

 wx

 v2.5.2

 [image: Logo]

 Table of contents

 	Wx Release Notes

 	User's Guides

 	wx the erlang binding of wxWidgets

 	
 Modules

 	gl

 	glu

 	wx

 	wxAcceleratorEntry

 	wxAcceleratorTable

 	wxActivateEvent

 	wxArtProvider

 	wxAuiDockArt

 	wxAuiManager

 	wxAuiManagerEvent

 	wxAuiNotebook

 	wxAuiNotebookEvent

 	wxAuiPaneInfo

 	wxAuiSimpleTabArt

 	wxAuiTabArt

 	wxBitmap

 	wxBitmapButton

 	wxBitmapDataObject

 	wxBookCtrlBase

 	wxBookCtrlEvent

 	wxBoxSizer

 	wxBrush

 	wxBufferedDC

 	wxBufferedPaintDC

 	wxButton

 	wxCalendarCtrl

 	wxCalendarDateAttr

 	wxCalendarEvent

 	wxCaret

 	wxCheckBox

 	wxCheckListBox

 	wxChildFocusEvent

 	wxChoice

 	wxChoicebook

 	wxClientDC

 	wxClipboard

 	wxClipboardTextEvent

 	wxCloseEvent

 	wxColourData

 	wxColourDialog

 	wxColourPickerCtrl

 	wxColourPickerEvent

 	wxComboBox

 	wxCommandEvent

 	wxContextMenuEvent

 	wxControl

 	wxControlWithItems

 	wxCursor

 	wxDC

 	wxDCOverlay

 	wxDataObject

 	wxDateEvent

 	wxDatePickerCtrl

 	wxDialog

 	wxDirDialog

 	wxDirPickerCtrl

 	wxDisplay

 	wxDisplayChangedEvent

 	wxDropFilesEvent

 	wxEraseEvent

 	wxEvent

 	wxEvtHandler

 	wxFileDataObject

 	wxFileDialog

 	wxFileDirPickerEvent

 	wxFilePickerCtrl

 	wxFindReplaceData

 	wxFindReplaceDialog

 	wxFlexGridSizer

 	wxFocusEvent

 	wxFont

 	wxFontData

 	wxFontDialog

 	wxFontPickerCtrl

 	wxFontPickerEvent

 	wxFrame

 	wxGBSizerItem

 	wxGCDC

 	wxGLCanvas

 	wxGLContext

 	wxGauge

 	wxGenericDirCtrl

 	wxGraphicsBrush

 	wxGraphicsContext

 	wxGraphicsFont

 	wxGraphicsGradientStops

 	wxGraphicsMatrix

 	wxGraphicsObject

 	wxGraphicsPath

 	wxGraphicsPen

 	wxGraphicsRenderer

 	wxGrid

 	wxGridBagSizer

 	wxGridCellAttr

 	wxGridCellBoolEditor

 	wxGridCellBoolRenderer

 	wxGridCellChoiceEditor

 	wxGridCellEditor

 	wxGridCellFloatEditor

 	wxGridCellFloatRenderer

 	wxGridCellNumberEditor

 	wxGridCellNumberRenderer

 	wxGridCellRenderer

 	wxGridCellStringRenderer

 	wxGridCellTextEditor

 	wxGridEvent

 	wxGridSizer

 	wxHelpEvent

 	wxHtmlEasyPrinting

 	wxHtmlLinkEvent

 	wxHtmlWindow

 	wxIcon

 	wxIconBundle

 	wxIconizeEvent

 	wxIdleEvent

 	wxImage

 	wxImageList

 	wxInitDialogEvent

 	wxJoystickEvent

 	wxKeyEvent

 	wxLayoutAlgorithm

 	wxListBox

 	wxListCtrl

 	wxListEvent

 	wxListItem

 	wxListItemAttr

 	wxListView

 	wxListbook

 	wxLocale

 	wxLogNull

 	wxMDIChildFrame

 	wxMDIClientWindow

 	wxMDIParentFrame

 	wxMask

 	wxMaximizeEvent

 	wxMemoryDC

 	wxMenu

 	wxMenuBar

 	wxMenuEvent

 	wxMenuItem

 	wxMessageDialog

 	wxMiniFrame

 	wxMirrorDC

 	wxMouseCaptureChangedEvent

 	wxMouseCaptureLostEvent

 	wxMouseEvent

 	wxMoveEvent

 	wxMultiChoiceDialog

 	wxNavigationKeyEvent

 	wxNotebook

 	wxNotificationMessage

 	wxNotifyEvent

 	wxOverlay

 	wxPageSetupDialog

 	wxPageSetupDialogData

 	wxPaintDC

 	wxPaintEvent

 	wxPalette

 	wxPaletteChangedEvent

 	wxPanel

 	wxPasswordEntryDialog

 	wxPen

 	wxPickerBase

 	wxPopupTransientWindow

 	wxPopupWindow

 	wxPostScriptDC

 	wxPreviewCanvas

 	wxPreviewControlBar

 	wxPreviewFrame

 	wxPrintData

 	wxPrintDialog

 	wxPrintDialogData

 	wxPrintPreview

 	wxPrinter

 	wxPrintout

 	wxProgressDialog

 	wxQueryNewPaletteEvent

 	wxRadioBox

 	wxRadioButton

 	wxRegion

 	wxSashEvent

 	wxSashLayoutWindow

 	wxSashWindow

 	wxScreenDC

 	wxScrollBar

 	wxScrollEvent

 	wxScrollWinEvent

 	wxScrolledWindow

 	wxSetCursorEvent

 	wxShowEvent

 	wxSingleChoiceDialog

 	wxSizeEvent

 	wxSizer

 	wxSizerFlags

 	wxSizerItem

 	wxSlider

 	wxSpinButton

 	wxSpinCtrl

 	wxSpinEvent

 	wxSplashScreen

 	wxSplitterEvent

 	wxSplitterWindow

 	wxStaticBitmap

 	wxStaticBox

 	wxStaticBoxSizer

 	wxStaticLine

 	wxStaticText

 	wxStatusBar

 	wxStdDialogButtonSizer

 	wxStyledTextCtrl

 	wxStyledTextEvent

 	wxSysColourChangedEvent

 	wxSystemOptions

 	wxSystemSettings

 	wxTaskBarIcon

 	wxTaskBarIconEvent

 	wxTextAttr

 	wxTextCtrl

 	wxTextDataObject

 	wxTextEntryDialog

 	wxToggleButton

 	wxToolBar

 	wxToolTip

 	wxToolbook

 	wxTopLevelWindow

 	wxTreeCtrl

 	wxTreeEvent

 	wxTreebook

 	wxUpdateUIEvent

 	wxWebView

 	wxWebViewEvent

 	wxWindow

 	wxWindowCreateEvent

 	wxWindowDC

 	wxWindowDestroyEvent

 	wxXmlResource

 	wx_misc

 	wx_object

 Wx Release Notes

This document describes the changes made to the Wx application.
Wx 2.5.2
Fixed Bugs and Malfunctions
	NIFs and linked-in drivers are now loadable when running in an Erlang source tree on Windows.
Own Id: OTP-19686 Aux Id: PR-9969

	Now avoiding that wx crashes the VM when running on OTP28+ due to one of the new compiler hardening options.
Own Id: OTP-19724 Aux Id: GH-9972, PR-10084

Improvements and New Features
	wx was missing licenses that come from OpenGL documentation and wxWidgets documentation.
Own Id: OTP-19735 Aux Id: PR-10094

Wx 2.5.1
Fixed Bugs and Malfunctions
	Don't include gl.beam in pre-built source tar file, since it depends on local configure results.
Own Id: OTP-19700 Aux Id: PR-10024

Wx 2.5
Improvements and New Features
	Fixed licenses in files and added ORT curations to the following apps: otp, eldap, erl_interface, eunit, parsetools, stdlib, syntax_tools, and ERTS.
Own Id: OTP-19478 Aux Id: PR-9376, PR-9402, PR-9819

	Added support for compiling Erlang/OTP for Windows on ARM64.
Own Id: OTP-19480 Aux Id: PR-8734

	When compiling C/C++ code on Unix systems, the compiler hardening flags suggested by the Open Source Security Foundation are now enabled by default. To disable them, pass --disable-security-hardening-flags to configure.
Own Id: OTP-19519 Aux Id: PR-9441

	The license and copyright header has changed format to include an SPDX-License-Identifier. At the same time, most files have been updated to follow a uniform standard for license headers.
Own Id: OTP-19575 Aux Id: PR-9670

Wx 2.4.3
Fixed Bugs and Malfunctions
	Documentation has been improved.
Own Id: OTP-19190

Wx 2.4.2
Improvements and New Features
	The documentation has been migrated to use Markdown and ExDoc.
Own Id: OTP-18955 Aux Id: PR-8026

Wx 2.4.1
Fixed Bugs and Malfunctions
	Add option to silence wx depracation macros.
Own Id: OTP-18988 Aux Id: PR-7750

Wx 2.4
Improvements and New Features
	Guards have been added to gen_*:start* API functions to catch bad arguments
earlier. Before this change, in some cases, a bad argument could tag along and
cause the server to fail later, right after start.
Own Id: OTP-18857 Aux Id: GH-7685

Wx 2.3.1
Fixed Bugs and Malfunctions
	The wx application would fail to build on macOS with Xcode 15.
Own Id: OTP-18768 Aux Id: PR-7670

Wx 2.3
Improvements and New Features
	Runtime dependencies have been updated.
Own Id: OTP-18350

	The implementation has been fixed to use proc_lib:init_fail/2,3 where
appropriate, instead of proc_lib:init_ack/1,2.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18490 Aux Id: OTP-18471, GH-6339, PR-6843

Wx 2.2.2.1
Fixed Bugs and Malfunctions
	The wx application would fail to build on macOS with Xcode 15.
Own Id: OTP-18768 Aux Id: PR-7670

Wx 2.2.2
Fixed Bugs and Malfunctions
	Improve debug prints from the nifs. Some minor fixes for wxWidgets-3.2. Fixed
OpenGL debug functions.
Own Id: OTP-18512

Wx 2.2.1
Fixed Bugs and Malfunctions
	Added environment variable WX_MACOS_NON_GUI_APP to allow user to override
OSXIsGUIApplication behavior.
Own Id: OTP-18213 Aux Id: PR-6113

Wx 2.2
Improvements and New Features
	Input for configure scripts adapted to autoconf 2.71.
Own Id: OTP-17414 Aux Id: PR-4967

	Added aux1Down and aux2Down fields to the wxMouseState record. Since one
record have been changed a recompilation of user code might be required.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-17950

	Add mac specific menubar functions.
Own Id: OTP-18008 Aux Id: PR-5816

Wx 2.1.4
Fixed Bugs and Malfunctions
	Fix build failure with wxWidgets-3.1.6.
Own Id: OTP-18064 Aux Id: GH-5893

Improvements and New Features
	Enable the possibility to build wx on windows with wxWidgets-3.1.6.
Own Id: OTP-18061 Aux Id: GH-5883

Wx 2.1.3
Fixed Bugs and Malfunctions
	Fixed a bug in callback handling which could lead to a unresponsive gui.
Own Id: OTP-17982 Aux Id: GH-5758

Wx 2.1.2
Fixed Bugs and Malfunctions
	Removed the static_data option from wxImage creation functions, as it was
broken and could lead to crashes. Now image data is always copied to wxWidgets
as was the default behavior.
Removed some non working wxGridEvent event types, which have there own
events in newer wxWidgets versions, and added a couple of event types that
where missing in wx.
Own Id: OTP-17947

Wx 2.1.1
Fixed Bugs and Malfunctions
	Fix crash in cleanup code when a gui application is exiting.
Fix errors in the OpenGL wrapper that could cause crashes and improve the
documentation.
Own Id: OTP-17745

Wx 2.1
Fixed Bugs and Malfunctions
	Fix crash when closing an application.
Own Id: OTP-17507

	Some functions with overloaded color arguments could not be used. For example
the copy constructor wxTextAttr:new(TextAttr) did not work.
Own Id: OTP-17577 Aux Id: GH-4999

Improvements and New Features
	Added the Microsoft Edge WebView loader dll to the installer on windows.
Own Id: OTP-17325

	Handle specific Mac gui application events.
Own Id: OTP-17438 Aux Id: PR-4780

Wx 2.0.1
Fixed Bugs and Malfunctions
	Fix build problems when wxWidgets are built with -enable-std.
Own Id: OTP-17407 Aux Id: GH-4834

	Commit of generated configure script.
Own Id: OTP-17420 Aux Id: OTP-17398, GH-4821

Wx 2.0
Fixed Bugs and Malfunctions
	Fix compiler warnings produced by the clang compiler.
Own Id: OTP-17105 Aux Id: PR-2872

Improvements and New Features
	The application has been completely rewritten in order to use wxWidgets
version 3 as its base.
Add basic documentation generated from the wxWidgets project.
Own Id: OTP-16800

	The experimental HiPE application has been removed, together with all related
functionality in other applications.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-16963

	Added support for wxWebView.
Own Id: OTP-17213 Aux Id: PR-3027

	Due to the support of the new backend versions some API incompatibilities have
been introduced. Examples of changes are:
wxWindowDC default creators have been removed
wxClientDC default creators have been removed
wxPaintDC default creators have been removed
wxWindow:setVirtualSizeHints() has been deprecated in wxWidgets and removed
wxWindow:makeModal() has been deprecated in wxWidgets and removed
wxToolBar:add/insertTool without label have been deprecated in wxWidgets and
removed
wxStyledTextCtrl some functions have changed arguments from boolean to int
wxSizerItem:new() Some arguments have become options
Removed deprecated wxSizerItem:setWindow() use assignWindow()
Removed deprecated wxSizerItem:setSpacer() use assignSpacer()
Removed deprecated wxSizerItem:setSpacer() use assignSpacer()
Removed deprecated wxSizerItem:setSizer() use assignSizer()
wxMenu append/insert/prepend have changed return value and lost IsCheckable
argument
wxListCtrl:setItem/4 changed return value
wxImage:convertToGreyscale() options have changed
wxGridSizer:wxGridSizer() options have changed
wxGrid API have many changes
wxGraphicsRenderer:createGradientBrush() uses GradientStops now
wxGraphicsRenderer:createPen() have been removed
wxGraphicsRenderer:createGradientBrush() uses GradientStops now
wxGLCanvas API is incompatible
wxFlexGridSizer:wxFlexGridSizer() options have changed
wxDisplay:new() options have changed
wxCalendarDateAttr:new(ColText [,OptList]) have been removed
wxBitmapButton:set/getBitmapSelected() have been removed
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-17219 Aux Id: OTP-16800

Wx 1.9.3.1
Fixed Bugs and Malfunctions
	Commit of generated configure script.
Own Id: OTP-17420 Aux Id: OTP-17398, GH-4821

Wx 1.9.3
Fixed Bugs and Malfunctions
	Fixed wx initialization on mac, top level menus did not always work on newer
MacOS versions. The menus will not work until wxWidgets-3.1.5 is released and
used on these MacOS versions.
Own Id: OTP-17187

Wx 1.9.2
Fixed Bugs and Malfunctions
	Add popup menu callback to wxTaskBarIcon:new/1.
Own Id: OTP-16983 Aux Id: PR-2743

Wx 1.9.1
Fixed Bugs and Malfunctions
	Fix various compiler warnings on 64-bit Windows.
Own Id: OTP-15800

Improvements and New Features
	Refactored the internal handling of deprecated and removed functions.
Own Id: OTP-16469

Wx 1.9.0.1
Fixed Bugs and Malfunctions
	Commit of generated configure script.
Own Id: OTP-17420 Aux Id: OTP-17398, GH-4821

Wx 1.9
Improvements and New Features
	Added wxWindow:isShownOnScreen/1, wxMouseEvent:getWheelAxis and mac
specific menubar functions. Fixed defines that have changed in newer wxWidgets
versions, that caused some literals to become run-time dependent on wxWidgets
version.
Own Id: OTP-16285

Wx 1.8.9
Fixed Bugs and Malfunctions
	Fix a driver bug that could crashes when allocating memory.
Own Id: OTP-15883 Aux Id: PR-2261

Wx 1.8.8
Fixed Bugs and Malfunctions
	All incorrect (that is, all) uses of "can not" has been corrected to "cannot"
in source code comments, documentation, examples, and so on.
Own Id: OTP-14282 Aux Id: PR-1891

Wx 1.8.7
Fixed Bugs and Malfunctions
	Improved support for wxWidgets 3.1.3 which have changed wxFONTWEIGTH, also
added wxGCDC and wxDisplay modules.
Fixed a crash on Mojave and check for events more often.
Own Id: OTP-15587

Wx 1.8.6
Fixed Bugs and Malfunctions
	Fixed delayed delete bug which caused wx applications to crash on Mojave.
Own Id: OTP-15426 Aux Id: ERL-755

Wx 1.8.5
Fixed Bugs and Malfunctions
	Fixed compilation warning on Darwin.
Own Id: OTP-15230 Aux Id: PR-1860

Wx 1.8.4
Improvements and New Features
	Changed implementation so wx can now be built towards wxWidgets-3.1.1.
Own Id: OTP-15027

Wx 1.8.3
Fixed Bugs and Malfunctions
	wx crashes in otp 20.1 if empty binaries was sent down as arguments.
Own Id: OTP-14688

Wx 1.8.2
Fixed Bugs and Malfunctions
	Do not deprecate wxGraphicsContext:createLinearGradientBrush/7 and
wxGraphicsContext:createRadialGradientBrush/8 which are still available in
wxWidgets-3.0.
Own Id: OTP-14539

Improvements and New Features
	General Unicode improvements.
Own Id: OTP-14462

Wx 1.8.1
Fixed Bugs and Malfunctions
	Fix a livelock that could be caused by wx:batch/1.
Own Id: OTP-14289

Wx 1.8
Fixed Bugs and Malfunctions
	Allow string arguments to be binaries as specified, i.e. unicode:chardata().
Own Id: OTP-13934 Aux Id: ERL-270

Improvements and New Features
	Add wxWindow:dragAcceptFiles/2 and wxDropFilesEvent to support simple drag and
drop from file browser.
Own Id: OTP-13933

Wx 1.7.1
Fixed Bugs and Malfunctions
	Increased the stacksize for the wx thread. The default stacksize on Windows is
1MB which is not enough if the user created many nested dialogs.
Own Id: OTP-13816

Wx 1.7
Fixed Bugs and Malfunctions
	Fixed bugs which could cause called functions to be invoked twice or not at
all when callbacks where invoked at the same time.
Own Id: OTP-13491

Improvements and New Features
	Changed atom 'boolean' fields in #wxMouseState{} to 'boolean()'.
Moved out arguments in wxListCtrl:hitTest to result.
Removed no-op functions in wxGauge that have been removed from wxWidgets-3.1.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-13553

Wx 1.6.1
Fixed Bugs and Malfunctions
	Fixed commands with multiple binaries, such as wxImage:new/4. Added
wxWindow:SetDoubleBuffered/1, wxWindow:isDoubleBuffered/1,
wxWindow:setTransparent/2 and wxWindow:canSetTransparent/1. Fixed timing
issues.
Own Id: OTP-13404

Wx 1.6
Improvements and New Features
	Add wxOverlay and make wxPostScripDC optional to make it easier to build on
windows.
Correct some function specifications.
The driver implementation have been optimized and now invokes commands after
events have been sent to erlang.
Own Id: OTP-13160

Wx 1.5
Improvements and New Features
	Extend AUI functionality.
Own Id: OTP-12961

Wx 1.4
Fixed Bugs and Malfunctions
	The undocumented option generic_debug for gen_server has been removed.
Own Id: OTP-12183

	Remove raise condition where wx could crash during emulator stoppage.
Own Id: OTP-12734

Improvements and New Features
	Use wxWidgets-3.0, if found, as default backend on windows.
Own Id: OTP-12632

	Add missing fields in some events records. May require a recompilation of user
applications.
Own Id: OTP-12660

Wx 1.3.3
Fixed Bugs and Malfunctions
	Fix timing related crash during wx application stop.
Own Id: OTP-12374

Wx 1.3.2
Fixed Bugs and Malfunctions
	Fixed a minor typo in the graphicsContext example.
Own Id: OTP-12259

Improvements and New Features
	Distribute autoconf helpers to applications at build time instead of having
multiple identical copies committed in the repository.
Own Id: OTP-12348

Wx 1.3.1
Fixed Bugs and Malfunctions
	Implement --enable-sanitizers[=sanitizers]. Similar to debugging with
Valgrind, it's very useful to enable -fsanitize= switches to catch bugs at
runtime.
Own Id: OTP-12153

Wx 1.3
Fixed Bugs and Malfunctions
	Fix delayed destroy for wxPaintDC objects which could cause an eternal loop
for modal dialogs.
Fix wxSL_LABELS compatibility between wxWidgets-2.8 and wxWidgets-3.0 versions
Own Id: OTP-11985

Improvements and New Features
	Add missing classes wxPopup[Transient]Window, wxActivateEvent and
wxTextCtrl:cahngeValue/2 function.
Own Id: OTP-11986

Wx 1.2
Fixed Bugs and Malfunctions
	Refactored C++ code, fixed crashes and a deadlock on linux.
Own Id: OTP-11586

	Some local implementations of removing the last element from a list are
replaced by lists:droplast/1. Note that this requires at least stdlib-2.0,
which is the stdlib version delivered in OTP 17.0. (Thanks to Hans Svensson)
Own Id: OTP-11678

	Reworked the internal event handling to avoid crashes in destroy objects.
Thanks Tom for the bug report.
Own Id: OTP-11699

	Application upgrade (appup) files are corrected for the following
applications:
asn1, common_test, compiler, crypto, debugger, dialyzer, edoc, eldap, erl_docgen, et, eunit, gs, hipe, inets, observer, odbc, os_mon, otp_mibs, parsetools, percept, public_key, reltool, runtime_tools, ssh, syntax_tools, test_server, tools, typer, webtool, wx, xmerl
A new test utility for testing appup files is added to test_server. This is
now used by most applications in OTP.
(Thanks to Tobias Schlager)
Own Id: OTP-11744

Wx 1.1.2
Fixed Bugs and Malfunctions
	Fixed a problem which caused the debugger to crash when closing a window.
Fixed static linking on mac.
Own Id: OTP-11444

Wx 1.1.1
Fixed Bugs and Malfunctions
	wx initialization hanged with wxWidgets-3.0 on mac. Fixed a crash with
wxListBox on wxWidgets-3.0 (thanks Sergei Golovan) Fixed documentation links.
Fixed event callbacks cleanup.
Own Id: OTP-11393

	Improve documentation (Thanks to Boris Mühmer)
Own Id: OTP-11505

Improvements and New Features
	Fix silent make rules (Thanks to Anthony Ramine)
Own Id: OTP-11515

Wx 1.0
Fixed Bugs and Malfunctions
	Add {silent_start, boolean()} option to wx:new/1 in order to be able to
suppress error messages during startup of wx. (Thanks to Håkan Mattsson)
Own Id: OTP-10585

	Fix wxTreeCtrl:getBoundingRect/2 and wxTreeCtrl:hitTest/1. wxTreeCtrl:hitTest
now returns a tuple not bug compatible with previous releases but needed.
Own Id: OTP-10743

Improvements and New Features
	The wx application now compiles and is usable with the unstable development
branch of wxWidgets-2.9. Some functions are currently not available in
wxWidgets-2.9 and their erlang counterparts are marked as deprecated. They
will generate an error if called when linked against wxWidgets-2.9 libraries.
This means that wx can now be built on 64bit MacOsX, but keep in mind that
wxWidgets-2.9 is still a development branch and needs (a lot) more work before
it becomes stable.
Own Id: OTP-10407 Aux Id: kunagi-262 [173]

Wx 0.99.2
Improvements and New Features
	Fix errors in wxDC and wxGraphicsContext api.
Add wxTaskBarIcon.
Add wxStyledTextControl:setEdgeMode/2.
Add type and specs for all functions and records.
Own Id: OTP-9947

Wx 0.99.1
Fixed Bugs and Malfunctions
	Fixed a deadlock in the driver, which could happen if a callback caused
another callback to be invoked.
Own Id: OTP-9725

Improvements and New Features
	Implemented wxSystemOptions.
Load Opengl from libGL.so.1 instead libGL.so to work around linux problems.
Own Id: OTP-9702

Wx 0.99
Fixed Bugs and Malfunctions
	wx: fix obsolete guard warning (list/1) (Thanks to Tuncer Ayaz)
Own Id: OTP-9513

	XML files have been corrected.
Own Id: OTP-9550 Aux Id: OTP-9541

Improvements and New Features
	Support virtual tables in wxListCtrl.
Own Id: OTP-9415

Wx 0.98.10
Fixed Bugs and Malfunctions
	Fixed wx app files on mac and solaris. Thanks Jachym Holecek and Joe Williams.
Own Id: OTP-9324

Wx 0.98.9
Fixed Bugs and Malfunctions
	Wx crashed if graphics could not be initiated, for instance if DISPLAY was not
available.
Wx could crash during startup, thanks Boris Muhmer for extra ordinary testing.
Own Id: OTP-9080

	Wx on MacOS X generated complains on stderr about certain cocoa functions not
being called from the "Main thread". This is now corrected.
Own Id: OTP-9081

Wx 0.98.8
Improvements and New Features
	Add wxSystemSettings which was missing in the previous release, despite
previous comments.
Fix an external loop when stopping erlang nicely.
Separate OpenGL to it's own dynamic loaded library, so other graphic libraries
can reuse the gl module and it will not waste memory if not used.
Own Id: OTP-8951

Wx 0.98.7
Fixed Bugs and Malfunctions
	Fix crash (segmentation fault) in callback handling.
Own Id: OTP-8766

Improvements and New Features
	Add wxSystemSettings module.
Add wxTreeCtrl:editLabel/2.
Own Id: OTP-8767

Wx 0.98.6
Improvements and New Features
	Calling sys:get_status() for processes that have globally registered names
that were not atoms would cause a crash. Corrected. (Thanks to Steve Vinoski.)
Own Id: OTP-8656

Wx 0.98.5
Fixed Bugs and Malfunctions
	Corrected incorrectly generated wxFileDialog:getPaths/1. Reported by
Jason/hornja.
Own Id: OTP-8330

	Fixed a memory reference bug which caused unexplained {badarg, Int} exits
when running multiple wx applications.
Own Id: OTP-8461

Improvements and New Features
	Added wxListCtrl:getEditCtrl/1 (not available on Mac).
Own Id: OTP-8408

	Cleanups suggested by tidier and modernization of types and specs.
Own Id: OTP-8455

	Changed representation of wxTreeItem to be an integer. This saves memory,
where the driver do not need to keep a object reference to each tree item.
Added getFirstChild and getNextChild to wxTreeCtrl.
Own Id: OTP-8462

Wx 0.98.4
Improvements and New Features
	Added wx_object improvements from Mazen.
Fixed pid issues, reported by Mazen.
Added wxLogNull class, reported by Amit Murthy.
Various configure fixes.
Own Id: OTP-8243 Aux Id: seq11418

	The documentation is now built with open source tools (xsltproc and fop) that
exists on most platforms. One visible change is that the frames are removed.
Own Id: OTP-8250

	wx now builds with wxWidgets 2.8.4 or a later 2.8 release, thanks Nico Kruber.
Own Id: OTP-8292

Wx 0.98.3
Fixed Bugs and Malfunctions
	Added wxListCtrl sorting and build fixes supplied by Paul Hampson. Thanks.
Own Id: OTP-8126

Improvements and New Features
	wxHtmlWindow class implemented.
All exceptions from callbacks are now caught and written to the log.
Some defines where wrong in 'wx.hrl'.
wx:batch/1 and friends could hang forever if for instance a breakpoint was
set inside the fun. That caused all wx applications to hang.
Added missing wxAuiPaneInfo constructor and destructor.
Added wxAuiNotebookEvent and wxAuiManagerEvent.
Calling non supported wxWidgets functions hanged instead of crashed.
Update OpenGL to version 3.1 and added some of the missing glu functions.
Fixed wxRadioBox which inherited the wrong class, thanks Atilla Erdodi.
Own Id: OTP-8083

	Removed some of the automatic garbage collecting after application exit, user
will get a warning instead so he can correct the code.
Own Id: OTP-8138

Wx 0.98.2
Improvements and New Features
	Olle Mattson have made a large demo, see examples/demo/, that triggered the
following bugs and new features:
New book controls.
Added wxToolbar:addTool/6.
Empty binaries will be used to indicate NULL where applicable.
Own Id: OTP-7943

	Applied patch from Nico Kruber, which fixes building on some wxwidgets
installations.
Open source

Wx 0.98.1
Improvements and New Features
	Added xrcctrl/3 to wxXmlResource and added a resource example.
Added several event types and events records and fixed a couple of event
related bugs.
Event callbacks can now use wxEvtHandler:connect/2.
Error handling and debugging aid have been improved.
Added wxSplitterWindow and wxGauge:pulse and a couple of missing macros in
wx.hrl.
Thanks to Steve Davis for feedback and bug reports.
Own Id: OTP-7875

Wx 0.98
Improvements and New Features
	A first beta release of wxErlang.
Own Id: OTP-7859

 wx the erlang binding of wxWidgets

The wx application is an erlang binding of wxWidgets. This document
describes the erlang mapping to wxWidgets and it's implementation. It is not a
complete users guide to wxWidgets. If you need that, you will have to read the
wxWidgets documentation instead. wx tries to keep a one-to-one mapping with
the original API so that the original documentation and examples shall be as
easy as possible to use.
Wx examples and test suite can be found in the erlang src release. They
can also provide some help on how to use the API.
This is currently a very brief introduction to wx. The application is still
under development, which means the interface may change, and the test suite
currently have a poor coverage ratio.
Contents
	Introduction
	Multiple processes and memory handling
	Event Handling
	Acknowledgments

Introduction
The original wxWidgets is an object-oriented (C++) API and that is reflected
in the erlang mapping. In most cases each class in wxWidgets is represented as a
module in erlang. This gives the wx application a huge interface, spread over
several modules, and it all starts with the wx module. The wx module
contains functions to create and destroy the GUI, i.e. wx:new/0,
wx:destroy/0, and some other useful functions.
Objects or object references in wx should be seen as erlang processes rather
than erlang terms. When you operate on them they can change state, e.g. they are
not functional objects as erlang terms are. Each object has a type or rather a
class, which is manipulated with the corresponding module or by sub-classes of
that object. Type checking is done so that a module only operates on it's
objects or inherited classes.
An object is created with new and destroyed with destroy. Most functions in
the classes are named the same as their C++ counterpart, except that for
convenience, in erlang they start with a lowercase letter and the first argument
is the object reference. Optional arguments are last and expressed as tagged
tuples in any order.
For example the wxWindow C++ class is implemented in the wxWindow erlang
module and the member wxWindow::CenterOnParent is thus
wxWindow:centerOnParent. The following C++ code:
 wxWindow MyWin = new wxWindow();
 MyWin.CenterOnParent(wxVERTICAL);
 ...
 delete MyWin;
would in erlang look like:
 MyWin = wxWindow:new(),
 wxWindow:centerOnParent(MyWin, [{dir,?wxVERTICAL}]),
 ...
 wxWindow:destroy(MyWin),
When you are reading wxWidgets documentation or the examples, you will notice
that some of the most basic classes are missing in wx, they are directly
mapped to corresponding erlang terms:
	wxPoint is represented by {Xcoord,Ycoord}

	wxSize is represented by {Width,Height}

	wxRect is represented by {Xcoord,Ycoord,Width,Height}

	wxColour is represented by {Red,Green,Blue[,Alpha]}

	wxString is represented by
unicode:charlist()

	wxGBPosition is represented by {Row,Column}

	wxGBSpan is represented by {RowSpan,ColumnSPan}

	wxGridCellCoords is represented by {Row,Column}

In the places where the erlang API differs from the original one it should be
obvious from the erlang documentation which representation has been used. E.g.
the C++ arrays and/or lists are sometimes represented as erlang lists and
sometimes as tuples.
Colours are represented with {Red,Green,Blue[,Alpha]}, the Alpha value is
optional when used as an argument to functions, but it will always be returned
from wx functions.
Defines, enumerations and global variables exists in wx.hrl as defines. Most
of these defines are constants but not all. Some are platform dependent and
therefore the global variables must be instantiated during runtime. These will
be acquired from the driver with a call, so not all defines can be used in
matching statements. Class local enumerations will be prefixed with the class
name and a underscore as in ClassName_Enum.
Additionally some global functions, i.e. non-class functions, exist in the
wx_misc module.
Wx is implemented as a (threaded) driver and a rather direct interface
to the C++ API, with the drawback that if the erlang programmer does an error,
it might crash the emulator.
Since the driver is threaded it requires a smp enabled emulator, that provides
a thread safe interface to the driver.

