. Max number of files? [10]
23e. Max size (in bytes) of each file? [10240]
23f. Audit trail log repair (true/false/truncate)? [true]
24. Which network interface module shall be used? [snmpa_net_if]
25. Network interface verbosity (silence/info/log/debug/trace)? [silence] log
25a. Bind the agent IP address (true/false)? [false]
25b. Shall the agents IP address and port be not reusable (true/false)? [false]
25c. Agent request limit (used for flow control) (infinity/pos integer)? [infinity] 32
25d. Receive buffer size of the agent (in bytes) (default/pos integer)? [default]
25e. Send buffer size of the agent (in bytes) (default/pos integer)? [default]
25f. Do you wish to specify a network interface filter module (or use default) [default]

Agent snmp config:

1. System name (sysName standard variable) [bmk's agent]
2. Engine ID (snmpEngineID standard variable) [bmk's engine]
3. Max message size? [484]
4. The UDP port the agent listens to. (standard 161) [4000]
5. IP address for the agent (only used as id
 when sending traps) [127.0.0.1]
6. IP address for the manager (only this manager
 will have access to the agent, traps are sent
 to this one) [127.0.0.1]
7. To what UDP port at the manager should traps
 be sent (standard 162)? [5000]
8. Do you want a none- minimum- or semi-secure configuration?
 Note that if you chose v1 or v2, you won't get any security for these
 requests (none, minimum, semi_des, semi_aes) [minimum]
making sure crypto server is started...
8b. Give a password of at least length 8. It is used to generate
 private keys for the configuration: kalle-anka
9. Current configuration files will now be overwritten. Ok (y/n)? [y]

- - - - - - - - - - - - -
Info: 1. SecurityName "initial" has noAuthNoPriv read access
 and authenticated write access to the "restricted"
 subtree.
 2. SecurityName "all-rights" has noAuthNoPriv read/write
 access to the "internet" subtree.
 3. Standard traps are sent to the manager.
 4. Community "public" is mapped to security name "initial".
 5. Community "all-rights" is mapped to security name "all-rights".
The following agent files were written: agent.conf, community.conf,
standard.conf, target_addr.conf, target_params.conf,
notify.conf, vacm.conf and usm.conf
- - - - - - - - - - - - -

Configure a manager (y/n)? [y]

Manager system config:

1. Manager process priority (low/normal/high) [normal]
2. What SNMP version(s) should be used (1,2,3,1&2,1&2&3,2&3)? [3] 1&2&3
3. Configuration directory (absolute path)? [/ldisk/snmp] /ldisk/snmp/manager/conf
4. Config verbosity (silence/info/log/debug/trace)? [silence] log
5. Database directory (absolute path)? [/ldisk/snmp] /ldisk/snmp/manager/db
6. Database repair (true/false/force)? [true]
7. Database auto save (infinity/milli seconds)? [5000]
8. Inform request behaviour (auto/user)? [auto]
9. Server verbosity (silence/info/log/debug/trace)? [silence] log
10. Server GC timeout? [30000]
11. Note store verbosity (silence/info/log/debug/trace)? [silence]
12. Note store GC timeout? [30000]
13. Which network interface module shall be used? [snmpm_net_if]
14. Network interface verbosity (silence/info/log/debug/trace)? [silence] log
15. Bind the manager IP address (true/false)? [false]
16. Shall the manager IP address and port be not reusable (true/false)? [false]
17. Receive buffer size of the manager (in bytes) (default/pos integer)? [default]
18. Send buffer size of the manager (in bytes) (default/pos integer)? [default]
19. Shall the manager use an audit trail log (y/n)? [n] y
19b. Where to store the audit trail log? [/ldisk/snmp] /ldisk/snmp/manager/log
19c. Max number of files? [10]
19d. Max size (in bytes) of each file? [10240]
19e. Audit trail log repair (true/false/truncate)? [true]
20. Do you wish to assign a default user [yes] or use
 the default settings [no] (y/n)? [n]

Manager snmp config:

1. Engine ID (snmpEngineID standard variable) [bmk's engine]
2. Max message size? [484]
3. IP address for the manager (only used as id
 when sending requests) [127.0.0.1]
4. Port number (standard 162)? [5000]
5. Configure a user of this manager (y/n)? [y]
5b. User id? kalle
5c. User callback module? snmpm_user_default
5d. User (callback) data? [undefined]
5. Configure a user of this manager (y/n)? [y] n
6. Configure an agent handled by this manager (y/n)? [y]
6b. User id? kalle
6c. Target name? [bmk's agent]
6d. Version (1/2/3)? [1] 3
6e. Community string ? [public]
6f. Engine ID (snmpEngineID standard variable) [bmk's engine]
6g. IP address for the agent [127.0.0.1]
6h. The UDP port the agent listens to. (standard 161) [4000]
6i. Retransmission timeout (infinity/pos integer)? [infinity]
6j. Max message size? [484]
6k. Security model (any/v1/v2c/usm)? [any] usm
6l. Security name? ["initial"]
6m. Security level (noAuthNoPriv/authNoPriv/authPriv)? [noAuthNoPriv] authPriv
6. Configure an agent handled by this manager (y/n)? [y] n
7. Configure an usm user handled by this manager (y/n)? [y]
7a. Engine ID [bmk's engine]
7b. User name? hobbes
7c. Security name? [hobbes]
7d. Authentication protocol (no/sha/md5)? [no] sha
7e Authentication [sha] key (length 0 or 20)? [""] [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16, \
 17,18,19,20]
7d. Priv protocol (no/des/aes)? [no] des
7f Priv [des] key (length 0 or 16)? [""] 10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25
7. Configure an usm user handled by this manager (y/n)? [y] n
8. Current configuration files will now be overwritten. Ok (y/n)? [y]

- - - - - - - - - - - - -
The following manager files were written: manager.conf, agents.conf , users.conf and usm.conf
- - - - - - - - - - - - -

Configuration directory for system file (absolute path)? [/ldisk/snmp]
ok
Starting the application
Start Erlang with the command:
erl -config /tmp/snmp/sys
If authentication or encryption is used (SNMPv3 only), start the crypto
application. If this step is forgotten, the agent will not start, but report a
{config_error,{unsupported_crypto,_}} error.
1> application:start(crypto).
ok
2> application:start(snmp).
ok
Debugging the application
It is possible to debug every (non-supervisor) process of the application (both
agent and manager), possibly with the exception of the netif module(s), which
could be supplied by a user of the application). This is done by calling the
snmpa:verbosity/2 and snmpm:verbosity/2 function(s) and/or using
configuration parameters. The verbosity
itself has several _levels: silence | info | log | debug | trace. For the
lowest verbosity silence, nothing is printed. The higher the verbosity, the
more is printed. Default value is always silence.
3> snmpa:verbosity(master_agent, log).
ok
5> snmpa:verbosity(net_if, log).
ok
6>
%% Example of output from the agent when a get-next-request arrives:
** SNMP NET-IF LOG:
 got packet from {147,12,12,12}:5000

** SNMP NET-IF MPD LOG:
 v1, community: all-rights

** SNMP NET-IF LOG:
 got pdu from {147,12,12,12}:5000 {pdu, 'get-next-request',
 62612569,noError,0,
 [{varbind,[1,1],'NULL','NULL',1}]}

** SNMP MASTER-AGENT LOG:
 apply: snmp_generic,variable_func,[get,{sysDescr,persistent}]

** SNMP MASTER-AGENT LOG:
 returned: {value,"Erlang SNMP agent"}

** SNMP NET-IF LOG:
 reply pdu: {pdu,'get-response',62612569,noError,0,
 [{varbind,[1,3,6,1,2,1,1,1,0],
 'OCTET STRING',
 "Erlang SNMP agent",1}]}

** SNMP NET-IF INFO: time in agent: 19711 mysec
Other useful function(s) for debugging the agent are:
	snmpa:info/0,1 - info is used to retrieve a list of
miscellaneous agent information.

	snmpa:which_aliasnames/0 -
which_aliasnames is used to retrieve a list of
all alias-names known to the agent.

	snmpa:which_tables/0 - which_tables is used to
retrieve a list of all (MIB) tables known to the agent.

	snmpa:which_variables/0 - which_variables
is used to retrieve a list of all (MIB) variables known to the agent.

	snmpa:which_notifications/0 -
which_notifications is used to retrieve a
list of all (MIB) notifications/traps known to the agent.

	snmpa:restart_worker/0,1 - restart_worker is
used to restart the worker process of a multi-threaded agent.

	snmpa:restart_set_worker/0,1 -
restart_set_worker is used to restart the
set-worker process of a multi-threaded agent.

	snmpa_local_db:print/0,1,2 - For example, this function can show the
counters snmpInPkts and snmpOutPkts.

Another useful way to debug the agent is to pretty-print the content of all the
tables and/or variables handled directly by the agent. This can be done by
simply calling:
snmpa:print_mib_info/0
See snmpa:print_mib_info/0, snmpa:print_mib_tables/0 or
snmpa:print_mib_variables/0 for more info.

 Definition of Agent Configuration Files

All configuration data must be included in configuration files that are located
in the configuration directory. The name of this directory is given in the
config_dir configuration parameter. These files are read at start-up, and are
used to initialize the SNMPv2-MIB or STANDARD-MIB, SNMP-FRAMEWORK-MIB,
SNMP-MPD-MIB, SNMP-VIEW-BASED-ACM-MIB, SNMP-COMMUNITY-MIB,
SNMP-USER-BASED-SM-MIB (adjusted according to SNMP-USM-HMAC-SHA2-MIB),
SNMP-TARGET-MIB and SNMP-NOTIFICATION-MIB (refer to the
Management of the Agent for a
description of the MIBs).
The files are:
	agent.conf: see
Agent Information
	standard.conf: see
System Information
	context.conf: see Contexts
	community.conf: see Communities
	target_addr.conf: see
Target Address Definitions
	target_params.conf: see
Target Parameters Definitions
	vacm.conf: see MIB Views for VACM
	usm.conf: see Security data for USM
	notify.conf: see Notify Definitions

The directory where the configuration files are found is given as a parameter to
the agent.
The entry format in all files are Erlang terms, separated by a '.' and a
newline. In the following sections, the formats of these terms are described.
Comments may be specified as ordinary Erlang comments.
Syntax errors in these files are discovered and reported with the function
config_err/2 of the error report module at start-up.

Agent Information
The agent information should be stored in a file called agent.conf.
Each entry is a tuple of size two:
{AgentVariable, Value}.
	AgentVariable is one of the variables in SNMP-FRAMEWORK-MIB or one of the
internal variables intAgentUDPPort, which defines which UDP port the agent
listens to, or intAgentTransports, which defines the transport domains and
addresses of the agent.
	Value is the value for the variable.

The following example shows an agent.conf file:
{intAgentUDPPort, 4000}.
{intAgentTransports,
 [{transportDomainUdpIpv4, {141,213,11,24}},
 {transportDomainUdpIpv6, {0,0,0,0,0,0,0,1}}]}.
{snmpEngineID, "mbj's engine"}.
{snmpEngineMaxMessageSize, 484}.
And this is a code (snippet) example of how to generate this file in runtime:
AgentDir = "/tmp",
AgentPort = 4000,
Transports = [{transportDomainUdpIpv4, {141,213,11,24}},
 {transportDomainUdpIpv6, {0,0,0,0,0,0,0,1}}],
EngineID = "mbj's engine",
MMS = 484,
AgentConfig =
 [snmpa_conf:agent_entry(intAgentUDPPort, AgentPort),
 snmpa_conf:agent_entry(intAgentTransports, Transports),
 snmpa_conf:agent_entry(snmpEngineID, EngineID),
 snmpa_conf:agent_entry(snmpEngineMaxMessageSize, MMS)],
snmpa_conf:write_agent_config(AgentDir, AgentConfig),
These are the supported entries and their value types:
 {snmpEngine, string()}. % Mandatory
 {snmpEngineMaxMessageSize, snmp_framework_mib:max_message_size()}. % Mandatory
 {intAgentUDPPort, inet:port_number()}. % Optional
 {intAgentTransports, [snmpa_conf:intAgentTransport()]}. % Mandatory
If a "traditional" transport is specified (without explicit Kind, handling
both requests and traps) for a transport domain, its not possible to also
specify a transport (for that domain) with a specific Kind. This is for
example, not allowed:
 [{transportDomainUdpIpv4, {{141,213,11,24}, 4000}},
 {transportDomainUdpIpv4, {{141,213,11,24}, 4001}, trap_sender}].
Note that only one transport per kind for each transport domain can be
configured.
PortInfo system is used to indicate that the 'system' should choose (the way
port number '0' (zero) is normally used). Port info '0' (zero) cannot be used
for this, since it is (internally) used to represent the 'default' port number.
In the traditional transport entries, when the Addr value does not contain a
port number, the value of intAgentUDPPort is used.
Note that the (new) extended transport entries (including Kind and Opts)
must specify port-info as they ignore any value specified by
intAgentUDPPort.
Opts is the same as for the net-if process
and takes precedence (for that transport) if present. The point is that each
transport can have its own socket options.
The value of snmpEngineID is a string, which for a deployed agent should have
a very specific structure. See RFC 2271/2571 for details.
Note
The legacy and intermediate variables intAgentIpAddress and
intAgentTransportDomain are still supported so old agent.conf files will
work.
But they cannot be combined with intAgentTransports.

Contexts
The context information should be stored in a file called context.conf. The
default context "" need not be present.
Each row defines a context in the agent. This information is used in the table
vacmContextTable in the SNMP-VIEW-BASED-ACM-MIB.
Each entry is a term:
ContextName.
	ContextName is a string.

And this is a code (snippet) example of how to generate this file in runtime:
AgentDir = "/tmp",
ContextConfig =
 [snmpa_conf:context_entry("foo"),
 snmpa_conf:context_entry("bar")],
snmpa_conf:write_context_config(AgentDir, ContextConfig),

System Information
The system information should be stored in a file called standard.conf.
Each entry is a tuple of size two:
{SystemVariable, Value}.
	SystemVariable is one of the variables in the system group, or
snmpEnableAuthenTraps.
	Value is the value for the variable.

The following example shows a valid standard.conf file:
{sysDescr, "Erlang SNMP agent"}.
{sysObjectID, [1,2,3]}.
{sysContact, "(mbj,eklas)@erlang.ericsson.se"}.
{sysName, "test"}.
{sysServices, 72}.
{snmpEnableAuthenTraps, enabled}.
And this is a code (snippet) example of how to generate this file in runtime:
AgentDir = "/tmp",
StdConfig =
 [snmpa_conf:standard_entry(sysDescr, "Erlang SNMP agent"),
 snmpa_conf:standard_entry(sysObjectID, [1,2,3]),
 snmpa_conf:standard_entry(sysContact, "(mbj,eklas)@erlang.ericsson.se"),
 snmpa_conf:standard_entry(sysName, "test"),
 snmpa_conf:standard_entry(sysServices, 72),
 snmpa_conf:standard_entry(snmpEnableAuthenTraps, enabled)],
snmpa_conf:write_standard_config(AgentDir, StdConfig),
A value must be provided for all variables, which lack default values in the
MIB.

Communities
The community information should be stored in a file called community.conf. It
must be present if the agent is configured for SNMPv1 or SNMPv2c.
An SNMP community is a relationship between an SNMP agent and a set of SNMP
managers that defines authentication, access control and proxy characteristics.
The corresponding table is snmpCommunityTable in the SNMP-COMMUNITY-MIB.
Each entry is a term:
{CommunityIndex, CommunityName, SecurityName, ContextName, TransportTag}.
	CommunityIndex is a non-empty string.
	CommunityName is a string.
	SecurityName is a string.
	ContextName is a string.
	TransportTag is a string.

And this is a code (snippet) example of how to generate this file in runtime:
AgentDir = "/tmp",
CommunityConfig =
 [snmpa_conf:community_entry("public"),
 snmpa_conf:community_entry("all-rights"),
 snmpa_conf:community_entry("standard trap",
 "standard trap", "initial", "", "")],
snmpa_conf:write_community_config(AgentDir, CommunityConfig),

MIB Views for VACM
The information about MIB Views for VACM should be stored in a file called
vacm.conf.
The corresponding tables are vacmSecurityToGroupTable, vacmAccessTable and
vacmViewTreeFamilyTable in the SNMP-VIEW-BASED-ACM-MIB.
Each entry is one of the terms, one entry corresponds to one row in one of the
tables.
{vacmSecurityToGroup, SecModel, SecName, GroupName}.
{vacmAccess, GroupName, Prefix, SecModel, SecLevel, Match, ReadView, WriteView, NotifyView}.
{vacmViewTreeFamily, ViewIndex, ViewSubtree, ViewStatus, ViewMask}.
	SecModel is any, v1, v2c, or usm.
	SecName is a string.
	GroupName is a string.
	Prefix is a string.
	SecLevel is noAuthNoPriv, authNoPriv, or authPriv
	Match is prefix or exact.
	ReadView is a string.
	WriteView is a string.
	NotifyView is a string.
	ViewIndex is an integer.
	ViewSubtree is a list of integer.
	ViewStatus is either included or excluded
	ViewMask is either null or a list of ones and zeros. Ones nominate that an
exact match is used for this sub-identifier. Zeros are wild-cards which match
any sub-identifier. If the mask is shorter than the sub-tree, the tail is
regarded as all ones. null is shorthand for a mask with all ones.

And this is a code (snippet) example of how to generate this file in runtime:
AgentDir = "/tmp",
SecName = "plain",
VacmConfig =
 [%% SecModel, SecName, GroupName
 snmpa_conf:vacm_s2g_entry(usm, SecName, SecName),

 %% GroupName, Prefix, SecModel,
 snmpa_conf:vacm_acc_entry(SecName, "", any,
 %% SecLevel, Match, RV, WV, NV
 noAuthNoPriv, exact, "all", "all", "all"),

 %% ViewName, ViewSubtree, ViewType, ViewMask
 snmpa_conf:vacm_vtf_entry("restricted", [1,3,6,1], included, null)],
snmpa_conf:write_vacm_config(AgentDir, VacmConfig),

Security data for USM
The information about Security data for USM should be stored in a file called
usm.conf, which must be present if the agent is configured for SNMPv3.
The corresponding table is usmUserTable in the SNMP-USER-BASED-SM-MIB
(adjusted according to SNMP-USM-HMAC-SHA2-MIB).
Each entry is a term:
{EngineID, UserName, SecName, Clone, AuthP, AuthKeyC, OwnAuthKeyC, PrivP, PrivKeyC, OwnPrivKeyC, Public, AuthKey, PrivKey}.
	EngineID is a string.

	UserName is a string.

	SecName is a string.

	Clone is zeroDotZero or a list of integers.

	AuthP is a usmNoAuthProtocol, usmHMACMD5AuthProtocol,
usmHMACSHAAuthProtocol, usmHMAC128SHA224AuthProtocol,
usmHMAC192SH256AuthProtocol, usmHMAC256SHA384AuthProtocol or
usmHMAC384SHA512AuthProtocol.

	AuthKeyC is a string.

	OwnAuthKeyC is a string.

	PrivP is a usmNoPrivProtocol, usmDESPrivProtocol or
usmAesCfb128Protocol.

	PrivKeyC is a string.

	OwnPrivKeyC is a string.

	Public is a string.

	AuthKey is a list (of integer). This is the User's secret localized
authentication key. It is not visible in the MIB. The length (number of
octets) of this key needs to be:
	16 if usmHMACMD5AuthProtocol.
	20 if usmHMACSHAAuthProtocol.
	28 if usmHMAC128SHA224AuthProtocol.
	32 if usmHMAC192SHA256AuthProtocol.
	48 if usmHMAC256SHA384AuthProtocol.
	64 if usmHMAC384SHA512AuthProtocol.

	PrivKey is a list (of integer). This is the User's secret localized
encryption key. It is not visible in the MIB. The length of this key needs to
be 16 if usmDESPrivProtocol or usmAesCfb128Protocol is used.

And this is a code (snippet) example of how to generate this file in runtime:
AgentDir = "/tmp",
EngineID = "plain engine"
Passwd = "FooBar Hoopla", %% This should *obviously* be choosen better
Secret16 = snmp:passwd2localized_key(md5, Passwd, EngineID),
Secret20 = snmp:passwd2localized_key(sha, Passwd, EngineID),
UsmConfig =
 [snmpa_conf:usm_entry(EngineID, "initial", "initial", zeroDotZero,
 usmHMACMD5AuthProtocol, "", "",
 usmNoPrivProtocol, "", "",
 "", Secret16, ""),

 snmpa_conf:usm_entry(EngineID, "templateMD5", "templateMD5", zeroDotZero,
 usmHMACMD5AuthProtocol, "", "",
 usmDESPrivProtocol, "", "",
 "", Secret16, Secret16),

 snmpa_conf:usm_entry(EngineID, "templateSHA", "templateSHA", zeroDotZero,
 usmHMACSHAAuthProtocol, "", "",
 usmAesCfb128Protocol, "", "",
 "", Secret20, Secret16)],
snmpa_conf:write_usm_config(AgentDir, UsmConfig),

Notify Definitions
The information about Notify Definitions should be stored in a file called
notify.conf.
The corresponding table is snmpNotifyTable in the SNMP-NOTIFICATION-MIB.
Each entry is a term:
{NotifyName, Tag, Type}.
	NotifyName is a unique non-empty string.
	Tag is a string.
	Type is trap or inform.

And this is a code (snippet) example of how to generate this file in runtime:
AgentDir = "/tmp",
NotifyConfig =
 [snmpa_conf:notify_entry("standard trap", "std_trap", trap),
 snmpa_conf:notify_entry("standard inform", "std_inform", inform)],
snmpa_conf:write_notify_config(AgentDir, NotifyConfig),

Target Address Definitions
The information about Target Address Definitions should be stored in a file
called target_addr.conf.
The corresponding tables are snmpTargetAddrTable in the SNMP-TARGET-MIB and
snmpTargetAddrExtTable in the SNMP-COMMUNITY-MIB.
Each entry is a term:
{TargetName, Domain, Addr, Timeout, RetryCount, TagList, ParamsName, EngineId}.
or
{TargetName, Domain, Addr, Timeout, RetryCount, TagList, ParamsName, EngineId, TMask, MaxMessageSize}.
	TargetName is a unique non-empty string.

	Domain is one of the atoms: transportDomainUdpIpv4 |
transportDomainUdpIpv6.

	Addr is either an IpAddr or an {IpAddr, IpPort} tuple. IpAddr is
either a regular Erlang/OTP ip_address() or a
traditional SNMP integer list, and IpPort is an integer.
If IpPort is omitted 162 is used.

	Timeout is an integer.

	RetryCount is an integer.

	TagList is a string.

	ParamsName is a string.

	EngineId is a string or the atom discovery.

	TMask is specified just as Addr or as []. Note in particular that using
a list of 6 bytes for IPv4 or 8 words plus 2 bytes for IPv6 are still valid
address formats so old configurations will work.

	MaxMessageSize is an integer (default: 2048).

The old tuple formats with Ip address and Udp port number found in old
configurations still work.
Note that if EngineId has the value discovery, the agent cannot send
inform messages to that manager until it has performed the discovery process
with that manager.
And this is a code (snippet) example of how to generate this file in runtime:
AgentDir = "/tmp",
Addr1 = {{1,2,3,4}, 162},
Addr2 = {{11,21,31,41}, 162},
Timeout = 1500,
RetryCount = 3,
TargetAddrConfig =
 [snmpa_conf:target_addr_entry("Target 1",
 transportDomainUdpIpv4, Addr1,
				 Timeout, RetryCount,
				 "std_trap, "target_1", "",
				 [], 2048),
 snmpa_conf:target_addr_entry("Target 2",
 transportDomainUdpIpv4, Addr2,
				 Timeout, RetryCount,
				 "std_inform, "target_2", "",
				 [], 2048)],
snmpa_conf:write_target_addr_config(AgentDir, TargetAddrConfig),

Target Parameters Definitions
The information about Target Parameters Definitions should be stored in a file
called target_params.conf.
The corresponding table is snmpTargetParamsTable in the SNMP-TARGET-MIB.
Each entry is a term:
{ParamsName, MPModel, SecurityModel, SecurityName, SecurityLevel}.
	ParamsName is a unique non-empty string.
	MPModel is v1, v2c or v3
	SecurityModel is v1, v2c, or usm.
	SecurityName is a string.
	SecurityLevel is noAuthNoPriv, authNoPriv or authPriv.

And this is a code (snippet) example of how to generate this file in runtime:
AgentDir = "/tmp",
TargetAddrConfig =
 [snmpa_conf:target_params_entry("target_1", v1),
 snmpa_conf:target_params_entry("target_2", v2, "initial", noAthNoPriv],
snmpa_conf:write_target_params_config(AgentDir, TargetParamsConfig),

 Definition of Manager Configuration Files

Configuration data may be included in configuration files that is located in the
configuration directory. The name of this directory is given in the config_dir
configuration parameter. These files are read at start-up.
The directory where the configuration files are found is given as a parameter to
the manager.
The entry format in all files are Erlang terms, separated by a '.' and a
newline. In the following sections, the formats of these terms are described.
Comments may be specified as ordinary Erlang comments.
If syntax errors are discovered in these files they are reported with the
function config_err/2 of the error report module at
start-up.
Manager Information
The manager information should be stored in a file called manager.conf.
Each entry is a tuple of size two:
{Variable, Value}.
	Variable is one of the following:
	transports - which defines the transport domains and their addresses for
the manager. Mandatory
Value is a list of {Domain, Addr} tuples or Domain atoms.
	Domain is one of transportDomainUdpIpv4 or transportDomainUdpIpv6.

	Addr is for the currently supported domains either an IpAddr or an
{IpAddr, IpPort} tuple.IpAddr is either a regular Erlang/OTP
ip_address() or a traditional SNMP integer list
and IpPort is an integer.
When Addr does not contain a port number, the value of port is used.
When a Addr is not specified i.e by using only a Domain atom, the
host's name is resolved to find the IP address, and the value of port is
used.

	port - which defines which UDP port the manager uses for communicating
with agents. Mandatory if transports does not define a port number for
every transport.

	engine_id - The SnmpEngineID as defined in SNMP-FRAMEWORK-MIB.
Mandatory.

	max_message_size - The snmpEngineMaxMessageSize as defined in
SNMP-FRAMEWORK-MIB. Mandatory.

	Value is the value for the variable.

The legacy and intermediate variables address and domain are still supported
so old configurations will work.
The following example shows a manager.conf file:
{transports, [{transportDomainUdpIpv4, {{141,213,11,24}, 5000}},
 {transportDomainUdpIpv6, {{0,0,0,0,0,0,0,1}, 5000}}]}.
{engine_id, "mgrEngine"}.
{max_message_size, 484}.
The value of engine_id is a string, which should have a very specific
structure. See RFC 2271/2571 for details.
And this is a code (snippet) example of how to generate this file in runtime:
ManagerDir = "/tmp",
Port = 5000,
Addr4 = {141,213,11,24},
Addr6 = {0,0,0,0,0,0,0,1},
Transports = [{transportDomainUdpIpv4, {Addr4, Port}},
 {transportDomainUdpIpv6, {Addr6, Port}}],
EngineID = "mgrEngine",
MMS = 484,
ManagerConfig = [snmpm_conf:manager_entry(transports, Transports),
 snmpm_conf:manager_entry(engine_id, EngineID),
 snmpm_conf:manager_entry(max_message_size, MMS)],
snmpm_conf:write_manager_config(ManagerDir, ManagerConfig),
Users
For each manager user, the manager needs some information. This information is
either added in the users.conf config file or by calling the
register_user function in run-time.
Each row defines a manager user of the manager.
Each entry is a tuple of size four:
{UserId, UserMod, UserData, DefaultAgentConfig}.
	UserId is any term (used to uniquely identify the user).
	UserMod is the user callback module (atom).
	UserData is any term (passed on to the user when calling the UserMod.
	DefaultAgentConfig is a list of default agent config's. These values are
used as default values when this user registers agents.

And this is a code (snippet) example of how to generate this file in runtime:
ManagerDir = "/tmp",
UserID = make_ref(),
UserMod = my_manager_callback_mod,
UserData = self(),
DefaultAgentConfig = [{version, v1}, {timeout, 2500}, {max_message_size, 484}],
UsersConfig = [snmpm_conf:users_entry(UserID, UserMod, UserData,
 DefaultAgentConfig)],
snmpm_conf:write_users_config(ManagerDir, UsersConfig),
Agents
The information needed to handle agents should be stored in a file called
agents.conf. It is also possible to add agents in run-time by calling the
register_agent.
Each entry is a tuple:
{UserId, TargetName, Comm, Domain, Addr, EngineID, Timeout, MaxMessageSize, Version, SecModel, SecName, SecLevel}.
	UserId is the identity of the manager user responsible for this agent
(term).
	TargetName is a unique non-empty string.
	Comm is the community string (string).
	Domain is the transport domain, either transportDomainUdpIpv4 or
transportDomainUdpIpv6.
	Addr is the address in the transport domain, either an {IpAddr, IpPort}
tuple or a traditional SNMP integer list containing port number. IpAddr is
either a regular Erlang/OTP ip_address() or a
traditional SNMP integer list not containing port number, and IpPort is an
integer.
	EngineID is the engine-id of the agent (string).
	Timeout is re-transmission timeout (infinity | integer).

	MaxMessageSize is the max message size for outgoing messages to this agent
(integer).
	Version is the version (v1 | v2 | v3).

	SecModel is the security model (any | v1 | v2c | usm).

	SecName is the security name (string).
	SecLevel is security level (noAuthNoPriv | authNoPriv | authPriv).

Legacy configurations using tuples without Domain element, as well as with all
TDomain, Ip and Port elements still work.
And this is a code (snippet) example of how to generate this file in runtime:
ManagerDir = "/tmp",
UserID = ...
AgentsConfig = [snmpm_conf:agents_entry(UserID,
 "target 1",
					"FOOBAR",
					transportDomainUdpIpv4, {{1,2,3,4},161},
					"agent Engine 1"
					1500,
					484.
					v1, v1, "sec name 1", noAuthNoPriv),
		snmpm_conf:agents_entry(UserID,
 "target 2",
					"FOOBAR",
					transportDomainUdpIpv4, {{5,6,7,8},161},
					"agent Engine 2"
					1500,
					1000.
					v1, v1, "sec name 2", noAuthNoPriv)],
snmpm_conf:write_agents_config(ManagerDir, UsersConfig),
Security data for USM
The information about Security data for USM should be stored in a file called
usm.conf, which must be present if the manager wishes to use SNMPv3 when
communicating with agents. It is also possible to add usm data in run-time by
calling the register_usm_user.
The corresponding table is usmUserTable in the SNMP-USER-BASED-SM-MIB
(adjusted according to SNMP-USM-HMAC-SHA2-MIB).
Each entry is a term:
{EngineID, UserName, AuthP, AuthKey, PrivP, PrivKey}.
{EngineID, UserName, SecName, AuthP, AuthKey, PrivP, PrivKey}.
The first case is when we have the identity-function (SecName = UserName).
	EngineID is a string.

	UserName is a string.

	SecName is a string.

	AuthP is a usmNoAuthProtocol, usmHMACMD5AuthProtocol,
usmHMACSHAAuthProtocol, usmHMAC128SHA224AuthProtocol,
usmHMAC192SH256AuthProtocol, usmHMAC256SHA384AuthProtocol or
usmHMAC384SHA512AuthProtocol.

	AuthKey is a list (of integer). This is the User's secret localized
authentication key. It is not visible in the MIB. The length (number of
octets) of this key needs to be:
	16 if usmHMACMD5AuthProtocol.
	20 if usmHMACSHAAuthProtocol.
	28 if usmHMAC128SHA224AuthProtocol.
	32 if usmHMAC192SHA256AuthProtocol.
	48 if usmHMAC256SHA384AuthProtocol.
	64 if usmHMAC384SHA512AuthProtocol.

	PrivP is a usmNoPrivProtocol, usmDESPrivProtocol or
usmAesCfb128Protocol.

	PrivKey is a list (of integer). This is the User's secret localized
encryption key. It is not visible in the MIB. The length of this key needs to
be 16 if usmDESPrivProtocol or usmAesCfb128Protocol is used.

ManagerDir = "/tmp",
UsmConfig = [snmpm_conf:usm_entry("engine",
 "user 1",
	 usmNoAuthProtocol,
	 			 [],
	 			 usmNoPrivProtocol,
	 			 [])],
snmpm_conf:write_usm_config(ManagerDir, UsmConfig),

 Agent Implementation Example

This Implementation Example section describes how an MIB can be implemented
with the SNMP Development Toolkit.
The example shown can be found in the toolkit distribution.
The agent is configured with the configuration tool, using default suggestions
for everything but the manager node.
MIB
The MIB used in this example is called EX1-MIB. It contains two objects, a
variable with a name and a table with friends.
EX1-MIB DEFINITIONS ::= BEGIN

 IMPORTS
 experimental FROM RFC1155-SMI
 RowStatus FROM STANDARD-MIB
 DisplayString FROM RFC1213-MIB
 OBJECT-TYPE FROM RFC-1212
 ;

 example1 OBJECT IDENTIFIER ::= { experimental 7 }

 myName OBJECT-TYPE
 SYNTAX DisplayString (SIZE (0..255))
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "My own name"
 ::= { example1 1 }

 friendsTable OBJECT-TYPE
 SYNTAX SEQUENCE OF FriendsEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "A list of friends."
 ::= { example1 4 }

 friendsEntry OBJECT-TYPE
 SYNTAX FriendsEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 ""
 INDEX { fIndex }
 ::= { friendsTable 1 }

 FriendsEntry ::=
 SEQUENCE {
 fIndex
 INTEGER,
 fName
 DisplayString,
 fAddress
 DisplayString,
 fStatus
 RowStatus }

 fIndex OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "number of friend"
 ::= { friendsEntry 1 }

 fName OBJECT-TYPE
 SYNTAX DisplayString (SIZE (0..255))
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "Name of friend"
 ::= { friendsEntry 2 }

 fAddress OBJECT-TYPE
 SYNTAX DisplayString (SIZE (0..255))
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "Address of friend"
 ::= { friendsEntry 3 }

 fStatus OBJECT-TYPE
 SYNTAX RowStatus
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "The status of this conceptual row."
 ::= { friendsEntry 4 }

 fTrap TRAP-TYPE
 ENTERPRISE example1
 VARIABLES { myName, fIndex }
 DESCRIPTION
 "This trap is sent when something happens to
 the friend specified by fIndex."
 ::= 1
END
Default Implementation
Without writing any instrumentation functions, we can compile the MIB and use
the default implementation of it. Recall that MIBs imported by "EX1-MIB.mib"
must be present and compiled in the current directory
("./STANDARD-MIB.bin","./RFC1213-MIB.bin") when compiling.
unix> erl -config ./sys
1> application:start(snmp).
ok
2> snmpc:compile("EX1-MIB").
No accessfunction for 'friendsTable', using default.
No accessfunction for 'myName', using default.
{ok, "EX1-MIB.bin"}
3> snmpa:load_mibs(snmp_master_agent, ["EX1-MIB"]).
ok
This MIB is now loaded into the agent, and a manager can ask questions. As an
example of this, we start another Erlang system and the simple Erlang manager in
the toolkit:
1> snmp_test_mgr:start_link([{agent,"dront.ericsson.se"},{community,"all-rights"},
 %% making it understand symbolic names: {mibs,["EX1-MIB","STANDARD-MIB"]}]).
{ok, <0.89.0>}
%% a get-next request with one OID.
2> snmp_test_mgr:gn([[1,3,6,1,3,7]]).
ok
* Got PDU:
[myName,0] = []
%% A set-request (now using symbolic names for convenience)
3> snmp_test_mgr:s([{[myName,0], "Martin"}]).
ok
* Got PDU:
[myName,0] = "Martin"
%% Try the same get-next request again
4> snmp_test_mgr:gn([[1,3,6,1,3,7]]).
ok
* Got PDU:
[myName,0] = "Martin"
%% ... and we got the new value.
%% you can event do row operations. How to add a row:
5> snmp_test_mgr:s([{[fName,0], "Martin"}, {[fAddress,0],"home"}, {[fStatus,0],4}]).
 %% createAndGo
ok
* Got PDU:
[fName,0] = "Martin"
[fAddress,0] = "home"
[fStatus,0] = 4
6> snmp_test_mgr:gn([[myName,0]]).
ok
* Got PDU:
[fName,0] = "Martin"
7> snmp_test_mgr:gn().
ok
* Got PDU:
[fAddress,0] = "home"
8> snmp_test_mgr:gn().
ok
* Got PDU:
[fStatus,0] = 1
9>
Manual Implementation
The following example shows a "manual" implementation of the EX1-MIB in Erlang.
In this example, the values of the objects are stored in an Erlang server. The
server has a 2-tuple as loop data, where the first element is the value of
variable myName, and the second is a sorted list of rows in the table
friendsTable. Each row is a 4-tuple.
Note
There are more efficient ways to create tables manually, i.e. to use the
module snmp_index.
Code
-module(ex1).
-author('dummy@flop.org').
%% External exports
-export([start/0, my_name/1, my_name/2, friends_table/3]).
%% Internal exports
-export([init/0]).
-define(status_col, 4).
-define(active, 1).
-define(notInService, 2).
-define(notReady, 3).
-define(createAndGo, 4). % Action; written, not read
-define(createAndWait, 5). % Action; written, not read
-define(destroy, 6). % Action; written, not read
start() ->
 spawn(ex1, init, []).
%%--
%% Instrumentation function for variable myName.
%% Returns: (get) {value, Name}
%% (set) noError
%%--
my_name(get) ->
 ex1_server ! {self(), get_my_name},
 Name = wait_answer(),
 {value, Name}.
my_name(set, NewName) ->
 ex1_server ! {self(), {set_my_name, NewName}},
 noError.
%%--
%% Instrumentation function for table friendsTable.
%%--
friends_table(get, RowIndex, Cols) ->
 case get_row(RowIndex) of
 {ok, Row} ->
 get_cols(Cols, Row);
 _ ->
 {noValue, noSuchInstance}
 end;
friends_table(get_next, RowIndex, Cols) ->
 case get_next_row(RowIndex) of
 {ok, Row} ->
 get_next_cols(Cols, Row);
 _ ->
 case get_next_row([]) of
 {ok, Row} ->
 % Get next cols from first row.
 NewCols = add_one_to_cols(Cols),
 get_next_cols(NewCols, Row);
 _ ->
 end_of_table(Cols)
 end
 end;
%%--
%% If RowStatus is set, then:
%% *) If set to destroy, check that row does exist
%% *) If set to createAndGo, check that row does not exist AND
%% that all columns are given values.
%% *) Otherwise, error (for simplicity).
%% Otherwise, row is modified; check that row exists.
%%--
friends_table(is_set_ok, RowIndex, Cols) ->
 RowExists =
 case get_row(RowIndex) of
 {ok, _Row} -> true;
 _ -> false
 end,
 case is_row_status_col_changed(Cols) of
 {true, ?destroy} when RowExists == true ->
 {noError, 0};
 {true, ?createAndGo} when RowExists == false,
 length(Cols) == 3 ->
 {noError, 0};
 {true, _} ->
 {inconsistentValue, ?status_col};
 false when RowExists == true ->
 {noError, 0};
 _ ->
 [{Col, _NewVal} | _Cols] = Cols,
 {inconsistentName, Col}
 end;
friends_table(set, RowIndex, Cols) ->
 case is_row_status_col_changed(Cols) of
 {true, ?destroy} ->
 ex1_server ! {self(), {delete_row, RowIndex}};
 {true, ?createAndGo} ->
 NewRow = make_row(RowIndex, Cols),
 ex1_server ! {self(), {add_row, NewRow}};
 false ->
 {ok, Row} = get_row(RowIndex),
 NewRow = merge_rows(Row, Cols),
 ex1_server ! {self(), {delete_row, RowIndex}},
 ex1_server ! {self(), {add_row, NewRow}}
 end,
 {noError, 0}.

%%--
%% Make a list of {value, Val} of the Row and Cols list.
%%--
get_cols([Col | Cols], Row) ->
 [{value, element(Col, Row)} | get_cols(Cols, Row)];
get_cols([], _Row) ->
 [].
%%--
%% As get_cols, but the Cols list may contain invalid column
%% numbers. If it does, we must find the next valid column,
%% or return endOfTable.
%%--
get_next_cols([Col | Cols], Row) when Col < 2 ->
 [{[2, element(1, Row)], element(2, Row)} |
 get_next_cols(Cols, Row)];
get_next_cols([Col | Cols], Row) when Col > 4 ->
 [endOfTable |
 get_next_cols(Cols, Row)];
get_next_cols([Col | Cols], Row) ->
 [{[Col, element(1, Row)], element(Col, Row)} |
 get_next_cols(Cols, Row)];
get_next_cols([], _Row) ->
 [].
%%--
%% Make a list of endOfTable with as many elems as Cols list.
%%--
end_of_table([Col | Cols]) ->
 [endOfTable | end_of_table(Cols)];
end_of_table([]) ->
 [].
add_one_to_cols([Col | Cols]) ->
 [Col + 1 | add_one_to_cols(Cols)];
add_one_to_cols([]) ->
 [].
is_row_status_col_changed(Cols) ->
 case lists:keysearch(?status_col, 1, Cols) of
 {value, {?status_col, StatusVal}} ->
 {true, StatusVal};
 _ -> false
 end.
get_row(RowIndex) ->
 ex1_server ! {self(), {get_row, RowIndex}},
 wait_answer().
get_next_row(RowIndex) ->
 ex1_server ! {self(), {get_next_row, RowIndex}},
 wait_answer().
wait_answer() ->
 receive
 {ex1_server, Answer} ->
 Answer
 end.
%%%---
%%% Server code follows
%%%---
init() ->
 register(ex1_server, self()),
 loop("", []).

loop(MyName, Table) ->
 receive
 {From, get_my_name} ->
 From ! {ex1_server, MyName},
 loop(MyName, Table);
 {From, {set_my_name, NewName}} ->
 loop(NewName, Table);
 {From, {get_row, RowIndex}} ->
 Res = table_get_row(Table, RowIndex),
 From ! {ex1_server, Res},
 loop(MyName, Table);
 {From, {get_next_row, RowIndex}} ->
 Res = table_get_next_row(Table, RowIndex),
 From ! {ex1_server, Res},
 loop(MyName, Table);
 {From, {delete_row, RowIndex}} ->
 NewTable = table_delete_row(Table, RowIndex),
 loop(MyName, NewTable);
 {From, {add_row, NewRow}} ->
 NewTable = table_add_row(Table, NewRow),
 loop(MyName, NewTable)
 end.
%%%---
%%% Functions for table operations. The table is represented as
%%% a list of rows.
%%%---
table_get_row([{Index, Name, Address, Status} | _], [Index]) ->
 {ok, {Index, Name, Address, Status}};
table_get_row([H | T], RowIndex) ->
 table_get_row(T, RowIndex);
table_get_row([], _RowIndex) ->
 no_such_row.
table_get_next_row([Row | T], []) ->
 {ok, Row};
table_get_next_row([Row | T], [Index | _])
when element(1, Row) > Index ->
 {ok, Row};
table_get_next_row([Row | T], RowIndex) ->
 table_get_next_row(T, RowIndex);
table_get_next_row([], RowIndex) ->
 endOfTable.
table_delete_row([{Index, _, _, _} | T], [Index]) ->
 T;
table_delete_row([H | T], RowIndex) ->
 [H | table_delete_row(T, RowIndex)];
table_delete_row([], _RowIndex) ->
 [].
table_add_row([Row | T], NewRow)
 when element(1, Row) > element(1, NewRow) ->
 [NewRow, Row | T];
table_add_row([H | T], NewRow) ->
 [H | table_add_row(T, NewRow)];
table_add_row([], NewRow) ->
 [NewRow].
make_row([Index], [{2, Name}, {3, Address} | _]) ->
 {Index, Name, Address, ?active}.
merge_rows(Row, [{Col, NewVal} | T]) ->
 merge_rows(setelement(Col, Row, NewVal), T);
merge_rows(Row, []) ->
 Row.
Association File
The association file EX1-MIB.funcs for the real implementation looks as
follows:
{myName, {ex1, my_name, []}}.
{friendsTable, {ex1, friends_table, []}}.
Transcript
To use the real implementation, we must recompile the MIB and load it into the
agent.
1> application:start(snmp).
ok
2> snmpc:compile("EX1-MIB").
{ok,"EX1-MIB.bin"}
3> snmpa:load_mibs(snmp_master_agent, ["EX1-MIB"]).
ok
4> ex1:start().
<0.115.0>
%% Now all requests operates on this "real" implementation.
%% The output from the manager requests will *look* exactly the
%% same as for the default implementation.
Trap Sending
How to send a trap by sending the fTrap from the master agent is shown in this
section. The master agent has the MIB EX1-MIB loaded, where the trap is
defined. This trap specifies that two variables should be sent along with the
trap, myName and fIndex. fIndex is a table column, so we must provide its
value and the index for the row in the call to snmpa:send_notification2/3. In the
example below, we assume that the row in question is indexed by 2 (the row with
fIndex 2).
we use a simple Erlang SNMP manager, which can receive traps.
[MANAGER]
1> snmp_test_mgr:start_link([{agent,"dront.ericsson.se"},{community,"public"}
 %% does not have write-access
1>{mibs,["EX1-MIB","STANDARD-MIB"]}]).
{ok, <0.100.0>}
2> snmp_test_mgr:s([{[myName,0], "Klas"}]).
ok
* Got PDU:
Received a trap:
 Generic: 4 %% authenticationFailure
 Enterprise: [iso,2,3]
 Specific: 0
 Agent addr: [123,12,12,21]
 TimeStamp: 42993
2>
[AGENT]
3> SendOpts = [{receiver, no_receiver}, {varbinds, [{fIndex,[2],2}]}, {name, "standard trap"}, {context, ""}],
4> snmpa:send_notification2(snmp_master_agent, fTrap, SendOpts).
[MANAGER]
2>
* Got PDU:
Received a trap:
 Generic: 6
 Enterprise: [example1]
 Specific: 1
 Agent addr: [123,12,12,21]
 TimeStamp: 69649
[myName,0] = "Martin"
[fIndex,2] = 2
2>

 Manager Implementation Example

This Implementation Example section describes how a simple manager can be
implemented with the SNMP Development Toolkit.
The example shown, ex2, can be found in the toolkit distribution.
This example has two functions:
	A simple example of how to use the manager component of the SNMP Development
Toolkit.
	A simple example of how to write agent test cases, using the new manager.

The example manager
The example manager, snmp_ex2_manager, is a simple example of how to implement
an snmp manager using the manager component of the SNMP Development Toolkit.
The module exports the following functions:
	start_link/0, start_link/1
	stop/0
	agent/2, agent/3
	sync_get/2, sync_get/3
	sync_get_next/2, sync_get_next/3
	sync_get_bulk/4, sync_get_bulk/5
	sync_set/2, sync_set/3
	oid_to_name/1

This module is also used by the test module described in the next section.
A simple standard test
This simple standard test, snmp_ex2_simple_standard_test, a module which,
using the snmp_ex2_manager described in the previous section, implements a
simple agent test utility.

 Instrumentation Functions

A user-defined instrumentation function for each object attaches the managed
objects to real resources. This function is called by the agent on a get or
set operation. The function could read some hardware register, perform a
calculation, or whatever is necessary to implement the semantics associated with
the conceptual variable. These functions must be written both for scalar
variables and for tables. They are specified in the association file, which is a
text file. In this file, the OBJECT IDENTIFIER, or symbolic name for each
managed object, is associated with an Erlang tuple {Module,``Function,
ListOfExtraArguments}.
When a managed object is referenced in an SNMP operation, the associated
{Module, Function, ListOfExtraArguments} is called. The function is applied to
some standard arguments (for example, the operation type) and the extra
arguments supplied by the user.
Instrumentation functions must be written for get and set for scalar
variables and tables, and for get-next for tables only. The get-bulk
operation is translated into a series of calls to get-next.
Instrumentation Functions
The following sections describe how the instrumentation functions should be
defined in Erlang for the different operations. In the following, RowIndex is
a list of key values for the table, and Column is a column number.
These functions are described in detail in
Definition of Instrumentation Functions.
New / Delete Operations
For scalar variables:
variable_access(new [, ExtraArg1, ...])
variable_access(delete [, ExtraArg1, ...])
For tables:
table_access(new [, ExtraArg1, ...])
table_access(delete [, ExtraArg1, ...])
These functions are called for each object in an MIB when the MIB is unloaded or
loaded, respectively.
Get Operation
For scalar variables:
variable_access(get [, ExtraArg1, ...])
For tables:
table_access(get,RowIndex,Cols [,ExtraArg1, ...])
Cols is a list of Column. The agent will sort incoming variables so that all
operations on one row (same index) will be supplied at the same time. The reason
for this is that a database normally retrieves information row by row.
These functions must return the current values of the associated variables.
Set Operation
For scalar variables:
variable_access(set, NewValue [, ExtraArg1, ...])
For tables:
table_access(set, RowIndex, Cols [, ExtraArg1,..])
Cols is a list of tuples {Column, NewValue}.
These functions returns noError if the assignment was successful, otherwise an
error code.
Is-set-ok Operation
As a complement to the set operation, it is possible to specify a test
function. This function has the same syntax as the set operation above, except
that the first argument is is_set_ok instead of set. This function is called
before the variable is set. Its purpose is to ensure that it is permissible to
set the variable to the new value.
variable_access(is_set_ok, NewValue [, ExtraArg1, ...])
For tables:
table_access(set, RowIndex, Cols [, ExtraArg1,..])
Cols is a list of tuples {Column, NewValue}.
Undo Operation
A function which has been called with is_set_ok will be called again, either
with set if there was no error, or with undo, if an error occurred. In this
way, resources can be reserved in the is_set_ok operation, released in the
undo operation, or made permanent in the set operation.
variable_access(undo, NewValue [, ExtraArg1, ...])
For tables:
table_access(set, RowIndex, Cols [, ExtraArg1,..])
Cols is a list of tuples {Column, NewValue}.
GetNext Operation
The GetNext Operation operation should only be defined for tables since the
agent can find the next instance of plain variables in the MIB and call the
instrumentation with the get operation.
table_access(get_next, RowIndex, Cols [, ExtraArg1, ...])
Cols is a list of integers, all greater than or equal to zero. This indicates
that the instrumentation should find the next accessible instance. This function
returns the tuple {NextOid, NextValue}, or endOfTable. NextOid should be
the lexicographically next accessible instance of a managed object in the table.
It should be a list of integers, where the first integer is the column, and the
rest of the list is the indices for the next row. If endOfTable is returned,
the agent continues to search for the next instance among the other variables
and tables.
RowIndex may be an empty list, an incompletely specified row index, or the
index for an unspecified row.
This operation is best described with an example.
GetNext Example
A table called myTable has five columns. The first two are keys (not
accessible), and the table has three rows. The instrumentation function for this
table is called my_table.

[image: Contents of my_table]
Note
N/A means not accessible.
The manager issues the following getNext request:
getNext{ myTable.myTableEntry.3.1.1,
 myTable.myTableEntry.5.1.1 }
Since both operations involve the 1.1 index, this is transformed into one call
to my_table:
my_table(get_next, [1, 1], [3, 5])
In this call, [1, 1] is the RowIndex, where key 1 has value 1, and key 2 has
value 1, and [3, 5] is the list of requested columns. The function should now
return the lexicographically next elements:
[{[3, 1, 2], d}, {[5, 1, 2], f}]
This is illustrated in the following table:

[image: GetNext from [3,1,1] and [5,1,1].]
The manager now issues the following getNext request:
getNext{ myTable.myTableEntry.3.2.1,
 myTable.myTableEntry.5.2.1 }
This is transformed into one call to my_table:
my_table(get_next, [2, 1], [3, 5])
The function should now return:
[{[4, 1, 1], b}, endOfTable]
This is illustrated in the following table:

[image: GetNext from [3,2,1] and [5,2,1].]
The manager now issues the following getNext request:
getNext{ myTable.myTableEntry.3.1.2,
 myTable.myTableEntry.4.1.2 }
This will be transform into one call to my_table:
my_table(get_next, [1, 2], [3, 4])
The function should now return:
[{[3, 2, 1], g}, {[5, 1, 1], c}]
This is illustrated in the following table:

[image: GetNext from [3,1,2] and [4,1,2].]
The manager now issues the following getNext request:
getNext{ myTable.myTableEntry,
 myTable.myTableEntry.1.3.2 }
This will be transform into two calls to my_table:
my_table(get_next, [], [0]) and
my_table(get_next, [3, 2], [1])
The function should now return:
[{[3, 1, 1], a}] and
[{[3, 1, 1], a}]
In both cases, the first accessible element in the table should be returned. As
the key columns are not accessible, this means that the third column is the
first row.
Note
Normally, the functions described above behave exactly as shown, but they are
free to perform other actions. For example, a get-request may have side
effects such as setting some other variable, perhaps a global lastAccessed
variable.
Using the ExtraArgument
The ListOfExtraArguments can be used to write generic functions. This list is
appended to the standard arguments for each function. Consider two read-only
variables for a device, ipAdr and name with object identifiers 1.1.23.4 and
1.1.7 respectively. To access these variables, one could implement the two
Erlang functions ip_access and name_access, which will be in the MIB. The
functions could be specified in a text file as follows:
{ipAdr, {my_module, ip_access, []}}.
% Or using the oid syntax for 'name'
{[1,1,7], {my_module, name_access, []}}.
The ExtraArgument parameter is the empty list. For example, when the agent
receives a get-request for the ipAdr variable, a call will be made to
ip_access(get). The value returned by this function is the answer to the
get-request.
If ip_access and name_access are implemented similarly, we could write a
generic_access function using the ListOfExtraArguments:
{ipAdr, {my_module, generic_access, ['IPADR']}}.
% The mnemonic 'name' is more convenient than 1.1.7
{name, {my_module, generic_access, ['NAME']}}.
When the agent receives the same get-request as above, a call will be made to
generic_access(get,'IPADR').
Yet another possibility, closer to the hardware, could be:
{ipAdr, {my_module, generic_access, [16#2543]}}.
{name, {my_module, generic_access, [16#A2B3]}}.
Default Instrumentation

When the MIB definition work is finished, there are two major issues left.
	Implementing the MIB
	Implementing a Manager Application.

Implementing an MIB can be a tedious task. Most probably, there is a need to
test the agent before all tables and variables are implemented. In this case,
the default instrumentation functions are useful. The toolkit can generate
default instrumentation functions for variables as well as for tables.
Consequently, a running prototype agent, which can handle set, get,
get-next and table operations, is generated without any programming.
The agent stores the values in an internal volatile database, which is based on
the standard module ets. However, it is possible to let the MIB compiler
generate functions which use an internal, persistent database, or the Mnesia
DBMS. Refer to the Mnesia User Guide and the Reference Manual, section SNMP,
module snmp_generic for more information.
When parts of the MIB are implemented, you recompile it and continue on by using
default functions. With this approach, the SNMP agent can be developed
incrementally.
The default instrumentation allows the application on the manager side to be
developed and tested simultaneously with the agent. As soon as the ASN.1 file is
completed, let the MIB compiler generate a default implementation and develop
the management application from this.
Table Operations
The generation of default functions for tables works for tables which use the
RowStatus textual convention from SNMPv2, defined in STANDARD-MIB and
SNMPv2-TC.
Note
We strongly encourage the use of the RowStatus convention for every table
that can be modified from the manager, even for newly designed SNMPv1 MIBs. In
SNMPv1, everybody has invented their own scheme for emulating table
operations, which has led to numerous inconsistencies. The convention in
SNMPv2 is flexible and powerful and has been tested successfully. If the table
is read only, no RowStatus column should be used.
Atomic Set
In SNMP, the set operation is atomic. Either all variables which are specified
in a set operation are changed, or none are changed. Therefore, the set
operation is divided into two phases. In the first phase, the new value of each
variable is checked against the definition of the variable in the MIB. The
following definitions are checked:
	the type
	the length
	the range
	the variable is writable and within the MIB view.

At the end of phase one, the user defined is_set_ok functions are called for
each scalar variable, and for each group of table operations.
If no error occurs, the second phase is performed. This phase calls the user
defined set function for all variables.
If an error occurs, either in the is_set_ok phase, or in the set phase, all
functions which were called with is_set_ok but not set, are called with
undo.
There are limitations with this transaction mechanism. If complex dependencies
exist between variables, for example between month and day, another
mechanism is needed. Setting the date to 'Feb 31' can be avoided by a somewhat
more generic transaction mechanism. You can continue and find more and more
complex situations and construct an N-phase set-mechanism. This toolkit only
contains a trivial mechanism.
The most common application of transaction mechanisms is to keep row operations
together. Since our agent sorts row operations, the mechanism implemented in
combination with the RowStatus (particularly 'createAndWait' value) solve most
problems elegantly.