Multiple processes and memory handling
The intention is that each erlang application calls wx:new() once to setup it's
GUI which creates an environment and a memory mapping. To be able to use wx
from several processes in your application, you must share the environment. You
can get the active environment with wx:get_env/0 and set it in the new
processes with wx:set_env/1. Two processes or applications which have both
called wx:new() will not be able use each others objects.
 wx:new(),
 MyWin = wxFrame:new(wx:null(), 42, "Example", []),
 Env = wx:get_env(),
 spawn(fun() ->
 wx:set_env(Env),
 %% Here you can do wx calls from your helper process.
 ...
 end),
 ...
When wx:destroy/0 is invoked or when all processes in the application have
died, the memory is deleted and all windows created by that application are
closed.
The wx application never cleans or garbage collects memory as long as the user
application is alive. Most of the objects are deleted when a window is closed,
or at least all the objects which have a parent argument that is non null. By
using wxCLASS:destroy/1 when possible you can avoid an increasing memory
usage. This is especially important when wxWidgets assumes or recommends that
you (or rather the C++ programmer) have allocated the object on the stack since
that will never be done in the erlang binding. For example wxDC class or its
sub-classes or wxSizerFlags.
Currently the dialogs show modal function freezes wxWidgets until the dialog is
closed. That is intended but in erlang where you can have several GUI
applications running at the same time it causes trouble. This will hopefully be
fixed in future wxWidgets releases.

Event Handling
Event handling in wx differs most from the original API. You must specify
every event you want to handle in wxWidgets, that is the same in the erlang
binding but you can choose to receive the events as messages or handle them with
callback funs.
Otherwise the event subscription is handled as wxWidgets dynamic event-handler
connection. You subscribe to events of a certain type from objects with an ID
or within a range of IDs. The callback fun is optional, if not supplied the
event will be sent to the process that called connect/2. Thus, a handler is a
callback fun or a process which will receive an event message.
Events are handled in order from bottom to top, in the widgets hierarchy, by the
last subscribed handler first. Depending on if wxEvent:skip() is called the
event will be handled by the other handler(s) afterwards. Most of the events
have default event handler(s) installed.
Message events looks like
#wx{id=integer(), obj=wx:wxObject(), userData=term(), event=Rec
}. The id is the identifier of the object that received the event. The obj
field contains the object that you used connect on. The userData field
contains a user supplied term, this is an option to connect. And the event
field contains a record with event type dependent information. The first element
in the event record is always the type you subscribed to. For example if you
subscribed to key_up events you will receive the #wx{event=Event} where
Event will be a wxKey event record where Event#wxKey.type = key_up.
In wxWidgets the developer has to call wxEvent:skip() if he wants the event
to be processed by other handlers. You can do the same in wx if you use
callbacks. If you want the event as messages you just don't supply a callback
and you can set the skip option in connect call to true or false, the
default it is false. True means that you get the message but let the subsequent
handlers also handle the event. If you want to change this behavior dynamically
you must use callbacks and call wxEvent:skip().
Callback event handling is done by using the optional callback fun/2 when
attaching the handler. The fun(#wx{},wxObject() must take two arguments
where the first is the same as with message events described above and the
second is an object reference to the actual event object. With the event object
you can call wxEvent:skip() and access all the data. When using callbacks you
must call wxEvent:skip() by yourself if you want any of the events to be
forwarded to the following handlers. The actual event objects are deleted after
the fun returns.
The callbacks are always invoked by another process and have exclusive usage of
the GUI when invoked. This means that a callback fun cannot use the process
dictionary and should not make calls to other processes. Calls to another
process inside a callback fun may cause a deadlock if the other process is
waiting on completion of his call to the GUI.
Acknowledgments
Mats-Ola Persson wrote the initial wxWidgets binding as part of his master
thesis. The current version is a total re-write but many ideas have been reused.
The reason for the re-write was mostly due to the limited requirements he had
been given by us.
Also thanks to the wxWidgets team that develops and supports it so we have
something to use.

gl

Erlang wrapper functions for OpenGL
Standard OpenGL API
This documents the functions as a brief version of the complete
OpenGL reference pages.

 Summary

 Types

 clamp()

 enum()

 f()

 i()

 m12()

 m16()

 matrix()

 mem()

 offset()

 Functions

 accum(Op, Value)

 The accumulation buffer is an extended-range color buffer. Images are not
rendered into it. Rather, images rendered into one of the color buffers are
added to the contents of the accumulation buffer after rendering. Effects such
as antialiasing (of points, lines, and polygons), motion blur, and depth of
field can be created by accumulating images generated with different
transformation matrices.

 activeShaderProgram(Pipeline, Program)

 gl:activeShaderProgram/2 sets the linked program
named by Program to be the active program for the program pipeline object
Pipeline. The active program in the active program pipeline object is the
target of calls to gl:uniform() when no program has been made
current through a call to gl:useProgram/1.

 activeTexture(Texture)

 gl:activeTexture/1 selects which texture unit subsequent
texture state calls will affect. The number of texture units an implementation
supports is implementation dependent, but must be at least 80.

 alphaFunc(Func, Ref)

 The alpha test discards fragments depending on the outcome of a comparison
between an incoming fragment's alpha value and a constant reference value.
gl:alphaFunc/2 specifies the reference value and the
comparison function. The comparison is performed only if alpha testing is
enabled. By default, it is not enabled. (See gl:enable/1 and
gl:disable/1 of ?GL_ALPHA_TEST.)

 areTexturesResident(Textures)

 GL establishes a ``working set'' of textures that are resident in texture
memory. These textures can be bound to a texture target much more efficiently
than textures that are not resident.

 arrayElement(I)

 gl:arrayElement/1 commands are used within
gl:'begin'/1/gl:'end'/0 pairs to specify
vertex and attribute data for point, line, and polygon primitives. If
?GL_VERTEX_ARRAY is enabled when gl:arrayElement/1 is
called, a single vertex is drawn, using vertex and attribute data taken from
location I of the enabled arrays. If ?GL_VERTEX_ARRAY is not enabled, no
drawing occurs but the attributes corresponding to the enabled arrays are
modified.

 attachShader(Program, Shader)

 In order to create a complete shader program, there must be a way to specify the
list of things that will be linked together. Program objects provide this
mechanism. Shaders that are to be linked together in a program object must first
be attached to that program object. gl:attachShader/2
attaches the shader object specified by Shader to the program object specified
by Program. This indicates that Shader will be included in link operations
that will be performed on Program.

 'begin'(Mode)

 Equivalent to '\'end\''/0.

 beginConditionalRender(Id, Mode)

 Equivalent to endConditionalRender/0.

 beginQuery(Target, Id)

 Equivalent to endQuery/1.

 beginQueryIndexed(Target, Index, Id)

 Equivalent to endQueryIndexed/2.

 beginTransformFeedback(PrimitiveMode)

 Equivalent to endTransformFeedback/0.

 bindAttribLocation(Program, Index, Name)

 gl:bindAttribLocation/3 is used to associate a
user-defined attribute variable in the program object specified by Program
with a generic vertex attribute index. The name of the user-defined attribute
variable is passed as a null terminated string in Name. The generic vertex
attribute index to be bound to this variable is specified by Index. When
Program is made part of current state, values provided via the generic vertex
attribute Index will modify the value of the user-defined attribute variable
specified by Name.

 bindBuffer(Target, Buffer)

 gl:bindBuffer/2 binds a buffer object to the specified
buffer binding point. Calling gl:bindBuffer/2 with Target
set to one of the accepted symbolic constants and Buffer set to the name of a
buffer object binds that buffer object name to the target. If no buffer object
with name Buffer exists, one is created with that name. When a buffer object
is bound to a target, the previous binding for that target is automatically
broken.

 bindBufferBase(Target, Index, Buffer)

 gl:bindBufferBase/3 binds the buffer object Buffer to
the binding point at index Index of the array of targets specified by
Target. Each Target represents an indexed array of buffer binding points, as
well as a single general binding point that can be used by other buffer
manipulation functions such as gl:bindBuffer/2 or
glMapBuffer. In addition to binding Buffer to the indexed buffer binding
target, gl:bindBufferBase/3 also binds Buffer to the
generic buffer binding point specified by Target.

 bindBufferRange(Target, Index, Buffer, Offset, Size)

 gl:bindBufferRange/5 binds a range the buffer object
Buffer represented by Offset and Size to the binding point at index
Index of the array of targets specified by Target. Each Target represents
an indexed array of buffer binding points, as well as a single general binding
point that can be used by other buffer manipulation functions such as
gl:bindBuffer/2 or glMapBuffer. In addition to binding a
range of Buffer to the indexed buffer binding target,
gl:bindBufferRange/5 also binds the range to the
generic buffer binding point specified by Target.

 bindBuffersBase(Target, First, Buffers)

 gl:bindBuffersBase/3 binds a set of Count buffer
objects whose names are given in the array Buffers to the Count consecutive
binding points starting from index First of the array of targets specified by
Target. If Buffers is ?NULL then
gl:bindBuffersBase/3 unbinds any buffers that are
currently bound to the referenced binding points. Assuming no errors are
generated, it is equivalent to the following pseudo-code, which calls
gl:bindBufferBase/3, with the exception that the
non-indexed Target is not changed by
gl:bindBuffersBase/3

 bindBuffersRange(Target, First, Buffers, Offsets, Sizes)

 gl:bindBuffersRange/5 binds a set of Count ranges
from buffer objects whose names are given in the array Buffers to the Count
consecutive binding points starting from index First of the array of targets
specified by Target. Offsets specifies the address of an array containing
Count starting offsets within the buffers, and Sizes specifies the address
of an array of Count sizes of the ranges. If Buffers is ?NULL then
Offsets and Sizes are ignored and
gl:bindBuffersRange/5 unbinds any buffers that are
currently bound to the referenced binding points. Assuming no errors are
generated, it is equivalent to the following pseudo-code, which calls
gl:bindBufferRange/5, with the exception that the
non-indexed Target is not changed by
gl:bindBuffersRange/5

 bindFragDataLocation(Program, Color, Name)

 gl:bindFragDataLocation/3 explicitly specifies the
binding of the user-defined varying out variable Name to fragment shader color
number ColorNumber for program Program. If Name was bound previously, its
assigned binding is replaced with ColorNumber. Name must be a
null-terminated string. ColorNumber must be less than ?GL_MAX_DRAW_BUFFERS.

 bindFragDataLocationIndexed(Program, ColorNumber, Index, Name)

 gl:bindFragDataLocationIndexed/4 specifies
that the varying out variable Name in Program should be bound to fragment
color ColorNumber when the program is next linked. Index may be zero or one
to specify that the color be used as either the first or second color input to
the blend equation, respectively.

 bindFramebuffer(Target, Framebuffer)

 gl:bindFramebuffer/2 binds the framebuffer object with
name Framebuffer to the framebuffer target specified by Target. Target
must be either ?GL_DRAW_FRAMEBUFFER, ?GL_READ_FRAMEBUFFER or
?GL_FRAMEBUFFER. If a framebuffer object is bound to ?GL_DRAW_FRAMEBUFFER or
?GL_READ_FRAMEBUFFER, it becomes the target for rendering or readback
operations, respectively, until it is deleted or another framebuffer is bound to
the corresponding bind point. Calling
gl:bindFramebuffer/2 with Target set to
?GL_FRAMEBUFFER binds Framebuffer to both the read and draw framebuffer
targets. Framebuffer is the name of a framebuffer object previously returned
from a call to gl:genFramebuffers/1, or zero to break
the existing binding of a framebuffer object to Target.

 bindImageTexture(Unit, Texture, Level, Layered, Layer, Access, Format)

 gl:bindImageTexture/7 binds a single level of a
texture to an image unit for the purpose of reading and writing it from shaders.
Unit specifies the zero-based index of the image unit to which to bind the
texture level. Texture specifies the name of an existing texture object to
bind to the image unit. If Texture is zero, then any existing binding to the
image unit is broken. Level specifies the level of the texture to bind to the
image unit.

 bindImageTextures(First, Textures)

 gl:bindImageTextures/2 binds images from an array of
existing texture objects to a specified number of consecutive image units.
Count specifies the number of texture objects whose names are stored in the
array Textures. That number of texture names are read from the array and bound
to the Count consecutive texture units starting from First. If the name zero
appears in the Textures array, any existing binding to the image unit is
reset. Any non-zero entry in Textures must be the name of an existing texture
object. When a non-zero entry in Textures is present, the image at level zero
is bound, the binding is considered layered, with the first layer set to zero,
and the image is bound for read-write access. The image unit format parameter is
taken from the internal format of the image at level zero of the texture object.
For cube map textures, the internal format of the positive X image of level zero
is used. If Textures is ?NULL then it is as if an appropriately sized array
containing only zeros had been specified.

 bindProgramPipeline(Pipeline)

 gl:bindProgramPipeline/1 binds a program pipeline
object to the current context. Pipeline must be a name previously returned
from a call to gl:genProgramPipelines/1. If no
program pipeline exists with name Pipeline then a new pipeline object is
created with that name and initialized to the default state vector.

 bindRenderbuffer(Target, Renderbuffer)

 gl:bindRenderbuffer/2 binds the renderbuffer object
with name Renderbuffer to the renderbuffer target specified by Target.
Target must be ?GL_RENDERBUFFER. Renderbuffer is the name of a
renderbuffer object previously returned from a call to
gl:genRenderbuffers/1, or zero to break the existing
binding of a renderbuffer object to Target.

 bindSampler(Unit, Sampler)

 gl:bindSampler/2 binds Sampler to the texture unit at
index Unit. Sampler must be zero or the name of a sampler object previously
returned from a call to gl:genSamplers/1. Unit must be
less than the value of ?GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS.

 bindSamplers(First, Samplers)

 gl:bindSamplers/2 binds samplers from an array of existing
sampler objects to a specified number of consecutive sampler units. Count
specifies the number of sampler objects whose names are stored in the array
Samplers. That number of sampler names is read from the array and bound to the
Count consecutive sampler units starting from First.

 bindTexture(Target, Texture)

 gl:bindTexture/2 lets you create or use a named texture.
Calling gl:bindTexture/2 with Target set to
?GL_TEXTURE_1D, ?GL_TEXTURE_2D, ?GL_TEXTURE_3D, ?GL_TEXTURE_1D_ARRAY,
?GL_TEXTURE_2D_ARRAY, ?GL_TEXTURE_RECTANGLE, ?GL_TEXTURE_CUBE_MAP,
?GL_TEXTURE_CUBE_MAP_ARRAY, ?GL_TEXTURE_BUFFER, ?GL_TEXTURE_2D_MULTISAMPLE
or ?GL_TEXTURE_2D_MULTISAMPLE_ARRAY and Texture set to the name of the new
texture binds the texture name to the target. When a texture is bound to a
target, the previous binding for that target is automatically broken.

 bindTextures(First, Textures)

 gl:bindTextures/2 binds an array of existing texture
objects to a specified number of consecutive texture units. Count specifies
the number of texture objects whose names are stored in the array Textures.
That number of texture names are read from the array and bound to the Count
consecutive texture units starting from First. The target, or type of texture
is deduced from the texture object and each texture is bound to the
corresponding target of the texture unit. If the name zero appears in the
Textures array, any existing binding to any target of the texture unit is
reset and the default texture for that target is bound in its place. Any
non-zero entry in Textures must be the name of an existing texture object. If
Textures is ?NULL then it is as if an appropriately sized array containing
only zeros had been specified.

 bindTextureUnit(Unit, Texture)

 gl:bindTextureUnit/2 binds an existing texture object
to the texture unit numbered Unit.

 bindTransformFeedback(Target, Id)

 gl:bindTransformFeedback/2 binds the transform
feedback object with name Id to the current GL state. Id must be a name
previously returned from a call to
gl:genTransformFeedbacks/1. If Id has not
previously been bound, a new transform feedback object with name Id and
initialized with the default transform state vector is created.

 bindVertexArray(Array)

 gl:bindVertexArray/1 binds the vertex array object with
name Array. Array is the name of a vertex array object previously returned
from a call to gl:genVertexArrays/1, or zero to break
the existing vertex array object binding.

 bindVertexBuffer(Bindingindex, Buffer, Offset, Stride)

 Equivalent to vertexArrayVertexBuffer/5.

 bindVertexBuffers(First, Buffers, Offsets, Strides)

 Equivalent to vertexArrayVertexBuffers/5.

 bitmap(Width, Height, Xorig, Yorig, Xmove, Ymove, Bitmap)

 A bitmap is a binary image. When drawn, the bitmap is positioned relative to the
current raster position, and frame buffer pixels corresponding to 1's in the
bitmap are written using the current raster color or index. Frame buffer pixels
corresponding to 0's in the bitmap are not modified.

 blendColor(Red, Green, Blue, Alpha)

 The ?GL_BLEND_COLOR may be used to calculate the source and destination
blending factors. The color components are clamped to the range [0 1] before
being stored. See gl:blendFunc/2 for a complete description
of the blending operations. Initially the ?GL_BLEND_COLOR is set to (0, 0, 0,
0).

 blendEquation(Mode)

 Equivalent to blendEquationi/2.

 blendEquationi(Buf, Mode)

 The blend equations determine how a new pixel (the ''source'' color) is combined
with a pixel already in the framebuffer (the ''destination'' color). This
function sets both the RGB blend equation and the alpha blend equation to a
single equation. gl:blendEquationi/2 specifies the blend
equation for a single draw buffer whereas
gl:blendEquation/1 sets the blend equation for all draw
buffers.

 blendEquationSeparate(ModeRGB, ModeAlpha)

 Equivalent to blendEquationSeparatei/3.

 blendEquationSeparatei(Buf, ModeRGB, ModeAlpha)

 The blend equations determines how a new pixel (the ''source'' color) is
combined with a pixel already in the framebuffer (the ''destination'' color).
These functions specify one blend equation for the RGB-color components and one
blend equation for the alpha component.
gl:blendEquationSeparatei/3 specifies the blend
equations for a single draw buffer whereas
gl:blendEquationSeparate/2 sets the blend
equations for all draw buffers.

 blendFunc(Sfactor, Dfactor)

 Equivalent to blendFunci/3.

 blendFunci(Buf, Src, Dst)

 Pixels can be drawn using a function that blends the incoming (source) RGBA
values with the RGBA values that are already in the frame buffer (the
destination values). Blending is initially disabled. Use
gl:enable/1 and gl:disable/1 with argument
?GL_BLEND to enable and disable blending.

 blendFuncSeparate(SfactorRGB, DfactorRGB, SfactorAlpha, DfactorAlpha)

 Equivalent to blendFuncSeparatei/5.

 blendFuncSeparatei(Buf, SrcRGB, DstRGB, SrcAlpha, DstAlpha)

 Pixels can be drawn using a function that blends the incoming (source) RGBA
values with the RGBA values that are already in the frame buffer (the
destination values). Blending is initially disabled. Use
gl:enable/1 and gl:disable/1 with argument
?GL_BLEND to enable and disable blending.

 blitFramebuffer(SrcX0, SrcY0, SrcX1, SrcY1, DstX0, DstY0, DstX1, DstY1, Mask, Filter)

 gl:blitFramebuffer/10 and glBlitNamedFramebuffer
transfer a rectangle of pixel values from one region of a read framebuffer to
another region of a draw framebuffer.

 bufferData(Target, Size, Data, Usage)

 gl:bufferData/4 and glNamedBufferData create a new data
store for a buffer object. In case of gl:bufferData/4, the
buffer object currently bound to Target is used. For glNamedBufferData, a
buffer object associated with ID specified by the caller in Buffer will be
used instead.

 bufferStorage(Target, Size, Data, Flags)

 gl:bufferStorage/4 and glNamedBufferStorage create a
new immutable data store. For gl:bufferStorage/4, the
buffer object currently bound to Target will be initialized. For
glNamedBufferStorage, Buffer is the name of the buffer object that will be
configured. The size of the data store is specified by Size. If an initial
data is available, its address may be supplied in Data. Otherwise, to create
an uninitialized data store, Data should be ?NULL.

 bufferSubData(Target, Offset, Size, Data)

 gl:bufferSubData/4 and glNamedBufferSubData redefine
some or all of the data store for the specified buffer object. Data starting at
byte offset Offset and extending for Size bytes is copied to the data store
from the memory pointed to by Data. Offset and Size must define a range
lying entirely within the buffer object's data store.

 callList(List)

 gl:callList/1 causes the named display list to be executed.
The commands saved in the display list are executed in order, just as if they
were called without using a display list. If List has not been defined as a
display list, gl:callList/1 is ignored.

 callLists(Lists)

 gl:callLists/1 causes each display list in the list of names
passed as Lists to be executed. As a result, the commands saved in each
display list are executed in order, just as if they were called without using a
display list. Names of display lists that have not been defined are ignored.

 checkFramebufferStatus(Target)

 gl:checkFramebufferStatus/1 and
glCheckNamedFramebufferStatus return the completeness status of a framebuffer
object when treated as a read or draw framebuffer, depending on the value of
Target.

 clampColor(Target, Clamp)

 gl:clampColor/2 controls color clamping that is performed
during gl:readPixels/7. Target must be
?GL_CLAMP_READ_COLOR. If Clamp is ?GL_TRUE, read color clamping is
enabled; if Clamp is ?GL_FALSE, read color clamping is disabled. If Clamp
is ?GL_FIXED_ONLY, read color clamping is enabled only if the selected read
buffer has fixed point components and disabled otherwise.

 clear(Mask)

 gl:clear/1 sets the bitplane area of the window to values
previously selected by gl:clearColor/4,
gl:clearDepth/1, and
gl:clearStencil/1. Multiple color buffers can be cleared
simultaneously by selecting more than one buffer at a time using
gl:drawBuffer/1.

 clearAccum(Red, Green, Blue, Alpha)

 gl:clearAccum/4 specifies the red, green, blue, and alpha
values used by gl:clear/1 to clear the accumulation buffer.

 clearBufferData(Target, Internalformat, Format, Type, Data)

 Equivalent to clearBufferuiv/3.

 clearBufferfi(Buffer, Drawbuffer, Depth, Stencil)

 Equivalent to clearBufferuiv/3.

 clearBufferfv(Buffer, Drawbuffer, Value)

 Equivalent to clearBufferuiv/3.

 clearBufferiv(Buffer, Drawbuffer, Value)

 Equivalent to clearBufferuiv/3.

 clearBufferSubData(Target, Internalformat, Offset, Size, Format, Type, Data)

 Equivalent to clearBufferuiv/3.

 clearBufferuiv(Buffer, Drawbuffer, Value)

 These commands clear a specified buffer of a framebuffer to specified value(s).
For gl:clearBuffer*(), the framebuffer is the currently
bound draw framebuffer object. For glClearNamedFramebuffer*, Framebuffer is
zero, indicating the default draw framebuffer, or the name of a framebuffer
object.

 clearColor(Red, Green, Blue, Alpha)

 gl:clearColor/4 specifies the red, green, blue, and alpha
values used by gl:clear/1 to clear the color buffers. Values
specified by gl:clearColor/4 are clamped to the range [0
1].

 clearDepth(Depth)

 Equivalent to clearDepthf/1.

 clearDepthf(D)

 gl:clearDepth/1 specifies the depth value used by
gl:clear/1 to clear the depth buffer. Values specified by
gl:clearDepth/1 are clamped to the range [0 1].

 clearIndex(C)

 gl:clearIndex/1 specifies the index used by
gl:clear/1 to clear the color index buffers. C is not clamped.
Rather, C is converted to a fixed-point value with unspecified precision to
the right of the binary point. The integer part of this value is then masked
with 2 m-1, where m is the number of bits in a color index stored in the frame
buffer.

 clearStencil(S)

 gl:clearStencil/1 specifies the index used by
gl:clear/1 to clear the stencil buffer. S is masked with 2 m-1,
where m is the number of bits in the stencil buffer.

 clearTexImage(Texture, Level, Format, Type, Data)

 gl:clearTexImage/5 fills all an image contained in a
texture with an application supplied value. Texture must be the name of an
existing texture. Further, Texture may not be the name of a buffer texture,
nor may its internal format be compressed.

 clearTexSubImage(Texture, Level, Xoffset, Yoffset, Zoffset, Width, Height, Depth, Format, Type, Data)

 gl:clearTexSubImage/11 fills all or part of an image
contained in a texture with an application supplied value. Texture must be the
name of an existing texture. Further, Texture may not be the name of a buffer
texture, nor may its internal format be compressed.

 clientActiveTexture(Texture)

 gl:clientActiveTexture/1 selects the vertex array
client state parameters to be modified by
gl:texCoordPointer/4, and enabled or disabled with
gl:enableClientState/1 or
gl:disableClientState/1, respectively, when called
with a parameter of ?GL_TEXTURE_COORD_ARRAY.

 clientWaitSync(Sync, Flags, Timeout)

 gl:clientWaitSync/3 causes the client to block and wait
for the sync object specified by Sync to become signaled. If Sync is
signaled when gl:clientWaitSync/3 is called,
gl:clientWaitSync/3 returns immediately, otherwise it
will block and wait for up to Timeout nanoseconds for Sync to become
signaled.

 clipControl(Origin, Depth)

 gl:clipControl/2 controls the clipping volume behavior and
the clip coordinate to window coordinate transformation behavior.

 clipPlane(Plane, Equation)

 Geometry is always clipped against the boundaries of a six-plane frustum in x,
y, and z. gl:clipPlane/2 allows the specification of
additional planes, not necessarily perpendicular to the x, y, or z axis,
against which all geometry is clipped. To determine the maximum number of
additional clipping planes, call gl:getIntegerv/1 with
argument ?GL_MAX_CLIP_PLANES. All implementations support at least six such
clipping planes. Because the resulting clipping region is the intersection of
the defined half-spaces, it is always convex.

 color3b(Red, Green, Blue)

 Equivalent to color4usv/1.

 color3bv/1

 Equivalent to color4usv/1.

 color3d(Red, Green, Blue)

 Equivalent to color4usv/1.

 color3dv/1

 Equivalent to color4usv/1.

 color3f(Red, Green, Blue)

 Equivalent to color4usv/1.

 color3fv/1

 Equivalent to color4usv/1.

 color3i(Red, Green, Blue)

 Equivalent to color4usv/1.

 color3iv/1

 Equivalent to color4usv/1.