 Definition of Instrumentation Functions

The section Definition of Instrumentation Functions describes the user defined
functions, which the agent calls at different times.
Variable Instrumentation
For scalar variables, a function f(Operation, ...) must be defined.
The Operation can be new, delete, get, is_set_ok, set, or undo.
In case of an error, all instrumentation functions may return either an SNMPv1
or an SNMPv2 error code. If it returns an SNMPv2 code, it is converted into an
SNMPv1 code before it is sent to a SNMPv1 manager. It is recommended to use the
SNMPv2 error codes for all instrumentation functions, as these provide more
details. See Appendix A for a description of error code
conversions.
f(new [, ExtraArgs])
The function f(new [, ExtraArgs]) is called for each variable in the MIB when
the MIB is loaded into the agent. This makes it possible to perform necessary
initialization.
This function is optional. The return value is discarded.
f(delete [, ExtraArgs])
The function f(delete [, ExtraArgs]) is called for each object in an MIB when
the MIB is unloaded from the agent. This makes it possible to perform necessary
clean-up.
This function is optional. The return value is discarded.
f(get [, ExtraArgs])
The function f(get [, ExtraArgs]) is called when a get-request or a get-next
request refers to the variable.
This function is mandatory.
Valid Return Values
	{value, Value}. The Value must be of correct type, length and within
ranges, otherwise genErr is returned in the response PDU. If the object is
an enumerated integer, the symbolic enum value may be used as an atom. If the
object is of type BITS, the return value shall be an integer or a list of bits
that are set.
	{noValue, noSuchName}(SNMPv1)
	{noValue, noSuchObject | noSuchInstance}(SNMPv2)

	genErr. Used if an error occurred. Note, this should be an internal
processing error, e.g. a caused by a programming fault somewhere. If the
variable does not exist, use {noValue, noSuchName} or
{noValue, noSuchInstance}.

f(is_set_ok, NewValue [, ExtraArgs])
The function f(is_set_ok, NewValue [, ExtraArgs]) is called in phase one of
the set-request processing so that the new value can be checked for
inconsistencies.
NewValue is guaranteed to be of the correct type, length and within ranges, as
specified in the MIB. If the object is an enumerated integer or of type BITS,
the integer value is used.
This function is optional.
If this function is called, it will be called again, either with undo or with
set as first argument.
Valid return values
	noError
	badValue | noSuchName | genErr(SNMPv1)

	noAccess | noCreation | inconsistentValue | resourceUnavailable | inconsistentName | genErr(SNMPv2)

f(undo, NewValue [, ExtraArgs])
If an error occurred, this function is called after the is_set_ok function is
called. If set is called for this object, undo is not called.
NewValue is guaranteed to be of the correct type, length and within ranges, as
specified in the MIB. If the object is an enumerated integer or of type BITS,
the integer value is used.
This function is optional.
Valid return values
	noError
	genErr(SNMPv1)
	undoFailed | genErr(SNMPv2)

f(set, NewValue [, ExtraArgs])
This function is called to perform the set in phase two of the set-request
processing. It is only called if the corresponding is_set_ok function is
present and returns noError.
NewValue is guaranteed to be of the correct type, length and within ranges, as
specified in the MIB. If the object is an enumerated integer or of type BITS,
the integer value is used.
This function is mandatory.
Valid return values
	noError
	genErr(SNMPv1)
	commitFailed | undoFailed | genErr(SNMPv2)

Table Instrumentation
For tables, a f(Operation, ...) function should be defined (the function shown
is exemplified with f).
The Operation can be new, delete, get, next, is_set_ok, undo or
set.
In case of an error, all instrumentation functions may return either an SNMPv1
or an SNMPv2 error code. If it returns an SNMPv2 code, it is converted into an
SNMPv1 code before it is sent to a SNMPv1 manager. It is recommended to use the
SNMPv2 error codes for all instrumentation functions, as these provide more
details. See Appendix A for a description of error code
conversions.
f(new [, ExtraArgs])
The function f(new [, ExtraArgs]) is called for each object in an MIB when the
MIB is loaded into the agent. This makes it possible to perform the necessary
initialization.
This function is optional. The return value is discarded.
f(delete [, ExtraArgs])
The function f(delete [, ExtraArgs]) is called for each object in an MIB when
the MIB is unloaded from the agent. This makes it possible to perform any
necessary clean-up.
This function is optional. The return value is discarded.
f(get, RowIndex, Cols [, ExtraArgs])
The function f(get, RowIndex, Cols [, ExtraArgs]) is called when a get-request
refers to a table.
This function is mandatory.
Arguments
	RowIndex is a list of integers which define the key values for the row. The
RowIndex is the list representation (list of integers) which follow the
Cols integer in the OBJECT IDENTIFIER.
	Cols is a list of integers which represent the column numbers. The Cols
are sorted by increasing value and are guaranteed to be valid column numbers.

Valid Return Values
	A list with as many elements as the Cols list, where each element is the
value of the corresponding column. Each element can be:
	{value, Value}. The Value must be of correct type, length and within
ranges, otherwise genErr is returned in the response PDU. If the object is
an enumerated integer, the symbolic enum value may be used (as an atom). If
the object is of type BITS, the return value shall be an integer or a list
of bits that are set.
	{noValue, noSuchName}(SNMPv1)
	{noValue, noSuchObject | noSuchInstance}(SNMPv2)

	{noValue, Error}. If the row does not exist, because all columns have
{noValue, Error}), the single tuple {noValue, Error} can be returned. This
is a shorthand for a list with all elements {noValue, Error}.

	genErr. Used if an error occurred. Note that this should be an internal
processing error, e.g. a caused by a programming fault somewhere. If some
column does not exist, use {noValue, noSuchName} or
{noValue, noSuchInstance}.

f(get_next, RowIndex, Cols [, ExtraArgs])
The function f(get_next, RowIndex, Cols [, ExtraArgs]) is called when a
get-next- or a get-bulk-request refers to the table.
The RowIndex argument may refer to an existing row or a non-existing row, or
it may be unspecified. The Cols list may refer to inaccessible columns or
non-existing columns. For each column in the Cols list, the corresponding next
instance is determined, and the last part of its OBJECT IDENTIFIER and its value
is returned.
This function is mandatory.
Arguments
	RowIndex is a list of integers (possibly empty) that defines the key values
for a row. The RowIndex is the list representation (list of integers), which
follow the Cols integer in the OBJECT IDENTIFIER.
	Cols is a list of integers, greater than or equal to zero, which represents
the column numbers.

Valid Return Values
	A list with as many elements as the Cols list Each element can be:
	{NextOid, NextValue}, where NextOid is the lexicographic next OBJECT
IDENTIFIER for the corresponding column. This should be specified as the
OBJECT IDENTIFIER part following the table entry. This means that the first
integer is the column number and the rest is a specification of the keys.
NextValue is the value of this element.
	endOfTable if there are no accessible elements after this one.

	{genErr, Column} where Column denotes the column that caused the error.
Column must be one of the columns in the Cols list. Note that this should
be an internal processing error, e.g. a caused by a programming fault
somewhere. If some column does not exist, you must return the next accessible
element (or endOfTable).

f(is_set_ok, RowIndex, Cols [, ExtraArgs])
The function f(is_set_ok, RowIndex, Cols [, ExtraArgs]) is called in phase one
of the set-request processing so that new values can be checked for
inconsistencies.
If the function is called, it will be called again with undo, or with set as
first argument.
This function is optional.
Arguments
	RowIndex is a list of integers which define the key values for the row. The
RowIndex is the list representation (list of integers) which follow the
Cols integer in the OBJECT IDENTIFIER.
	Cols is a list of {Column, NewValue}, where Column is an integer, and
NewValue is guaranteed to be of the correct type, length and within ranges,
as specified in the MIB. If the object is an enumerated integer or of type
BITS, the integer value is used. The list is sorted by Column (increasing)
and each Column is guaranteed to be a valid column number.

Valid Return Values
	{noError, 0}
	{Error, Column}, where Error is the same as for is_set_ok for variables,
and Column denotes the faulty column. Column must be one of the columns in
the Cols list.

f(undo, RowIndex, Cols [, ExtraArgs])
If an error occurs, The function f(undo, RowIndex, Cols [, ExtraArgs]) is
called after the is_set_ok function. If set is called for this object,
undo is not called.
This function is optional.
Arguments
	RowIndex is a list of integers which define the key values for the row. The
RowIndex is the list representation (list of integers) which follow the
Cols integer in the OBJECT IDENTIFIER.
	Cols is a list of {Column, NewValue}, where Column is an integer, and
NewValue is guaranteed to be of the correct type, length and within ranges,
as specified in the MIB. If the object is an enumerated integer or of type
BITS, the integer value is used. The list is sorted by Column (increasing)
and each Column is guaranteed to be a valid column number.

Valid Return Values
	{noError, 0}
	{Error, Column} where Error is the same as for undo for variables, and
Column denotes the faulty column. Column must be one of the columns in the
Cols list.

f(set, RowIndex, Cols [, ExtraArgs])
The function f(set, RowIndex, Cols [, ExtraArgs]) is called to perform the set
in phase two of the set-request processing. It is only called if the
corresponding is_set_ok function did not exist, or returned {noError, 0}.
This function is mandatory.
Arguments
	RowIndex is a list of integers that define the key values for the row. The
RowIndex is the list representation (list of integers) which follow the
Cols integer in the OBJECT IDENTIFIER.
	Cols is a list of {Column, NewValue}, where Column is an integer, and
NewValue is guaranteed to be of the correct type, length and within ranges,
as specified in the MIB. If the object is an enumerated integer or of type
BITS, the integer value is used. The list is sorted by Column (increasing)
and each Column is guaranteed to be a valid column number.

Valid Return Values
	{noError, 0}
	{Error, Column} where Error is the same as set for variables, and
Column denotes the faulty column. Column must be one of the columns in the
Cols list.

 Definition of Agent Net if

[image: The Purpose of Agent Net if]
The Network Interface (Net If) process delivers SNMP PDUs to a master agent, and
receives SNMP PDUs from the master agent. The most common behaviour of a Net if
process is that is receives bytes from a network, decodes them into an SNMP PDU,
which it sends to a master agent. When the master agent has processed the PDU,
it sends a response PDU to the Net if process, which encodes the PDU into bytes
and transmits the bytes onto the network.
However, that simple behaviour can be modified in numerous ways. For example,
the Net if process can apply some kind of encrypting/decrypting scheme on the
bytes or act as a proxy filter, which sends some packets to a proxy agent and
some packets to the master agent.
It is also possible to write your own Net if process. The default Net if process
is implemented in the module snmpa_net_if and it uses UDP as the transport
protocol i.e the transport domains transportDomainUdpIpv4 and/or
transportDomainUdpIpv6.
This section describes how to write a Net if process.
Mandatory Functions
A Net if process must implement the SNMP agent
network interface behaviour.
Messages
The section Messages describes mandatory messages, which Net If must send and
be able to receive.
In this section an Address field is a {Domain, Addr} tuple where Domain is
transportDomainUdpIpv4 or transportDomainUdpIpv4, and Addr is an
{IpAddr,IpPort} tuple.

Outgoing Messages
Net if must send the following message when it receives an SNMP PDU from the
network that is aimed for the MasterAgent:
MasterAgent ! {snmp_pdu, Vsn, Pdu, PduMS, ACMData, From, Extra}
	Vsn is either 'version-1', 'version-2', or 'version-3'.
	Pdu is an SNMP PDU record, as defined in snmp_types.hrl, with the SNMP
request.
	PduMS is the Maximum Size of the response Pdu allowed. Normally this is
returned from snmpa_mpd:process_packet (see Reference Manual).
	ACMData is data used by the Access Control Module in use. Normally this is
returned from snmpa_mpd:process_packet (see Reference Manual).
	From is the source Address.
	Extra is any term the Net if process wishes to send to the agent. This term
can be retrieved by the instrumentation functions by calling
snmp:current_net_if_data(). This data is also sent back to the Net if
process when the agent generates a response to the request.

The following message is used to report that a response to a request has been
received. The only request an agent can send is an Inform-Request.
Pid ! {snmp_response_received, Vsn, Pdu, From}
	Pid is the Process that waits for the response for the request. The Pid was
specified in the send_pdu_req message
(see below).
	Vsn is either 'version-1', 'version-2', or 'version-3'.
	Pdu is the SNMP Pdu received
	From is the source Address.

Incoming Messages
This section describes the incoming messages which a Net if process must be able
to receive.
	
{snmp_response, Vsn, Pdu, Type, ACMData, To, Extra}
This message is sent to the Net if process from a master agent as a response
to a previously received request.
	Vsn is either 'version-1', 'version-2', or 'version-3'.
	Pdu is an SNMP PDU record (as defined in snmp_types.hrl) with the SNMP
response.
	Type is the #pdu.type of the original request.
	ACMData is data used by the Access Control Module in use. Normally this is
just sent to snmpa_mpd:generate_response_message (see Reference Manual).
	To is the destination Address that comes from the From field in the
corresponding snmp_pdu message previously sent to the MasterAgent.
	Extra is the term that the Net if process sent to the agent when the
request was sent to the agent.

	
{discarded_pdu, Vsn, ReqId, ACMData, Variable, Extra}
This message is sent from a master agent if it for some reason decided to
discard the pdu.
	Vsn is either 'version-1', 'version-2', or 'version-3'.
	ReqId is the request id of the original request.
	ACMData is data used by the Access Control Module in use. Normally this is
just sent to snmpa_mpd:generate_response_message (see Reference Manual).
	Variable is the name of an snmp counter that represents the error, e.g.
snmpInBadCommunityUses.
	Extra is the term that the Net if process sent to the agent when the
request was sent to the agent.

	 {send_pdu, Vsn, Pdu, MsgData, To, Extra}
This message is sent from a master agent when a trap is to be sent.
	Vsn is either 'version-1', 'version-2', or 'version-3'.
	Pdu is an SNMP PDU record (as defined in snmp_types.hrl) with the SNMP
response.
	MsgData is the message specific data used in the SNMP message. This value
is normally sent to snmpa_mpd:generate_msg/5. In SNMPv1 and SNMPv2c,
this message data is the community string. In SNMPv3, it is the context
information.
	To is a list of {Address, SecData} tuples i.e the destination addresses
and their corresponding security parameters. This value is normally sent to
snmpa_mpd:generate_msg/5.
	Extra is any term that the notification sender wishes to pass to the Net
if process when sending a notification (see
send notificationfor more info).

	 {send_pdu_req, Vsn, Pdu, MsgData, To, Pid, Extra}
This message is sent from a master agent when a request is to be sent. The
only request an agent can send is Inform-Request. The net if process needs to
remember the request id and the Pid, and when a response is received for the
request id, send it to Pid, using a snmp_response_received message.
	Vsn is either 'version-1', 'version-2', or 'version-3'.
	Pdu is an SNMP PDU record (as defined in snmp_types.hrl) with the SNMP
response.
	MsgData is the message specific data used in the SNMP message. This value
is normally sent to snmpa_mpd:generate_msg/5. In SNMPv1 and SNMPv2c,
this message data is the community string. In SNMPv3, it is the context
information.
	To is a list of {Address, SecData} tuples i.e the destination addresses
and their corresponding security parameters. This value is normally sent to
snmpa_mpd:generate_msg/5.
	Pid is a process identifier.
	Extra is any term that the notification sender wishes to pass to the Net
if process when sending a notification (see
send notificationfor more info).

Notes
Since the Net if process is responsible for encoding and decoding of SNMP
messages, it must also update the relevant counters in the SNMP group in MIB-II.
It can use the functions in the module snmpa_mpd for this purpose (refer to
the Reference Manual, section snmp, module snmpa_mpd for more
details.)
There are also some useful functions for encoding and decoding of SNMP messages
in the module snmp_pdus.

 Definition of Manager Net if

[image: The Purpose of Manager Net if]
The Network Interface (Net If) process delivers SNMP PDUs to the manager server,
and receives SNMP PDUs from the manager server. The most common behaviour of a
Net if process is that is receives request PDU from the manager server, encodes
the PDU into bytes and transmits the bytes onto the network to an agent. When
the reply from the agent is received by the Net if process, which it decodes
into an SNMP PDU, which it sends to the manager server.
However, that simple behaviour can be modified in numerous ways. For example,
the Net if process can apply some kind of encrypting/decrypting scheme on the
bytes.
The snmp application provides two different modules, snmpm_net_if (the
default) and snmpm_net_if_mt, both uses UDP as the transport protocol i.e the
transport domains transportDomainUdpIpv4 and/or transportDomainUdpIpv6. The
difference between the two modules is that the latter is "multi-threaded", i.e.
for each message/request a new process is created that processes the
message/request and then exits.
There is a server config option,
netif_sup that enables "active" Net If
supervision. This is very simple mechanism. The (supervising) process simply
sends a ping message and expects a
pong message response (within a specific time).
The interval between each ping/pong exchange is user configurable. As is the
time that is allowed for the pong message to
arrive. Both the NetIf module(s) provided with the app supports active
supervision. If a NetIf module/process is used which do not implement this, then
the server cannot be configured with active supervision.
It is also possible to write your own Net if process and this section describes
how to do that.

Mandatory Functions
A Net If process must implement the SNMP manager
network interface behaviour.
Messages
The section Messages describes mandatory (with exception for the ping/pong
messages) messages, which Net If must send to the manager server process.
In this section a Domain field is the transport domain i.e one of
transportDomainUdpIpv4 or transportDomainUdpIpv6, and an Addr field is an
{IpAddr,IpPort} tuple.

Outgoing Messages
Net if must send the following message when it receives an SNMP PDU from the
network that is aimed for the MasterAgent:
Server ! {snmp_pdu, Pdu, Domain, Addr}
	Pdu is an SNMP PDU record, as defined in snmp_types.hrl, with the SNMP
request.
	Domain is the source transport domain.
	Addr is the source address.

Server ! {snmp_trap, Trap, Domain, Addr}
	Trap is either an SNMP pdu record or an trappdu record, as defined in
snmp_types.hrl, with the SNMP request.
	Domain is the source transport domain.
	Addr is the source address.

Server ! {snmp_inform, Ref, Pdu, PduMS, Domain, Addr}
	Ref is either the atom ignore or something that can be used to identify
the inform-request (e.g. request-id). ignore is used if the response
(acknowledgment) to the inform-request has already been sent (this means that
the server will not make the call to the
inform_response function). See
the inform request behaviour configuration
option for more info.
	Pdu is an SNMP PDU record, as defined in snmp_types.hrl, with the SNMP
request.
	Domain is the source transport domain.
	Addr is the source address.

Server ! {snmp_report, Data, Domain, Addr}
	Data is either {ok, Pdu} or {error, ReqId, ReasonInfo, Pdu}. Which one
is used depends on the return value from the MPD
process_msg/6 function. If the MsgData is ok, the
first is used, and if it is {error, ReqId, Reason} the latter is used.
	Pdu is an SNMP PDU record, as defined in snmp_types.hrl, with the SNMP
request.
	ReqId is an integer.
	ReasonInfo is a term().
	Domain is the source transport domain.
	Addr is the source address.

Supervisor ! {pong, self()}
	Supervisor is the process that sent the
ping message (see below).

Incoming Messages
This section describes the incoming messages which a Net If process may choose
to respond to.
	 {ping, Supervisor}This message is sent to the Net If process by a process that has been
configured to perform "active supervision" of the Net If process. The Net If
process should respond immediately with a
pong message.	Supervisor is a pid/0.

Notes
Since the Net if process is responsible for encoding and decoding of SNMP
messages, it must also update the relevant counters in the SNMP group in MIB-II.
It can use the functions in the module snmpm_mpd for this purpose (refer to
the Reference Manual, section snmp, module snmpm_mpd for more details).
There are also some useful functions for encoding and decoding of SNMP messages
in the module snmp_pdus.

 Audit Trail Log

The chapter Audit Trail Log describes the audit trail logging.
Both the agent and the manager can be configured to log incoming and outgoing
messages. It uses the Erlang standard log mechanism disk_log for logging. The
size and location of the log files are configurable. A wrap log is used, which
means that when the log has grown to a maximum size, it starts from the
beginning of the log, overwriting existing log records.
The log can be either a read, write or a read_write.
Agent Logging
For the agent, a write, means that all set requests and their responses are
stored. No get requests or traps are stored in a write. A read_write, all
requests, responses and traps are stored.
The log uses a raw data format (basically the BER encoded message), in order to
minimize the CPU load needed for the log mechanism. This means that the log is
not human readable, but needs to be formatted off-line before it can be read.
Use the function snmpa:log_to_txt/8 for this purpose.
Manager Logging
For the manager, a write, means that all requests (set and get) and their
responses are stored. No traps are stored in a write. A read_write, all
requests, responses and traps are stored.
The log uses a raw data format (basically the BER encoded message), in order to
minimize the CPU load needed for the log mechanism. This means that the log is
not human readable, but needs to be formatted off-line before it can be read.
Use the function snmpm:log_to_txt/8 for this purpose.

 Advanced Agent Topics

The chapter Advanced Agent Topics describes the more advanced agent related
features of the SNMP development tool. The following topics are covered:
	When to use a Sub-agent
	Agent semantics
	Sub-agents and dependencies
	Distributed tables
	Fault tolerance
	Using Mnesia tables as SNMP tables
	Audit Trail Logging
	Deviations from the standard

When to use a Sub-agent
The section When to use a Sub-agent describes situations where the mechanism
of loading and unloading MIBs is insufficient. In these cases a sub-agent is
needed.
Special Set Transaction Mechanism
Each sub-agent can implement its own mechanisms for set, get and get-next.
For example, if the application requires the get mechanism to be asynchronous,
or needs a N-phase set mechanism, a specialized sub-agent should be used.
The toolkit allows different kinds of sub-agents at the same time. Accordingly,
different MIBs can have different set or get mechanisms.
Process Communication
A simple distributed agent can be managed without sub-agents. The
instrumentation functions can use distributed Erlang to communicate with other
parts of the application. However, a sub-agent can be used on each node if this
generates too much unnecessary traffic. A sub-agent processes requests per
incoming SNMP request, not per variable. Therefore the network traffic is
minimized.
If the instrumentation functions communicate with UNIX processes, it might be a
good idea to use a special sub-agent. This sub-agent sends the SNMP request to
the other process in one packet in order to minimize context switches. For
example, if a whole MIB is implemented on the C level in UNIX, but you still
want to use the Erlang SNMP tool, then you may have one special sub-agent, which
sends the variables in the request as a single operation down to C.
Frequent Loading of MIBs
Loading and unloading of MIBs are quite cheap operations. However, if the
application does this very often, perhaps several times per minute, it should
load the MIBs once and for all in a sub-agent. This sub-agent only registers and
unregisters itself under another agent instead of loading the MIBs each time.
This is cheaper than loading an MIB.
Interaction With Other SNMP Agent Toolkits
If the SNMP agent needs to interact with sub-agents constructed in another
package, a special sub-agent should be used, which communicates through a
protocol specified by the other package.
Agent Semantics
The agent can be configured to be multi-threaded, to process one incoming
request at a time, or to have a request limit enabled (this can be used for load
control or to limit the effect of DoS attacks). If it is multi-threaded, read
requests (get, get-next and get-bulk) and traps are processed in parallel
with each other and set requests. However, all set requests are serialized,
which means that if the agent is waiting for the application to complete a
complicated write operation, it will not process any new write requests until
this operation is finished. It processes read requests and sends traps,
concurrently. The reason for not handle write requests in parallel is that a
complex locking mechanism would be needed even in the simplest cases. Even with
the scheme described above, the user must be careful not to violate that the
set requests are atoms. If this is hard to do, do not use the multi-threaded
feature.
The order within an request is undefined and variables are not processed in a
defined order. Do not assume that the first variable in the PDU will be
processed before the second, even if the agent processes variables in this
order. It cannot even be assumed that requests belonging to different sub-agents
have any order.
If the manager tries to set the same variable many times in the same PDU, the
agent is free to improvise. There is no definition which determines if the
instrumentation will be called once or twice. If called once only, there is no
definition that determines which of the new values is going to be supplied.
When the agent receives a request, it keeps the request ID for one second after
the response is sent. If the agent receives another request with the same
request ID during this time, from the same IP address and UDP port, that request
will be discarded. This mechanism has nothing to do with the function
snmpa:current_request_id/0.
Sub-agents and Dependencies
The toolkit supports the use of different types of sub-agents, but not the
construction of sub-agents.
Also, the toolkit does not support dependencies between sub-agents. A sub-agent
should by definition be stand alone and it is therefore not good design to
create dependencies between them.
Distributed Tables
A common situation in more complex systems is that the data in a table is
distributed. Different table rows are implemented in different places. Some SNMP
tool-kits dedicate an SNMP sub-agent for each part of the table and load the
corresponding MIB into all sub-agents. The Master Agent is responsible for
presenting the distributed table as a single table to the manager. The toolkit
supplied uses a different method.
The method used to implement distributed tables with this SNMP tool is to
implement a table coordinator process responsible for coordinating the
processes, which hold the table data and they are called table holders. All
table holders must in some way be known by the coordinator; the structure of the
table data determines how this is achieved. The coordinator may require that the
table holders explicitly register themselves and specify their information. In
other cases, the table holders can be determined once at compile time.
When the instrumentation function for the distributed table is called, the
request should be forwarded to the table coordinator. The coordinator finds the
requested information among the table holders and then returns the answer to the
instrumentation function. The SNMP toolkit contains no support for coordination
of tables since this must be independent of the implementation.
The advantages of separating the table coordinator from the SNMP tool are:
	We do not need a sub-agent for each table holder. Normally, the sub-agent is
needed to take care of communication, but in Distributed Erlang we use
ordinary message passing.
	Most likely, some type of table coordinator already exists. This process
should take care of the instrumentation for the table.
	The method used to present a distributed table is strongly application
dependent. The use of different masking techniques is only valid for a small
subset of problems and registering every row in a distributed table makes it
non-distributed.

Fault Tolerance
The SNMP agent toolkit gets input from three different sources:
	UDP packets from the network
	return values from the user defined instrumentation functions
	return values from the MIB.

The agent is highly fault tolerant. If the manager gets an unexpected response
from the agent, it is possible that some instrumentation function has returned
an erroneous value. The agent will not crash even if the instrumentation does.
It should be noted that if an instrumentation function enters an infinite loop,
the agent will also be blocked forever. The supervisor ,or the application,
specifies how to restart the agent.
Using the SNMP Agent in a Distributed Environment
The normal way to use the agent in a distributed environment is to use one
master agent located at one node, and zero or more sub-agents located on other
nodes. However, this configuration makes the master agent node a single point of
failure. If that node goes down, the agent will not work.
One solution to this problem is to make the snmp application a distributed
Erlang application, and that means, the agent may be configured to run on one of
several nodes. If the node where it runs goes down, another node restarts the
agent. This is called failover. When the node starts again, it may takeover
the application. This solution to the problem adds another problem. Generally,
the new node has another IP address than the first one, which may cause problems
in the communication between the SNMP managers and the agent.
If the snmp agent is configured as a distributed Erlang application, it will
during takeover try to load the same MIBs that were loaded at the old node. It
uses the same filenames as the old node. If the MIBs are not located in the same
paths at the different nodes, the MIBs must be loaded explicitly after takeover.
Using Mnesia Tables as SNMP Tables
The Mnesia DBMS can be used for storing data of SNMP tables. This means that an
SNMP table can be implemented as a Mnesia table, and that a Mnesia table can be
made visible via SNMP. This mapping is largely automated.
There are three main reasons for using this mapping:
	We get all features of Mnesia, such as fault tolerance, persistent data
storage, replication, and so on.
	Much of the work involved is automated. This includes get-next processing
and RowStatus handling.
	The table may be used as an ordinary Mnesia table, using the Mnesia API
internally in the application at the same time as it is visible through SNMP.

When this mapping is used, insertion and deletion in the original Mnesia table
is slower, with a factor O(log n). The read access is not affected.
A drawback with implementing an SNMP table as a Mnesia table is that the
internal resource is forced to use the table definition from the MIB, which
means that the external data model must be used internally. Actually, this is
only partially true. The Mnesia table may extend the SNMP table, which means
that the Mnesia table may have columns which are use internally and are not seen
by SNMP. Still, the data model from SNMP must be maintained. Although this is
undesirable, it is a pragmatic compromise in many situations where simple and
efficient implementation is preferable to abstraction.
Creating the Mnesia Table
The table must be created in Mnesia before the manager can use it. The table
must be declared as type snmp. This makes the table ordered in accordance with
the lexicographical ordering rules of SNMP. The name of the Mnesia table must be
identical to the SNMP table name. The types of the INDEX fields in the
corresponding SNMP table must be specified.
If the SNMP table has more than one INDEX column, the corresponding Mnesia row
is a tuple, where the first element is a tuple with the INDEX columns.
Generally, if the SNMP table has N INDEX columns and C data columns, the
Mnesia table is of arity (C-N)+1, where the key is a tuple of arity N if
N > 1, or a single term if N = 1.
Refer to the Mnesia User's Guide for information on how to declare a Mnesia
table as an SNMP table.
The following example illustrates a situation in which we have an SNMP table
that we wish to implement as a Mnesia table. The table stores information about
employees at a company. Each employee is indexed with the department number and
the name.
 empTable OBJECT-TYPE
 SYNTAX SEQUENCE OF EmpEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "A table with information about employees."
 ::= { emp 1}
 empEntry OBJECT-TYPE
 SYNTAX EmpEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 ""
 INDEX { empDepNo, empName }
 ::= { empTable 1 }
 EmpEntry ::=
 SEQUENCE {
 empDepNo INTEGER,
 empName DisplayString,
 empTelNo DisplayString,
 empStatus RowStatus
 }
The corresponding Mnesia table is specified as follows:
mnesia:create_table([{name, employees},
 {snmp, [{key, {integer, string}}]},
 {attributes, [key, telno, row_status]}]).
Note
In the Mnesia tables, the two key columns are stored as a tuple with two
elements. Therefore, the arity of the table is 3.
Instrumentation Functions
The MIB table shown in the previous section can be compiled as follows:
1> snmpc:compile("EmpMIB", [{db, mnesia}]).
This is all that has to be done! Now the manager can read, add, and modify
rows. Also, you can use the ordinary Mnesia API to access the table from your
programs. The only explicit action is to create the Mnesia table, an action the
user has to perform in order to create the required table schemas.
Adding Own Actions
It is often necessary to take some specific action when a table is modified.
This is accomplished with an instrumentation function. It executes some specific
code when the table is set, and passes all other requests down to the
pre-defined function.
The following example illustrates this idea:
emp_table(set, RowIndex, Cols) ->
 notify_internal_resources(RowIndex, Cols),
 snmp_generic:table_func(set, RowIndex, Cols, {empTable, mnesia});
emp_table(Op, RowIndex, Cols) ->
 snmp_generic:table_func(Op, RowIndex, Cols, {empTable, mnesia}).
The default instrumentation functions are defined in the module snmp_generic.
Refer to the Reference Manual, section SNMP, module snmp_generic for details.
Extending the Mnesia Table
A table may contain columns that are used internally, but should not be visible
to a manager. These internal columns must be the last columns in the table. The
set operation will not work with this arrangement, because there are columns
that the agent does not know about. This situation is handled by adding values
for the internal columns in the set function.
To illustrate this, suppose we extend our Mnesia empTable with one internal
column. We create it as before, but with an arity of 4, by adding another
attribute.
mnesia:create_table([{name, employees},
 {snmp, [{key, {integer, string}}]},
 {attributes, {key, telno, row_status, internal_col}}]).
The last column is the internal column. When performing a set operation, which
creates a row, we must give a value to the internal column. The instrumentation
functions will now look as follows:
-define(createAndGo, 4).
-define(createAndWait, 5).

emp_table(set, RowIndex, Cols) ->
 notify_internal_resources(RowIndex, Cols),
 NewCols =
 case is_row_created(empTable, Cols) of
 true -> Cols ++ [{4, "internal"}]; % add internal column
 false -> Cols % keep original cols
 end,
 snmp_generic:table_func(set, RowIndex, NewCols, {empTable, mnesia});
emp_table(Op, RowIndex, Cols) ->
 snmp_generic:table_func(Op, RowIndex, Cols, {empTable, mnesia}).

is_row_created(Name, Cols) ->
 case snmp_generic:get_status_col(Name, Cols) of
 {ok, ?createAndGo} -> true;
 {ok, ?createAndWait} -> true;
 _ -> false
 end.
If a row is created, we always set the internal column to "internal".
Deviations from the Standard
In some aspects the agent does not implement SNMP fully. Here are the
differences:
	The default functions and snmp_generic cannot handle an object of type
NetworkAddress as INDEX (SNMPv1 only!). Use IpAddress instead.
	The agent does not check complex ranges specified for INTEGER objects. In
these cases it just checks that the value lies within the minimum and maximum
values specified. For example, if the range is specified as 1..10 | 12..20
the agent would let 11 through, but not 0 or 21. The instrumentation functions
must check the complex ranges itself.
	The agent will never generate the wrongEncoding error. If a variable binding
is erroneous encoded, the asn1ParseError counter will be incremented.
	A tooBig error in an SNMPv1 packet will always use the 'NULL' value in all
variable bindings.
	The default functions and snmp_generic do not check the range of each OCTET
in textual conventions derived from OCTET STRING, e.g. DisplayString and
DateAndTime. This must be checked in an overloaded is_set_ok function.

 SNMP Appendix A

Appendix A
This appendix describes the conversion of SNMPv2 to SNMPv1 error messages. The
instrumentation functions should return v2 error messages.
Mapping of SNMPv2 error message to SNMPv1:
	SNMPv2 message	SNMPv1 message
	noError	noError
	genErr	genErr
	noAccess	noSuchName
	wrongType	badValue
	wrongLength	badValue
	wrongEncoding	badValue
	wrongValue	badValue
	noCreation	noSuchName
	inconsistentValue	badValue
	resourceUnavailable	genErr
	commitFailed	genErr
	undoFailed	genErr
	notWritable	noSuchName
	inconsistentName	noSuchName

Table: Error Messages

 SNMP Appendix B

Appendix B
RowStatus (from RFC1903)
RowStatus ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION
 "The RowStatus textual convention is used to manage the
 creation and deletion of conceptual rows, and is used as the
 value of the SYNTAX clause for the status column of a
 conceptual row (as described in Section 7.7.1 in RFC1902.)

 The status column has six defined values:

 - `active', which indicates that the conceptual row is
 available for use by the managed device;

 - `notInService', which indicates that the conceptual
 row exists in the agent, but is unavailable for use by
 the managed device (see NOTE below);

 - `notReady', which indicates that the conceptual row
 exists in the agent, but is missing information
 necessary in order to be available for use by the
 managed device;

 - `createAndGo', which is supplied by a management
 station wishing to create a new instance of a
 conceptual row and to have its status automatically set
 to active, making it available for use by the managed
 device;

 - `createAndWait', which is supplied by a management
 station wishing to create a new instance of a
 conceptual row (but not make it available for use by
 the managed device); and,

 - `destroy', which is supplied by a management station
 wishing to delete all of the instances associated with
 an existing conceptual row.

 Whereas five of the six values (all except `notReady') may
 be specified in a management protocol set operation, only
 three values will be returned in response to a management
 protocol retrieval operation: `notReady', `notInService' or
 `active'. That is, when queried, an existing conceptual row
 has only three states: it is either available for use by
 the managed device (the status column has value `active');
 it is not available for use by the managed device, though
 the agent has sufficient information to make it so (the
 status column has value `notInService'); or, it is not
 available for use by the managed device, and an attempt to
 make it so would fail because the agent has insufficient
 information (the state column has value `notReady').

 NOTE WELL

 This textual convention may be used for a MIB table,
 irrespective of whether the values of that table's
 conceptual rows are able to be modified while it is
 active, or whether its conceptual rows must be taken
 out of service in order to be modified. That is, it is
 the responsibility of the DESCRIPTION clause of the
 status column to specify whether the status column must
 not be `active' in order for the value of some other
 column of the same conceptual row to be modified. If
 such a specification is made, affected columns may be
 changed by an SNMP set PDU if the RowStatus would not
 be equal to `active' either immediately before or after
 processing the PDU. In other words, if the PDU also
 contained a varbind that would change the RowStatus
 value, the column in question may be changed if the
 RowStatus was not equal to `active' as the PDU was
 received, or if the varbind sets the status to a value
 other than 'active'.

 Also note that whenever any elements of a row exist, the
 RowStatus column must also exist.

 To summarize the effect of having a conceptual row with a
 status column having a SYNTAX clause value of RowStatus,
 consider the following state diagram:

 STATE
 +--------------+-----------+-------------+-------------
 | A | B | C | D
 | |status col.|status column|
 |status column | is | is |status column
 ACTION |does not exist| notReady | notInService| is active
--------------+--------------+-----------+-------------+-------------
set status |noError ->D|inconsist- |inconsistent-|inconsistent-
column to | or | entValue| Value| Value
createAndGo |inconsistent- | | |
 | Value| | |
--------------+--------------+-----------+-------------+-------------
set status |noError see 1|inconsist- |inconsistent-|inconsistent-
column to | or | entValue| Value| Value
createAndWait |wrongValue | | |
--------------+--------------+-----------+-------------+-------------
set status |inconsistent- |inconsist- |noError |noError
column to | Value| entValue| |
active | | | |
 | | or | |
 | | | |
 | |see 2 ->D| ->D| ->D
--------------+--------------+-----------+-------------+-------------
set status |inconsistent- |inconsist- |noError |noError ->C
column to | Value| entValue| |
notInService | | | |
 | | or | | or
 | | | |
 | |see 3 ->C| ->C|wrongValue
--------------+--------------+-----------+-------------+-------------
set status |noError |noError |noError |noError
column to | | | |
destroy | ->A| ->A| ->A| ->A
--------------+--------------+-----------+-------------+-------------
set any other |see 4 |noError |noError |see 5
column to some| | | |
value | | see 1| ->C| ->D
--------------+--------------+-----------+-------------+-------------

 (1) goto B or C, depending on information available to the
 agent.

 (2) if other variable bindings included in the same PDU,
 provide values for all columns which are missing but
 required, then return noError and goto D.

 (3) if other variable bindings included in the same PDU,
 provide values for all columns which are missing but
 required, then return noError and goto C.

 (4) at the discretion of the agent, the return value may be
 either:

 inconsistentName: because the agent does not choose to
 create such an instance when the corresponding
 RowStatus instance does not exist, or

 inconsistentValue: if the supplied value is
 inconsistent with the state of some other MIB object's
 value, or

 noError: because the agent chooses to create the
 instance.

 If noError is returned, then the instance of the status
 column must also be created, and the new state is B or C,
 depending on the information available to the agent. If
 inconsistentName or inconsistentValue is returned, the row
 remains in state A.

 (5) depending on the MIB definition for the column/table,
 either noError or inconsistentValue may be returned.

 NOTE: Other processing of the set request may result in a
 response other than noError being returned, e.g.,
 wrongValue, noCreation, etc.

 Conceptual Row Creation

 There are four potential interactions when creating a
 conceptual row: selecting an instance-identifier which is
 not in use; creating the conceptual row; initializing any
 objects for which the agent does not supply a default; and,
 making the conceptual row available for use by the managed
 device.

 Interaction 1: Selecting an Instance-Identifier

 The algorithm used to select an instance-identifier varies
 for each conceptual row. In some cases, the instance-
 identifier is semantically significant, e.g., the
 destination address of a route, and a management station
 selects the instance-identifier according to the semantics.

 In other cases, the instance-identifier is used solely to
 distinguish conceptual rows, and a management station
 without specific knowledge of the conceptual row might
 examine the instances present in order to determine an
 unused instance-identifier. (This approach may be used, but
 it is often highly sub-optimal; however, it is also a
 questionable practice for a naive management station to
 attempt conceptual row creation.)

 Alternately, the MIB module which defines the conceptual row
 might provide one or more objects which provide assistance
 in determining an unused instance-identifier. For example,
 if the conceptual row is indexed by an integer-value, then
 an object having an integer-valued SYNTAX clause might be
 defined for such a purpose, allowing a management station to
 issue a management protocol retrieval operation. In order
 to avoid unnecessary collisions between competing management
 stations, `adjacent' retrievals of this object should be
 different.

 Finally, the management station could select a pseudo-random
 number to use as the index. In the event that this index
 was already in use and an inconsistentValue was returned in
 response to the management protocol set operation, the
 management station should simply select a new pseudo-random
 number and retry the operation.

 A MIB designer should choose between the two latter
 algorithms based on the size of the table (and therefore the
 efficiency of each algorithm). For tables in which a large
 number of entries are expected, it is recommended that a MIB
 object be defined that returns an acceptable index for
 creation. For tables with small numbers of entries, it is
 recommended that the latter pseudo-random index mechanism be
 used.

 Interaction 2: Creating the Conceptual Row

 Once an unused instance-identifier has been selected, the
 management station determines if it wishes to create and
 activate the conceptual row in one transaction or in a
 negotiated set of interactions.

 Interaction 2a: Creating and Activating the Conceptual Row

 The management station must first determine the column
 requirements, i.e., it must determine those columns for
 which it must or must not provide values. Depending on the
 complexity of the table and the management station's
 knowledge of the agent's capabilities, this determination
 can be made locally by the management station. Alternately,
 the management station issues a management protocol get
 operation to examine all columns in the conceptual row that
 it wishes to create. In response, for each column, there
 are three possible outcomes:

 - a value is returned, indicating that some other
 management station has already created this conceptual
 row. We return to interaction 1.

 - the exception `noSuchInstance' is returned,
 indicating that the agent implements the object-type
 associated with this column, and that this column in at
 least one conceptual row would be accessible in the MIB
 view used by the retrieval were it to exist. For those
 columns to which the agent provides read-create access,
 the `noSuchInstance' exception tells the management
 station that it should supply a value for this column
 when the conceptual row is to be created.

 - the exception `noSuchObject' is returned, indicating
 that the agent does not implement the object-type
 associated with this column or that there is no
 conceptual row for which this column would be
 accessible in the MIB view used by the retrieval. As
 such, the management station cannot issue any
 management protocol set operations to create an
 instance of this column.

 Once the column requirements have been determined, a
 management protocol set operation is accordingly issued.
 This operation also sets the new instance of the status
 column to `createAndGo'.

 When the agent processes the set operation, it verifies that
 it has sufficient information to make the conceptual row
 available for use by the managed device. The information
 available to the agent is provided by two sources: the
 management protocol set operation which creates the
 conceptual row, and, implementation-specific defaults
 supplied by the agent (note that an agent must provide
 implementation-specific defaults for at least those objects
 which it implements as read-only). If there is sufficient
 information available, then the conceptual row is created, a
 `noError' response is returned, the status column is set to
 `active', and no further interactions are necessary (i.e.,
 interactions 3 and 4 are skipped). If there is insufficient
 information, then the conceptual row is not created, and the
 set operation fails with an error of `inconsistentValue'.
 On this error, the management station can issue a management
 protocol retrieval operation to determine if this was
 because it failed to specify a value for a required column,
 or, because the selected instance of the status column
 already existed. In the latter case, we return to
 interaction 1. In the former case, the management station
 can re-issue the set operation with the additional
 information, or begin interaction 2 again using
 `createAndWait' in order to negotiate creation of the
 conceptual row.

 NOTE WELL

 Regardless of the method used to determine the column
 requirements, it is possible that the management
 station might deem a column necessary when, in fact,
 the agent will not allow that particular columnar
 instance to be created or written. In this case, the
 management protocol set operation will fail with an
 error such as `noCreation' or `notWritable'. In this
 case, the management station decides whether it needs
 to be able to set a value for that particular columnar
 instance. If not, the management station re-issues the
 management protocol set operation, but without setting
 a value for that particular columnar instance;
 otherwise, the management station aborts the row
 creation algorithm.

 Interaction 2b: Negotiating the Creation of the Conceptual
 Row

 The management station issues a management protocol set
 operation which sets the desired instance of the status
 column to `createAndWait'. If the agent is unwilling to
 process a request of this sort, the set operation fails with
 an error of `wrongValue'. (As a consequence, such an agent
 must be prepared to accept a single management protocol set
 operation, i.e., interaction 2a above, containing all of the
 columns indicated by its column requirements.) Otherwise,
 the conceptual row is created, a `noError' response is
 returned, and the status column is immediately set to either
 `notInService' or `notReady', depending on whether it has
 sufficient information to make the conceptual row available
 for use by the managed device. If there is sufficient
 information available, then the status column is set to
 `notInService'; otherwise, if there is insufficient
 information, then the status column is set to `notReady'.
 Regardless, we proceed to interaction 3.

 Interaction 3: Initializing non-defaulted Objects

 The management station must now determine the column
 requirements. It issues a management protocol get operation
 to examine all columns in the created conceptual row. In
 the response, for each column, there are three possible
 outcomes:

 - a value is returned, indicating that the agent
 implements the object-type associated with this column
 and had sufficient information to provide a value. For
 those columns to which the agent provides read-create
 access (and for which the agent allows their values to
 be changed after their creation), a value return tells
 the management station that it may issue additional
 management protocol set operations, if it desires, in
 order to change the value associated with this column.

 - the exception `noSuchInstance' is returned,
 indicating that the agent implements the object-type
 associated with this column, and that this column in at
 least one conceptual row would be accessible in the MIB
 view used by the retrieval were it to exist. However,
 the agent does not have sufficient information to
 provide a value, and until a value is provided, the
 conceptual row may not be made available for use by the
 managed device. For those columns to which the agent
 provides read-create access, the `noSuchInstance'
 exception tells the management station that it must
 issue additional management protocol set operations, in
 order to provide a value associated with this column.

 - the exception `noSuchObject' is returned, indicating
 that the agent does not implement the object-type
 associated with this column or that there is no
 conceptual row for which this column would be
 accessible in the MIB view used by the retrieval. As
 such, the management station cannot issue any
 management protocol set operations to create an
 instance of this column.

 If the value associated with the status column is
 `notReady', then the management station must first deal with
 all `noSuchInstance' columns, if any. Having done so, the
 value of the status column becomes `notInService', and we
 proceed to interaction 4.

 Interaction 4: Making the Conceptual Row Available

 Once the management station is satisfied with the values
 associated with the columns of the conceptual row, it issues
 a management protocol set operation to set the status column
 to `active'. If the agent has sufficient information to
 make the conceptual row available for use by the managed
 device, the management protocol set operation succeeds (a
 `noError' response is returned). Otherwise, the management
 protocol set operation fails with an error of
 `inconsistentValue'.

 NOTE WELL

 A conceptual row having a status column with value
 `notInService' or `notReady' is unavailable to the
 managed device. As such, it is possible for the
 managed device to create its own instances during the
 time between the management protocol set operation
 which sets the status column to `createAndWait' and the
 management protocol set operation which sets the status
 column to `active'. In this case, when the management
 protocol set operation is issued to set the status
 column to `active', the values held in the agent
 supersede those used by the managed device.

 If the management station is prevented from setting the
 status column to `active' (e.g., due to management station
 or network failure) the conceptual row will be left in the
 `notInService' or `notReady' state, consuming resources
 indefinitely. The agent must detect conceptual rows that
 have been in either state for an abnormally long period of
 time and remove them. It is the responsibility of the
 DESCRIPTION clause of the status column to indicate what an
 abnormally long period of time would be. This period of
 time should be long enough to allow for human response time
 (including `think time') between the creation of the
 conceptual row and the setting of the status to `active'.
 In the absence of such information in the DESCRIPTION
 clause, it is suggested that this period be approximately 5
 minutes in length. This removal action applies not only to
 newly-created rows, but also to previously active rows which
 are set to, and left in, the notInService state for a
 prolonged period exceeding that which is considered normal
 for such a conceptual row.

 Conceptual Row Suspension

 When a conceptual row is `active', the management station
 may issue a management protocol set operation which sets the
 instance of the status column to `notInService'. If the
 agent is unwilling to do so, the set operation fails with an
 error of `wrongValue'. Otherwise, the conceptual row is
 taken out of service, and a `noError' response is returned.
 It is the responsibility of the DESCRIPTION clause of the
 status column to indicate under what circumstances the
 status column should be taken out of service (e.g., in order
 for the value of some other column of the same conceptual
 row to be modified).

 Conceptual Row Deletion

 For deletion of conceptual rows, a management protocol set
 operation is issued which sets the instance of the status
 column to `destroy'. This request may be made regardless of
 the current value of the status column (e.g., it is possible
 to delete conceptual rows which are either `notReady',
 `notInService' or `active'.) If the operation succeeds,
 then all instances associated with the conceptual row are
 immediately removed."

 SYNTAX INTEGER {
 -- the following two values are states:
 -- these values may be read or written
 active(1),
 notInService(2),

 -- the following value is a state:
 -- this value may be read, but not written
 notReady(3),

 -- the following three values are
 -- actions: these values may be written,
 -- but are never read
 createAndGo(4),
 createAndWait(5),
 destroy(6)
 }

 SNMP Appendix C

Appendix C
Compile time configuration
There is one compile/configure time option: Defining the size of an "empty" PDU.
This is used when processing get-bulk requests. The default value for this is
21, but can be increased in two ways:
	configure: --with-snmp-empty-pdu-size=SIZE
	compile time: environment variable: SNMP_EMPTY_PDU_SIZE=SIZE"

Where SIZE is a value greater or equal to 21.

 snmpc

SNMP MIB compiler frontend
Synopsis
snmpc [options] file.mib | file.bin
Description
The snmpc program provides a way to run the SNMP MIB compiler of the Erlang
system.
snmpc compiles an SNMP MIB file. See compile/1,2 for more
information.
It can also be used to generate a header file (.hrl) with definitions of Erlang
constants for the objects in the MIB. See mib_to_hrl/1.

Compiler options
The following options are supported (note that most of these relate to the
compilation of the MIB file):

	--help - Prints help info.

	--version - Prints application and mib format version.

	--verbosity verbosity - Print debug info.
verbosity = trace | debug | log | info | silence
Defaults to silence.

	--warnings | --W - Print warning messages.

	--wae | --Werror - Warnings as errors. Indicates that warnings shall be
treated as errors.

	--o directory - The directory where the compiler should place the
output files. If not specified, output files will be placed in the current
working directory.

	--i Directory - Specifies the path to search for imported (compiled)
MIB files. By default, the current working directory is always included.
This option can be present several times, each time specifying one path.

	--il Directory - This option (include_lib), specifies a list of
directories to search for imported MIBs. It assumes that the first element in
the directory name corresponds to an OTP application. The compiler will find
the current installed version. For example, the value ["snmp/mibs/"] will be
replaced by ["snmp-3.1.1/mibs/"] (or what the current version may be in the
system). The current directory and the "snmp-home"/priv/mibs/ are always
listed last in the include path.

	--sgc - This option (skip group check), if present, disables the group
check of the mib compiler. That is, should the OBJECT-GROUP and the
NOTIFICATION-GROUP macro(s) be checked for correctness or not.

	--dep - Keep deprecated definition(s). If not specified the compiler will
ignore deprecated definitions.

	--desc - The DESCRIPTION field will be included.

	--ref - The REFERENCE field will be included.

	--imp - The IMPORTS field will be included.

	--mi - The MODULE-IDENTITY field will be included.

	--mc - The MODULE-COMPLIANCE field will be included.

	--ac - The AGENT-CAPABILITIES field will be included.

	--mod module - The module which implements all the instrumentation
functions.
The name of all instrumentation functions must be the same as the
corresponding managed object it implements.

	--nd - The default instrumentation functions will not be used if a
managed object have no instrumentation function. Instead this will be reported
as an error, and the compilation aborts.

	--rrnac - This option, if present, specifies that the row name assign
check shall not be done strictly according to the SMI (which allows only the
value 1).
With this option, all values greater than zero is allowed (>= 1). This means
that the error will be converted to a warning.
By default it is not included, but if this option is present it will be.

SEE ALSO
erlc(1), compile, snmpc

snmp

Interface functions to the SNMP toolkit
The module snmp contains interface functions to the SNMP toolkit.
See Also
calendar(3)

 Summary

 Types

 algorithm()

 asn1_type()

 atl_type()

 bits()

 The Erlang representation of the SNMP BITS (pseudo) data type.

 column()

 community()

 context_name()

 date_and_time_validator()

 The input to the validator fun looks like this

 date_and_time_validator_kind()

 dir()

 A string, that is a file path to a directory.

 engine_id()

 error_index()

 0 is used when error status is noError and when error status is an actual
error; error index is pos_integer/0.

 error_status()

 We should really specify all of these, but they are so numerous... Also,
normally all you need to know is that 'noError' is ok and everything else is
an error.

 ivarbind()

 log_size()

 This is basically a copy of the dlog_size().

 log_time()

 me()

 mib()

 mib_name()

 mms()

 notification()

 octet()

 octet_string()

 oid()

 Represent an ASN.1 OBJECT IDENTIFIER.

 pdu()

 pdu_type()

 rfc1903_date_and_time()

 The data type DateAndTime, an OCTET STRING, as specified in RFC1903.

 row_index()

 Denotes the last part of the OID which specifies the index of the row in the
table (see RFC1212, 4.1.6 for more information about INDEX).

 row_pointer()

 sec_level()

 sec_model()

 sec_name()

 snmp_timer()

 table_info()

 taddress()

 tdomain()

 time_interval()

 trap()

 trappdu()

 usm_auth_key()

 usm_auth_protocol()

 usm_name()

 usm_priv_key()

 usm_priv_protocol()

 varbind()

 variable_info()

 verbosity()

 For the lowest verbosity silence, nothing is printed. The higher the
verbosity, the more is printed.

 version()

 void()

 The type is used when a functions return is to be ignored.

 Functions

 bits_to_octet_string(B)

 Utility function for converting a value of type BITS to OCTET-STRING,
according to RFC1906, section 8.

 change_log_size(LogName, NewSize)

 Changes the log size of the Audit Trail Log. The application must be configured
to use the audit trail log function. Please refer to disk_log(3) in Kernel
Reference Manual for a description of how to change the log size.

 config()

 A simple interactive configuration tool. Simple configuration files can be
generated, but more complex configurations still have to be edited manually.

 date_and_time()

 Returns current date and time as the data type DateAndTime, as specified in
RFC1903. This is an OCTET STRING.

 date_and_time_to_string2(DAT)

 Converts a DateAndTime list to a printable string, according to the DISPLAY-HINT
definition in RFC2579, with the extension that it also allows the values "hours
from UTC" = 14 together with "minutes from UTC" = 0.

 date_and_time_to_string(DAT)

 Equivalent to date_and_time_to_string/2.

 date_and_time_to_string(DAT, Validate)

 Converts a DateAndTime list to a printable string, according to the DISPLAY-HINT
definition in RFC2579.

 date_and_time_to_universal_time_dst(DAT)

 Converts a DateAndTime list to a list of possible universal time(s). The
universal time value on the same format as defined in calendar(3).

 disable_trace()

 Stop the tracer.

 enable_trace()

 Starts a dbg tracer that prints trace events to stdout (using plain io:format
after a minor formatting).

 local_time_to_date_and_time_dst(Local)

 Converts a local time value to a list of possible DateAndTime list(s). The local
time value on the same format as defined in calendar(3).

 log_to_io(LogDir, Mibs, LogName, LogFile)

 Equivalent to log_to_io/7.

 log_to_io/5

 Equivalent to log_to_io/7.

 log_to_io/6

 Equivalent to log_to_io/7.

 log_to_io(LogDir, Mibs, LogName, LogFile, Block, Start, Stop)

 Converts an Audit Trail Log to a readable format and prints it on stdio. See
log_to_txt/8 for more info.

 log_to_txt(LogDir, Mibs, OutFile, LogName, LogFile)

 Equivalent to log_to_txt/8.

 log_to_txt/6

 Equivalent to log_to_txt/8.

 log_to_txt/7

 Equivalent to log_to_txt/8.

 log_to_txt(LogDir, Mibs, OutFile, LogName, LogFile, Block, Start, Stop)

 Converts an Audit Trail Log to a readable text file, where each item has a
trailing TAB character, and any TAB character in the body of an item has been
replaced by ESC TAB.

 octet_string_to_bits(S)

 Utility function for converting a value of type OCTET-STRING to BITS,
according to RFC1906, section 8.

 passwd2localized_key(Algorithm, Passwd, EngineID)

 Generates a key that can be used as an authentication or privacy key using MD5,
SHA, SHA224, SHA256, SHA384 or SHA512. The key is localized for EngineID.

 print_version_info()

 Equivalent to print_version_info/1.

 print_version_info(Prefix)

 Utility function(s) to produce a formatted printout of the versions info
generated by the versions1 function

 print_versions(Versions)

 Equivalent to print_versions/2.

 print_versions(Prefix, Versions)

 Utility function to produce a formatted printout of the versions info generated
by the versions1 and versions2 functions

 read_mib(FileName)

 Read a compiled mib.

 reset_trace(Targets)

 This function is used to reset (disable) trace for the given module(s).

 set_trace(Targets)

 This function is used to set up default trace on function(s) for the given
module or modules. The scope of the trace will be all exported functions (both
the call info and the return value). Timestamp info will also be included.

 set_trace(Targets, TraceOpts)

 This function is used to set up trace on function(s) for the given module or
modules.

 start()

 Equivalent to start/1.

 start(Type)

 Starts the SNMP application.

 start_agent()

 Equivalent to start_agent/1.

 start_agent(Type)

 The SNMP application consists of several entities, of which the agent is one.
This function starts the agent entity of the application.

 start_manager()

 Equivalent to start_manager/1.

 start_manager(Type)

 The SNMP application consists of several entities, of which the manager is one.
This function starts the manager entity of the application.

 stop()

 Stops the SNMP application.

 universal_time_to_date_and_time(UTC)

 Converts a universal time value to a DateAndTime list. The universal time value
on the same format as defined in calendar(3).

 validate_date_and_time(DateAndTime)

 Equivalent to validate_date_and_time/2.

 validate_date_and_time(DateAndTime, Validate)

 Checks if DateAndTime is a correct DateAndTime value, as specified in RFC2579.
This function can be used in instrumentation functions to validate a DateAndTime
value.

 versions1()

 Equivalent to versions2/0.

 versions2()

 Utility functions used to retrieve some system and application info.