 color3s(Red, Green, Blue)

 Equivalent to color4usv/1.

 color3sv/1

 Equivalent to color4usv/1.

 color3ub(Red, Green, Blue)

 Equivalent to color4usv/1.

 color3ubv/1

 Equivalent to color4usv/1.

 color3ui(Red, Green, Blue)

 Equivalent to color4usv/1.

 color3uiv/1

 Equivalent to color4usv/1.

 color3us(Red, Green, Blue)

 Equivalent to color4usv/1.

 color3usv/1

 Equivalent to color4usv/1.

 color4b(Red, Green, Blue, Alpha)

 Equivalent to color4usv/1.

 color4bv/1

 Equivalent to color4usv/1.

 color4d(Red, Green, Blue, Alpha)

 Equivalent to color4usv/1.

 color4dv/1

 Equivalent to color4usv/1.

 color4f(Red, Green, Blue, Alpha)

 Equivalent to color4usv/1.

 color4fv/1

 Equivalent to color4usv/1.

 color4i(Red, Green, Blue, Alpha)

 Equivalent to color4usv/1.

 color4iv/1

 Equivalent to color4usv/1.

 color4s(Red, Green, Blue, Alpha)

 Equivalent to color4usv/1.

 color4sv/1

 Equivalent to color4usv/1.

 color4ub(Red, Green, Blue, Alpha)

 Equivalent to color4usv/1.

 color4ubv/1

 Equivalent to color4usv/1.

 color4ui(Red, Green, Blue, Alpha)

 Equivalent to color4usv/1.

 color4uiv/1

 Equivalent to color4usv/1.

 color4us(Red, Green, Blue, Alpha)

 Equivalent to color4usv/1.

 color4usv/1

 The GL stores both a current single-valued color index and a current four-valued
RGBA color. gl:color() sets a new four-valued RGBA color.
gl:color() has two major variants: gl:color3()
and gl:color4(). gl:color3() variants specify
new red, green, and blue values explicitly and set the current alpha value to
1.0 (full intensity) implicitly. gl:color4() variants specify
all four color components explicitly.

 colorMask(Red, Green, Blue, Alpha)

 Equivalent to colorMaski/5.

 colorMaski(Index, R, G, B, A)

 gl:colorMask/4 and gl:colorMaski/5 specify
whether the individual color components in the frame buffer can or cannot be
written. gl:colorMaski/5 sets the mask for a specific draw
buffer, whereas gl:colorMask/4 sets the mask for all draw
buffers. If Red is ?GL_FALSE, for example, no change is made to the red
component of any pixel in any of the color buffers, regardless of the drawing
operation attempted.

 colorMaterial(Face, Mode)

 gl:colorMaterial/2 specifies which material parameters
track the current color. When ?GL_COLOR_MATERIAL is enabled, the material
parameter or parameters specified by Mode, of the material or materials
specified by Face, track the current color at all times.

 colorPointer(Size, Type, Stride, Ptr)

 gl:colorPointer/4 specifies the location and data format
of an array of color components to use when rendering. Size specifies the
number of components per color, and must be 3 or 4. Type specifies the data
type of each color component, and Stride specifies the byte stride from one
color to the next, allowing vertices and attributes to be packed into a single
array or stored in separate arrays. (Single-array storage may be more efficient
on some implementations; see gl:interleavedArrays/3.)

 colorSubTable(Target, Start, Count, Format, Type, Data)

 gl:colorSubTable/6 is used to respecify a contiguous
portion of a color table previously defined using
gl:colorTable/6. The pixels referenced by Data replace the
portion of the existing table from indices Start to start+count-1, inclusive.
This region may not include any entries outside the range of the color table as
it was originally specified. It is not an error to specify a subtexture with
width of 0, but such a specification has no effect.

 colorTable(Target, Internalformat, Width, Format, Type, Table)

 gl:colorTable/6 may be used in two ways: to test the actual
size and color resolution of a lookup table given a particular set of
parameters, or to load the contents of a color lookup table. Use the targets
?GL_PROXY_* for the first case and the other targets for the second case.

 colorTableParameterfv(Target, Pname, Params)

 Equivalent to colorTableParameteriv/3.

 colorTableParameteriv(Target, Pname, Params)

 gl:colorTableParameter() is used to specify the
scale factors and bias terms applied to color components when they are loaded
into a color table. Target indicates which color table the scale and bias
terms apply to; it must be set to ?GL_COLOR_TABLE,
?GL_POST_CONVOLUTION_COLOR_TABLE, or ?GL_POST_COLOR_MATRIX_COLOR_TABLE.

 compileShader(Shader)

 gl:compileShader/1 compiles the source code strings that
have been stored in the shader object specified by Shader.

 compressedTexImage1D(Target, Level, Internalformat, Width, Border, ImageSize, Data)

 Texturing allows elements of an image array to be read by shaders.

 compressedTexImage2D(Target, Level, Internalformat, Width, Height, Border, ImageSize, Data)

 Texturing allows elements of an image array to be read by shaders.

 compressedTexImage3D(Target, Level, Internalformat, Width, Height, Depth, Border, ImageSize, Data)

 Texturing allows elements of an image array to be read by shaders.

 compressedTexSubImage1D(Target, Level, Xoffset, Width, Format, ImageSize, Data)

 Equivalent to compressedTextureSubImage1D/7.

 compressedTexSubImage2D(Target, Level, Xoffset, Yoffset, Width, Height, Format, ImageSize, Data)

 Equivalent to compressedTextureSubImage2D/9.

 compressedTexSubImage3D(Target, Level, Xoffset, Yoffset, Zoffset, Width, Height, Depth, Format, ImageSize, Data)

 Equivalent to compressedTextureSubImage3D/11.

 compressedTextureSubImage1D(Texture, Level, Xoffset, Width, Format, ImageSize, Data)

 Texturing allows elements of an image array to be read by shaders.

 compressedTextureSubImage2D(Texture, Level, Xoffset, Yoffset, Width, Height, Format, ImageSize, Data)

 Texturing allows elements of an image array to be read by shaders.

 compressedTextureSubImage3D(Texture, Level, Xoffset, Yoffset, Zoffset, Width, Height, Depth, Format, ImageSize, Data)

 Texturing allows elements of an image array to be read by shaders.

 convolutionFilter1D(Target, Internalformat, Width, Format, Type, Image)

 gl:convolutionFilter1D/6 builds a one-dimensional
convolution filter kernel from an array of pixels.

 convolutionFilter2D(Target, Internalformat, Width, Height, Format, Type, Image)

 gl:convolutionFilter2D/7 builds a two-dimensional
convolution filter kernel from an array of pixels.

 convolutionParameterf(Target, Pname, Params)

 Equivalent to convolutionParameteriv/3.

 convolutionParameterfv(Target, Pname, Params)

 Equivalent to convolutionParameteriv/3.

 convolutionParameteri(Target, Pname, Params)

 Equivalent to convolutionParameteriv/3.

 convolutionParameteriv(Target, Pname, Params)

 gl:convolutionParameter() sets the value of a
convolution parameter.

 copyBufferSubData(ReadTarget, WriteTarget, ReadOffset, WriteOffset, Size)

 gl:copyBufferSubData/5 and glCopyNamedBufferSubData
copy part of the data store attached to a source buffer object to the data store
attached to a destination buffer object. The number of basic machine units
indicated by Size is copied from the source at offset ReadOffset to the
destination at WriteOffset. ReadOffset, WriteOffset and Size are in
terms of basic machine units.

 copyColorSubTable(Target, Start, X, Y, Width)

 gl:copyColorSubTable/5 is used to respecify a
contiguous portion of a color table previously defined using
gl:colorTable/6. The pixels copied from the framebuffer
replace the portion of the existing table from indices Start to start+x-1,
inclusive. This region may not include any entries outside the range of the
color table, as was originally specified. It is not an error to specify a
subtexture with width of 0, but such a specification has no effect.

 copyColorTable(Target, Internalformat, X, Y, Width)

 gl:copyColorTable/5 loads a color table with pixels from
the current ?GL_READ_BUFFER (rather than from main memory, as is the case for
gl:colorTable/6).

 copyConvolutionFilter1D(Target, Internalformat, X, Y, Width)

 gl:copyConvolutionFilter1D/5 defines a
one-dimensional convolution filter kernel with pixels from the current
?GL_READ_BUFFER (rather than from main memory, as is the case for
gl:convolutionFilter1D/6).

 copyConvolutionFilter2D(Target, Internalformat, X, Y, Width, Height)

 gl:copyConvolutionFilter2D/6 defines a
two-dimensional convolution filter kernel with pixels from the current
?GL_READ_BUFFER (rather than from main memory, as is the case for
gl:convolutionFilter2D/7).

 copyImageSubData(SrcName, SrcTarget, SrcLevel, SrcX, SrcY, SrcZ, DstName, DstTarget, DstLevel, DstX, DstY, DstZ, SrcWidth, SrcHeight, SrcDepth)

 gl:copyImageSubData/15 may be used to copy data from
one image (i.e. texture or renderbuffer) to another.
gl:copyImageSubData/15 does not perform
general-purpose conversions such as scaling, resizing, blending, color-space, or
format conversions. It should be considered to operate in a manner similar to a
CPU memcpy. CopyImageSubData can copy between images with different internal
formats, provided the formats are compatible.

 copyPixels(X, Y, Width, Height, Type)

 gl:copyPixels/5 copies a screen-aligned rectangle of pixels
from the specified frame buffer location to a region relative to the current
raster position. Its operation is well defined only if the entire pixel source
region is within the exposed portion of the window. Results of copies from
outside the window, or from regions of the window that are not exposed, are
hardware dependent and undefined.

 copyTexImage1D(Target, Level, Internalformat, X, Y, Width, Border)

 gl:copyTexImage1D/7 defines a one-dimensional texture
image with pixels from the current ?GL_READ_BUFFER.

 copyTexImage2D(Target, Level, Internalformat, X, Y, Width, Height, Border)

 gl:copyTexImage2D/8 defines a two-dimensional texture
image, or cube-map texture image with pixels from the current ?GL_READ_BUFFER.

 copyTexSubImage1D(Target, Level, Xoffset, X, Y, Width)

 gl:copyTexSubImage1D/6 and glCopyTextureSubImage1D
replace a portion of a one-dimensional texture image with pixels from the
current ?GL_READ_BUFFER (rather than from main memory, as is the case for
gl:texSubImage1D/7). For
gl:copyTexSubImage1D/6, the texture object that is
bound to Target will be used for the process. For glCopyTextureSubImage1D,
Texture tells which texture object should be used for the purpose of the call.

 copyTexSubImage2D(Target, Level, Xoffset, Yoffset, X, Y, Width, Height)

 gl:copyTexSubImage2D/8 and glCopyTextureSubImage2D
replace a rectangular portion of a two-dimensional texture image, cube-map
texture image, rectangular image, or a linear portion of a number of slices of a
one-dimensional array texture with pixels from the current ?GL_READ_BUFFER
(rather than from main memory, as is the case for
gl:texSubImage2D/9).

 copyTexSubImage3D(Target, Level, Xoffset, Yoffset, Zoffset, X, Y, Width, Height)

 gl:copyTexSubImage3D/9 and glCopyTextureSubImage3D
functions replace a rectangular portion of a three-dimensional or
two-dimensional array texture image with pixels from the current
?GL_READ_BUFFER (rather than from main memory, as is the case for
gl:texSubImage3D/11).

 createBuffers(N)

 gl:createBuffers/1 returns N previously unused buffer
names in Buffers, each representing a new buffer object initialized as if it
had been bound to an unspecified target.

 createFramebuffers(N)

 gl:createFramebuffers/1 returns N previously
unused framebuffer names in Framebuffers, each representing a new framebuffer
object initialized to the default state.

 createProgram()

 gl:createProgram/0 creates an empty program object and
returns a non-zero value by which it can be referenced. A program object is an
object to which shader objects can be attached. This provides a mechanism to
specify the shader objects that will be linked to create a program. It also
provides a means for checking the compatibility of the shaders that will be used
to create a program (for instance, checking the compatibility between a vertex
shader and a fragment shader). When no longer needed as part of a program
object, shader objects can be detached.

 createProgramPipelines(N)

 gl:createProgramPipelines/1 returns N
previously unused program pipeline names in Pipelines, each representing a new
program pipeline object initialized to the default state.

 createQueries(Target, N)

 gl:createQueries/2 returns N previously unused query
object names in Ids, each representing a new query object with the specified
Target.

 createRenderbuffers(N)

 gl:createRenderbuffers/1 returns N previously
unused renderbuffer object names in Renderbuffers, each representing a new
renderbuffer object initialized to the default state.

 createSamplers(N)

 gl:createSamplers/1 returns N previously unused
sampler names in Samplers, each representing a new sampler object initialized
to the default state.

 createShader(Type)

 gl:createShader/1 creates an empty shader object and
returns a non-zero value by which it can be referenced. A shader object is used
to maintain the source code strings that define a shader. ShaderType indicates
the type of shader to be created. Five types of shader are supported. A shader
of type ?GL_COMPUTE_SHADER is a shader that is intended to run on the
programmable compute processor. A shader of type ?GL_VERTEX_SHADER is a shader
that is intended to run on the programmable vertex processor. A shader of type
?GL_TESS_CONTROL_SHADER is a shader that is intended to run on the
programmable tessellation processor in the control stage. A shader of type
?GL_TESS_EVALUATION_SHADER is a shader that is intended to run on the
programmable tessellation processor in the evaluation stage. A shader of type
?GL_GEOMETRY_SHADER is a shader that is intended to run on the programmable
geometry processor. A shader of type ?GL_FRAGMENT_SHADER is a shader that is
intended to run on the programmable fragment processor.

 createShaderProgramv(Type, Strings)

 gl:createShaderProgram() creates a program object
containing compiled and linked shaders for a single stage specified by Type.
Strings refers to an array of Count strings from which to create the shader
executables.

 createTextures(Target, N)

 gl:createTextures/2 returns N previously unused
texture names in Textures, each representing a new texture object of the
dimensionality and type specified by Target and initialized to the default
values for that texture type.

 createTransformFeedbacks(N)

 gl:createTransformFeedbacks/1 returns N
previously unused transform feedback object names in Ids, each representing a
new transform feedback object initialized to the default state.

 createVertexArrays(N)

 gl:createVertexArrays/1 returns N previously
unused vertex array object names in Arrays, each representing a new vertex
array object initialized to the default state.

 cullFace(Mode)

 gl:cullFace/1 specifies whether front- or back-facing facets
are culled (as specified by mode) when facet culling is enabled. Facet culling
is initially disabled. To enable and disable facet culling, call the
gl:enable/1 and gl:disable/1 commands with the
argument ?GL_CULL_FACE. Facets include triangles, quadrilaterals, polygons,
and rectangles.

 debugMessageControl(Source, Type, Severity, Ids, Enabled)

 gl:debugMessageControl/5 controls the reporting of
debug messages generated by a debug context. The parameters Source, Type and
Severity form a filter to select messages from the pool of potential messages
generated by the GL.

 debugMessageInsert(Source, Type, Id, Severity, Buf)

 gl:debugMessageInsert/5 inserts a user-supplied
message into the debug output queue. Source specifies the source that will be
used to classify the message and must be ?GL_DEBUG_SOURCE_APPLICATION or
?GL_DEBUG_SOURCE_THIRD_PARTY. All other sources are reserved for use by the GL
implementation. Type indicates the type of the message to be inserted and may
be one of ?GL_DEBUG_TYPE_ERROR, ?GL_DEBUG_TYPE_DEPRECATED_BEHAVIOR,
?GL_DEBUG_TYPE_UNDEFINED_BEHAVIOR, ?GL_DEBUG_TYPE_PORTABILITY,
?GL_DEBUG_TYPE_PERFORMANCE, ?GL_DEBUG_TYPE_MARKER,
?GL_DEBUG_TYPE_PUSH_GROUP, ?GL_DEBUG_TYPE_POP_GROUP, or
?GL_DEBUG_TYPE_OTHER. Severity indicates the severity of the message and may
be ?GL_DEBUG_SEVERITY_LOW, ?GL_DEBUG_SEVERITY_MEDIUM,
?GL_DEBUG_SEVERITY_HIGH or ?GL_DEBUG_SEVERITY_NOTIFICATION. Id is
available for application defined use and may be any value. This value will be
recorded and used to identify the message.

 deleteBuffers(Buffers)

 gl:deleteBuffers/1 deletes N buffer objects named by
the elements of the array Buffers. After a buffer object is deleted, it has no
contents, and its name is free for reuse (for example by
gl:genBuffers/1). If a buffer object that is currently bound
is deleted, the binding reverts to 0 (the absence of any buffer object).

 deleteFramebuffers(Framebuffers)

 gl:deleteFramebuffers/1 deletes the N framebuffer
objects whose names are stored in the array addressed by Framebuffers. The
name zero is reserved by the GL and is silently ignored, should it occur in
Framebuffers, as are other unused names. Once a framebuffer object is deleted,
its name is again unused and it has no attachments. If a framebuffer that is
currently bound to one or more of the targets ?GL_DRAW_FRAMEBUFFER or
?GL_READ_FRAMEBUFFER is deleted, it is as though
gl:bindFramebuffer/2 had been executed with the
corresponding Target and Framebuffer zero.

 deleteLists(List, Range)

 gl:deleteLists/2 causes a contiguous group of display lists
to be deleted. List is the name of the first display list to be deleted, and
Range is the number of display lists to delete. All display lists d with
list<= d<= list+range-1 are deleted.

 deleteProgram(Program)

 gl:deleteProgram/1 frees the memory and invalidates the
name associated with the program object specified by Program. This command
effectively undoes the effects of a call to
gl:createProgram/0.

 deleteProgramPipelines(Pipelines)

 gl:deleteProgramPipelines/1 deletes the N
program pipeline objects whose names are stored in the array Pipelines. Unused
names in Pipelines are ignored, as is the name zero. After a program pipeline
object is deleted, its name is again unused and it has no contents. If program
pipeline object that is currently bound is deleted, the binding for that object
reverts to zero and no program pipeline object becomes current.

 deleteQueries(Ids)

 gl:deleteQueries/1 deletes N query objects named by the
elements of the array Ids. After a query object is deleted, it has no
contents, and its name is free for reuse (for example by
gl:genQueries/1).

 deleteRenderbuffers(Renderbuffers)

 gl:deleteRenderbuffers/1 deletes the N
renderbuffer objects whose names are stored in the array addressed by
Renderbuffers. The name zero is reserved by the GL and is silently ignored,
should it occur in Renderbuffers, as are other unused names. Once a
renderbuffer object is deleted, its name is again unused and it has no contents.
If a renderbuffer that is currently bound to the target ?GL_RENDERBUFFER is
deleted, it is as though gl:bindRenderbuffer/2 had
been executed with a Target of ?GL_RENDERBUFFER and a Name of zero.

 deleteSamplers(Samplers)

 gl:deleteSamplers/1 deletes N sampler objects named by
the elements of the array Samplers. After a sampler object is deleted, its
name is again unused. If a sampler object that is currently bound to a sampler
unit is deleted, it is as though gl:bindSampler/2 is called
with unit set to the unit the sampler is bound to and sampler zero. Unused names
in samplers are silently ignored, as is the reserved name zero.

 deleteShader(Shader)

 gl:deleteShader/1 frees the memory and invalidates the
name associated with the shader object specified by Shader. This command
effectively undoes the effects of a call to
gl:createShader/1.

 deleteSync(Sync)

 gl:deleteSync/1 deletes the sync object specified by Sync.
If the fence command corresponding to the specified sync object has completed,
or if no gl:waitSync/3 or
gl:clientWaitSync/3 commands are blocking on Sync, the
object is deleted immediately. Otherwise, Sync is flagged for deletion and
will be deleted when it is no longer associated with any fence command and is no
longer blocking any gl:waitSync/3 or
gl:clientWaitSync/3 command. In either case, after
gl:deleteSync/1 returns, the name Sync is invalid and can
no longer be used to refer to the sync object.

 deleteTextures(Textures)

 gl:deleteTextures/1 deletes N textures named by the
elements of the array Textures. After a texture is deleted, it has no contents
or dimensionality, and its name is free for reuse (for example by
gl:genTextures/1). If a texture that is currently bound is
deleted, the binding reverts to 0 (the default texture).

 deleteTransformFeedbacks(Ids)

 gl:deleteTransformFeedbacks/1 deletes the N
transform feedback objects whose names are stored in the array Ids. Unused
names in Ids are ignored, as is the name zero. After a transform feedback
object is deleted, its name is again unused and it has no contents. If an active
transform feedback object is deleted, its name immediately becomes unused, but
the underlying object is not deleted until it is no longer active.

 deleteVertexArrays(Arrays)

 gl:deleteVertexArrays/1 deletes N vertex array
objects whose names are stored in the array addressed by Arrays. Once a vertex
array object is deleted it has no contents and its name is again unused. If a
vertex array object that is currently bound is deleted, the binding for that
object reverts to zero and the default vertex array becomes current. Unused
names in Arrays are silently ignored, as is the value zero.

 depthFunc(Func)

 gl:depthFunc/1 specifies the function used to compare each
incoming pixel depth value with the depth value present in the depth buffer. The
comparison is performed only if depth testing is enabled. (See
gl:enable/1 and gl:disable/1 of
?GL_DEPTH_TEST.)

 depthMask(Flag)

 gl:depthMask/1 specifies whether the depth buffer is enabled
for writing. If Flag is ?GL_FALSE, depth buffer writing is disabled.
Otherwise, it is enabled. Initially, depth buffer writing is enabled.

 depthRange(Near_val, Far_val)

 Equivalent to depthRangef/2.

 depthRangeArrayv(First, V)

 After clipping and division by w, depth coordinates range from -1 to 1,
corresponding to the near and far clipping planes. Each viewport has an
independent depth range specified as a linear mapping of the normalized depth
coordinates in this range to window depth coordinates. Regardless of the actual
depth buffer implementation, window coordinate depth values are treated as
though they range from 0 through 1 (like color components).
gl:depthRangeArray() specifies a linear mapping of the
normalized depth coordinates in this range to window depth coordinates for each
viewport in the range [First, First + Count). Thus, the values accepted
by gl:depthRangeArray() are both clamped to this range
before they are accepted.

 depthRangef(N, F)

 After clipping and division by w, depth coordinates range from -1 to 1,
corresponding to the near and far clipping planes.
gl:depthRange/2 specifies a linear mapping of the normalized
depth coordinates in this range to window depth coordinates. Regardless of the
actual depth buffer implementation, window coordinate depth values are treated
as though they range from 0 through 1 (like color components). Thus, the values
accepted by gl:depthRange/2 are both clamped to this range
before they are accepted.

 depthRangeIndexed(Index, N, F)

 After clipping and division by w, depth coordinates range from -1 to 1,
corresponding to the near and far clipping planes. Each viewport has an
independent depth range specified as a linear mapping of the normalized depth
coordinates in this range to window depth coordinates. Regardless of the actual
depth buffer implementation, window coordinate depth values are treated as
though they range from 0 through 1 (like color components).
gl:depthRangeIndexed/3 specifies a linear mapping of
the normalized depth coordinates in this range to window depth coordinates for a
specified viewport. Thus, the values accepted by
gl:depthRangeIndexed/3 are both clamped to this range
before they are accepted.

 detachShader(Program, Shader)

 gl:detachShader/2 detaches the shader object specified by
Shader from the program object specified by Program. This command can be
used to undo the effect of the command gl:attachShader/2.

 disable(Cap)

 Equivalent to enablei/2.

 disableClientState(Cap)

 Equivalent to enableClientState/1.

 disablei(Target, Index)

 Equivalent to enablei/2.

 disableVertexArrayAttrib(Vaobj, Index)

 Equivalent to enableVertexAttribArray/1.

 disableVertexAttribArray(Index)

 Equivalent to enableVertexAttribArray/1.

 dispatchCompute(Num_groups_x, Num_groups_y, Num_groups_z)

 gl:dispatchCompute/3 launches one or more compute work
groups. Each work group is processed by the active program object for the
compute shader stage. While the individual shader invocations within a work
group are executed as a unit, work groups are executed completely independently
and in unspecified order. Num_groups_x, Num_groups_y and Num_groups_z
specify the number of local work groups that will be dispatched in the X, Y and
Z dimensions, respectively.

 dispatchComputeIndirect(Indirect)

 gl:dispatchComputeIndirect/1 launches one or
more compute work groups using parameters stored in the buffer object currently
bound to the ?GL_DISPATCH_INDIRECT_BUFFER target. Each work group is processed
by the active program object for the compute shader stage. While the individual
shader invocations within a work group are executed as a unit, work groups are
executed completely independently and in unspecified order. Indirect contains
the offset into the data store of the buffer object bound to the
?GL_DISPATCH_INDIRECT_BUFFER target at which the parameters are stored.

 drawArrays(Mode, First, Count)

 gl:drawArrays/3 specifies multiple geometric primitives with
very few subroutine calls. Instead of calling a GL procedure to pass each
individual vertex, normal, texture coordinate, edge flag, or color, you can
prespecify separate arrays of vertices, normals, and colors and use them to
construct a sequence of primitives with a single call to
gl:drawArrays/3.

 drawArraysIndirect(Mode, Indirect)

 gl:drawArraysIndirect/2 specifies multiple geometric
primitives with very few subroutine calls.
gl:drawArraysIndirect/2 behaves similarly to
gl:drawArraysInstancedBaseInstance/5,
execept that the parameters to
gl:drawArraysInstancedBaseInstance/5
are stored in memory at the address given by Indirect.

 drawArraysInstanced(Mode, First, Count, Instancecount)

 gl:drawArraysInstanced/4 behaves identically to
gl:drawArrays/3 except that Instancecount instances of the
range of elements are executed and the value of the internal counter
InstanceID advances for each iteration. InstanceID is an internal 32-bit
integer counter that may be read by a vertex shader as ?gl_InstanceID.

 drawArraysInstancedBaseInstance(Mode, First, Count, Instancecount, Baseinstance)

 gl:drawArraysInstancedBaseInstance/5
behaves identically to gl:drawArrays/3 except that
Instancecount instances of the range of elements are executed and the value of
the internal counter InstanceID advances for each iteration. InstanceID is
an internal 32-bit integer counter that may be read by a vertex shader as
?gl_InstanceID.

 drawBuffer(Mode)

 When colors are written to the frame buffer, they are written into the color
buffers specified by gl:drawBuffer/1. One of the following
values can be used for default framebuffer

 drawBuffers(Bufs)

 gl:drawBuffers/1 and glNamedFramebufferDrawBuffers define
an array of buffers into which outputs from the fragment shader data will be
written. If a fragment shader writes a value to one or more user defined output
variables, then the value of each variable will be written into the buffer
specified at a location within Bufs corresponding to the location assigned to
that user defined output. The draw buffer used for user defined outputs assigned
to locations greater than or equal to N is implicitly set to ?GL_NONE and
any data written to such an output is discarded.

 drawElements(Mode, Count, Type, Indices)

 gl:drawElements/4 specifies multiple geometric primitives
with very few subroutine calls. Instead of calling a GL function to pass each
individual vertex, normal, texture coordinate, edge flag, or color, you can
prespecify separate arrays of vertices, normals, and so on, and use them to
construct a sequence of primitives with a single call to
gl:drawElements/4.

 drawElementsBaseVertex(Mode, Count, Type, Indices, Basevertex)

 gl:drawElementsBaseVertex/5 behaves identically
to gl:drawElements/4 except that the ith element
transferred by the corresponding draw call will be taken from element
Indices[i] + Basevertex of each enabled array. If the resulting value is
larger than the maximum value representable by Type, it is as if the
calculation were upconverted to 32-bit unsigned integers (with wrapping on
overflow conditions). The operation is undefined if the sum would be negative.

 drawElementsIndirect(Mode, Type, Indirect)

 gl:drawElementsIndirect/3 specifies multiple
indexed geometric primitives with very few subroutine calls.
gl:drawElementsIndirect/3 behaves similarly to
gl:drawElementsInstancedBaseVertexBaseInstance/7,
execpt that the parameters to
gl:drawElementsInstancedBaseVertexBaseInstance/7
are stored in memory at the address given by Indirect.

 drawElementsInstanced(Mode, Count, Type, Indices, Instancecount)

 gl:drawElementsInstanced/5 behaves identically to
gl:drawElements/4 except that Instancecount instances of
the set of elements are executed and the value of the internal counter
InstanceID advances for each iteration. InstanceID is an internal 32-bit
integer counter that may be read by a vertex shader as ?gl_InstanceID.

 drawElementsInstancedBaseInstance(Mode, Count, Type, Indices, Instancecount, Baseinstance)

 gl:drawElementsInstancedBaseInstance/6
behaves identically to gl:drawElements/4 except that
Instancecount instances of the set of elements are executed and the value of
the internal counter InstanceID advances for each iteration. InstanceID is
an internal 32-bit integer counter that may be read by a vertex shader as
?gl_InstanceID.

 drawElementsInstancedBaseVertex(Mode, Count, Type, Indices, Instancecount, Basevertex)

 gl:drawElementsInstancedBaseVertex/6
behaves identically to gl:drawElementsInstanced/5
except that the ith element transferred by the corresponding draw call will be
taken from element Indices[i] + Basevertex of each enabled array. If the
resulting value is larger than the maximum value representable by Type, it is
as if the calculation were upconverted to 32-bit unsigned integers (with
wrapping on overflow conditions). The operation is undefined if the sum would be
negative.