 Types

 algorithm()

 (not exported)

 -type algorithm() :: md5 | sha | sha224 | sha256 | sha384 | sha512.

 asn1_type()

 -type asn1_type() ::
 #asn1_type{bertype :: term(),
 lo :: term(),
 hi :: term(),
 assocList :: term(),
 imported :: term(),
 aliasname :: term(),
 implied :: term(),
 display_hint :: term()}.

 atl_type()

 -type atl_type() :: read | write | read_write.

 bits()

 -type bits() :: integer().

The Erlang representation of the SNMP BITS (pseudo) data type.

 column()

 -type column() :: pos_integer().

 community()

 -type community() :: snmp_community_mib:name().

 context_name()

 -type context_name() :: snmp_community_mib:context_name().

 date_and_time_validator()

 -type date_and_time_validator() ::
 fun((Kind :: date_and_time_validator_kind(), Data :: term()) -> boolean()).

The input to the validator fun looks like this:
	 Kind Data
	 -------------- ----------------------
	 year {Year1, Year2}
	 month Month
	 day Day
	 hour Hour
	 minute Minute
	 seconds Seconds
	 deci_seconds DeciSeconds
	 diff [Sign, Hour, Minute]
	 valid_date {Year, Month, Day}

 date_and_time_validator_kind()

 -type date_and_time_validator_kind() ::
 year | month | day | hour | minute | seconds | deci_seconds | diff | valid_date.

 dir()

 -type dir() :: string().

A string, that is a file path to a directory.

 engine_id()

 -type engine_id() :: snmp_framework_mib:engine_id().

 error_index()

 -type error_index() :: non_neg_integer().

0 is used when error status is noError and when error status is an actual
error; error index is pos_integer/0.

 error_status()

 -type error_status() :: noError | atom().

We should really specify all of these, but they are so numerous... Also,
normally all you need to know is that 'noError' is ok and everything else is
an error.

 ivarbind()

 -type ivarbind() :: #ivarbind{status :: term(), mibentry :: term(), varbind :: term()}.

 log_size()

 -type log_size() ::
 infinity | pos_integer() | {MaxNoBytes :: pos_integer(), MaxNoFiles :: pos_integer()}.

This is basically a copy of the dlog_size().

 log_time()

 -type log_time() ::
 calendar:datetime() |
 {local_time, calendar:datetime()} |
 {universal_time, calendar:datetime()}.

 me()

 -type me() ::
 #me{oid :: term(),
 entrytype :: term(),
 aliasname :: term(),
 asn1_type :: term(),
 access :: term(),
 mfa :: term(),
 imported :: term(),
 assocList :: term(),
 description :: term(),
 units :: term()}.

 mib()

 -type mib() ::
 #mib{misc :: term(),
 mib_format_version :: term(),
 name :: term(),
 module_identity :: term(),
 mes :: term(),
 asn1_types :: term(),
 traps :: term(),
 variable_infos :: term(),
 table_infos :: term(),
 imports :: term()}.

 mib_name()

 -type mib_name() :: string().

 mms()

 -type mms() :: snmp_framework_mib:max_message_size().

 notification()

 -type notification() ::
 #notification{trapname :: term(), oid :: term(), oidobjects :: term(), description :: term()}.

 octet()

 -type octet() :: 0..255.

 octet_string()

 -type octet_string() :: [octet()].

 oid()

 -type oid() :: [non_neg_integer()].

Represent an ASN.1 OBJECT IDENTIFIER.

 pdu()

 -type pdu() ::
 #pdu{type :: term(),
 request_id :: term(),
 error_status :: term(),
 error_index :: term(),
 varbinds :: term()}.

 pdu_type()

 -type pdu_type() :: snmp_pdus:pdu_type().

 rfc1903_date_and_time()

 -type rfc1903_date_and_time() :: octet_string().

The data type DateAndTime, an OCTET STRING, as specified in RFC1903.

 row_index()

 -type row_index() :: oid().

Denotes the last part of the OID which specifies the index of the row in the
table (see RFC1212, 4.1.6 for more information about INDEX).

 row_pointer()

 -type row_pointer() :: oid().

Note
"Represents a pointer to a conceptual row. The value is the name of the
instance of the first accessible columnar object in the conceptual row."
OBJECT IDENTIFIER
Defined by SNMPv2-TC.

 sec_level()

 -type sec_level() :: snmp_framework_mib:security_level().

 sec_model()

 -type sec_model() :: snmp_framework_mib:security_model().

 sec_name()

 -type sec_name() :: snmp_framework_mib:admin_string().

 snmp_timer()

 -type snmp_timer() ::
 #snmp_incr_timer{wait_for :: term(), factor :: term(), incr :: term(), max_retries :: term()}.

 table_info()

 -type table_info() ::
 #table_info{nbr_of_cols :: term(),
 defvals :: term(),
 status_col :: term(),
 not_accessible :: term(),
 index_types :: term(),
 first_accessible :: term(),
 first_own_index :: term()}.

 taddress()

 -type taddress() :: snmpa_conf:transportAddress().

 tdomain()

 -type tdomain() :: transportDomainUdpIpv4 | transportDomainUdpIpv6.

 time_interval()

 -type time_interval() :: 0..2147483647.

Note
"A period of time, measured in units of 0.01 seconds."
INTEGER (0..2147483647)
Defined by SNMPv2-TC.

 trap()

 -type trap() ::
 #trap{trapname :: term(),
 enterpriseoid :: term(),
 specificcode :: term(),
 oidobjects :: term(),
 description :: term()}.

 trappdu()

 -type trappdu() ::
 #trappdu{enterprise :: term(),
 agent_addr :: term(),
 generic_trap :: term(),
 specific_trap :: term(),
 time_stamp :: term(),
 varbinds :: term()}.

 usm_auth_key()

 -type usm_auth_key() :: snmp_user_based_sm_mib:auth_key().

 usm_auth_protocol()

 -type usm_auth_protocol() :: snmp_user_based_sm_mib:auth_protocol().

 usm_name()

 -type usm_name() :: snmp_user_based_sm_mib:name().

 usm_priv_key()

 -type usm_priv_key() :: snmp_user_based_sm_mib:priv_key().

 usm_priv_protocol()

 -type usm_priv_protocol() :: snmp_user_based_sm_mib:priv_protocol().

 varbind()

 -type varbind() :: #varbind{oid :: term(), variabletype :: term(), value :: term(), org_index :: term()}.

 variable_info()

 -type variable_info() :: #variable_info{defval :: term()}.

 verbosity()

 -type verbosity() :: silence | info | log | debug | trace.

For the lowest verbosity silence, nothing is printed. The higher the
verbosity, the more is printed.

 version()

 -type version() :: v1 | v2 | v3.

 void()

 -type void() :: term().

The type is used when a functions return is to be ignored.

 Functions

 bits_to_octet_string(B)

 -spec bits_to_octet_string(B) -> octet_string() when B :: bits().

Utility function for converting a value of type BITS to OCTET-STRING,
according to RFC1906, section 8.

 change_log_size(LogName, NewSize)

 -spec change_log_size(LogName, NewSize) -> ok | {error, Reason}
 when LogName :: string(), NewSize :: log_size(), Reason :: term().

Changes the log size of the Audit Trail Log. The application must be configured
to use the audit trail log function. Please refer to disk_log(3) in Kernel
Reference Manual for a description of how to change the log size.
The change is permanent, as long as the log is not deleted. That means, the log
size is remembered across reboots.

 config()

 -spec config() -> ok | {error, Reason} when Reason :: term().

A simple interactive configuration tool. Simple configuration files can be
generated, but more complex configurations still have to be edited manually.
The tool is a textual based tool that asks some questions and generates
sys.config and *.conf files.
Note that if the application shall support version 3, then the crypto app must
be started before running this function (password generation).
Note also that some of the configuration files for the agent and manager share
the same names. This means that they have to be stored in different
directories!

 date_and_time()

 -spec date_and_time() -> DateAndTime when DateAndTime :: rfc1903_date_and_time().

Returns current date and time as the data type DateAndTime, as specified in
RFC1903. This is an OCTET STRING.

 date_and_time_to_string2(DAT)

 -spec date_and_time_to_string2(DAT) -> string() when DAT :: rfc1903_date_and_time().

Converts a DateAndTime list to a printable string, according to the DISPLAY-HINT
definition in RFC2579, with the extension that it also allows the values "hours
from UTC" = 14 together with "minutes from UTC" = 0.

 date_and_time_to_string(DAT)

 -spec date_and_time_to_string(DAT) -> string() when DAT :: rfc1903_date_and_time().

Equivalent to date_and_time_to_string/2.

 date_and_time_to_string(DAT, Validate)

 -spec date_and_time_to_string(DAT, Validate) -> string()
 when
 DAT :: rfc1903_date_and_time(),
 Validate :: date_and_time_validator().

Converts a DateAndTime list to a printable string, according to the DISPLAY-HINT
definition in RFC2579.
The validation fun, Validate, allows for a more "flexible" validation of the
DateAndTime argument. Whenever the data is found to not follow RFC2579, the
fun is called to allow a more "lax" validation. See the
validate_date_and_time/2 function for
more info on the Validate fun.

 date_and_time_to_universal_time_dst(DAT)

 -spec date_and_time_to_universal_time_dst(DAT) -> UTCs
 when
 DAT :: rfc1903_date_and_time(),
 UTCs :: [calendar:datetime1970()].

Converts a DateAndTime list to a list of possible universal time(s). The
universal time value on the same format as defined in calendar(3).

 disable_trace()

 -spec disable_trace() -> void().

Stop the tracer.

 enable_trace()

 -spec enable_trace() -> void().

Starts a dbg tracer that prints trace events to stdout (using plain io:format
after a minor formatting).

 local_time_to_date_and_time_dst(Local)

 -spec local_time_to_date_and_time_dst(Local) -> DATs
 when
 Local :: calendar:datetime1970(),
 DATs :: [rfc1903_date_and_time()].

Converts a local time value to a list of possible DateAndTime list(s). The local
time value on the same format as defined in calendar(3).

 log_to_io(LogDir, Mibs, LogName, LogFile)

 (since OTP R15B01)

 -spec log_to_io(LogDir, Mibs, LogName, LogFile) -> ok | {ok, Cnt} | {error, Reason}
 when
 LogDir :: string(),
 Mibs :: [mib_name()],
 LogName :: string(),
 LogFile :: string(),
 Cnt :: {NumOK, NumERR},
 NumOK :: non_neg_integer(),
 NumERR :: pos_integer(),
 Reason :: term().

Equivalent to log_to_io/7.

 log_to_io/5

 (since OTP R15B01)

 -spec log_to_io(LogDir, Mibs, LogName, LogFile, Block) -> ok | {ok, Cnt} | {error, Reason}
 when
 LogDir :: string(),
 Mibs :: [mib_name()],
 LogName :: string(),
 LogFile :: string(),
 Block :: boolean(),
 Cnt :: {NumOK, NumERR},
 NumOK :: non_neg_integer(),
 NumERR :: pos_integer(),
 Reason :: term();
 (LogDir, Mibs, LogName, LogFile, Start) -> ok | {ok, Cnt} | {error, Reason}
 when
 LogDir :: string(),
 Mibs :: [mib_name()],
 LogName :: string(),
 LogFile :: string(),
 Start :: null | log_time(),
 Cnt :: {NumOK, NumERR},
 NumOK :: non_neg_integer(),
 NumERR :: pos_integer(),
 Reason :: term().

Equivalent to log_to_io/7.

 log_to_io/6

 (since OTP R15B01)

 -spec log_to_io(LogDir, Mibs, LogName, LogFile, Block, Start) -> ok | {ok, Cnt} | {error, Reason}
 when
 LogDir :: string(),
 Mibs :: [mib_name()],
 LogName :: string(),
 LogFile :: string(),
 Block :: boolean(),
 Start :: null | log_time(),
 Cnt :: {NumOK, NumERR},
 NumOK :: non_neg_integer(),
 NumERR :: pos_integer(),
 Reason :: term();
 (LogDir, Mibs, LogName, LogFile, Start, Stop) -> ok | {ok, Cnt} | {error, Reason}
 when
 LogDir :: string(),
 Mibs :: [mib_name()],
 LogName :: string(),
 LogFile :: string(),
 Start :: null | log_time(),
 Stop :: null | log_time(),
 Cnt :: {NumOK, NumERR},
 NumOK :: non_neg_integer(),
 NumERR :: pos_integer(),
 Reason :: term().

Equivalent to log_to_io/7.

 log_to_io(LogDir, Mibs, LogName, LogFile, Block, Start, Stop)

 (since OTP R16B03)

 -spec log_to_io(LogDir, Mibs, LogName, LogFile, Block, Start, Stop) -> ok | {ok, Cnt} | {error, Reason}
 when
 LogDir :: string(),
 Mibs :: [mib_name()],
 LogName :: string(),
 LogFile :: string(),
 Block :: boolean(),
 Start :: null | log_time(),
 Stop :: null | log_time(),
 Cnt :: {NumOK, NumERR},
 NumOK :: non_neg_integer(),
 NumERR :: pos_integer(),
 Reason :: term().

Converts an Audit Trail Log to a readable format and prints it on stdio. See
log_to_txt/8 for more info.

 log_to_txt(LogDir, Mibs, OutFile, LogName, LogFile)

 -spec log_to_txt(LogDir, Mibs, OutFile, LogName, LogFile) -> ok | {ok, Cnt} | {error, Reason}
 when
 LogDir :: string(),
 Mibs :: [mib_name()],
 OutFile :: string(),
 LogName :: string(),
 LogFile :: string(),
 Cnt :: {NumOK, NumERR},
 NumOK :: non_neg_integer(),
 NumERR :: pos_integer(),
 Reason :: term().

Equivalent to log_to_txt/8.

 log_to_txt/6

 -spec log_to_txt(LogDir, Mibs, OutFile, LogName, LogFile, Block) -> ok | {ok, Cnt} | {error, Reason}
 when
 LogDir :: string(),
 Mibs :: [mib_name()],
 OutFile :: string(),
 LogName :: string(),
 LogFile :: string(),
 Block :: boolean(),
 Cnt :: {NumOK, NumERR},
 NumOK :: non_neg_integer(),
 NumERR :: pos_integer(),
 Reason :: term();
 (LogDir, Mibs, OutFile, LogName, LogFile, Start) -> ok | {ok, Cnt} | {error, Reason}
 when
 LogDir :: string(),
 Mibs :: [mib_name()],
 OutFile :: string(),
 LogName :: string(),
 LogFile :: string(),
 Start :: null | log_time(),
 Cnt :: {NumOK, NumERR},
 NumOK :: non_neg_integer(),
 NumERR :: pos_integer(),
 Reason :: term().

Equivalent to log_to_txt/8.

 log_to_txt/7

 -spec log_to_txt(LogDir, Mibs, OutFile, LogName, LogFile, Block, Start) ->
 ok | {ok, Cnt} | {error, Reason}
 when
 LogDir :: string(),
 Mibs :: [mib_name()],
 OutFile :: string(),
 LogName :: string(),
 LogFile :: string(),
 Block :: boolean(),
 Start :: null | log_time(),
 Cnt :: {NumOK, NumERR},
 NumOK :: non_neg_integer(),
 NumERR :: pos_integer(),
 Reason :: term();
 (LogDir, Mibs, OutFile, LogName, LogFile, Start, Stop) ->
 ok | {ok, Cnt} | {error, Reason}
 when
 LogDir :: string(),
 Mibs :: [mib_name()],
 OutFile :: string(),
 LogName :: string(),
 LogFile :: string(),
 Start :: null | log_time(),
 Stop :: null | log_time(),
 Cnt :: {NumOK, NumERR},
 NumOK :: non_neg_integer(),
 NumERR :: pos_integer(),
 Reason :: term().

Equivalent to log_to_txt/8.

 log_to_txt(LogDir, Mibs, OutFile, LogName, LogFile, Block, Start, Stop)

 (since OTP R16B03)

 -spec log_to_txt(LogDir, Mibs, OutFile, LogName, LogFile, Block, Start, Stop) ->
 ok | {ok, Cnt} | {error, Reason}
 when
 LogDir :: string(),
 Mibs :: [mib_name()],
 OutFile :: string(),
 LogName :: string(),
 LogFile :: string(),
 Block :: boolean(),
 Start :: null | log_time(),
 Stop :: null | log_time(),
 Cnt :: {NumOK, NumERR},
 NumOK :: non_neg_integer(),
 NumERR :: pos_integer(),
 Reason :: term().

Converts an Audit Trail Log to a readable text file, where each item has a
trailing TAB character, and any TAB character in the body of an item has been
replaced by ESC TAB.
The function can be used on a running system, or by copying the entire log
directory and calling this function. SNMP must be running in order to provide
MIB information.
LogDir is the name of the directory where the audit trail log is stored.
Mibs is a list of Mibs to be used. The function uses the information in the
Mibs to convert for example object identifiers to their symbolic name. OutFile
is the name of the generated text-file. LogName is the name of the log,
LogFile is the name of the log file. Start is the start (first) date and
time from which log events will be converted and Stop is the stop (last) date
and time to which log events will be converted. The Block argument indicates
if the log should be blocked during conversion. This could be useful when
converting large logs (when otherwise the log could wrap during conversion).
Defaults to true.
The format of an audit trail log text item is as follows:
Tag Addr - Community [TimeStamp] Vsn
PDU
where Tag is request, response, report, trap or inform; Addr is
IP:Port (or comma space separated list of such); Community is the community
parameter (SNMP version v1 and v2), or SecLevel:"AuthEngineID":"UserName"
(SNMP v3); TimeStamp is a date and time stamp, and Vsn is the SNMP version.
PDU is a textual version of the protocol data unit. There is a new line
between Vsn and PDU.
If the entire log is successfully converted, the function will return ok. If
one of more entries fail to convert, the function will instead return
{ok, {NumOK, NumERR}}, where the counters indicate how many valid and
erroneous entries where found. If instead {error, Reason} is returned, the
conversion encountered a fatal error and where either never done of aborted
midway.

 octet_string_to_bits(S)

 -spec octet_string_to_bits(S) -> bits() when S :: octet_string().

Utility function for converting a value of type OCTET-STRING to BITS,
according to RFC1906, section 8.

 passwd2localized_key(Algorithm, Passwd, EngineID)

 -spec passwd2localized_key(Algorithm, Passwd, EngineID) -> Key
 when
 Algorithm :: algorithm(),
 Passwd :: string(),
 EngineID :: string(),
 Key :: list().

Generates a key that can be used as an authentication or privacy key using MD5,
SHA, SHA224, SHA256, SHA384 or SHA512. The key is localized for EngineID.

 print_version_info()

 -spec print_version_info() -> void().

Equivalent to print_version_info/1.

 print_version_info(Prefix)

 -spec print_version_info(Prefix) -> void() when Prefix :: string() | non_neg_integer().

Utility function(s) to produce a formatted printout of the versions info
generated by the versions1 function
This is the same as doing, e.g.:
 {ok, V} = snmp:versions1(),
 snmp:print_versions(V).

 print_versions(Versions)

 -spec print_versions(Versions) -> void() when Versions :: [VersionInfo], VersionInfo :: term().

Equivalent to print_versions/2.

 print_versions(Prefix, Versions)

 -spec print_versions(Prefix, Versions) -> void()
 when
 Prefix :: string() | non_neg_integer(),
 Versions :: [VersionInfo],
 VersionInfo :: term().

Utility function to produce a formatted printout of the versions info generated
by the versions1 and versions2 functions
Example:
 {ok, V} = snmp:versions1(),
 snmp:print_versions(V).

 read_mib(FileName)

 -spec read_mib(FileName) -> {ok, Mib} | {error, Reason}
 when FileName :: string(), Mib :: mib(), Reason :: term().

Read a compiled mib.

 reset_trace(Targets)

 -spec reset_trace(Targets) -> void() when Targets :: module() | [module()].

This function is used to reset (disable) trace for the given module(s).

 set_trace(Targets)

 -spec set_trace(Targets) -> void()
 when
 Targets :: module() | [module() | {module(), [TargetOpt]}],
 TargetOpt :: {return_trace, boolean()} | {scope, Scope},
 Scope ::
 all_functions | exported_functions | FunctionName |
 {FunctionName, FunctionArity},
 FunctionName :: atom(),
 FunctionArity :: non_neg_integer().

This function is used to set up default trace on function(s) for the given
module or modules. The scope of the trace will be all exported functions (both
the call info and the return value). Timestamp info will also be included.

 set_trace(Targets, TraceOpts)

 -spec set_trace(Targets, TraceOpts) -> void()
 when
 Targets :: module() | [module() | {module(), [TargetOpt]}],
 TargetOpt :: {return_trace, boolean()} | {scope, Scope},
 Scope ::
 all_functions | exported_functions | FunctionName |
 {FunctionName, FunctionArity},
 FunctionName :: atom(),
 FunctionArity :: non_neg_integer(),
 TraceOpts :: disable | [TraceOpt],
 TraceOpt :: {timestamp, boolean()} | TargetOpt.

This function is used to set up trace on function(s) for the given module or
modules.
The example below sets up trace on the exported functions (default) of module
snmp_generic and all functions of module snmp_generic_mnesia. With return
values (which is default) and timestamps in both cases (which is also default):
	 snmp:enable_trace(),
	 snmp:set_trace([snmp_generic,
 {snmp_generic_mnesia, [{scope, all_functions}]}]),
	 .
	 .
	 .
 snmp:set_trace(snmp_generic, disable),
	 .
	 .
	 .
	 snmp:disable_trace(),

 start()

 -spec start() -> ok | {error, Reason} when Reason :: term().

Equivalent to start/1.

 start(Type)

 -spec start(Type) -> ok | {error, Reason}
 when Type :: p | permanent | tr | transient | te | temporary, Reason :: term().

Starts the SNMP application.
See application for more info.

 start_agent()

 -spec start_agent() -> ok | {error, Reason} when Reason :: term().

Equivalent to start_agent/1.

 start_agent(Type)

 -spec start_agent(Type) -> ok | {error, Reason} when Type :: application:start_type(), Reason :: term().

The SNMP application consists of several entities, of which the agent is one.
This function starts the agent entity of the application.
Note that the only way to actually start the agent in this way is to add the
agent related config after starting the application (e.g it cannot be part of
the normal application config; sys.config). This is done by calling:
application:set_env(snmp, agent, Conf).
The default value for Type is normal.

 start_manager()

 -spec start_manager() -> ok | {error, Reason} when Reason :: term().

Equivalent to start_manager/1.

 start_manager(Type)

 -spec start_manager(Type) -> ok | {error, Reason}
 when Type :: application:start_type(), Reason :: term().

The SNMP application consists of several entities, of which the manager is one.
This function starts the manager entity of the application.
Note that the only way to actually start the manager in this way is to add the
manager related config after starting the application (e.g it cannot be part of
the normal application config; sys.config). This is done by calling:
application:set_env(snmp, manager, Conf).
The default value for Type is normal.

 stop()

 (since OTP 27.0)

 -spec stop() -> ok | {error, Reason} when Reason :: term().

Stops the SNMP application.
See application for more info.
This function has existed for long time,
but not had a proper since tag, so to simplify
we set the since tag to when it was documented.

 universal_time_to_date_and_time(UTC)

 -spec universal_time_to_date_and_time(UTC) -> DateAndTime
 when
 UTC :: calendar:datetime(),
 DateAndTime :: rfc1903_date_and_time().

Converts a universal time value to a DateAndTime list. The universal time value
on the same format as defined in calendar(3).

 validate_date_and_time(DateAndTime)

 -spec validate_date_and_time(DateAndTime) -> boolean() when DateAndTime :: rfc1903_date_and_time().

Equivalent to validate_date_and_time/2.

 validate_date_and_time(DateAndTime, Validate)

 -spec validate_date_and_time(DateAndTime, Validate) -> boolean()
 when
 DateAndTime :: rfc1903_date_and_time(),
 Validate :: date_and_time_validator().

Checks if DateAndTime is a correct DateAndTime value, as specified in RFC2579.
This function can be used in instrumentation functions to validate a DateAndTime
value.
The validation fun, Validate, allows for a more "flexible" validation of the
DateAndTime argument. Whenever the data is found to not follow RFC2579, the
fun is called to allow a more "lax" validation.

 versions1()

 -spec versions1() -> {ok, VersionsInfo} | {error, Reason}
 when VersionsInfo :: [VersionInfo], VersionInfo :: term(), Reason :: term().

Equivalent to versions2/0.

 versions2()

 -spec versions2() -> {ok, VersionsInfo} | {error, Reason}
 when VersionsInfo :: [VersionInfo], VersionInfo :: term(), Reason :: term().

Utility functions used to retrieve some system and application info.
The difference between the two functions is in how they get the modules to
check. versions1 uses the app-file and versions2 uses the function
application:get_key.

snmp_community_mib

Instrumentation Functions for SNMP-COMMUNITY-MIB
The module snmp_community_mib implements the instrumentation functions for the
SNMP-COMMUNITY-MIB, and functions for configuring the database.
The configuration files are described in the SNMP User's Manual.

 Summary

 Types

 context_name()

 A human readable string.

 index()

 SnmpAdminString (SIZE(1..32))

 name()

 OCTET STRING (SIZE(1..64))

 security_name()

 SnmpAdminString

 transport_tag()

 SnmpTagValue

 Functions

 add_community(Idx, CommName, SecName, CtxName, TransportTag)

 Equivalent to add_community/6.

 add_community(Idx, CommName, SecName, EngineId, CtxName, TransportTag)

 Adds a community to the agent config. Equivalent to one line in the
community.conf file.

 configure(ConfDir)

 This function is called from the supervisor at system start-up.

 delete_community(Key)

 Delete a community from the agent config.

 reconfigure(ConfDir)

 Inserts all data in the configuration files into the database and destroys all
old data, including the rows with StorageType nonVolatile. The rows created
from the configuration file will have StorageType nonVolatile.

 Types

 context_name()

 -type context_name() :: snmp_framework_mib:admin_string().

A human readable string.
SnmpAdminString

 index()

 -type index() :: snmp_framework_mib:admin_string().

SnmpAdminString (SIZE(1..32))

 name()

 -type name() :: string().

OCTET STRING (SIZE(1..64))

 security_name()

 -type security_name() :: snmp_framework_mib:admin_string().

SnmpAdminString

 transport_tag()

 -type transport_tag() :: snmp_target_mib:tag_value().

SnmpTagValue

 Functions

 add_community(Idx, CommName, SecName, CtxName, TransportTag)

 -spec add_community(Idx, CommName, SecName, CtxName, TransportTag) -> {ok, Key} | {error, Reason}
 when
 Idx :: index(),
 CommName :: name(),
 SecName :: security_name(),
 CtxName :: context_name(),
 TransportTag :: transport_tag(),
 Key :: term(),
 Reason :: term().

Equivalent to add_community/6.

 add_community(Idx, CommName, SecName, EngineId, CtxName, TransportTag)

 (since OTP R14B03)

 -spec add_community(Idx, CommName, SecName, EngineId, CtxName, TransportTag) ->
 {ok, Key} | {error, Reason}
 when
 Idx :: index(),
 CommName :: name(),
 SecName :: security_name(),
 EngineId :: snmp_framework_mib:engine_id(),
 CtxName :: context_name(),
 TransportTag :: transport_tag(),
 Key :: term(),
 Reason :: term().

Adds a community to the agent config. Equivalent to one line in the
community.conf file.
With the EngineId argument it is possible to override the configured engine-id
(SNMP-FRAMEWORK-MIB).

 configure(ConfDir)

 -spec configure(ConfDir) -> snmp:void() when ConfDir :: string().

This function is called from the supervisor at system start-up.
Inserts all data in the configuration files into the database and destroys all
old rows with StorageType volatile. The rows created from the configuration
file will have StorageType nonVolatile.
All snmp counters are set to zero.
If an error is found in the configuration file, it is reported using the
function config_err/2 of the error, report module and the function fails with
reason configuration_error.
ConfDir is a string which points to the directory where the configuration
files are found.
The configuration file read is: community.conf.

 delete_community(Key)

 -spec delete_community(Key) -> ok | {error, Reason} when Key :: term(), Reason :: term().

Delete a community from the agent config.

 reconfigure(ConfDir)

 -spec reconfigure(ConfDir) -> snmp:void() when ConfDir :: string().

Inserts all data in the configuration files into the database and destroys all
old data, including the rows with StorageType nonVolatile. The rows created
from the configuration file will have StorageType nonVolatile.
Thus, the data in the SNMP-COMMUNITY-MIB, after this function has been called,
is from the configuration files.
All snmp counters are set to zero.
If an error is found in the configuration file, it is reported using the
function config_err/2 of the error report module, and the function fails with
reason configuration_error.
ConfDir is a string which points to the directory where the configuration
files are found.
The configuration file read is: community.conf.

snmp_framework_mib

Instrumentation Functions for SNMP-FRAMEWORK-MIB
The module snmp_framework_mib implements instrumentation functions for the
SNMP-FRAMEWORK-MIB, and functions for initializing and configuring the database.
The configuration files are described in the SNMP User's Manual.

 Summary

 Types

 admin_string()

 OCTET STRING (SIZE(0..255))

 engine_id()

 OCTET STRING (SIZE(5..32))

 max_message_size()

 message_processing_model()

 security_level()

 security_model()

 Functions

 add_context(Ctx)

 Adds a context to the agent config. Equivalent to one line in the context.conf
file.

 configure(ConfDir)

 This function is called from the supervisor at system start-up.

 delete_context(Key)

 Delete a context from the agent config.

 init()

 This function is called from the supervisor at system start-up.

 Types

 admin_string()

 -type admin_string() :: string().

OCTET STRING (SIZE(0..255))

 engine_id()

 -type engine_id() :: string().

OCTET STRING (SIZE(5..32))

 max_message_size()

 -type max_message_size() :: 484..2147483647.

Note
"The maximum length in octets of an SNMP message which this SNMP engine can
send or receive and process, determined as the minimum of the maximum message
size values supported among all of the transports available to and supported
by the engine."
INTEGER (484..2147483647)

 message_processing_model()

 -type message_processing_model() :: v1 | v2c | v3.

Note
"As of this writing, there are several values of messageProcessingModel
defined for use with SNMP. They are as follows: "
 0 reserved for SNMPv1
 1 reserved for SNMPv2c
 2 reserved for SNMPv2u and SNMPv2*
 3 reserved for SNMPv3
INTEGER(0 .. 2147483647)

 security_level()

 -type security_level() :: noAuthNoPriv | authNoPriv | authPriv.

Note
"A Level of Security at which SNMP messages can be sent or with which
operations are being processed; in particular, one of: "
 noAuthNoPriv - without authentication and
 without privacy,
 authNoPriv - with authentication but
 without privacy,
 authPriv - with authentication and
 with privacy.
"These three values are ordered such that noAuthNoPriv is less than authNoPriv
and authNoPriv is less than authPriv."
INTEGER { noAuthNoPriv(1), authNoPriv(2), authPriv(3) }

 security_model()

 -type security_model() :: any | v1 | v2c | usm.

Note
"As of this writing, there are several values of securityModel defined for use
with SNMP or reserved for use with supporting MIB objects. They are as
follows: "
 0 reserved for 'any'
 1 reserved for SNMPv1
 2 reserved for SNMPv2c
 3 User-Based Security Model (USM)
INTEGER(0 .. 2147483647)

 Functions

 add_context(Ctx)

 -spec add_context(Ctx) -> {ok, Key} | {error, Reason}
 when Ctx :: string(), Key :: term(), Reason :: term().

Adds a context to the agent config. Equivalent to one line in the context.conf
file.

 configure(ConfDir)

 -spec configure(ConfDir) -> snmp:void() when ConfDir :: string().

This function is called from the supervisor at system start-up.
Inserts all data in the configuration files into the database and destroys all
old data.
Thus, the data in the SNMP-FRAMEWORK-MIB, after this function has been called,
is from the configuration files.
All snmp counters are set to zero.
If an error is found in the configuration file, it is reported using the
function config_err/2 of the error report module, and the function fails with
reason configuration_error.
ConfDir is a string which points to the directory where the configuration
files are found.
The configuration file read is: context.conf.

 delete_context(Key)

 -spec delete_context(Key) -> ok | {error, Reason} when Key :: term(), Reason :: term().

Delete a context from the agent config.

 init()

 -spec init() -> snmp:void().

This function is called from the supervisor at system start-up.
Creates the necessary objects in the database if they do not exist. It does not
destroy any old values.

snmp_generic

Generic Functions for Implementing SNMP Objects in a Database
The module snmp_generic contains generic functions for implementing tables
(and variables) using the SNMP built-in database or Mnesia. These default
functions are used if no instrumentation function is provided for a managed
object in a MIB. Sometimes, it might be necessary to customize the behaviour of
the default functions. For example, in some situations a trap should be sent if
a row is deleted or modified, or some hardware is to be informed, when
information is changed.
The overall structure is shown in the following figure:
 +---------------+
 | SNMP Agent |
 +- - - - - - - -+
 | MIB |
 +---------------+
 |
 Association file (associates a MIB object with
 | snmp_generic:table_funct
 | snmp_generic:variable_func)
+--------------------------------------+
| snmp_generic | Support for get-next,
| | RowStatus operations
+----------------------+---------------+
| snmpa_local_db | Mnesia | Database
+--------------+-------+---------------+
| dets | ets |
| (persistent) | |
+--------------+-------+
Each function takes the argument NameDb, which is a tuple {Name, Db}, to
identify which database the functions should use. Name is the symbolic name of
the managed object as defined in the MIB, and Db is either volatile,
persistent, or mnesia. If it is mnesia, all variables are stored in the
Mnesia table snmp_variables which must be a table with two attributes (not a
Mnesia SNMP table). The SNMP tables are stored in Mnesia tables with the same
names as the SNMP tables. All functions assume that a Mnesia table exists with
the correct name and attributes. It is the programmer's responsibility to ensure
this. Specifically, if variables are stored in Mnesia, the table
snmp_variables must be created by the programmer. The record definition for
this table is defined in the file snmp/include/snmp_types.hrl.
If an instrumentation function in the association file for a variable myVar
does not have a name when compiling an MIB, the compiler generates an entry.
{myVar, {snmp_generic, variable_func, [{myVar, Db]}}.
And for a table:
{myTable, {snmp_generic, table_func, [{myTable, Db]}}.
Example
The following example shows an implementation of a table which is stored in
Mnesia, but with some checks performed at set-request operations.
myTable_func(new, NameDb) -> % pass unchanged
 snmp_generic:table_func(new, NameDb).

myTable_func(delete, NameDb) -> % pass unchanged
 snmp_generic:table_func(delete, NameDb).

%% change row
myTable_func(is_set_ok, RowIndex, Cols, NameDb) ->
 case snmp_generic:table_func(is_set_ok, RowIndex,
 Cols, NameDb) of
 {noError, 0} ->
 myApplication:is_set_ok(RowIndex, Cols);
 Err ->
 Err
 end;

myTable_func(set, RowIndex, Cols, NameDb) ->
 case snmp_generic:table_func(set, RowIndex, Cols,
 NameDb),
 {noError, 0} ->
 % Now the row is updated, tell the application
 myApplication:update(RowIndex, Cols);
 Err ->
 Err
 end;

myTable_func(Op, RowIndex, Cols, NameDb) -> % pass unchanged
 snmp_generic:table_func(Op, RowIndex, Cols, NameDb).
The .funcs file would look like:
{myTable, {myModule, myTable_func, [{myTable, mnesia}]}}.

 Summary

 Types

 column()

 columns()

 Is a list of column numbers in the case of a get operation, and a list of column
numbers and values in the case of a set operation.

 table_info_item()

 For an ordinary table, the types will be the following

 Functions

 get_index_types(Name)

 Gets the index types of Name

 get_status_col(Name, Cols)

 Gets the value of the status column from Cols.

 get_table_info/2

 Get a specific table info item or, if Item has the
value 'all', a two tuple list (property list) is instead
returned with all the items and their respctive values of the
given table.

 table_func(Op, NameDb)

 This is the default instrumentation function for tables.

 table_func(Op, RowIndex, Cols, NameDb)

 This is the default instrumentation function for tables.

 table_get_elements(NameDb, RowIndex, Cols)

 Returns a list with values for all columns in Cols. If a column is undefined,
its value is noinit.

 table_next(NameDb, RestOid)

 Finds the indices of the next row in the table. RestOid does not have to
specify an existing row.

 table_row_exists(NameDb, RowIndex)

 Checks if a row in a table exists.

 table_set_elements(NameDb, RowIndex, Cols)

 Sets the elements in Cols to the row specified by RowIndex. No checks are
performed on the new values.

 variable_func/2

 This is the default instrumentation function for variables.

 variable_func/3

 This is the default instrumentation function for variables with operations;
is_set_ok | set | undo.

 variable_get(Name)

 Gets the value of a variable.

 variable_set(Name, Value)

 Sets a new value to a variable. The variable is created if it does not exist. No
checks are made on the type of the new value.

 Types

 column()

 -type column() :: pos_integer().

 columns()

 -type columns() :: [column()] | [{column(), Value :: term()}].

Is a list of column numbers in the case of a get operation, and a list of column
numbers and values in the case of a set operation.

 table_info_item()

 (not exported)

 -type table_info_item() ::
 nbr_of_cols | defvals | status_col | not_accessible | index_types | first_accessible |
 first_own_index.

For an ordinary table, the types will be the following:
	nbr_of_cols - Number of columns.
Value type: pos_integer()

	defvals - A list of default values, ordered by column.
Value type: [{Col :: pos_integer(), DefVal ::
term()}]

	status_col - Column number of the status column.
Value type: pos_integer()

	not_accessible - A sorted list of columns (> first_accessible) that are
'not-accessible'.
Value type: [pos_integer()]

	index_types - A list of asn1_type() for the
index columns, ordered by column number or an "augment"-tuple (see below).
Value type: [asn1_type()]

	first_accessible - The first accessible column.
Value type: pos_integer()

	first_own_index - Column number of the first own index. Will be 0 if
there is no such index for this table.
Value type: non_neg_integer()

For a augmented table, it will instead look like this:
	index_types - Value type: {augments, {atom(),
asn1_type()}}

	nbr_of_cols - Value type: pos_integer()

	not_accessible - Value type: [pos_integer()]

	first_accessible - Value type: pos_integer()

 Functions

 get_index_types(Name)

 -spec get_index_types(Name) -> IndexTypes
 when Name :: snmpa:name() | snmpa:name_db(), IndexTypes :: [snmp:asn1_type()].

Gets the index types of Name
This function can be used in instrumentation functions to retrieve the index
types part of the table info.

 get_status_col(Name, Cols)

 -spec get_status_col(Name, Cols) -> false | {value, StatusCol}
 when
 Name :: snmpa:name() | snmpa:name_db(),
 Cols :: columns(),
 StatusCol :: term().

Gets the value of the status column from Cols.
This function can be used in instrumentation functions for is_set_ok, undo
or set to check if the status column of a table is modified.

 get_table_info/2

 (since OTP R15B01)

 -spec get_table_info(Name, Item :: nbr_of_cols) -> Result
 when Name :: snmpa:name() | snmpa:name_db(), Result :: pos_integer();
 (Name, Item :: defvals) -> Result
 when
 Name :: snmpa:name() | snmpa:name_db(),
 Result :: [{Col, DefVal}],
 Col :: pos_integer(),
 DefVal :: term();
 (Name, Item :: status_col) -> Result
 when Name :: snmpa:name() | snmpa:name_db(), Result :: pos_integer();
 (Name, Item :: not_accessible) -> Result
 when Name :: snmpa:name() | snmpa:name_db(), Result :: [pos_integer()];
 (Name, Item :: index_types) -> Result
 when Name :: snmpa:name() | snmpa:name_db(), Result :: [snmp:asn1_type()];
 (Name, Item :: first_accessible) -> Result
 when Name :: snmpa:name() | snmpa:name_db(), Result :: pos_integer();
 (Name, Item :: first_own_index) -> Result
 when Name :: snmpa:name() | snmpa:name_db(), Result :: non_neg_integer();
 (Name, Item :: all) -> Result
 when
 Name :: snmpa:name() | snmpa:name_db(),
 Result :: [{table_info_item(), term()}].

Get a specific table info item or, if Item has the
value 'all', a two tuple list (property list) is instead
returned with all the items and their respctive values of the
given table.
This function can be used in instrumentation functions to
retrieve a given part of the table info.

 table_func(Op, NameDb)

 -spec table_func(Op, NameDb) -> Return
 when Op :: new | delete, NameDb :: snmpa:name_db(), Return :: term().

This is the default instrumentation function for tables.
	The new operation creates the table if it does not exist, but only if the
database is the SNMP internal db.
	The delete operation does not delete the table from the database since
unloading an MIB does not necessarily mean that the table should be destroyed.

If it is possible for a manager to create or delete rows in the table, there
must be a RowStatus column for is_set_ok, set and undo to work properly.
The function returns according to the specification of an instrumentation
function.

 table_func(Op, RowIndex, Cols, NameDb)

 -spec table_func(Op, RowIndex, Cols, NameDb) -> Return
 when
 Op :: get | get_next | is_set_ok | set | undo,
 RowIndex :: snmp:row_index(),
 Cols :: columns(),
 NameDb :: snmpa:name_db(),
 Return :: term().

This is the default instrumentation function for tables.
	The is_set_ok operation checks that a row which is to be modified or deleted
exists, and that a row which is to be created does not exist.
	The undo operation does nothing.
	The set operation checks if it has enough information to make the row change
its status from notReady to notInService (when a row has been been set to
createAndWait). If a row is set to createAndWait, columns without a value
are set to noinit. If Mnesia is used, the set functionality is handled
within a transaction.

If it is possible for a manager to create or delete rows in the table, there
must be a RowStatus column for is_set_ok, set and undo to work properly.
The function returns according to the specification of an instrumentation
function.

 table_get_elements(NameDb, RowIndex, Cols)

 -spec table_get_elements(NameDb, RowIndex, Cols) -> Values
 when
 NameDb :: snmpa:name_db(),
 RowIndex :: snmp:row_index(),
 Cols :: columns(),
 Values :: [noinit | Value],
 Value :: term().

Returns a list with values for all columns in Cols. If a column is undefined,
its value is noinit.

 table_next(NameDb, RestOid)

 -spec table_next(NameDb, RestOid) -> Result
 when
 NameDb :: snmpa:name_db(),
 RestOid :: [integer()],
 Result :: RowIndex | endOfTable,
 RowIndex :: snmp:row_index().

Finds the indices of the next row in the table. RestOid does not have to
specify an existing row.

 table_row_exists(NameDb, RowIndex)

 -spec table_row_exists(NameDb, RowIndex) -> Result
 when
 NameDb :: snmpa:name_db(),
 RowIndex :: snmp:row_index(),
 Result :: boolean().

Checks if a row in a table exists.

 table_set_elements(NameDb, RowIndex, Cols)

 -spec table_set_elements(NameDb, RowIndex, Columns) -> Result
 when
 NameDb :: snmpa:name_db(),
 RowIndex :: snmp:row_index(),
 Columns :: [{Column, Value}],
 Column :: column(),
 Value :: term(),
 Result :: boolean().

Sets the elements in Cols to the row specified by RowIndex. No checks are
performed on the new values.
If the Mnesia database is used, this function calls mnesia:write to store the
values. This means that this function must be called from within a transaction
(mnesia:transaction/1).

 variable_func/2

 -spec variable_func(Op :: new, Name) -> Result
 when Name :: snmpa:name() | snmpa:name_db(), Result :: ok | boolean();
 (Op :: delete, Name) -> Result
 when Name :: snmpa:name() | snmpa:name_db(), Result :: ok;
 (Op :: get, Name) -> Result
 when
 Name :: snmpa:name() | snmpa:name_db(),
 Result :: {value, Value} | genErr,
 Value :: term().

This is the default instrumentation function for variables.
	The new opeation creates a new variable in the database with a
default value as defined in the MIB, or a zero value (depending on
the type).
	The delete function does not delete the variable from the database.

The function returns according to the specification of an instrumentation
function.

 variable_func/3

 -spec variable_func(Op :: is_set_ok, Value, Name) -> Result
 when Value :: term(), Name :: snmpa:name() | snmpa:name_db(), Result :: noError;
 (Op :: set, Value, Name) -> Result
 when
 Value :: term(),
 Name :: snmpa:name() | snmpa:name_db(),
 Result :: noError | commitFailed;
 (Op :: undo, Value, Name) -> Result
 when Value :: term(), Name :: snmpa:name() | snmpa:name_db(), Result :: noError.

This is the default instrumentation function for variables with operations;
is_set_ok | set | undo.
	The is_set_ok operation does nothing.
	The set operation return noError if successful or commitFailed otherwise.
	The undo operation does nothing.

The function returns according to the specification of an instrumentation
function.

 variable_get(Name)

 -spec variable_get(Name) -> {value, Value} | undefined
 when Name :: snmpa:name() | snmpa:name_db(), Value :: term().

Gets the value of a variable.

 variable_set(Name, Value)

 -spec variable_set(Name, Value) -> boolean()
 when Name :: snmpa:name() | snmpa:name_db(), Value :: term().

Sets a new value to a variable. The variable is created if it does not exist. No
checks are made on the type of the new value.
Returns false if the NameDb argument is incorrectly specified, otherwise
true.

snmp_index

Abstract Data Type for SNMP Indexing
The module snmp_index implements an Abstract Data Type (ADT) for an SNMP index
structure for SNMP tables. It is implemented as an ets table of the ordered_set
data-type, which means that all operations are O(log n). In the table, the key
is an ASN.1 OBJECT IDENTIFIER.
This index is used to separate the implementation of the SNMP ordering from the
actual implementation of the table. The SNMP ordering, that is implementation of
GET NEXT, is implemented in this module.
For example, suppose there is an SNMP table, which is best implemented in Erlang
as one process per SNMP table row. Suppose further that the INDEX in the SNMP
table is an OCTET STRING. The index structure would be created as follows:
snmp_index:new(string)
For each new process we create, we insert an item in an snmp_index structure:
new_process(Name, SnmpIndex) ->
 Pid = start_process(),
 NewSnmpIndex =
 snmp_index:insert(SnmpIndex, Name, Pid),
 <...>
With this structure, we can now map an OBJECT IDENTIFIER in e.g. a GET NEXT
request, to the correct process:
get_next_pid(Oid, SnmpIndex) ->
 {ok, {_, Pid}} = snmp_index:get_next(SnmpIndex, Oid),
 Pid.
Warnings
Warning
 All API functions that update the index return a NewIndex term.
This is for backward compatibility with a previous implementation that used a
B+ tree written purely in Erlang for the index. The NewIndex return value
can now be ignored. The return value is now the unchanged table identifier for
the ets table.
The implementation using ets tables introduces a semantic incompatibility with
older implementations. In those older implementations, using pure Erlang
terms, the index was garbage collected like any other Erlang term and did not
have to be deleted when discarded. An ets table is deleted only when the
process creating it explicitly deletes it or when the creating process
terminates.
A new interface delete/1 is now added to handle the case when
a process wants to discard an index table (i.e. to build a completely new).
Any application using transient snmp indexes has to be modified to handle
this.
As an snmp adaption usually keeps the index for the whole of the systems
lifetime, this is rarely a problem.

 Summary

 Types

 index()

 This type denotes an snmp index structure.

 key()

 This type correlates to the key_types/0 type. If the key_types/0 is a
single atom, the corresponding key/0 is a single type as well, but if the
key_types/0 is a tuple, key/0 must be a tuple of the same size.

 key_spec()

 key_types()

 This type is used when creating the index structure, and the key/0 type is
used when inserting and deleting items from the structure.

 type_spec()

 Functions

 delete(Index)

 Deletes a complete index structure (i.e. the ets table holding the index). The
index can no longer be referenced after this call. See the
warning note above.

 delete(Index, Key)

 Deletes a key and its value from the index structure. Returns a new structure.

 get(Index, KeyOid)

 Gets the item with key KeyOid. Could be used from within an SNMP
instrumentation function.

 get_last(Index)

 Gets the last item in the index structure.

 get_next(Index, KeyOid)

 Gets the next item in the SNMP lexicographic ordering, after KeyOid in the
index structure. KeyOid does not have to refer to an existing item in the
index.

 insert(Index, Key, Value)

 Inserts a new key value tuple into the index structure. If an item with the same
key already exists, the new Value overwrites the old value.

 key_to_oid(Index, Key)

 Converts Key to an OBJECT IDENTIFIER.

 new(KeyTypes)

 Create an new anonymous snmp index structure.

 new(KeyTypes, Name)

 Creates a new named snmp index structure.

 Types

 index()

 -opaque index()

This type denotes an snmp index structure.

 key()

 -type key() :: key_spec() | tuple().

This type correlates to the key_types/0 type. If the key_types/0 is a
single atom, the corresponding key/0 is a single type as well, but if the
key_types/0 is a tuple, key/0 must be a tuple of the same size.
In the example above, valid keys could be {"hi", "mom"} and
{"no", "thanks"}, whereas "hi", {"hi", 42} and {"hello", "there"} would
be invalid.
There is no way to propely describe this type in the erlang type language, which
is why tuple/0 was used above. The proper definition looks like:
key() = key_spec() | {key_spec(), key_spec(), ...}

 key_spec()

 -type key_spec() :: string() | integer().

 key_types()

 -type key_types() :: type_spec() | tuple().

This type is used when creating the index structure, and the key/0 type is
used when inserting and deleting items from the structure.
If the INDEX column is of type INTEGER, or derived from INTEGER, the
corresponding type should be integer. If it is a variable length type (e.g.
OBJECT IDENTIFIER, OCTET STRING), the corresponding type should be string.
Finally, if the type is of variable length, but with a fixed size restriction
(e.g. IpAddress), the corresponding type should be fix_string.
There is no way to propely describe this type in the erlang type language, which
is why tuple/0 was used above. The proper definition looks like:
key_types = type_spec() | {type_spec(), type_spec(), ...}

 type_spec()

 -type type_spec() :: fix_string | string | integer.

 Functions

 delete(Index)

 -spec delete(Index) -> true when Index :: index().

Deletes a complete index structure (i.e. the ets table holding the index). The
index can no longer be referenced after this call. See the
warning note above.

 delete(Index, Key)

 -spec delete(Index, Key) -> NewIndex when Index :: index(), Key :: key(), NewIndex :: index().

Deletes a key and its value from the index structure. Returns a new structure.

 get(Index, KeyOid)

 -spec get(Index, KeyOid) -> {ok, {KeyOid, Value}} | undefined
 when Index :: index(), KeyOid :: snmp:oid(), Value :: term().

Gets the item with key KeyOid. Could be used from within an SNMP
instrumentation function.

 get_last(Index)

 -spec get_last(Index) -> {ok, {KeyOid, Value}} | undefined
 when Index :: index(), KeyOid :: snmp:oid(), Value :: term().

Gets the last item in the index structure.

 get_next(Index, KeyOid)

 -spec get_next(Index, KeyOid) -> {ok, {NextKeyOid, Value}} | undefined
 when Index :: index(), KeyOid :: snmp:oid(), NextKeyOid :: snmp:oid(), Value :: term().

Gets the next item in the SNMP lexicographic ordering, after KeyOid in the
index structure. KeyOid does not have to refer to an existing item in the
index.

 insert(Index, Key, Value)

 -spec insert(Index, Key, Value) -> NewIndex
 when Index :: index(), Key :: key(), Value :: term(), NewIndex :: index().

Inserts a new key value tuple into the index structure. If an item with the same
key already exists, the new Value overwrites the old value.

 key_to_oid(Index, Key)

 -spec key_to_oid(Index, Key) -> KeyOid when Index :: index(), Key :: key(), KeyOid :: snmp:oid().

Converts Key to an OBJECT IDENTIFIER.

 new(KeyTypes)

 -spec new(KeyTypes) -> Index when KeyTypes :: key_types(), Index :: index().

Create an new anonymous snmp index structure.

 new(KeyTypes, Name)

 (since OTP 27.0)

 -spec new(KeyTypes, Name) -> Index when KeyTypes :: key_types(), Name :: atom(), Index :: index().

Creates a new named snmp index structure.

snmp_notification_mib

Instrumentation Functions for SNMP-NOTIFICATION-MIB
The module snmp_notification_mib implements the instrumentation functions for
the SNMP-NOTIFICATION-MIB, and functions for configuring the database.
The configuration files are described in the SNMP User's Manual.

 Summary

 Types

 notify_name()

 SnmpAdminString (SIZE(1..32))

 notify_tag()

 notify_type()

 Functions

 add_notify(Name, Tag, Type)

 Adds a notify definition to the agent config. Equivalent to one line in the
notify.conf file.

 configure(ConfDir)

 This function is called from the supervisor at system start-up.

 delete_notify(Key)

 Delete a notify definition from the agent config.

 reconfigure(ConfDir)

 Inserts all data in the configuration files into the database and destroys all
old data, including the rows with StorageType nonVolatile. The rows created
from the configuration file will have StorageType nonVolatile.

 Types

 notify_name()

 -type notify_name() :: snmp_framework_mib:admin_string().

SnmpAdminString (SIZE(1..32))

 notify_tag()

 -type notify_tag() :: snmp_target_mib:tag_value().

 notify_type()

 -type notify_type() :: trap | inform.

 Functions

 add_notify(Name, Tag, Type)

 -spec add_notify(Name, Tag, Type) -> {ok, Key} | {error, Reason}
 when
 Name :: notify_name(),
 Tag :: notify_tag(),
 Type :: notify_type(),
 Key :: term(),
 Reason :: term().

Adds a notify definition to the agent config. Equivalent to one line in the
notify.conf file.

 configure(ConfDir)

 -spec configure(ConfDir) -> snmp:void() when ConfDir :: string().

This function is called from the supervisor at system start-up.
Inserts all data in the configuration files into the database and destroys all
old rows with StorageType volatile. The rows created from the configuration
file will have StorageType nonVolatile.
If an error is found in the configuration file, it is reported using the
function config_err/2 of the error report module, and the function fails with
reason configuration_error.
ConfDir is a string which points to the directory where the configuration
files are found.
The configuration file read is: notify.conf.

 delete_notify(Key)

 -spec delete_notify(Key) -> ok | {error, Reason} when Key :: term(), Reason :: term().

Delete a notify definition from the agent config.

 reconfigure(ConfDir)

 -spec reconfigure(ConfDir) -> snmp:void() when ConfDir :: string().

Inserts all data in the configuration files into the database and destroys all
old data, including the rows with StorageType nonVolatile. The rows created
from the configuration file will have StorageType nonVolatile.
Thus, the data in the SNMP-NOTIFICATION-MIB, after this function has been
called, is from the configuration files.
If an error is found in the configuration file, it is reported using the
function config_err/2 of the error report module, and the function fails with
reason configuration_error.
ConfDir is a string which points to the directory where the configuration
files are found.
The configuration file read is: notify.conf.

snmp_pdus

Encode and Decode Functions for SNMP PDUs
RFC1157, RFC1905 and/or RFC2272 should be studied carefully before using this
module, snmp_pdus.
The module snmp_pdus contains functions for encoding and decoding of SNMP
protocol data units (PDUs). In short, this module converts a list of bytes to
Erlang record representations and vice versa. The record definitions can be
found in the file snmp/include/snmp_types.hrl. If snmpv3 is used, the module
that includes snmp_types.hrl must define the constant SNMP_USE_V3 before the
header file is included. Example:
-define(SNMP_USE_V3, true).
-include_lib("snmp/include/snmp_types.hrl").
Encoding and decoding must be done explicitly when writing your own Net if
process.

 Summary

 Types

 message()

 The message is version dependent. 'vsn_hdr' is either a community string (v1 and
v2) or a 'v3_hdr' record (v3). 'data' is either a PDU (v1 and v2c) or a
(possibly encrypted) 'scopedPdu'.

 msg_id()

 msg_security_model()

 pdu()

 pdu_type()

 scoped_pdu()

 trappdu()

 usm_security_parameters()

 v3_hdr()

 version()

 Functions

 dec_message(Bytes)

 Decodes a list of bytes into an SNMP Message. Note, if there is a v3 message,
the msgSecurityParameters are not decoded. They must be explicitly decoded by
a call to a security model specific decoding function, e.g.
dec_usm_security_parameters/1. Also note,
if the scopedPDU is encrypted, the OCTET STRING encoded encryptedPDU will be
present in the data field.

 dec_message_only(Bytes)

 Decodes a list of bytes into an SNMP Message, but does not decode the data part
of the Message. That means, data is still a list of bytes, normally an encoded
PDU (v1 and V2) or an encoded and possibly encrypted scopedPDU (v3).

 dec_pdu(Bytes)

 Decodes a list of bytes into an SNMP Pdu.

 dec_scoped_pdu(Bytes)

 Decodes a list of bytes into an SNMP ScopedPdu.

 dec_scoped_pdu_data(Bytes)

 Decodes a list of bytes into either a scoped pdu record, or - if the scoped pdu
was encrypted - to a list of bytes.

 dec_usm_security_parameters(Bytes)

 Decodes a list of bytes into an SNMP UsmSecurityParameters.

 enc_message(Message)

 Encodes a message record to a list of bytes.

 enc_message_only(Message)

 Message is a record where the data field is assumed to be encoded (a list of
bytes). If there is a v1 or v2 message, the data field is an encoded PDU,
and if there is a v3 message, data is an encoded and possibly encrypted
scopedPDU.

 enc_pdu(Pdu)

 Encodes an SNMP Pdu into a list of bytes.

 enc_scoped_pdu(ScopedPdu)

 Encodes an SNMP ScopedPdu into a list of bytes, which can be encrypted, and
after encryption, encoded with a call to enc_encrypted_scoped_pdu/1; or it can
be used as the data field in a message record, which then can be encoded
with enc_message_only/1.

 enc_usm_security_parameters(UsmSecParams)

 Encodes SNMP UsmSecurityParameters into a list of bytes.