 drawElementsInstancedBaseVertexBaseInstance(Mode, Count, Type, Indices, Instancecount, Basevertex, Baseinstance)

 gl:drawElementsInstancedBaseVertexBaseInstance/7
behaves identically to gl:drawElementsInstanced/5
except that the ith element transferred by the corresponding draw call will be
taken from element Indices[i] + Basevertex of each enabled array. If the
resulting value is larger than the maximum value representable by Type, it is
as if the calculation were upconverted to 32-bit unsigned integers (with
wrapping on overflow conditions). The operation is undefined if the sum would be
negative.

 drawPixels(Width, Height, Format, Type, Pixels)

 gl:drawPixels/5 reads pixel data from memory and writes it
into the frame buffer relative to the current raster position, provided that the
raster position is valid. Use gl:rasterPos() or
gl:windowPos() to set the current raster position; use
gl:get() with argument ?GL_CURRENT_RASTER_POSITION_VALID
to determine if the specified raster position is valid, and
gl:get() with argument ?GL_CURRENT_RASTER_POSITION to
query the raster position.

 drawRangeElements(Mode, Start, End, Count, Type, Indices)

 gl:drawRangeElements/6 is a restricted form of
gl:drawElements/4. Mode, and Count match the
corresponding arguments to gl:drawElements/4, with the
additional constraint that all values in the arrays Count must lie between
Start and End, inclusive.

 drawRangeElementsBaseVertex(Mode, Start, End, Count, Type, Indices, Basevertex)

 gl:drawRangeElementsBaseVertex/7 is a
restricted form of gl:drawElementsBaseVertex/5.
Mode, Count and Basevertex match the corresponding arguments to
gl:drawElementsBaseVertex/5, with the additional
constraint that all values in the array Indices must lie between Start and
End, inclusive, prior to adding Basevertex. Index values lying outside the
range [Start, End] are treated in the same way as
gl:drawElementsBaseVertex/5. The ith element
transferred by the corresponding draw call will be taken from element
Indices[i] + Basevertex of each enabled array. If the resulting value is
larger than the maximum value representable by Type, it is as if the
calculation were upconverted to 32-bit unsigned integers (with wrapping on
overflow conditions). The operation is undefined if the sum would be negative.

 drawTransformFeedback(Mode, Id)

 gl:drawTransformFeedback/2 draws primitives of a
type specified by Mode using a count retrieved from the transform feedback
specified by Id. Calling
gl:drawTransformFeedback/2 is equivalent to
calling gl:drawArrays/3 with Mode as specified, First
set to zero, and Count set to the number of vertices captured on vertex stream
zero the last time transform feedback was active on the transform feedback
object named by Id.

 drawTransformFeedbackInstanced(Mode, Id, Instancecount)

 gl:drawTransformFeedbackInstanced/3
draws multiple copies of a range of primitives of a type specified by Mode
using a count retrieved from the transform feedback stream specified by Stream
of the transform feedback object specified by Id. Calling
gl:drawTransformFeedbackInstanced/3 is
equivalent to calling gl:drawArraysInstanced/4 with
Mode and Instancecount as specified, First set to zero, and Count set to
the number of vertices captured on vertex stream zero the last time transform
feedback was active on the transform feedback object named by Id.

 drawTransformFeedbackStream(Mode, Id, Stream)

 gl:drawTransformFeedbackStream/3 draws
primitives of a type specified by Mode using a count retrieved from the
transform feedback stream specified by Stream of the transform feedback object
specified by Id. Calling
gl:drawTransformFeedbackStream/3 is
equivalent to calling gl:drawArrays/3 with Mode as
specified, First set to zero, and Count set to the number of vertices
captured on vertex stream Stream the last time transform feedback was active
on the transform feedback object named by Id.

 drawTransformFeedbackStreamInstanced(Mode, Id, Stream, Instancecount)

 gl:drawTransformFeedbackStreamInstanced/4
draws multiple copies of a range of primitives of a type specified by Mode
using a count retrieved from the transform feedback stream specified by Stream
of the transform feedback object specified by Id. Calling
gl:drawTransformFeedbackStreamInstanced/4
is equivalent to calling gl:drawArraysInstanced/4
with Mode and Instancecount as specified, First set to zero, and Count
set to the number of vertices captured on vertex stream Stream the last time
transform feedback was active on the transform feedback object named by Id.

 edgeFlag(Flag)

 Equivalent to edgeFlagv/1.

 edgeFlagPointer(Stride, Ptr)

 gl:edgeFlagPointer/2 specifies the location and data
format of an array of boolean edge flags to use when rendering. Stride
specifies the byte stride from one edge flag to the next, allowing vertices and
attributes to be packed into a single array or stored in separate arrays.

 edgeFlagv/1

 Each vertex of a polygon, separate triangle, or separate quadrilateral specified
between a gl:'begin'/1/gl:'end'/0 pair is
marked as the start of either a boundary or nonboundary edge. If the current
edge flag is true when the vertex is specified, the vertex is marked as the
start of a boundary edge. Otherwise, the vertex is marked as the start of a
nonboundary edge. gl:edgeFlag/1 sets the edge flag bit to
?GL_TRUE if Flag is ?GL_TRUE and to ?GL_FALSE otherwise.

 enable(Cap)

 Equivalent to enablei/2.

 enableClientState(Cap)

 gl:enableClientState/1 and
gl:disableClientState/1 enable or disable individual
client-side capabilities. By default, all client-side capabilities are disabled.
Both gl:enableClientState/1 and
gl:disableClientState/1 take a single argument,
Cap, which can assume one of the following values

 enablei(Target, Index)

 gl:enable/1 and gl:disable/1 enable and disable
various capabilities. Use gl:isEnabled/1 or
gl:get() to determine the current setting of any
capability. The initial value for each capability with the exception of
?GL_DITHER and ?GL_MULTISAMPLE is ?GL_FALSE. The initial value for
?GL_DITHER and ?GL_MULTISAMPLE is ?GL_TRUE.

 enableVertexArrayAttrib(Vaobj, Index)

 Equivalent to enableVertexAttribArray/1.

 enableVertexAttribArray(Index)

 gl:enableVertexAttribArray/1 and
gl:enableVertexArrayAttrib/2 enable the
generic vertex attribute array specified by Index.
gl:enableVertexAttribArray/1 uses currently
bound vertex array object for the operation, whereas
gl:enableVertexArrayAttrib/2 updates state of
the vertex array object with ID Vaobj.

 'end'()

 gl:'begin'/1 and gl:'end'/0 delimit the
vertices that define a primitive or a group of like primitives.
gl:'begin'/1 accepts a single argument that specifies in which
of ten ways the vertices are interpreted. Taking n as an integer count starting
at one, and N as the total number of vertices specified, the interpretations are
as follows

 endConditionalRender()

 Conditional rendering is started using
gl:beginConditionalRender/2 and ended using
gl:endConditionalRender/0. During conditional
rendering, all vertex array commands, as well as gl:clear/1 and
gl:clearBuffer() have no effect if the
(?GL_SAMPLES_PASSED) result of the query object Id is zero, or if the
(?GL_ANY_SAMPLES_PASSED) result is ?GL_FALSE. The results of commands
setting the current vertex state, such as
gl:vertexAttrib() are undefined. If the
(?GL_SAMPLES_PASSED) result is non-zero or if the (?GL_ANY_SAMPLES_PASSED)
result is ?GL_TRUE, such commands are not discarded. The Id parameter to
gl:beginConditionalRender/2 must be the name of
a query object previously returned from a call to
gl:genQueries/1. Mode specifies how the results of the
query object are to be interpreted. If Mode is ?GL_QUERY_WAIT, the GL waits
for the results of the query to be available and then uses the results to
determine if subsequent rendering commands are discarded. If Mode is
?GL_QUERY_NO_WAIT, the GL may choose to unconditionally execute the subsequent
rendering commands without waiting for the query to complete.

 endList()

 Equivalent to newList/2.

 endQuery(Target)

 gl:beginQuery/2 and gl:endQuery/1
delimit the boundaries of a query object. Query must be a name previously
returned from a call to gl:genQueries/1. If a query object
with name Id does not yet exist it is created with the type determined by
Target. Target must be one of ?GL_SAMPLES_PASSED,
?GL_ANY_SAMPLES_PASSED, ?GL_PRIMITIVES_GENERATED,
?GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN, or ?GL_TIME_ELAPSED. The behavior
of the query object depends on its type and is as follows.

 endQueryIndexed(Target, Index)

 gl:beginQueryIndexed/3 and
gl:endQueryIndexed/2 delimit the boundaries of a
query object. Query must be a name previously returned from a call to
gl:genQueries/1. If a query object with name Id does not
yet exist it is created with the type determined by Target. Target must be
one of ?GL_SAMPLES_PASSED, ?GL_ANY_SAMPLES_PASSED,
?GL_PRIMITIVES_GENERATED, ?GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN, or
?GL_TIME_ELAPSED. The behavior of the query object depends on its type and is
as follows.

 endTransformFeedback()

 Transform feedback mode captures the values of varying variables written by the
vertex shader (or, if active, the geometry shader). Transform feedback is said
to be active after a call to
gl:beginTransformFeedback/1 until a subsequent
call to gl:endTransformFeedback/0. Transform
feedback commands must be paired.

 evalCoord1d(U)

 Equivalent to evalCoord2fv/1.

 evalCoord1dv/1

 Equivalent to evalCoord2fv/1.

 evalCoord1f(U)

 Equivalent to evalCoord2fv/1.

 evalCoord1fv/1

 Equivalent to evalCoord2fv/1.

 evalCoord2d(U, V)

 Equivalent to evalCoord2fv/1.

 evalCoord2dv/1

 Equivalent to evalCoord2fv/1.

 evalCoord2f(U, V)

 Equivalent to evalCoord2fv/1.

 evalCoord2fv/1

 gl:evalCoord1() evaluates enabled one-dimensional maps at
argument U. gl:evalCoord2() does the same for
two-dimensional maps using two domain values, U and V. To define a map, call
glMap1 and glMap2; to enable and disable it, call
gl:enable/1 and gl:disable/1.

 evalMesh1(Mode, I1, I2)

 Equivalent to evalMesh2/5.

 evalMesh2(Mode, I1, I2, J1, J2)

 gl:mapGrid() and gl:evalMesh() are used in
tandem to efficiently generate and evaluate a series of evenly-spaced map domain
values. gl:evalMesh() steps through the integer domain of a
one- or two-dimensional grid, whose range is the domain of the evaluation maps
specified by glMap1 and glMap2. Mode determines whether the resulting
vertices are connected as points, lines, or filled polygons.

 evalPoint1(I)

 Equivalent to evalPoint2/2.

 evalPoint2(I, J)

 gl:mapGrid() and gl:evalMesh() are used in
tandem to efficiently generate and evaluate a series of evenly spaced map domain
values. gl:evalPoint() can be used to evaluate a single grid
point in the same gridspace that is traversed by
gl:evalMesh(). Calling gl:evalPoint1/1 is
equivalent to calling glEvalCoord1(i.ð u+u 1); where ð u=(u 2-u 1)/n

 feedbackBuffer(Size, Type, Buffer)

 The gl:feedbackBuffer/3 function controls feedback.
Feedback, like selection, is a GL mode. The mode is selected by calling
gl:renderMode/1 with ?GL_FEEDBACK. When the GL is in
feedback mode, no pixels are produced by rasterization. Instead, information
about primitives that would have been rasterized is fed back to the application
using the GL.

 fenceSync(Condition, Flags)

 gl:fenceSync/2 creates a new fence sync object, inserts a
fence command into the GL command stream and associates it with that sync
object, and returns a non-zero name corresponding to the sync object.

 finish()

 gl:finish/0 does not return until the effects of all previously
called GL commands are complete. Such effects include all changes to GL state,
all changes to connection state, and all changes to the frame buffer contents.

 flush()

 Different GL implementations buffer commands in several different locations,
including network buffers and the graphics accelerator itself.
gl:flush/0 empties all of these buffers, causing all issued
commands to be executed as quickly as they are accepted by the actual rendering
engine. Though this execution may not be completed in any particular time
period, it does complete in finite time.

 flushMappedBufferRange(Target, Offset, Length)

 Equivalent to flushMappedNamedBufferRange/3.

 flushMappedNamedBufferRange(Buffer, Offset, Length)

 gl:flushMappedBufferRange/3 indicates that
modifications have been made to a range of a mapped buffer object. The buffer
object must previously have been mapped with the ?GL_MAP_FLUSH_EXPLICIT_BIT
flag.

 fogCoordd(Coord)

 Equivalent to fogCoordfv/1.

 fogCoorddv/1

 Equivalent to fogCoordfv/1.

 fogCoordf(Coord)

 Equivalent to fogCoordfv/1.

 fogCoordfv/1

 gl:fogCoord() specifies the fog coordinate that is associated
with each vertex and the current raster position. The value specified is
interpolated and used in computing the fog color (see gl:fog()).

 fogCoordPointer(Type, Stride, Pointer)

 gl:fogCoordPointer/3 specifies the location and data
format of an array of fog coordinates to use when rendering. Type specifies
the data type of each fog coordinate, and Stride specifies the byte stride
from one fog coordinate to the next, allowing vertices and attributes to be
packed into a single array or stored in separate arrays.

 fogf(Pname, Param)

 Equivalent to fogiv/2.

 fogfv(Pname, Params)

 Equivalent to fogiv/2.

 fogi(Pname, Param)

 Equivalent to fogiv/2.

 fogiv(Pname, Params)

 Fog is initially disabled. While enabled, fog affects rasterized geometry,
bitmaps, and pixel blocks, but not buffer clear operations. To enable and
disable fog, call gl:enable/1 and gl:disable/1
with argument ?GL_FOG.

 framebufferParameteri(Target, Pname, Param)

 gl:framebufferParameteri/3 and
glNamedFramebufferParameteri modify the value of the parameter named Pname
in the specified framebuffer object. There are no modifiable parameters of the
default draw and read framebuffer, so they are not valid targets of these
commands.

 framebufferRenderbuffer(Target, Attachment, Renderbuffertarget, Renderbuffer)

 gl:framebufferRenderbuffer/4 and
glNamedFramebufferRenderbuffer attaches a renderbuffer as one of the logical
buffers of the specified framebuffer object. Renderbuffers cannot be attached to
the default draw and read framebuffer, so they are not valid targets of these
commands.

 framebufferTexture1D(Target, Attachment, Textarget, Texture, Level)

 Equivalent to framebufferTextureLayer/5.

 framebufferTexture2D(Target, Attachment, Textarget, Texture, Level)

 Equivalent to framebufferTextureLayer/5.

 framebufferTexture3D(Target, Attachment, Textarget, Texture, Level, Zoffset)

 Equivalent to framebufferTextureLayer/5.

 framebufferTexture(Target, Attachment, Texture, Level)

 Equivalent to framebufferTextureLayer/5.

 framebufferTextureFaceARB(Target, Attachment, Texture, Level, Face)

 Equivalent to framebufferTextureLayer/5.

 framebufferTextureLayer(Target, Attachment, Texture, Level, Layer)

 These commands attach a selected mipmap level or image of a texture object as
one of the logical buffers of the specified framebuffer object. Textures cannot
be attached to the default draw and read framebuffer, so they are not valid
targets of these commands.

 frontFace(Mode)

 In a scene composed entirely of opaque closed surfaces, back-facing polygons are
never visible. Eliminating these invisible polygons has the obvious benefit of
speeding up the rendering of the image. To enable and disable elimination of
back-facing polygons, call gl:enable/1 and
gl:disable/1 with argument ?GL_CULL_FACE.

 frustum(Left, Right, Bottom, Top, Near_val, Far_val)

 gl:frustum/6 describes a perspective matrix that produces a
perspective projection. The current matrix (see
gl:matrixMode/1) is multiplied by this matrix and the result
replaces the current matrix, as if gl:multMatrix() were
called with the following matrix as its argument

 genBuffers(N)

 gl:genBuffers/1 returns N buffer object names in
Buffers. There is no guarantee that the names form a contiguous set of
integers; however, it is guaranteed that none of the returned names was in use
immediately before the call to gl:genBuffers/1.

 generateMipmap(Target)

 Equivalent to generateTextureMipmap/1.

 generateTextureMipmap(Texture)

 gl:generateMipmap/1 and
gl:generateTextureMipmap/1 generates mipmaps for the
specified texture object. For gl:generateMipmap/1, the
texture object that is bound to Target. For
gl:generateTextureMipmap/1, Texture is the name of the
texture object.

 genFramebuffers(N)

 gl:genFramebuffers/1 returns N framebuffer object
names in Ids. There is no guarantee that the names form a contiguous set of
integers; however, it is guaranteed that none of the returned names was in use
immediately before the call to gl:genFramebuffers/1.

 genLists(Range)

 gl:genLists/1 has one argument, Range. It returns an integer
n such that Range contiguous empty display lists, named n, n+1, ...,
n+range-1, are created. If Range is 0, if there is no group of Range
contiguous names available, or if any error is generated, no display lists are
generated, and 0 is returned.

 genProgramPipelines(N)

 gl:genProgramPipelines/1 returns N previously
unused program pipeline object names in Pipelines. These names are marked as
used, for the purposes of gl:genProgramPipelines/1
only, but they acquire program pipeline state only when they are first bound.

 genQueries(N)

 gl:genQueries/1 returns N query object names in Ids.
There is no guarantee that the names form a contiguous set of integers; however,
it is guaranteed that none of the returned names was in use immediately before
the call to gl:genQueries/1.

 genRenderbuffers(N)

 gl:genRenderbuffers/1 returns N renderbuffer object
names in Renderbuffers. There is no guarantee that the names form a contiguous
set of integers; however, it is guaranteed that none of the returned names was
in use immediately before the call to
gl:genRenderbuffers/1.

 genSamplers(Count)

 gl:genSamplers/1 returns N sampler object names in
Samplers. There is no guarantee that the names form a contiguous set of
integers; however, it is guaranteed that none of the returned names was in use
immediately before the call to gl:genSamplers/1.

 genTextures(N)

 gl:genTextures/1 returns N texture names in Textures.
There is no guarantee that the names form a contiguous set of integers; however,
it is guaranteed that none of the returned names was in use immediately before
the call to gl:genTextures/1.

 genTransformFeedbacks(N)

 gl:genTransformFeedbacks/1 returns N previously
unused transform feedback object names in Ids. These names are marked as used,
for the purposes of gl:genTransformFeedbacks/1
only, but they acquire transform feedback state only when they are first bound.

 genVertexArrays(N)

 gl:genVertexArrays/1 returns N vertex array object
names in Arrays. There is no guarantee that the names form a contiguous set of
integers; however, it is guaranteed that none of the returned names was in use
immediately before the call to gl:genVertexArrays/1.

 getActiveAttrib(Program, Index, BufSize)

 gl:getActiveAttrib/3 returns information about an
active attribute variable in the program object specified by Program. The
number of active attributes can be obtained by calling
gl:getProgram() with the value ?GL_ACTIVE_ATTRIBUTES. A
value of 0 for Index selects the first active attribute variable. Permissible
values for Index range from zero to the number of active attribute variables
minus one.

 getActiveSubroutineName(Program, Shadertype, Index, Bufsize)

 gl:getActiveSubroutineName/4 queries the name
of an active shader subroutine uniform from the program object given in
Program. Index specifies the index of the shader subroutine uniform within
the shader stage given by Stage, and must between zero and the value of
?GL_ACTIVE_SUBROUTINES minus one for the shader stage.

 getActiveSubroutineUniformName(Program, Shadertype, Index, Bufsize)

 gl:getActiveSubroutineUniformName/4
retrieves the name of an active shader subroutine uniform. Program contains
the name of the program containing the uniform. Shadertype specifies the stage
for which the uniform location, given by Index, is valid. Index must be
between zero and the value of ?GL_ACTIVE_SUBROUTINE_UNIFORMS minus one for the
shader stage.

 getActiveUniform(Program, Index, BufSize)

 gl:getActiveUniform/3 returns information about an
active uniform variable in the program object specified by Program. The number
of active uniform variables can be obtained by calling
gl:getProgram() with the value ?GL_ACTIVE_UNIFORMS. A
value of 0 for Index selects the first active uniform variable. Permissible
values for Index range from zero to the number of active uniform variables
minus one.

 getActiveUniformBlockiv(Program, UniformBlockIndex, Pname, Params)

 gl:getActiveUniformBlockiv/4 retrieves
information about an active uniform block within Program.

 getActiveUniformBlockName(Program, UniformBlockIndex, BufSize)

 gl:getActiveUniformBlockName/3 retrieves the
name of the active uniform block at UniformBlockIndex within Program.

 getActiveUniformName(Program, UniformIndex, BufSize)

 gl:getActiveUniformName/3 returns the name of the
active uniform at UniformIndex within Program. If UniformName is not NULL,
up to BufSize characters (including a nul-terminator) will be written into the
array whose address is specified by UniformName. If Length is not NULL, the
number of characters that were (or would have been) written into UniformName
(not including the nul-terminator) will be placed in the variable whose address
is specified in Length. If Length is NULL, no length is returned. The length
of the longest uniform name in Program is given by the value of
?GL_ACTIVE_UNIFORM_MAX_LENGTH, which can be queried with
gl:getProgram().

 getActiveUniformsiv(Program, UniformIndices, Pname)

 gl:getActiveUniformsiv/3 queries the value of the
parameter named Pname for each of the uniforms within Program whose indices
are specified in the array of UniformCount unsigned integers UniformIndices.
Upon success, the value of the parameter for each uniform is written into the
corresponding entry in the array whose address is given in Params. If an error
is generated, nothing is written into Params.

 getAttachedShaders(Program, MaxCount)

 gl:getAttachedShaders/2 returns the names of the
shader objects attached to Program. The names of shader objects that are
attached to Program will be returned in Shaders. The actual number of shader
names written into Shaders is returned in Count. If no shader objects are
attached to Program, Count is set to 0. The maximum number of shader names
that may be returned in Shaders is specified by MaxCount.

 getAttribLocation(Program, Name)

 gl:getAttribLocation/2 queries the previously linked
program object specified by Program for the attribute variable specified by
Name and returns the index of the generic vertex attribute that is bound to
that attribute variable. If Name is a matrix attribute variable, the index of
the first column of the matrix is returned. If the named attribute variable is
not an active attribute in the specified program object or if Name starts with
the reserved prefix "gl_", a value of -1 is returned.

 getBooleani_v(Target, Index)

 Equivalent to getIntegerv/1.

 getBooleanv(Pname)

 Equivalent to getIntegerv/1.

 getBufferParameteri64v(Target, Pname)

 Equivalent to getBufferParameterivARB/2.

 getBufferParameteriv(Target, Pname)

 gl:getBufferParameteriv/2 returns in Data a
selected parameter of the buffer object specified by Target.

 getBufferParameterivARB(Target, Pname)

 These functions return in Data a selected parameter of the specified buffer
object.

 getBufferSubData(Target, Offset, Size, Data)

 gl:getBufferSubData/4 and glGetNamedBufferSubData
return some or all of the data contents of the data store of the specified
buffer object. Data starting at byte offset Offset and extending for Size
bytes is copied from the buffer object's data store to the memory pointed to by
Data. An error is thrown if the buffer object is currently mapped, or if
Offset and Size together define a range beyond the bounds of the buffer
object's data store.

 getClipPlane(Plane)

 gl:getClipPlane/1 returns in Equation the four
coefficients of the plane equation for Plane.

 getColorTable(Target, Format, Type, Table)

 gl:getColorTable/4 returns in Table the contents of the
color table specified by Target. No pixel transfer operations are performed,
but pixel storage modes that are applicable to
gl:readPixels/7 are performed.

 getColorTableParameterfv(Target, Pname)

 Equivalent to getColorTableParameteriv/2.

 getColorTableParameteriv(Target, Pname)

 Returns parameters specific to color table Target.

 getCompressedTexImage(Target, Lod, Img)

 gl:getCompressedTexImage/3 and
glGetnCompressedTexImage return the compressed texture image associated with
Target and Lod into Pixels. glGetCompressedTextureImage serves the same
purpose, but instead of taking a texture target, it takes the ID of the texture
object. Pixels should be an array of BufSize bytes for
glGetnCompresedTexImage and glGetCompressedTextureImage functions, and of
?GL_TEXTURE_COMPRESSED_IMAGE_SIZE bytes in case of
gl:getCompressedTexImage/3. If the actual data
takes less space than BufSize, the remaining bytes will not be touched.
Target specifies the texture target, to which the texture the data the
function should extract the data from is bound to. Lod specifies the
level-of-detail number of the desired image.

 getConvolutionFilter(Target, Format, Type, Image)

 gl:getConvolutionFilter/4 returns the current 1D
or 2D convolution filter kernel as an image. The one- or two-dimensional image
is placed in Image according to the specifications in Format and Type. No
pixel transfer operations are performed on this image, but the relevant pixel
storage modes are applied.

 getConvolutionParameterfv(Target, Pname)

 Equivalent to getConvolutionParameteriv/2.

 getConvolutionParameteriv(Target, Pname)

 gl:getConvolutionParameter() retrieves
convolution parameters. Target determines which convolution filter is queried.
Pname determines which parameter is returned

 getDebugMessageLog(Count, BufSize)

 gl:getDebugMessageLog/2 retrieves messages from the
debug message log. A maximum of Count messages are retrieved from the log. If
Sources is not NULL then the source of each message is written into up to
Count elements of the array. If Types is not NULL then the type of each
message is written into up to Count elements of the array. If Id is not NULL
then the identifier of each message is written into up to Count elements of
the array. If Severities is not NULL then the severity of each message is
written into up to Count elements of the array. If Lengths is not NULL then
the length of each message is written into up to Count elements of the array.

 getDoublei_v(Target, Index)

 Equivalent to getIntegerv/1.

 getDoublev(Pname)

 Equivalent to getIntegerv/1.

 getError()

 gl:getError/0 returns the value of the error flag. Each
detectable error is assigned a numeric code and symbolic name. When an error
occurs, the error flag is set to the appropriate error code value. No other
errors are recorded until gl:getError/0 is called, the error
code is returned, and the flag is reset to ?GL_NO_ERROR. If a call to
gl:getError/0 returns ?GL_NO_ERROR, there has been no
detectable error since the last call to gl:getError/0, or
since the GL was initialized.

 getFloati_v(Target, Index)

 Equivalent to getIntegerv/1.

 getFloatv(Pname)

 Equivalent to getIntegerv/1.

 getFragDataIndex(Program, Name)

 gl:getFragDataIndex/2 returns the index of the
fragment color to which the variable Name was bound when the program object
Program was last linked. If Name is not a varying out variable of Program,
or if an error occurs, -1 will be returned.

 getFragDataLocation(Program, Name)

 gl:getFragDataLocation/2 retrieves the assigned
color number binding for the user-defined varying out variable Name for
program Program. Program must have previously been linked. Name must be a
null-terminated string. If Name is not the name of an active user-defined
varying out fragment shader variable within Program, -1 will be returned.

 getFramebufferAttachmentParameteriv(Target, Attachment, Pname)

 gl:getFramebufferAttachmentParameteriv/3
and glGetNamedFramebufferAttachmentParameteriv return parameters of
attachments of a specified framebuffer object.

 getFramebufferParameteriv(Target, Pname)

 gl:getFramebufferParameteriv/2 and
glGetNamedFramebufferParameteriv query parameters of a specified framebuffer
object.

 getGraphicsResetStatus()

 Certain events can result in a reset of the GL context. Such a reset causes all
context state to be lost and requires the application to recreate all objects in
the affected context.

 getHistogram(Target, Reset, Format, Type, Values)

 gl:getHistogram/5 returns the current histogram table as a
one-dimensional image with the same width as the histogram. No pixel transfer
operations are performed on this image, but pixel storage modes that are
applicable to 1D images are honored.

 getHistogramParameterfv(Target, Pname)

 Equivalent to getHistogramParameteriv/2.

 getHistogramParameteriv(Target, Pname)

 gl:getHistogramParameter() is used to query
parameter values for the current histogram or for a proxy. The histogram state
information may be queried by calling
gl:getHistogramParameter() with a Target of
?GL_HISTOGRAM (to obtain information for the current histogram table) or
?GL_PROXY_HISTOGRAM (to obtain information from the most recent proxy request)
and one of the following values for the Pname argument

 getInteger64i_v(Target, Index)

 Equivalent to getIntegerv/1.

 getInteger64v(Pname)

 Equivalent to getIntegerv/1.

 getIntegeri_v(Target, Index)

 Equivalent to getIntegerv/1.

 getIntegerv(Pname)

 These commands return values for simple state variables in GL. Pname is a
symbolic constant indicating the state variable to be returned, and Data is a
pointer to an array of the indicated type in which to place the returned data.

 getInternalformati64v(Target, Internalformat, Pname, BufSize)

 Equivalent to getInternalformativ/4.

 getInternalformativ(Target, Internalformat, Pname, BufSize)

 No documentation available.

 getLightfv(Light, Pname)

 Equivalent to getLightiv/2.

 getLightiv(Light, Pname)

 gl:getLight() returns in Params the value or values of a
light source parameter. Light names the light and is a symbolic name of the
form ?GL_LIGHT i where i ranges from 0 to the value of ?GL_MAX_LIGHTS - 1.
?GL_MAX_LIGHTS is an implementation dependent constant that is greater than or
equal to eight. Pname specifies one of ten light source parameters, again by
symbolic name.

 getMapdv(Target, Query, V)

 Equivalent to getMapiv/3.

 getMapfv(Target, Query, V)

 Equivalent to getMapiv/3.