 Types

 message()

 -type message() :: #message{version :: term(), vsn_hdr :: term(), data :: term()}.

The message is version dependent. 'vsn_hdr' is either a community string (v1 and
v2) or a 'v3_hdr' record (v3). 'data' is either a PDU (v1 and v2c) or a
(possibly encrypted) 'scopedPdu'.

 msg_id()

 -type msg_id() :: 0..2147483647.

 msg_security_model()

 -type msg_security_model() :: 0..2147483647.

 pdu()

 -type pdu() ::
 #pdu{type :: term(),
 request_id :: term(),
 error_status :: term(),
 error_index :: term(),
 varbinds :: term()}.

 pdu_type()

 -type pdu_type() ::
 'get-request' | 'get-next-request' | 'get-bulk-request' | 'get-response' | 'set-request' |
 'inform-request' | 'snmpv2-trap' | report.

 scoped_pdu()

 -type scoped_pdu() :: #scopedPdu{contextEngineID :: term(), contextName :: term(), data :: term()}.

 trappdu()

 -type trappdu() ::
 #trappdu{enterprise :: term(),
 agent_addr :: term(),
 generic_trap :: term(),
 specific_trap :: term(),
 time_stamp :: term(),
 varbinds :: term()}.

 usm_security_parameters()

 -type usm_security_parameters() ::
 #usmSecurityParameters{msgAuthoritativeEngineID :: term(),
 msgAuthoritativeEngineBoots :: term(),
 msgAuthoritativeEngineTime :: term(),
 msgUserName :: term(),
 msgAuthenticationParameters :: term(),
 msgPrivacyParameters :: term()}.

 v3_hdr()

 -type v3_hdr() ::
 #v3_hdr{msgID :: term(),
 msgMaxSize :: term(),
 msgFlags :: term(),
 msgSecurityModel :: term(),
 msgSecurityParameters :: term(),
 hdr_size :: term()}.

 version()

 -type version() :: 'version-1' | 'version-2' | 'version-3'.

 Functions

 dec_message(Bytes)

 -spec dec_message(Bytes) -> Message when Bytes :: [byte()], Message :: message().

Decodes a list of bytes into an SNMP Message. Note, if there is a v3 message,
the msgSecurityParameters are not decoded. They must be explicitly decoded by
a call to a security model specific decoding function, e.g.
dec_usm_security_parameters/1. Also note,
if the scopedPDU is encrypted, the OCTET STRING encoded encryptedPDU will be
present in the data field.

 dec_message_only(Bytes)

 -spec dec_message_only(Bytes) -> Message when Bytes :: [byte()], Message :: message().

Decodes a list of bytes into an SNMP Message, but does not decode the data part
of the Message. That means, data is still a list of bytes, normally an encoded
PDU (v1 and V2) or an encoded and possibly encrypted scopedPDU (v3).

 dec_pdu(Bytes)

 -spec dec_pdu(Bytes) -> Pdu when Bytes :: [byte()], Pdu :: trappdu() | pdu().

Decodes a list of bytes into an SNMP Pdu.

 dec_scoped_pdu(Bytes)

 -spec dec_scoped_pdu(Bytes) -> ScopedPDU when Bytes :: [byte()], ScopedPDU :: scoped_pdu().

Decodes a list of bytes into an SNMP ScopedPdu.

 dec_scoped_pdu_data(Bytes)

 -spec dec_scoped_pdu_data(Bytes) -> ScopedPduData
 when
 Bytes :: [byte()],
 ScopedPduData :: scoped_pdu() | EncryptedPDU,
 EncryptedPDU :: [byte()].

Decodes a list of bytes into either a scoped pdu record, or - if the scoped pdu
was encrypted - to a list of bytes.

 dec_usm_security_parameters(Bytes)

 -spec dec_usm_security_parameters(Bytes) -> UsmSecParams
 when Bytes :: [byte()], UsmSecParams :: usm_security_parameters().

Decodes a list of bytes into an SNMP UsmSecurityParameters.

 enc_message(Message)

 -spec enc_message(Message) -> Bytes when Message :: message(), Bytes :: [byte()].

Encodes a message record to a list of bytes.

 enc_message_only(Message)

 -spec enc_message_only(Message) -> Bytes when Message :: message(), Bytes :: [byte()].

Message is a record where the data field is assumed to be encoded (a list of
bytes). If there is a v1 or v2 message, the data field is an encoded PDU,
and if there is a v3 message, data is an encoded and possibly encrypted
scopedPDU.

 enc_pdu(Pdu)

 -spec enc_pdu(Pdu) -> Bytes when Pdu :: pdu(), Bytes :: [byte()].

Encodes an SNMP Pdu into a list of bytes.

 enc_scoped_pdu(ScopedPdu)

 -spec enc_scoped_pdu(ScopedPdu) -> Bytes when ScopedPdu :: scoped_pdu(), Bytes :: [byte()].

Encodes an SNMP ScopedPdu into a list of bytes, which can be encrypted, and
after encryption, encoded with a call to enc_encrypted_scoped_pdu/1; or it can
be used as the data field in a message record, which then can be encoded
with enc_message_only/1.

 enc_usm_security_parameters(UsmSecParams)

 -spec enc_usm_security_parameters(UsmSecParams) -> Bytes
 when UsmSecParams :: usm_security_parameters(), Bytes :: [byte()].

Encodes SNMP UsmSecurityParameters into a list of bytes.

snmp_standard_mib

Instrumentation Functions for STANDARD-MIB and SNMPv2-MIB
The module snmp_standard_mib implements the instrumentation functions for the
STANDARD-MIB and SNMPv2-MIB, and functions for configuring the database.
The configuration files are described in the SNMP User's Manual.

 Summary

 Functions

 configure(ConfDir)

 This function is called from the supervisor at system start-up.

 inc(Name)

 Equivalent to inc/2.

 inc(Name, N)

 Increments a variable in the MIB with N, or one if N is not specified.

 reconfigure(ConfDir)

 Inserts all data in the configuration files into the database and destroys all
old data, including the rows with StorageType nonVolatile. The rows created
from the configuration file will have StorageType nonVolatile.

 reset()

 Resets all snmp counters to 0.

 sys_up_time()

 Gets the system up time in hundredth of a second.

 Functions

 configure(ConfDir)

 -spec configure(ConfDir) -> snmp:void() when ConfDir :: string().

This function is called from the supervisor at system start-up.
Inserts all data in the configuration files into the database and destroys all
old rows with StorageType volatile. The rows created from the configuration
file will have StorageType nonVolatile.
All snmp counters are set to zero.
If an error is found in the configuration file, it is reported using the
function config_err/2 of the error report module, and the function fails with
the reason configuration_error.
ConfDir is a string which points to the directory where the configuration
files are found.
The configuration file read is: standard.conf.

 inc(Name)

 -spec inc(Name) -> snmp:void() when Name :: atom().

Equivalent to inc/2.

 inc(Name, N)

 -spec inc(Name, N) -> snmp:void() when Name :: atom(), N :: integer().

Increments a variable in the MIB with N, or one if N is not specified.

 reconfigure(ConfDir)

 -spec reconfigure(ConfDir) -> snmp:void() when ConfDir :: string().

Inserts all data in the configuration files into the database and destroys all
old data, including the rows with StorageType nonVolatile. The rows created
from the configuration file will have StorageType nonVolatile.
Thus, the data in the SNMP-STANDARD-MIB and SNMPv2-MIB, after this function has
been called, is from the configuration files.
All snmp counters are set to zero.
If an error is found in the configuration file, it is reported using the
function config_err/2 of the error report module, and the function fails with
the reason configuration_error.
ConfDir is a string which points to the directory where the configuration
files are found.
The configuration file read is: standard.conf.

 reset()

 -spec reset() -> snmp:void().

Resets all snmp counters to 0.

 sys_up_time()

 -spec sys_up_time() -> Time when Time :: integer().

Gets the system up time in hundredth of a second.

snmp_target_mib

Instrumentation Functions for SNMP-TARGET-MIB
The module snmp_target_mib implements the instrumentation functions for the
SNMP-TARGET-MIB, and functions for configuring the database.
The configuration files are described in the SNMP User's Manual.
Legacy API functions add_addr/10 that does not specify
transport domain, and add_addr/11 that has got separate IpAddr and
PortNumber arguments still work as before for backwards compatibility reasons.
DATA TYPES
See the data types in snmpa_conf.

 Summary

 Types

 mms()

 name()

 params()

 retry_count()

 tag_list()

 tag_value()

 tmask()

 Functions

 add_addr/10

 Adds a target address definition to the agent config. Equivalent to one line in
the target_addr.conf file.

 add_params(Name, MPModel, SecModel, SecName, SecLevel)

 Adds a target parameter definition to the agent config. Equivalent to one line
in the target_params.conf file.

 configure(ConfDir)

 This function is called from the supervisor at system start-up.

 delete_addr(Key)

 Delete a target address definition from the agent config.

 delete_params(Key)

 Delete a target parameter definition from the agent config.

 reconfigure(ConfDir)

 Inserts all data in the configuration files into the database and destroys all
old data, including the rows with StorageType nonVolatile. The rows created
from the configuration file will have StorageType nonVolatile.

 set_target_engine_id(TargetAddrName, EngineId)

 Changes the engine id for a target in the snmpTargetAddrTable. If
notifications are sent as Inform requests to a target, its engine id must be
set.

 Types

 mms()

 -type mms() :: 484..65535.

Note
"The maximum message size value associated with an entry in the
snmpTargetAddrTable.".
Integer32 (484..65535)

 name()

 -type name() :: snmp_framework_mib:admin_string().

Note
"The locally arbitrary, but unique identifier associated with this
snmpTargetAddrEntry."
SnmpAdminString (SIZE(1..32))

 params()

 -type params() :: snmp_framework_mib:admin_string().

Note
"The value of this object identifies an entry in the snmpTargetParamsTable."
SnmpAdminString (SIZE(1..32))

 retry_count()

 -type retry_count() :: 0..255.

Note
"This object specifies a default number of retries to be attempted when a
response is not received for a generated message."
Integer32 (0..255)

 tag_list()

 -type tag_list() :: string().

Note
"An octet string containing a list of tag values. Tag values are preferably in
human-readable form."
"To facilitate internationalization, this information is represented using the
ISO/IEC IS 10646-1 character set, encoded as an octet string using the UTF-8
character encoding scheme described in RFC 2279."
OCTET STRING (SIZE (0..255))

 tag_value()

 -type tag_value() :: string().

Note
"An octet string containing a tag value. Tag values are preferably in
human-readable form."
OCTET STRING (SIZE (0..255))

 tmask()

 -type tmask() :: snmpa_conf:transportAddressMask().

Note
"The mask value associated with an entry in the snmpTargetAddrTable. The value
of this object must have the same length as the corresponding instance of
snmpTargetAddrTAddress, or must have length 0."
OCTET STRING (SIZE (0..255))

 Functions

 add_addr/10

 -spec add_addr(Name, TDomain, TAddr, Timeout, Retry, TagList, Params, EngineId, TMask, MMS) ->
 {ok, Key} | {error, Reason}
 when
 Name :: name(),
 TDomain :: snmpa_conf:transportDomain(),
 TAddr :: snmpa_conf:transportAddress(),
 Timeout :: snmp:time_interval(),
 Retry :: integer(),
 TagList :: tag_list(),
 Params :: params(),
 EngineId :: snmp_framework_mib:engine_id(),
 TMask :: tmask(),
 MMS :: snmp_framework_mib:max_message_size(),
 Key :: term(),
 Reason :: term();
 (Name, Ip, Port, Timeout, Retry, TagList, Params, EngineId, TMask, MMS) ->
 {ok, Key} | {error, Reason}
 when
 Name :: name(),
 Ip :: snmpa_conf:transportAddressWithoutPort(),
 Port :: inet:port_number(),
 Timeout :: snmp:time_interval(),
 Retry :: integer(),
 TagList :: tag_list(),
 Params :: params(),
 EngineId :: snmp_framework_mib:engine_id(),
 TMask :: tmask(),
 MMS :: snmp_framework_mib:max_message_size(),
 Key :: term(),
 Reason :: term().

Adds a target address definition to the agent config. Equivalent to one line in
the target_addr.conf file.

 add_params(Name, MPModel, SecModel, SecName, SecLevel)

 -spec add_params(Name, MPModel, SecModel, SecName, SecLevel) -> {ok, Key} | {error, Reason}
 when
 Name :: name(),
 MPModel :: snmp_framework_mib:message_processing_model(),
 SecModel :: snmp_framework_mib:security_model(),
 SecName :: snmp_framework_mib:admin_string(),
 SecLevel :: snmp_framework_mib:security_level(),
 Key :: term(),
 Reason :: term().

Adds a target parameter definition to the agent config. Equivalent to one line
in the target_params.conf file.

 configure(ConfDir)

 -spec configure(ConfDir) -> snmp:void() when ConfDir :: string().

This function is called from the supervisor at system start-up.
Inserts all data in the configuration files into the database and destroys all
old rows with StorageType volatile. The rows created from the configuration
file will have StorageType nonVolatile.
All snmp counters are set to zero.
If an error is found in the configuration file, it is reported using the
function config_err/2 of the error report module, and the function fails with
the reason configuration_error.
ConfDir is a string which points to the directory where the configuration
files are found.
The configuration files read are: target_addr.conf and target_params.conf.

 delete_addr(Key)

 -spec delete_addr(Key) -> ok | {error, Reason} when Key :: term(), Reason :: term().

Delete a target address definition from the agent config.

 delete_params(Key)

 -spec delete_params(Key) -> ok | {error, Reason} when Key :: term(), Reason :: term().

Delete a target parameter definition from the agent config.

 reconfigure(ConfDir)

 -spec reconfigure(ConfDir) -> snmp:void() when ConfDir :: string().

Inserts all data in the configuration files into the database and destroys all
old data, including the rows with StorageType nonVolatile. The rows created
from the configuration file will have StorageType nonVolatile.
Thus, the data in the SNMP-TARGET-MIB, after this function has been called, is
the data from the configuration files.
All snmp counters are set to zero.
If an error is found in the configuration file, it is reported using the
function config_err/2 of the , and the function fails with the reason
configuration_error.
ConfDir is a string which points to the directory where the configuration
files are found.
The configuration files read are: target_addr.conf and target_params.conf.

 set_target_engine_id(TargetAddrName, EngineId)

 -spec set_target_engine_id(TargetAddrName, EngineId) -> boolean()
 when TargetAddrName :: name(), EngineId :: snmp_framework_mib:engine_id().

Changes the engine id for a target in the snmpTargetAddrTable. If
notifications are sent as Inform requests to a target, its engine id must be
set.

snmp_user_based_sm_mib

Instrumentation Functions for SNMP-USER-BASED-SM-MIB
The module snmp_user_based_sm_mib implements the instrumentation functions for
the SNMP-USER-BASED-SM-MIB, and functions for configuring the database.
Note that authentication has been extended according to RFC 7860
(SNMP-USM-HMAC-SHA2-MIB).
The configuration files are described in the SNMP User's Manual.

 Summary

 Types

 auth_key()

 The size/length of the list depends on auth protocol

 auth_protocol()

 clone_from()

 key_change()

 name()

 priv_key()

 The size/length of the list depends on priv protocol

 priv_protocol()

 public()

 OCTET STRING (SIZE(0..32))

 usm_entry()

 Functions

 add_user(EngineID, Name, SecName, Clone, AuthP, AuthKeyC, OwnAuthKeyC, PrivP, PrivKeyC, OwnPrivKeyC, Public, AuthKey, PrivKey)

 Adds a USM security data (user) to the agent config. Equivalent to one line in
the usm.conf file.

 configure(ConfDir)

 This function is called from the supervisor at system start-up.

 delete_user(Key)

 Delete a USM security data (user) from the agent config.

 reconfigure(ConfDir)

 Inserts all data in the configuration files into the database and destroys all
old data, including the rows with StorageType nonVolatile. The rows created
from the configuration file will have StorageType nonVolatile.

 Types

 auth_key()

 -type auth_key() :: snmp:octet_string().

The size/length of the list depends on auth protocol:
 Size any for usmNoAuthProtocol
 Size 16 for usmHMACMD5AuthProtocol
 Size 20 for usmHMACSHAAuthProtocol
 Size 28 for usmHMAC128SHA224AuthProtocol
 Size 32 for usmHMAC192SHA256AuthProtocol
 Size 48 for usmHMAC256SHA384AuthProtocol
	 Size 64 for usmHMAC384SHA512AuthProtocol

 auth_protocol()

 -type auth_protocol() ::
 usmNoAuthProtocol | usmHMACMD5AuthProtocol | usmHMACSHAAuthProtocol |
 usmHMAC128SHA224AuthProtocol | usmHMAC192SH256AuthProtocol | usmHMAC256SHA384AuthProtocol |
 usmHMAC384SHA512AuthProtocol.

Note
"An indication of whether messages sent on behalf of this user to/from the
SNMP engine identified by usmUserEngineID, can be authenticated, and if so,
the type of authentication protocol which is used."
Note
Some of the entries of this type are actually defined by the
SNMP-USM-HMAC-SHA2-MIB mib.
AutonomousType

 clone_from()

 -type clone_from() :: zeroDotZero | snmp:row_pointer().

Note
"A pointer to another conceptual row in this usmUserTable. The user in this
other conceptual row is called the clone-from user."
RowPointer

 key_change()

 -type key_change() :: snmp:octet_string().

Note
"Every definition of an object with this syntax must identify a protocol P, a
secret key K, and a hash algorithm H that produces output of L octets."
OCTET STRING

 name()

 -type name() :: snmp_framework_mib:admin_string().

Note
"A human readable string representing the name of the user. This is the
(User-based Security) Model dependent security ID."
SnmpAdminString (SIZE(1..32))

 priv_key()

 -type priv_key() :: snmp:octet_string().

The size/length of the list depends on priv protocol:
	 Size any for usmNoPrivProtocol
 Size 16 for usmDESPrivProtocol
 Size 16 for usmAesCfb128Protocol

 priv_protocol()

 -type priv_protocol() :: usmNoPrivProtocol | usmDESPrivProtocol | usmAesCfb128Protocol.

Note
"An indication of whether messages sent on behalf of this user to/from the
SNMP engine identified by usmUserEngineID, can be protected from disclosure,
and if so, the type of privacy protocol which is used."
Note
Some of the entries of this tyype are actually defined by the SNMP-USM-AES-MIB
mib.
AutonomousType

 public()

 -type public() :: string().

OCTET STRING (SIZE(0..32))

 usm_entry()

 -type usm_entry() ::
 {EngineID :: snmp_framework_mib:engine_id(),
 UserName :: name(),
 SecName :: snmp_framework_mib:admin_string(),
 Clone :: clone_from(),
 AuthP :: auth_protocol(),
 AuthKeyC :: key_change(),
 OwnAuthKeyC :: key_change(),
 PrivP :: priv_protocol(),
 PrivKeyC :: key_change(),
 OwnPrivKeyC :: key_change(),
 Public :: public(),
 AuthKey :: auth_key(),
 PrivKey :: priv_key()}.

 Functions

 add_user(EngineID, Name, SecName, Clone, AuthP, AuthKeyC, OwnAuthKeyC, PrivP, PrivKeyC, OwnPrivKeyC, Public, AuthKey, PrivKey)

 -spec add_user(EngineID, Name, SecName, Clone, AuthP, AuthKeyC, OwnAuthKeyC, PrivP, PrivKeyC,
 OwnPrivKeyC, Public, AuthKey, PrivKey) ->
 {ok, Key} | {error, Reason}
 when
 EngineID :: snmp_framework_mib:engine_id(),
 Name :: name(),
 SecName :: snmp_framework_mib:admin_string(),
 Clone :: clone_from(),
 AuthP :: auth_protocol(),
 AuthKeyC :: key_change(),
 OwnAuthKeyC :: key_change(),
 PrivP :: priv_protocol(),
 PrivKeyC :: key_change(),
 OwnPrivKeyC :: key_change(),
 Public :: public(),
 AuthKey :: auth_key(),
 PrivKey :: priv_key(),
 Key :: term(),
 Reason :: term().

Adds a USM security data (user) to the agent config. Equivalent to one line in
the usm.conf file.

 configure(ConfDir)

 -spec configure(ConfDir) -> snmp:void() when ConfDir :: string().

This function is called from the supervisor at system start-up.
Inserts all data in the configuration files into the database and destroys all
old rows with StorageType volatile. The rows created from the configuration
file will have StorageType nonVolatile.
All snmp counters are set to zero.
If an error is found in the configuration file, it is reported using the
function config_err/2 of the error report module, and the function fails with
the reason configuration_error.
ConfDir is a string which points to the directory where the configuration
files are found.
The configuration file read is: usm.conf.

 delete_user(Key)

 -spec delete_user(Key) -> ok | {error, Reason} when Key :: term(), Reason :: term().

Delete a USM security data (user) from the agent config.

 reconfigure(ConfDir)

 -spec reconfigure(ConfDir) -> snmp:void() when ConfDir :: string().

Inserts all data in the configuration files into the database and destroys all
old data, including the rows with StorageType nonVolatile. The rows created
from the configuration file will have StorageType nonVolatile.
Thus, the data in the SNMP-USER-BASED-SM-MIB, after this function has been
called, is the data from the configuration files.
All snmp counters are set to zero.
If an error is found in the configuration file, it is reported using the
function config_err/2 of the error report module, and the function fails with
the reason configuration_error.
ConfDir is a string which points to the directory where the configuration
files are found.
The configuration file read is: usm.conf.

snmp_view_based_acm_mib

Instrumentation Functions for SNMP-VIEW-BASED-ACM-MIB
The module snmp_view_based_acm_mib implements the instrumentation functions
for the SNMP-VIEW-BASED-ACM-MIB, and functions for configuring the database.
The configuration files are described in the SNMP User's Manual.

 Summary

 Types

 access_notify_view_name()

 access_read_view_name()

 access_write_view_name()

 context_match()

 context_prefix()

 SnmpAdminString (SIZE(0..32))

 group_name()

 internal_view_mask()

 internal_view_mask_element()

 internal_view_type()

 mibview()

 security_name()

 view_mask()

 The bit mask which, in combination with the corresponding instance of
vacmViewTreeFamilySubtree, defines a family of view subtrees.

 view_name()

 view_type()

 Does the corresponding instances of subtree and mask define a family of view
subtrees which are included in or excluded from the MIB view.

 Functions

 add_access(GroupName, Prefix, SecModel, SecLevel, Match, RV, WV, NV)

 Adds a access definition to the agent config. Equivalent to one vacmAccess-line
in the vacm.conf file.

 add_sec2group(SecModel, SecName, GroupName)

 Adds a security to group definition to the agent config. Equivalent to one
vacmSecurityToGroup-line in the vacm.conf file.

 add_view_tree_fam(ViewName, SubTree, Status, Mask)

 Adds a view tree family definition to the agent config. Equivalent to one
vacmViewTreeFamily-line in the vacm.conf file.

 configure(ConfDir)

 This function is called from the supervisor at system start-up.

 delete_access(Key)

 Delete a access definition from the agent config.

 delete_sec2group(Key)

 Delete a security to group definition from the agent config.

 delete_view_tree_fam(Key)

 Delete a view tree family definition from the agent config.

 reconfigure(ConfDir)

 Inserts all data in the configuration files into the database and destroys all
old data, including the rows with StorageType nonVolatile. The rows created
from the configuration file will have StorageType nonVolatile.

 Types

 access_notify_view_name()

 -type access_notify_view_name() :: snmp_framework_mib:admin_string().

Note
"The value of an instance of this object identifies the MIB view of the SNMP
context to which this conceptual row authorizes access for notifications."
SnmpAdminString (SIZE(0..32))

 access_read_view_name()

 -type access_read_view_name() :: snmp_framework_mib:admin_string().

Note
"The value of an instance of this object identifies the MIB view of the SNMP
context to which this conceptual row authorizes read access."
SnmpAdminString (SIZE(0..32))

 access_write_view_name()

 -type access_write_view_name() :: snmp_framework_mib:admin_string().

Note
"The value of an instance of this object identifies the MIB view of the SNMP
context to which this conceptual row authorizes write access."
SnmpAdminString (SIZE(0..32))

 context_match()

 -type context_match() :: exact | prefix.

	 exact - exact match of prefix and contextName
 prefix - Only match to the prefix
INTEGER { exact (1), prefix (2) }

 context_prefix()

 -type context_prefix() :: snmp_framework_mib:admin_string().

SnmpAdminString (SIZE(0..32))

 group_name()

 -type group_name() :: snmp_framework_mib:admin_string().

Note
"The name of the group to which this entry (e.g., the combination of
securityModel and securityName) belongs."
SnmpAdminString (SIZE(1..32))

 internal_view_mask()

 -type internal_view_mask() :: null | [internal_view_mask_element()].

 internal_view_mask_element()

 -type internal_view_mask_element() :: 0 | 1.

 internal_view_type()

 -type internal_view_type() :: 1 | 2.

 mibview()

 -type mibview() :: [{SubTree :: snmp:oid(), Mask :: internal_view_mask(), Type :: internal_view_type()}].

 security_name()

 -type security_name() :: snmp_framework_mib:admin_string().

Note
"The securityName for the principal, represented in a Security Model
independent format."
SnmpAdminString (SIZE(1..32))

 view_mask()

 -type view_mask() :: [0 | 1].

The bit mask which, in combination with the corresponding instance of
vacmViewTreeFamilySubtree, defines a family of view subtrees.
A '1' indicates that an exact match must occur, a '0' indicates 'wild card' (any
sub-identifier value matches).
Note
Note that in the "external" format, each bit of each octet is represented by a
"bit" in this list. That is, each octet "contains" 8 bits; so at most 8*16 =
128 bits in total.
OCTET STRING (SIZE (0..16))

 view_name()

 -type view_name() :: snmp_framework_mib:admin_string().

Note
"The human readable name for a family of view subtrees."
SnmpAdminString (SIZE(1..32))

 view_type()

 -type view_type() :: included | excluded.

Does the corresponding instances of subtree and mask define a family of view
subtrees which are included in or excluded from the MIB view.
INTEGER { included(1), excluded(2) }

 Functions

 add_access(GroupName, Prefix, SecModel, SecLevel, Match, RV, WV, NV)

 -spec add_access(GroupName, Prefix, SecModel, SecLevel, Match, RV, WV, NV) ->
 {ok, Key} | {error, Reason}
 when
 GroupName :: group_name(),
 Prefix :: context_prefix(),
 SecModel :: snmp_framework_mib:security_model(),
 SecLevel :: snmp_framework_mib:security_level(),
 Match :: context_match(),
 RV :: access_read_view_name(),
 WV :: access_write_view_name(),
 NV :: access_notify_view_name(),
 Key :: term(),
 Reason :: term().

Adds a access definition to the agent config. Equivalent to one vacmAccess-line
in the vacm.conf file.

 add_sec2group(SecModel, SecName, GroupName)

 -spec add_sec2group(SecModel, SecName, GroupName) -> {ok, Key} | {error, Reason}
 when
 SecModel :: snmp_framework_mib:security_model(),
 SecName :: security_name(),
 GroupName :: group_name(),
 Key :: term(),
 Reason :: term().

Adds a security to group definition to the agent config. Equivalent to one
vacmSecurityToGroup-line in the vacm.conf file.

 add_view_tree_fam(ViewName, SubTree, Status, Mask)

 -spec add_view_tree_fam(ViewName, SubTree, Status, Mask) -> {ok, Key} | {error, Reason}
 when
 ViewName :: view_name(),
 SubTree :: snmp:oid(),
 Status :: view_type(),
 Mask :: null | view_mask(),
 Key :: term(),
 Reason :: term().

Adds a view tree family definition to the agent config. Equivalent to one
vacmViewTreeFamily-line in the vacm.conf file.

 configure(ConfDir)

 -spec configure(ConfDir) -> snmp:void() when ConfDir :: string().

This function is called from the supervisor at system start-up.
Inserts all data in the configuration files into the database and destroys all
old rows with StorageType volatile. The rows created from the configuration
file will have StorageType nonVolatile.
All snmp counters are set to zero.
If an error is found in the configuration file, it is reported using the
function config_err/2 of the error report module, and the function fails with
the reason configuration_error.
ConfDir is a string which points to the directory where the configuration
files are found.
The configuration file read is: vacm.conf.

 delete_access(Key)

 -spec delete_access(Key) -> ok | {error, Reason} when Key :: term(), Reason :: term().

Delete a access definition from the agent config.

 delete_sec2group(Key)

 -spec delete_sec2group(Key) -> ok | {error, Reason} when Key :: term(), Reason :: term().

Delete a security to group definition from the agent config.

 delete_view_tree_fam(Key)

 -spec delete_view_tree_fam(Key) -> ok | {error, Reason} when Key :: term(), Reason :: term().

Delete a view tree family definition from the agent config.

 reconfigure(ConfDir)

 -spec reconfigure(ConfDir) -> snmp:void() when ConfDir :: string().

Inserts all data in the configuration files into the database and destroys all
old data, including the rows with StorageType nonVolatile. The rows created
from the configuration file will have StorageType nonVolatile.
Thus, the data in the SNMP-VIEW-BASED-ACM-MIB, after this function has been
called, is the data from the configuration files.
All snmp counters are set to zero.
If an error is found in the configuration file, it is reported using the
function config_err/2 of the error report module,
and the function fails with the reason configuration_error.
ConfDir is a string which points to the directory where the configuration
files are found.
The configuration file read is: vacm.conf.

snmpa

Interface Functions to the SNMP toolkit agent
The module snmpa contains interface functions to the SNMP agent.

 Summary

 Types

 db()

 discovery_handler()

 Module implementing the snmpa_discovery_handler
behaviour.

 me()

 mib_storage()

 mib_storage_module()

 mib_storage_opt()

 mib_storage_options()

 name()

 name_db()

 nfilter_id()

 nfilter_position()

 notification_delivery_info()

 How shall (notification) delivery info be reported.

 pdu_type()

 table_name()

 transport_kind()

 variable_name()

 Functions

 add_agent_caps(Oid, Descr)

 This function can be used to add an AGENT-CAPABILITY statement to the sysORTable
in the agent. The table is defined in the SNMPv2-MIB.

 backup(BackupDir)

 Equivalent to backup/2.

 backup(Agent, BackupDir)

 Backup persistent/permanent data handled by the agent (such as local-db,
mib-data and vacm).

 change_log_size(NewSize)

 Changes the log size of the Audit Trail Log. The application must be configured
to use the audit trail log function. Please refer to disk_log(3) in Kernel
Reference Manual for a description of how to change the log size.

 convert_config(OldConfig)

 This off-line utility function can be used to convert the old snmp application
config (pre snmp-4.0) to the new snmp agent config (as of snmp-4.0).

 current_address()

 Get the address of the request currently being processed by the agent.

 current_community()

 Get the community of the request currently being processed by the agent.

 current_context()

 Get the context of the request currently being processed by the agent.

 current_request_id()

 Get the request-id of the request currently being processed by the agent.

 del_agent_caps(Index)

 This function can be used to delete an AGENT-CAPABILITY statement to the
sysORTable in the agent. This table is defined in the SNMPv2-MIB.

 disable_mibs_cache()

 Equivalent to disable_mibs_cache/1.

 disable_mibs_cache(Agent)

 Disable the mib server cache.

 disable_mibs_cache_autogc()

 Equivalent to disable_mibs_cache_autogc/1.

 disable_mibs_cache_autogc(Agent)

 Disable automatic gc of the mib server cache.

 discovery(TargetName, Notification)

 Equivalent to discovery/6.

 discovery/3

 Equivalent to discovery/6.

 discovery/4

 Equivalent to discovery/6.

 discovery(TargetName, Notification, ContextName, Varbinds, DiscoHandler)

 Equivalent to discovery/6.

 discovery(TargetName, Notification, ContextName, Varbinds, DiscoHandler, ExtraInfo)

 Initiate the discovery process with the manager identified by TargetName using
the notification Notification.

 enable_mibs_cache()

 Equivalent to enable_mibs_cache/1.

 enable_mibs_cache(Agent)

 Enable the mib server cache.

 enable_mibs_cache_autogc()

 Equivalent to enable_mibs_cache_autogc/1.

 enable_mibs_cache_autogc(Agent)

 Enable automatic gc of the mib server cache.

 enum_to_int(Name, Enum)

 Equivalent to enum_to_int/3.

 enum_to_int(Db, Name, Enum)

 Converts the symbolic value Enum to the corresponding integer of the
enumerated object or type Name in a MIB. The MIB must be loaded.

 gc_mibs_cache()

 Equivalent to gc_mibs_cache/3.

 gc_mibs_cache/1

 Equivalent to gc_mibs_cache/3.

 gc_mibs_cache/2

 Equivalent to gc_mibs_cache/3.

 gc_mibs_cache(Agent, Age, GcLimit)

 Perform mib server cache gc.

 get(Agent, Vars)

 Equivalent to get/3.

 get(Agent, Vars, Context)

 Performs a GET operation on the agent. All loaded MIB objects are visible in
this operation. The agent calls the corresponding instrumentation functions just
as if it was a GET request coming from a manager.

 get_agent_caps()

 Returns all AGENT-CAPABILITY statements in the sysORTable in the agent. This
table is defined in the SNMPv2-MIB.

 get_next(Agent, Vars)

 Equivalent to get_next/3.

 get_next(Agent, Vars, Context)

 Performs a GET-NEXT operation on the agent. All loaded MIB objects are visible
in this operation. The agent calls the corresponding instrumentation functions
just as if it was a GET request coming from a manager.

 info()

 Equivalent to info/1.

 info(Agent)

 Returns a list (a dictionary) containing information about the agent.
Information includes loaded MIBs, registered sub-agents, some information about
the memory allocation.

 int_to_enum(Name, Int)

 Equivalent to int_to_enum/3.

 int_to_enum(Db, Name, Int)

 Converts the integer Int to the corresponding symbolic value of the enumerated
object or type Name in a MIB. The MIB must be loaded.

 invalidate_mibs_cache()

 Equivalent to invalidate_mibs_cache/1.

 invalidate_mibs_cache(Agent)

 Invalidate the mib server cache.

 load_mib(Mib)

 Equivalent to load_mib/2.

 load_mib(Agent, Mib)

 Load a single Mib into an agent. The MibName is the name of the Mib,
including the path to where the compiled mib is found. For example

 load_mibs(Mibs)

 Equivalent to load_mibs/3.

 load_mibs/2

 Equivalent to load_mibs/3.

 load_mibs(Agent, Mibs, Force)

 Load Mibs into an agent. If the agent cannot load all MIBs (the default value
of the Force argument is false), it will indicate where loading was aborted.
The MibName is the name of the Mib, including the path to where the compiled
mib is found. For example,

 log_to_io(LogDir)

 Equivalent to log_to_io/7.

 log_to_io/2

 Equivalent to log_to_io/7.

 log_to_io/3

 Equivalent to log_to_io/7.

 log_to_io/4

 Equivalent to log_to_io/7.

 log_to_io/5

 Equivalent to log_to_io/7.

 log_to_io/6

 Equivalent to log_to_io/7.

 log_to_io(LogDir, Mibs, LogName, LogFile, Block, Start, Stop)

 Converts an Audit Trail Log to a readable format and prints it on stdio.
LogName defaults to "snmpa_log". LogFile defaults to "snmpa.log".

 log_to_txt(LogDir)

 Equivalent to log_to_txt/8.

 log_to_txt/2

 Equivalent to log_to_txt/8.

 log_to_txt/3

 Equivalent to log_to_txt/8.

 log_to_txt/4

 Equivalent to log_to_txt/8.

 log_to_txt/5

 Equivalent to log_to_txt/8.

 log_to_txt/6

 Equivalent to log_to_txt/8.

 log_to_txt/7

 Equivalent to log_to_txt/8.

 log_to_txt(LogDir, Mibs, OutFile, LogName, LogFile, Block, Start, Stop)

 Converts an Audit Trail Log to a readable text file. OutFile defaults to
"./snmpa_log.txt". LogName defaults to "snmpa_log". LogFile defaults to
"snmpa.log".

 me_of(Oid)

 Equivalent to me_of/2.

 me_of(Agent, Oid)

 Finds the mib entry corresponding to the Oid.

 mib_of(Oid)

 Equivalent to mib_of/2.

 mib_of(Agent, Oid)

 Finds the mib corresponding to the Oid.

 name_to_oid(Name)

 Equivalent to name_to_oid/2.

 name_to_oid(Db, Name)

 Looks up the OBJECT IDENTIFIER of a MIB object, given the symbolic name. Note,
the OBJECT IDENTIFIER is given for the object, not for an instance.

 oid_to_name(Oid)

 Equivalent to oid_to_name/2.

 oid_to_name(Db, Oid)

 Looks up the symbolic name of a MIB object, given OBJECT IDENTIFIER.

 print_mib_info()

 Prints the content of all the (snmp) tables and variables for all mibs handled
by the snmp agent.

 print_mib_tables()

 Prints the content of all the (snmp) tables for all mibs handled by the snmp
agent.

 print_mib_variables()

 Prints the content of all the (snmp) variables for all mibs handled by the snmp
agent.

 register_notification_filter(Id, Mod, Data)

 Equivalent to register_notification_filter/5.

 register_notification_filter/4

 Accepted type specifications are

 register_notification_filter(Agent, Id, Mod, Data, Where)

 Registers a notification filter.

 register_subagent(Agent, SubTree, SubAgent)

 Registers a sub-agent under a sub-tree of another agent.

 restart_set_worker()

 Equivalent to restart_set_worker/1.

 restart_set_worker(Agent)

 Restart the set worker process of a multi-threaded agent.

 restart_worker()

 Equivalent to restart_worker/1.

 restart_worker(Agent)

 Restart the worker process of a multi-threaded agent.

 send_notification2(Agent, Notification, SendOpts)

 Send the notification Notification to the management targets defined for
notify-name (name) in the snmpNotifyTable in SNMP-NOTIFICATION-MIB from the
specified context.

 send_notification(Agent, Notification, Receiver)

 Equivalent to send_notification/7.

 send_notification(Agent, Notification, Receiver, Varbinds)

 Equivalent to send_notification/7.

 send_notification(Agent, Notification, Receiver, NotifyName, Varbinds)

 Equivalent to send_notification/7.

 send_notification(Agent, Notification, Receiver, NotifyName, ContextName, Varbinds)

 Equivalent to send_notification/7.

 send_notification(Agent, Notification, Receiver, NotifyName, ContextName, Varbinds, LocalEngineID)

 Sends the notification Notification to the management targets defined for
NotifyName in the snmpNotifyTable in SNMP-NOTIFICATION-MIB from the
specified context.

 set_log_type(NewType)

 Equivalent to set_log_type/2.

 set_log_type(Agent, NewType)

 Changes the run-time Audit Trail log type.

 set_request_limit(NewLimit)

 Equivalent to set_request_limit/2.

 set_request_limit(Agent, NewLimit)

 Changes the request limit.

 unload_mib(Mib)

 Equivalent to unload_mib/2.

 unload_mib(Agent, Mib)

 Unload a single Mib from an agent.

 unload_mibs(Mibs)

 Equivalent to unload_mibs/3.

 unload_mibs/2

 Equivalent to unload_mibs/3.

 unload_mibs(Agent, Mibs, Force)

 Unload Mibs from an agent. If it cannot unload all MIBs (the default value of
the Force argument is false), it will indicate where unloading was aborted.

 unregister_notification_filter(Id)

 Equivalent to unregister_notification_filter/2.

 unregister_notification_filter(Agent, Id)

 Unregister a notification filter.

 unregister_subagent(Agent, SubAgentOidOrPid)

 Unregister a sub-agent. If the second argument is a pid, then that sub-agent
will be unregistered from all trees in Agent.

 update_mibs_cache_age(Age)

 Equivalent to update_mibs_cache_age/2.

 update_mibs_cache_age(Agent, Age)

 Change the mib server cache age property.

 update_mibs_cache_gclimit(GcLimit)

 Equivalent to update_mibs_cache_gclimit/2.

 update_mibs_cache_gclimit(Agent, GcLimit)

 Change the mib server cache gclimit property.

 verbosity(Target, Verbosity)

 Sets 'verbosity' for the indicated process(s)

 whereis_mib(MibName)

 Equivalent to whereis_mib/2.

 whereis_mib(Agent, MibName)

 Get the full path to the (compiled) mib-file.

 which_aliasnames()

 Retrieve all alias-names known to the agent.

 which_mibs()

 Equivalent to which_mibs/1.

 which_mibs(Agent)

 Retrieve the list of all the mibs loaded into this agent. Default is the master
agent.

 which_mibs_cache_size()

 Equivalent to which_mibs_cache_size/1.

 which_mibs_cache_size(Agent)

 Retrieve the size of the mib server cache.

 which_notification_filter()

 Equivalent to which_notification_filter/1.

 which_notification_filter(Agent)

 List all notification filters in an agent.

 which_notifications()

 Retrieve all notifications (and traps) known to the agent.

 which_tables()

 Retrieve all tables known to the agent.

 which_transports()

 Retrieve all configured transports.

 which_variables()

 Retrieve all variables known to the agent.

 Types

 db()

 -type db() :: volatile | persistent | mnesia.

 discovery_handler()

 -type discovery_handler() :: module().

Module implementing the snmpa_discovery_handler
behaviour.

 me()

 -type me() :: snmp:me().

 mib_storage()

 -type mib_storage() :: [mib_storage_opt()].

 mib_storage_module()

 -type mib_storage_module() :: atom().

 mib_storage_opt()

 -type mib_storage_opt() :: {module, mib_storage_module()} | {options, mib_storage_options()}.

 mib_storage_options()

 -type mib_storage_options() :: list().

 name()

 -type name() :: table_name() | variable_name().

 name_db()

 -type name_db() :: {name(), db()}.

 nfilter_id()

 -type nfilter_id() :: term().

 nfilter_position()

 -type nfilter_position() :: first | last | {insert_before, nfilter_id()} | {insert_after, nfilter_id()}.

 notification_delivery_info()

 -type notification_delivery_info() ::
 snmpa_notification_delivery_info_receiver:notification_delivery_info().

How shall (notification) delivery info be reported.

 pdu_type()

 -type pdu_type() :: snmp:pdu_type().

 table_name()

 -type table_name() :: atom().

 transport_kind()

 -type transport_kind() :: req_responder | trap_sender.

 variable_name()

 -type variable_name() :: atom().

 Functions

 add_agent_caps(Oid, Descr)

 -spec add_agent_caps(Oid, Descr) -> Index when Oid :: snmp:oid(), Descr :: string(), Index :: integer().

This function can be used to add an AGENT-CAPABILITY statement to the sysORTable
in the agent. The table is defined in the SNMPv2-MIB.

 backup(BackupDir)

 -spec backup(BackupDir) -> ok | {error, Reason}
 when BackupDir :: string(), Reason :: backup_in_progress | term().

Equivalent to backup/2.

 backup(Agent, BackupDir)

 -spec backup(Agent, BackupDir) -> ok | {error, Reason}
 when
 Agent :: pid() | AgentName,
 AgentName :: atom(),
 BackupDir :: string(),
 Reason :: backup_in_progress | term().

Backup persistent/permanent data handled by the agent (such as local-db,
mib-data and vacm).
Data stored by mnesia is not handled.
BackupDir cannot be identical to DbDir.
Simultaneous backup calls are not allowed. That is, two different processes
cannot simultaneously successfully call this function. One of them will be
first, and succeed. The second will fail with the error reason
backup_in_progress.

 change_log_size(NewSize)

 -spec change_log_size(NewSize) -> ok | {error, Reason} when NewSize :: snmp:log_size(), Reason :: term().

Changes the log size of the Audit Trail Log. The application must be configured
to use the audit trail log function. Please refer to disk_log(3) in Kernel
Reference Manual for a description of how to change the log size.
The change is permanent, as long as the log is not deleted. That means, the log
size is remembered across reboots.

 convert_config(OldConfig)

 -spec convert_config(OldConfig) -> NewConfig when OldConfig :: list(), NewConfig :: list().

This off-line utility function can be used to convert the old snmp application
config (pre snmp-4.0) to the new snmp agent config (as of snmp-4.0).
For information about the old config (OldConfig) see the OTP R9C
documentation.
For information about the current agent config (AgentConfig), see the
Configuring the application chapter of
the SNMP user's guide.

 current_address()

 -spec current_address() -> {value, Address} | false when Address :: term().

Get the address of the request currently being processed by the agent.
Note that this function is intended to be called by the instrumentation
functions and only if it is executed in the context of the agent process (e.g.
it does not work if called from a spawned process).

 current_community()

 -spec current_community() -> {value, Community} | false when Community :: snmp_community_mib:name().

Get the community of the request currently being processed by the agent.
Note that this function is intended to be called by the instrumentation
functions and only if it is executed in the context of the agent process (e.g.
it does not work if called from a spawned process).

 current_context()

 -spec current_context() -> {value, Context} | false when Context :: snmp_community_mib:context_name().

Get the context of the request currently being processed by the agent.
Note that this function is intended to be called by the instrumentation
functions and only if it is executed in the context of the agent process (e.g.
it does not work if called from a spawned process).

 current_request_id()

 -spec current_request_id() -> {value, RequestId} | false when RequestId :: integer().

Get the request-id of the request currently being processed by the agent.
Note that this function is intended to be called by the instrumentation
functions and only if it is executed in the context of the agent process (e.g.
it does not work if called from a spawned process).

 del_agent_caps(Index)

 -spec del_agent_caps(Index) -> snmp:void() when Index :: integer().

This function can be used to delete an AGENT-CAPABILITY statement to the
sysORTable in the agent. This table is defined in the SNMPv2-MIB.

 disable_mibs_cache()

 -spec disable_mibs_cache() -> snmp:void().

Equivalent to disable_mibs_cache/1.

 disable_mibs_cache(Agent)

 -spec disable_mibs_cache(Agent) -> snmp:void() when Agent :: pid() | AgentName, AgentName :: atom().

Disable the mib server cache.

 disable_mibs_cache_autogc()

 -spec disable_mibs_cache_autogc() -> snmp:void().

Equivalent to disable_mibs_cache_autogc/1.

 disable_mibs_cache_autogc(Agent)

 -spec disable_mibs_cache_autogc(Agent) -> snmp:void()
 when Agent :: pid() | AgentName, AgentName :: atom().

Disable automatic gc of the mib server cache.

 discovery(TargetName, Notification)

 -spec discovery(TargetName, Notification) -> {ok, ManagerEngineID} | {error, Reason}
 when
 TargetName :: string(),
 Notification :: atom(),
 ManagerEngineID :: snmp_framework_mib:engine_id(),
 Reason :: term().

Equivalent to discovery/6.

 discovery/3

 -spec discovery(TargetName, Notification, Varbinds) -> {ok, ManagerEngineID} | {error, Reason}
 when
 TargetName :: string(),
 Notification :: atom(),
 Varbinds :: [Varbind],
 Varbind ::
 {Variable :: atom(), Value} |
 {OID :: snmp:oid(), Value} |
 {Column :: atom(), RowIndex :: snmp:row_index(), Value},
 Value :: term(),
 ManagerEngineID :: snmp_framework_mib:engine_id(),
 Reason :: term();
 (TargetName, Notification, ContextName) -> {ok, ManagerEngineID} | {error, Reason}
 when
 TargetName :: string(),
 Notification :: atom(),
 ContextName :: snmp_community_mib:context_name(),
 ManagerEngineID :: snmp_framework_mib:engine_id(),
 Reason :: term().

Equivalent to discovery/6.

 discovery/4

 -spec discovery(TargetName, Notification, ContextName, Varbinds) ->
 {ok, ManagerEngineID} | {error, Reason}
 when
 TargetName :: string(),
 Notification :: atom(),
 ContextName :: snmp_community_mib:context_name(),
 Varbinds :: [Varbind],
 Varbind :: {Variable, Value} | {Column, RowIndex, Value} | {OID, Value},
 Variable :: atom(),
 Column :: atom(),
 RowIndex :: snmp:row_index(),
 OID :: snmp:oid(),
 Value :: term(),
 ManagerEngineID :: snmp_framework_mib:engine_id(),
 Reason :: term();
 (TargetName, Notification, Varbinds, DiscoHandler) ->
 {ok, ManagerEngineID} | {error, Reason}
 when
 TargetName :: string(),
 Notification :: atom(),
 Varbinds :: [Varbind],
 Varbind :: {Variable, Value} | {Column, RowIndex, Value} | {OID, Value},
 Variable :: atom(),
 Column :: atom(),
 RowIndex :: snmp:row_index(),
 OID :: snmp:oid(),
 Value :: term(),
 DiscoHandler :: discovery_handler(),
 ManagerEngineID :: snmp_framework_mib:engine_id(),
 Reason :: term().

Equivalent to discovery/6.

 discovery(TargetName, Notification, ContextName, Varbinds, DiscoHandler)

 -spec discovery(TargetName, Notification, ContextName, Varbinds, DiscoHandler) ->
 {ok, ManagerEngineID} | {error, Reason}
 when
 TargetName :: string(),
 Notification :: atom(),
 ContextName :: snmp_community_mib:context_name(),
 Varbinds :: [Varbind],
 Varbind :: {Variable, Value} | {Column, RowIndex, Value} | {OID, Value},
 Variable :: atom(),
 Column :: atom(),
 RowIndex :: snmp:row_index(),
 OID :: snmp:oid(),
 Value :: term(),
 DiscoHandler :: discovery_handler(),
 ManagerEngineID :: snmp_framework_mib:engine_id(),
 Reason :: term().

Equivalent to discovery/6.

 discovery(TargetName, Notification, ContextName, Varbinds, DiscoHandler, ExtraInfo)

 -spec discovery(TargetName, Notification, ContextName, Varbinds, DiscoHandler, ExtraInfo) ->
 {ok, ManagerEngineID} | {error, Reason}
 when
 TargetName :: string(),
 Notification :: atom(),
 ContextName :: snmp_community_mib:context_name(),
 Varbinds :: [Varbind],
 Varbind :: {Variable, Value} | {Column, RowIndex, Value} | {OID, Value},
 Variable :: atom(),
 Column :: atom(),
 RowIndex :: snmp:row_index(),
 OID :: snmp:oid(),
 Value :: term(),
 DiscoHandler :: discovery_handler(),
 ExtraInfo :: term(),
 ManagerEngineID :: snmp_framework_mib:engine_id(),
 Reason :: term().

Initiate the discovery process with the manager identified by TargetName using
the notification Notification.
This function is synchronous, which means that it will return when the discovery
process has been completed or failed.
The DiscoHandler module is used during the discovery process. See
discovery handler for more info.
The ExtraInfo argument is passed on to the callback functions of the
DiscoHandler.
Note
If we are not at security-level noAuthNoPriv, this could be complicated,
since the agent will then continue with stage 2, before which the usm-related
updates must be done.
Note
The default discovery handler will require additional actions by the caller
and the discovery will not work if the security-level is higher then
noAuthNoPriv.

 enable_mibs_cache()

 -spec enable_mibs_cache() -> snmp:void().

Equivalent to enable_mibs_cache/1.

 enable_mibs_cache(Agent)

 -spec enable_mibs_cache(Agent) -> snmp:void() when Agent :: pid() | AgentName, AgentName :: atom().

Enable the mib server cache.

 enable_mibs_cache_autogc()

 -spec enable_mibs_cache_autogc() -> snmp:void().

Equivalent to enable_mibs_cache_autogc/1.

 enable_mibs_cache_autogc(Agent)

 -spec enable_mibs_cache_autogc(Agent) -> snmp:void()
 when Agent :: pid() | AgentName, AgentName :: atom().

Enable automatic gc of the mib server cache.

 enum_to_int(Name, Enum)

 -spec enum_to_int(Name, Enum) -> {value, Int} | false
 when Name :: atom(), Enum :: atom(), Int :: integer().

Equivalent to enum_to_int/3.

 enum_to_int(Db, Name, Enum)

 -spec enum_to_int(Db, Name, Enum) -> {value, Int} | false
 when Db :: term(), Name :: atom(), Enum :: atom(), Int :: integer().

Converts the symbolic value Enum to the corresponding integer of the
enumerated object or type Name in a MIB. The MIB must be loaded.
false is returned if the object or type is not defined in any loaded MIB, or
if it does not define the symbolic value as enumerated.
Db is a reference to the symbolic store database (retrieved by a call to
get_symbolic_store_db/0).

 gc_mibs_cache()

 -spec gc_mibs_cache() -> {ok, NumElementsGCed} | {error, Reason}
 when NumElementsGCed :: non_neg_integer(), Reason :: term().

Equivalent to gc_mibs_cache/3.

 gc_mibs_cache/1

 -spec gc_mibs_cache(Agent) -> {ok, NumElementsGCed} | {error, Reason}
 when
 Agent :: pid() | AgentName,
 AgentName :: atom(),
 NumElementsGCed :: non_neg_integer(),
 Reason :: term();
 (Age) -> {ok, NumElementsGCed} | {error, Reason}
 when Age :: pos_integer(), NumElementsGCed :: non_neg_integer(), Reason :: term().

Equivalent to gc_mibs_cache/3.

 gc_mibs_cache/2

 -spec gc_mibs_cache(Agent, Age) -> {ok, NumElementsGCed} | {error, Reason}
 when
 Agent :: pid() | AgentName,
 AgentName :: atom(),
 Age :: pos_integer(),
 NumElementsGCed :: non_neg_integer(),
 Reason :: term();
 (Age, GcLimit) -> {ok, NumElementsGCed} | {error, Reason}
 when
 Age :: pos_integer(),
 GcLimit :: pos_integer() | infinity,
 NumElementsGCed :: non_neg_integer(),
 Reason :: term().

Equivalent to gc_mibs_cache/3.

 gc_mibs_cache(Agent, Age, GcLimit)

 -spec gc_mibs_cache(Agent, Age, GcLimit) -> {ok, NumElementsGCed} | {error, Reason}
 when
 Agent :: pid() | AgentName,
 AgentName :: atom(),
 Age :: pos_integer(),
 GcLimit :: pos_integer() | infinity,
 NumElementsGCed :: non_neg_integer(),
 Reason :: term().

Perform mib server cache gc.
Manually performs a mib server cache gc. This can be done regardless of the
value of the autogc option. The NumElementsGCed value indicates how many
elements where actually removed from the cache.

 get(Agent, Vars)

 -spec get(Agent, Vars) -> Values | {error, Reason}
 when
 Agent :: pid() | AgentName,
 AgentName :: atom(),
 Vars :: [snmp:oid()],
 Values :: [term()],
 Reason :: term().

Equivalent to get/3.

 get(Agent, Vars, Context)

 -spec get(Agent, Vars, Context) -> Values | {error, Reason}
 when
 Agent :: pid() | AgentName,
 AgentName :: atom(),
 Vars :: [snmp:oid()],
 Context :: snmp_community_mib:context_name(),
 Values :: [term()],
 Reason :: term().

Performs a GET operation on the agent. All loaded MIB objects are visible in
this operation. The agent calls the corresponding instrumentation functions just
as if it was a GET request coming from a manager.
Note that the request specific parameters (such as
current_request_id/0) are not accessible for the
instrumentation functions if this function is used.

 get_agent_caps()

 -spec get_agent_caps() -> Caps
 when
 Caps :: [[Cap]],
 Cap :: SysORIndex | SysORID | SysORDescr | SysORUpTime,
 SysORIndex :: integer(),
 SysORID :: snmp:oid(),
 SysORDescr :: string(),
 SysORUpTime :: integer().

Returns all AGENT-CAPABILITY statements in the sysORTable in the agent. This
table is defined in the SNMPv2-MIB.
Note that the Erlang type language do not permit us to properly describe what
this function returns. The exact return is:
[[SysORIndex, SysORID, SysORDescr, SysORUpTime]]

 get_next(Agent, Vars)

 -spec get_next(Agent, Vars) -> Values | {error, Reason}
 when
 Agent :: pid() | AgentName,
 AgentName :: atom(),
 Vars :: [snmp:oid()],
 Values :: [{snmp:oid(), term()}],
 Reason :: term().

Equivalent to get_next/3.

 get_next(Agent, Vars, Context)

 -spec get_next(Agent, Vars, Context) -> Values | {error, Reason}
 when
 Agent :: pid() | AgentName,
 AgentName :: atom(),
 Vars :: [snmp:oid()],
 Context :: snmp_community_mib:context_name(),
 Values :: [{snmp:oid(), term()}],
 Reason :: {atom(), snmp:oid()}.

Performs a GET-NEXT operation on the agent. All loaded MIB objects are visible
in this operation. The agent calls the corresponding instrumentation functions
just as if it was a GET request coming from a manager.
Note that the request specific parameters (such as snmpa:current_request_id/0
are not accessible for the instrumentation functions if this function is used.

 info()

 -spec info() -> Info when Info :: [{Key, Value}], Key :: term(), Value :: term().

Equivalent to info/1.

 info(Agent)

 -spec info(Agent) -> Info
 when
 Agent :: pid() | AgentName,
 AgentName :: atom(),
 Info :: [{Key, Value}],
 Key :: term(),
 Value :: term().

Returns a list (a dictionary) containing information about the agent.
Information includes loaded MIBs, registered sub-agents, some information about
the memory allocation.

 int_to_enum(Name, Int)

 -spec int_to_enum(Name, Int) -> {value, Enum} | false
 when Name :: atom(), Int :: integer(), Enum :: atom().