 getMapiv(Target, Query, V)

 glMap1 and glMap2 define evaluators. gl:getMap() returns
evaluator parameters. Target chooses a map, Query selects a specific
parameter, and V points to storage where the values will be returned.

 getMaterialfv(Face, Pname)

 Equivalent to getMaterialiv/2.

 getMaterialiv(Face, Pname)

 gl:getMaterial() returns in Params the value or values
of parameter Pname of material Face. Six parameters are defined

 getMinmax(Target, Reset, Format, Types, Values)

 gl:getMinmax/5 returns the accumulated minimum and maximum
pixel values (computed on a per-component basis) in a one-dimensional image of
width 2. The first set of return values are the minima, and the second set of
return values are the maxima. The format of the return values is determined by
Format, and their type is determined by Types.

 getMinmaxParameterfv(Target, Pname)

 Equivalent to getMinmaxParameteriv/2.

 getMinmaxParameteriv(Target, Pname)

 gl:getMinmaxParameter() retrieves parameters for
the current minmax table by setting Pname to one of the following values

 getMultisamplefv(Pname, Index)

 gl:getMultisamplefv/2 queries the location of a given
sample. Pname specifies the sample parameter to retrieve and must be
?GL_SAMPLE_POSITION. Index corresponds to the sample for which the location
should be returned. The sample location is returned as two floating-point values
in Val[0] and Val[1], each between 0 and 1, corresponding to the X and Y
locations respectively in the GL pixel space of that sample. (0.5, 0.5) this
corresponds to the pixel center. Index must be between zero and the value of
?GL_SAMPLES minus one.

 getPixelMapfv(Map, Values)

 Equivalent to getPixelMapusv/2.

 getPixelMapuiv(Map, Values)

 Equivalent to getPixelMapusv/2.

 getPixelMapusv(Map, Values)

 See the gl:pixelMap() reference page for a description of
the acceptable values for the Map parameter.
gl:getPixelMap() returns in Data the contents of the
pixel map specified in Map. Pixel maps are used during the execution of
gl:readPixels/7, gl:drawPixels/5,
gl:copyPixels/5, gl:texImage1D/8,
gl:texImage2D/9, gl:texImage3D/10,
gl:texSubImage1D/7,
gl:texSubImage2D/9,
gl:texSubImage3D/11,
gl:copyTexImage1D/7,
gl:copyTexImage2D/8,
gl:copyTexSubImage1D/6,
gl:copyTexSubImage2D/8, and
gl:copyTexSubImage3D/9. to map color indices, stencil
indices, color components, and depth components to other values.

 getPolygonStipple()

 gl:getPolygonStipple/0 returns to Pattern a 32×32
polygon stipple pattern. The pattern is packed into memory as if
gl:readPixels/7 with both height and width of 32, type
of ?GL_BITMAP, and format of ?GL_COLOR_INDEX were called, and the stipple
pattern were stored in an internal 32×32 color index buffer. Unlike
gl:readPixels/7, however, pixel transfer operations (shift,
offset, pixel map) are not applied to the returned stipple image.

 getProgramBinary(Program, BufSize)

 gl:getProgramBinary/2 returns a binary representation
of the compiled and linked executable for Program into the array of bytes
whose address is specified in Binary. The maximum number of bytes that may be
written into Binary is specified by BufSize. If the program binary is
greater in size than BufSize bytes, then an error is generated, otherwise the
actual number of bytes written into Binary is returned in the variable whose
address is given by Length. If Length is ?NULL, then no length is
returned.

 getProgramInfoLog(Program, BufSize)

 gl:getProgramInfoLog/2 returns the information log
for the specified program object. The information log for a program object is
modified when the program object is linked or validated. The string that is
returned will be null terminated.

 getProgramInterfaceiv(Program, ProgramInterface, Pname)

 gl:getProgramInterfaceiv/3 queries the property
of the interface identifed by ProgramInterface in Program, the property name
of which is given by Pname.

 getProgramiv(Program, Pname)

 gl:getProgram() returns in Params the value of a
parameter for a specific program object. The following parameters are defined

 getProgramPipelineInfoLog(Pipeline, BufSize)

 gl:getProgramPipelineInfoLog/2 retrieves the
info log for the program pipeline object Pipeline. The info log, including its
null terminator, is written into the array of characters whose address is given
by InfoLog. The maximum number of characters that may be written into
InfoLog is given by BufSize, and the actual number of characters written
into InfoLog is returned in the integer whose address is given by Length. If
Length is ?NULL, no length is returned.

 getProgramPipelineiv(Pipeline, Pname)

 gl:getProgramPipelineiv/2 retrieves the value of a
property of the program pipeline object Pipeline. Pname specifies the name
of the parameter whose value to retrieve. The value of the parameter is written
to the variable whose address is given by Params.

 getProgramResourceIndex(Program, ProgramInterface, Name)

 gl:getProgramResourceIndex/3 returns the
unsigned integer index assigned to a resource named Name in the interface type
ProgramInterface of program object Program.

 getProgramResourceLocation(Program, ProgramInterface, Name)

 gl:getProgramResourceLocation/3 returns the
location assigned to the variable named Name in interface ProgramInterface
of program object Program. Program must be the name of a program that has
been linked successfully. ProgramInterface must be one of ?GL_UNIFORM,
?GL_PROGRAM_INPUT, ?GL_PROGRAM_OUTPUT, ?GL_VERTEX_SUBROUTINE_UNIFORM,
?GL_TESS_CONTROL_SUBROUTINE_UNIFORM, ?GL_TESS_EVALUATION_SUBROUTINE_UNIFORM,
?GL_GEOMETRY_SUBROUTINE_UNIFORM, ?GL_FRAGMENT_SUBROUTINE_UNIFORM,
?GL_COMPUTE_SUBROUTINE_UNIFORM, or ?GL_TRANSFORM_FEEDBACK_BUFFER.

 getProgramResourceLocationIndex(Program, ProgramInterface, Name)

 gl:getProgramResourceLocationIndex/3
returns the fragment color index assigned to the variable named Name in
interface ProgramInterface of program object Program. Program must be the
name of a program that has been linked successfully. ProgramInterface must be
?GL_PROGRAM_OUTPUT.

 getProgramResourceName(Program, ProgramInterface, Index, BufSize)

 gl:getProgramResourceName/4 retrieves the name
string assigned to the single active resource with an index of Index in the
interface ProgramInterface of program object Program. Index must be less
than the number of entries in the active resource list for ProgramInterface.

 getProgramStageiv(Program, Shadertype, Pname)

 gl:getProgramStage() queries a parameter of a shader
stage attached to a program object. Program contains the name of the program
to which the shader is attached. Shadertype specifies the stage from which to
query the parameter. Pname specifies which parameter should be queried. The
value or values of the parameter to be queried is returned in the variable whose
address is given in Values.

 getQueryBufferObjecti64v(Id, Buffer, Pname, Offset)

 Equivalent to getQueryObjectuiv/2.

 getQueryBufferObjectiv(Id, Buffer, Pname, Offset)

 Equivalent to getQueryObjectuiv/2.

 getQueryBufferObjectui64v(Id, Buffer, Pname, Offset)

 Equivalent to getQueryObjectuiv/2.

 getQueryBufferObjectuiv(Id, Buffer, Pname, Offset)

 Equivalent to getQueryObjectuiv/2.

 getQueryIndexediv(Target, Index, Pname)

 gl:getQueryIndexediv/3 returns in Params a selected
parameter of the indexed query object target specified by Target and Index.
Index specifies the index of the query object target and must be between zero
and a target-specific maxiumum.

 getQueryiv(Target, Pname)

 gl:getQueryiv/2 returns in Params a selected parameter of
the query object target specified by Target.

 getQueryObjecti64v(Id, Pname)

 Equivalent to getQueryObjectuiv/2.

 getQueryObjectiv(Id, Pname)

 Equivalent to getQueryObjectuiv/2.

 getQueryObjectui64v(Id, Pname)

 Equivalent to getQueryObjectuiv/2.

 getQueryObjectuiv(Id, Pname)

 These commands return a selected parameter of the query object specified by
Id. gl:getQueryObject() returns in Params a
selected parameter of the query object specified by Id.
gl:getQueryBufferObject() returns in Buffer a
selected parameter of the query object specified by Id, by writing it to
Buffer's data store at the byte offset specified by Offset.

 getRenderbufferParameteriv(Target, Pname)

 gl:getRenderbufferParameteriv/2 and
glGetNamedRenderbufferParameteriv query parameters of a specified renderbuffer
object.

 getSamplerParameterfv(Sampler, Pname)

 Equivalent to getSamplerParameteriv/2.

 getSamplerParameterIiv(Sampler, Pname)

 Equivalent to getSamplerParameteriv/2.

 getSamplerParameterIuiv(Sampler, Pname)

 Equivalent to getSamplerParameteriv/2.

 getSamplerParameteriv(Sampler, Pname)

 gl:getSamplerParameter() returns in Params the
value or values of the sampler parameter specified as Pname. Sampler defines
the target sampler, and must be the name of an existing sampler object, returned
from a previous call to gl:genSamplers/1. Pname accepts
the same symbols as gl:samplerParameter(), with the
same interpretations

 getShaderInfoLog(Shader, BufSize)

 gl:getShaderInfoLog/2 returns the information log for
the specified shader object. The information log for a shader object is modified
when the shader is compiled. The string that is returned will be null
terminated.

 getShaderiv(Shader, Pname)

 gl:getShader() returns in Params the value of a parameter
for a specific shader object. The following parameters are defined

 getShaderPrecisionFormat(Shadertype, Precisiontype)

 gl:getShaderPrecisionFormat/2 retrieves the
numeric range and precision for the implementation's representation of
quantities in different numeric formats in specified shader type. ShaderType
specifies the type of shader for which the numeric precision and range is to be
retrieved and must be one of ?GL_VERTEX_SHADER or ?GL_FRAGMENT_SHADER.
PrecisionType specifies the numeric format to query and must be one of
?GL_LOW_FLOAT, ?GL_MEDIUM_FLOAT``?GL_HIGH_FLOAT, ?GL_LOW_INT,
?GL_MEDIUM_INT, or ?GL_HIGH_INT.

 getShaderSource(Shader, BufSize)

 gl:getShaderSource/2 returns the concatenation of the
source code strings from the shader object specified by Shader. The source
code strings for a shader object are the result of a previous call to
gl:shaderSource/2. The string returned by the function
will be null terminated.

 getString(Name)

 Equivalent to getStringi/2.

 getStringi(Name, Index)

 gl:getString/1 returns a pointer to a static string
describing some aspect of the current GL connection. Name can be one of the
following

 getSubroutineIndex(Program, Shadertype, Name)

 gl:getSubroutineIndex/3 returns the index of a
subroutine uniform within a shader stage attached to a program object. Program
contains the name of the program to which the shader is attached. Shadertype
specifies the stage from which to query shader subroutine index. Name contains
the null-terminated name of the subroutine uniform whose name to query.

 getSubroutineUniformLocation(Program, Shadertype, Name)

 gl:getSubroutineUniformLocation/3 returns
the location of the subroutine uniform variable Name in the shader stage of
type Shadertype attached to Program, with behavior otherwise identical to
gl:getUniformLocation/2.

 getSynciv(Sync, Pname, BufSize)

 gl:getSynciv/3 retrieves properties of a sync object. Sync
specifies the name of the sync object whose properties to retrieve.

 getTexEnvfv(Target, Pname)

 Equivalent to getTexEnviv/2.

 getTexEnviv(Target, Pname)

 gl:getTexEnv() returns in Params selected values of a
texture environment that was specified with gl:texEnv().
Target specifies a texture environment.

 getTexGendv(Coord, Pname)

 Equivalent to getTexGeniv/2.

 getTexGenfv(Coord, Pname)

 Equivalent to getTexGeniv/2.

 getTexGeniv(Coord, Pname)

 gl:getTexGen() returns in Params selected parameters of a
texture coordinate generation function that was specified using
gl:texGen(). Coord names one of the (s, t, r, q)
texture coordinates, using the symbolic constant ?GL_S, ?GL_T, ?GL_R, or
?GL_Q.

 getTexImage(Target, Level, Format, Type, Pixels)

 gl:getTexImage/5, glGetnTexImage and glGetTextureImage
functions return a texture image into Pixels. For
gl:getTexImage/5 and glGetnTexImage, Target specifies
whether the desired texture image is one specified by
gl:texImage1D/8 (?GL_TEXTURE_1D),
gl:texImage2D/9 (?GL_TEXTURE_1D_ARRAY,
?GL_TEXTURE_RECTANGLE, ?GL_TEXTURE_2D or any of ?GL_TEXTURE_CUBE_MAP_*),
or gl:texImage3D/10 (?GL_TEXTURE_2D_ARRAY,
?GL_TEXTURE_3D, ?GL_TEXTURE_CUBE_MAP_ARRAY). For glGetTextureImage,
Texture specifies the texture object name. In addition to types of textures
accepted by gl:getTexImage/5 and glGetnTexImage, the
function also accepts cube map texture objects (with effective target
?GL_TEXTURE_CUBE_MAP). Level specifies the level-of-detail number of the
desired image. Format and Type specify the format and type of the desired
image array. See the reference page for gl:texImage1D/8 for
a description of the acceptable values for the Format and Type parameters,
respectively. For glGetnTexImage and glGetTextureImage functions, bufSize tells
the size of the buffer to receive the retrieved pixel data. glGetnTexImage and
glGetTextureImage do not write more than BufSize bytes into Pixels.

 getTexLevelParameterfv(Target, Level, Pname)

 Equivalent to getTexLevelParameteriv/3.

 getTexLevelParameteriv(Target, Level, Pname)

 gl:getTexLevelParameterfv/3,
gl:getTexLevelParameteriv/3,
glGetTextureLevelParameterfv and glGetTextureLevelParameteriv return in
Params texture parameter values for a specific level-of-detail value,
specified as Level. For the first two functions, Target defines the target
texture, either ?GL_TEXTURE_1D, ?GL_TEXTURE_2D, ?GL_TEXTURE_3D,
?GL_PROXY_TEXTURE_1D, ?GL_PROXY_TEXTURE_2D, ?GL_PROXY_TEXTURE_3D,
?GL_TEXTURE_CUBE_MAP_POSITIVE_X, ?GL_TEXTURE_CUBE_MAP_NEGATIVE_X,
?GL_TEXTURE_CUBE_MAP_POSITIVE_Y, ?GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
?GL_TEXTURE_CUBE_MAP_POSITIVE_Z, ?GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, or
?GL_PROXY_TEXTURE_CUBE_MAP. The remaining two take a Texture argument which
specifies the name of the texture object.

 getTexParameterfv(Target, Pname)

 Equivalent to getTexParameteriv/2.

 getTexParameterIiv(Target, Pname)

 Equivalent to getTexParameteriv/2.

 getTexParameterIuiv(Target, Pname)

 Equivalent to getTexParameteriv/2.

 getTexParameteriv(Target, Pname)

 gl:getTexParameter() and glGetTextureParameter
return in Params the value or values of the texture parameter specified as
Pname. Target defines the target texture. ?GL_TEXTURE_1D,
?GL_TEXTURE_2D, ?GL_TEXTURE_3D, ?GL_TEXTURE_1D_ARRAY,
?GL_TEXTURE_2D_ARRAY, ?GL_TEXTURE_RECTANGLE, ?GL_TEXTURE_CUBE_MAP,
?GL_TEXTURE_CUBE_MAP_ARRAY, ?GL_TEXTURE_2D_MULTISAMPLE, or
?GL_TEXTURE_2D_MULTISAMPLE_ARRAY specify one-, two-, or three-dimensional,
one-dimensional array, two-dimensional array, rectangle, cube-mapped or
cube-mapped array, two-dimensional multisample, or two-dimensional multisample
array texturing, respectively. Pname accepts the same symbols as
gl:texParameter(), with the same interpretations

 getTransformFeedbackVarying(Program, Index, BufSize)

 Information about the set of varying variables in a linked program that will be
captured during transform feedback may be retrieved by calling
gl:getTransformFeedbackVarying/3.
gl:getTransformFeedbackVarying/3 provides
information about the varying variable selected by Index. An Index of 0
selects the first varying variable specified in the Varyings array passed to
gl:transformFeedbackVaryings/3, and an
Index of the value of ?GL_TRANSFORM_FEEDBACK_VARYINGS minus one selects the
last such variable.

 getUniformBlockIndex(Program, UniformBlockName)

 gl:getUniformBlockIndex/2 retrieves the index of a
uniform block within Program.

 getUniformdv(Program, Location)

 Equivalent to getUniformuiv/2.

 getUniformfv(Program, Location)

 Equivalent to getUniformuiv/2.

 getUniformIndices(Program, UniformNames)

 gl:getUniformIndices/2 retrieves the indices of a
number of uniforms within Program.

 getUniformiv(Program, Location)

 Equivalent to getUniformuiv/2.

 getUniformLocation(Program, Name)

 glGetUniformLocationreturns an integer that represents the location of a
specific uniform variable within a program object. Name must be a null
terminated string that contains no white space. Name must be an active uniform
variable name in Program that is not a structure, an array of structures, or a
subcomponent of a vector or a matrix. This function returns -1 if Name does
not correspond to an active uniform variable in Program, if Name starts with
the reserved prefix "gl_", or if Name is associated with an atomic counter or
a named uniform block.

 getUniformSubroutineuiv(Shadertype, Location)

 gl:getUniformSubroutine() retrieves the value
of the subroutine uniform at location Location for shader stage Shadertype
of the current program. Location must be less than the value of
?GL_ACTIVE_SUBROUTINE_UNIFORM_LOCATIONS for the shader currently in use at
shader stage Shadertype. The value of the subroutine uniform is returned in
Values.

 getUniformuiv(Program, Location)

 gl:getUniform() and glGetnUniform return in Params the
value(s) of the specified uniform variable. The type of the uniform variable
specified by Location determines the number of values returned. If the uniform
variable is defined in the shader as a boolean, int, or float, a single value
will be returned. If it is defined as a vec2, ivec2, or bvec2, two values will
be returned. If it is defined as a vec3, ivec3, or bvec3, three values will be
returned, and so on. To query values stored in uniform variables declared as
arrays, call gl:getUniform() for each element of the
array. To query values stored in uniform variables declared as structures, call
gl:getUniform() for each field in the structure. The
values for uniform variables declared as a matrix will be returned in column
major order.

 getVertexAttribdv(Index, Pname)

 Equivalent to getVertexAttribiv/2.

 getVertexAttribfv(Index, Pname)

 Equivalent to getVertexAttribiv/2.

 getVertexAttribIiv(Index, Pname)

 Equivalent to getVertexAttribiv/2.

 getVertexAttribIuiv(Index, Pname)

 Equivalent to getVertexAttribiv/2.

 getVertexAttribiv(Index, Pname)

 gl:getVertexAttrib() returns in Params the value of
a generic vertex attribute parameter. The generic vertex attribute to be queried
is specified by Index, and the parameter to be queried is specified by
Pname.

 getVertexAttribLdv(Index, Pname)

 Equivalent to getVertexAttribiv/2.

 hint(Target, Mode)

 Certain aspects of GL behavior, when there is room for interpretation, can be
controlled with hints. A hint is specified with two arguments. Target is a
symbolic constant indicating the behavior to be controlled, and Mode is
another symbolic constant indicating the desired behavior. The initial value for
each Target is ?GL_DONT_CARE. Mode can be one of the following

 histogram(Target, Width, Internalformat, Sink)

 When ?GL_HISTOGRAM is enabled, RGBA color components are converted to
histogram table indices by clamping to the range [0,1], multiplying by the
width of the histogram table, and rounding to the nearest integer. The table
entries selected by the RGBA indices are then incremented. (If the internal
format of the histogram table includes luminance, then the index derived from
the R color component determines the luminance table entry to be incremented.)
If a histogram table entry is incremented beyond its maximum value, then its
value becomes undefined. (This is not an error.)

 indexd(C)

 Equivalent to indexubv/1.

 indexdv/1

 Equivalent to indexubv/1.

 indexf(C)

 Equivalent to indexubv/1.

 indexfv/1

 Equivalent to indexubv/1.

 indexi(C)

 Equivalent to indexubv/1.

 indexiv/1

 Equivalent to indexubv/1.

 indexMask(Mask)

 gl:indexMask/1 controls the writing of individual bits in the
color index buffers. The least significant n bits of Mask, where n is the
number of bits in a color index buffer, specify a mask. Where a 1 (one) appears
in the mask, it's possible to write to the corresponding bit in the color index
buffer (or buffers). Where a 0 (zero) appears, the corresponding bit is
write-protected.

 indexPointer(Type, Stride, Ptr)

 gl:indexPointer/3 specifies the location and data format
of an array of color indexes to use when rendering. Type specifies the data
type of each color index and Stride specifies the byte stride from one color
index to the next, allowing vertices and attributes to be packed into a single
array or stored in separate arrays.

 indexs(C)

 Equivalent to indexubv/1.

 indexsv/1

 Equivalent to indexubv/1.

 indexub(C)

 Equivalent to indexubv/1.

 indexubv/1

 gl:index() updates the current (single-valued) color index. It
takes one argument, the new value for the current color index.

 initNames()

 The name stack is used during selection mode to allow sets of rendering commands
to be uniquely identified. It consists of an ordered set of unsigned integers.
gl:initNames/0 causes the name stack to be initialized to its
default empty state.

 interleavedArrays(Format, Stride, Pointer)

 gl:interleavedArrays/3 lets you specify and enable
individual color, normal, texture and vertex arrays whose elements are part of a
larger aggregate array element. For some implementations, this is more efficient
than specifying the arrays separately.

 invalidateBufferData(Buffer)

 gl:invalidateBufferData/1 invalidates all of the
content of the data store of a buffer object. After invalidation, the content of
the buffer's data store becomes undefined.

 invalidateBufferSubData(Buffer, Offset, Length)

 gl:invalidateBufferSubData/3 invalidates all or
part of the content of the data store of a buffer object. After invalidation,
the content of the specified range of the buffer's data store becomes undefined.
The start of the range is given by Offset and its size is given by Length,
both measured in basic machine units.

 invalidateFramebuffer(Target, Attachments)

 gl:invalidateFramebuffer/2 and
glInvalidateNamedFramebufferData invalidate the entire contents of a specified
set of attachments of a framebuffer.

 invalidateSubFramebuffer(Target, Attachments, X, Y, Width, Height)

 gl:invalidateSubFramebuffer/6 and
glInvalidateNamedFramebufferSubData invalidate the contents of a specified
region of a specified set of attachments of a framebuffer.

 invalidateTexImage(Texture, Level)

 gl:invalidateTexSubImage/8 invalidates all of a
texture image. Texture and Level indicated which texture image is being
invalidated. After this command, data in the texture image has undefined values.

 invalidateTexSubImage(Texture, Level, Xoffset, Yoffset, Zoffset, Width, Height, Depth)

 gl:invalidateTexSubImage/8 invalidates all or
part of a texture image. Texture and Level indicated which texture image is
being invalidated. After this command, data in that subregion have undefined
values. Xoffset, Yoffset, Zoffset, Width, Height, and Depth are
interpreted as they are in gl:texSubImage3D/11. For
texture targets that don't have certain dimensions, this command treats those
dimensions as having a size of 1. For example, to invalidate a portion of a two-
dimensional texture, the application would use Zoffset equal to zero and
Depth equal to one. Cube map textures are treated as an array of six slices in
the z-dimension, where a value of Zoffset is interpreted as specifying face
?GL_TEXTURE_CUBE_MAP_POSITIVE_X + Zoffset.

 isBuffer(Buffer)

 gl:isBuffer/1 returns ?GL_TRUE if Buffer is currently the
name of a buffer object. If Buffer is zero, or is a non-zero value that is not
currently the name of a buffer object, or if an error occurs,
gl:isBuffer/1 returns ?GL_FALSE.

 isEnabled(Cap)

 Equivalent to isEnabledi/2.

 isEnabledi(Target, Index)

 gl:isEnabled/1 returns ?GL_TRUE if Cap is an enabled
capability and returns ?GL_FALSE otherwise. Boolean states that are indexed
may be tested with gl:isEnabledi/2. For
gl:isEnabledi/2, Index specifies the index of the
capability to test. Index must be between zero and the count of indexed
capabilities for Cap. Initially all capabilities except ?GL_DITHER are
disabled; ?GL_DITHER is initially enabled.

 isFramebuffer(Framebuffer)

 gl:isFramebuffer/1 returns ?GL_TRUE if Framebuffer is
currently the name of a framebuffer object. If Framebuffer is zero, or if
?framebuffer is not the name of a framebuffer object, or if an error occurs,
gl:isFramebuffer/1 returns ?GL_FALSE. If Framebuffer
is a name returned by gl:genFramebuffers/1, by that has
not yet been bound through a call to
gl:bindFramebuffer/2, then the name is not a
framebuffer object and gl:isFramebuffer/1 returns
?GL_FALSE.

 isList(List)

 gl:isList/1 returns ?GL_TRUE if List is the name of a
display list and returns ?GL_FALSE if it is not, or if an error occurs.

 isProgram(Program)

 gl:isProgram/1 returns ?GL_TRUE if Program is the name of
a program object previously created with
gl:createProgram/0 and not yet deleted with
gl:deleteProgram/1. If Program is zero or a non-zero
value that is not the name of a program object, or if an error occurs,
gl:isProgram/1 returns ?GL_FALSE.

 isProgramPipeline(Pipeline)

 gl:isProgramPipeline/1 returns ?GL_TRUE if
Pipeline is currently the name of a program pipeline object. If Pipeline is
zero, or if ?pipeline is not the name of a program pipeline object, or if an
error occurs, gl:isProgramPipeline/1 returns
?GL_FALSE. If Pipeline is a name returned by
gl:genProgramPipelines/1, but that has not yet been
bound through a call to gl:bindProgramPipeline/1,
then the name is not a program pipeline object and
gl:isProgramPipeline/1 returns ?GL_FALSE.

 isQuery(Id)

 gl:isQuery/1 returns ?GL_TRUE if Id is currently the name
of a query object. If Id is zero, or is a non-zero value that is not currently
the name of a query object, or if an error occurs, gl:isQuery/1
returns ?GL_FALSE.

 isRenderbuffer(Renderbuffer)

 gl:isRenderbuffer/1 returns ?GL_TRUE if Renderbuffer
is currently the name of a renderbuffer object. If Renderbuffer is zero, or if
Renderbuffer is not the name of a renderbuffer object, or if an error occurs,
gl:isRenderbuffer/1 returns ?GL_FALSE. If
Renderbuffer is a name returned by
gl:genRenderbuffers/1, by that has not yet been bound
through a call to gl:bindRenderbuffer/2 or
gl:framebufferRenderbuffer/4, then the name is
not a renderbuffer object and gl:isRenderbuffer/1
returns ?GL_FALSE.

 isSampler(Sampler)

 gl:isSampler/1 returns ?GL_TRUE if Id is currently the
name of a sampler object. If Id is zero, or is a non-zero value that is not
currently the name of a sampler object, or if an error occurs,
gl:isSampler/1 returns ?GL_FALSE.

 isShader(Shader)

 gl:isShader/1 returns ?GL_TRUE if Shader is the name of a
shader object previously created with gl:createShader/1
and not yet deleted with gl:deleteShader/1. If Shader is
zero or a non-zero value that is not the name of a shader object, or if an error
occurs, glIsShaderreturns ?GL_FALSE.

 isSync(Sync)

 gl:isSync/1 returns ?GL_TRUE if Sync is currently the name
of a sync object. If Sync is not the name of a sync object, or if an error
occurs, gl:isSync/1 returns ?GL_FALSE. Note that zero is not
the name of a sync object.

 isTexture(Texture)

 gl:isTexture/1 returns ?GL_TRUE if Texture is currently
the name of a texture. If Texture is zero, or is a non-zero value that is not
currently the name of a texture, or if an error occurs,
gl:isTexture/1 returns ?GL_FALSE.

 isTransformFeedback(Id)

 gl:isTransformFeedback/1 returns ?GL_TRUE if Id
is currently the name of a transform feedback object. If Id is zero, or if
?id is not the name of a transform feedback object, or if an error occurs,
gl:isTransformFeedback/1 returns ?GL_FALSE. If
Id is a name returned by
gl:genTransformFeedbacks/1, but that has not yet
been bound through a call to
gl:bindTransformFeedback/2, then the name is not
a transform feedback object and
gl:isTransformFeedback/1 returns ?GL_FALSE.

 isVertexArray(Array)

 gl:isVertexArray/1 returns ?GL_TRUE if Array is
currently the name of a vertex array object. If Array is zero, or if Array
is not the name of a vertex array object, or if an error occurs,
gl:isVertexArray/1 returns ?GL_FALSE. If Array is a
name returned by gl:genVertexArrays/1, by that has not
yet been bound through a call to gl:bindVertexArray/1,
then the name is not a vertex array object and
gl:isVertexArray/1 returns ?GL_FALSE.

 lightf(Light, Pname, Param)

 Equivalent to lightiv/3.

 lightfv(Light, Pname, Params)

 Equivalent to lightiv/3.

 lighti(Light, Pname, Param)

 Equivalent to lightiv/3.

 lightiv(Light, Pname, Params)

 gl:light() sets the values of individual light source
parameters. Light names the light and is a symbolic name of the form
?GL_LIGHT i, where i ranges from 0 to the value of ?GL_MAX_LIGHTS - 1.
Pname specifies one of ten light source parameters, again by symbolic name.
Params is either a single value or a pointer to an array that contains the new
values.