Equivalent to int_to_enum/3.

 int_to_enum(Db, Name, Int)

 -spec int_to_enum(Db, Name, Int) -> {value, Enum} | false
 when Db :: term(), Name :: atom(), Int :: integer(), Enum :: atom().

Converts the integer Int to the corresponding symbolic value of the enumerated
object or type Name in a MIB. The MIB must be loaded.
false is returned if the object or type is not defined in any loaded MIB, or
if it does not define the symbolic value as enumerated.
Db is a reference to the symbolic store database (retrieved by a call to
get_symbolic_store_db/0).

 invalidate_mibs_cache()

 -spec invalidate_mibs_cache() -> snmp:void().

Equivalent to invalidate_mibs_cache/1.

 invalidate_mibs_cache(Agent)

 -spec invalidate_mibs_cache(Agent) -> snmp:void() when Agent :: pid() | AgentName, AgentName :: atom().

Invalidate the mib server cache.
The entire contents of the cache will be deleted.

 load_mib(Mib)

 (since OTP R16B02)

 -spec load_mib(Mib) -> ok | {error, Reason} when Mib :: string(), Reason :: already_loaded | term().

Equivalent to load_mib/2.

 load_mib(Agent, Mib)

 (since OTP R16B02)

 -spec load_mib(Agent, Mib) -> ok | {error, Reason}
 when
 Agent :: pid() | AgentName,
 AgentName :: atom(),
 Mib :: string(),
 Reason :: already_loaded | term().

Load a single Mib into an agent. The MibName is the name of the Mib,
including the path to where the compiled mib is found. For example:
 Dir = code:priv_dir(my_app) ++ "/mibs/",
 snmpa:load_mib(snmp_master_agent, Dir ++ "MY-MIB").

 load_mibs(Mibs)

 -spec load_mibs(Mibs) -> ok | {error, Reason}
 when
 Mibs :: [MibName],
 MibName :: string(),
 Reason :: {'load aborted at', MibName, InternalReason},
 InternalReason :: already_loaded | term().

Equivalent to load_mibs/3.

 load_mibs/2

 -spec load_mibs(Agent, Mibs) -> ok | {error, Reason}
 when
 Agent :: pid() | AgentName,
 AgentName :: atom(),
 Mibs :: [MibName],
 MibName :: string(),
 Reason :: {'load aborted at', MibName, InternalReason},
 InternalReason :: already_loaded | term();
 (Mibs, Force) -> ok | {error, Reason}
 when
 Mibs :: [MibName],
 MibName :: string(),
 Force :: boolean(),
 Reason :: {'load aborted at', MibName, InternalReason},
 InternalReason :: already_loaded | term().

Equivalent to load_mibs/3.

 load_mibs(Agent, Mibs, Force)

 (since OTP R16B02)

 -spec load_mibs(Agent, Mibs, Force) -> ok | {error, Reason}
 when
 Agent :: pid() | AgentName,
 AgentName :: atom(),
 Mibs :: [MibName],
 MibName :: string(),
 Force :: boolean(),
 Reason :: {'load aborted at', MibName, InternalReason},
 InternalReason :: already_loaded | term().

Load Mibs into an agent. If the agent cannot load all MIBs (the default value
of the Force argument is false), it will indicate where loading was aborted.
The MibName is the name of the Mib, including the path to where the compiled
mib is found. For example,
 Dir = code:priv_dir(my_app) ++ "/mibs/",
 snmpa:load_mibs(snmp_master_agent, [Dir ++ "MY-MIB"]).
If Force = true then the agent will continue attempting to load each mib even
after failing to load a previous mib. Use with care.

 log_to_io(LogDir)

 (since OTP R15B01)

 -spec log_to_io(LogDir) -> ok | {ok, Cnt} | {error, Reason}
 when
 LogDir :: string(),
 Cnt :: {NumOK, NumERR},
 NumOK :: non_neg_integer(),
 NumERR :: pos_integer(),
 Reason :: term().

Equivalent to log_to_io/7.

 log_to_io/2

 (since OTP R15B01)

 -spec log_to_io(LogDir, Block) -> ok | {ok, Cnt} | {error, Reason}
 when
 LogDir :: string(),
 Block :: boolean(),
 Cnt :: {NumOK, NumERR},
 NumOK :: non_neg_integer(),
 NumERR :: pos_integer(),
 Reason :: term();
 (LogDir, Mibs) -> ok | {ok, Cnt} | {error, Reason}
 when
 LogDir :: string(),
 Mibs :: [snmp:mib_name()],
 Cnt :: {NumOK, NumERR},
 NumOK :: non_neg_integer(),
 NumERR :: pos_integer(),
 Reason :: term().

Equivalent to log_to_io/7.

 log_to_io/3

 (since OTP R15B01)

 -spec log_to_io(LogDir, Mibs, Block) -> ok | {ok, Cnt} | {error, Reason}
 when
 LogDir :: string(),
 Mibs :: [snmp:mib_name()],
 Block :: boolean(),
 Cnt :: {NumOK, NumERR},
 NumOK :: non_neg_integer(),
 NumERR :: pos_integer(),
 Reason :: term();
 (LogDir, Mibs, LogName) -> ok | {ok, Cnt} | {error, Reason}
 when
 LogDir :: string(),
 Mibs :: [snmp:mib_name()],
 LogName :: string(),
 Cnt :: {NumOK, NumERR},
 NumOK :: non_neg_integer(),
 NumERR :: pos_integer(),
 Reason :: term().

Equivalent to log_to_io/7.

 log_to_io/4

 (since OTP R15B01)

 -spec log_to_io(LogDir, Mibs, LogName, Block) -> ok | {ok, Cnt} | {error, Reason}
 when
 LogDir :: string(),
 Mibs :: [snmp:mib_name()],
 LogName :: string(),
 Block :: boolean(),
 Cnt :: {NumOK, NumERR},
 NumOK :: non_neg_integer(),
 NumERR :: pos_integer(),
 Reason :: term();
 (LogDir, Mibs, LogName, LogFile) -> ok | {ok, Cnt} | {error, Reason}
 when
 LogDir :: string(),
 Mibs :: [snmp:mib_name()],
 LogName :: string(),
 LogFile :: string(),
 Cnt :: {NumOK, NumERR},
 NumOK :: non_neg_integer(),
 NumERR :: pos_integer(),
 Reason :: term().

Equivalent to log_to_io/7.

 log_to_io/5

 (since OTP R15B01)

 -spec log_to_io(LogDir, Mibs, LogName, LogFile, Block) -> ok | {ok, Cnt} | {error, Reason}
 when
 LogDir :: string(),
 Mibs :: [snmp:mib_name()],
 LogName :: string(),
 LogFile :: string(),
 Block :: boolean(),
 Cnt :: {NumOK, NumERR},
 NumOK :: non_neg_integer(),
 NumERR :: pos_integer(),
 Reason :: term();
 (LogDir, Mibs, LogName, LogFile, Start) -> ok | {ok, Cnt} | {error, Reason}
 when
 LogDir :: string(),
 Mibs :: [snmp:mib_name()],
 LogName :: string(),
 LogFile :: string(),
 Start :: null | snmp:log_time(),
 Cnt :: {NumOK, NumERR},
 NumOK :: non_neg_integer(),
 NumERR :: pos_integer(),
 Reason :: term().

Equivalent to log_to_io/7.

 log_to_io/6

 (since OTP R15B01)

 -spec log_to_io(LogDir, Mibs, LogName, LogFile, Block, Start) -> ok | {ok, Cnt} | {error, Reason}
 when
 LogDir :: string(),
 Mibs :: [snmp:mib_name()],
 LogName :: string(),
 LogFile :: string(),
 Block :: boolean(),
 Start :: null | snmp:log_time(),
 Cnt :: {NumOK, NumERR},
 NumOK :: non_neg_integer(),
 NumERR :: pos_integer(),
 Reason :: term();
 (LogDir, Mibs, LogName, LogFile, Start, Stop) -> ok | {ok, Cnt} | {error, Reason}
 when
 LogDir :: string(),
 Mibs :: [snmp:mib_name()],
 LogName :: string(),
 LogFile :: string(),
 Start :: null | snmp:log_time(),
 Stop :: null | snmp:log_time(),
 Cnt :: {NumOK, NumERR},
 NumOK :: non_neg_integer(),
 NumERR :: pos_integer(),
 Reason :: term().

Equivalent to log_to_io/7.

 log_to_io(LogDir, Mibs, LogName, LogFile, Block, Start, Stop)

 (since OTP R16B03)

 -spec log_to_io(LogDir, Mibs, LogName, LogFile, Block, Start, Stop) -> ok | {ok, Cnt} | {error, Reason}
 when
 LogDir :: string(),
 Mibs :: [snmp:mib_name()],
 LogName :: string(),
 LogFile :: string(),
 Block :: boolean(),
 Start :: null | snmp:log_time(),
 Stop :: null | snmp:log_time(),
 Cnt :: {NumOK, NumERR},
 NumOK :: non_neg_integer(),
 NumERR :: pos_integer(),
 Reason :: term().

Converts an Audit Trail Log to a readable format and prints it on stdio.
LogName defaults to "snmpa_log". LogFile defaults to "snmpa.log".
The Block option indicates if the log should be blocked during conversion.
This could be useful when converting large logs (when otherwise the log could
wrap during conversion). Defaults to true.
See snmp:log_to_io/7 for more info.

 log_to_txt(LogDir)

 (since OTP R15B01)

 -spec log_to_txt(LogDir) -> snmp:void() when LogDir :: snmp:dir().

Equivalent to log_to_txt/8.

 log_to_txt/2

 -spec log_to_txt(LogDir, Block) -> snmp:void() when LogDir :: snmp:dir(), Block :: boolean();
 (LogDir, Mibs) -> snmp:void() when LogDir :: snmp:dir(), Mibs :: [snmp:mib_name()].

Equivalent to log_to_txt/8.

 log_to_txt/3

 -spec log_to_txt(LogDir, Mibs, Block) -> snmp:void()
 when LogDir :: snmp:dir(), Mibs :: [snmp:mib_name()], Block :: boolean();
 (LogDir, Mibs, OutFile) -> snmp:void()
 when LogDir :: snmp:dir(), Mibs :: [snmp:mib_name()], OutFile :: file:filename().

Equivalent to log_to_txt/8.

 log_to_txt/4

 -spec log_to_txt(LogDir, Mibs, OutFile, Block) -> snmp:void()
 when
 LogDir :: snmp:dir(),
 Mibs :: [snmp:mib_name()],
 OutFile :: file:filename(),
 Block :: boolean();
 (LogDir, Mibs, OutFile, LogName) -> snmp:void()
 when
 LogDir :: snmp:dir(),
 Mibs :: [snmp:mib_name()],
 OutFile :: file:filename(),
 LogName :: string().

Equivalent to log_to_txt/8.

 log_to_txt/5

 -spec log_to_txt(LogDir, Mibs, OutFile, LogName, Block) -> snmp:void()
 when
 LogDir :: snmp:dir(),
 Mibs :: [snmp:mib_name()],
 OutFile :: file:filename(),
 LogName :: string(),
 Block :: boolean();
 (LogDir, Mibs, OutFile, LogName, LogFile) -> snmp:void()
 when
 LogDir :: snmp:dir(),
 Mibs :: [snmp:mib_name()],
 OutFile :: file:filename(),
 LogName :: string(),
 LogFile :: string().

Equivalent to log_to_txt/8.

 log_to_txt/6

 -spec log_to_txt(LogDir, Mibs, OutFile, LogName, LogFile, Block | Start) -> snmp:void()
 when
 LogDir :: snmp:dir(),
 Mibs :: [snmp:mib_name()],
 OutFile :: file:filename(),
 LogName :: string(),
 LogFile :: string(),
 Block :: boolean(),
 Start :: null | snmp:log_time().

Equivalent to log_to_txt/8.

 log_to_txt/7

 -spec log_to_txt(LogDir, Mibs, OutFile, LogName, LogFile, Block, Start) -> snmp:void()
 when
 LogDir :: snmp:dir(),
 Mibs :: [snmp:mib_name()],
 OutFile :: file:filename(),
 LogName :: string(),
 LogFile :: string(),
 Block :: boolean(),
 Start :: null | snmp:log_time();
 (LogDir, Mibs, OutFile, LogName, LogFile, Start, Stop) -> snmp:void()
 when
 LogDir :: snmp:dir(),
 Mibs :: [snmp:mib_name()],
 OutFile :: file:filename(),
 LogName :: string(),
 LogFile :: string(),
 Start :: null | snmp:log_time(),
 Stop :: null | snmp:log_time().

Equivalent to log_to_txt/8.

 log_to_txt(LogDir, Mibs, OutFile, LogName, LogFile, Block, Start, Stop)

 (since OTP R16B03)

 -spec log_to_txt(LogDir, Mibs, OutFile, LogName, LogFile, Block, Start, Stop) -> snmp:void()
 when
 LogDir :: snmp:dir(),
 Mibs :: [snmp:mib_name()],
 OutFile :: file:filename(),
 LogName :: string(),
 LogFile :: string(),
 Block :: boolean(),
 Start :: null | snmp:log_time(),
 Stop :: null | snmp:log_time().

Converts an Audit Trail Log to a readable text file. OutFile defaults to
"./snmpa_log.txt". LogName defaults to "snmpa_log". LogFile defaults to
"snmpa.log".
The Block option indicates if the log should be blocked during conversion.
This could be useful when converting large logs (when otherwise the log could
wrap during conversion). Defaults to true.
See snmp:log_to_txt/8 for more info.

 me_of(Oid)

 -spec me_of(Oid) -> {ok, Me} | {error, Reason} when Oid :: snmp:oid(), Me :: snmp:me(), Reason :: term().

Equivalent to me_of/2.

 me_of(Agent, Oid)

 -spec me_of(Agent, Oid) -> {ok, Me} | {error, Reason}
 when
 Agent :: pid() | AgentName,
 AgentName :: atom(),
 Oid :: snmp:oid(),
 Me :: snmp:me(),
 Reason :: term().

Finds the mib entry corresponding to the Oid.
If it is a variable, the Oid must be <Oid for var>.0 and if it is a table, Oid
must be <table>.<entry>.<col>.<any>

 mib_of(Oid)

 -spec mib_of(Oid) -> {ok, MibName} | {error, Reason}
 when Oid :: snmp:oid(), MibName :: atom(), Reason :: term().

Equivalent to mib_of/2.

 mib_of(Agent, Oid)

 -spec mib_of(Agent, Oid) -> {ok, MibName} | {error, Reason}
 when
 Agent :: pid() | AgentName,
 AgentName :: atom(),
 Oid :: snmp:oid(),
 MibName :: atom(),
 Reason :: term().

Finds the mib corresponding to the Oid.
If it is a variable, the Oid must be <Oid for var>.0 and if it is a table, Oid
must be <table>.<entry>.<col>.<any>.

 name_to_oid(Name)

 -spec name_to_oid(Name) -> {value, Oid} | false when Name :: atom(), Oid :: snmp:oid().

Equivalent to name_to_oid/2.

 name_to_oid(Db, Name)

 -spec name_to_oid(Db, Name) -> {value, Oid} | false when Db :: term(), Name :: atom(), Oid :: snmp:oid().

Looks up the OBJECT IDENTIFIER of a MIB object, given the symbolic name. Note,
the OBJECT IDENTIFIER is given for the object, not for an instance.
false is returned if the object is not defined in any loaded MIB.
Db is a reference to the symbolic store database (retrieved by a call to
get_symbolic_store_db/0).

 oid_to_name(Oid)

 -spec oid_to_name(Oid) -> {value, Name} | false when Oid :: snmp:oid(), Name :: atom().

Equivalent to oid_to_name/2.

 oid_to_name(Db, Oid)

 -spec oid_to_name(Db, Oid) -> {value, Name} | false when Db :: term(), Oid :: snmp:oid(), Name :: atom().

Looks up the symbolic name of a MIB object, given OBJECT IDENTIFIER.
false is returned if the object is not defined in any loaded MIB.
Db is a reference to the symbolic store database (retrieved by a call to
get_symbolic_store_db/0).

 print_mib_info()

 (since OTP R14B02)

 -spec print_mib_info() -> snmp:void().

Prints the content of all the (snmp) tables and variables for all mibs handled
by the snmp agent.

 print_mib_tables()

 (since OTP R14B02)

 -spec print_mib_tables() -> snmp:void().

Prints the content of all the (snmp) tables for all mibs handled by the snmp
agent.

 print_mib_variables()

 (since OTP R14B02)

 -spec print_mib_variables() -> snmp:void().

Prints the content of all the (snmp) variables for all mibs handled by the snmp
agent.

 register_notification_filter(Id, Mod, Data)

 -spec register_notification_filter(Id, Mod, Data) -> ok | {error, Reason}
 when
 Id :: nfilter_id(),
 Mod :: module(),
 Data :: term(),
 Reason :: term().

Equivalent to register_notification_filter/5.

 register_notification_filter/4

 -spec register_notification_filter(Agent | Id, Id | Mod, Mod | Data, Data | Where) ->
 ok | {error, Reason}
 when
 Agent :: pid() | AgentName,
 AgentName :: atom(),
 Id :: nfilter_id(),
 Mod :: module(),
 Data :: term(),
 Where :: nfilter_position(),
 Reason :: term().

Accepted type specifications are:
-spec register_notification_filter(Agent, Id, Mod, Data) -> ok | {error, Reason}.
-spec register_notification_filter(Id, Mod, Data, Where) -> ok | {error, Reason}.

 register_notification_filter(Agent, Id, Mod, Data, Where)

 -spec register_notification_filter(Agent, Id, Mod, Data, Where) -> ok | {error, Reason}
 when
 Agent :: pid() | AgentName,
 AgentName :: atom(),
 Id :: nfilter_id(),
 Mod :: module(),
 Data :: term(),
 Where :: nfilter_position(),
 Reason :: term().

Registers a notification filter.
Mod is a module implementing the snmpa_notification_filter behaviour.
Data will be passed on to the filter when calling the functions of the
behaviour.

 register_subagent(Agent, SubTree, SubAgent)

 -spec register_subagent(Agent, SubTree, SubAgent) -> ok | {error, Reason}
 when
 Agent :: pid() | AgentName,
 AgentName :: atom(),
 SubTree :: snmp:oid(),
 SubAgent :: pid(),
 Reason :: term().

Registers a sub-agent under a sub-tree of another agent.
It is easy to make mistakes when registering sub-agents and this activity should
be done carefully. For example, a strange behaviour would result from the
following configuration:
snmp_agent:register_subagent(MAPid,[1,2,3,4],SA1),
snmp_agent:register_subagent(SA1,[1,2,3], SA2).
SA2 will not get requests starting with object identifier [1,2,3] since
SA1 does not.

 restart_set_worker()

 -spec restart_set_worker() -> snmp:void().

Equivalent to restart_set_worker/1.

 restart_set_worker(Agent)

 -spec restart_set_worker(Agent) -> snmp:void() when Agent :: pid | AgentName, AgentName :: atom().

Restart the set worker process of a multi-threaded agent.
This is a utility function, that can be useful when e.g. debugging
instrumentation functions.

 restart_worker()

 -spec restart_worker() -> snmp:void().

Equivalent to restart_worker/1.

 restart_worker(Agent)

 -spec restart_worker(Agent) -> snmp:void() when Agent :: pid | AgentName, AgentName :: atom().

Restart the worker process of a multi-threaded agent.
This is a utility function, that can be useful when e.g. debugging
instrumentation functions.

 send_notification2(Agent, Notification, SendOpts)

 (since OTP R14B03)

 -spec send_notification2(Agent, Notification, SendOpts) -> snmp:void()
 when
 Agent :: pid() | AgentName,
 AgentName :: atom(),
 Notification :: atom(),
 SendOpts :: [SendOpt],
 SendOpt ::
 {receiver, Receiver} |
 {name, snmp_notification_mib:notify_name()} |
 {context, snmp_community_mib:context_name()} |
 {varbinds, [Varbind]} |
 {local_engine_id, snmp_framework_mib:engine_id()} |
 {extra, term()},
 Receiver :: no_receiver | {Tag, Recv} | notification_delivery_info(),
 Tag :: term(),
 Recv :: pid() | atom() | MFA,
 MFA :: {Mod, Func, Args},
 Mod :: module(),
 Func :: atom(),
 Args :: list(),
 Varbind :: {Variable, Value} | {Column, RowIndex, Value} | {Oid, Value},
 Variable :: atom(),
 Column :: atom(),
 RowIndex :: snmp:row_index(),
 Oid :: snmp:oid(),
 Value :: term().

Send the notification Notification to the management targets defined for
notify-name (name) in the snmpNotifyTable in SNMP-NOTIFICATION-MIB from the
specified context.
If no name is specified (or if it is ""), the notification is sent to all
management targets.
If no context is specified, the default context, "", is used.
The send option receiver specifies where information about delivery of
Inform-Requests should be sent. The agent sends Inform-Requests and waits for
acknowledgments from the management targets. The receiver can have three
values:
	no_receiver - No information is delivered.

	notification_delivery_info/0 - The information is delivered via a
function call according to this data.

	{tag(), tag_receiver()} - The information is delivered either via messages
or via a function call according to the value of tag_receiver().
Delivery is done differently depending on the value of tag_receiver():
	pid() | registered_name() - The info will be delivered in the following
messages:
	{snmp_targets, tag(), Addresses}
This informs the user which target addresses the notification was sent to.

	{snmp_notification, tag(), {got_response, Address}}
This informs the user that this target address acknowledged the
notification.

	{snmp_notification, tag(), {no_response, Address}}
This informs the user that this target address did not acknowledge the
notification.

The notification is sent as an Inform-Request to each target address in
Addresses and if there are no targets for which an Inform-Request is sent,
Addresses is the empty list [].
The tag_receiver() will first be sent the snmp_targets message, and then
for each address in Addresses list, one of the two snmp_notification
messages.

	{Mod, Func, Args} - The info will be delivered via the function call:
Mod:Func([Msg | Args])
where Msg has the same content and purpose as the messages descrived
above.

The 'process oid' "tag" that can be provided with the variable name / oids is
intended to be used for oid post processing. The value 'keep', which is the
default, leaves the oid as is. The value 'truncate', will cause the oid to be
"truncated". That is, any trailing ".0" will be removed.
Note
There is a way to exclude a varbind from the notification. In the normal
varbinds list, providing the special value '$ignore-oid' (instead of a
normal value) will exclude this varbind from the notification.
A define for this has been added to the snmp_types.hrl include file,
NOTIFICATION_IGNORE_VB_VALUE.
Note
The extra info is not normally interpreted by the agent, instead it is
passed through to the net-if process. It is up to the
implementor of that process to make use of this data.
The version of net-if provided by this application makes no use of this data,
with one exception: Any tuple containing the atom
snmpa_default_notification_extra_info may be used by the agent and is
therefore reserved.
See the net-if incoming messages for sending a
trap and
notification for more info.

 send_notification(Agent, Notification, Receiver)

 -spec send_notification(Agent, Notification, Receiver) -> snmp:void()
 when
 Agent :: pid() | AgentName,
 AgentName :: atom(),
 Notification :: atom(),
 Receiver :: no_receiver | {Tag, Recv} | notification_delivery_info(),
 Tag :: term(),
 Recv :: pid() | atom() | MFA,
 MFA :: {Mod, Func, Args},
 Mod :: module(),
 Func :: atom(),
 Args :: list().

Equivalent to send_notification/7.

 send_notification(Agent, Notification, Receiver, Varbinds)

 -spec send_notification(Agent, Notification, Receiver, Varbinds) -> snmp:void()
 when
 Agent :: pid() | AgentName,
 AgentName :: atom(),
 Notification :: atom(),
 Receiver :: no_receiver | {Tag, Recv} | notification_delivery_info(),
 Tag :: term(),
 Recv :: pid() | atom() | MFA,
 MFA :: {Mod, Func, Args},
 Mod :: module(),
 Func :: atom(),
 Args :: list(),
 Varbinds :: [Varbind],
 Varbind :: {Variable, Value} | {Column, RowIndex, Value} | {Oid, Value},
 Variable :: atom(),
 Column :: atom(),
 RowIndex :: snmp:row_index(),
 Oid :: snmp:oid(),
 Value :: term().

Equivalent to send_notification/7.

 send_notification(Agent, Notification, Receiver, NotifyName, Varbinds)

 -spec send_notification(Agent, Notification, Receiver, NotifyName, Varbinds) -> snmp:void()
 when
 Agent :: pid() | AgentName,
 AgentName :: atom(),
 Notification :: atom(),
 Receiver :: no_receiver | {Tag, Recv} | notification_delivery_info(),
 Tag :: term(),
 Recv :: pid() | atom() | MFA,
 MFA :: {Mod, Func, Args},
 Mod :: module(),
 Func :: atom(),
 Args :: list(),
 NotifyName :: snmp_notification_mib:notify_name(),
 Varbinds :: [Varbind],
 Varbind :: {Variable, Value} | {Column, RowIndex, Value} | {Oid, Value},
 Variable :: atom(),
 Column :: atom(),
 RowIndex :: snmp:row_index(),
 Oid :: snmp:oid(),
 Value :: term().

Equivalent to send_notification/7.

 send_notification(Agent, Notification, Receiver, NotifyName, ContextName, Varbinds)

 -spec send_notification(Agent, Notification, Receiver, NotifyName, ContextName, Varbinds) -> snmp:void()
 when
 Agent :: pid() | AgentName,
 AgentName :: atom(),
 Notification :: atom(),
 Receiver :: no_receiver | {Tag, Recv} | notification_delivery_info(),
 Tag :: term(),
 Recv :: pid() | atom() | MFA,
 MFA :: {Mod, Func, Args},
 Mod :: module(),
 Func :: atom(),
 Args :: list(),
 NotifyName :: snmp_notification_mib:notify_name(),
 ContextName :: snmp_community_mib:context_name(),
 Varbinds :: [Varbind],
 Varbind :: {Variable, Value} | {Column, RowIndex, Value} | {Oid, Value},
 Variable :: atom(),
 Column :: atom(),
 RowIndex :: snmp:row_index(),
 Oid :: snmp:oid(),
 Value :: term().

Equivalent to send_notification/7.

 send_notification(Agent, Notification, Receiver, NotifyName, ContextName, Varbinds, LocalEngineID)

 (since OTP R14B)

 -spec send_notification(Agent, Notification, Receiver, NotifyName, ContextName, Varbinds, LocalEngineID) ->
 snmp:void()
 when
 Agent :: pid() | AgentName,
 AgentName :: atom(),
 Notification :: atom(),
 Receiver :: no_receiver | {Tag, Recv} | notification_delivery_info(),
 Tag :: term(),
 Recv :: pid() | atom() | MFA,
 MFA :: {Mod, Func, Args},
 Mod :: module(),
 Func :: atom(),
 Args :: list(),
 NotifyName :: snmp_notification_mib:notify_name(),
 ContextName :: snmp_community_mib:context_name(),
 Varbinds :: [Varbind],
 Varbind :: {Variable, Value} | {Column, RowIndex, Value} | {Oid, Value},
 Variable :: atom(),
 Column :: atom(),
 RowIndex :: snmp:row_index(),
 Oid :: snmp:oid(),
 Value :: term(),
 LocalEngineID :: snmp_framework_mib:engine_id().

Sends the notification Notification to the management targets defined for
NotifyName in the snmpNotifyTable in SNMP-NOTIFICATION-MIB from the
specified context.
If no NotifyName is specified (or if it is ""), the notification is sent to
all management targets (Addresses below).
If no ContextName is specified, the default "" context is used.
The parameter Receiver specifies where information about delivery of
Inform-Requests should be sent. The agent sends Inform-Requests and waits for
acknowledgments from the managers. Receiver can have three values:
	no_receiver - No information is delivered.
	notification_delivery_info/0 - The information is delivered via a
function call according to this data.
	{Tag, Recv} - The information is delivered either via messages or via a
function call according to the value of Recv.

If Receiver has the value {Tag, Recv}, the delivery is done according to
Recv:
	pid() | atom() - The info will be delivered in the following messages:
	{snmp_targets, Tag, Addresses}
This inform the user which target addresses the notification was sent to.

	{snmp_notification, Tag, {got_response, Address}}
This informs the user that this target address acknowledged the
notification.

	{snmp_notification, Tag, {no_response, Address}}
This informs the user that this target address did not acknowledge
notification.

The notification is sent as an Inform-Request to each target address in
Addresses and if there are no targets for which an Inform-Request is sent,
Addresses is the empty list [].
The receiver will first be sent the snmp_targets message, and then for
each address in Addresses list, one of the two snmp_notification messages.

	{Mod, Func, Args} - The info will be delivered via the function call:
Mod:Func([Msg | Args])
where Msg has the same content and purpose as the messages descrived above.

Address is a management target address and Addresses is a list of management
target addresses. They are defined as followes:
 Addresses = [address()]
 Address = address()
 address() = v1_address() | v3_address()
 v1_address() = {TDomain, TAddress}
 v3_address() = {{TDomain, TAddress}, V3MsgData}
 TDomain = tdoamin()
 TAddress = taddress()
 tdomain() = The oid of snmpUDPDomain
 This is the only supported transport domain.
 taddress() = [A1, A2, A3, A4, P1, P3]
 The 4 first bytes makes up the IP-address and the last 2,
 the UDP-port number.
 V3MsgData = v3_msg_data()
 v3_msg_data() = term()
If Receiver is a notification_delivery_info/0 record, then the information
about the notification delivery will be delivered to the receiver via the
callback functions defined by the snmpa_notification_delivery_info_receiver
behaviour according to the content of the notification_delivery_info/0
record.
The optional argument Varbinds defines values for the objects in the
notification. If no value is given for an object, the Agent performs a
get-operation to retrieve the value.
Varbinds is a list of Varbind, where each Varbind is one of:
	{Variable, Value}, where Variable is the symbolic name of a scalar
variable referred to in the notification specification.
	{Column, RowIndex, Value}, where Column is the symbolic name of a column
variable. RowIndex is a list of indices for the specified element. If this
is the case, the OBJECT IDENTIFIER sent in the notification is the RowIndex
appended to the OBJECT IDENTIFIER for the table column. This is the OBJECT
IDENTIFIER which specifies the element.
	{OID, Value}, where OID is the OBJECT IDENTIFIER for an instance of an
object, scalar variable, or column variable.

For example, to specify that sysLocation should have the value "upstairs" in
the notification, we could use one of:
	{sysLocation, "upstairs"} or
	{[1,3,6,1,2,1,1,6,0], "upstairs"} or
	{?sysLocation_instance, "upstairs"} (provided that the generated .hrl file
is included)

If a variable in the notification is a table element, the RowIndex for the
element must be given in the Varbinds list. In this case, the OBJECT
IDENTIFIER sent in the notification is the OBJECT IDENTIFIER that identifies
this element. This OBJECT IDENTIFIER could be used in a get operation later.
This function is asynchronous, and does not return any information. If an error
occurs, user_err/2 of the error report module is called and the notification
is discarded.
Note
Note that the use of the LocalEngineID argument is only intended for special
cases, if the agent is to "emulate" multiple EngineIDs! By default, the agent
uses the value of SnmpEngineID (see SNMP-FRAMEWORK-MIB).
ExtraInfo is not normally used in any way by the agent. It is intended to be
passed along to the net-if process, which is a component that a user can
implement themself. The users own net-if may then make use of ExtraInfo. The
net-if provided with this application does not process ExtraInfo.
There is one exception. Any tuple containing the atom
snmpa_default_notification_extra_info will, in this context, be considered
belonging to this application, and may be processed by the agent.

 set_log_type(NewType)

 -spec set_log_type(NewType) -> {ok, OldType} | {error, Reason}
 when NewType :: snmp:atl_type(), OldType :: snmp:atl_type(), Reason :: term().

Equivalent to set_log_type/2.

 set_log_type(Agent, NewType)

 -spec set_log_type(Agent, NewType) -> {ok, OldType} | {error, Reason}
 when
 Agent :: pid() | AgentName,
 AgentName :: atom(),
 NewType :: snmp:atl_type(),
 OldType :: snmp:atl_type(),
 Reason :: term().

Changes the run-time Audit Trail log type.
Note that this has no effect on the application configuration as defined by
configuration files, so a node restart will revert the config to whatever is in
those files.
This function is primarily useful in testing/debugging scenarios.

 set_request_limit(NewLimit)

 -spec set_request_limit(NewLimit) -> {ok, OldLimit} | {error, Reason}
 when
 NewLimit :: infinity | non_neg_integer(),
 OldLimit :: infinity | non_neg_integer(),
 Reason :: term().

Equivalent to set_request_limit/2.

 set_request_limit(Agent, NewLimit)

 -spec set_request_limit(Agent, NewLimit) -> {ok, OldLimit} | {error, Reason}
 when
 Agent :: pid() | AgentName,
 AgentName :: atom(),
 NewLimit :: infinity | non_neg_integer(),
 OldLimit :: infinity | non_neg_integer(),
 Reason :: term().

Changes the request limit.
Note that this has no effect on the application configuration as defined by
configuration files, so a node restart will revert the config to whatever is in
those files.
This function is primarily useful in load regulation scenarios.

 unload_mib(Mib)

 (since OTP R16B02)

 -spec unload_mib(Mib) -> ok | {error, Reason} when Mib :: string(), Reason :: not_loaded | term().

Equivalent to unload_mib/2.

 unload_mib(Agent, Mib)

 (since OTP R16B02)

 -spec unload_mib(Agent, Mib) -> ok | {error, Reason}
 when
 Agent :: pid() | AgentName,
 AgentName :: atom(),
 Mib :: string(),
 Reason :: not_loaded | term().

Unload a single Mib from an agent.

 unload_mibs(Mibs)

 -spec unload_mibs(Mibs) -> ok | {error, Reason}
 when
 Mibs :: [MibName],
 MibName :: string(),
 Reason :: {'unload aborted at', MibName, InternalReason},
 InternalReason :: not_loaded | term().

Equivalent to unload_mibs/3.

 unload_mibs/2

 -spec unload_mibs(Agent, Mibs) -> ok | {error, Reason}
 when
 Agent :: pid() | AgentName,
 AgentName :: atom(),
 Mibs :: [MibName],
 MibName :: string(),
 Reason :: {'unload aborted at', MibName, InternalReason},
 InternalReason :: not_loaded | term();
 (Mibs, Force) -> ok | {error, Reason}
 when
 Mibs :: [MibName],
 MibName :: string(),
 Force :: boolean(),
 Reason :: {'unload aborted at', MibName, InternalReason},
 InternalReason :: not_loaded | term().

Equivalent to unload_mibs/3.

 unload_mibs(Agent, Mibs, Force)

 (since OTP R16B02)

 -spec unload_mibs(Agent, Mibs, Force) -> ok | {error, Reason}
 when
 Agent :: pid() | AgentName,
 AgentName :: atom(),
 Mibs :: [MibName],
 MibName :: string(),
 Force :: boolean(),
 Reason :: {'unload aborted at', MibName, InternalReason},
 InternalReason :: not_loaded | term().

Unload Mibs from an agent. If it cannot unload all MIBs (the default value of
the Force argument is false), it will indicate where unloading was aborted.
If Force = true then the agent will continue attempting to unload each mib
even after failing to unload a previous mib. Use with care.

 unregister_notification_filter(Id)

 -spec unregister_notification_filter(Id) -> ok | {error, Reason}
 when Id :: nfilter_id(), Reason :: term().

Equivalent to unregister_notification_filter/2.

 unregister_notification_filter(Agent, Id)

 -spec unregister_notification_filter(Agent, Id) -> ok | {error, Reason}
 when
 Agent :: pid() | AgentName,
 AgentName :: atom(),
 Id :: nfilter_id(),
 Reason :: term().

Unregister a notification filter.

 unregister_subagent(Agent, SubAgentOidOrPid)

 -spec unregister_subagent(Agent, SubAgentOidOrPid) -> ok | {error, Reason}
 when
 Agent :: pid() | AgentName,
 AgentName :: atom(),
 SubAgentOidOrPid :: snmp:oid() | pid(),
 Reason :: term().

Unregister a sub-agent. If the second argument is a pid, then that sub-agent
will be unregistered from all trees in Agent.

 update_mibs_cache_age(Age)

 -spec update_mibs_cache_age(Age) -> ok | {error, Reason} when Age :: pos_integer(), Reason :: term().

Equivalent to update_mibs_cache_age/2.

 update_mibs_cache_age(Agent, Age)

 -spec update_mibs_cache_age(Agent, Age) -> ok | {error, Reason}
 when
 Agent :: pid() | AgentName,
 AgentName :: atom(),
 Age :: pos_integer(),
 Reason :: term().

Change the mib server cache age property.

 update_mibs_cache_gclimit(GcLimit)

 -spec update_mibs_cache_gclimit(GcLimit) -> ok | {error, Reason}
 when GcLimit :: pos_integer(), Reason :: term().

Equivalent to update_mibs_cache_gclimit/2.

 update_mibs_cache_gclimit(Agent, GcLimit)

 -spec update_mibs_cache_gclimit(Agent, GcLimit) -> ok | {error, Reason}
 when
 Agent :: pid() | AgentName,
 AgentName :: atom(),
 GcLimit :: pos_integer(),
 Reason :: term().

Change the mib server cache gclimit property.

 verbosity(Target, Verbosity)

 -spec verbosity(Target, Verbosity) -> snmp:void()
 when
 Target :: all | LogicalName | PidOrAgentName,
 LogicalName :: net_if | note_store | mib_server | symbolic_store | local_db,
 PidOrAgentName :: pid() | master_agent | atom(),
 Verbosity :: SNMPVerb | SubAgent,
 SNMPVerb :: snmp:verbosity(),
 SubAgent :: {subagents, snmp:verbosity()}.

Sets 'verbosity' for the indicated process(s):
	all -
Sets verbosity for all the agent processes; net_if, note_store, mib_server,
symbolic_store, local_db and master_agent (and sub-agents).

	net_if - Sets verbosity for the net-if process.

	note_store - Sets verbosity for the note store process.

	mib_server - Sets verbosity for the mib server process.

	symbolic_store - Sets verbosity for the symbolic store process.

	local_db - Sets verbosity for the local-db process.

	master_agent | pid() when Verbosity = {subagents, snmp:verbosity()} -
Sets verbosity for all sub-agent(s) controlled by this (master) agent.

	master_agent | pid() | atom() - Sets verbosity for the agent process.

The following text documents expected input-output relations
	If Target :: all | net_if | note_store | mib_server | symbolic_store | local_db,
then Verbosity :: snmp:verbosity().

	If Target :: master_agent,
then Verbosity :: {subagents, snmp:verbosity()}

		If `Target :: pid()	atom()`,
	then `Verbosity :: snmp:verbosity()	{subagents, snmp:verbosity()}`.

 whereis_mib(MibName)

 -spec whereis_mib(MibName) -> {ok, MibFile} | {error, Reason}
 when MibName :: atom(), MibFile :: string(), Reason :: term().

Equivalent to whereis_mib/2.

 whereis_mib(Agent, MibName)

 -spec whereis_mib(Agent, MibName) -> {ok, MibFile} | {error, Reason}
 when
 Agent :: pid() | AgentName,
 AgentName :: atom(),
 MibName :: atom(),
 MibFile :: string(),
 Reason :: term().

Get the full path to the (compiled) mib-file.

 which_aliasnames()

 -spec which_aliasnames() -> AliasNames when AliasNames :: [AliasName], AliasName :: atom().

Retrieve all alias-names known to the agent.

 which_mibs()

 -spec which_mibs() -> Mibs when Mibs :: [{MibName, MibFile}], MibName :: atom(), MibFile :: string().

Equivalent to which_mibs/1.

 which_mibs(Agent)

 -spec which_mibs(Agent) -> Mibs
 when
 Agent :: pid() | AgentName,
 AgentName :: atom(),
 Mibs :: [{MibName, MibFile}],
 MibName :: atom(),
 MibFile :: string().

Retrieve the list of all the mibs loaded into this agent. Default is the master
agent.

 which_mibs_cache_size()

 (since OTP R14B)

 -spec which_mibs_cache_size() -> {ok, Size} | {error, Reason}
 when Size :: non_neg_integer(), Reason :: term().

Equivalent to which_mibs_cache_size/1.

 which_mibs_cache_size(Agent)

 (since OTP R14B)

 -spec which_mibs_cache_size(Agent) -> {ok, Size} | {error, Reason}
 when
 Agent :: pid() | AgentName,
 AgentName :: atom(),
 Size :: non_neg_integer(),
 Reason :: term().

Retrieve the size of the mib server cache.

 which_notification_filter()

 -spec which_notification_filter() -> Filters when Filters :: [FilterId], FilterId :: nfilter_id().

Equivalent to which_notification_filter/1.

 which_notification_filter(Agent)

 -spec which_notification_filter(Agent) -> Filters
 when
 Agent :: pid() | AgentName,
 AgentName :: atom(),
 Filters :: [FilterId],
 FilterId :: nfilter_id().

List all notification filters in an agent.

 which_notifications()

 -spec which_notifications() -> Notifications
 when
 Notifications :: [{Name, MibName, Info}],
 Name :: atom(),
 MibName :: atom(),
 Info :: term().

Retrieve all notifications (and traps) known to the agent.

 which_tables()

 -spec which_tables() -> Tables when Tables :: [Table], Table :: atom().

Retrieve all tables known to the agent.

 which_transports()

 (since OTP 23.3)

 -spec which_transports() -> Transports
 when
 Transports :: [Transport],
 Transport :: {TDomain, TAddress} | {TDomain, TAddress, Kind},
 TDomain :: snmp:tdomain(),
 TAddress :: {IpAddr, IpPort},
 IpAddr :: inet:ip_address(),
 IpPort :: inet:port_number(),
 Kind :: transport_kind().

Retrieve all configured transports.

 which_variables()

 -spec which_variables() -> Variables when Variables :: [Variable], Variable :: atom().

Retrieve all variables known to the agent.

snmpa_conf

Utility functions for handling the agent config files.
The module snmpa_conf contains various utility functions to use for
manipulating (write/read/append) the config files of the SNMP agent.

 Summary

 Types

 agent_entry()

 An opaque term that represents an entry in the 'agent' config.

 community_entry()

 An opaque term that represents an entry in the 'community' (agent) config.

 context_entry()

 An opaque term that represents an entry in the 'context' (agent) config.

 extended_transport_address()

 intAgentTransport()

 ip_address()

 notify_entry()

 An opaque term that represents an entry in the 'notify' (agent) config.

 port_info()

 Port number 0 (zero) cannot be specified directly (it is used internally).
Instead the atom 'system' should be used.

 range()

 Min < Max

 ranges()

 snmp_ip_address()

 standard_entry()

 An opaque term that represents an entry in the 'standard' (agent) config.

 target_addr_entry()

 An opaque term that represents an entry in the 'target address' (agent) config.

 target_params_entry()

 An opaque term that represents an entry in the 'target parameters' (agent)
config.

 transport_address()

 transport_opts()

 transportAddress()

 transportAddressIPv4()

 transportAddressIPv4WithoutPort()

 Because of limitations of the Erlang type language we cannot define this type in
detail. Instead, we describe it here.

 transportAddressIPv4WithPort()

 Because of limitations of the Erlang type language we cannot define this type in
detail. Instead, we describe it here.

 transportAddressIPv6()

 transportAddressIPv6WithoutPort()

 Because of limitations of the Erlang type language we cannot define this type in
detail. Instead, we describe it here.

 transportAddressIPv6WithPort()

 Because of limitations of the Erlang type language we cannot define this type in
detail. Instead, we describe it here.

 transportAddressMask()

 transportAddressWithoutPort()

 transportAddressWithPort()

 transportDomain()

 usm_entry()

 An opaque term that represents an entry in the 'user based sm' (agent) config.

 vacm_acc_entry()

 An opaque term that represents an (access) entry in the 'vacm access' (agent)
config.

 vacm_entry()

 An basically opaque term that represents an entry in the 'view based acm'
(agent) config.

 vacm_s2g_entry()

 An opaque term that represents an (security to group) entry in the 'vacm
security to group' (agent) config.

 vacm_vtf_entry()

 An opaque term that represents an (tree family) entry in the 'vacm tree family'
(agent) config.

 word()

 Functions

 agent_entry(Tag, Val)

 Create an entry for the agent config file, agent.conf.

 append_agent_config(Dir, Conf)

 Append the config to the current agent config file.

 append_community_config(Dir, Conf)

 Append the community config to the current agent community config file.

 append_context_config(Dir, Conf)

 Append the context config to the current agent context config file.

 append_notify_config(Dir, Conf)

 Append the notify config to the current agent notify config file.

 append_standard_config(Dir, Conf)

 Append the standard config to the current agent standard config file.

 append_target_addr_config(Dir, Conf)

 Append the target_addr config to the current agent target_addr config file.

 append_target_params_config(Dir, Conf)

 Append the target_params config to the current agent target_params config file.

 append_usm_config(Dir, Conf)

 Append the usm config to the current agent usm config file.

 append_vacm_config(Dir, Conf)

 Append the vacm config to the current agent vacm config file.

 community_entry(CommIndex)

 Create an entry for the agent community config file, community.conf.

 community_entry(CommIndex, CommName, SecName, CtxName, TransportTag)

 Create an entry for the agent community config file, community.conf.

 context_entry(Ctx)

 Create an entry for the agent context config file, context.conf.

 notify_entry(Name, Tag, Type)

 Create an entry for the agent notify config file, notify.conf.

 read_agent_config(Dir)

 Read the current agent config file.

 read_community_config(Dir)

 Read the current agent community config file.

 read_context_config(Dir)

 Read the current agent context config file.

 read_notify_config(Dir)

 Read the current agent notify config file.

 read_standard_config(Dir)

 Read the current agent standard config file.

 read_target_addr_config(Dir)

 Read the current agent target_addr config file.

 read_target_params_config(Dir)

 Read the current agent target_params config file.

 read_usm_config(Dir)

 Read the current agent usm config file.

 read_vacm_config(Dir)

 Read the current agent vacm config file.

 standard_entry(Tag, Val)

 Create an entry for the agent standard config file, standard.conf.

 target_addr_entry/6

 Create an entry for the agent target_addr config file, target_addr.conf.

 target_addr_entry/7

 Create an entry for the agent target_addr config file, target_addr.conf.

 target_addr_entry/8

 Create an entry for the agent target_addr config file, target_addr.conf.

 target_addr_entry(Name, Domain, Addr, Timeout, RetryCount, TagList, ParamsName, EngineId, TMask, MaxMessageSize)

 Create an entry for the agent target_addr config file, target_addr.conf.

 target_params_entry(Name, Vsn)

 Create an entry for the agent target_params config file, target_params.conf.

 target_params_entry(Name, Vsn, SecName, SecLevel)

 Create an entry for the agent target_params config file, target_params.conf.

 target_params_entry(Name, MPModel, SecModel, SecName, SecLevel)

 Create an entry for the agent target_params config file, target_params.conf.

 usm_entry(EngineID)

 Create an entry for the agent usm config file, usm.conf.

 usm_entry(EngineID, UserName, SecName, Clone, AuthP, AuthKeyC, OwnAuthKeyC, PrivP, PrivKeyC, OwnPrivKeyC, Public, AuthKey, PrivKey)

 Create an entry for the agent usm config file, usm.conf.

 vacm_acc_entry(GroupName, Prefix, SecModel, SecLevel, Match, RV, WV, NV)

 Create an (access) entry for the agent vacm config file, vacm.conf.

 vacm_s2g_entry(SecModel, SecName, GroupName)

 Create an (security to group) entry for the agent vacm config file, vacm.conf.

 vacm_vtf_entry(ViewName, ViewSubtree)

 Create an (view tree family) entry for the agent vacm config file, vacm.conf.

 vacm_vtf_entry(ViewName, ViewSubtree, ViewType, ViewMask)

 Create an (view tree family) entry for the agent vacm config file, vacm.conf.

 write_agent_config(Dir, Conf)

 Equivalent to write_agent_config/3.

 write_agent_config(Dir, Hdr, Conf)

 Write the agent config to the agent config file.

 write_community_config(Dir, Conf)

 Equivalent to write_community_config/3.

 write_community_config(Dir, Hdr, Conf)

 Write the agent community config to the agent community config file.

 write_context_config(Dir, Conf)

 Equivalent to write_context_config/3.

 write_context_config(Dir, Hdr, Conf)

 Write the agent context config to the agent context config file.

 write_notify_config(Dir, Conf)

 Equivalent to write_notify_config/3.

 write_notify_config(Dir, Hdr, Conf)

 Write the agent notify config to the agent notify config file.

 write_standard_config(Dir, Conf)

 Equivalent to write_standard_config/3.

 write_standard_config(Dir, Hdr, Conf)

 Write the agent standard config to the agent standard config file.

 write_target_addr_config(Dir, Conf)

 Equivalent to write_target_addr_config/3.

 write_target_addr_config(Dir, Hdr, Conf)

 Write the agent target_addr config to the agent target_addr config file.

 write_target_params_config(Dir, Conf)

 Equivalent to write_target_params_config/3.

 write_target_params_config(Dir, Hdr, Conf)

 Write the agent target_params config to the agent target_params config file.

 write_usm_config(Dir, Conf)

 Equivalent to write_usm_config/3.

 write_usm_config(Dir, Hdr, Conf)

 Write the agent usm config to the agent usm config file.

 write_vacm_config(Dir, Conf)

 Equivalent to write_vacm_config/3.

 write_vacm_config(Dir, Hdr, Conf)

 Write the agent vacm config to the agent vacm config file.

 Types

 agent_entry()

 -opaque agent_entry()

An opaque term that represents an entry in the 'agent' config.

 community_entry()

 -opaque community_entry()

An opaque term that represents an entry in the 'community' (agent) config.

 context_entry()

 -opaque context_entry()

An opaque term that represents an entry in the 'context' (agent) config.

 extended_transport_address()

 -type extended_transport_address() :: {inet:ip_address(), port_info()}.

 intAgentTransport()

 -type intAgentTransport() ::
 {transportDomain(), transport_address()} |
 {transportDomain(), extended_transport_address(), snmpa:transport_kind()} |
 {transportDomain(), extended_transport_address(), transport_opts()} |
 {transportDomain(), extended_transport_address(), snmpa:transport_kind(), transport_opts()}.

 ip_address()

 (not exported)

 -type ip_address() :: inet:ip_address() | snmp_ip_address().

 notify_entry()

 -opaque notify_entry()

An opaque term that represents an entry in the 'notify' (agent) config.

 port_info()

 -type port_info() :: inet:port_number() | system | range() | ranges().

Port number 0 (zero) cannot be specified directly (it is used internally).
Instead the atom 'system' should be used.

 range()

 -type range() :: {Min :: inet:port_number(), Max :: inet:port_number()}.

Min < Max

 ranges()

 -type ranges() :: [inet:port_number() | range()].

 snmp_ip_address()

 (not exported)

 -type snmp_ip_address() :: [non_neg_integer()].

 standard_entry()

 -opaque standard_entry()

An opaque term that represents an entry in the 'standard' (agent) config.

 target_addr_entry()

 -opaque target_addr_entry()

An opaque term that represents an entry in the 'target address' (agent) config.

 target_params_entry()

 -opaque target_params_entry()

An opaque term that represents an entry in the 'target parameters' (agent)
config.

 transport_address()

 -type transport_address() :: {ip_address(), inet:port_number()} | ip_address().

 transport_opts()

 (not exported)

 -type transport_opts() :: list().

 transportAddress()

 -type transportAddress() :: transportAddressIPv4() | transportAddressIPv6().

 transportAddressIPv4()

 (not exported)

 -type transportAddressIPv4() :: transportAddressIPv4WithPort() | transportAddressIPv4WithoutPort().

 transportAddressIPv4WithoutPort()

 (not exported)

 -type transportAddressIPv4WithoutPort() :: inet:ip4_address() | [byte()].

Because of limitations of the Erlang type language we cannot define this type in
detail. Instead, we describe it here.
The list variant, 4 bytes for address:
[byte() x 4]

 transportAddressIPv4WithPort()

 (not exported)

 -type transportAddressIPv4WithPort() ::
 {transportAddressIPv4WithoutPort(), inet:port_number()} | [byte()].

Because of limitations of the Erlang type language we cannot define this type in
detail. Instead, we describe it here.
The list variant, 4 bytes for address + 2 bytes for port:
[byte() x 4, byte() x 2]

 transportAddressIPv6()

 (not exported)

 -type transportAddressIPv6() :: transportAddressIPv6WithPort() | transportAddressIPv6WithoutPort().

 transportAddressIPv6WithoutPort()

 (not exported)

 -type transportAddressIPv6WithoutPort() :: inet:ip6_address() | [word()] | [byte()].

Because of limitations of the Erlang type language we cannot define this type in
detail. Instead, we describe it here.
First list variant, 8 words for address:
[word() x 8]
Second list variant, 16 bytes for address:
[byte() x 16]

 transportAddressIPv6WithPort()

 (not exported)

 -type transportAddressIPv6WithPort() ::
 {transportAddressIPv6WithoutPort(), inet:port_number()} |
 [word() | inet:port_number()] |
 [word() | byte()] |
 [byte()].

Because of limitations of the Erlang type language we cannot define this type in
detail. Instead, we describe it here.
First list variant, 8 words for address + 1 word for port:
[word() x 8, inet:port_number()]
Second list variant, 8 words for address + 2 bytes for port:
[word() x 8, byte() x 2]
Third list variant, 16 bytes for address + 2 bytes for port:
[byte() x 16, byte() x 2]

 transportAddressMask()

 -type transportAddressMask() :: [] | transportAddressWithPort().

 transportAddressWithoutPort()

 -type transportAddressWithoutPort() ::
 transportAddressIPv4WithoutPort() | transportAddressIPv6WithoutPort().

 transportAddressWithPort()

 -type transportAddressWithPort() :: transportAddressIPv4WithPort() | transportAddressIPv6WithPort().

 transportDomain()

 -type transportDomain() :: snmp:tdomain().

 usm_entry()

 -opaque usm_entry()

An opaque term that represents an entry in the 'user based sm' (agent) config.

 vacm_acc_entry()

 -opaque vacm_acc_entry()

An opaque term that represents an (access) entry in the 'vacm access' (agent)
config.

 vacm_entry()

 -type vacm_entry() :: vacm_s2g_entry() | vacm_acc_entry() | vacm_vtf_entry().

An basically opaque term that represents an entry in the 'view based acm'
(agent) config.

 vacm_s2g_entry()

 -opaque vacm_s2g_entry()

An opaque term that represents an (security to group) entry in the 'vacm
security to group' (agent) config.

 vacm_vtf_entry()

 -opaque vacm_vtf_entry()

An opaque term that represents an (tree family) entry in the 'vacm tree family'
(agent) config.

 word()

 (not exported)

 -type word() :: 0..65535.

 Functions

 agent_entry(Tag, Val)

 -spec agent_entry(Tag, Val) -> AgentEntry
 when
 Tag ::
 intAgentTransports | intAgentUDPPort | snmpEngineMaxMessageSize |
 snmpEngineID,
 Val :: term(),
 AgentEntry :: agent_entry().

Create an entry for the agent config file, agent.conf.
The type of Val depends on the value of Tag:
	intAgentTransports: [snmpa_conf:intAgentTransport()] <mandatory>

	intAgentUDPPort:inet:port_number() <optional>

	snmpEngineMaxMessageSize:snmp_framework_mib:max_message_size() <mandatory>

	snmpEngineID:snmp_framework_mib:engine_id() <mandatory>

See Agent Information for more
info.

 append_agent_config(Dir, Conf)

 -spec append_agent_config(Dir, Conf) -> ok when Dir :: snmp:dir(), Conf :: [agent_entry()].

Append the config to the current agent config file.
Dir is the path to the directory where to store the config file.
See Agent Information for more
info.

 append_community_config(Dir, Conf)

 -spec append_community_config(Dir, Conf) -> ok when Dir :: snmp:dir(), Conf :: [community_entry()].

Append the community config to the current agent community config file.
Dir is the path to the directory where to store the config file.
See Community for more info.

 append_context_config(Dir, Conf)

 -spec append_context_config(Dir, Conf) -> ok when Dir :: snmp:dir(), Conf :: [context_entry()].

Append the context config to the current agent context config file.
Dir is the path to the directory where to store the config file.
See Contexts for more info.

 append_notify_config(Dir, Conf)

 -spec append_notify_config(Dir, Conf) -> ok when Dir :: snmp:dir(), Conf :: [notify_entry()].

Append the notify config to the current agent notify config file.
Dir is the path to the directory where to store the config file.
See Notify Definitions for more info.

 append_standard_config(Dir, Conf)

 -spec append_standard_config(Dir, Conf) -> ok when Dir :: snmp:dir(), Conf :: [standard_entry()].

Append the standard config to the current agent standard config file.
Dir is the path to the directory where to store the config file.
See System Information for more
info.

 append_target_addr_config(Dir, Conf)

 -spec append_target_addr_config(Dir, Conf) -> ok when Dir :: snmp:dir(), Conf :: [target_addr_entry()].

Append the target_addr config to the current agent target_addr config file.
Dir is the path to the directory where to store the config file.
See Target Address Definitions for
more info.

 append_target_params_config(Dir, Conf)

 -spec append_target_params_config(Dir, Conf) -> ok
 when Dir :: snmp:dir(), Conf :: [target_params_entry()].

Append the target_params config to the current agent target_params config file.
Dir is the path to the directory where to store the config file.
See Target Parameters Definitions
for more info.

 append_usm_config(Dir, Conf)

 -spec append_usm_config(Dir, Conf) -> ok when Dir :: snmp:dir(), Conf :: [usm_entry()].

Append the usm config to the current agent usm config file.
Dir is the path to the directory where to store the config file.
See Security data for USM for more info.

 append_vacm_config(Dir, Conf)

 -spec append_vacm_config(Dir, Conf) -> ok when Dir :: snmp:dir(), Conf :: [vacm_entry()].

Append the vacm config to the current agent vacm config file.
Dir is the path to the directory where to store the config file.
See MIB Views for VACM for more info.

 community_entry(CommIndex)

 -spec community_entry(CommIndex) -> CommunityEntry
 when
 CommIndex :: snmp_framework_mib:admin_string(),
 CommunityEntry :: community_entry().

Create an entry for the agent community config file, community.conf.
CommunityIndex must be a non-empty string.
This function only accepts the following values of CommIndex:
	"public" - Translates to the following call:
community_entry(CommunityIndex, CommunityIndex, "initial", "", "").

	"all-rights" - Translates to the
following call:
community_entry(CommunityIndex, CommunityIndex, CommunityIndex, "", "").

See Community for more info.

 community_entry(CommIndex, CommName, SecName, CtxName, TransportTag)

 -spec community_entry(CommIndex, CommName, SecName, CtxName, TransportTag) -> CommunityEntry
 when
 CommIndex :: snmp_community_mib:index(),
 CommName :: snmp_community_mib:name(),
 SecName :: snmp_community_mib:security_name(),
 CtxName :: snmp_community_mib:context_name(),
 TransportTag :: snmp_community_mib:transport_tag(),
 CommunityEntry :: community_entry().

Create an entry for the agent community config file, community.conf.
CommunityIndex must be a non-empty string.
See Community for more info.

 context_entry(Ctx)

 -spec context_entry(Ctx) -> ContextEntry
 when Ctx :: snmp_community_mib:context_name(), ContextEntry :: context_entry().

Create an entry for the agent context config file, context.conf.
See Contexts for more info.

 notify_entry(Name, Tag, Type)

 -spec notify_entry(Name, Tag, Type) -> NotifyEntry
 when
 Name :: snmp_notification_mib:notify_name(),
 Tag :: snmp_notification_mib:notify_tag(),
 Type :: snmp_notification_mib:notify_type(),
 NotifyEntry :: notify_entry().

Create an entry for the agent notify config file, notify.conf.
Name must be a non-empty string.
See Notify Definitions for more info.

 read_agent_config(Dir)

 -spec read_agent_config(Dir) -> {ok, Conf} | {error, Reason}
 when Dir :: snmp:dir(), Conf :: [agent_entry()], Reason :: term().

Read the current agent config file.
Dir is the path to the directory where to store the config file.
See Agent Information for more
info.

 read_community_config(Dir)

 -spec read_community_config(Dir) -> {ok, Conf} | {error, Reason}
 when Dir :: snmp:dir(), Conf :: [community_entry()], Reason :: term().

Read the current agent community config file.
Dir is the path to the directory where to store the config file.
See Communities for more info.

 read_context_config(Dir)

 -spec read_context_config(Dir) -> {ok, Conf} | {error, Reason}
 when Dir :: snmp:dir(), Conf :: [context_entry()], Reason :: term().

Read the current agent context config file.
Dir is the path to the directory where to store the config file.
See Contexts for more info.

 read_notify_config(Dir)

 -spec read_notify_config(Dir) -> {ok, Conf} | {error, Reason}
 when Dir :: snmp:dir(), Conf :: [notify_entry()], Reason :: term().

Read the current agent notify config file.
Dir is the path to the directory where to store the config file.
See Notify Definitions for more info.

 read_standard_config(Dir)

 -spec read_standard_config(Dir) -> {ok, Conf} | {error, Reason}
 when Dir :: snmp:dir(), Conf :: [standard_entry()], Reason :: term().

Read the current agent standard config file.
Dir is the path to the directory where to store the config file.
See System Information for more
info.

 read_target_addr_config(Dir)

 -spec read_target_addr_config(Dir) -> {ok, Conf} | {error, Reason}
 when Dir :: snmp:dir(), Conf :: [target_addr_entry()], Reason :: term().

Read the current agent target_addr config file.
Dir is the path to the directory where to store the config file.
See Target Address Definitions for
more info.

 read_target_params_config(Dir)

 -spec read_target_params_config(Dir) -> {ok, Conf} | {error, Reason}
 when
 Dir :: snmp:dir(),
 Conf :: [target_params_entry()],
 Reason :: term().

Read the current agent target_params config file.
Dir is the path to the directory where to store the config file.
See Target Parameters Definitions
for more info.

 read_usm_config(Dir)

 -spec read_usm_config(Dir) -> {ok, Conf} | {error, Reason}
 when Dir :: snmp:dir(), Conf :: [usm_entry()], Reason :: term().

Read the current agent usm config file.
Dir is the path to the directory where to store the config file.
See Security data for USM for more info.

 read_vacm_config(Dir)

 -spec read_vacm_config(Dir) -> {ok, Conf} | {error, Reason}
 when Dir :: snmp:dir(), Conf :: [vacm_entry()], Reason :: term().

Read the current agent vacm config file.
Dir is the path to the directory where to store the config file.
See MIB Views for VACM for more info.

 standard_entry(Tag, Val)

 -spec standard_entry(Tag, Val) -> StandardEntry
 when
 Tag ::
 sysDescr | sysObjectID | sysContact | sysName | sysLocation |
 sysServices | snmpEnableAuthenTraps,
 Val :: term(),
 StandardEntry :: standard_entry().

Create an entry for the agent standard config file, standard.conf.
The type of Val depends on the value of Tag:
	sysDescr:string()
<mandatory> - DisplayString (SIZE(0..255))

	sysObjectID:snmp:oid() <mandatory> - OBJECT IDENTIFIER

	sysContact:string()
<mandatory> - DisplayString (SIZE(0..255))

	sysName:string() <mandatory> -
DisplayString (SIZE(0..255))

	sysLocation:string()
<mandatory> - DisplayString (SIZE(0..255))

	sysLocation:non_neg_integer() <mandatory> - "A
value which indicates the set of services that this entity primarily offers."
INTEGER (0..127)

	snmpEnableAuthenTraps:enabled | disabled
<mandatory> - INTEGER { enabled(1), disabled(2) }

See System Information for more
info.

 target_addr_entry/6

 -spec target_addr_entry(Name, Domain, Addr, TagList, ParamsName, EngineId) -> TargetAddrEntry
 when
 Name :: snmp_target_mib:name(),
 Domain :: transportDomain(),
 Addr :: transportAddress(),
 TagList :: snmp_target_mib:tag_list(),
 ParamsName :: snmp_target_mib:params(),
 EngineId :: snmp_framework_mib:engine_id(),
 TargetAddrEntry :: target_addr_entry();
 (Name, IP, TagList, ParamsName, EngineId, TMask) -> TargetAddrEntry
 when
 Name :: snmp_target_mib:name(),
 IP :: inet:ip_address(),
 TagList :: snmp_target_mib:tag_list(),
 ParamsName :: snmp_target_mib:params(),
 EngineId :: snmp_framework_mib:engine_id(),
 TMask :: snmp_target_mib:tmask(),
 TargetAddrEntry :: target_addr_entry().

Create an entry for the agent target_addr config file, target_addr.conf.
Name must be a non-empty string.
target_addr_entry/6 (1) translates to the following call:
target_addr_entry(Name, Domain, Addr, TagList, ParamsName, EngineId, []).
target_addr_entry/6 (2) translates to the following call (with Domain and Addr built from IP and the default port number):
target_addr_entry(Name, Domain, Addr, TagList, ParamsName, EngineId, TMask, 2048).
See Target Address Definitions for
more info.

 target_addr_entry/7

 (since OTP 17.3)

 -spec target_addr_entry(Name, Domain, Addr, TagList, ParamsName, EngineId, TMask) -> TargetAddrEntry
 when
 Name :: snmp_target_mib:name(),
 Domain :: transportDomain(),
 Addr :: transportAddress(),
 TagList :: snmp_target_mib:tag_list(),
 ParamsName :: snmp_target_mib:params(),
 EngineId :: snmp_framework_mib:engine_id(),
 TMask :: snmp_target_mib:tmask(),
 TargetAddrEntry :: target_addr_entry();
 (Name, IP, Port, TagList, ParamsName, EngineId, TMask) -> TargetAddrEntry
 when
 Name :: snmp_target_mib:name(),
 IP :: inet:ip_address(),
 Port :: inet:port_number(),
 TagList :: snmp_target_mib:tag_list(),
 ParamsName :: snmp_target_mib:params(),
 EngineId :: snmp_framework_mib:engine_id(),
 TMask :: snmp_target_mib:tmask(),
 TargetAddrEntry :: target_addr_entry().

Create an entry for the agent target_addr config file, target_addr.conf.
Name must be a non-empty string.
target_addr_entry/7 (1) translates to the following call:
target_addr_entry(Name, Domain, Addr, TagList, ParamsName, EngineId, TMask, 2048).
target_addr_entry/7 (2) translates to the following call (with Domain and Addr built from IP and Port):
target_addr_entry(Name, Domain, Addr, TagList, ParamsName, EngineId, TMask, 2048).
See Target Address Definitions for
more info.

 target_addr_entry/8

 -spec target_addr_entry(Name, Domain, Addr, TagList, ParamsName, EngineId, TMask, MaxMessageSize) ->
 TargetAddrEntry
 when
 Name :: snmp_target_mib:name(),
 Domain :: transportDomain(),
 Addr :: transportAddress(),
 TagList :: snmp_target_mib:tag_list(),
 ParamsName :: snmp_target_mib:params(),
 EngineId :: snmp_framework_mib:engine_id(),
 TMask :: snmp_target_mib:tmask(),
 MaxMessageSize :: snmp_target_mib:mms(),
 TargetAddrEntry :: target_addr_entry();
 (Name, IP, Port, TagList, ParamsName, EngineId, TMask, MaxMessageSize) ->
 TargetAddrEntry
 when
 Name :: snmp_target_mib:name(),
 IP :: inet:ip_address(),
 Port :: inet:port_number(),
 TagList :: snmp_target_mib:tag_list(),
 ParamsName :: snmp_target_mib:params(),
 EngineId :: snmp_framework_mib:engine_id(),
 TMask :: snmp_target_mib:tmask(),
 MaxMessageSize :: snmp_target_mib:mms(),
 TargetAddrEntry :: target_addr_entry().

Create an entry for the agent target_addr config file, target_addr.conf.
Name must be a non-empty string.
target_addr_entry/8 (1) translates to the following call:
target_addr_entry(Name, Domain, Addr, 1500, 3, TagList, ParamsName, EngineId, TMask, MaxMessageSize).
target_addr_entry/8 (2) translates to the following call (with Domain and Addr built from IP and Port):
target_addr_entry(Name, Domain, Addr, 1500, 3, TagList, ParamsName, EngineId, TMask, MaxMessageSize).
See Target Address Definitions for
more info.

 target_addr_entry(Name, Domain, Addr, Timeout, RetryCount, TagList, ParamsName, EngineId, TMask, MaxMessageSize)

 -spec target_addr_entry(Name, Domain, Addr, Timeout, RetryCount, TagList, ParamsName, EngineId, TMask,
 MaxMessageSize) ->
 TargetAddrEntry
 when
 Name :: snmp_target_mib:name(),
 Domain :: transportDomain(),
 Addr :: transportAddress(),
 Timeout :: snmp:time_interval(),
 RetryCount :: snmp_target_mib:retry_count(),
 TagList :: snmp_target_mib:tag_list(),
 ParamsName :: snmp_framework_mib:admin_string(),
 EngineId :: snmp_framework_mib:engine_id(),
 TMask :: snmp_target_mib:tmask(),
 MaxMessageSize :: snmp_target_mib:mms(),
 TargetAddrEntry :: target_addr_entry().

Create an entry for the agent target_addr config file, target_addr.conf.
Name must be a non-empty string.
See Target Address Definitions for
more info.

 target_params_entry(Name, Vsn)

 -spec target_params_entry(Name, Vsn) -> TargetParamsEntry
 when
 Name :: snmp_target_mib:name(),
 Vsn :: snmp:version(),
 TargetParamsEntry :: target_params_entry().

Create an entry for the agent target_params config file, target_params.conf.
Name must be a non-empty string.
target_params_entry/2 translates to the following
call:
	 target_params_entry(Name, Vsn, "initial", noAuthNoPriv)
See Target Parameters Definitions
for more info.

 target_params_entry(Name, Vsn, SecName, SecLevel)

 -spec target_params_entry(Name, Vsn, SecName, SecLevel) -> TargetParamsEntry
 when
 Name :: snmp_target_mib:name(),
 Vsn :: snmp:version(),
 SecName :: snmp_framework_mib:admin_string(),
 SecLevel :: snmp_framework_mib:security_level(),
 TargetParamsEntry :: target_params_entry().

Create an entry for the agent target_params config file, target_params.conf.
Name must be a non-empty string.
Vsn translates into MPModel and SecModel as follows:
	 Vsn = v1 => MPModel = v1, SecModel = v1
	 Vsn = v2 => MPModel = v2c, SecModel = v2c
	 Vsn = v3 => MPModel = v3, SecModel = usm
target_params_entry/4 translates to the following
call:
	 target_params_entry(Name, MPModel, SecModel, SecName, SecLevel)
Where MPModel and SecModel is mapped from Vsn, see above.
See Target Parameters Definitions
for more info.

 target_params_entry(Name, MPModel, SecModel, SecName, SecLevel)

 -spec target_params_entry(Name, MPModel, SecModel, SecName, SecLevel) -> TargetParamsEntry
 when
 Name :: snmp_target_mib:name(),
 MPModel :: snmp_framework_mib:message_processing_model(),
 SecModel :: snmp_framework_mib:security_model(),
 SecName :: snmp_framework_mib:admin_string(),
 SecLevel :: snmp_framework_mib:security_level(),
 TargetParamsEntry :: target_params_entry().

Create an entry for the agent target_params config file, target_params.conf.
Name must be a non-empty string.
See Target Parameters Definitions
for more info.

 usm_entry(EngineID)

 -spec usm_entry(EngineID) -> UsmEntry
 when EngineID :: snmp_framework_mib:engine_id(), UsmEntry :: usm_entry().

Create an entry for the agent usm config file, usm.conf.
usm_entry/1 translates to the following call:
	 usm_entry(EngineID,
	 "initial", "initial", zeroDotZero,
		 usmNoAuthProtocol, "", "",
		 usmNoPrivProtocol, "", "",
		 "", "", "").
See Security data for USM for more info.

 usm_entry(EngineID, UserName, SecName, Clone, AuthP, AuthKeyC, OwnAuthKeyC, PrivP, PrivKeyC, OwnPrivKeyC, Public, AuthKey, PrivKey)

 -spec usm_entry(EngineID, UserName, SecName, Clone, AuthP, AuthKeyC, OwnAuthKeyC, PrivP, PrivKeyC,
 OwnPrivKeyC, Public, AuthKey, PrivKey) ->
 UsmEntry
 when
 EngineID :: snmp_framework_mib:engine_id(),
 UserName :: snmp_user_based_sm_mib:name(),
 SecName :: snmp_framework_mib:admin_string(),
 Clone :: snmp_user_based_sm_mib:clone_from(),
 AuthP :: snmp_user_based_sm_mib:auth_protocol(),
 AuthKeyC :: snmp_user_based_sm_mib:key_change(),
 OwnAuthKeyC :: snmp_user_based_sm_mib:key_change(),
 PrivP :: snmp_user_based_sm_mib:priv_protocol(),
 PrivKeyC :: snmp_user_based_sm_mib:key_change(),
 OwnPrivKeyC :: snmp_user_based_sm_mib:key_change(),
 Public :: snmp_user_based_sm_mib:public(),
 AuthKey :: snmp_user_based_sm_mib:auth_key(),
 PrivKey :: snmp_user_based_sm_mib:priv_key(),
 UsmEntry :: usm_entry().

Create an entry for the agent usm config file, usm.conf.
See Security data for USM for more info.

 vacm_acc_entry(GroupName, Prefix, SecModel, SecLevel, Match, RV, WV, NV)

 -spec vacm_acc_entry(GroupName, Prefix, SecModel, SecLevel, Match, RV, WV, NV) -> VacmAccEntry
 when
 GroupName :: snmp_framework_mib:admin_string(),
 Prefix :: snmp_view_based_acm_mib:context_prefix(),
 SecModel :: snmp_framework_mib:security_model(),
 SecLevel :: snmp_framework_mib:security_level(),
 Match :: snmp_view_based_acm_mib:context_match(),
 RV :: snmp_framework_mib:admin_string(),
 WV :: snmp_framework_mib:admin_string(),
 NV :: snmp_framework_mib:admin_string(),
 VacmAccEntry :: vacm_acc_entry().

Create an (access) entry for the agent vacm config file, vacm.conf.
See MIB Views for VACM for more info.

 vacm_s2g_entry(SecModel, SecName, GroupName)

 -spec vacm_s2g_entry(SecModel, SecName, GroupName) -> VacmS2GEntry
 when
 SecModel :: snmp_framework_mib:security_model(),
 SecName :: snmp_view_based_acm_mib:security_name(),
 GroupName :: snmp_framework_mib:admin_string(),
 VacmS2GEntry :: vacm_s2g_entry().

Create an (security to group) entry for the agent vacm config file, vacm.conf.
See MIB Views for VACM for more info.

 vacm_vtf_entry(ViewName, ViewSubtree)

 -spec vacm_vtf_entry(ViewName, ViewSubtree) -> VacmVtfEntry
 when
 ViewName :: snmp_framework_mib:admin_string(),
 ViewSubtree :: snmp:oid(),
 VacmVtfEntry :: VacmVtfEntry.

Create an (view tree family) entry for the agent vacm config file, vacm.conf.
vacm_vtf_entry/2 translates to the following call:
	 vacm_vtf_entry(ViewIndex, ViewSubtree, included, null).
See MIB Views for VACM for more info.

 vacm_vtf_entry(ViewName, ViewSubtree, ViewType, ViewMask)

 -spec vacm_vtf_entry(ViewName, ViewSubtree, ViewType, ViewMask) -> VacmVtfEntry
 when
 ViewName :: snmp_framework_mib:admin_string(),
 ViewSubtree :: snmp:oid(),
 ViewType :: snmp_view_based_acm_mib:view_type(),
 ViewMask :: null | snmp_view_based_acm_mib:view_mask(),
 VacmVtfEntry :: VacmVtfEntry.

Create an (view tree family) entry for the agent vacm config file, vacm.conf.
See MIB Views for VACM for more info.

 write_agent_config(Dir, Conf)

 -spec write_agent_config(Dir, Conf) -> ok when Dir :: snmp:dir(), Conf :: [agent_entry()].

Equivalent to write_agent_config/3.

 write_agent_config(Dir, Hdr, Conf)

 -spec write_agent_config(Dir, Hdr, Conf) -> ok
 when Dir :: snmp:dir(), Hdr :: string(), Conf :: [agent_entry()].

Write the agent config to the agent config file.
Dir is the path to the directory where to store the config file.
Hdr is an optional file header (note that this text is written to the file as
is).
See Agent Information for more
info.

 write_community_config(Dir, Conf)

 -spec write_community_config(Dir, Conf) -> ok when Dir :: snmp:dir(), Conf :: [community_entry()].

Equivalent to write_community_config/3.

 write_community_config(Dir, Hdr, Conf)

 -spec write_community_config(Dir, Hdr, Conf) -> ok
 when Dir :: snmp:dir(), Hdr :: string(), Conf :: [community_entry()].

Write the agent community config to the agent community config file.
Dir is the path to the directory where to store the config file.
Hdr is an optional file header (note that this text is written to the file as
is).
See Community for more info.

 write_context_config(Dir, Conf)

 -spec write_context_config(Dir, Conf) -> ok when Dir :: snmp:dir(), Conf :: [context_entry()].

Equivalent to write_context_config/3.

 write_context_config(Dir, Hdr, Conf)

 -spec write_context_config(Dir, Hdr, Conf) -> ok
 when Dir :: snmp:dir(), Hdr :: string(), Conf :: [context_entry()].

Write the agent context config to the agent context config file.
Dir is the path to the directory where to store the config file.
Hdr is an optional file header (note that this text is written to the file as
is).
See Contexts for more info.

 write_notify_config(Dir, Conf)

 -spec write_notify_config(Dir, Conf) -> ok when Dir :: snmp:dir(), Conf :: [notify_entry()].

Equivalent to write_notify_config/3.

 write_notify_config(Dir, Hdr, Conf)

 -spec write_notify_config(Dir, Hdr, Conf) -> ok
 when Dir :: snmp:dir(), Hdr :: string(), Conf :: [notify_entry()].

Write the agent notify config to the agent notify config file.
Dir is the path to the directory where to store the config file.
Hdr is an optional file header (note that this text is written to the file as
is).
See Notify Definitions for more info.

 write_standard_config(Dir, Conf)

 -spec write_standard_config(Dir, Conf) -> ok when Dir :: snmp:dir(), Conf :: [standard_entry()].

Equivalent to write_standard_config/3.

 write_standard_config(Dir, Hdr, Conf)

 -spec write_standard_config(Dir, Hdr, Conf) -> ok
 when Dir :: snmp:dir(), Hdr :: string(), Conf :: [standard_entry()].

Write the agent standard config to the agent standard config file.
Dir is the path to the directory where to store the config file.
Hdr is an optional file header (note that this text is written to the file as
is).
See System Information for more
info.

 write_target_addr_config(Dir, Conf)

 -spec write_target_addr_config(Dir, Conf) -> ok when Dir :: snmp:dir(), Conf :: [target_addr_entry()].

Equivalent to write_target_addr_config/3.

 write_target_addr_config(Dir, Hdr, Conf)

 -spec write_target_addr_config(Dir, Hdr, Conf) -> ok
 when Dir :: snmp:dir(), Hdr :: string(), Conf :: [target_addr_entry()].

Write the agent target_addr config to the agent target_addr config file.
Dir is the path to the directory where to store the config file.
Hdr is an optional file header (note that this text is written to the file as
is).
See Target Address Definitions for
more info.

 write_target_params_config(Dir, Conf)

 -spec write_target_params_config(Dir, Conf) -> ok
 when Dir :: snmp:dir(), Conf :: [target_params_entry()].

Equivalent to write_target_params_config/3.

 write_target_params_config(Dir, Hdr, Conf)

 -spec write_target_params_config(Dir, Hdr, Conf) -> ok
 when
 Dir :: snmp:dir(),
 Hdr :: string(),
 Conf :: [target_params_entry()].

Write the agent target_params config to the agent target_params config file.
Dir is the path to the directory where to store the config file.
Hdr is an optional file header (note that this text is written to the file as
is).
See Target Parameters Definitions
for more info.

 write_usm_config(Dir, Conf)

 -spec write_usm_config(Dir, Conf) -> ok when Dir :: snmp:dir(), Conf :: [usm_entry()].

Equivalent to write_usm_config/3.

 write_usm_config(Dir, Hdr, Conf)

 -spec write_usm_config(Dir, Hdr, Conf) -> ok
 when Dir :: snmp:dir(), Hdr :: string(), Conf :: [usm_entry()].

Write the agent usm config to the agent usm config file.
Dir is the path to the directory where to store the config file.
Hdr is an optional file header (note that this text is written to the file as
is).
See Security data for USM for more info.

 write_vacm_config(Dir, Conf)

 -spec write_vacm_config(Dir, Conf) -> ok when Dir :: snmp:dir(), Conf :: [vacm_entry()].

Equivalent to write_vacm_config/3.

 write_vacm_config(Dir, Hdr, Conf)

 -spec write_vacm_config(Dir, Hdr, Conf) -> ok
 when Dir :: snmp:dir(), Hdr :: string(), Conf :: [vacm_entry()].

Write the agent vacm config to the agent vacm config file.
Dir is the path to the directory where to store the config file.
Hdr is an optional file header (note that this text is written to the file as
is).
See MIB Views for VACM for more info.

snmpa_discovery_handler behaviour

Behaviour module for the SNMP agent discovery handler.
This module defines the behaviour of the agent discovery handler. A
snmpa_discovery_handler compliant module must export the following functions:
	stage1_finish/3

The semantics of them and their exact signatures are explained below.

 Summary

 Callbacks

 stage1_finish(TargetName, ManagerEngineID, ExtraInfo)

 This function is called at the end of stage 1 of the discovery process. It
should return either the atom ignore or {ok, usm_entry() | [usm_entry()]}.
See usm_entry() and
usm_entry/1,3 for more info.

 Callbacks

 stage1_finish(TargetName, ManagerEngineID, ExtraInfo)

 -callback stage1_finish(TargetName, ManagerEngineID, ExtraInfo) ->
 ignore | {ok, UsmEntry | [UsmEntry]} | {ok, UsmEntry | [UsmEntry], NewExtraInfo}
 when
 TargetName :: snmp_target_mib:name(),
 ManagerEngineID :: snmp_framework_mib:engine_id(),
 ExtraInfo :: term(),
 UsmEntry :: snmp_user_based_sm_mib:usm_entry(),
 NewExtraInfo :: term().

This function is called at the end of stage 1 of the discovery process. It
should return either the atom ignore or {ok, usm_entry() | [usm_entry()]}.
See usm_entry() and
usm_entry/1,3 for more info.
If the function returns ignore, then it is assumed that either:
	The caller (of the discovery function) will make the needed updates later.
	The callback function itself did the updates.

In either case, the agent will do nothing, but return the retrieved
ManagerEngineID (see snmpa:discovery/6 for more info) and
possible continue with stage 2 of the discovery process.
The ExtraInfo argument is passed on from the snmpa:discovery/6
function.
This function may return an updated NewExtraInfo that will be used in
subsequent calls to the callback functions. Intended for future use.
The purpose of this function is to generate the usm- related security data
needed for usm processing in the agent. Specifically, updating the usmUserTable.
When an usm_entry() tuple (or a list of such tuples) is returned, this data is
then added to the usmUserTable by the (master-) agent.
When an usm_entry() tuple (or a list of such tuples) is returned, this data is
then added to the usmUserTable by the (master-) agent.
Note
Note that the function does not check if this entry already exists.
Note
Note that this function is executed in the context of the master-agent
process.

snmpa_error

Functions for Reporting SNMP Errors

The module snmpa_error contains two callback functions which are called if an
error occurs at different times during agent operation. These functions in turn
calls the corresponding function in the configured error report module, which
implements the actual report functionality.
Two simple implementation(s) is provided with the toolkit; the modules
snmpa_error_logger which is the default and snmpa_error_io.
The error report module is configured using the directive error_report_mod,
see configuration parameters.

 Summary

 Functions

 config_err(Format, Args)

 The function is called if an error occurs during the configuration phase, for
example if a syntax error is found in a configuration file.

 user_err(Format, Args)

 The function is called if a user related error occurs at run-time, for example
if a user defined instrumentation function returns erroneous.

 Functions

 config_err(Format, Args)

 -spec config_err(Format, Args) -> snmp:void() when Format :: string(), Args :: list().

The function is called if an error occurs during the configuration phase, for
example if a syntax error is found in a configuration file.
Format and Args are as in io:format(Format, Args).

 user_err(Format, Args)

 -spec user_err(Format, Args) -> snmp:void() when Format :: string(), Args :: list().

The function is called if a user related error occurs at run-time, for example
if a user defined instrumentation function returns erroneous.
Format and Args are as in io:format(Format, Args).

snmpa_error_io

Functions for Reporting SNMP Errors on stdio
The module snmpa_error_io implements the snmp_error_report behaviour (see
snmpa_error_report) containing two callback functions which are called in
order to report SNMP errors.
This module provides a simple mechanism for reporting SNMP errors. Errors are
written to stdout using the io module. It is provided as an simple example.
This module needs to be explicitly configured, see
snmpa_error and
configuration parameters.

 Summary

 Functions

 config_err(Format, Args)

 The function is called if an error occurs during the configuration phase, for
example if a syntax error is found in a configuration file.

 user_err(Format, Args)

 The function is called if a user related error occurs at run-time, for example
if a user defined instrumentation function returns erroneous.

 Functions

 config_err(Format, Args)

 -spec config_err(Format, Args) -> snmp:void() when Format :: string(), Args :: list().

The function is called if an error occurs during the configuration phase, for
example if a syntax error is found in a configuration file.
Format and Args are as in io:format(Format, Args).

 user_err(Format, Args)

 -spec user_err(Format, Args) -> snmp:void() when Format :: string(), Args :: list().

The function is called if a user related error occurs at run-time, for example
if a user defined instrumentation function returns erroneous.
Format and Args are as in io:format(Format, Args).

snmpa_error_logger

Functions for Reporting SNMP Errors through the error_logger
The module snmpa_error_logger implements the snmpa_error_report behaviour
(see snmpa_error_report) containing two callback functions which are called
in order to report SNMP errors.
This module provides a simple mechanism for reporting SNMP errors. Errors are
sent to the error_logger after a size check. Messages are truncated after 1024
chars. It is provided as an example.
This module is the default error report module, but can be explicitly
configured, see snmpa_error and
configuration parameters.
See Also
error_logger(3)

 Summary

 Functions

 config_err(Format, Args)

 The function is called if an error occurs during the configuration phase, for
example if a syntax error is found in a configuration file.

 user_err(Format, Args)

 The function is called if a user related error occurs at run-time, for example
if a user defined instrumentation function returns erroneous.

 Functions

 config_err(Format, Args)

 -spec config_err(Format, Args) -> snmp:void() when Format :: string(), Args :: list().

The function is called if an error occurs during the configuration phase, for
example if a syntax error is found in a configuration file.
Format and Args are as in io:format(Format, Args).

 user_err(Format, Args)

 -spec user_err(Format, Args) -> snmp:void() when Format :: string(), Args :: list().

The function is called if a user related error occurs at run-time, for example
if a user defined instrumentation function returns erroneous.
Format and Args are as in io:format(Format, Args).

snmpa_error_report behaviour

Behaviour module for reporting SNMP agent errors
 This module defines the behaviour of the agent error reporting. A
snmpa_error_report compliant module must export the following functions:
	config_err/2
	user_err/2

The semantics of them and their exact signatures are explained below.

 Summary

 Callbacks

 config_err(Format, Args)

 The function is called if an error occurs during the configuration phase, for
example if a syntax error is found in a configuration file.

 user_err(Format, Args)

 The function is called if a user related error occurs at run-time, for example
if a user defined instrumentation function returns erroneous.

 Callbacks

 config_err(Format, Args)

 -callback config_err(Format, Args) -> snmp:void() when Format :: string(), Args :: [term()].

The function is called if an error occurs during the configuration phase, for
example if a syntax error is found in a configuration file.
Format and Args are as in io:format(Format, Args).

 user_err(Format, Args)

 -callback user_err(Format, Args) -> snmp:void() when Format :: string(), Args :: [term()].

The function is called if a user related error occurs at run-time, for example
if a user defined instrumentation function returns erroneous.
Format and Args are as in io:format(Format, Args).

snmpa_local_db

The SNMP built-in database
The module snmpa_local_db contains functions for implementing tables (and
variables) using the SNMP built-in database. The database exists in two
instances, one volatile and one persistent. The volatile database is implemented
with ets. The persistent database is implemented with dets.
There is a scaling problem with this database.
	Insertions and deletions are inefficient for large tables.

This problem is best solved by using Mnesia instead.
The following functions describe the interface to snmpa_local_db. Each
function has a Mnesia equivalent. The argument NameDb is a tuple {Name, Db}
where Name is the symbolic name of the managed object (as defined in the MIB),
and Db is either volatile or persistent. mnesia is not possible since
all these functions are snmpa_local_db specific.
Common Data Types
In the functions defined below, the following limitation applies:
	Db = volatile | persistent

See Also
ets(3), dets(3), snmp_generic(3)

 Summary

 Functions

 dump()

 This function can be used to manually dump the database to file.

 match(Table, Pattern)

 Performs an ets/dets matching on the table.

 print()

 Equivalent to print/2.

 print(Table)

 Equivalent to print/2.

 print(Table, Db)

 Prints the contents of the database on screen. This is useful for debugging
since the STANDARD-MIB and OTP-SNMPEA-MIB (and maybe your own MIBs) are
stored in snmpa_local_db.

 table_create(Table)

 Creates a table. If the table already exist, the old copy is destroyed.

 table_create_row(Table, RowIndex, Row)

 Creates a row in a table. Row is a tuple with values for all columns,
including the index columns.

 table_delete(Table)

 Deletes a table.

 table_delete_row(Table, RowIndex)

 Deletes the row in the table.

 table_exists(Table)

 Checks if a table exists.

 table_get_element(Table, RowIndex, Col)

 Get a column value (element) from a row of the table.

 table_get_row(Table, RowIndex)

 Row is a tuple with values for all columns, including the index columns.

 table_set_elements(Table, RowIndex, Cols)

 Update the specified columnar objects of the row of this table.

 Functions

 dump()

 -spec dump() -> ok | {error, Reason} when Reason :: term().

This function can be used to manually dump the database to file.

 match(Table, Pattern)

 -spec match(Table, Pattern) -> [Match]
 when
 Table :: snmpa:name_db() | snmpa:name(),
 Pattern :: ets:match_pattern(),
 Match :: term().

Performs an ets/dets matching on the table.
See ets:match/2 for a description of Pattern and the return values.

 print()

 -spec print() -> term().

Equivalent to print/2.

 print(Table)

 -spec print(Table) -> term() when Table :: snmpa:name().

Equivalent to print/2.

 print(Table, Db)

 -spec print(Table, Db) -> term() when Table :: snmpa:name(), Db :: volatile | persistent.

Prints the contents of the database on screen. This is useful for debugging
since the STANDARD-MIB and OTP-SNMPEA-MIB (and maybe your own MIBs) are
stored in snmpa_local_db.
Table is an atom for a table in the database. When no name is supplied, the
whole database is shown.
Note that these functions does not actually print, using io:format/2, instead
they (just) return the information. If executed in a shell, the information will
then be displayed (probably truncated) there.
A better use would be:
	 io:format("~p~n", [snmpa_local_db:print()]).

 table_create(Table)

 -spec table_create(Table) -> boolean() when Table :: snmpa:name_db() | snmpa:name().

Creates a table. If the table already exist, the old copy is destroyed.
Returns false if the NameDb argument is incorrectly specified, true
otherwise.
Database (only table name specified) defaults to volatile.

 table_create_row(Table, RowIndex, Row)

 -spec table_create_row(Table, RowIndex, Row) -> boolean()
 when
 Table :: snmpa:name_db() | snmpa:name(),
 RowIndex :: snmp:row_index(),
 Row :: tuple().

Creates a row in a table. Row is a tuple with values for all columns,
including the index columns.
Database (only table name specified) defaults to volatile.

 table_delete(Table)

 -spec table_delete(Table) -> true when Table :: snmpa:name_db() | snmpa:name().

Deletes a table.
Database (only table name specified) defaults to volatile.

 table_delete_row(Table, RowIndex)

 -spec table_delete_row(Table, RowIndex) -> boolean()
 when Table :: snmpa:name_db() | snmpa:name(), RowIndex :: snmp:row_index().

Deletes the row in the table.
Database (only table name specified) defaults to volatile.

 table_exists(Table)

 -spec table_exists(Table) -> boolean() when Table :: snmpa:name_db() | snmpa:name().

Checks if a table exists.
Database (only table name specified) defaults to volatile.

 table_get_element(Table, RowIndex, Col)

 (since OTP 27.0)

 -spec table_get_element(Table, RowIndex, Col) -> {value, Value} | undefined
 when
 Table :: snmpa:name_db() | snmpa:name(),
 RowIndex :: snmp:row_index(),
 Col :: snmp:column(),
 Value :: term().

Get a column value (element) from a row of the table.
Database (only table name specified) defaults to volatile.
This function has existed for long time,
but not had a proper since tag, so to simplify
we set the since tag to when it was documented.

 table_get_row(Table, RowIndex)

 -spec table_get_row(Table, RowIndex) -> Row | undefined
 when
 Table :: snmpa:name_db() | snmpa:name(),
 RowIndex :: snmp:row_index(),
 Row :: tuple().

Row is a tuple with values for all columns, including the index columns.
Database (only table name specified) defaults to volatile.

 table_set_elements(Table, RowIndex, Cols)

 (since OTP 27.0)

 -spec table_set_elements(Table, RowIndex, Cols) -> boolean()
 when
 Table :: snmpa:name_db() | snmpa:name(),
 RowIndex :: snmp:row_index(),
 Cols :: [{Col, Value}],
 Col :: snmp:column(),
 Value :: term().

Update the specified columnar objects of the row of this table.
Database (only table name specified) defaults to volatile.
This function has existed for long time,
but not had a proper since tag, so to simplify
we set the since tag to when it was documented.

snmpa_mib_data behaviour

Behaviour module for the SNMP agent mib-server data module.
This module defines the behaviour of the SNMP agent mib-server data module. A
snmpa_mib_data compliant module must export the following functions:
	new/1
	close/1
	sync/1
	load_mib/4
	unload_mib/4
	lookup/2
	next/3
	register_subagent/3
	unregister_subagent/2
	which_mib/2
	which_mibs/1
	whereis_mib/2
	dump/2
	info/1
	backup/2
	code_change/4

The semantics of them and their exact signatures are explained below.
Note that the data extracted from the imported (loaded) mibs are stored partly
by the mib-server and partly by the symbolic-store server. See the default
mib-server data module, snmpa_mib_data_tttn for details.

 Summary

 Types

 filename()

 mib_view()

 mib_view_elem()

 mib_view_inclusion()

 mib_view_mask()

 Callbacks

 backup(State, BackupDir)

 Perform a backup of the mib-server data.

 close(State)

 Close the mib-storage.

 code_change(Direction, Vsn, Extra, State)

 Perform a code-change (upgrade or downgrade).

 dump(State, Destination)

 Dump the mib-server data to stdio (Destination = io) or the specified file.

 info(State)

 Retrieve misc info for the mib data.

 load_mib(State, FileName, MeOverride, TeOverride)

 Load the mib specified by the Filename argument into the mib-server. The
MeOverride and TeOverride arguments specifies how the mib-server shall
handle duplicate mib- and trap- entries.

 lookup(State, Oid)

 Find the mib-entry corresponding to the Oid. If it is a variable, the Oid
must be <Oid for var>.0 and if it is a table, Oid must be

 new(MibStorage)

 Create a new mib-server data instance.

 next(State, Oid, MibView)

 Finds the lexicographically next oid.

 register_subagent(State, Oid, Pid)

 Register the subagent, process, handling part of the mib-tree.

 sync(State)

 Synchronize (write to disc, if possible) the mib-server data. This depends on
the mib_storage option, and will only have an effect if the mib-storage option
has an actual disc component (such as dets, or ets with a file).

 unload_mib(State, Filename)

 unload_mib(State, FileName, MeOverride, TeOverride)

 Unload the mib specified by the Filename argument from the mib-server. The
MeOverride and TeOverride arguments specifies how the mib-server shall
handle duplicate mib- and trap- entries.

 unregister_subagent(State, PidOrOid)

 Unregister the subagent, handling part of the mib-tree, as specified by the
oid() or pid/0 (PidOrOid).

 whereis_mib(State, MibName)

 Retrieve the mib file for the mib.

 which_mib(State, Oid)

 Retrieve the mib-file to which an given oid() belongs.

 which_mibs(State)

 Retrieve all loaded mib-files.

 Types

 filename()

 (not exported)

 (since OTP R16B01)

 -type filename() :: file:filename().

 mib_view()

 (since OTP R16B01)

 -type mib_view() :: [mib_view_elem()].

 mib_view_elem()

 (since OTP R16B01)

 -type mib_view_elem() ::
 {SubTree :: snmp:oid(), Mask :: [non_neg_integer()], Inclusion :: mib_view_inclusion()}.

 mib_view_inclusion()

 (since OTP R16B01)

 -type mib_view_inclusion() :: 1 | 2.

 mib_view_mask()

 (since OTP R16B01)

 -type mib_view_mask() :: [non_neg_integer()].

 Callbacks

 backup(State, BackupDir)

 (since OTP R16B01)

 -callback backup(State :: term(), BackupDir :: string()) -> ok | {error, Reason :: term()}.

Perform a backup of the mib-server data.
Note that its implementation dependent (and also dependent on mib-storage is
used) if a backup is possible.

 close(State)

 (since OTP R16B01)

 -callback close(State :: term()) -> ok.

Close the mib-storage.

 code_change(Direction, Vsn, Extra, State)

 (since OTP R16B01)

 -callback code_change(Direction :: up | down, Vsn :: term(), Extra :: term(), State :: term()) ->
 NewState :: term().

Perform a code-change (upgrade or downgrade).
See gen_server for more info regarding the Vsn and Extra arguments.

 dump(State, Destination)

 (since OTP R16B01)

 -callback dump(State :: term(), Destination :: io | filename()) -> ok | {error, Reason :: term()}.

Dump the mib-server data to stdio (Destination = io) or the specified file.

 info(State)

 (since OTP R16B01)

 -callback info(State :: term()) -> list().

Retrieve misc info for the mib data.
This is a utility function used to inspect, for instance, memory usage, in a
simple way.

 load_mib(State, FileName, MeOverride, TeOverride)

 (since OTP R16B01)

 -callback load_mib(State :: term(),
 FileName :: filename(),
 MeOverride :: boolean(),
 TeOverride :: boolean()) ->
 {ok, NewState :: term()} | {error, Reason :: already_loaded | term()}.

Load the mib specified by the Filename argument into the mib-server. The
MeOverride and TeOverride arguments specifies how the mib-server shall
handle duplicate mib- and trap- entries.

 lookup(State, Oid)

 (since OTP R16B01)

 -callback lookup(State :: term(), Oid :: snmp:oid()) ->
 {false, Reason :: term()} |
 {variable, MibEntry :: snmpa:me()} |
 {table_column, MibEntry :: snmpa:me(), TableEntryOid :: snmp:oid()} |
 {subagent, SubAgentPid :: pid(), SAOid :: snmp:oid()}.

Find the mib-entry corresponding to the Oid. If it is a variable, the Oid
must be <Oid for var>.0 and if it is a table, Oid must be

 new(MibStorage)

 (since OTP R16B01)

 -callback new(MibStorage :: snmpa:mib_storage()) -> State :: term().

Create a new mib-server data instance.

 next(State, Oid, MibView)

 (since OTP R16B01)

 -callback next(State :: term(), Oid :: snmp:oid(), MibView :: mib_view()) ->
 endOfView | false |
 {subagent, SubAgentPid :: pid(), SAOid :: snmp:oid()} |
 {variable, MibEntry :: snmpa:me(), VarOid :: snmp:oid()} |
 {table, TableOid :: snmp:oid(), TableRestOid :: snmp:oid(), MibEntry :: snmpa:me()}.

Finds the lexicographically next oid.

 register_subagent(State, Oid, Pid)

 (since OTP R16B01)

 -callback register_subagent(State :: term(), Oid :: snmp:oid(), Pid :: pid()) ->
 {ok, NewState :: term()} | {error, Reason :: term()}.

Register the subagent, process, handling part of the mib-tree.

 sync(State)

 (since OTP R16B01)

 -callback sync(State :: term()) -> ok.

Synchronize (write to disc, if possible) the mib-server data. This depends on
the mib_storage option, and will only have an effect if the mib-storage option
has an actual disc component (such as dets, or ets with a file).

 unload_mib(State, Filename)

 (since OTP R16B01)

 (optional)

 -callback unload_mib(State, Filename) -> {ok, NewState} | {error, Reason}
 when
 State :: term(),
 Filename :: filename(),
 NewState :: term(),
 Reason :: not_loaded | term().

 unload_mib(State, FileName, MeOverride, TeOverride)

 (since OTP R16B01)

 -callback unload_mib(State :: term(),
 FileName :: filename(),
 MeOverride :: boolean(),
 TeOverride :: boolean()) ->
 {ok, NewState :: term()} | {error, Reason :: not_loaded | term()}.

Unload the mib specified by the Filename argument from the mib-server. The
MeOverride and TeOverride arguments specifies how the mib-server shall
handle duplicate mib- and trap- entries.

 unregister_subagent(State, PidOrOid)

 (since OTP R16B01)

 -callback unregister_subagent(State :: term(), PidOrOid :: pid() | snmp:oid()) ->
 {ok, NewState :: term()} |
 {ok, NewState :: term(), Pid :: pid()} |
 {error, Reason :: term()}.

Unregister the subagent, handling part of the mib-tree, as specified by the
oid() or pid/0 (PidOrOid).
When unregister the subagent using an oid(), the pid/0 of the process
handling the sub-tree is also returned.

 whereis_mib(State, MibName)

 (since OTP R16B01)

 -callback whereis_mib(State :: term(), MibName :: atom()) ->
 {ok, Filename :: filename()} | {error, Reason :: term()}.

Retrieve the mib file for the mib.

 which_mib(State, Oid)

 (since OTP R16B01)

 -callback which_mib(State :: term(), Oid :: snmp:oid()) -> {ok, Mib :: string()} | {error, Reason :: term()}.

Retrieve the mib-file to which an given oid() belongs.

 which_mibs(State)

 (since OTP R16B01)

 -callback which_mibs(State :: term()) -> [{MibName :: atom(), Filename :: filename()}].

Retrieve all loaded mib-files.

snmpa_mib_storage behaviour

Behaviour module for the SNMP agent mib storage.
This module defines the behaviour of the SNMP agent mib storage.
The mib storage is used by the agent to store internal mib- related information.
The mib storage module is used by several entities, not just the mib-server.
A snmpa_mib_storage compliant module must export the following functions:
	open/5
	close/1
	read/2
	write/2
	delete/1
	delete/2
	match_object/2
	match_delete/2
	tab2list/1
	info/1
	info/2
	sync/1
	backup/2

The semantics of them and their exact signatures are explained below.

 Summary

 Types

 mib_storage_fields()

 mib_storage_table_id()

 mib_storage_table_type()

 Callbacks

 backup(TabId, Dir)

 Perform a backup of the mib-storage table.

 close(TabId)

 Close the mib-storage table.

 delete(TabId)

 Delete an entire mib-storage table.

 delete(TabId, Key)

 Delete a record from the mib-storage table.

 info(TabId)

 Retrieve implementation dependent mib-storage table information.

 info(TabId, Item)

 match_delete(TabId, Pattern)

 Search the mib-storage table for record that match the specified pattern and
then delete them. The records deleted are also returned.

 match_object(TabId, Pattern)

 Search the mib-storage table for record that match the specified pattern.

 open(Name, RecName, Fields, Type, Options)

 Create or open a mib storage table.

 read(TabId, Key)

 Read a record from the mib-storage table.

 sync(TabId)

 Synchronize the mib-storage table.

 tab2list(TabId)

 Return all records in the mib-storage table in the form of a list.

 write(TabId, Record)

 Write a record to the mib-storage table.

 Types

 mib_storage_fields()

 (since OTP R16B01)

 -type mib_storage_fields() :: [atom()].

 mib_storage_table_id()

 (since OTP R16B01)

 -type mib_storage_table_id() :: term().

 mib_storage_table_type()

 (since OTP R16B01)

 -type mib_storage_table_type() :: set | bag.

 Callbacks

 backup(TabId, Dir)

 (since OTP R16B01)

 -callback backup(TabId :: mib_storage_table_id(), Dir :: file:filename()) -> ok | {error, Reason :: term()}.

Perform a backup of the mib-storage table.
What this means, if anything, is implementation dependent.

 close(TabId)

 (since OTP R16B01)

 -callback close(TabId :: mib_storage_table_id()) -> term().

Close the mib-storage table.

 delete(TabId)

 (since OTP R16B01)

 -callback delete(TabId :: mib_storage_table_id()) -> snmp:void().

Delete an entire mib-storage table.

 delete(TabId, Key)

 (since OTP R16B01)

 -callback delete(TabId :: mib_storage_table_id(), Key :: term()) -> ok | {error, Reason :: term()}.

Delete a record from the mib-storage table.

 info(TabId)

 (since OTP R16B01)

 -callback info(TabId :: mib_storage_table_id()) -> Info :: term().

Retrieve implementation dependent mib-storage table information.

 info(TabId, Item)

 (since OTP R16B01)

 -callback info(TabId :: mib_storage_table_id(), Item :: atom()) -> Info :: term().

 match_delete(TabId, Pattern)

 (since OTP R16B01)

 -callback match_delete(TabId :: mib_storage_table_id(), Pattern :: ets:match_pattern()) ->
 Recs :: [tuple()] | {error, Reason :: term()}.

Search the mib-storage table for record that match the specified pattern and
then delete them. The records deleted are also returned.

 match_object(TabId, Pattern)

 (since OTP R16B01)

 -callback match_object(TabId :: mib_storage_table_id(), Pattern :: ets:match_pattern()) ->
 Recs :: [tuple()] | {error, Reason :: term()}.

Search the mib-storage table for record that match the specified pattern.

 open(Name, RecName, Fields, Type, Options)

 (since OTP R16B01)

 -callback open(Name :: atom(),
 RecName :: atom(),
 Fields :: mib_storage_fields(),
 Type :: mib_storage_table_type(),
 Options :: list()) ->
 {ok, TabId :: mib_storage_table_id()} | {error, Reason :: term()}.

Create or open a mib storage table.
Note that the RecordName and Fields arguments my not be used in all
implementations (they are actually only needed for mnesia-based
implementations).
Note also that the Options argument comes from the options config option of
the mib-storage config option, and is passed on as is.

 read(TabId, Key)

 (since OTP R16B01)

 -callback read(TabId :: mib_storage_table_id(), Key :: term()) -> false | {value, Record :: tuple()}.

Read a record from the mib-storage table.

 sync(TabId)

 (since OTP R16B01)

 -callback sync(TabId :: mib_storage_table_id()) -> snmp:void().

Synchronize the mib-storage table.
What this means, if anything, is implementation dependent.

 tab2list(TabId)

 (since OTP R16B01)

 -callback tab2list(TabId :: mib_storage_table_id()) -> [tuple()].

Return all records in the mib-storage table in the form of a list.

 write(TabId, Record)

 (since OTP R16B01)

 -callback write(TabId :: mib_storage_table_id(), Record :: tuple()) -> ok | {error, Reason :: term()}.

Write a record to the mib-storage table.

snmpa_mpd

Message Processing and Dispatch module for the SNMP agent
The module snmpa_mpd implements the version independent Message Processing and
Dispatch functionality in SNMP for the agent. It is supposed to be used from a
Network Interface process (Definition of Agent Net if).
DATA TYPES
For more information, see the
data types in snmpa_conf.

 Summary

 Types

 acm_data()

 This is the message specific data used in the SNMP message. This value is
received in a send_pdu or
send_pdu_req message from the agent (by
the net-if process).

 acm_data_cmy()

 This is the message specific data used in the SNMPv1 and SNMPv2c message.

 acm_data_v3()

 This is the message specific data used in the SNMPv3 message.

 logger()

 A fun that handles audit trail logging.

 mpd_state()

 msg_data()

 This is the message specific data used in the SNMP message. This value is
received in a send_pdu or
send_pdu_req message from the agent (by
the net-if process).

 msg_data_cmy()

 This is the message specific data used in the SNMP message. In SNMPv1 and
SNMPv2c, this message data is the community string.

 msg_data_ctx()

 This is the message specific data used in the SNMP message. In SNMPv3, it is the
context information.

 Functions

 discarded_pdu(Variable)

 Increments the variable associated with a discarded pdu. This function can be
used when the net_if process receives a discarded_pdu message from the agent.

 generate_msg(Vsn, NoteStore, Pdu, MsgData, To)

 Equivalent to generate_msg/6.

 generate_msg(Vsn, NoteStore, Pdu, MsgData, LocalEngineID, To)

 Generates a possibly encrypted request packet to be sent to the network.

 generate_response_msg(Vsn, RePdu, Type, ACMData, Log)

 Equivalent to generate_response_msg/6.

 generate_response_msg(Vsn, RePdu, Type, ACMData, LocalEngineID, Log)

 Generates a possibly encrypted response packet to be sent to the network. Type
is the #pdu.type of the original request.

 init(Vsns)

 This function can be called from the net_if process at start-up. The options
list defines which versions to use.

 process_packet(Packet, From, State, NoteStore, Log)

 Equivalent to process_packet/6.

 process_packet/6

 Processes an incoming packet. Performs authentication and decryption as
necessary. The return values should be passed to the agent.

 process_taddrs(InDests)

 Transforms addresses from internal MIB format to one more useful to
Agent Net if.

 Types

 acm_data()

 -type acm_data() :: acm_data_cmy() | acm_data_v3().

This is the message specific data used in the SNMP message. This value is
received in a send_pdu or
send_pdu_req message from the agent (by
the net-if process).

 acm_data_cmy()

 -opaque acm_data_cmy()

This is the message specific data used in the SNMPv1 and SNMPv2c message.

 acm_data_v3()

 -opaque acm_data_v3()

This is the message specific data used in the SNMPv3 message.

 logger()

 -type logger() ::
 fun((Type :: snmp_pdus:pdu_type(),
 Data :: binary() | {V3Hdr :: snmp_pdus:v3_hdr(), ScopedPDUBytes :: binary()}) ->
 snmp:void()).

A fun that handles audit trail logging.

 mpd_state()

 -opaque mpd_state()

 msg_data()

 -type msg_data() :: msg_data_cmy() | msg_data_ctx().

This is the message specific data used in the SNMP message. This value is
received in a send_pdu or
send_pdu_req message from the agent (by
the net-if process).

 msg_data_cmy()

 -opaque msg_data_cmy()

This is the message specific data used in the SNMP message. In SNMPv1 and
SNMPv2c, this message data is the community string.

 msg_data_ctx()

 -opaque msg_data_ctx()

This is the message specific data used in the SNMP message. In SNMPv3, it is the
context information.

 Functions

 discarded_pdu(Variable)

 -spec discarded_pdu(Variable) -> snmp:void() when Variable :: snmpa:name() | false.

Increments the variable associated with a discarded pdu. This function can be
used when the net_if process receives a discarded_pdu message from the agent.

 generate_msg(Vsn, NoteStore, Pdu, MsgData, To)

 (since OTP R14B)

 -spec generate_msg(Vsn, NoteStore, Pdu, MsgData, To) -> {ok, PacketsAndAddresses} | {discarded, Reason}
 when
 Vsn :: snmp_pdus:version(),
 NoteStore :: pid(),
 Pdu :: snmp_pdus:pdu(),
 MsgData :: msg_data(),
 To :: [{Domain, Address}],
 PacketsAndAddresses :: [{Domain, Address, Packet}],
 Domain :: snmpa_conf:transportDomain(),
 Address :: snmpa_conf:transportAddress(),
 Packet :: binary(),
 Reason :: term().

Equivalent to generate_msg/6.

 generate_msg(Vsn, NoteStore, Pdu, MsgData, LocalEngineID, To)

 (since OTP R14B)

 -spec generate_msg(Vsn, NoteStore, Pdu, MsgData, LocalEngineID, To) ->
 {ok, PacketsAndAddresses} | {discarded, Reason}
 when
 Vsn :: snmp_pdus:version(),
 NoteStore :: pid(),
 Pdu :: snmp_pdus:pdu(),
 MsgData :: msg_data(),
 LocalEngineID :: snmp_framework_mib:engine_id(),
 To :: [DestAddr],
 DestAddr :: {Domain, Address} | {{Domain, Address}, SecData},
 SecData :: term(),
 PacketsAndAddresses :: [{Domain, Address, Packet}],
 Domain :: snmpa_conf:transportDomain(),
 Address :: snmpa_conf:transportAddress(),
 Packet :: binary(),
 Reason :: term().

Generates a possibly encrypted request packet to be sent to the network.
MsgData is the message specific data used in the SNMP message. This value is
received in a send_pdu or
send_pdu_req message from the agent. In
SNMPv1 and SNMPv2c, this message data is the community
string. In SNMPv3, it is the context information.
To is a list of destination addresses and their corresponding security
parameters. This value is received in the same message from the agent and then
transformed through process_taddrs before
passed to this function.
Note
Note that the use of the LocalEngineID argument is only intended for special
cases, if the agent is to "emulate" multiple EngineIDs! By default, the agent
uses the value of SnmpEngineID (see SNMP-FRAMEWORK-MIB).

 generate_response_msg(Vsn, RePdu, Type, ACMData, Log)

 (since OTP R14B)

 -spec generate_response_msg(Vsn, RePdu, Type, ACMData, Log) -> {ok, Packet} | {discarded, Reason}
 when
 Vsn :: snmp_pdus:version(),
 RePdu :: snmp_pdus:pdu(),
 Type :: snmp_pdus:pdu_type(),
 ACMData :: acm_data(),
 Log :: logger(),
 Packet :: binary(),
 Reason :: term().

Equivalent to generate_response_msg/6.

 generate_response_msg(Vsn, RePdu, Type, ACMData, LocalEngineID, Log)

 (since OTP R14B)

 -spec generate_response_msg(Vsn, RePdu, Type, ACMData, LocalEngineID, Log) ->
 {ok, Packet} | {discarded, Reason}
 when
 Vsn :: snmp_pdus:version(),
 RePdu :: snmp_pdus:pdu(),
 Type :: snmp_pdus:pdu_type(),
 ACMData :: acm_data(),
 LocalEngineID :: snmp_framework_mib:engine_id(),
 Log :: logger(),
 Packet :: binary(),
 Reason :: term().