 lightModelf(Pname, Param)

 Equivalent to lightModeliv/2.

 lightModelfv(Pname, Params)

 Equivalent to lightModeliv/2.

 lightModeli(Pname, Param)

 Equivalent to lightModeliv/2.

 lightModeliv(Pname, Params)

 gl:lightModel() sets the lighting model parameter. Pname
names a parameter and Params gives the new value. There are three lighting
model parameters

 lineStipple(Factor, Pattern)

 Line stippling masks out certain fragments produced by rasterization; those
fragments will not be drawn. The masking is achieved by using three parameters:
the 16-bit line stipple pattern Pattern, the repeat count Factor, and an
integer stipple counter s.

 lineWidth(Width)

 gl:lineWidth/1 specifies the rasterized width of both aliased
and antialiased lines. Using a line width other than 1 has different effects,
depending on whether line antialiasing is enabled. To enable and disable line
antialiasing, call gl:enable/1 and gl:disable/1
with argument ?GL_LINE_SMOOTH. Line antialiasing is initially disabled.

 linkProgram(Program)

 gl:linkProgram/1 links the program object specified by
Program. If any shader objects of type ?GL_VERTEX_SHADER are attached to
Program, they will be used to create an executable that will run on the
programmable vertex processor. If any shader objects of type
?GL_GEOMETRY_SHADER are attached to Program, they will be used to create an
executable that will run on the programmable geometry processor. If any shader
objects of type ?GL_FRAGMENT_SHADER are attached to Program, they will be
used to create an executable that will run on the programmable fragment
processor.

 listBase(Base)

 gl:callLists/1 specifies an array of offsets. Display-list
names are generated by adding Base to each offset. Names that reference valid
display lists are executed; the others are ignored.

 loadIdentity()

 gl:loadIdentity/0 replaces the current matrix with the
identity matrix. It is semantically equivalent to calling
gl:loadMatrix() with the identity matrix

 loadMatrixd(M)

 Equivalent to loadMatrixf/1.

 loadMatrixf(M)

 gl:loadMatrix() replaces the current matrix with the one
whose elements are specified by M. The current matrix is the projection
matrix, modelview matrix, or texture matrix, depending on the current matrix
mode (see gl:matrixMode/1).

 loadName(Name)

 The name stack is used during selection mode to allow sets of rendering commands
to be uniquely identified. It consists of an ordered set of unsigned integers
and is initially empty.

 loadTransposeMatrixd(M)

 Equivalent to loadTransposeMatrixf/1.

 loadTransposeMatrixf(M)

 gl:loadTransposeMatrix() replaces the current
matrix with the one whose elements are specified by M. The current matrix is
the projection matrix, modelview matrix, or texture matrix, depending on the
current matrix mode (see gl:matrixMode/1).

 logicOp(Opcode)

 gl:logicOp/1 specifies a logical operation that, when enabled,
is applied between the incoming RGBA color and the RGBA color at the
corresponding location in the frame buffer. To enable or disable the logical
operation, call gl:enable/1 and gl:disable/1
using the symbolic constant ?GL_COLOR_LOGIC_OP. The initial value is disabled.

 map1d(Target, U1, U2, Stride, Order, Points)

 Equivalent to map1f/6.

 map1f(Target, U1, U2, Stride, Order, Points)

 Evaluators provide a way to use polynomial or rational polynomial mapping to
produce vertices, normals, texture coordinates, and colors. The values produced
by an evaluator are sent to further stages of GL processing just as if they had
been presented using gl:vertex(),
gl:normal(), gl:texCoord(), and
gl:color() commands, except that the generated values do not
update the current normal, texture coordinates, or color.

 map2d(Target, U1, U2, Ustride, Uorder, V1, V2, Vstride, Vorder, Points)

 Equivalent to map2f/10.

 map2f(Target, U1, U2, Ustride, Uorder, V1, V2, Vstride, Vorder, Points)

 Evaluators provide a way to use polynomial or rational polynomial mapping to
produce vertices, normals, texture coordinates, and colors. The values produced
by an evaluator are sent on to further stages of GL processing just as if they
had been presented using gl:vertex(),
gl:normal(), gl:texCoord(), and
gl:color() commands, except that the generated values do not
update the current normal, texture coordinates, or color.

 mapGrid1d(Un, U1, U2)

 Equivalent to mapGrid2f/6.

 mapGrid1f(Un, U1, U2)

 Equivalent to mapGrid2f/6.

 mapGrid2d(Un, U1, U2, Vn, V1, V2)

 Equivalent to mapGrid2f/6.

 mapGrid2f(Un, U1, U2, Vn, V1, V2)

 gl:mapGrid() and gl:evalMesh() are used
together to efficiently generate and evaluate a series of evenly-spaced map
domain values. gl:evalMesh() steps through the integer domain
of a one- or two-dimensional grid, whose range is the domain of the evaluation
maps specified by glMap1 and glMap2.

 materialf(Face, Pname, Param)

 Equivalent to materialiv/3.

 materialfv(Face, Pname, Params)

 Equivalent to materialiv/3.

 materiali(Face, Pname, Param)

 Equivalent to materialiv/3.

 materialiv(Face, Pname, Params)

 gl:material() assigns values to material parameters. There
are two matched sets of material parameters. One, the front-facing set, is
used to shade points, lines, bitmaps, and all polygons (when two-sided lighting
is disabled), or just front-facing polygons (when two-sided lighting is
enabled). The other set, back-facing, is used to shade back-facing polygons
only when two-sided lighting is enabled. Refer to the
gl:lightModel() reference page for details concerning one-
and two-sided lighting calculations.

 matrixMode(Mode)

 gl:matrixMode/1 sets the current matrix mode. Mode can
assume one of four values

 memoryBarrier(Barriers)

 Equivalent to memoryBarrierByRegion/1.

 memoryBarrierByRegion(Barriers)

 gl:memoryBarrier/1 defines a barrier ordering the memory
transactions issued prior to the command relative to those issued after the
barrier. For the purposes of this ordering, memory transactions performed by
shaders are considered to be issued by the rendering command that triggered the
execution of the shader. Barriers is a bitfield indicating the set of
operations that are synchronized with shader stores; the bits used in Barriers
are as follows

 minmax(Target, Internalformat, Sink)

 When ?GL_MINMAX is enabled, the RGBA components of incoming pixels are
compared to the minimum and maximum values for each component, which are stored
in the two-element minmax table. (The first element stores the minima, and the
second element stores the maxima.) If a pixel component is greater than the
corresponding component in the maximum element, then the maximum element is
updated with the pixel component value. If a pixel component is less than the
corresponding component in the minimum element, then the minimum element is
updated with the pixel component value. (In both cases, if the internal format
of the minmax table includes luminance, then the R color component of incoming
pixels is used for comparison.) The contents of the minmax table may be
retrieved at a later time by calling gl:getMinmax/5. The
minmax operation is enabled or disabled by calling gl:enable/1
or gl:disable/1, respectively, with an argument of ?GL_MINMAX.

 minSampleShading(Value)

 gl:minSampleShading/1 specifies the rate at which
samples are shaded within a covered pixel. Sample-rate shading is enabled by
calling gl:enable/1 with the parameter ?GL_SAMPLE_SHADING. If
?GL_MULTISAMPLE or ?GL_SAMPLE_SHADING is disabled, sample shading has no
effect. Otherwise, an implementation must provide at least as many unique color
values for each covered fragment as specified by Value times Samples where
Samples is the value of ?GL_SAMPLES for the current framebuffer. At least 1
sample for each covered fragment is generated.

 multiDrawArrays(Mode, First, Count)

 gl:multiDrawArrays/3 specifies multiple sets of
geometric primitives with very few subroutine calls. Instead of calling a GL
procedure to pass each individual vertex, normal, texture coordinate, edge flag,
or color, you can prespecify separate arrays of vertices, normals, and colors
and use them to construct a sequence of primitives with a single call to
gl:multiDrawArrays/3.

 multiDrawArraysIndirect(Mode, Indirect, Drawcount, Stride)

 gl:multiDrawArraysIndirect/4 specifies multiple
geometric primitives with very few subroutine calls.
gl:multiDrawArraysIndirect/4 behaves similarly
to a multitude of calls to
gl:drawArraysInstancedBaseInstance/5,
execept that the parameters to each call to
gl:drawArraysInstancedBaseInstance/5
are stored in an array in memory at the address given by Indirect, separated
by the stride, in basic machine units, specified by Stride. If Stride is
zero, then the array is assumed to be tightly packed in memory.

 multiDrawArraysIndirectCount(Mode, Indirect, Drawcount, Maxdrawcount, Stride)

 No documentation available.

 multiTexCoord1d(Target, S)

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord1dv/2

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord1f(Target, S)

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord1fv/2

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord1i(Target, S)

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord1iv/2

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord1s(Target, S)

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord1sv/2

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord2d(Target, S, T)

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord2dv/2

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord2f(Target, S, T)

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord2fv/2

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord2i(Target, S, T)

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord2iv/2

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord2s(Target, S, T)

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord2sv/2

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord3d(Target, S, T, R)

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord3dv/2

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord3f(Target, S, T, R)

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord3fv/2

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord3i(Target, S, T, R)

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord3iv/2

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord3s(Target, S, T, R)

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord3sv/2

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord4d(Target, S, T, R, Q)

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord4dv/2

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord4f(Target, S, T, R, Q)

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord4fv/2

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord4i(Target, S, T, R, Q)

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord4iv/2

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord4s(Target, S, T, R, Q)

 Equivalent to multiTexCoord4sv/2.

 multiTexCoord4sv/2

 gl:multiTexCoord() specifies texture coordinates in
one, two, three, or four dimensions.
gl:multiTexCoord1() sets the current texture
coordinates to (s 0 0 1); a call to gl:multiTexCoord2()
sets them to (s t 0 1). Similarly, gl:multiTexCoord3()
specifies the texture coordinates as (s t r 1), and
gl:multiTexCoord4() defines all four components
explicitly as (s t r q).

 multMatrixd(M)

 Equivalent to multMatrixf/1.

 multMatrixf(M)

 gl:multMatrix() multiplies the current matrix with the one
specified using M, and replaces the current matrix with the product.

 multTransposeMatrixd(M)

 Equivalent to multTransposeMatrixf/1.

 multTransposeMatrixf(M)

 gl:multTransposeMatrix() multiplies the current
matrix with the one specified using M, and replaces the current matrix with
the product.

 newList(List, Mode)

 Display lists are groups of GL commands that have been stored for subsequent
execution. Display lists are created with gl:newList/2. All
subsequent commands are placed in the display list, in the order issued, until
gl:endList/0 is called.

 normal3b(Nx, Ny, Nz)

 Equivalent to normal3sv/1.

 normal3bv/1

 Equivalent to normal3sv/1.

 normal3d(Nx, Ny, Nz)

 Equivalent to normal3sv/1.

 normal3dv/1

 Equivalent to normal3sv/1.

 normal3f(Nx, Ny, Nz)

 Equivalent to normal3sv/1.

 normal3fv/1

 Equivalent to normal3sv/1.

 normal3i(Nx, Ny, Nz)

 Equivalent to normal3sv/1.

 normal3iv/1

 Equivalent to normal3sv/1.

 normal3s(Nx, Ny, Nz)

 Equivalent to normal3sv/1.

 normal3sv/1

 The current normal is set to the given coordinates whenever
gl:normal() is issued. Byte, short, or integer arguments are
converted to floating-point format with a linear mapping that maps the most
positive representable integer value to 1.0 and the most negative representable
integer value to -1.0.

 normalPointer(Type, Stride, Ptr)

 gl:normalPointer/3 specifies the location and data format
of an array of normals to use when rendering. Type specifies the data type of
each normal coordinate, and Stride specifies the byte stride from one normal
to the next, allowing vertices and attributes to be packed into a single array
or stored in separate arrays. (Single-array storage may be more efficient on
some implementations; see gl:interleavedArrays/3.)

 objectPtrLabel(Ptr, Length, Label)

 gl:objectPtrLabel/3 labels the sync object identified by
Ptr.

 ortho(Left, Right, Bottom, Top, Near_val, Far_val)

 gl:ortho/6 describes a transformation that produces a parallel
projection. The current matrix (see gl:matrixMode/1) is
multiplied by this matrix and the result replaces the current matrix, as if
gl:multMatrix() were called with the following matrix as
its argument

 passThrough(Token)

 External documentation.

 patchParameterfv(Pname, Values)

 Equivalent to patchParameteri/2.

 patchParameteri(Pname, Value)

 gl:patchParameter() specifies the parameters that will
be used for patch primitives. Pname specifies the parameter to modify and must
be either ?GL_PATCH_VERTICES, ?GL_PATCH_DEFAULT_OUTER_LEVEL or
?GL_PATCH_DEFAULT_INNER_LEVEL. For
gl:patchParameteri/2, Value specifies the new value
for the parameter specified by Pname. For
gl:patchParameterfv/2, Values specifies the address
of an array containing the new values for the parameter specified by Pname.

 pauseTransformFeedback()

 gl:pauseTransformFeedback/0 pauses transform
feedback operations on the currently active transform feedback object. When
transform feedback operations are paused, transform feedback is still considered
active and changing most transform feedback state related to the object results
in an error. However, a new transform feedback object may be bound while
transform feedback is paused.

 pixelMapfv(Map, Mapsize, Values)

 Equivalent to pixelMapusv/3.

 pixelMapuiv(Map, Mapsize, Values)

 Equivalent to pixelMapusv/3.

 pixelMapusv(Map, Mapsize, Values)

 gl:pixelMap() sets up translation tables, or maps, used by
gl:copyPixels/5,
gl:copyTexImage1D/7,
gl:copyTexImage2D/8,
gl:copyTexSubImage1D/6,
gl:copyTexSubImage2D/8,
gl:copyTexSubImage3D/9,
gl:drawPixels/5, gl:readPixels/7,
gl:texImage1D/8, gl:texImage2D/9,
gl:texImage3D/10,
gl:texSubImage1D/7,
gl:texSubImage2D/9, and
gl:texSubImage3D/11. Additionally, if the ARB_imaging
subset is supported, the routines gl:colorTable/6,
gl:colorSubTable/6,
gl:convolutionFilter1D/6,
gl:convolutionFilter2D/7,
gl:histogram/4, gl:minmax/3, and
gl:separableFilter2D/8. Use of these maps is
described completely in the gl:pixelTransfer() reference
page, and partly in the reference pages for the pixel and texture image
commands. Only the specification of the maps is described in this reference
page.

 pixelStoref(Pname, Param)

 Equivalent to pixelStorei/2.

 pixelStorei(Pname, Param)

 gl:pixelStore() sets pixel storage modes that affect the
operation of subsequent gl:readPixels/7 as well as the
unpacking of texture patterns (see gl:texImage1D/8,
gl:texImage2D/9, gl:texImage3D/10,
gl:texSubImage1D/7,
gl:texSubImage2D/9,
gl:texSubImage3D/11),
gl:compressedTexImage1D/7,
gl:compressedTexImage2D/8,
gl:compressedTexImage3D/9,
gl:compressedTexSubImage1D/7,
gl:compressedTexSubImage2D/9 or
gl:compressedTexSubImage1D/7.

 pixelTransferf(Pname, Param)

 Equivalent to pixelTransferi/2.

 pixelTransferi(Pname, Param)

 gl:pixelTransfer() sets pixel transfer modes that affect
the operation of subsequent gl:copyPixels/5,
gl:copyTexImage1D/7,
gl:copyTexImage2D/8,
gl:copyTexSubImage1D/6,
gl:copyTexSubImage2D/8,
gl:copyTexSubImage3D/9,
gl:drawPixels/5, gl:readPixels/7,
gl:texImage1D/8, gl:texImage2D/9,
gl:texImage3D/10,
gl:texSubImage1D/7,
gl:texSubImage2D/9, and
gl:texSubImage3D/11 commands. Additionally, if the
ARB_imaging subset is supported, the routines
gl:colorTable/6, gl:colorSubTable/6,
gl:convolutionFilter1D/6,
gl:convolutionFilter2D/7,
gl:histogram/4, gl:minmax/3, and
gl:separableFilter2D/8 are also affected. The
algorithms that are specified by pixel transfer modes operate on pixels after
they are read from the frame buffer
(gl:copyPixels/5gl:copyTexImage1D/7,
gl:copyTexImage2D/8,
gl:copyTexSubImage1D/6,
gl:copyTexSubImage2D/8,
gl:copyTexSubImage3D/9, and
gl:readPixels/7), or unpacked from client memory
(gl:drawPixels/5, gl:texImage1D/8,
gl:texImage2D/9, gl:texImage3D/10,
gl:texSubImage1D/7,
gl:texSubImage2D/9, and
gl:texSubImage3D/11). Pixel transfer operations happen
in the same order, and in the same manner, regardless of the command that
resulted in the pixel operation. Pixel storage modes (see
gl:pixelStore()) control the unpacking of pixels being read
from client memory and the packing of pixels being written back into client
memory.

 pixelZoom(Xfactor, Yfactor)

 gl:pixelZoom/2 specifies values for the x and y zoom factors.
During the execution of gl:drawPixels/5 or
gl:copyPixels/5, if (xr, yr) is the current raster
position, and a given element is in the mth row and nth column of the pixel
rectangle, then pixels whose centers are in the rectangle with corners at

 pointParameterf(Pname, Param)

 Equivalent to pointParameteriv/2.

 pointParameterfv(Pname, Params)

 Equivalent to pointParameteriv/2.

 pointParameteri(Pname, Param)

 Equivalent to pointParameteriv/2.

 pointParameteriv(Pname, Params)

 The following values are accepted for Pname

 pointSize(Size)

 gl:pointSize/1 specifies the rasterized diameter of points.
If point size mode is disabled (see gl:enable/1 with parameter
?GL_PROGRAM_POINT_SIZE), this value will be used to rasterize points.
Otherwise, the value written to the shading language built-in variable
gl_PointSize will be used.

 polygonMode(Face, Mode)

 gl:polygonMode/2 controls the interpretation of polygons
for rasterization. Face describes which polygons Mode applies to: both front
and back-facing polygons (?GL_FRONT_AND_BACK). The polygon mode affects only
the final rasterization of polygons. In particular, a polygon's vertices are lit
and the polygon is clipped and possibly culled before these modes are applied.

 polygonOffset(Factor, Units)

 When ?GL_POLYGON_OFFSET_FILL, ?GL_POLYGON_OFFSET_LINE, or
?GL_POLYGON_OFFSET_POINT is enabled, each fragment's depth value will be
offset after it is interpolated from the depth values of the appropriate
vertices. The value of the offset is factor×DZ+r×units, where DZ is a
measurement of the change in depth relative to the screen area of the polygon,
and r is the smallest value that is guaranteed to produce a resolvable offset
for a given implementation. The offset is added before the depth test is
performed and before the value is written into the depth buffer.

 polygonOffsetClamp(Factor, Units, Clamp)

 No documentation available.

 polygonStipple(Mask)

 Polygon stippling, like line stippling (see
gl:lineStipple/2), masks out certain fragments produced by
rasterization, creating a pattern. Stippling is independent of polygon
antialiasing.

 popAttrib()

 Equivalent to pushAttrib/1.

 popClientAttrib()

 Equivalent to pushClientAttrib/1.

 popDebugGroup()

 Equivalent to pushDebugGroup/4.

 popMatrix()

 Equivalent to pushMatrix/0.

 popName()

 Equivalent to pushName/1.

 primitiveRestartIndex(Index)

 gl:primitiveRestartIndex/1 specifies a vertex
array element that is treated specially when primitive restarting is enabled.
This is known as the primitive restart index.

 prioritizeTextures(Textures, Priorities)

 gl:prioritizeTextures/2 assigns the N texture
priorities given in Priorities to the N textures named in Textures.

 programBinary(Program, BinaryFormat, Binary)

 gl:programBinary/3 loads a program object with a program
binary previously returned from gl:getProgramBinary/2.
BinaryFormat and Binary must be those returned by a previous call to
gl:getProgramBinary/2, and Length must be the length
returned by gl:getProgramBinary/2, or by
gl:getProgram() when called with Pname set to
?GL_PROGRAM_BINARY_LENGTH. If these conditions are not met, loading the
program binary will fail and Program's ?GL_LINK_STATUS will be set to
?GL_FALSE.

 programParameteri(Program, Pname, Value)

 gl:programParameter() specifies a new value for the
parameter nameed by Pname for the program object Program.

 programUniform1d(Program, Location, V0)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform1dv(Program, Location, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform1f(Program, Location, V0)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform1fv(Program, Location, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform1i(Program, Location, V0)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform1iv(Program, Location, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform1ui(Program, Location, V0)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform1uiv(Program, Location, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform2d(Program, Location, V0, V1)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform2dv(Program, Location, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform2f(Program, Location, V0, V1)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform2fv(Program, Location, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform2i(Program, Location, V0, V1)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform2iv(Program, Location, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform2ui(Program, Location, V0, V1)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform2uiv(Program, Location, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform3d(Program, Location, V0, V1, V2)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform3dv(Program, Location, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform3f(Program, Location, V0, V1, V2)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform3fv(Program, Location, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform3i(Program, Location, V0, V1, V2)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform3iv(Program, Location, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform3ui(Program, Location, V0, V1, V2)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform3uiv(Program, Location, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform4d(Program, Location, V0, V1, V2, V3)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform4dv(Program, Location, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform4f(Program, Location, V0, V1, V2, V3)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform4fv(Program, Location, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform4i(Program, Location, V0, V1, V2, V3)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform4iv(Program, Location, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform4ui(Program, Location, V0, V1, V2, V3)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniform4uiv(Program, Location, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix2dv(Program, Location, Transpose, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix2fv(Program, Location, Transpose, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix2x3dv(Program, Location, Transpose, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix2x3fv(Program, Location, Transpose, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix2x4dv(Program, Location, Transpose, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix2x4fv(Program, Location, Transpose, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix3dv(Program, Location, Transpose, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix3fv(Program, Location, Transpose, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix3x2dv(Program, Location, Transpose, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix3x2fv(Program, Location, Transpose, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix3x4dv(Program, Location, Transpose, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix3x4fv(Program, Location, Transpose, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix4dv(Program, Location, Transpose, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix4fv(Program, Location, Transpose, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix4x2dv(Program, Location, Transpose, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix4x2fv(Program, Location, Transpose, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix4x3dv(Program, Location, Transpose, Value)

 Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix4x3fv(Program, Location, Transpose, Value)

 gl:programUniform() modifies the value of a uniform
variable or a uniform variable array. The location of the uniform variable to be
modified is specified by Location, which should be a value returned by
gl:getUniformLocation/2.
gl:programUniform() operates on the program object
specified by Program.

 provokingVertex(Mode)

 Flatshading a vertex shader varying output means to assign all vetices of the
primitive the same value for that output. The vertex from which these values is
derived is known as the provoking vertex and
gl:provokingVertex/1 specifies which vertex is to be
used as the source of data for flat shaded varyings.

 pushAttrib(Mask)

 gl:pushAttrib/1 takes one argument, a mask that indicates
which groups of state variables to save on the attribute stack. Symbolic
constants are used to set bits in the mask. Mask is typically constructed by
specifying the bitwise-or of several of these constants together. The special
mask ?GL_ALL_ATTRIB_BITS can be used to save all stackable states.

 pushClientAttrib(Mask)

 gl:pushClientAttrib/1 takes one argument, a mask that
indicates which groups of client-state variables to save on the client attribute
stack. Symbolic constants are used to set bits in the mask. Mask is typically
constructed by specifying the bitwise-or of several of these constants together.
The special mask ?GL_CLIENT_ALL_ATTRIB_BITS can be used to save all stackable
client state.

 pushDebugGroup(Source, Id, Length, Message)

 gl:pushDebugGroup/4 pushes a debug group described by
the string Message into the command stream. The value of Id specifies the ID
of messages generated. The parameter Length contains the number of characters
in Message. If Length is negative, it is implied that Message contains a
null terminated string. The message has the specified Source and Id, the
Type``?GL_DEBUG_TYPE_PUSH_GROUP, and
Severity``?GL_DEBUG_SEVERITY_NOTIFICATION. The GL will put a new debug group
on top of the debug group stack which inherits the control of the volume of
debug output of the debug group previously residing on the top of the debug
group stack. Because debug groups are strictly hierarchical, any additional
control of the debug output volume will only apply within the active debug group
and the debug groups pushed on top of the active debug group.

 pushMatrix()

 There is a stack of matrices for each of the matrix modes. In ?GL_MODELVIEW
mode, the stack depth is at least 32. In the other modes, ?GL_COLOR,
?GL_PROJECTION, and ?GL_TEXTURE, the depth is at least 2. The current matrix
in any mode is the matrix on the top of the stack for that mode.

 pushName(Name)

 The name stack is used during selection mode to allow sets of rendering commands
to be uniquely identified. It consists of an ordered set of unsigned integers
and is initially empty.

 queryCounter(Id, Target)

 gl:queryCounter/2 causes the GL to record the current time
into the query object named Id. Target must be ?GL_TIMESTAMP. The time is
recorded after all previous commands on the GL client and server state and the
framebuffer have been fully realized. When the time is recorded, the query
result for that object is marked available.
gl:queryCounter/2 timer queries can be used within a
gl:beginQuery/2 / gl:endQuery/1 block
where the target is ?GL_TIME_ELAPSED and it does not affect the result of that
query object.

 rasterPos2d(X, Y)

 Equivalent to rasterPos4sv/1.

 rasterPos2dv/1

 Equivalent to rasterPos4sv/1.

 rasterPos2f(X, Y)

 Equivalent to rasterPos4sv/1.

 rasterPos2fv/1

 Equivalent to rasterPos4sv/1.

 rasterPos2i(X, Y)

 Equivalent to rasterPos4sv/1.

 rasterPos2iv/1

 Equivalent to rasterPos4sv/1.

 rasterPos2s(X, Y)

 Equivalent to rasterPos4sv/1.

 rasterPos2sv/1

 Equivalent to rasterPos4sv/1.

 rasterPos3d(X, Y, Z)

 Equivalent to rasterPos4sv/1.

 rasterPos3dv/1

 Equivalent to rasterPos4sv/1.

 rasterPos3f(X, Y, Z)

 Equivalent to rasterPos4sv/1.

 rasterPos3fv/1

 Equivalent to rasterPos4sv/1.

 rasterPos3i(X, Y, Z)

 Equivalent to rasterPos4sv/1.

 rasterPos3iv/1

 Equivalent to rasterPos4sv/1.

 rasterPos3s(X, Y, Z)

 Equivalent to rasterPos4sv/1.

 rasterPos3sv/1

 Equivalent to rasterPos4sv/1.

 rasterPos4d(X, Y, Z, W)

 Equivalent to rasterPos4sv/1.

 rasterPos4dv/1

 Equivalent to rasterPos4sv/1.

 rasterPos4f(X, Y, Z, W)

 Equivalent to rasterPos4sv/1.

 rasterPos4fv/1

 Equivalent to rasterPos4sv/1.

 rasterPos4i(X, Y, Z, W)

 Equivalent to rasterPos4sv/1.

 rasterPos4iv/1

 Equivalent to rasterPos4sv/1.

 rasterPos4s(X, Y, Z, W)

 Equivalent to rasterPos4sv/1.

 rasterPos4sv/1

 The GL maintains a 3D position in window coordinates. This position, called the
raster position, is used to position pixel and bitmap write operations. It is
maintained with subpixel accuracy. See gl:bitmap/7,
gl:drawPixels/5, and gl:copyPixels/5.

 readBuffer(Mode)

 gl:readBuffer/1 specifies a color buffer as the source for
subsequent gl:readPixels/7,
gl:copyTexImage1D/7,
gl:copyTexImage2D/8,
gl:copyTexSubImage1D/6,
gl:copyTexSubImage2D/8, and
gl:copyTexSubImage3D/9 commands. Mode accepts one
of twelve or more predefined values. In a fully configured system, ?GL_FRONT,
?GL_LEFT, and ?GL_FRONT_LEFT all name the front left buffer,
?GL_FRONT_RIGHT and ?GL_RIGHT name the front right buffer, and
?GL_BACK_LEFT and ?GL_BACK name the back left buffer. Further more, the
constants ?GL_COLOR_ATTACHMENT``i may be used to indicate the ith color
attachment where i ranges from zero to the value of
?GL_MAX_COLOR_ATTACHMENTS minus one.

 readPixels(X, Y, Width, Height, Format, Type, Pixels)

 gl:readPixels/7 and glReadnPixels return pixel data from
the frame buffer, starting with the pixel whose lower left corner is at location
(X, Y), into client memory starting at location Data. Several parameters
control the processing of the pixel data before it is placed into client memory.
These parameters are set with gl:pixelStore(). This
reference page describes the effects on gl:readPixels/7 and
glReadnPixels of most, but not all of the parameters specified by these three
commands.

 rectd(X1, Y1, X2, Y2)

 Equivalent to rectsv/2.

 rectdv(V1, V2)

 Equivalent to rectsv/2.

 rectf(X1, Y1, X2, Y2)

 Equivalent to rectsv/2.

 rectfv(V1, V2)

 Equivalent to rectsv/2.

 recti(X1, Y1, X2, Y2)

 Equivalent to rectsv/2.

 rectiv(V1, V2)

 Equivalent to rectsv/2.

 rects(X1, Y1, X2, Y2)

 Equivalent to rectsv/2.