Generates a possibly encrypted response packet to be sent to the network. Type
is the #pdu.type of the original request.
Note
Note that the use of the LocalEngineID argument is only intended for special
cases, if the agent is to "emulate" multiple EngineIDs! By default, the agent
uses the value of SnmpEngineID (see SNMP-FRAMEWORK-MIB).

 init(Vsns)

 -spec init(Vsns) -> MPDState when Vsns :: [snmp:version()], MPDState :: mpd_state().

This function can be called from the net_if process at start-up. The options
list defines which versions to use.
It also initializes some SNMP counters.

 process_packet(Packet, From, State, NoteStore, Log)

 (since OTP 17.3)

 -spec process_packet(Packet, From, State, NoteStore, Log) ->
 {ok, Vsn, Pdu, PduMS, ACMData} | {discarded, Reason} | {discovery, DiscoPacket}
 when
 Packet :: binary(),
 From :: {TDomain, TAddress},
 TDomain :: snmpa_conf:transportDomain(),
 TAddress :: {IpAddr, IpPort},
 IpAddr :: inet:ip_address(),
 IpPort :: inet:port_number(),
 State :: mpd_state(),
 NoteStore :: pid(),
 Log :: logger(),
 Vsn :: snmp_pdus:version(),
 Pdu :: snmp_pdus:pdu(),
 PduMS :: pos_integer(),
 ACMData :: acm_data(),
 Reason :: term(),
 DiscoPacket :: binary().

Equivalent to process_packet/6.

 process_packet/6

 (since OTP R14B)

 -spec process_packet(Packet, TDomain, TAddress, State, NoteStore, Log) ->
 {ok, Vsn, Pdu, PduMS, ACMData} | {discarded, Reason} | {discovery, DiscoPacket}
 when
 Packet :: binary(),
 TDomain :: snmpa_conf:transportDomain(),
 TAddress :: {IpAddr, IpPort},
 IpAddr :: inet:ip_address(),
 IpPort :: inet:port_number(),
 State :: mpd_state(),
 NoteStore :: pid(),
 Log :: logger(),
 Vsn :: snmp_pdus:version(),
 Pdu :: snmp_pdus:pdu(),
 PduMS :: pos_integer(),
 ACMData :: acm_data(),
 Reason :: term(),
 DiscoPacket :: binary();
 (Packet, From, LocalEngineID, State, NoteStore, Log) ->
 {ok, Vsn, Pdu, PduMS, ACMData} | {discarded, Reason} | {discovery, DiscoPacket}
 when
 Packet :: binary(),
 From :: {TDomain, TAddress},
 TDomain :: snmpa_conf:transportDomain(),
 TAddress :: {IpAddr, IpPort},
 IpAddr :: inet:ip_address(),
 IpPort :: inet:port_number(),
 LocalEngineID :: snmp_framework_mib:engine_id(),
 State :: mpd_state(),
 NoteStore :: pid(),
 Log :: logger(),
 Vsn :: snmp_pdus:version(),
 Pdu :: snmp_pdus:pdu(),
 PduMS :: pos_integer(),
 ACMData :: acm_data(),
 Reason :: term(),
 DiscoPacket :: binary().

Processes an incoming packet. Performs authentication and decryption as
necessary. The return values should be passed to the agent.
Note
Note that the use of the LocalEngineID argument is only intended for special
cases, if the agent is to "emulate" multiple EngineIDs! By default, the agent
uses the value of SnmpEngineID (see SNMP-FRAMEWORK-MIB).

 process_taddrs(InDests)

 (since OTP 17.3)

 -spec process_taddrs(InDests) -> OutDests
 when
 InDests :: [InDest],
 InDest :: {{InDomain, InAddress}, SecData} | {InDomain, InAddress},
 InDomain :: term(),
 InAddress :: term(),
 SecData :: term(),
 OutDests :: [OutDest],
 OutDest :: {{OutDomain, OutAddress}, SecData} | {OutDomain, OutAddress},
 OutDomain :: snmpa_conf:transportDomain(),
 OutAddress :: snmpa_conf:transportAddress().

Transforms addresses from internal MIB format to one more useful to
Agent Net if.
See also generate_msg.

snmpa_network_interface behaviour

Behaviour module for the SNMP agent network interface.
This module defines the behaviour of the agent network interface. A
snmpa_network_interface compliant module must export the following functions:
	start_link/4
	info/1
	get_log_type/1
	set_log_type/2
	verbosity/2

The semantics of them and their exact signatures are explained below.
But this is not enough. There is also a set of mandatory messages which the
network interface entity must be able to receive and be able to send. This is
described in chapter snmp_agent_netif.

 Summary

 Callbacks

 get_log_type(Pid)

 The Audit Trail Log is managed by the network interface process. So, it is this
process that has to retrieve the actual log-type.

 get_request_limit(Pid)

 The request limit is the number of simultaneous requests the agent will accept.
This function retrieve the current value.

 info(Pid)

 The info returned is basically up to the implementer to decide. This
implementation provided by the application provides info about memory allocation
and various socket information.

 set_log_type(Pid, NewType)

 The Audit Trail Log is managed by the network interface process. So, it is this
process that has to do the actual changing of the type.

 set_request_limit(Pid, NewLimit)

 The request limit is the number of simultaneous requests the agent will accept.
This function sets a new value.

 start_link(Prio, NoteStore, MasterAgent, Opts)

 Start-link the network interface process.

 verbosity(Pid, Verbosity)

 Change the verbosity of a running network interface process.

 Callbacks

 get_log_type(Pid)

 -callback get_log_type(Pid) -> {ok, LogType} | {error, Reason}
 when Pid :: pid(), LogType :: snmp:atl_type(), Reason :: term().

The Audit Trail Log is managed by the network interface process. So, it is this
process that has to retrieve the actual log-type.

 get_request_limit(Pid)

 (since OTP 27.0)

 -callback get_request_limit(Pid) -> {ok, Limit} when Pid :: pid(), Limit :: non_neg_integer() | infinity.

The request limit is the number of simultaneous requests the agent will accept.
This function retrieve the current value.

 info(Pid)

 -callback info(Pid) -> Info when Pid :: pid(), Info :: [{Key, Value}], Key :: term(), Value :: term().

The info returned is basically up to the implementer to decide. This
implementation provided by the application provides info about memory allocation
and various socket information.
The info returned by this function is returned together with other info
collected by the agent when the info/1 function is called
(tagged with with the key net_if).

 set_log_type(Pid, NewType)

 -callback set_log_type(Pid, NewType) -> {ok, OldType} | {error, Reason}
 when
 Pid :: pid(),
 NewType :: snmp:atl_type(),
 OldType :: snmp:atl_type(),
 Reason :: term().

The Audit Trail Log is managed by the network interface process. So, it is this
process that has to do the actual changing of the type.
See snmpa:set_log_type/2 for more info.

 set_request_limit(Pid, NewLimit)

 (since OTP 27.0)

 -callback set_request_limit(Pid, NewLimit) -> {ok, OldLimit}
 when
 Pid :: pid(),
 NewLimit :: non_neg_integer() | infinity,
 OldLimit :: non_neg_integer() | infinity.

The request limit is the number of simultaneous requests the agent will accept.
This function sets a new value.

 start_link(Prio, NoteStore, MasterAgent, Opts)

 -callback start_link(Prio, NoteStore, MasterAgent, Opts) -> {ok, Pid} | {error, Reason}
 when
 Prio :: low | normal | high,
 NoteStore :: pid(),
 MasterAgent :: pid(),
 Opts :: [Option],
 Option :: {verbosity, snmp:verbosity()} | {versions, [snmp:version()]} | term(),
 Pid :: pid(),
 Reason :: term().

Start-link the network interface process.
NoteStore is the pid of the note-store process and MasterAgent is the pid of
the master-agent process.
Opts is an (basically) implementation dependent list of options to the network
interface process. There are however a number of options which must be
handled: versions and verbosity.

 verbosity(Pid, Verbosity)

 -callback verbosity(Pid, Verbosity) -> snmp:void() when Pid :: pid(), Verbosity :: snmp:verbosity().

Change the verbosity of a running network interface process.

snmpa_network_interface_filter behaviour

Behaviour module for the SNMP agent network-interface filter.
This module defines the behaviour of the agent network interface filter. A
snmpa_network_interface_filter compliant module must export the following
functions:
	accept_recv/2
	accept_send/2
	accept_recv_pdu/3
	accept_send_pdu/2

The semantics of them and their exact signatures are explained below.
The purpose of the network interface filter is to allow for filtering of
messages (accept or reject) receive and send. This is done on two levels:
	The first level is at the transport entry / exit point, i.e. immediately after
the receipt of the message before any message processing is done (accept_recv)
and immediately before sending the message after all message processing is
done (accept_send).
	The second level is at the MPD entry / exit point, i.e. immediately after the
basic message processing (accept_recv_pdu) / immediately before the basic
message processing (accept_send_pdu).

Note that the network interface filter is something which is used by the network
interface implementation provided by the application (snmpa_net_if). The
default filter accepts all messages.
A network interface filter can e.g. be used during testing or for load
regulation. If the intended use is load regulation, see also
req_limit and the function
register_notification_filter.
Legacy network interface filter modules used arguments on the form
(IpAddr, PortNumber,...) instead of (Domain, Addr, ...), and if the SNMP
agent is run without changing the configuration to use transport domains the
network interface filter will still get the old arguments and work as before.
See also the data types in snmpa_conf.

 Summary

 Types

 pdu_type()

 transportAddressWithPort()

 transportDomain()

 Callbacks

 accept_recv(Domain, Addr)

 Called at the reception of a message (before any processing has been done).

 accept_recv_pdu(Domain, Addr, PduType)

 Called after the basic message processing (MPD) has been done, but before the
pdu is handed over to the master-agent for primary processing.

 accept_send(Domain, Addr)

 Called before the sending of a message (after all processing has been done).

 accept_send_pdu(Targets, PduType)

 Called before the basic message processing (MPD) is done, when a pdu has been
received from the master-agent.

 Types

 pdu_type()

 (not exported)

 -type pdu_type() :: snmpa:pdu_type().

 transportAddressWithPort()

 (not exported)

 -type transportAddressWithPort() :: snmpa_conf:transportAddressWithPort().

 transportDomain()

 (not exported)

 -type transportDomain() :: snmpa_conf:transportDomain().

 Callbacks

 accept_recv(Domain, Addr)

 -callback accept_recv(Domain, Addr) -> boolean()
 when Domain :: transportDomain(), Addr :: transportAddressWithPort().

Called at the reception of a message (before any processing has been done).
For the message to be discarded, the function must return false.

 accept_recv_pdu(Domain, Addr, PduType)

 -callback accept_recv_pdu(Domain, Addr, PduType) -> boolean()
 when
 Domain :: transportDomain(),
 Addr :: transportAddressWithPort(),
 PduType :: pdu_type().

Called after the basic message processing (MPD) has been done, but before the
pdu is handed over to the master-agent for primary processing.
For the pdu to be discarded, the function must return false.

 accept_send(Domain, Addr)

 -callback accept_send(Domain, Addr) -> boolean()
 when Domain :: transportDomain(), Addr :: transportAddressWithPort().

Called before the sending of a message (after all processing has been done).
For the message to be discarded, the function must return false.

 accept_send_pdu(Targets, PduType)

 -callback accept_send_pdu(Targets, PduType) -> Reply
 when
 Targets :: [Target],
 Target :: {Domain, Addr},
 Domain :: transportDomain(),
 Addr :: transportAddressWithPort(),
 PduType :: pdu_type(),
 Reply :: boolean() | NewTargets,
 NewTargets :: Targets.

Called before the basic message processing (MPD) is done, when a pdu has been
received from the master-agent.
For the message to be discarded all together, the function must return
false.
Note that it is possible for this function to filter out targets (but not to
add its own) by returning an updated Targets list (NewTargets).

snmpa_notification_delivery_info_receiver behaviour

Behaviour module for the SNMP agent notification delivery information receiver.
This module defines the behaviour of the notification delivery information
receiver.
When the user sends a notification (see snmpa:send_notification2/3),
the user can (optionally) choose to receive delivery information
(was the message received and acknowledged by the target(s)).
This behaviour describes a way for the user to get such (delivery) information.
A snmpa_notification_delivery_info_receiver compliant module must export the
following functions:
	delivery_targets/3
	delivery_info/4

The semantics of them and their exact signatures are explained below.
Legacy notification delivery information receiver modules used a target argument
of the form {IpAddr, PortNumber} instead of {Domain, Addr}, and if the SNMP
Agent is run without changing the configuration to use transport domains the
notification delivery information receiver will still get the old arguments and
work as before.

 Summary

 Types

 notification_delivery_info()

 How shall (notification) delivery info be reported.

 transportAddressWithPort()

 transportDomain()

 Callbacks

 delivery_info(Tag, Targets, DeliveryResult, Extra)

 Inform about delivery result.

 delivery_targets(Tag, Targets, Extra)

 Inform about target addresses.

 Types

 notification_delivery_info()

 -type notification_delivery_info() ::
 #snmpa_notification_delivery_info{tag :: term(), mod :: term(), extra :: term()}.

How shall (notification) delivery info be reported.
This record defines the info related to inform delivery info. That is, when
sending an inform, info about the delivery (such if it was acknowledged) will be
delivered using the info in this record.
The delivery will be performed according to:
	Mod:delivery_targets(Tag, Addresses, Extra)
	Mod:delivery_info(Tag, Address, DeliveryResult, Extra)
The Extra is any term, provided by the user.
The fields of this record has the following meaning:
	tag = term() - Value selected by the user to identify this sending

	mod = module() - A module implementing the
snmpa_notification_delivery_info_receiver behaviour.

	extra = term() - This is any extra info the user wants to have supplied
when the functions in the callback module is called. Provided when calling the
send function.

 transportAddressWithPort()

 (not exported)

 -type transportAddressWithPort() :: snmpa_conf:transportAddressWithPort().

 transportDomain()

 (not exported)

 -type transportDomain() :: snmpa_conf:transportDomain().

 Callbacks

 delivery_info(Tag, Targets, DeliveryResult, Extra)

 -callback delivery_info(Tag, Targets, DeliveryResult, Extra) -> snmp:void()
 when
 Tag :: term(),
 Targets :: [Target],
 Target :: {transportDomain(), transportAddressWithPort()},
 DeliveryResult :: no_response | got_response,
 Extra :: term().

Inform about delivery result.
This function is called for each target in the Targets argument of the
delivery_targets/3 function, see above.
The purpose is to inform the receiver of the result of the delivery (was the
notification acknowledged or not) for each target.

 delivery_targets(Tag, Targets, Extra)

 -callback delivery_targets(Tag, Targets, Extra) -> snmp:void()
 when
 Tag :: term(),
 Targets :: [Target],
 Target :: {transportDomain(), transportAddressWithPort()},
 Extra :: term().

Inform about target addresses.
This is the first function called when a notification delivery is in progress.
It informs the receiver which targets will get the notification. The result of
the delivery will be provided via successive calls to
delivery_info/4 function, see below.

snmpa_notification_filter behaviour

Behaviour module for the SNMP agent notification filters.
This module defines the behaviour of the agent notification filters. A
snmpa_notification_filter compliant module must export the following
functions:
	handle_notification/2

The semantics of them and their exact signatures are explained below.
The purpose of notification filters is to allow for modification and/or
suppression of a notification.
A misbehaving filter will be removed.

 Summary

 Types

 notification()

 trap()

 Callbacks

 handle_notification(Notif, Data)

 Handle a notification to be sent. The filter can either accept the notification
as is, return send, modify the notification, return {send, NewNotif} or
suppress the notification, return dont_send.

 Types

 notification()

 (not exported)

 -type notification() :: term().

 trap()

 (not exported)

 -type trap() :: term().

 Callbacks

 handle_notification(Notif, Data)

 -callback handle_notification(Notif, Data) -> Reply
 when
 Notif :: notification() | trap(),
 Data :: term(),
 Reply :: send | {send, NewNotif} | dont_send,
 NewNotif :: notification() | trap().

Handle a notification to be sent. The filter can either accept the notification
as is, return send, modify the notification, return {send, NewNotif} or
suppress the notification, return dont_send.
Data is supplied at filter registration time, see
snmpa:register_notification_filter/5.

snmpa_supervisor

A supervisor for the SNMP agent Processes
This is the top supervisor for the agent part of the SNMP application. There is
always one supervisor at each node with an SNMP agent (master agent or
sub-agent).

 Summary

 Functions

 start_master_sup(Opts)

 Starts a supervisor for the SNMP agent system. The supervisor starts all
involved SNMP processes, including the master agent. Sub-agents should be
started by calling start_subagent/3.

 start_sub_agent(ParentAgent, Subtree, Mibs)

 Starts a sub-agent on the node where the function is called. The
snmpa_supervisor must be running.

 start_sub_sup(Opts)

 Starts a supervisor for the SNMP agent system without a master agent. The
supervisor starts all involved SNMP agent processes, but no agent processes.
Sub-agents should be started by calling
start_sub_agent/3.

 stop_sub_agent(SubAgentPid)

 Stops the sub-agent on the node where the function is called. The
snmpa_supervisor must be running.

 Functions

 start_master_sup(Opts)

 -spec start_master_sup(Opts) -> {ok, Pid} | {error, Reason}
 when
 Opts :: [Opt],
 Opt :: {db_dir, string()} | {config, ConfOpts} | {atom(), term()},
 ConfOpts :: [ConfOpt],
 ConfOpt :: {dir, string()} | {atom(), term()},
 Pid :: pid(),
 Reason :: {already_started, Pid} | term().

Starts a supervisor for the SNMP agent system. The supervisor starts all
involved SNMP processes, including the master agent. Sub-agents should be
started by calling start_subagent/3.
db_dir is mandatory.
dir in config is mandatory.
See snmp config for a description of the options.

 start_sub_agent(ParentAgent, Subtree, Mibs)

 -spec start_sub_agent(ParentAgent, Subtree, Mibs) -> {ok, Pid} | {error, Reason}
 when
 ParentAgent :: pid(),
 Subtree :: snmp:oid(),
 Mibs :: [MibName],
 MibName :: string(),
 Pid :: pid(),
 Reason :: term().

Starts a sub-agent on the node where the function is called. The
snmpa_supervisor must be running.
If the supervisor is not running, the function fails with the reason badarg.

 start_sub_sup(Opts)

 -spec start_sub_sup(Opts) -> {ok, Pid} | {error, Reason}
 when
 Opts :: [Opt],
 Opt :: {db_dir, snmp:dir()} | {atom(), term()},
 Pid :: pid(),
 Reason :: {already_started, Pid} | term().

Starts a supervisor for the SNMP agent system without a master agent. The
supervisor starts all involved SNMP agent processes, but no agent processes.
Sub-agents should be started by calling
start_sub_agent/3.
db_dir is mandatory.
See configuration parameters for a
description of the options.

 stop_sub_agent(SubAgentPid)

 -spec stop_sub_agent(SubAgentPid) -> ok | no_such_child when SubAgentPid :: pid().

Stops the sub-agent on the node where the function is called. The
snmpa_supervisor must be running.
If the supervisor is not running, the function fails with the reason badarg.

snmpc

Interface Functions to the SNMP toolkit MIB compiler
The module snmpc contains interface functions to the SNMP toolkit MIB
compiler.
See Also
erlc(1)
snmpc(command)

 Summary

 Functions

 compile/1

 Equivalent to compile/2.

 compile(FileName, Options)

 Compiles the specified MIB file <FileName>.mib. The compiled file BinFileName
is called <FileName>.bin.

 is_consistent(FileNames)

 Checks for multiple usage of object identifiers and traps between MIBs.

 mib_to_hrl(MibName)

 Generates a .hrl file with definitions of Erlang constants for the objects in
the MIB. The .hrl file is called <MibName>.hrl. The MIB must be compiled,
and present in the current directory.

 Functions

 compile/1

 -spec compile(AtomFileNames | FileName) -> {ok, BinFileName} | {error, Reason}
 when
 AtomFileNames :: [atom()],
 FileName :: string(),
 BinFileName :: string(),
 Reason :: term().

Equivalent to compile/2.

 compile(FileName, Options)

 -spec compile(FileName, Options) -> {ok, BinFileName} | {error, Reason}
 when
 FileName :: string(),
 Options :: [Option],
 Option ::
 agent_capabilities |
 {db, volatile | persistent | mnesia} |
 {deprecated, boolean()} |
 description |
 {group_check, boolean()} |
 {i, [snmp:dir()]} |
 {il, [snmp:dir()]} |
 imports |
 {module, module()} |
 module_identity | module_compliance | no_defs |
 {outdir, snmp:dir()} |
 reference | relaxed_row_name_assign_check |
 {verbosity, snmp:verbosity()} |
 {warnings, boolean()} |
 {warnings_as_errors, boolean()},
 BinFileName :: string(),
 Reason :: term().

Compiles the specified MIB file <FileName>.mib. The compiled file BinFileName
is called <FileName>.bin.
	The option agent_capabilities, if present, specifies that the
AGENT-CAPABILITIES statement of the MIB shall be included (with a mib-entry
record) in the compiled mib. The mib-entry record of the agent-capabilitie
will contain reference and modules part(s) this info in the assocList
field).

	The option db specifies which database should be used for the default
instrumentation.
Default is volatile.

	The option deprecated specifies if a deprecated definition should be kept or
not. If the option is false the MIB compiler will ignore all deprecated
definitions.
Default is true.

	The option description specifies if the text of the DESCRIPTION field will
be included or not.
By default it is not included, but if this option is present it will be.

	The option group_check specifies whether the mib compiler should check the
OBJECT-GROUP macro and the NOTIFICATION-GROUP macro for correctness or not.
Default is true.

	The option i specifies the path to search for imported (compiled) MIB files.
The directories should be strings with a trailing directory delimiter.
Default is ["./"].

	The option il (include_lib) also specifies a list of directories to search
for imported MIBs. It assumes that the first element in the directory name
corresponds to an OTP application. The compiler will find the current
installed version. For example, the value ["snmp/mibs/"] will be replaced by
["snmp-3.1.1/mibs/"] (or what the current version may be in the system). The
current directory and the <snmp-home>/priv/mibs/ are always listed last in
the include path.

	The option imports, if present, specifies that the IMPORT statement of the
MIB shall be included in the compiled mib.

	The option module, if present, specifies the name of a module which
implements all instrumentation functions for the MIB.
The name of all instrumentation functions must be the same as the
corresponding managed object it implements.

	The option module_identity, if present, specifies that the info part of the
MODULE-IDENTITY statement of the MIB shall be included in the compiled mib.

	The option module_compliance, if present, specifies that the
MODULE-COMPLIANCE statement of the MIB shall be included (with a mib-entry
record) in the compiled mib. The mib-entry record of the module-compliance
will contain reference and module part(s) this info in the assocList
field).

	The option no_defs, if present, specifies that if a managed object does not
have an instrumentation function, the default instrumentation function should
NOT be used, instead this is reported as an error, and the compilation aborts.

	The option reference specifies if the text of the REFERENCE field, when
found in a table definition, will be included or not.
By default it is not included, but if this option is present it will be. The
reference text will be placed in the allocList field of the mib-entry record
(#me{}) for the table.

	The option relaxed_row_name_assign_check, if present, specifies that the row
name assign check shall not be done strictly according to the SMI (which
allows only the value 1). With this option, all values greater than zero is
allowed (>= 1). This means that the error will be converted to a warning.
By default it is not included, but if this option is present it will be.

	The option verbosity specifies the verbosity of the SNMP mib compiler. I.e.
if warning, info, log, debug and trace messages shall be shown.
Default is silence.
Note that if the option warnings is true and the option verbosity is
silence, warning messages will still be shown.

	The option warnings specifies whether warning messages should be shown.
Default is true.

	The option warnings_as_errors, if present, specifies whether warnings should
be treated as errors.

The MIB compiler understands both SMIv1 and SMIv2 MIBs. It uses the
MODULE-IDENTITY statement to determine if the MIB is version 1 or 2.
The MIB compiler can also be invoked from the OS command line by these two
commands; erlc and snmpc.
	erlc - erlc recognizes the extension .mib, and invokes the SNMP MIB
compiler for files with that extension. The options db, group_check,
deprecated, description, verbosity, imports and module_identity have
to be specified to erlc using the syntax +term.
See erlc(1) for details.

	snmpc - snmpc is an escript that provides a more traditional interface
to the MIB compiler.
See snmpc(command) for details.

 is_consistent(FileNames)

 -spec is_consistent(FileNames) -> ok | {error, Reason}
 when FileNames :: [MibName], MibName :: string(), Reason :: term().

Checks for multiple usage of object identifiers and traps between MIBs.

 mib_to_hrl(MibName)

 -spec mib_to_hrl(MibName) -> Result
 when MibName :: string(), Result :: ok | {error, Reason}, Reason :: term().

Generates a .hrl file with definitions of Erlang constants for the objects in
the MIB. The .hrl file is called <MibName>.hrl. The MIB must be compiled,
and present in the current directory.
The mib_to_hrl generator can be invoked from the OS command line by using the
command erlc. erlc recognizes the extension .bin, and invokes this
function for files with that extension.

snmpm

Interface functions to the SNMP toolkit manager
The module snmpm contains interface functions to the SNMP manager.

 Summary

 Types

 agent_config()

 agent_config_item()

 Value type depend on the item according to

 pdu_type()

 register_timeout()

 The time to complete a (agent) registration.

 request_id()

 Is a unique term that identifies a request.

 snmp_reply()

 snmpm_user()

 Module implementing the snmpm_user behaviour.

 target_name()

 Is a unique non-empty string.

 user_id()

 Is a unique term that identifies a user.

 usm_config_item()

 Value type depend on the item according to

 value_type()

 var_and_val()

 Functions

 agent_info(TargetName, Item)

 Retrieve agent config.

 async_get2(UserId, TargetName, Oids)

 Equivalent to async_get2/4.

 async_get2(UserId, TargetName, Oids, SendOpts)

 Asynchronous get-request.

 async_get_bulk2(UserId, TargetName, NonRep, MaxRep, Oids)

 Equivalent to async_get_bulk2/6.

 async_get_bulk2(UserId, TargetName, NonRep, MaxRep, Oids, SendOpts)

 Asynchronous get-bulk-request (See RFC1905).

 async_get_next2(UserId, TargetName, Oids)

 Equivalent to async_get_next2/4.

 async_get_next2(UserId, TargetName, Oids, SendOpts)

 Asynchronous get-next-request.

 async_set2(UserId, TargetName, VarsAndVals)

 Equivalent to async_set2/4.

 async_set2(UserId, TargetName, VarsAndVals, SendOpts)

 Asynchronous set-request.

 backup(BackupDir)

 Backup persistent data handled by the manager.

 cancel_async_request(UserId, ReqId)

 Cancel a previous asynchronous request.

 cancel_notify_started(Pid)

 Cancel a previous request to be notified of SNMP manager start.

 change_log_size(NewSize)

 Changes the log size of the Audit Trail Log. The application must be configured
to use the audit trail log function. Please refer to disk_log(3) in Kernel
Reference Manual for a description of how to change the log size.

 demonitor(Ref)

 Turn off monitoring of the SNMP manager.

 format_reason(Reason)

 Equivalent to format_reason/2.

 format_reason(Prefix, Reason)

 This utility function is used to create a formatted (pretty printable) string of
the error reason received from either

 info()

 Returns a list (a dictionary) containing information about the manager.
Information includes statistics counters, miscellaneous info about each process
(e.g. memory allocation), and so on.

 load_mib(MibName)

 Load a Mib into the manager. The MibName is the name of the Mib, including
the path to where the compiled mib is found. For example,

 log_to_io(LogDir)

 Equivalent to log_to_io/7.

 log_to_io/2

 Equivalent to log_to_io/7.

 log_to_io/3

 Equivalent to log_to_io/7.

 log_to_io/4

 Equivalent to log_to_io/7.

 log_to_io/5

 Equivalent to log_to_io/7.

 log_to_io/6

 Equivalent to log_to_io/7.

 log_to_io(LogDir, Mibs, LogName, LogFile, Block, Start, Stop)

 Converts an Audit Trail Log to a readable format and prints it on stdio.
LogName defaults to "snmpm_log". LogFile defaults to "snmpm.log".

 log_to_txt(LogDir)

 Equivalent to log_to_txt/8.

 log_to_txt/2

 Equivalent to log_to_txt/8.

 log_to_txt/3

 Equivalent to log_to_txt/8.

 log_to_txt/4

 Equivalent to log_to_txt/8.

 log_to_txt/5

 Equivalent to log_to_txt/8.

 log_to_txt/6

 Equivalent to log_to_txt/8.

 log_to_txt/7

 Equivalent to log_to_txt/8.

 log_to_txt(LogDir, Mibs, OutFile, LogName, LogFile, Block, Start, Stop)

 Converts an Audit Trail Log to a readable text file. OutFile defaults to
"./snmpm_log.txt". LogName defaults to "snmpm_log". LogFile defaults to
"snmpm.log".

 monitor()

 Monitor the SNMP manager. In case of a crash, the calling (monitoring) process
will get a 'DOWN' message (see the erlang module for more info).

 name_to_oid(AliasName)

 Transform a alias-name to its oid.

 notify_started/1

 Request a notification (message) when the SNMP manager has started.

 oid_to_name(OID)

 Transform a oid to its aliasname.

 oid_to_type(OID)

 Retrieve the type (asn1 bertype) of an oid.

 register_agent(UserId, TargetName, Config)

 Explicitly instruct the manager to handle this agent, with UserId as the
responsible user.

 register_user(UserId, Module, Data)

 Equivalent to register_user/4.

 register_user(UserId, Module, Data, DefaultAgentConfig)

 Register the manager entity (=user) responsible for specific agent(s).

 register_user_monitor(UserId, Module, Data)

 Equivalent to register_user_monitor/4.

 register_user_monitor(UserId, Module, Data, DefaultAgentConfig)

 Register the monitored manager entity (=user) responsible for specific agent(s).

 register_usm_user(EngineID, UserName, Config)

 Explicitly instruct the manager to handle this USM user. Note that there is an
alternate way to do the same thing: Add the usm user to the manager config files
(see usm.conf).

 restart(What)

 Restart the indicated process (What). Note that its not without risk to
restart a process, and should therefore be used with care.

 set_log_type(NewType)

 Changes the run-time Audit Trail log type.

 sync_get2(UserId, TargetName, Oids)

 Equivalent to sync_get2/4.

 sync_get2(UserId, TargetName, Oids, SendOpts)

 Synchronous get-request.

 sync_get_bulk2(UserId, TargetName, NonRep, MaxRep, Oids)

 Equivalent to sync_get_bulk2/6.

 sync_get_bulk2(UserId, TargetName, NonRep, MaxRep, Oids, SendOpts)

 Synchronous get-bulk-request (See RFC1905).

 sync_get_next2(UserId, TargetName, Oids)

 Equivalent to sync_get_next2/4.

 sync_get_next2(UserId, TargetName, Oids, SendOpts)

 Synchronous get-next-request.

 sync_set2(UserId, TargetName, VarsAndVals)

 Equivalent to sync_set2/4.

 sync_set2(UserId, TargetName, VarsAndVals, SendOpts)

 Synchronous set-request.

 unload_mib(MibName)

 Unload a Mib from the manager. The MibName is the name of the Mib, including
the path to where the compiled mib is found. For example,

 unregister_agent(UserId, TargetName)

 Unregister the agent.

 unregister_user(UserId)

 Unregister the user.

 unregister_usm_user(EngineID, UserName)

 Unregister this USM user.

 update_agent_info(UserId, TargetName, Info)

 Update agent config.

 update_agent_info(UserId, TargetName, Item, Value)

 Update agent config.

 update_usm_user_info(EngineID, UserName, Item, Value)

 Update usm user config.

 usm_user_info(EngineID, UserName, Item)

 Retrieve usm user config.

 verbosity(Target, Verbosity)

 Sets verbosity for the designated process. For the lowest verbosity silence,
nothing is printed. The higher the verbosity, the more is printed.

 which_agents()

 Equivalent to which_agents/1.

 which_agents(UserId)

 Get a list of all registered agents or all agents registered by a specific user.

 which_mibs()

 Get a list of all the mib's loaded into the manager.

 which_users()

 Get a list of the identities of all registered users.

 which_usm_users()

 Get a list of all registered usm users.

 which_usm_users(EngineID)

 Get a list of all registered usm users with engine-id EngineID.

 Types

 agent_config()

 -type agent_config() ::
 {engine_id, snmp:engine_id()} |
 {address, inet:ip_address()} |
 {port, inet:port_number()} |
 {tdomain, snmp:tdomain()} |
 {community, snmp:community()} |
 {timeout, register_timeout()} |
 {max_message_size, snmp:mms()} |
 {version, snmp:version()} |
 {sec_model, snmp:sec_model()} |
 {sec_name, snmp:sec_name()} |
 {sec_level, snmp:sec_level()}.

 agent_config_item()

 -type agent_config_item() ::
 engine_id | address | port | tdomain | community | timeout | max_message_size | version |
 sec_model | sec_name | sec_level.

Value type depend on the item according to:
	engine_id - Engine ID of the agent.
Value type: engine_id()

	address - The IP address of the agent.
Value type: ip_address()

	port - Port number of the agent.
Value type: port_number()

	tdomain - Transport domain.
Value type: tdomain()

	community - Community.
Value type: community()

	timeout - Registration timeout.
Value type: register_timeout/0

	max_message_size - Max Message Size of a message.
Value type: mms()

	version - What SNMP version is used when communicating with this agent.
Value type: version()

	sec_model - Security Model.
Value type: sec_model()

	sec_name - Security Name.
Value type: sec_name()

	sec_level - Security Level.
Value type: sec_level()

 pdu_type()

 -type pdu_type() :: snmp:pdu_type() | trappdu.

 register_timeout()

 -type register_timeout() :: pos_integer() | snmp:snmp_timer().

The time to complete a (agent) registration.

 request_id()

 -opaque request_id()

Is a unique term that identifies a request.

 snmp_reply()

 -type snmp_reply() :: {snmp:error_status(), snmp:error_index(), [snmp:varbind()]}.

 snmpm_user()

 -type snmpm_user() :: module().

Module implementing the snmpm_user behaviour.

 target_name()

 -type target_name() :: string().

Is a unique non-empty string.

 user_id()

 -type user_id() :: term().

Is a unique term that identifies a user.

 usm_config_item()

 -type usm_config_item() :: sec_name | auth | auth_key | priv | priv_key.

Value type depend on the item according to:
	sec_name - Security Name.
Value type: snmp:sec_name()

	auth - Authentication protocol.
Value type: snmp:usm_auth_protocol()

	auth_key - Authentication key.
Value type: snmp:usm_auth_key()

	priv - Privacy protocol.
Value type: snmp:usm_priv_protocol()

	priv_key - Privacy key.
Value type: snmp:usm_priv_key()

 value_type()

 -type value_type() :: o | i | u | g | s | s | b | ip | op | c32 | c64 | tt.

	o - 'OBJECT IDENTIFIER'

	i - 'INTEGER'

	u - 'Unsigned32

	g - 'Unsigned32'

	s - 'OCTET STRING'

	b - 'BITS'

	ip - 'IpAddress'

	op - 'Opaque'

	c32 - 'Counter32'

	c64 - 'Counter64'

	tt - 'TimeTicks'

 var_and_val()

 -type var_and_val() ::
 {OID :: snmp:oid(), ValueType :: value_type(), Value :: term()} |
 {OID :: snmp:oid(), Value :: term()}.

 Functions

 agent_info(TargetName, Item)

 -spec agent_info(TargetName, Item) -> {ok, Value} | {error, Reason}
 when
 TargetName :: target_name(),
 Item :: agent_config_item(),
 Value :: term(),
 Reason :: term().

Retrieve agent config.

 async_get2(UserId, TargetName, Oids)

 (since OTP R14B03)

 -spec async_get2(UserId, TargetName, Oids) -> {ok, ReqId} | {error, Reason}
 when
 UserId :: user_id(),
 TargetName :: target_name(),
 Oids :: [snmp:oid()],
 ReqId :: request_id(),
 Reason :: term().

Equivalent to async_get2/4.

 async_get2(UserId, TargetName, Oids, SendOpts)

 (since OTP R14B03)

 -spec async_get2(UserId, TargetName, Oids, SendOpts) -> {ok, ReqId} | {error, Reason}
 when
 UserId :: user_id(),
 TargetName :: target_name(),
 Oids :: [snmp:oid()],
 SendOpts :: [SendOpt],
 SendOpt ::
 {context, snmp:context_name()} |
 {timeout, pos_integer()} |
 {community, snmp:community()} |
 {sec_model, snmp:sec_model()} |
 {sec_name, snmp:sec_name()} |
 {sec_level, snmp:sec_level()} |
 {max_message_size, snmp:mms()} |
 {extra, term()},
 ReqId :: request_id(),
 Reason :: term().

Asynchronous get-request.
The reply, if it arrives, will be delivered to the user through a call to the
snmpm_user callback function handle_pdu.
The send option timeout specifies for how long the request is valid (after
which the manager is free to delete it).
The send option extra specifies an opaque data structure passed on to the
net-if process. The net-if process included in this application makes, with one
exception, no use of this info, so the only use for it (when using the built in
net-if) would be tracing. The one usage exception is: Any tuple with
snmpm_extra_info_tag as its first element is reserved for internal use.
Some of the send options (community, sec_model, sec_name, sec_level and
max_message_size) are override options. That is, for this request, they
override any configuration done when the agent was registered.

 async_get_bulk2(UserId, TargetName, NonRep, MaxRep, Oids)

 (since OTP R14B03)

 -spec async_get_bulk2(UserId, TargetName, NonRep, MaxRep, Oids) -> {ok, ReqId} | {error, Reason}
 when
 UserId :: user_id(),
 TargetName :: target_name(),
 NonRep :: non_neg_integer(),
 MaxRep :: non_neg_integer(),
 Oids :: [snmp:oid()],
 ReqId :: request_id(),
 Reason :: term().

Equivalent to async_get_bulk2/6.

 async_get_bulk2(UserId, TargetName, NonRep, MaxRep, Oids, SendOpts)

 (since OTP R14B03)

 -spec async_get_bulk2(UserId, TargetName, NonRep, MaxRep, Oids, SendOpts) ->
 {ok, ReqId} | {error, Reason}
 when
 UserId :: user_id(),
 TargetName :: target_name(),
 NonRep :: non_neg_integer(),
 MaxRep :: non_neg_integer(),
 Oids :: [snmp:oid()],
 SendOpts :: [SendOpt],
 SendOpt ::
 {context, snmp:context_name()} |
 {timeout, pos_integer()} |
 {community, snmp:community()} |
 {sec_model, snmp:sec_model()} |
 {sec_name, snmp:sec_name()} |
 {sec_level, snmp:sec_level()} |
 {max_message_size, snmp:mms()} |
 {extra, term()},
 ReqId :: request_id(),
 Reason :: term().

Asynchronous get-bulk-request (See RFC1905).
The reply, if it arrives, will be delivered to the user through a call to the
snmpm_user callback function handle_pdu.
The send option timeout specifies for how long the request is valid (after
which the manager is free to delete it).
The send option extra specifies an opaque data structure passed on to the
net-if process.
The net-if process included in this application makes no use of
this info, so the only use for it in such a configuration (when using the built
in net-if) would be tracing.
Some of the send options (community, sec_model, sec_name, sec_level and
max_message_size) are override options. That is, for this request, they
override any configuration done when the agent was registered.

 async_get_next2(UserId, TargetName, Oids)

 (since OTP R14B03)

 -spec async_get_next2(UserId, TargetName, Oids) -> {ok, ReqId} | {error, Reason}
 when
 UserId :: user_id(),
 TargetName :: target_name(),
 Oids :: [snmp:oid()],
 ReqId :: request_id(),
 Reason :: term().

Equivalent to async_get_next2/4.

 async_get_next2(UserId, TargetName, Oids, SendOpts)

 (since OTP R14B03)

 -spec async_get_next2(UserId, TargetName, Oids, SendOpts) -> {ok, ReqId} | {error, Reason}
 when
 UserId :: user_id(),
 TargetName :: target_name(),
 Oids :: [snmp:oid()],
 SendOpts :: [SendOpt],
 SendOpt ::
 {context, snmp:context_name()} |
 {timeout, pos_integer()} |
 {community, snmp:community()} |
 {sec_model, snmp:sec_model()} |
 {sec_name, snmp:sec_name()} |
 {sec_level, snmp:sec_level()} |
 {max_message_size, snmp:mms()} |
 {extra, term()},
 ReqId :: request_id(),
 Reason :: term().

Asynchronous get-next-request.
The reply, if it arrives, will be delivered to the user through a call to the
snmpm_user callback function handle_pdu.
The send option timeout specifies for how long the request is valid (after
which the manager is free to delete it).
The send option extra specifies an opaque data structure passed on to the
net-if process.
The net-if process included in this application makes, with one
exception, no use of this info, so the only use for it (when using the built in
net-if) would be tracing. The one usage exception is: Any tuple with
snmpm_extra_info_tag as its first element is reserved for internal use.
Some of the send options (community, sec_model, sec_name, sec_level and
max_message_size) are override options. That is, for this request, they
override any configuration done when the agent was registered.

 async_set2(UserId, TargetName, VarsAndVals)

 (since OTP R14B03)

 -spec async_set2(UserId, TargetName, VarsAndVals) -> {ok, ReqId} | {error, Reason}
 when
 UserId :: user_id(),
 TargetName :: target_name(),
 VarsAndVals :: [var_and_val()],
 ReqId :: request_id(),
 Reason :: term().

Equivalent to async_set2/4.

 async_set2(UserId, TargetName, VarsAndVals, SendOpts)

 (since OTP R14B03)

 -spec async_set2(UserId, TargetName, VarsAndVals, SendOpts) -> {ok, ReqId} | {error, Reason}
 when
 UserId :: user_id(),
 TargetName :: target_name(),
 VarsAndVals :: [var_and_val()],
 SendOpts :: [SendOpt],
 SendOpt ::
 {context, snmp:context_name()} |
 {timeout, pos_integer()} |
 {community, snmp:community()} |
 {sec_model, snmp:sec_model()} |
 {sec_name, snmp:sec_name()} |
 {sec_level, snmp:sec_level()} |
 {max_message_size, snmp:mms()} |
 {extra, term()},
 ReqId :: request_id(),
 Reason :: term().

Asynchronous set-request.
The reply will be delivered to the user through a call to the
snmpm_user callback function handle_pdu.
The send option timeout specifies for how long the request is valid (after
which the manager is free to delete it).
When var_and_val() is {oid(), value()}, the manager makes an educated
guess based on the loaded mibs.
The send option extra specifies an opaque data structure passed on to the
net-if process. The net-if process included in this application makes, with one
exception, no use of this info, so the only use for it (when using the built in
net-if) would be tracing. The one usage exception is: Any tuple with
snmpm_extra_info_tag as its first element is reserved for internal use.
Some of the send options (community, sec_model, sec_name, sec_level and
max_message_size) are override options. That is, for this request, they
override any configuration done when the agent was registered.

 backup(BackupDir)

 -spec backup(BackupDir) -> ok | {error, Reason} when BackupDir :: snmp:dir(), Reason :: term().

Backup persistent data handled by the manager.
BackupDir cannot be identical to DbDir.

 cancel_async_request(UserId, ReqId)

 -spec cancel_async_request(UserId, ReqId) -> ok | {error, Reason}
 when UserId :: user_id(), ReqId :: request_id(), Reason :: term().

Cancel a previous asynchronous request.

 cancel_notify_started(Pid)

 -spec cancel_notify_started(Pid) -> snmp:void() when Pid :: pid().

Cancel a previous request to be notified of SNMP manager start.

 change_log_size(NewSize)

 -spec change_log_size(NewSize) -> ok | {error, Reason} when NewSize :: snmp:log_size(), Reason :: term().

Changes the log size of the Audit Trail Log. The application must be configured
to use the audit trail log function. Please refer to disk_log(3) in Kernel
Reference Manual for a description of how to change the log size.
The change is permanent, as long as the log is not deleted. That means, the log
size is remembered across reboots.

 demonitor(Ref)

 -spec demonitor(Ref) -> true when Ref :: reference().

Turn off monitoring of the SNMP manager.

 format_reason(Reason)

 -spec format_reason(Reason) -> FReason when Reason :: term(), FReason :: string().

Equivalent to format_reason/2.

 format_reason(Prefix, Reason)

 -spec format_reason(Prefix, Reason) -> FReason
 when
 Prefix :: non_neg_integer() | string(), Reason :: term(), FReason :: string().

This utility function is used to create a formatted (pretty printable) string of
the error reason received from either:
	The Reason returned value if any of the sync/async get/get-next/set/get-bulk
functions returns {error, Reason}
	The Reason parameter in the handle_error user
callback function.

Prefix should either be an indentation string (e.g. a list of spaces) or a
positive integer (which will be used to create the indentation string of that
length).

 info()

 -spec info() -> [{Key, Value}] when Key :: atom(), Value :: term().

Returns a list (a dictionary) containing information about the manager.
Information includes statistics counters, miscellaneous info about each process
(e.g. memory allocation), and so on.

 load_mib(MibName)

 -spec load_mib(MibName) -> ok | {error, Reason} when MibName :: snmp:mib_name(), Reason :: term().

Load a Mib into the manager. The MibName is the name of the Mib, including
the path to where the compiled mib is found. For example,
 Dir = code:priv_dir(my_app) ++ "/mibs/",
 snmpm:load_mib(Dir ++ "MY-MIB").

 log_to_io(LogDir)

 (since OTP R15B01)

 -spec log_to_io(LogDir) -> ok | {ok, Cnt} | {error, Reason}
 when
 LogDir :: snmp:dir(),
 Cnt :: {NumOK, NumERR},
 NumOK :: non_neg_integer(),
 NumERR :: pos_integer(),
 Reason :: term().

Equivalent to log_to_io/7.

 log_to_io/2

 (since OTP R15B01)

 -spec log_to_io(LogDir, Block) -> ok | {ok, Cnt} | {error, Reason}
 when
 LogDir :: snmp:dir(),
 Block :: boolean(),
 Cnt :: {NumOK, NumERR},
 NumOK :: non_neg_integer(),
 NumERR :: pos_integer(),
 Reason :: term();
 (LogDir, Mibs) -> ok | {ok, Cnt} | {error, Reason}
 when
 LogDir :: snmp:dir(),
 Mibs :: [snmp:mib_name()],
 Cnt :: {NumOK, NumERR},
 NumOK :: non_neg_integer(),
 NumERR :: pos_integer(),
 Reason :: term().

Equivalent to log_to_io/7.

 log_to_io/3

 (since OTP R15B01)

 -spec log_to_io(LogDir, Mibs, Block) -> ok | {ok, Cnt} | {error, Reason}
 when
 LogDir :: snmp:dir(),
 Mibs :: [snmp:mib_name()],
 Block :: boolean(),
 Cnt :: {NumOK, NumERR},
 NumOK :: non_neg_integer(),
 NumERR :: pos_integer(),
 Reason :: term();
 (LogDir, Mibs, LogName) -> ok | {ok, Cnt} | {error, Reason}
 when
 LogDir :: snmp:dir(),
 Mibs :: [snmp:mib_name()],
 LogName :: string(),
 Cnt :: {NumOK, NumERR},
 NumOK :: non_neg_integer(),
 NumERR :: pos_integer(),
 Reason :: term().

Equivalent to log_to_io/7.

 log_to_io/4

 (since OTP R15B01)

 -spec log_to_io(LogDir, Mibs, LogName, Block) -> ok | {ok, Cnt} | {error, Reason}
 when
 LogDir :: snmp:dir(),
 Mibs :: [snmp:mib_name()],
 LogName :: string(),
 Block :: boolean(),
 Cnt :: {NumOK, NumERR},
 NumOK :: non_neg_integer(),
 NumERR :: pos_integer(),
 Reason :: term();
 (LogDir, Mibs, LogName, LogFile) -> ok | {ok, Cnt} | {error, Reason}
 when
 LogDir :: snmp:dir(),
 Mibs :: [snmp:mib_name()],
 LogName :: string(),
 LogFile :: string(),
 Cnt :: {NumOK, NumERR},
 NumOK :: non_neg_integer(),
 NumERR :: pos_integer(),
 Reason :: term().

Equivalent to log_to_io/7.

 log_to_io/5

 (since OTP R15B01)

 -spec log_to_io(LogDir, Mibs, LogName, LogFile, Block) -> ok | {ok, Cnt} | {error, Reason}
 when
 LogDir :: snmp:dir(),
 Mibs :: [snmp:mib_name()],
 LogName :: string(),
 LogFile :: string(),
 Block :: boolean(),
 Cnt :: {NumOK, NumERR},
 NumOK :: non_neg_integer(),
 NumERR :: pos_integer(),
 Reason :: term();
 (LogDir, Mibs, LogName, LogFile, Start) -> ok | {ok, Cnt} | {error, Reason}
 when
 LogDir :: snmp:dir(),
 Mibs :: [snmp:mib_name()],
 LogName :: string(),
 LogFile :: string(),
 Start :: null | snmp:log_time(),
 Cnt :: {NumOK, NumERR},
 NumOK :: non_neg_integer(),
 NumERR :: pos_integer(),
 Reason :: term().

Equivalent to log_to_io/7.

 log_to_io/6

 (since OTP R15B01)

 -spec log_to_io(LogDir, Mibs, LogName, LogFile, Block, Start) -> ok | {ok, Cnt} | {error, Reason}
 when
 LogDir :: snmp:dir(),
 Mibs :: [snmp:mib_name()],
 LogName :: string(),
 LogFile :: string(),
 Block :: boolean(),
 Start :: null | snmp:log_time(),
 Cnt :: {NumOK, NumERR},
 NumOK :: non_neg_integer(),
 NumERR :: pos_integer(),
 Reason :: term();
 (LogDir, Mibs, LogName, LogFile, Start, Stop) -> ok | {ok, Cnt} | {error, Reason}
 when
 LogDir :: snmp:dir(),
 Mibs :: [snmp:mib_name()],
 LogName :: string(),
 LogFile :: string(),
 Start :: null | snmp:log_time(),
 Stop :: null | snmp:log_time(),
 Cnt :: {NumOK, NumERR},
 NumOK :: non_neg_integer(),
 NumERR :: pos_integer(),
 Reason :: term().

Equivalent to log_to_io/7.

 log_to_io(LogDir, Mibs, LogName, LogFile, Block, Start, Stop)

 (since OTP R16B03)

 -spec log_to_io(LogDir, Mibs, LogName, LogFile, Block, Start, Stop) -> ok | {ok, Cnt} | {error, Reason}
 when
 LogDir :: snmp:dir(),
 Mibs :: [snmp:mib_name()],
 LogName :: string(),
 LogFile :: string(),
 Block :: boolean(),
 Start :: null | snmp:log_time(),
 Stop :: null | snmp:log_time(),
 Cnt :: {NumOK, NumERR},
 NumOK :: non_neg_integer(),
 NumERR :: pos_integer(),
 Reason :: term().

Converts an Audit Trail Log to a readable format and prints it on stdio.
LogName defaults to "snmpm_log". LogFile defaults to "snmpm.log".
The Block argument indicates if the log should be blocked during conversion.
This could be useful when converting large logs (when otherwise the log could
wrap during conversion). Defaults to true.
Start and Stop indicates which log entries should be converted,
from when (Start) to when (Stop). Start = null => Start from the
beginning of the log. Stop = null => Stop the conversion at the end
of the log. Defaults to Start = null and Stop = null (the entire log).
See snmp:log_to_io/7 for more info.

 log_to_txt(LogDir)

 (since OTP R16B03)

 -spec log_to_txt(LogDir :: snmp:dir()) -> snmp:void().

Equivalent to log_to_txt/8.

 log_to_txt/2

 -spec log_to_txt(LogDir :: snmp:dir(), Block :: boolean()) -> snmp:void();
 (LogDir :: snmp:dir(), Mibs :: [snmp:mib_name()]) -> snmp:void().

Equivalent to log_to_txt/8.

 log_to_txt/3

 -spec log_to_txt(LogDir :: snmp:dir(), Mibs :: [snmp:mib_name()], Block :: boolean()) -> snmp:void();
 (LogDir :: snmp:dir(), Mibs :: [snmp:mib_name()], OutFile :: file:filename()) ->
 snmp:void().

Equivalent to log_to_txt/8.

 log_to_txt/4

 -spec log_to_txt(LogDir :: snmp:dir(),
 Mibs :: [snmp:mib_name()],
 OutFile :: file:filename(),
 Block :: boolean()) ->
 snmp:void();
 (LogDir :: snmp:dir(),
 Mibs :: [snmp:mib_name()],
 OutFile :: file:filename(),
 LogName :: string()) ->
 snmp:void().

Equivalent to log_to_txt/8.

 log_to_txt/5

 -spec log_to_txt(LogDir :: snmp:dir(),
 Mibs :: [snmp:mib_name()],
 OutFile :: file:filename(),
 LogName :: string(),
 Block :: boolean()) ->
 snmp:void();
 (LogDir :: snmp:dir(),
 Mibs :: [snmp:mib_name()],
 OutFile :: file:filename(),
 LogName :: string(),
 LogFile :: string()) ->
 snmp:void().

Equivalent to log_to_txt/8.

 log_to_txt/6

 -spec log_to_txt(LogDir :: snmp:dir(),
 Mibs :: [snmp:mib_name()],
 OutFile :: file:filename(),
 LogName :: string(),
 LogFile :: string(),
 Block :: boolean()) ->
 snmp:void();
 (LogDir :: snmp:dir(),
 Mibs :: [snmp:mib_name()],
 OutFile :: file:filename(),
 LogName :: string(),
 LogFile :: string(),
 Start :: null | snmp:log_time()) ->
 snmp:void().

Equivalent to log_to_txt/8.

 log_to_txt/7

 -spec log_to_txt(LogDir :: snmp:dir(),
 Mibs :: [snmp:mib_name()],
 OutFile :: file:filename(),
 LogName :: string(),
 LogFile :: string(),
 Block :: boolean(),
 Start :: null | snmp:log_time()) ->
 snmp:void();
 (LogDir :: snmp:dir(),
 Mibs :: [snmp:mib_name()],
 OutFile :: file:filename(),
 LogName :: string(),
 LogFile :: string(),
 Start :: null | snmp:log_time(),
 Stop :: null | snmp:log_time()) ->
 snmp:void().

Equivalent to log_to_txt/8.

 log_to_txt(LogDir, Mibs, OutFile, LogName, LogFile, Block, Start, Stop)

 (since OTP R16B03)

 -spec log_to_txt(LogDir :: snmp:dir(),
 Mibs :: [snmp:mib_name()],
 OutFile :: file:filename(),
 LogName :: string(),
 LogFile :: string(),
 Block :: boolean(),
 Start :: snmp:log_time(),
 Stop :: snmp:log_time()) ->
 snmp:void().

Converts an Audit Trail Log to a readable text file. OutFile defaults to
"./snmpm_log.txt". LogName defaults to "snmpm_log". LogFile defaults to
"snmpm.log".
The Block argument indicates if the log should be blocked during conversion.
This could be useful when converting large logs (when otherwise the log could
wrap during conversion). Defaults to true.
Start and Stop indicates which log entries should be converted,
from when (Start) to when (Stop). Start = null => Start from the
beginning of the log. Stop = null => Stop the conversion at the end
of the log. Defaults to Start = null and Stop = null (the entire log).
See snmp:log_to_txt/8 for more info.

 monitor()

 -spec monitor() -> MRef when MRef :: reference().

Monitor the SNMP manager. In case of a crash, the calling (monitoring) process
will get a 'DOWN' message (see the erlang module for more info).

 name_to_oid(AliasName)

 -spec name_to_oid(AliasName) -> {ok, OIDs} | {error, Reason}
 when AliasName :: atom(), OIDs :: [snmp:oid()], Reason :: term().

Transform a alias-name to its oid.
Note that an alias-name is only unique within the mib, so when loading several
mib's into a manager, there might be several instances of the same aliasname.

 notify_started/1

 -spec notify_started(Timeout) -> Pid when Timeout :: non_neg_integer(), Pid :: pid();
 (Args) -> Pid when Args :: map(), Pid :: pid().

Request a notification (message) when the SNMP manager has started.
The Timeout is the time the request is valid. The value has to be greater then
zero.
The Pid is the process handling the supervision of the SNMP manager start.
When the manager has started a completion message will be sent to the client
from this process: {snmpm_started, Pid}. If the SNMP manager was not started
in time, a timeout message will be sent to the client:
{snmpm_start_timeout, Pid}.
A client application that is dependent on the SNMP manager will use this
function in order to be notified of when the manager has started. There are two
situations when this is useful:
	During the start of a system, when a client application could start prior to
the SNMP manager but is dependent upon it, and therefore has to wait for it to
start.
	When the SNMP manager has crashed, the dependent client application has to
wait for the SNMP manager to be restarted before it can reconnect.

The function returns the pid() of a handler process, that does the supervision
on behalf of the client application. Note that the client application is linked
to this handler.
This function is used in conjunction with the monitor function.

 oid_to_name(OID)

 -spec oid_to_name(OID) -> {ok, AliasName} | {error, Reason}
 when OID :: snmp:oid(), AliasName :: atom(), Reason :: term().

Transform a oid to its aliasname.

 oid_to_type(OID)

 -spec oid_to_type(OID) -> {ok, Type} | {error, Reason}
 when OID :: snmp:oid(), Type :: atom(), Reason :: term().

Retrieve the type (asn1 bertype) of an oid.

 register_agent(UserId, TargetName, Config)

 -spec register_agent(UserId, TargetName, Config) -> ok | {error, Reason}
 when
 UserId :: user_id(),
 TargetName :: target_name(),
 Config :: [ConfigEntry],
 ConfigEntry :: {Item, Value},
 Item :: agent_config_item(),
 Value :: term(),
 Reason :: term().