 rectsv(V1, V2)

 gl:rect() supports efficient specification of rectangles as two
corner points. Each rectangle command takes four arguments, organized either as
two consecutive pairs of (x y) coordinates or as two pointers to arrays, each
containing an (x y) pair. The resulting rectangle is defined in the z=0 plane.

 releaseShaderCompiler()

 gl:releaseShaderCompiler/0 provides a hint to the
implementation that it may free internal resources associated with its shader
compiler. gl:compileShader/1 may subsequently be called
and the implementation may at that time reallocate resources previously freed by
the call to gl:releaseShaderCompiler/0.

 renderbufferStorage(Target, Internalformat, Width, Height)

 gl:renderbufferStorage/4 is equivalent to calling
gl:renderbufferStorageMultisample/5 with
the Samples set to zero, and glNamedRenderbufferStorage is equivalent to
calling glNamedRenderbufferStorageMultisample with the samples set to zero.

 renderbufferStorageMultisample(Target, Samples, Internalformat, Width, Height)

 gl:renderbufferStorageMultisample/5 and
glNamedRenderbufferStorageMultisample establish the data storage, format,
dimensions and number of samples of a renderbuffer object's image.

 renderMode(Mode)

 gl:renderMode/1 sets the rasterization mode. It takes one
argument, Mode, which can assume one of three predefined values

 resetHistogram(Target)

 gl:resetHistogram/1 resets all the elements of the
current histogram table to zero.

 resetMinmax(Target)

 gl:resetMinmax/1 resets the elements of the current minmax
table to their initial values: the ``maximum'' element receives the minimum
possible component values, and the ``minimum'' element receives the maximum
possible component values.

 resumeTransformFeedback()

 gl:resumeTransformFeedback/0 resumes transform
feedback operations on the currently active transform feedback object. When
transform feedback operations are paused, transform feedback is still considered
active and changing most transform feedback state related to the object results
in an error. However, a new transform feedback object may be bound while
transform feedback is paused.

 rotated(Angle, X, Y, Z)

 Equivalent to rotatef/4.

 rotatef(Angle, X, Y, Z)

 gl:rotate() produces a rotation of Angle degrees around the
vector (x y z). The current matrix (see gl:matrixMode/1) is
multiplied by a rotation matrix with the product replacing the current matrix,
as if gl:multMatrix() were called with the following matrix
as its argument

 sampleCoverage(Value, Invert)

 Multisampling samples a pixel multiple times at various implementation-dependent
subpixel locations to generate antialiasing effects. Multisampling transparently
antialiases points, lines, polygons, and images if it is enabled.

 sampleMaski(MaskNumber, Mask)

 gl:sampleMaski/2 sets one 32-bit sub-word of the multi-word
sample mask, ?GL_SAMPLE_MASK_VALUE.

 samplerParameterf(Sampler, Pname, Param)

 Equivalent to samplerParameteriv/3.

 samplerParameterfv(Sampler, Pname, Param)

 Equivalent to samplerParameteriv/3.

 samplerParameterIiv(Sampler, Pname, Param)

 Equivalent to samplerParameteriv/3.

 samplerParameterIuiv(Sampler, Pname, Param)

 Equivalent to samplerParameteriv/3.

 samplerParameteri(Sampler, Pname, Param)

 Equivalent to samplerParameteriv/3.

 samplerParameteriv(Sampler, Pname, Param)

 gl:samplerParameter() assigns the value or values in
Params to the sampler parameter specified as Pname. Sampler specifies the
sampler object to be modified, and must be the name of a sampler object
previously returned from a call to gl:genSamplers/1. The
following symbols are accepted in Pname

 scaled(X, Y, Z)

 Equivalent to scalef/3.

 scalef(X, Y, Z)

 gl:scale() produces a nonuniform scaling along the x, y, and
z axes. The three parameters indicate the desired scale factor along each of
the three axes.

 scissor(X, Y, Width, Height)

 gl:scissor/4 defines a rectangle, called the scissor box, in
window coordinates. The first two arguments, X and Y, specify the lower left
corner of the box. Width and Height specify the width and height of the box.

 scissorArrayv(First, V)

 gl:scissorArrayv/2 defines rectangles, called scissor
boxes, in window coordinates for each viewport. First specifies the index of
the first scissor box to modify and Count specifies the number of scissor
boxes to modify. First must be less than the value of ?GL_MAX_VIEWPORTS, and
First + Count must be less than or equal to the value of
?GL_MAX_VIEWPORTS. V specifies the address of an array containing integers
specifying the lower left corner of the scissor boxes, and the width and height
of the scissor boxes, in that order.

 scissorIndexed(Index, Left, Bottom, Width, Height)

 Equivalent to scissorIndexedv/2.

 scissorIndexedv(Index, V)

 gl:scissorIndexed/5 defines the scissor box for a
specified viewport. Index specifies the index of scissor box to modify.
Index must be less than the value of ?GL_MAX_VIEWPORTS. For
gl:scissorIndexed/5, Left, Bottom, Width and
Height specify the left, bottom, width and height of the scissor box, in
pixels, respectively. For gl:scissorIndexedv/2, V
specifies the address of an array containing integers specifying the lower left
corner of the scissor box, and the width and height of the scissor box, in that
order.

 secondaryColor3b(Red, Green, Blue)

 Equivalent to secondaryColor3usv/1.

 secondaryColor3bv/1

 Equivalent to secondaryColor3usv/1.

 secondaryColor3d(Red, Green, Blue)

 Equivalent to secondaryColor3usv/1.

 secondaryColor3dv/1

 Equivalent to secondaryColor3usv/1.

 secondaryColor3f(Red, Green, Blue)

 Equivalent to secondaryColor3usv/1.

 secondaryColor3fv/1

 Equivalent to secondaryColor3usv/1.

 secondaryColor3i(Red, Green, Blue)

 Equivalent to secondaryColor3usv/1.

 secondaryColor3iv/1

 Equivalent to secondaryColor3usv/1.

 secondaryColor3s(Red, Green, Blue)

 Equivalent to secondaryColor3usv/1.

 secondaryColor3sv/1

 Equivalent to secondaryColor3usv/1.

 secondaryColor3ub(Red, Green, Blue)

 Equivalent to secondaryColor3usv/1.

 secondaryColor3ubv/1

 Equivalent to secondaryColor3usv/1.

 secondaryColor3ui(Red, Green, Blue)

 Equivalent to secondaryColor3usv/1.

 secondaryColor3uiv/1

 Equivalent to secondaryColor3usv/1.

 secondaryColor3us(Red, Green, Blue)

 Equivalent to secondaryColor3usv/1.

 secondaryColor3usv/1

 The GL stores both a primary four-valued RGBA color and a secondary four-valued
RGBA color (where alpha is always set to 0.0) that is associated with every
vertex.

 secondaryColorPointer(Size, Type, Stride, Pointer)

 gl:secondaryColorPointer/4 specifies the location
and data format of an array of color components to use when rendering. Size
specifies the number of components per color, and must be 3. Type specifies
the data type of each color component, and Stride specifies the byte stride
from one color to the next, allowing vertices and attributes to be packed into a
single array or stored in separate arrays.

 selectBuffer(Size, Buffer)

 gl:selectBuffer/2 has two arguments: Buffer is a pointer
to an array of unsigned integers, and Size indicates the size of the array.
Buffer returns values from the name stack (see
gl:initNames/0, gl:loadName/1,
gl:pushName/1) when the rendering mode is ?GL_SELECT (see
gl:renderMode/1). gl:selectBuffer/2
must be issued before selection mode is enabled, and it must not be issued while
the rendering mode is ?GL_SELECT.

 separableFilter2D(Target, Internalformat, Width, Height, Format, Type, Row, Column)

 gl:separableFilter2D/8 builds a two-dimensional
separable convolution filter kernel from two arrays of pixels.

 shadeModel(Mode)

 GL primitives can have either flat or smooth shading. Smooth shading, the
default, causes the computed colors of vertices to be interpolated as the
primitive is rasterized, typically assigning different colors to each resulting
pixel fragment. Flat shading selects the computed color of just one vertex and
assigns it to all the pixel fragments generated by rasterizing a single
primitive. In either case, the computed color of a vertex is the result of
lighting if lighting is enabled, or it is the current color at the time the
vertex was specified if lighting is disabled.

 shaderBinary(Shaders, Binaryformat, Binary)

 gl:shaderBinary/3 loads pre-compiled shader binary code
into the Count shader objects whose handles are given in Shaders. Binary
points to Length bytes of binary shader code stored in client memory.
BinaryFormat specifies the format of the pre-compiled code.

 shaderSource(Shader, String)

 gl:shaderSource/2 sets the source code in Shader to the
source code in the array of strings specified by String. Any source code
previously stored in the shader object is completely replaced. The number of
strings in the array is specified by Count. If Length is ?NULL, each
string is assumed to be null terminated. If Length is a value other than
?NULL, it points to an array containing a string length for each of the
corresponding elements of String. Each element in the Length array may
contain the length of the corresponding string (the null character is not
counted as part of the string length) or a value less than 0 to indicate that
the string is null terminated. The source code strings are not scanned or parsed
at this time; they are simply copied into the specified shader object.

 shaderStorageBlockBinding(Program, StorageBlockIndex, StorageBlockBinding)

 gl:shaderStorageBlockBinding/3, changes the
active shader storage block with an assigned index of StorageBlockIndex in
program object Program. StorageBlockIndex must be an active shader storage
block index in Program. StorageBlockBinding must be less than the value of
?GL_MAX_SHADER_STORAGE_BUFFER_BINDINGS. If successful,
gl:shaderStorageBlockBinding/3 specifies that
Program will use the data store of the buffer object bound to the binding
point StorageBlockBinding to read and write the values of the buffer variables
in the shader storage block identified by StorageBlockIndex.

 stencilFunc(Func, Ref, Mask)

 Stenciling, like depth-buffering, enables and disables drawing on a per-pixel
basis. Stencil planes are first drawn into using GL drawing primitives, then
geometry and images are rendered using the stencil planes to mask out portions
of the screen. Stenciling is typically used in multipass rendering algorithms to
achieve special effects, such as decals, outlining, and constructive solid
geometry rendering.

 stencilFuncSeparate(Face, Func, Ref, Mask)

 Stenciling, like depth-buffering, enables and disables drawing on a per-pixel
basis. You draw into the stencil planes using GL drawing primitives, then render
geometry and images, using the stencil planes to mask out portions of the
screen. Stenciling is typically used in multipass rendering algorithms to
achieve special effects, such as decals, outlining, and constructive solid
geometry rendering.

 stencilMask(Mask)

 gl:stencilMask/1 controls the writing of individual bits in
the stencil planes. The least significant n bits of Mask, where n is the
number of bits in the stencil buffer, specify a mask. Where a 1 appears in the
mask, it's possible to write to the corresponding bit in the stencil buffer.
Where a 0 appears, the corresponding bit is write-protected. Initially, all bits
are enabled for writing.

 stencilMaskSeparate(Face, Mask)

 gl:stencilMaskSeparate/2 controls the writing of
individual bits in the stencil planes. The least significant n bits of Mask,
where n is the number of bits in the stencil buffer, specify a mask. Where a 1
appears in the mask, it's possible to write to the corresponding bit in the
stencil buffer. Where a 0 appears, the corresponding bit is write-protected.
Initially, all bits are enabled for writing.

 stencilOp(Fail, Zfail, Zpass)

 Stenciling, like depth-buffering, enables and disables drawing on a per-pixel
basis. You draw into the stencil planes using GL drawing primitives, then render
geometry and images, using the stencil planes to mask out portions of the
screen. Stenciling is typically used in multipass rendering algorithms to
achieve special effects, such as decals, outlining, and constructive solid
geometry rendering.

 stencilOpSeparate(Face, Sfail, Dpfail, Dppass)

 Stenciling, like depth-buffering, enables and disables drawing on a per-pixel
basis. You draw into the stencil planes using GL drawing primitives, then render
geometry and images, using the stencil planes to mask out portions of the
screen. Stenciling is typically used in multipass rendering algorithms to
achieve special effects, such as decals, outlining, and constructive solid
geometry rendering.

 texBuffer(Target, Internalformat, Buffer)

 Equivalent to textureBuffer/3.

 texBufferRange(Target, Internalformat, Buffer, Offset, Size)

 Equivalent to textureBufferRange/5.

 texCoord1d(S)

 Equivalent to texCoord4sv/1.

 texCoord1dv/1

 Equivalent to texCoord4sv/1.

 texCoord1f(S)

 Equivalent to texCoord4sv/1.

 texCoord1fv/1

 Equivalent to texCoord4sv/1.

 texCoord1i(S)

 Equivalent to texCoord4sv/1.

 texCoord1iv/1

 Equivalent to texCoord4sv/1.

 texCoord1s(S)

 Equivalent to texCoord4sv/1.

 texCoord1sv/1

 Equivalent to texCoord4sv/1.

 texCoord2d(S, T)

 Equivalent to texCoord4sv/1.

 texCoord2dv/1

 Equivalent to texCoord4sv/1.

 texCoord2f(S, T)

 Equivalent to texCoord4sv/1.

 texCoord2fv/1

 Equivalent to texCoord4sv/1.

 texCoord2i(S, T)

 Equivalent to texCoord4sv/1.

 texCoord2iv/1

 Equivalent to texCoord4sv/1.

 texCoord2s(S, T)

 Equivalent to texCoord4sv/1.

 texCoord2sv/1

 Equivalent to texCoord4sv/1.

 texCoord3d(S, T, R)

 Equivalent to texCoord4sv/1.

 texCoord3dv/1

 Equivalent to texCoord4sv/1.

 texCoord3f(S, T, R)

 Equivalent to texCoord4sv/1.

 texCoord3fv/1

 Equivalent to texCoord4sv/1.

 texCoord3i(S, T, R)

 Equivalent to texCoord4sv/1.

 texCoord3iv/1

 Equivalent to texCoord4sv/1.

 texCoord3s(S, T, R)

 Equivalent to texCoord4sv/1.

 texCoord3sv/1

 Equivalent to texCoord4sv/1.

 texCoord4d(S, T, R, Q)

 Equivalent to texCoord4sv/1.

 texCoord4dv/1

 Equivalent to texCoord4sv/1.

 texCoord4f(S, T, R, Q)

 Equivalent to texCoord4sv/1.

 texCoord4fv/1

 Equivalent to texCoord4sv/1.

 texCoord4i(S, T, R, Q)

 Equivalent to texCoord4sv/1.

 texCoord4iv/1

 Equivalent to texCoord4sv/1.

 texCoord4s(S, T, R, Q)

 Equivalent to texCoord4sv/1.

 texCoord4sv/1

 gl:texCoord() specifies texture coordinates in one, two,
three, or four dimensions. gl:texCoord1() sets the current
texture coordinates to (s 0 0 1); a call to gl:texCoord2()
sets them to (s t 0 1). Similarly, gl:texCoord3() specifies
the texture coordinates as (s t r 1), and gl:texCoord4()
defines all four components explicitly as (s t r q).

 texCoordPointer(Size, Type, Stride, Ptr)

 gl:texCoordPointer/4 specifies the location and data
format of an array of texture coordinates to use when rendering. Size
specifies the number of coordinates per texture coordinate set, and must be 1,
2, 3, or 4. Type specifies the data type of each texture coordinate, and
Stride specifies the byte stride from one texture coordinate set to the next,
allowing vertices and attributes to be packed into a single array or stored in
separate arrays. (Single-array storage may be more efficient on some
implementations; see gl:interleavedArrays/3.)

 texEnvf(Target, Pname, Param)

 Equivalent to texEnviv/3.

 texEnvfv(Target, Pname, Params)

 Equivalent to texEnviv/3.

 texEnvi(Target, Pname, Param)

 Equivalent to texEnviv/3.

 texEnviv(Target, Pname, Params)

 A texture environment specifies how texture values are interpreted when a
fragment is textured. When Target is ?GL_TEXTURE_FILTER_CONTROL, Pname
must be ?GL_TEXTURE_LOD_BIAS. When Target is ?GL_TEXTURE_ENV, Pname can
be ?GL_TEXTURE_ENV_MODE, ?GL_TEXTURE_ENV_COLOR, ?GL_COMBINE_RGB,
?GL_COMBINE_ALPHA, ?GL_RGB_SCALE, ?GL_ALPHA_SCALE, ?GL_SRC0_RGB,
?GL_SRC1_RGB, ?GL_SRC2_RGB, ?GL_SRC0_ALPHA, ?GL_SRC1_ALPHA, or
?GL_SRC2_ALPHA.

 texGend(Coord, Pname, Param)

 Equivalent to texGeniv/3.

 texGendv(Coord, Pname, Params)

 Equivalent to texGeniv/3.

 texGenf(Coord, Pname, Param)

 Equivalent to texGeniv/3.

 texGenfv(Coord, Pname, Params)

 Equivalent to texGeniv/3.

 texGeni(Coord, Pname, Param)

 Equivalent to texGeniv/3.

 texGeniv(Coord, Pname, Params)

 gl:texGen() selects a texture-coordinate generation function or
supplies coefficients for one of the functions. Coord names one of the (s,
t, r, q) texture coordinates; it must be one of the symbols ?GL_S,
?GL_T, ?GL_R, or ?GL_Q. Pname must be one of three symbolic constants:
?GL_TEXTURE_GEN_MODE, ?GL_OBJECT_PLANE, or ?GL_EYE_PLANE. If Pname is
?GL_TEXTURE_GEN_MODE, then Params chooses a mode, one of
?GL_OBJECT_LINEAR, ?GL_EYE_LINEAR, ?GL_SPHERE_MAP, ?GL_NORMAL_MAP, or
?GL_REFLECTION_MAP. If Pname is either ?GL_OBJECT_PLANE or
?GL_EYE_PLANE, Params contains coefficients for the corresponding texture
generation function.

 texImage1D(Target, Level, InternalFormat, Width, Border, Format, Type, Pixels)

 Texturing maps a portion of a specified texture image onto each graphical
primitive for which texturing is enabled. To enable and disable one-dimensional
texturing, call gl:enable/1 and gl:disable/1
with argument ?GL_TEXTURE_1D.

 texImage2D(Target, Level, InternalFormat, Width, Height, Border, Format, Type, Pixels)

 Texturing allows elements of an image array to be read by shaders.

 texImage2DMultisample(Target, Samples, Internalformat, Width, Height, Fixedsamplelocations)

 gl:texImage2DMultisample/6 establishes the data
storage, format, dimensions and number of samples of a multisample texture's
image.

 texImage3D(Target, Level, InternalFormat, Width, Height, Depth, Border, Format, Type, Pixels)

 Texturing maps a portion of a specified texture image onto each graphical
primitive for which texturing is enabled. To enable and disable
three-dimensional texturing, call gl:enable/1 and
gl:disable/1 with argument ?GL_TEXTURE_3D.

 texImage3DMultisample(Target, Samples, Internalformat, Width, Height, Depth, Fixedsamplelocations)

 gl:texImage3DMultisample/7 establishes the data
storage, format, dimensions and number of samples of a multisample texture's
image.

 texParameterf(Target, Pname, Param)

 Equivalent to texParameteriv/3.

 texParameterfv(Target, Pname, Params)

 Equivalent to texParameteriv/3.

 texParameterIiv(Target, Pname, Params)

 Equivalent to texParameteriv/3.

 texParameterIuiv(Target, Pname, Params)

 Equivalent to texParameteriv/3.

 texParameteri(Target, Pname, Param)

 Equivalent to texParameteriv/3.

 texParameteriv(Target, Pname, Params)

 gl:texParameter() and
gl:textureParameter() assign the value or values in
Params to the texture parameter specified as Pname. For
gl:texParameter(), Target defines the target texture,
either ?GL_TEXTURE_1D, ?GL_TEXTURE_1D_ARRAY, ?GL_TEXTURE_2D,
?GL_TEXTURE_2D_ARRAY, ?GL_TEXTURE_2D_MULTISAMPLE,
?GL_TEXTURE_2D_MULTISAMPLE_ARRAY, ?GL_TEXTURE_3D, ?GL_TEXTURE_CUBE_MAP,
?GL_TEXTURE_CUBE_MAP_ARRAY, or ?GL_TEXTURE_RECTANGLE. The following symbols
are accepted in Pname

 texStorage1D(Target, Levels, Internalformat, Width)

 gl:texStorage1D/4 and
gl:textureStorage1D() specify the storage requirements for
all levels of a one-dimensional texture simultaneously. Once a texture is
specified with this command, the format and dimensions of all levels become
immutable unless it is a proxy texture. The contents of the image may still be
modified, however, its storage requirements may not change. Such a texture is
referred to as an immutable-format texture.

 texStorage2D(Target, Levels, Internalformat, Width, Height)

 gl:texStorage2D/5 and
gl:textureStorage2D() specify the storage requirements for
all levels of a two-dimensional texture or one-dimensional texture array
simultaneously. Once a texture is specified with this command, the format and
dimensions of all levels become immutable unless it is a proxy texture. The
contents of the image may still be modified, however, its storage requirements
may not change. Such a texture is referred to as an immutable-format texture.

 texStorage2DMultisample(Target, Samples, Internalformat, Width, Height, Fixedsamplelocations)

 gl:texStorage2DMultisample/6 and
gl:textureStorage2DMultisample() specify the
storage requirements for a two-dimensional multisample texture. Once a texture
is specified with this command, its format and dimensions become immutable
unless it is a proxy texture. The contents of the image may still be modified,
however, its storage requirements may not change. Such a texture is referred to
as an immutable-format texture.

 texStorage3D(Target, Levels, Internalformat, Width, Height, Depth)

 gl:texStorage3D/6 and
gl:textureStorage3D() specify the storage requirements for
all levels of a three-dimensional, two-dimensional array or cube-map array
texture simultaneously. Once a texture is specified with this command, the
format and dimensions of all levels become immutable unless it is a proxy
texture. The contents of the image may still be modified, however, its storage
requirements may not change. Such a texture is referred to as an
immutable-format texture.

 texStorage3DMultisample(Target, Samples, Internalformat, Width, Height, Depth, Fixedsamplelocations)

 gl:texStorage3DMultisample/7 and
gl:textureStorage3DMultisample() specify the
storage requirements for a two-dimensional multisample array texture. Once a
texture is specified with this command, its format and dimensions become
immutable unless it is a proxy texture. The contents of the image may still be
modified, however, its storage requirements may not change. Such a texture is
referred to as an immutable-format texture.

 texSubImage1D(Target, Level, Xoffset, Width, Format, Type, Pixels)

 Texturing maps a portion of a specified texture image onto each graphical
primitive for which texturing is enabled. To enable or disable one-dimensional
texturing, call gl:enable/1 and gl:disable/1
with argument ?GL_TEXTURE_1D.

 texSubImage2D(Target, Level, Xoffset, Yoffset, Width, Height, Format, Type, Pixels)

 Texturing maps a portion of a specified texture image onto each graphical
primitive for which texturing is enabled.

 texSubImage3D(Target, Level, Xoffset, Yoffset, Zoffset, Width, Height, Depth, Format, Type, Pixels)

 Texturing maps a portion of a specified texture image onto each graphical
primitive for which texturing is enabled.

 textureBarrier()

 The values of rendered fragments are undefined when a shader stage fetches
texels and the same texels are written via fragment shader outputs, even if the
reads and writes are not in the same drawing command. To safely read the result
of a written texel via a texel fetch in a subsequent drawing command, call
gl:textureBarrier/0 between the two drawing commands to
guarantee that writes have completed and caches have been invalidated before
subsequent drawing commands are executed.

 textureBuffer(Texture, Internalformat, Buffer)

 gl:texBuffer/3 and gl:textureBuffer/3
attaches the data store of a specified buffer object to a specified texture
object, and specify the storage format for the texture image found in the buffer
object. The texture object must be a buffer texture.

 textureBufferRange(Texture, Internalformat, Buffer, Offset, Size)

 gl:texBufferRange/5 and
gl:textureBufferRange/5 attach a range of the data store
of a specified buffer object to a specified texture object, and specify the
storage format for the texture image found in the buffer object. The texture
object must be a buffer texture.

 textureView(Texture, Target, Origtexture, Internalformat, Minlevel, Numlevels, Minlayer, Numlayers)

 gl:textureView/8 initializes a texture object as an alias,
or view of another texture object, sharing some or all of the parent texture's
data store with the initialized texture. Texture specifies a name previously
reserved by a successful call to gl:genTextures/1 but that
has not yet been bound or given a target. Target specifies the target for the
newly initialized texture and must be compatible with the target of the parent
texture, given in Origtexture as specified in the following table

 transformFeedbackBufferBase(Xfb, Index, Buffer)

 gl:transformFeedbackBufferBase/3 binds the
buffer object Buffer to the binding point at index Index of the transform
feedback object Xfb.

 transformFeedbackBufferRange(Xfb, Index, Buffer, Offset, Size)

 gl:transformFeedbackBufferRange/5 binds a
range of the buffer object Buffer represented by Offset and Size to the
binding point at index Index of the transform feedback object Xfb.

 transformFeedbackVaryings(Program, Varyings, BufferMode)

 The names of the vertex or geometry shader outputs to be recorded in transform
feedback mode are specified using
gl:transformFeedbackVaryings/3. When a
geometry shader is active, transform feedback records the values of selected
geometry shader output variables from the emitted vertices. Otherwise, the
values of the selected vertex shader outputs are recorded.

 translated(X, Y, Z)

 Equivalent to translatef/3.

 translatef(X, Y, Z)

 gl:translate() produces a translation by (x y z). The
current matrix (see gl:matrixMode/1) is multiplied by this
translation matrix, with the product replacing the current matrix, as if
gl:multMatrix() were called with the following matrix for
its argument

 uniform1d(Location, X)

 Equivalent to uniformMatrix4x3fv/3.

 uniform1dv(Location, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniform1f(Location, V0)

 Equivalent to uniformMatrix4x3fv/3.

 uniform1fv(Location, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniform1i(Location, V0)

 Equivalent to uniformMatrix4x3fv/3.

 uniform1iv(Location, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniform1ui(Location, V0)

 Equivalent to uniformMatrix4x3fv/3.

 uniform1uiv(Location, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniform2d(Location, X, Y)

 Equivalent to uniformMatrix4x3fv/3.

 uniform2dv(Location, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniform2f(Location, V0, V1)

 Equivalent to uniformMatrix4x3fv/3.

 uniform2fv(Location, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniform2i(Location, V0, V1)

 Equivalent to uniformMatrix4x3fv/3.

 uniform2iv(Location, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniform2ui(Location, V0, V1)

 Equivalent to uniformMatrix4x3fv/3.

 uniform2uiv(Location, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniform3d(Location, X, Y, Z)

 Equivalent to uniformMatrix4x3fv/3.

 uniform3dv(Location, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniform3f(Location, V0, V1, V2)

 Equivalent to uniformMatrix4x3fv/3.

 uniform3fv(Location, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniform3i(Location, V0, V1, V2)

 Equivalent to uniformMatrix4x3fv/3.

 uniform3iv(Location, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniform3ui(Location, V0, V1, V2)

 Equivalent to uniformMatrix4x3fv/3.

 uniform3uiv(Location, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniform4d(Location, X, Y, Z, W)

 Equivalent to uniformMatrix4x3fv/3.

 uniform4dv(Location, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniform4f(Location, V0, V1, V2, V3)

 Equivalent to uniformMatrix4x3fv/3.

 uniform4fv(Location, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniform4i(Location, V0, V1, V2, V3)

 Equivalent to uniformMatrix4x3fv/3.

 uniform4iv(Location, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniform4ui(Location, V0, V1, V2, V3)

 Equivalent to uniformMatrix4x3fv/3.

 uniform4uiv(Location, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniformBlockBinding(Program, UniformBlockIndex, UniformBlockBinding)

 Binding points for active uniform blocks are assigned using
gl:uniformBlockBinding/3. Each of a program's
active uniform blocks has a corresponding uniform buffer binding point.
Program is the name of a program object for which the command
gl:linkProgram/1 has been issued in the past.

 uniformMatrix2dv(Location, Transpose, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniformMatrix2fv(Location, Transpose, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniformMatrix2x3dv(Location, Transpose, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniformMatrix2x3fv(Location, Transpose, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniformMatrix2x4dv(Location, Transpose, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniformMatrix2x4fv(Location, Transpose, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniformMatrix3dv(Location, Transpose, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniformMatrix3fv(Location, Transpose, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniformMatrix3x2dv(Location, Transpose, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniformMatrix3x2fv(Location, Transpose, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniformMatrix3x4dv(Location, Transpose, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniformMatrix3x4fv(Location, Transpose, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniformMatrix4dv(Location, Transpose, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniformMatrix4fv(Location, Transpose, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniformMatrix4x2dv(Location, Transpose, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniformMatrix4x2fv(Location, Transpose, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniformMatrix4x3dv(Location, Transpose, Value)

 Equivalent to uniformMatrix4x3fv/3.

 uniformMatrix4x3fv(Location, Transpose, Value)

 gl:uniform() modifies the value of a uniform variable or a
uniform variable array. The location of the uniform variable to be modified is
specified by Location, which should be a value returned by
gl:getUniformLocation/2.
gl:uniform() operates on the program object that was made
part of current state by calling gl:useProgram/1.

 uniformSubroutinesuiv(Shadertype, Indices)

 gl:uniformSubroutines() loads all active
subroutine uniforms for shader stage Shadertype of the current program with
subroutine indices from Indices, storing Indices[i] into the uniform at
location I. Count must be equal to the value of
?GL_ACTIVE_SUBROUTINE_UNIFORM_LOCATIONS for the program currently in use at
shader stage Shadertype. Furthermore, all values in Indices must be less
than the value of ?GL_ACTIVE_SUBROUTINES for the shader stage.