Explicitly instruct the manager to handle this agent, with UserId as the
responsible user.
Called to instruct the manager that this agent shall be handled. This function
is used when the user knows in advance which agents the manager shall handle.
Note that there is an alternate way to do the same thing: Add the agent to the
manager config files (see agents.conf).
TargetName is a non-empty string, uniquely identifying the agent.
The type of Val depends on Item:
[mandatory] engine_id = engine_id()
[mandatory] address = inet:ip_address() % Depends on tdomain
[optional] port = inet:port_number()
[optional] tdomain = snmp:tdomain()
[optional] community = snmp:community()
[optional] timeout = register_timeout()
[optional] max_message_size = snmp:mms()
[optional] version = snmp:version()
[optional] sec_model = snmp:sec_model()
[optional] sec_name = snmp:sec_name()
[optional] sec_level = snmp:sec_level()
Note that if no tdomain is given, the default value, transportDomainUdpIpv4,
is used.
Note that if no port is given and if taddress does not contain a port
number, the default value is used.

 register_user(UserId, Module, Data)

 -spec register_user(UserId, Module, Data) -> ok | {error, Reason}
 when
 UserId :: user_id(), Module :: snmpm_user(), Data :: term(), Reason :: term().

Equivalent to register_user/4.

 register_user(UserId, Module, Data, DefaultAgentConfig)

 -spec register_user(UserId, Module, Data, DefaultAgentConfig) -> ok | {error, Reason}
 when
 UserId :: user_id(),
 Module :: snmpm_user(),
 Data :: term(),
 DefaultAgentConfig :: [DefaultConfigEntry],
 DefaultConfigEntry :: {Item, Value},
 Item :: agent_config_item(),
 Value :: term(),
 Reason :: term().

Register the manager entity (=user) responsible for specific agent(s).
Module is the callback module (snmpm_user behaviour) which will be called
whenever something happens (detected agent, incoming reply or incoming
trap/notification).
Data is an opaque data structure, not inspected by the manager, that will be
included in all callback calls to the Module callback module (snmpm_user
behaviour).
The argument DefaultAgentConfig is used as default values when this user
register agents.
Note that this operation (register user) could have already been done as a
consequence of the node config. (see users.conf).

 register_user_monitor(UserId, Module, Data)

 -spec register_user_monitor(UserId, Module, Data) -> ok | {error, Reason}
 when
 UserId :: user_id(),
 Module :: snmpm_user(),
 Data :: term(),
 Reason :: term().

Equivalent to register_user_monitor/4.

 register_user_monitor(UserId, Module, Data, DefaultAgentConfig)

 -spec register_user_monitor(UserId, Module, Data, DefaultAgentConfig) -> ok | {error, Reason}
 when
 UserId :: user_id(),
 Module :: snmpm_user(),
 Data :: term(),
 DefaultAgentConfig :: [DefaultConfigEntry],
 DefaultConfigEntry :: {Item, Value},
 Item :: agent_config_item(),
 Value :: term(),
 Reason :: term().

Register the monitored manager entity (=user) responsible for specific agent(s).
The process performing the registration will be monitored. Which means that if
that process should die, all agents registered by that user process will be
unregistered. All outstanding requests will be canceled.
Module is the callback module (snmpm_user behaviour) which will be called
whenever something happens (detected agent, incoming reply or incoming
trap/notification).
Data is an opaque data structure, not inspected by the manager, that will be
included in all callback calls to the Module callback module (snmpm_user
behaviour).
The argument DefaultAgentConfig is used as default values when this user
register agents.

 register_usm_user(EngineID, UserName, Config)

 -spec register_usm_user(EngineID, UserName, Config) -> ok | {error, Reason}
 when
 EngineID :: snmp:engine_id(),
 UserName :: snmp:usm_name(),
 Config :: [ConfigEntry],
 ConfigEntry :: {Item, Value},
 Item :: usm_config_item(),
 Value :: term(),
 Reason :: term().

Explicitly instruct the manager to handle this USM user. Note that there is an
alternate way to do the same thing: Add the usm user to the manager config files
(see usm.conf).

 restart(What)

 (since OTP 22.3)

 -spec restart(What) -> snmp:void() when What :: net_if.

Restart the indicated process (What). Note that its not without risk to
restart a process, and should therefore be used with care.

 set_log_type(NewType)

 -spec set_log_type(NewType) -> {ok, OldType} | {error, Reason}
 when NewType :: snmp:atl_type(), OldType :: snmp:atl_type(), Reason :: term().

Changes the run-time Audit Trail log type.
Note that this has no effect on the application configuration as defined by
configuration files, so a node restart will revert the config to whatever is in
those files.
This function is primarily useful in testing/debugging scenarios.

 sync_get2(UserId, TargetName, Oids)

 (since OTP R14B03)

 -spec sync_get2(UserId, TargetName, Oids) -> {ok, SnmpReply, Remaining} | {error, Reason}
 when
 UserId :: user_id(),
 TargetName :: target_name(),
 Oids :: [snmp:oid()],
 SnmpReply :: snmp_reply(),
 Remaining :: non_neg_integer(),
 Reason ::
 {send_failed, ReqId, ActualReason} |
 {invalid_sec_info, SecInfo, SnmpInfo} |
 term(),
 ReqId :: request_id(),
 ActualReason :: term(),
 SecInfo :: {SecTag, ExpectedValue, ReceivedValue},
 SecTag :: atom(),
 ExpectedValue :: term(),
 ReceivedValue :: term(),
 SnmpInfo :: term().

Equivalent to sync_get2/4.

 sync_get2(UserId, TargetName, Oids, SendOpts)

 (since OTP R14B03)

 -spec sync_get2(UserId, TargetName, Oids, SendOpts) -> {ok, SnmpReply, Remaining} | {error, Reason}
 when
 UserId :: user_id(),
 TargetName :: target_name(),
 Oids :: [snmp:oid()],
 SendOpts :: [SendOpt],
 SendOpt ::
 {context, snmp:context_name()} |
 {timeout, pos_integer()} |
 {community, snmp:community()} |
 {sec_model, snmp:sec_model()} |
 {sec_name, snmp:sec_name()} |
 {sec_level, snmp:sec_level()} |
 {max_message_size, snmp:mms()} |
 {extra, term()},
 SnmpReply :: snmp_reply(),
 Remaining :: non_neg_integer(),
 Reason ::
 {send_failed, ReqId, ActualReason} |
 {invalid_sec_info, SecInfo, SnmpInfo} |
 term(),
 ReqId :: request_id(),
 ActualReason :: term(),
 SecInfo :: {SecTag, ExpectedValue, ReceivedValue},
 SecTag :: atom(),
 ExpectedValue :: term(),
 ReceivedValue :: term(),
 SnmpInfo :: term().

Synchronous get-request.
Remaining is the remaining time of the given (or default) timeout time.
When Reason is {send_failed, ...} it means that the net-if process
failed to send the (get-request) message.
This could happen because of any number of reasons, i.e. encoding error.
ActualReason is the actual reason in this case.
The send option extra specifies an opaque data structure passed on to the
net-if process.
The net-if process included in this application makes, with one
exception, no use of this info, so the only use for it (when using the built in
net-if) would be tracing. The one usage exception is: Any tuple with
snmpm_extra_info_tag as its first element is reserved for internal use.
Some of the send options (community, sec_model, sec_name, sec_level and
max_message_size) are override options. That is, for this request, they
override any configuration done when the agent was registered.
For SnmpInfo, see the user callback function
handle_report.

 sync_get_bulk2(UserId, TargetName, NonRep, MaxRep, Oids)

 (since OTP R14B03)

 -spec sync_get_bulk2(UserId, TargetName, NonRep, MaxRep, Oids) ->
 {ok, SnmpReply, Remaining} | {error, Reason}
 when
 UserId :: user_id(),
 TargetName :: target_name(),
 NonRep :: non_neg_integer(),
 MaxRep :: non_neg_integer(),
 Oids :: [snmp:oid()],
 SnmpReply :: snmp_reply(),
 Remaining :: non_neg_integer(),
 Reason ::
 {send_failed, ReqId, ActualReason} |
 {invalid_sec_info, SecInfo, SnmpInfo} |
 term(),
 ReqId :: request_id(),
 ActualReason :: term(),
 SecInfo :: {SecTag, ExpectedValue, ReceivedValue},
 SecTag :: atom(),
 ExpectedValue :: term(),
 ReceivedValue :: term(),
 SnmpInfo :: term().

Equivalent to sync_get_bulk2/6.

 sync_get_bulk2(UserId, TargetName, NonRep, MaxRep, Oids, SendOpts)

 (since OTP R14B03)

 -spec sync_get_bulk2(UserId, TargetName, NonRep, MaxRep, Oids, SendOpts) ->
 {ok, SnmpReply, Remaining} | {error, Reason}
 when
 UserId :: user_id(),
 TargetName :: target_name(),
 NonRep :: non_neg_integer(),
 MaxRep :: non_neg_integer(),
 Oids :: [snmp:oid()],
 SendOpts :: [SendOpt],
 SendOpt ::
 {context, snmp:context_name()} |
 {timeout, pos_integer()} |
 {community, snmp:community()} |
 {sec_model, snmp:sec_model()} |
 {sec_name, snmp:sec_name()} |
 {sec_level, snmp:sec_level()} |
 {max_message_size, snmp:mms()} |
 {extra, term()},
 ReqId :: request_id(),
 SnmpReply :: snmp_reply(),
 Remaining :: non_neg_integer(),
 Reason ::
 {send_failed, ReqId, ActualReason} |
 {invalid_sec_info, SecInfo, SnmpInfo} |
 term(),
 ReqId :: request_id(),
 ActualReason :: term(),
 SecInfo :: {SecTag, ExpectedValue, ReceivedValue},
 SecTag :: atom(),
 ExpectedValue :: term(),
 ReceivedValue :: term(),
 SnmpInfo :: term().

Synchronous get-bulk-request (See RFC1905).
Remaining is the remaining time of the given (or default) timeout time.
When Reason is {send_failed, ...} it means that the net-if process
failed to send the message. This could happen because of any number of reasons,
i.e. encoding error. ActualReason is the actual reason in this case.
The send option extra specifies an opaque data structure passed on to the
net-if process.
The net-if process included in this application makes, with one
exception, no use of this info, so the only use for it (when using the built in
net-if) would be tracing. The one usage exception is: Any tuple with
snmpm_extra_info_tag as its first element is reserved for internal use.
Some of the send options (community, sec_model, sec_name, sec_level and
max_message_size) are override options. That is, for this request, they
override any configuration done when the agent was registered.
For SnmpInfo, see the user callback function
snmpm_user:handle_report/3.

 sync_get_next2(UserId, TargetName, Oids)

 (since OTP R14B03)

 -spec sync_get_next2(UserId, TargetName, Oids) -> {ok, SnmpReply, Remaining} | {error, Reason}
 when
 UserId :: user_id(),
 TargetName :: target_name(),
 Oids :: [snmp:oid()],
 SnmpReply :: snmp_reply(),
 Remaining :: non_neg_integer(),
 Reason ::
 {send_failed, ReqId, ActualReason} |
 {invalid_sec_info, SecInfo, SnmpInfo} |
 term(),
 ReqId :: request_id(),
 ActualReason :: term(),
 SecInfo :: {SecTag, ExpectedValue, ReceivedValue},
 SecTag :: atom(),
 ExpectedValue :: term(),
 ReceivedValue :: term(),
 SnmpInfo :: term().

Equivalent to sync_get_next2/4.

 sync_get_next2(UserId, TargetName, Oids, SendOpts)

 (since OTP R14B03)

 -spec sync_get_next2(UserId, TargetName, Oids, SendOpts) -> {ok, SnmpReply, Remaining} | {error, Reason}
 when
 UserId :: user_id(),
 TargetName :: target_name(),
 Oids :: [snmp:oid()],
 SendOpts :: [SendOpt],
 SendOpt ::
 {context, snmp:context_name()} |
 {timeout, pos_integer()} |
 {community, snmp:community()} |
 {sec_model, snmp:sec_model()} |
 {sec_name, snmp:sec_name()} |
 {sec_level, snmp:sec_level()} |
 {max_message_size, snmp:mms()} |
 {extra, term()},
 SnmpReply :: snmp_reply(),
 Remaining :: non_neg_integer(),
 Reason ::
 {send_failed, ReqId, ActualReason} |
 {invalid_sec_info, SecInfo, SnmpInfo} |
 term(),
 ReqId :: request_id(),
 ActualReason :: term(),
 SecInfo :: {SecTag, ExpectedValue, ReceivedValue},
 SecTag :: atom(),
 ExpectedValue :: term(),
 ReceivedValue :: term(),
 SnmpInfo :: term().

Synchronous get-next-request.
Remaining is the remaining time of the given (or default) timeout time.
When Reason is {send_failed, ...} it means that the net-if process
failed to send the message.
This could happen because of any number of reasons, i.e.
encoding error. ActualReason is the actual reason in this case.
The send option extra specifies an opaque data structure passed on to the
net-if process.
The net-if process included in this application makes, with one
exception, no use of this info, so the only use for it (when using the built in
net-if) would be tracing. The one usage exception is: Any tuple with
snmpm_extra_info_tag as its first element is reserved for internal use.
Some of the send options (community, sec_model, sec_name, sec_level and
max_message_size) are override options. That is, for this request, they
override any configuration done when the agent was registered.
For SnmpInfo, see the user callback function
handle_report.

 sync_set2(UserId, TargetName, VarsAndVals)

 (since OTP R14B03)

 -spec sync_set2(UserId, TargetName, VarsAndVals) -> {ok, SnmpReply, Remaining} | {error, Reason}
 when
 UserId :: user_id(),
 TargetName :: target_name(),
 VarsAndVals :: [var_and_val()],
 SnmpReply :: snmp_reply(),
 Remaining :: non_neg_integer(),
 Reason ::
 {send_failed, ReqId, ActualReason} |
 {invalid_sec_info, SecInfo, SnmpInfo} |
 term(),
 ReqId :: request_id(),
 ActualReason :: term(),
 SecInfo :: {SecTag, ExpectedValue, ReceivedValue},
 SecTag :: atom(),
 ExpectedValue :: term(),
 ReceivedValue :: term(),
 SnmpInfo :: term().

Equivalent to sync_set2/4.

 sync_set2(UserId, TargetName, VarsAndVals, SendOpts)

 (since OTP R14B03)

 -spec sync_set2(UserId, TargetName, VarsAndVals, SendOpts) ->
 {ok, SnmpReply, Remaining} | {error, Reason}
 when
 UserId :: user_id(),
 TargetName :: target_name(),
 VarsAndVals :: [var_and_val()],
 SendOpts :: [SendOpt],
 SendOpt ::
 {context, snmp:context_name()} |
 {timeout, pos_integer()} |
 {community, snmp:community()} |
 {sec_model, snmp:sec_model()} |
 {sec_name, snmp:sec_name()} |
 {sec_level, snmp:sec_level()} |
 {max_message_size, snmp:mms()} |
 {extra, term()},
 SnmpReply :: snmp_reply(),
 Remaining :: non_neg_integer(),
 Reason ::
 {send_failed, ReqId, ActualReason} |
 {invalid_sec_info, SecInfo, SnmpInfo} |
 term(),
 ReqId :: request_id(),
 ActualReason :: term(),
 SecInfo :: {SecTag, ExpectedValue, ReceivedValue},
 SecTag :: atom(),
 ExpectedValue :: term(),
 ReceivedValue :: term(),
 SnmpInfo :: term().

Synchronous set-request.
Remaining is the remaining time of the given (or default) timeout time.
When Reason is {send_failed, ...} it means that the net-if process
failed to send the message.
This could happen because of any number of reasons, i.e.
encoding error. ActualReason is the actual reason in this case.
When var_and_val() is {oid(), value()}, the manager makes an educated
guess based on the loaded mibs.
The send option extra specifies an opaque data structure passed on to the
net-if process.
The net-if process included in this application makes, with one
exception, no use of this info, so the only use for it (when using the built in
net-if) would be tracing. The one usage exception is: Any tuple with
snmpm_extra_info_tag as its first element is reserved for internal use.
Some of the send options (community, sec_model, sec_name, sec_level and
max_message_size) are override options. That is, for this request, they
override any configuration done when the agent was registered.
For SnmpInfo, see the user callback function
snmpm_user:handle_report/3.

 unload_mib(MibName)

 -spec unload_mib(MibName) -> ok | {error, Reason} when MibName :: snmp:mib_name(), Reason :: term().

Unload a Mib from the manager. The MibName is the name of the Mib, including
the path to where the compiled mib is found. For example,
 Dir = code:priv_dir(my_app) ++ "/mibs/",
 snmpm:unload_mib(Dir ++ "MY-MIB").

 unregister_agent(UserId, TargetName)

 -spec unregister_agent(UserId, TargetName) -> ok | {error, Reason}
 when UserId :: user_id(), TargetName :: target_name(), Reason :: term().

Unregister the agent.

 unregister_user(UserId)

 -spec unregister_user(UserId) -> ok | {error, Reason} when UserId :: user_id(), Reason :: term().

Unregister the user.

 unregister_usm_user(EngineID, UserName)

 -spec unregister_usm_user(EngineID, UserName) -> ok | {error, Reason}
 when
 EngineID :: snmp:engine_id(),
 UserName :: snmp:usm_name(),
 Reason :: term().

Unregister this USM user.

 update_agent_info(UserId, TargetName, Info)

 (since OTP R14B04)

 -spec update_agent_info(UserId, TargetName, Info) -> ok | {error, Reason}
 when
 UserId :: user_id(),
 TargetName :: target_name(),
 Info :: [{Item, Value}],
 Item :: agent_config_item(),
 Value :: term(),
 Reason :: term().

Update agent config.
This function, update_agent_info/3, should be used when several
values needs to be updated atomically.
See function register_agent/3 for more info about what kind of items are allowed.

 update_agent_info(UserId, TargetName, Item, Value)

 -spec update_agent_info(UserId, TargetName, Item, Value) -> ok | {error, Reason}
 when
 UserId :: user_id(),
 TargetName :: target_name(),
 Item :: agent_config_item(),
 Value :: term(),
 Reason :: term().

Update agent config.
See function register_agent/3 for more info about what
kind of items are allowed.

 update_usm_user_info(EngineID, UserName, Item, Value)

 -spec update_usm_user_info(EngineID, UserName, Item, Value) -> ok | {error, Reason}
 when
 EngineID :: snmp:engine_id(),
 UserName :: snmp:usm_name(),
 Item :: usm_config_item(),
 Value :: term(),
 Reason :: term().

Update usm user config.

 usm_user_info(EngineID, UserName, Item)

 -spec usm_user_info(EngineID, UserName, Item) -> {ok, Value} | {error, Reason}
 when
 EngineID :: snmp:engine_id(),
 UserName :: snmp:usm_name(),
 Item :: usm_config_item(),
 Value :: term(),
 Reason :: term().

Retrieve usm user config.

 verbosity(Target, Verbosity)

 -spec verbosity(Target, Verbosity) -> snmp:void()
 when
 Target :: config | server | net_if | note_store | all,
 Verbosity :: snmp:verbosity().

Sets verbosity for the designated process. For the lowest verbosity silence,
nothing is printed. The higher the verbosity, the more is printed.

 which_agents()

 -spec which_agents() -> Agents when Agents :: [target_name()].

Equivalent to which_agents/1.

 which_agents(UserId)

 -spec which_agents(UserId) -> Agents when UserId :: user_id(), Agents :: [target_name()].

Get a list of all registered agents or all agents registered by a specific user.

 which_mibs()

 -spec which_mibs() -> Mibs
 when Mibs :: [{MibName, MibFile}], MibName :: snmp:mib_name(), MibFile :: string().

Get a list of all the mib's loaded into the manager.

 which_users()

 -spec which_users() -> Users when Users :: [user_id()].

Get a list of the identities of all registered users.

 which_usm_users()

 -spec which_usm_users() -> UsmUsers
 when
 UsmUsers :: [{EngineID, UserName}],
 EngineID :: snmp:engine_id(),
 UserName :: snmp:usm_name().

Get a list of all registered usm users.

 which_usm_users(EngineID)

 -spec which_usm_users(EngineID) -> UsmUsers
 when
 EngineID :: snmp:engine_id(),
 UsmUsers :: [UserName],
 UserName :: snmp:usm_name().

Get a list of all registered usm users with engine-id EngineID.

snmpm_conf

Utility functions for handling the manager config files.
The module snmpm_conf contains various utility functions to used for
manipulating (write/append/read) the config files of the SNMP manager.

 Summary

 Types

 agent_entry()

 An opaque data structure containg all configuration for one agent for the
manager.

 manager_entry()

 An opaque data structure that represents one configuration entry for the
manager.

 user_entry()

 An opaque data structure containg all configuration for one user for the
manager.

 usm_entry()

 An opaque data structure containg information about security data for usm for
the manager.

 Functions

 agents_entry/12

 Create an entry for the manager agents config file, agents.conf.

 append_agents_config(Dir, Conf)

 Append the agents config to the current manager agents config file.

 append_manager_config(Dir, Conf)

 Append the config to the current manager config file.

 append_users_config(Dir, Conf)

 Append the users config to the current manager users config file.

 append_usm_config(Dir, Conf)

 Append the usm config to the current manager usm config file.

 manager_entry(Tag, Val)

 Create an entry for the manager config file, manager.conf.

 read_agents_config(Dir)

 Read the current manager agents config file.

 read_manager_config(Dir)

 Read the current manager config file.

 read_users_config(Dir)

 Read the current manager users config file.

 read_usm_config(Dir)

 Read the current manager usm config file.

 users_entry(UserId)

 Equivalent to users_entry(UserId, snmpm_user_default).

 users_entry(UserId, UserMod)

 Equivalent to users_entry(UserId, UserMod, undefined).

 users_entry(UserId, UserMod, UserData)

 Equivalent to users_entry(UserId, UserMod, UserData, []).

 users_entry(UserId, UserMod, UserData, DefaultAgentConfig)

 Create an entry for the manager users config file, users.conf.

 usm_entry(EngineID, UserName, AuthP, AuthKey, PrivP, PrivKey)

 Equivalent to usm_entry/7.

 usm_entry(EngineID, UserName, SecName, AuthP, AuthKey, PrivP, PrivKey)

 Create an entry for the manager usm config file, usm.conf.

 write_agents_config(Dir, Conf)

 Equivalent to write_agents_config/3.

 write_agents_config(Dir, Hdr, Conf)

 Write the manager agents config to the manager agents config file.

 write_manager_config(Dir, Conf)

 Equivalent to write_manager_config/3.

 write_manager_config(Dir, Hdr, Conf)

 Write the manager config to the manager config file.

 write_users_config(Dir, Conf)

 Equivalent to write_users_config/3.

 write_users_config(Dir, Hdr, Conf)

 Write the manager users config to the manager users config file.

 write_usm_config(Dir, Conf)

 Equivalent to write_usm_config/3.

 write_usm_config(Dir, Hdr, Conf)

 Write the manager usm config to the manager usm config file.

 Types

 agent_entry()

 -opaque agent_entry()

An opaque data structure containg all configuration for one agent for the
manager.

 manager_entry()

 -opaque manager_entry()

An opaque data structure that represents one configuration entry for the
manager.

 user_entry()

 -opaque user_entry()

An opaque data structure containg all configuration for one user for the
manager.

 usm_entry()

 -opaque usm_entry()

An opaque data structure containg information about security data for usm for
the manager.

 Functions

 agents_entry/12

 -spec agents_entry(UserId, TargetName, Comm, TDomain, TAddr, EngineID, Timeout, MaxMessageSize, Version,
 SecModel, SecName, SecLevel) ->
 Entry
 when
 UserId :: snmpm:user_id(),
 TargetName :: snmpm:target_name(),
 Comm :: snmp:community(),
 TDomain :: snmp:tdomain(),
 TAddr :: snmp:taddress(),
 EngineID :: snmp:engine_id(),
 Timeout :: snmpm:register_timeout(),
 MaxMessageSize :: snmp:mms(),
 Version :: snmp:version(),
 SecModel :: snmp:sec_model(),
 SecName :: snmp:sec_name(),
 SecLevel :: snmp:sec_level(),
 Entry :: agent_entry();
 (UserId, TargetName, Comm, Ip, Port, EngineID, Timeout, MaxMessageSize, Version,
 SecModel, SecName, SecLevel) ->
 Entry
 when
 UserId :: snmpm:user_id(),
 TargetName :: snmpm:target_name(),
 Comm :: snmp:community(),
 Ip :: inet:ip_address(),
 Port :: inet:port_number(),
 EngineID :: snmp:engine_id(),
 Timeout :: snmpm:register_timeout(),
 MaxMessageSize :: snmp:mms(),
 Version :: snmp:version(),
 SecModel :: snmp:sec_model(),
 SecName :: snmp:sec_name(),
 SecLevel :: snmp:sec_level(),
 Entry :: agent_entry().

Create an entry for the manager agents config file, agents.conf.
See Agents for more info.

 append_agents_config(Dir, Conf)

 -spec append_agents_config(Dir, Conf) -> ok when Dir :: snmp:dir(), Conf :: [agent_entry()].

Append the agents config to the current manager agents config file.
Dir is the path to the directory where to store the config file.
See Agents for more info.

 append_manager_config(Dir, Conf)

 -spec append_manager_config(Dir, Conf) -> ok when Dir :: snmp:dir(), Conf :: [manager_entry()].

Append the config to the current manager config file.
Dir is the path to the directory where to store the config file.
See Manager Information for
more info.

 append_users_config(Dir, Conf)

 -spec append_users_config(Dir, Conf) -> ok when Dir :: snmp:dir(), Conf :: [user_entry()].

Append the users config to the current manager users config file.
Dir is the path to the directory where to store the config file.
See Users for more info.

 append_usm_config(Dir, Conf)

 -spec append_usm_config(Dir, Conf) -> ok when Dir :: snmp:dir(), Conf :: [usm_entry()].

Append the usm config to the current manager usm config file.
Dir is the path to the directory where to store the config file.
See Security data for USM for more info.

 manager_entry(Tag, Val)

 -spec manager_entry(Tag, Val) -> ManagerEntry
 when
 Tag :: transports | port | engine_id | max_message_size,
 Val :: term(),
 ManagerEntry :: manager_entry();
 (Tag, Val) -> ManagerEntry
 when Tag :: address, Val :: term(), ManagerEntry :: manager_entry().

Create an entry for the manager config file, manager.conf.
The type of Val depends on the value of Tag, see
Manager Information for more
info.

 read_agents_config(Dir)

 -spec read_agents_config(Dir) -> {ok, Conf} | {error, Reason}
 when Dir :: snmp:dir(), Conf :: [agent_entry()], Reason :: term().

Read the current manager agents config file.
Dir is the path to the directory where to store the config file.
See Agents for more info.

 read_manager_config(Dir)

 -spec read_manager_config(Dir) -> {ok, Conf} | {error, Reason}
 when Dir :: snmp:dir(), Conf :: [manager_entry()], Reason :: term().

Read the current manager config file.
Dir is the path to the directory where to store the config file.
See Manager Information for
more info.

 read_users_config(Dir)

 -spec read_users_config(Dir) -> {ok, Conf} | {error, Reason}
 when Dir :: snmp:dir(), Conf :: [user_entry()], Reason :: term().

Read the current manager users config file.
Dir is the path to the directory where to store the config file.
See Users for more info.

 read_usm_config(Dir)

 -spec read_usm_config(Dir) -> {ok, Conf} | {error, Reason}
 when Dir :: snmp:dir(), Conf :: [usm_entry()], Reason :: term().

Read the current manager usm config file.
Dir is the path to the directory where to store the config file.
See Security data for USM for more info.

 users_entry(UserId)

 -spec users_entry(UserId) -> UserEntry when UserId :: snmpm:user_id(), UserEntry :: user_entry().

Equivalent to users_entry(UserId, snmpm_user_default).

 users_entry(UserId, UserMod)

 -spec users_entry(UserId, UserMod) -> UserEntry
 when
 UserId :: snmpm:user_id(),
 UserMod :: snmpm:snmpm_user(),
 UserEntry :: user_entry().

Equivalent to users_entry(UserId, UserMod, undefined).

 users_entry(UserId, UserMod, UserData)

 -spec users_entry(UserId, UserMod, UserData) -> UserEntry
 when
 UserId :: snmpm:user_id(),
 UserMod :: snmpm:snmpm_user(),
 UserData :: term(),
 UserEntry :: user_entry().

Equivalent to users_entry(UserId, UserMod, UserData, []).

 users_entry(UserId, UserMod, UserData, DefaultAgentConfig)

 (since OTP 27.0)

 -spec users_entry(UserId, UserMod, UserData, DefaultAgentConfig) -> UserEntry
 when
 UserId :: snmpm:user_id(),
 UserMod :: snmpm:snmpm_user(),
 UserData :: term(),
 DefaultAgentConfig :: [snmpm:agent_config()],
 UserEntry :: user_entry().

Create an entry for the manager users config file, users.conf.
See the Users chapter of the
(SNMP) Manager Configuration User Guide for more info.

 usm_entry(EngineID, UserName, AuthP, AuthKey, PrivP, PrivKey)

 -spec usm_entry(EngineID, UserName, AuthP, AuthKey, PrivP, PrivKey) -> UsmEntry
 when
 EngineID :: snmp:engine_id(),
 UserName :: snmp:usm_name(),
 AuthP :: snmp:usm_auth_protocol(),
 AuthKey :: snmp:usm_auth_key(),
 PrivP :: snmp:usm_priv_protocol(),
 PrivKey :: snmp:usm_priv_key(),
 UsmEntry :: usm_entry().

Equivalent to usm_entry/7.

 usm_entry(EngineID, UserName, SecName, AuthP, AuthKey, PrivP, PrivKey)

 -spec usm_entry(EngineID, UserName, SecName, AuthP, AuthKey, PrivP, PrivKey) -> UsmEntry
 when
 EngineID :: snmp:engine_id(),
 UserName :: snmp:usm_name(),
 SecName :: snmp:sec_name(),
 AuthP :: snmp:usm_auth_protocol(),
 AuthKey :: snmp:usm_auth_key(),
 PrivP :: snmp:usm_priv_protocol(),
 PrivKey :: snmp:usm_priv_key(),
 UsmEntry :: usm_entry().

Create an entry for the manager usm config file, usm.conf.
See
Security data for USM
for more info.

 write_agents_config(Dir, Conf)

 -spec write_agents_config(Dir, Conf) -> ok when Dir :: snmp:dir(), Conf :: [agent_entry()].

Equivalent to write_agents_config/3.

 write_agents_config(Dir, Hdr, Conf)

 -spec write_agents_config(Dir, Hdr, Conf) -> ok
 when Dir :: snmp:dir(), Hdr :: string(), Conf :: [agent_entry()].

Write the manager agents config to the manager agents config file.
Dir is the path to the directory where to store the config file.
Hdr is an optional file header (note that this text is written to the file as
is).
See Agents for more info.

 write_manager_config(Dir, Conf)

 -spec write_manager_config(Dir, Conf) -> ok when Dir :: snmp:dir(), Conf :: [manager_entry()].

Equivalent to write_manager_config/3.

 write_manager_config(Dir, Hdr, Conf)

 -spec write_manager_config(Dir, Hdr, Conf) -> ok
 when Dir :: snmp:dir(), Hdr :: string(), Conf :: [manager_entry()].

Write the manager config to the manager config file.
Dir is the path to the directory where to store the config file.
Hdr is an optional file header (note that this text is written to the file as
is).
See Manager Information for
more info.

 write_users_config(Dir, Conf)

 -spec write_users_config(Dir, Conf) -> ok when Dir :: snmp:dir(), Conf :: [user_entry()].

Equivalent to write_users_config/3.

 write_users_config(Dir, Hdr, Conf)

 -spec write_users_config(Dir, Hdr, Conf) -> ok
 when Dir :: snmp:dir(), Hdr :: string(), Conf :: [user_entry()].

Write the manager users config to the manager users config file.
Dir is the path to the directory where to store the config file.
Hdr is an optional file header (note that this text is written to the file as
is).
See Users for more info.

 write_usm_config(Dir, Conf)

 -spec write_usm_config(Dir, Conf) -> ok when Dir :: snmp:dir(), Conf :: [user_entry()].

Equivalent to write_usm_config/3.

 write_usm_config(Dir, Hdr, Conf)

 -spec write_usm_config(Dir, Hdr, Conf) -> ok
 when Dir :: snmp:dir(), Hdr :: string(), Conf :: [user_entry()].

Write the manager usm config to the manager usm config file.
Dir is the path to the directory where to store the config file.
Hdr is an optional file header (note that this text is written to the file as
is).
See Security data for USM for more info.

snmpm_mpd

Message Processing and Dispatch module for the SNMP manager
The module snmpm_mpd implements the version independent Message Processing and
Dispatch functionality in SNMP for the manager. It is supposed to be used from a
Network Interface process
(Definition of Manager Net if).
Legacy API function process_msg/7 that has got separate IpAddr and
PortNumber arguments still works as before for backwards compatibility
reasons.

 Summary

 Types

 logger()

 A fun that handles audit trail logging.

 mpd_state()

 msg_data_acm()

 Is an opaque data structure containing necessary security information for
(incoming) v3 messages.

 msg_data_cmy()

 Is an opaque data structure containing necessary security information for v1 and
v2 messages.

 msg_data_cmyt()

 Is an opaque data structure containing necessary security and transport
information for v1 and v2 messages.

 msg_data_v3()

 Is an opaque data structure containing necessary security information for v3
messages.

 Functions

 generate_msg(Vsn, NoteStore, Pdu, MsgData, Log)

 Generates a possibly encrypted packet to be sent to the network.

 generate_response_msg(Vsn, Pdu, MsgData, Log)

 Generates a possibly encrypted response packet to be sent to the network.

 init(Vsns)

 This function can be called from the net-if process at start-up.
The options list defines which versions to use.

 process_msg(Msg, Domain, Addr, State, NoteStore, Log)

 Processes an incoming message. Performs authentication and decryption as
necessary. The return values should be passed the manager server.

 Types

 logger()

 -type logger() ::
 fun((Data ::
 binary() |
 snmp_pdus:pdu() |
 snmp_pdus:trappdu() |
 snmp_pdus:message() |
 {V3Hdr :: snmp_pdus:v3_hdr(), ScopedPDUBytes :: binary()}) ->
 snmp:void()).

A fun that handles audit trail logging.

 mpd_state()

 -opaque mpd_state()

 msg_data_acm()

 -opaque msg_data_acm()

Is an opaque data structure containing necessary security information for
(incoming) v3 messages.

 msg_data_cmy()

 -opaque msg_data_cmy()

Is an opaque data structure containing necessary security information for v1 and
v2 messages.

 msg_data_cmyt()

 -opaque msg_data_cmyt()

Is an opaque data structure containing necessary security and transport
information for v1 and v2 messages.

 msg_data_v3()

 -opaque msg_data_v3()

Is an opaque data structure containing necessary security information for v3
messages.

 Functions

 generate_msg(Vsn, NoteStore, Pdu, MsgData, Log)

 -spec generate_msg(Vsn, NoteStore, Pdu, MsgData, Log) -> {ok, Packet} | {discarded, Reason}
 when
 Vsn :: snmp_pdus:version(),
 NoteStore :: pid(),
 Pdu :: snmp_pdus:pdu(),
 MsgData :: msg_data_cmy() | msg_data_v3(),
 Log :: logger(),
 Packet :: binary(),
 Reason :: term().

Generates a possibly encrypted packet to be sent to the network.
NoteStore is the pid() of the note-store process.
MsgData is the message specific data used in the SNMP message. In SNMPv1 and
SNMPv2c, this message data is the community string. In SNMPv3, it is the context
information.
Logger is the function used for audit trail logging.

 generate_response_msg(Vsn, Pdu, MsgData, Log)

 -spec generate_response_msg(Vsn, Pdu, MsgData, Log) ->
 {ok, Packet} | {discarded, Reason} | {error, Reason}
 when
 Vsn :: snmp_pdus:version(),
 Pdu :: snmp_pdus:pdu(),
 MsgData :: msg_data_cmy() | msg_data_cmyt() | msg_data_v3(),
 Log :: logger(),
 Packet :: binary(),
 Reason :: term().

Generates a possibly encrypted response packet to be sent to the network.
MsgData is the message specific data used in the SNMP message. This value is
received from the process_msg/6 function.

 init(Vsns)

 -spec init(Vsns) -> MPDState when Vsns :: [snmp:version()], MPDState :: mpd_state().

This function can be called from the net-if process at start-up.
The options list defines which versions to use.
It also initializes some SNMP counters.

 process_msg(Msg, Domain, Addr, State, NoteStore, Log)

 (since OTP 17.3)

 -spec process_msg(Msg, Domain, Addr, State, NoteStore, Log) ->
 {ok, Vsn, PduV2, PduMS, MsgDataV2} |
 {ok, 'version-3', PduV3, PduMS, MsgDataV3} |
 {discarded, Reason}
 when
 Msg :: binary(),
 Domain :: snmpUDPDomain | snmp:tdomain(),
 Addr :: {Ip, Port},
 Ip :: inet:ip_address(),
 Port :: inet:port_number(),
 State :: mpd_state(),
 NoteStore :: pid(),
 Log :: logger(),
 Vsn :: 'version-1' | 'version-2',
 PduV2 :: snmp_pdus:pdu() | snmp_pdus:trappdu(),
 PduV3 :: snmp_pdus:pdu(),
 PduMS :: pos_integer(),
 MsgDataV2 :: msg_data_cmyt(),
 MsgDataV3 :: ok | {error, ReqId, ACM} | undefined | msg_data_acm(),
 ReqId :: snmpm:request_id(),
 ACM :: term(),
 Reason :: term().

Processes an incoming message. Performs authentication and decryption as
necessary. The return values should be passed the manager server.
NoteStore is the pid() of the note-store process.
Logger is the function used for audit trail logging.
In the case when the pdu type is report, MsgData is either ok or
{error, ReqId, Reason}.

snmpm_network_interface behaviour

Behaviour module for the SNMP manager network interface.
This module defines the behaviour of the manager network interface. A
snmpm_network_interface compliant module must export the following functions:
	start_link/2
	stop/1
	send_pdu/7
	inform_response/4
	note_store/2
	info/1
	get_log_type/1
	set_log_type/2
	verbosity/2

The semantics of them and their exact signatures are explained below.
Legacy API function send_pdu/7 that has got separate
IpAddr and PortNumber arguments still works as before for backwards
compatibility reasons.

 Summary

 Callbacks

 get_log_type(Pid)

 The Audit Trail Log is managed by the network interface process. So, it is this
process that has to return the actual log-type.

 info(Pid)

 The info returned is basically up to the implementer to decide. The
implementation provided by this application provides info about memory
allocation and various socket information.

 inform_response(Pid, Ref, Addr, Port)

 Instruct the network interface process to send the response (acknowledgment) to
an inform-request.

 note_store(Pid, NoteStore)

 Change the pid of the note-store process. This is used when the server restarts
the note-store (e.g. after a crach).

 send_pdu(Pid, Pdu, Vsn, MsgData, Domain, Addr, ExtraInfo)

 Request the network interface process (Pid) to send this pdu (Pdu).

 set_log_type(Pid, NewType)

 The Audit Trail Log is managed by the network interface process. So, it is this
process that has to do the actual changing of the type.

 start_link(Server, NoteStore)

 Start-link the network interface process.

 stop(Pid)

 Stop the network interface process.

 verbosity(Pid, Verbosity)

 Change the verbosity of the network interface process.

 Callbacks

 get_log_type(Pid)

 -callback get_log_type(Pid) -> {ok, LogType} | {error, Reason}
 when Pid :: pid(), LogType :: snmp:atl_type(), Reason :: term().

The Audit Trail Log is managed by the network interface process. So, it is this
process that has to return the actual log-type.

 info(Pid)

 -callback info(Pid) -> Info when Pid :: pid(), Info :: [{Key, Value}], Key :: term(), Value :: term().

The info returned is basically up to the implementer to decide. The
implementation provided by this application provides info about memory
allocation and various socket information.
The info returned by this function is returned together with other info
collected by the manager when the snmpm:info()
function is called (tagged with the key net_if).

 inform_response(Pid, Ref, Addr, Port)

 -callback inform_response(Pid, Ref, Addr, Port) -> snmp:void()
 when
 Pid :: pid(),
 Ref :: term(),
 Addr :: inet:ip_address(),
 Port :: inet:port_number().

Instruct the network interface process to send the response (acknowledgment) to
an inform-request.
Ref is something that can be used to identify the inform-request, e.g.
request-id of the inform-request.
Addr and Port identifies the agent, from which the inform-request
originated.

 note_store(Pid, NoteStore)

 -callback note_store(Pid, NoteStore) -> snmp:void() when Pid :: pid(), NoteStore :: pid().

Change the pid of the note-store process. This is used when the server restarts
the note-store (e.g. after a crach).

 send_pdu(Pid, Pdu, Vsn, MsgData, Domain, Addr, ExtraInfo)

 -callback send_pdu(Pid, Pdu, Vsn, MsgData, Domain, Addr, ExtraInfo) -> snmp:void()
 when
 Pid :: pid(),
 Pdu :: snmp:pdu(),
 Vsn :: 'version-1' | 'version-2' | 'version-3',
 MsgData :: term(),
 Domain :: snmp:tdomain(),
 Addr :: {inet:ip_address(), inet:port_number()},
 ExtraInfo :: term().

Request the network interface process (Pid) to send this pdu (Pdu).
ExtraInfo is some opaque data that is passed to the net-if process. It
originates from the ExtraInfo parameter in the calls to the
synchronous get-request,
asynchronous get-request,
synchronous get-next-request,
asynchronous get-next-request,
synchronous set-request and
asynchronous set-request functions.
Whether the net-if process chooses to use this is implementation dependent.
The net-if process included in this application ignores it.

 set_log_type(Pid, NewType)

 -callback set_log_type(Pid, NewType) -> {ok, OldType} | {error, Reason}
 when
 Pid :: pid(),
 NewType :: snmp:atl_type(),
 OldType :: snmp:atl_type(),
 Reason :: term().

The Audit Trail Log is managed by the network interface process. So, it is this
process that has to do the actual changing of the type.
See snmpm:set_log_type/1 for more info.

 start_link(Server, NoteStore)

 -callback start_link(Server, NoteStore) -> {ok, Pid} | {error, Reason}
 when Server :: pid(), NoteStore :: pid(), Pid :: pid(), Reason :: term().

Start-link the network interface process.
Server is the pid of the managing process.
NoteStore is the pid of the note-store process.

 stop(Pid)

 -callback stop(Pid) -> snmp:void() when Pid :: pid().

Stop the network interface process.

 verbosity(Pid, Verbosity)

 -callback verbosity(Pid, Verbosity) -> snmp:void() when Pid :: pid(), Verbosity :: snmp:verbosity().

Change the verbosity of the network interface process.

snmpm_network_interface_filter behaviour

Behaviour module for the SNMP manager network-interface filter.
This module defines the behaviour of the manager network interface filter. A
snmpm_network_interface_filter compliant module must export the following
functions:
	accept_recv/2
	accept_send/2
	accept_recv_pdu/3
	accept_send_pdu/3

The semantics of them and their exact signatures are explained below.
The purpose of the network interface filter is to allow for filtering of
messages (accept or reject) receive and send. This is done on two levels:
	The first level is at the UDP entry / exit point, i.e. immediately after the
receipt of the message, before any message processing is done (accept_recv)
and immediately before sending the message, after all message processing is
done (accept_send).
	The second level is at the MPD entry / exit point, i.e. immediately after the
basic message processing (accept_recv_pdu) / immediately before the basic
message processing (accept_send_pdu).

Note that the network interface filter is something which is used by the network
interface implementation provided by the application (snmpm_net_if and
snmpm_net_if_mt). The default filter accepts all messages.
A network interface filter can e.g. be used during testing or for load
regulation.
Legacy network interface filter modules used arguments on the form
(IpAddr, PortNumber,...) instead of (Domain, Addr, ...), and if the SNMP
manager is run without changing the configuration to use transport domains the
network interface filter will still get the old arguments and work as before.

 Summary

 Types

 pdu_type()

 transportAddressWithPort()

 transportDomain()

 Callbacks

 accept_recv(Domain, Addr)

 Called at the reception of a message (before any processing has been done).

 accept_recv_pdu(Domain, Addr, PduType)

 Called after the basic message processing (MPD) has been done, but before the
pdu is handed over to the server for primary processing.

 accept_send(Domain, Addr)

 Called before the sending of a message (after all processing has been done).

 accept_send_pdu(Domain, Addr, PduType)

 Called before the basic message processing (MPD) is done, when a pdu has been
received from the master-agent.

 Types

 pdu_type()

 (not exported)

 -type pdu_type() :: snmpm:pdu_type().

 transportAddressWithPort()

 (not exported)

 -type transportAddressWithPort() :: snmpa_conf:transportAddressWithPort().

 transportDomain()

 (not exported)

 -type transportDomain() :: snmpa_conf:transportDomain().

 Callbacks

 accept_recv(Domain, Addr)

 -callback accept_recv(Domain, Addr) -> boolean()
 when Domain :: transportDomain(), Addr :: transportAddressWithPort().

Called at the reception of a message (before any processing has been done).
For the message to be rejected, the function must return false.

 accept_recv_pdu(Domain, Addr, PduType)

 -callback accept_recv_pdu(Domain, Addr, PduType) -> boolean()
 when
 Domain :: transportDomain(),
 Addr :: transportAddressWithPort(),
 PduType :: pdu_type().

Called after the basic message processing (MPD) has been done, but before the
pdu is handed over to the server for primary processing.
For the pdu to be rejected, the function must return false.

 accept_send(Domain, Addr)

 -callback accept_send(Domain, Addr) -> boolean()
 when Domain :: transportDomain(), Addr :: transportAddressWithPort().

Called before the sending of a message (after all processing has been done).
For the message to be rejected, the function must return false.

 accept_send_pdu(Domain, Addr, PduType)

 -callback accept_send_pdu(Domain, Addr, PduType) -> boolean()
 when
 Domain :: transportDomain(),
 Addr :: transportAddressWithPort(),
 PduType :: pdu_type().

Called before the basic message processing (MPD) is done, when a pdu has been
received from the master-agent.
For the message to be rejected, the function must return false.

snmpm_user behaviour

Behaviour module for the SNMP manager user.
This module defines the behaviour of the manager user. A snmpm_user compliant
module must export the following functions:
	handle_error/3
	handle_agent/5
	handle_pdu/4
	handle_trap/3
	handle_inform/3
	handle_report/3
	handle_invalid_result/2

The semantics of them and their exact signatures are explained below.
Some of the function has no defined return value (void()), they can of course
return anything. But the functions that do have specified return value(s) must
adhere to this. None of the functions can use exit of throw to return.
If the manager is not configured to use any particular transport domain, the
behaviour handle_agent/5 will for backwards copmpatibility reasons be called
with the old IpAddr and PortNumber arguments

 Summary

 Types

 ip_address()

 port_number()

 snmp_gen_info()

 General error information (does not have to indicate an error)..

 snmp_v1_trap_info()

 Trap related information.

 Callbacks

 handle_agent(Domain, Address, Type, SnmpInfo, UserData)

 This function is called when a message is received from an unknown agent.

 handle_error(ReqId, Reason, UserData)

 This function is called when the manager needs to communicate an "asynchronous"
error to the user: e.g. failure to send an asynchronous message (i.e. encoding
error), a received message was discarded due to security error, the manager
failed to generate a response message to a received inform-request, or when
receiving an unexpected PDU from an agent (could be an expired async request).

 handle_inform(TargetName, SnmpInform, UserData)

 Handle a inform message.

 handle_invalid_result(In, Out)

 If any of the other callback functions crashes (exit, throw or a plain
crash) or return an invalid result (if a valid return has been specified), this
function is called. The purpose is to allow the user handle this error (for
instance to issue an error report).

 handle_pdu(TargetName, ReqId, SnmpResponse, UserData)

 Handle the reply to an asynchronous request, such as
async_get, async_get_next
or async_set.

 handle_report(TargetName, SnmpReport, UserData)

 Handle a report message.

 handle_trap(TargetName, SnmpTrapInfo, UserData)

 Handle a trap/notification message from an agent.

 Types

 ip_address()

 (not exported)

 -type ip_address() :: inet:ip_address().

 port_number()

 (not exported)

 -type port_number() :: inet:port_number().

 snmp_gen_info()

 -type snmp_gen_info() ::
 {ErrorStatus :: atom(), ErrorIndex :: pos_integer(), Varbinds :: [snmp:varbind()]}.

General error information (does not have to indicate an error)..

 snmp_v1_trap_info()

 -type snmp_v1_trap_info() ::
 {Enteprise :: snmp:oid(),
 Generic :: integer(),
 Spec :: integer(),
 Timestamp :: integer(),
 Varbinds :: [snmp:varbind()]}.

Trap related information.

 Callbacks

 handle_agent(Domain, Address, Type, SnmpInfo, UserData)

 -callback handle_agent(Domain :: atom(),
 Address :: term(),
 Type :: pdu | trap | inform | report,
 SnmpInfo :: snmp_gen_info() | snmp_v1_trap_info(),
 UserData :: term()) ->
 Reply ::
 ignore |
 {register,
 UserId :: term(),
 RTargetName :: snmpm:target_name(),
 AgentConfig :: [snmpm:agent_config()]}.

This function is called when a message is received from an unknown agent.
Note that this will always be the default user that is called.
For more info about the agent_config(), see snmpm:register_agent/3.
The arguments Type and SnmpInfo relates in the following way:
	pdu - SnmpPduInfo (see handle_pdu/4 for more
info).
	trap - SnmpTrapInfo (see handle_trap/3 for
more info).
	report - SnmpReportInfo (see handle_report/3 for more info).
	inform - SnmpInformInfo (see handle_inform/3 for more info).

The only user which would return {register, UserId, TargetName, AgentConfig}
is the default user.

 handle_error(ReqId, Reason, UserData)

 -callback handle_error(ReqId :: netif | integer(),
 Reason ::
 {unexpected_pdu, SnmpInfo :: snmp_gen_info()} |
 {invalid_sec_info, SecInfo :: term(), SnmpInfo :: snmp_gen_info()} |
 {empty_message,
 TransportDomain :: atom(),
 {Addr :: ip_address(), Port :: port_number()}} |
 term(),
 UserData :: term()) ->
 snmp:void().

This function is called when the manager needs to communicate an "asynchronous"
error to the user: e.g. failure to send an asynchronous message (i.e. encoding
error), a received message was discarded due to security error, the manager
failed to generate a response message to a received inform-request, or when
receiving an unexpected PDU from an agent (could be an expired async request).
If ReqId is less then 0, it means that this information was not available to
the manager (that info was never retrieved before the message was discarded).
For SnmpInfo see handle_agent below.
Note that there is a special case when the value of ReqId has the value of the
atom netif. This means that the NetIF process has suffered a "fatal" error and
been restarted. With possible loss of traffic!

 handle_inform(TargetName, SnmpInform, UserData)

 -callback handle_inform(TargetName :: snmpm:target_name(),
 SnmpInform :: snmp_gen_info(),
 UserData :: term()) ->
 Reply ::
 ignore | no_reply | unregister |
 {register,
 UserId :: term(),
 RTargetName :: snmpm:target_name(),
 AgentConfig :: [snmpm:agent_config()]}.

Handle a inform message.
For more info about the agent_config(), see snmpm:register_agent/3.
The only user which would return {register, UserId, TargetName2, AgentConfig}
is the default user.
If the inform request behaviour configuration
option is set to user or {user, integer()}, the response (acknowledgment) to
this inform-request will be sent when this function returns.

 handle_invalid_result(In, Out)

 (since OTP R16B03)

 (optional)

 -callback handle_invalid_result(In, Out) -> no_return()
 when
 In :: {Fun :: atom(), Args :: list()},
 Out :: {crash, CrashInfo} | {result, InvalidResult :: term()},
 CrashInfo ::
 {ErrorType :: atom(),
 Error :: term(),
 Stacktrace :: erlang:stacktrace()}.

If any of the other callback functions crashes (exit, throw or a plain
crash) or return an invalid result (if a valid return has been specified), this
function is called. The purpose is to allow the user handle this error (for
instance to issue an error report).
IN reprecents the function called (and its arguments). OUT represents the
unexpected/invalid result.

 handle_pdu(TargetName, ReqId, SnmpResponse, UserData)

 -callback handle_pdu(TargetName :: snmpm:target_name(),
 ReqId :: term(),
 SnmpResponse :: snmp_gen_info(),
 UserData :: term()) ->
 snmp:void().

Handle the reply to an asynchronous request, such as
async_get, async_get_next
or async_set.
It could also be a late reply to a synchronous request.
ReqId is returned by the asynchronous request function.

 handle_report(TargetName, SnmpReport, UserData)

 -callback handle_report(TargetName :: snmpm:target_name(),
 SnmpReport :: snmp_gen_info(),
 UserData :: term()) ->
 Reply ::
 ignore | unregister |
 {register,
 UserId :: term(),
 RTargetName :: snmpm:target_name(),
 AgentConfig :: [snmpm:agent_config()]}.

Handle a report message.
For more info about the agent_config(), see snmpm:register_agent/3.
The only user which would return {register, UserId, TargetName2, AgentConfig}
is the default user.

 handle_trap(TargetName, SnmpTrapInfo, UserData)

 -callback handle_trap(TargetName :: snmpm:target_name(),
 SnmpTrapInfo :: snmp_gen_info() | snmp_v1_trap_info(),
 UserData :: term()) ->
 Reply ::
 ignore | unregister |
 {register,
 UserId :: term(),
 RTargetName :: snmpm:target_name(),
 AgentConfig :: [snmpm:agent_config()]}.

Handle a trap/notification message from an agent.
For more info about the agent_config(), see snmpm:register_agent/3.
The only user which would return {register, UserId, TargetName2, agent_info()}
is the default user.

 OEBPS/assets/MIB_mechanism.gif.license
%CopyrightBegin%

SPDX-License-Identifier: Apache-2.0

Copyright Ericsson AB 2000-2025. All Rights Reserved.

%CopyrightEnd%

OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

OEBPS/assets/getnext4.gif

OEBPS/assets/snmp-um-1-image-1.gif
NI in ASNL1 | e mib

iAo G
SYNTAX Cipiaig

e

(eomoner

e Association fla

oract

s

SysCrune

T

OEBPS/assets/logo.png
EEEEEE

OEBPS/assets/MIB_mechanism.gif
who

who

why

securityModel

~ groupName

securityName |

contexiName

securityModel

securityLevel

ViewType (read/write/norify)

[o viewName

OEBPS/assets/getnext1.gif
koy koy2 ol ol <ol
1 f o b 0
[2] . [
B i o A i

OEBPS/assets/snmp-um-1-image-3.gif
Node 1

T
|

i am

ansg ,/w Crtr

Awm
Awm

fopt.

Distiouted

- ,,,,!k,,

forg

Ciiang

Network

OEBPS/assets/snmp-um-1-image-2.gif
Instrumertation

OEBPS/assets/snmp_agent_netif_1.gif.license
%CopyrightBegin%

SPDX-License-Identifier: Apache-2.0

Copyright Ericsson AB 2000-2025. All Rights Reserved.

%CopyrightEnd%

OEBPS/assets/snmp_manager_netif_1.gif

OEBPS/assets/snmp_manager_netif_1.gif.license
%CopyrightBegin%

SPDX-License-Identifier: Apache-2.0

Copyright Ericsson AB 2000-2025. All Rights Reserved.

%CopyrightEnd%

OEBPS/assets/getnext4.gif.license
%CopyrightBegin%

SPDX-License-Identifier: Apache-2.0

Copyright Ericsson AB 2000-2025. All Rights Reserved.

%CopyrightEnd%

OEBPS/assets/getnext3.gif.license
%CopyrightBegin%

SPDX-License-Identifier: Apache-2.0

Copyright Ericsson AB 2000-2025. All Rights Reserved.

%CopyrightEnd%

OEBPS/assets/getnext2.gif.license
%CopyrightBegin%

SPDX-License-Identifier: Apache-2.0

Copyright Ericsson AB 2000-2025. All Rights Reserved.

%CopyrightEnd%

OEBPS/assets/getnext2.gif

OEBPS/assets/snmp-um-1-image-1.gif.license
%CopyrightBegin%

SPDX-License-Identifier: Apache-2.0

Copyright Ericsson AB 2000-2025. All Rights Reserved.

%CopyrightEnd%

OEBPS/assets/snmp-um-1-image-2.gif.license
%CopyrightBegin%

SPDX-License-Identifier: Apache-2.0

Copyright Ericsson AB 2000-2025. All Rights Reserved.

%CopyrightEnd%

OEBPS/assets/snmp-um-1-image-3.gif.license
%CopyrightBegin%

SPDX-License-Identifier: Apache-2.0

Copyright Ericsson AB 2000-2025. All Rights Reserved.

%CopyrightEnd%

OEBPS/assets/snmp_agent_netif_1.gif

OEBPS/assets/getnext3.gif
koy koy2 o3 ol
. f o o B
[2 B v
2 v A 0

'

endOfTable

OEBPS/assets/getnext1.gif.license
%CopyrightBegin%

SPDX-License-Identifier: Apache-2.0

Copyright Ericsson AB 2000-2025. All Rights Reserved.

%CopyrightEnd%