 useProgram(Program)

 gl:useProgram/1 installs the program object specified by
Program as part of current rendering state. One or more executables are
created in a program object by successfully attaching shader objects to it with
gl:attachShader/2, successfully compiling the shader
objects with gl:compileShader/1, and successfully linking
the program object with gl:linkProgram/1.

 useProgramStages(Pipeline, Stages, Program)

 gl:useProgramStages/3 binds executables from a program
object associated with a specified set of shader stages to the program pipeline
object given by Pipeline. Pipeline specifies the program pipeline object to
which to bind the executables. Stages contains a logical combination of bits
indicating the shader stages to use within Program with the program pipeline
object Pipeline. Stages must be a logical combination of
?GL_VERTEX_SHADER_BIT, ?GL_TESS_CONTROL_SHADER_BIT,
?GL_TESS_EVALUATION_SHADER_BIT, ?GL_GEOMETRY_SHADER_BIT,
?GL_FRAGMENT_SHADER_BIT and ?GL_COMPUTE_SHADER_BIT. Additionally, the
special value ?GL_ALL_SHADER_BITS may be specified to indicate that all
executables contained in Program should be installed in Pipeline.

 validateProgram(Program)

 gl:validateProgram/1 checks to see whether the
executables contained in Program can execute given the current OpenGL state.
The information generated by the validation process will be stored in
Program's information log. The validation information may consist of an empty
string, or it may be a string containing information about how the current
program object interacts with the rest of current OpenGL state. This provides a
way for OpenGL implementers to convey more information about why the current
program is inefficient, suboptimal, failing to execute, and so on.

 validateProgramPipeline(Pipeline)

 gl:validateProgramPipeline/1 instructs the
implementation to validate the shader executables contained in Pipeline
against the current GL state. The implementation may use this as an opportunity
to perform any internal shader modifications that may be required to ensure
correct operation of the installed shaders given the current GL state.

 vertex2d(X, Y)

 Equivalent to vertex4sv/1.

 vertex2dv/1

 Equivalent to vertex4sv/1.

 vertex2f(X, Y)

 Equivalent to vertex4sv/1.

 vertex2fv/1

 Equivalent to vertex4sv/1.

 vertex2i(X, Y)

 Equivalent to vertex4sv/1.

 vertex2iv/1

 Equivalent to vertex4sv/1.

 vertex2s(X, Y)

 Equivalent to vertex4sv/1.

 vertex2sv/1

 Equivalent to vertex4sv/1.

 vertex3d(X, Y, Z)

 Equivalent to vertex4sv/1.

 vertex3dv/1

 Equivalent to vertex4sv/1.

 vertex3f(X, Y, Z)

 Equivalent to vertex4sv/1.

 vertex3fv/1

 Equivalent to vertex4sv/1.

 vertex3i(X, Y, Z)

 Equivalent to vertex4sv/1.

 vertex3iv/1

 Equivalent to vertex4sv/1.

 vertex3s(X, Y, Z)

 Equivalent to vertex4sv/1.

 vertex3sv/1

 Equivalent to vertex4sv/1.

 vertex4d(X, Y, Z, W)

 Equivalent to vertex4sv/1.

 vertex4dv/1

 Equivalent to vertex4sv/1.

 vertex4f(X, Y, Z, W)

 Equivalent to vertex4sv/1.

 vertex4fv/1

 Equivalent to vertex4sv/1.

 vertex4i(X, Y, Z, W)

 Equivalent to vertex4sv/1.

 vertex4iv/1

 Equivalent to vertex4sv/1.

 vertex4s(X, Y, Z, W)

 Equivalent to vertex4sv/1.

 vertex4sv/1

 gl:vertex() commands are used within
gl:'begin'/1/gl:'end'/0 pairs to specify
point, line, and polygon vertices. The current color, normal, texture
coordinates, and fog coordinate are associated with the vertex when
gl:vertex() is called.

 vertexArrayAttribBinding(Vaobj, Attribindex, Bindingindex)

 Equivalent to vertexAttribBinding/2.

 vertexArrayAttribFormat(Vaobj, Attribindex, Size, Type, Normalized, Relativeoffset)

 Equivalent to vertexAttribLPointer/5.

 vertexArrayAttribIFormat(Vaobj, Attribindex, Size, Type, Relativeoffset)

 Equivalent to vertexAttribLPointer/5.

 vertexArrayAttribLFormat(Vaobj, Attribindex, Size, Type, Relativeoffset)

 Equivalent to vertexAttribLPointer/5.

 vertexArrayBindingDivisor(Vaobj, Bindingindex, Divisor)

 Equivalent to vertexBindingDivisor/2.

 vertexArrayElementBuffer(Vaobj, Buffer)

 gl:vertexArrayElementBuffer/2 binds a buffer
object with id Buffer to the element array buffer bind point of a vertex array
object with id Vaobj. If Buffer is zero, any existing element array buffer
binding to Vaobj is removed.

 vertexArrayVertexBuffer(Vaobj, Bindingindex, Buffer, Offset, Stride)

 gl:bindVertexBuffer/4 and
gl:vertexArrayVertexBuffer/5 bind the buffer named
Buffer to the vertex buffer binding point whose index is given by
Bindingindex. gl:bindVertexBuffer/4 modifies the
binding of the currently bound vertex array object, whereas
gl:vertexArrayVertexBuffer/5 allows the caller to
specify ID of the vertex array object with an argument named Vaobj, for which
the binding should be modified. Offset and Stride specify the offset of the
first element within the buffer and the distance between elements within the
buffer, respectively, and are both measured in basic machine units.
Bindingindex must be less than the value of ?GL_MAX_VERTEX_ATTRIB_BINDINGS.
Offset and Stride must be greater than or equal to zero. If Buffer is
zero, then any buffer currently bound to the specified binding point is unbound.

 vertexArrayVertexBuffers(Vaobj, First, Buffers, Offsets, Strides)

 gl:bindVertexBuffers/4 and
gl:vertexArrayVertexBuffers/5 bind storage from an
array of existing buffer objects to a specified number of consecutive vertex
buffer binding points units in a vertex array object. For
gl:bindVertexBuffers/4, the vertex array object is
the currently bound vertex array object. For
gl:vertexArrayVertexBuffers/5, Vaobj is the name of
the vertex array object.

 vertexAttrib1d(Index, X)

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib1dv/2

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib1f(Index, X)

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib1fv/2

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib1s(Index, X)

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib1sv/2

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib2d(Index, X, Y)

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib2dv/2

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib2f(Index, X, Y)

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib2fv/2

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib2s(Index, X, Y)

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib2sv/2

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib3d(Index, X, Y, Z)

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib3dv/2

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib3f(Index, X, Y, Z)

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib3fv/2

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib3s(Index, X, Y, Z)

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib3sv/2

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib4bv(Index, V)

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib4d(Index, X, Y, Z, W)

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib4dv/2

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib4f(Index, X, Y, Z, W)

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib4fv/2

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib4iv(Index, V)

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib4Nbv(Index, V)

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib4Niv(Index, V)

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib4Nsv(Index, V)

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib4Nub(Index, X, Y, Z, W)

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib4Nubv/2

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib4Nuiv(Index, V)

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib4Nusv(Index, V)

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib4s(Index, X, Y, Z, W)

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib4sv/2

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib4ubv(Index, V)

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib4uiv(Index, V)

 Equivalent to vertexAttribL4dv/2.

 vertexAttrib4usv(Index, V)

 Equivalent to vertexAttribL4dv/2.

 vertexAttribBinding(Attribindex, Bindingindex)

 gl:vertexAttribBinding/2 and
gl:vertexArrayAttribBinding/3 establishes an
association between the generic vertex attribute of a vertex array object whose
index is given by Attribindex, and a vertex buffer binding whose index is
given by Bindingindex. For
gl:vertexAttribBinding/2, the vertex array object
affected is that currently bound. For
gl:vertexArrayAttribBinding/3, Vaobj is the name
of the vertex array object.

 vertexAttribDivisor(Index, Divisor)

 gl:vertexAttribDivisor/2 modifies the rate at which
generic vertex attributes advance when rendering multiple instances of
primitives in a single draw call. If Divisor is zero, the attribute at slot
Index advances once per vertex. If Divisor is non-zero, the attribute
advances once per Divisor instances of the set(s) of vertices being rendered.
An attribute is referred to as instanced if its
?GL_VERTEX_ATTRIB_ARRAY_DIVISOR value is non-zero.

 vertexAttribFormat(Attribindex, Size, Type, Normalized, Relativeoffset)

 Equivalent to vertexAttribLPointer/5.

 vertexAttribI1i(Index, X)

 Equivalent to vertexAttribL4dv/2.

 vertexAttribI1iv/2

 Equivalent to vertexAttribL4dv/2.

 vertexAttribI1ui(Index, X)

 Equivalent to vertexAttribL4dv/2.

 vertexAttribI1uiv/2

 Equivalent to vertexAttribL4dv/2.

 vertexAttribI2i(Index, X, Y)

 Equivalent to vertexAttribL4dv/2.

 vertexAttribI2iv/2

 Equivalent to vertexAttribL4dv/2.

 vertexAttribI2ui(Index, X, Y)

 Equivalent to vertexAttribL4dv/2.

 vertexAttribI2uiv/2

 Equivalent to vertexAttribL4dv/2.

 vertexAttribI3i(Index, X, Y, Z)

 Equivalent to vertexAttribL4dv/2.

 vertexAttribI3iv/2

 Equivalent to vertexAttribL4dv/2.

 vertexAttribI3ui(Index, X, Y, Z)

 Equivalent to vertexAttribL4dv/2.

 vertexAttribI3uiv/2

 Equivalent to vertexAttribL4dv/2.

 vertexAttribI4bv(Index, V)

 Equivalent to vertexAttribL4dv/2.

 vertexAttribI4i(Index, X, Y, Z, W)

 Equivalent to vertexAttribL4dv/2.

 vertexAttribI4iv/2

 Equivalent to vertexAttribL4dv/2.

 vertexAttribI4sv(Index, V)

 Equivalent to vertexAttribL4dv/2.

 vertexAttribI4ubv(Index, V)

 Equivalent to vertexAttribL4dv/2.

 vertexAttribI4ui(Index, X, Y, Z, W)

 Equivalent to vertexAttribL4dv/2.

 vertexAttribI4uiv/2

 Equivalent to vertexAttribL4dv/2.

 vertexAttribI4usv(Index, V)

 Equivalent to vertexAttribL4dv/2.

 vertexAttribIFormat(Attribindex, Size, Type, Relativeoffset)

 Equivalent to vertexAttribLPointer/5.

 vertexAttribIPointer(Index, Size, Type, Stride, Pointer)

 Equivalent to vertexAttribLPointer/5.

 vertexAttribL1d(Index, X)

 Equivalent to vertexAttribL4dv/2.

 vertexAttribL1dv/2

 Equivalent to vertexAttribL4dv/2.

 vertexAttribL2d(Index, X, Y)

 Equivalent to vertexAttribL4dv/2.

 vertexAttribL2dv/2

 Equivalent to vertexAttribL4dv/2.

 vertexAttribL3d(Index, X, Y, Z)

 Equivalent to vertexAttribL4dv/2.

 vertexAttribL3dv/2

 Equivalent to vertexAttribL4dv/2.

 vertexAttribL4d(Index, X, Y, Z, W)

 Equivalent to vertexAttribL4dv/2.

 vertexAttribL4dv/2

 The gl:vertexAttrib() family of entry points allows an
application to pass generic vertex attributes in numbered locations.

 vertexAttribLFormat(Attribindex, Size, Type, Relativeoffset)

 Equivalent to vertexAttribLPointer/5.

 vertexAttribLPointer(Index, Size, Type, Stride, Pointer)

 gl:vertexAttribFormat/5,
gl:vertexAttribIFormat/4 and
gl:vertexAttribLFormat/4, as well as
gl:vertexArrayAttribFormat/6,
gl:vertexArrayAttribIFormat/5 and
gl:vertexArrayAttribLFormat/5 specify the
organization of data in vertex arrays. The first three calls operate on the
bound vertex array object, whereas the last three ones modify the state of a
vertex array object with ID Vaobj. Attribindex specifies the index of the
generic vertex attribute array whose data layout is being described, and must be
less than the value of ?GL_MAX_VERTEX_ATTRIBS.

 vertexAttribPointer(Index, Size, Type, Normalized, Stride, Pointer)

 gl:vertexAttribPointer/6,
gl:vertexAttribIPointer/5 and
gl:vertexAttribLPointer/5 specify the location and
data format of the array of generic vertex attributes at index Index to use
when rendering. Size specifies the number of components per attribute and must
be 1, 2, 3, 4, or ?GL_BGRA. Type specifies the data type of each component,
and Stride specifies the byte stride from one attribute to the next, allowing
vertices and attributes to be packed into a single array or stored in separate
arrays.

 vertexBindingDivisor(Bindingindex, Divisor)

 gl:vertexBindingDivisor/2 and
gl:vertexArrayBindingDivisor/3 modify the rate at
which generic vertex attributes advance when rendering multiple instances of
primitives in a single draw command. If Divisor is zero, the attributes using
the buffer bound to Bindingindex advance once per vertex. If Divisor is
non-zero, the attributes advance once per Divisor instances of the set(s) of
vertices being rendered. An attribute is referred to as instanced if the
corresponding Divisor value is non-zero.

 vertexPointer(Size, Type, Stride, Ptr)

 gl:vertexPointer/4 specifies the location and data format
of an array of vertex coordinates to use when rendering. Size specifies the
number of coordinates per vertex, and must be 2, 3, or 4. Type specifies the
data type of each coordinate, and Stride specifies the byte stride from one
vertex to the next, allowing vertices and attributes to be packed into a single
array or stored in separate arrays. (Single-array storage may be more efficient
on some implementations; see gl:interleavedArrays/3.)

 viewport(X, Y, Width, Height)

 gl:viewport/4 specifies the affine transformation of x and y
from normalized device coordinates to window coordinates. Let (x nd y nd) be
normalized device coordinates. Then the window coordinates (x w y w) are
computed as follows

 viewportArrayv(First, V)

 gl:viewportArrayv/2 specifies the parameters for
multiple viewports simulataneously. First specifies the index of the first
viewport to modify and Count specifies the number of viewports to modify.
First must be less than the value of ?GL_MAX_VIEWPORTS, and First +
Count must be less than or equal to the value of ?GL_MAX_VIEWPORTS.
Viewports whose indices lie outside the range [First, First + Count) are
not modified. V contains the address of an array of floating point values
specifying the left (x), bottom (y), width (w), and height (h) of each
viewport, in that order. x and y give the location of the viewport's lower left
corner, and w and h give the width and height of the viewport, respectively. The
viewport specifies the affine transformation of x and y from normalized device
coordinates to window coordinates. Let (x nd y nd) be normalized device
coordinates. Then the window coordinates (x w y w) are computed as follows

 viewportIndexedf(Index, X, Y, W, H)

 Equivalent to viewportIndexedfv/2.

 viewportIndexedfv(Index, V)

 gl:viewportIndexedf/5 and
gl:viewportIndexedfv/2 specify the parameters for a
single viewport. Index specifies the index of the viewport to modify. Index
must be less than the value of ?GL_MAX_VIEWPORTS. For
gl:viewportIndexedf/5, X, Y, W, and H specify
the left, bottom, width and height of the viewport in pixels, respectively. For
gl:viewportIndexedfv/2, V contains the address of an
array of floating point values specifying the left (x), bottom (y), width (
w), and height (h) of each viewport, in that order. x and y give the location
of the viewport's lower left corner, and w and h give the width and height of
the viewport, respectively. The viewport specifies the affine transformation of
x and y from normalized device coordinates to window coordinates. Let (x nd y
nd) be normalized device coordinates. Then the window coordinates (x w y w) are
computed as follows

 waitSync(Sync, Flags, Timeout)

 gl:waitSync/3 causes the GL server to block and wait until
Sync becomes signaled. Sync is the name of an existing sync object upon
which to wait. Flags and Timeout are currently not used and must be set to
zero and the special value ?GL_TIMEOUT_IGNORED, respectively

 windowPos2d(X, Y)

 Equivalent to windowPos3sv/1.

 windowPos2dv/1

 Equivalent to windowPos3sv/1.

 windowPos2f(X, Y)

 Equivalent to windowPos3sv/1.

 windowPos2fv/1

 Equivalent to windowPos3sv/1.

 windowPos2i(X, Y)

 Equivalent to windowPos3sv/1.

 windowPos2iv/1

 Equivalent to windowPos3sv/1.

 windowPos2s(X, Y)

 Equivalent to windowPos3sv/1.

 windowPos2sv/1

 Equivalent to windowPos3sv/1.

 windowPos3d(X, Y, Z)

 Equivalent to windowPos3sv/1.

 windowPos3dv/1

 Equivalent to windowPos3sv/1.

 windowPos3f(X, Y, Z)

 Equivalent to windowPos3sv/1.

 windowPos3fv/1

 Equivalent to windowPos3sv/1.

 windowPos3i(X, Y, Z)

 Equivalent to windowPos3sv/1.

 windowPos3iv/1

 Equivalent to windowPos3sv/1.

 windowPos3s(X, Y, Z)

 Equivalent to windowPos3sv/1.

 windowPos3sv/1

 The GL maintains a 3D position in window coordinates. This position, called the
raster position, is used to position pixel and bitmap write operations. It is
maintained with subpixel accuracy. See gl:bitmap/7,
gl:drawPixels/5, and gl:copyPixels/5.

 Types

 clamp()

 (not exported)

 -type clamp() :: float().

 enum()

 (not exported)

 -type enum() :: non_neg_integer().

 f()

 (not exported)

 -type f() :: float().

 i()

 (not exported)

 -type i() :: integer().

 m12()

 (not exported)

 -type m12() :: {f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f()}.

 m16()

 (not exported)

 -type m16() :: {f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f()}.

 matrix()

 (not exported)

 -type matrix() :: m12() | m16().

 mem()

 (not exported)

 -type mem() :: binary() | tuple().

 offset()

 (not exported)

 -type offset() :: non_neg_integer().

 Functions

 accum(Op, Value)

 -spec accum(Op :: enum(), Value :: f()) -> ok.

The accumulation buffer is an extended-range color buffer. Images are not
rendered into it. Rather, images rendered into one of the color buffers are
added to the contents of the accumulation buffer after rendering. Effects such
as antialiasing (of points, lines, and polygons), motion blur, and depth of
field can be created by accumulating images generated with different
transformation matrices.
External documentation.

 activeShaderProgram(Pipeline, Program)

 -spec activeShaderProgram(Pipeline :: i(), Program :: i()) -> ok.

gl:activeShaderProgram/2 sets the linked program
named by Program to be the active program for the program pipeline object
Pipeline. The active program in the active program pipeline object is the
target of calls to gl:uniform() when no program has been made
current through a call to gl:useProgram/1.
External documentation.

 activeTexture(Texture)

 -spec activeTexture(Texture :: enum()) -> ok.

gl:activeTexture/1 selects which texture unit subsequent
texture state calls will affect. The number of texture units an implementation
supports is implementation dependent, but must be at least 80.
External documentation.

 alphaFunc(Func, Ref)

 -spec alphaFunc(Func :: enum(), Ref :: clamp()) -> ok.

The alpha test discards fragments depending on the outcome of a comparison
between an incoming fragment's alpha value and a constant reference value.
gl:alphaFunc/2 specifies the reference value and the
comparison function. The comparison is performed only if alpha testing is
enabled. By default, it is not enabled. (See gl:enable/1 and
gl:disable/1 of ?GL_ALPHA_TEST.)
External documentation.

 areTexturesResident(Textures)

 -spec areTexturesResident(Textures :: [i()]) -> {0 | 1, Residences :: [0 | 1]}.

GL establishes a ``working set'' of textures that are resident in texture
memory. These textures can be bound to a texture target much more efficiently
than textures that are not resident.
External documentation.

 arrayElement(I)

 -spec arrayElement(I :: i()) -> ok.

gl:arrayElement/1 commands are used within
gl:'begin'/1/gl:'end'/0 pairs to specify
vertex and attribute data for point, line, and polygon primitives. If
?GL_VERTEX_ARRAY is enabled when gl:arrayElement/1 is
called, a single vertex is drawn, using vertex and attribute data taken from
location I of the enabled arrays. If ?GL_VERTEX_ARRAY is not enabled, no
drawing occurs but the attributes corresponding to the enabled arrays are
modified.
External documentation.

 attachShader(Program, Shader)

 -spec attachShader(Program :: i(), Shader :: i()) -> ok.

In order to create a complete shader program, there must be a way to specify the
list of things that will be linked together. Program objects provide this
mechanism. Shaders that are to be linked together in a program object must first
be attached to that program object. gl:attachShader/2
attaches the shader object specified by Shader to the program object specified
by Program. This indicates that Shader will be included in link operations
that will be performed on Program.
External documentation.

 'begin'(Mode)

 -spec 'begin'(Mode :: enum()) -> ok.

Equivalent to '\'end\''/0.

 beginConditionalRender(Id, Mode)

 -spec beginConditionalRender(Id :: i(), Mode :: enum()) -> ok.

Equivalent to endConditionalRender/0.

 beginQuery(Target, Id)

 -spec beginQuery(Target :: enum(), Id :: i()) -> ok.

Equivalent to endQuery/1.

 beginQueryIndexed(Target, Index, Id)

 -spec beginQueryIndexed(Target :: enum(), Index :: i(), Id :: i()) -> ok.

Equivalent to endQueryIndexed/2.

 beginTransformFeedback(PrimitiveMode)

 -spec beginTransformFeedback(PrimitiveMode :: enum()) -> ok.

Equivalent to endTransformFeedback/0.

 bindAttribLocation(Program, Index, Name)

 -spec bindAttribLocation(Program :: i(), Index :: i(), Name :: string()) -> ok.

gl:bindAttribLocation/3 is used to associate a
user-defined attribute variable in the program object specified by Program
with a generic vertex attribute index. The name of the user-defined attribute
variable is passed as a null terminated string in Name. The generic vertex
attribute index to be bound to this variable is specified by Index. When
Program is made part of current state, values provided via the generic vertex
attribute Index will modify the value of the user-defined attribute variable
specified by Name.
External documentation.

 bindBuffer(Target, Buffer)

 -spec bindBuffer(Target :: enum(), Buffer :: i()) -> ok.

gl:bindBuffer/2 binds a buffer object to the specified
buffer binding point. Calling gl:bindBuffer/2 with Target
set to one of the accepted symbolic constants and Buffer set to the name of a
buffer object binds that buffer object name to the target. If no buffer object
with name Buffer exists, one is created with that name. When a buffer object
is bound to a target, the previous binding for that target is automatically
broken.
External documentation.

 bindBufferBase(Target, Index, Buffer)

 -spec bindBufferBase(Target :: enum(), Index :: i(), Buffer :: i()) -> ok.

gl:bindBufferBase/3 binds the buffer object Buffer to
the binding point at index Index of the array of targets specified by
Target. Each Target represents an indexed array of buffer binding points, as
well as a single general binding point that can be used by other buffer
manipulation functions such as gl:bindBuffer/2 or
glMapBuffer. In addition to binding Buffer to the indexed buffer binding
target, gl:bindBufferBase/3 also binds Buffer to the
generic buffer binding point specified by Target.
External documentation.

 bindBufferRange(Target, Index, Buffer, Offset, Size)

 -spec bindBufferRange(Target :: enum(), Index :: i(), Buffer :: i(), Offset :: i(), Size :: i()) -> ok.

gl:bindBufferRange/5 binds a range the buffer object
Buffer represented by Offset and Size to the binding point at index
Index of the array of targets specified by Target. Each Target represents
an indexed array of buffer binding points, as well as a single general binding
point that can be used by other buffer manipulation functions such as
gl:bindBuffer/2 or glMapBuffer. In addition to binding a
range of Buffer to the indexed buffer binding target,
gl:bindBufferRange/5 also binds the range to the
generic buffer binding point specified by Target.
External documentation.

 bindBuffersBase(Target, First, Buffers)

 -spec bindBuffersBase(Target :: enum(), First :: i(), Buffers :: [i()]) -> ok.

gl:bindBuffersBase/3 binds a set of Count buffer
objects whose names are given in the array Buffers to the Count consecutive
binding points starting from index First of the array of targets specified by
Target. If Buffers is ?NULL then
gl:bindBuffersBase/3 unbinds any buffers that are
currently bound to the referenced binding points. Assuming no errors are
generated, it is equivalent to the following pseudo-code, which calls
gl:bindBufferBase/3, with the exception that the
non-indexed Target is not changed by
gl:bindBuffersBase/3:
External documentation.

 bindBuffersRange(Target, First, Buffers, Offsets, Sizes)

 -spec bindBuffersRange(Target :: enum(),
 First :: i(),
 Buffers :: [i()],
 Offsets :: [i()],
 Sizes :: [i()]) ->
 ok.

gl:bindBuffersRange/5 binds a set of Count ranges
from buffer objects whose names are given in the array Buffers to the Count
consecutive binding points starting from index First of the array of targets
specified by Target. Offsets specifies the address of an array containing
Count starting offsets within the buffers, and Sizes specifies the address
of an array of Count sizes of the ranges. If Buffers is ?NULL then
Offsets and Sizes are ignored and
gl:bindBuffersRange/5 unbinds any buffers that are
currently bound to the referenced binding points. Assuming no errors are
generated, it is equivalent to the following pseudo-code, which calls
gl:bindBufferRange/5, with the exception that the
non-indexed Target is not changed by
gl:bindBuffersRange/5:
External documentation.

 bindFragDataLocation(Program, Color, Name)

 -spec bindFragDataLocation(Program :: i(), Color :: i(), Name :: string()) -> ok.

gl:bindFragDataLocation/3 explicitly specifies the
binding of the user-defined varying out variable Name to fragment shader color
number ColorNumber for program Program. If Name was bound previously, its
assigned binding is replaced with ColorNumber. Name must be a
null-terminated string. ColorNumber must be less than ?GL_MAX_DRAW_BUFFERS.
External documentation.

 bindFragDataLocationIndexed(Program, ColorNumber, Index, Name)

 -spec bindFragDataLocationIndexed(Program :: i(), ColorNumber :: i(), Index :: i(), Name :: string()) ->
 ok.

gl:bindFragDataLocationIndexed/4 specifies
that the varying out variable Name in Program should be bound to fragment
color ColorNumber when the program is next linked. Index may be zero or one
to specify that the color be used as either the first or second color input to
the blend equation, respectively.
External documentation.

 bindFramebuffer(Target, Framebuffer)

 -spec bindFramebuffer(Target :: enum(), Framebuffer :: i()) -> ok.

gl:bindFramebuffer/2 binds the framebuffer object with
name Framebuffer to the framebuffer target specified by Target. Target
must be either ?GL_DRAW_FRAMEBUFFER, ?GL_READ_FRAMEBUFFER or
?GL_FRAMEBUFFER. If a framebuffer object is bound to ?GL_DRAW_FRAMEBUFFER or
?GL_READ_FRAMEBUFFER, it becomes the target for rendering or readback
operations, respectively, until it is deleted or another framebuffer is bound to
the corresponding bind point. Calling
gl:bindFramebuffer/2 with Target set to
?GL_FRAMEBUFFER binds Framebuffer to both the read and draw framebuffer
targets. Framebuffer is the name of a framebuffer object previously returned
from a call to gl:genFramebuffers/1, or zero to break
the existing binding of a framebuffer object to Target.
External documentation.

 bindImageTexture(Unit, Texture, Level, Layered, Layer, Access, Format)

 -spec bindImageTexture(Unit, Texture, Level, Layered, Layer, Access, Format) -> ok
 when
 Unit :: i(),
 Texture :: i(),
 Level :: i(),
 Layered :: 0 | 1,
 Layer :: i(),
 Access :: enum(),
 Format :: enum().

gl:bindImageTexture/7 binds a single level of a
texture to an image unit for the purpose of reading and writing it from shaders.
Unit specifies the zero-based index of the image unit to which to bind the
texture level. Texture specifies the name of an existing texture object to
bind to the image unit. If Texture is zero, then any existing binding to the
image unit is broken. Level specifies the level of the texture to bind to the
image unit.
External documentation.

 bindImageTextures(First, Textures)

 -spec bindImageTextures(First :: i(), Textures :: [i()]) -> ok.

gl:bindImageTextures/2 binds images from an array of
existing texture objects to a specified number of consecutive image units.
Count specifies the number of texture objects whose names are stored in the
array Textures. That number of texture names are read from the array and bound
to the Count consecutive texture units starting from First. If the name zero
appears in the Textures array, any existing binding to the image unit is
reset. Any non-zero entry in Textures must be the name of an existing texture
object. When a non-zero entry in Textures is present, the image at level zero
is bound, the binding is considered layered, with the first layer set to zero,
and the image is bound for read-write access. The image unit format parameter is
taken from the internal format of the image at level zero of the texture object.
For cube map textures, the internal format of the positive X image of level zero
is used. If Textures is ?NULL then it is as if an appropriately sized array
containing only zeros had been specified.
External documentation.

 bindProgramPipeline(Pipeline)

 -spec bindProgramPipeline(Pipeline :: i()) -> ok.

gl:bindProgramPipeline/1 binds a program pipeline
object to the current context. Pipeline must be a name previously returned
from a call to gl:genProgramPipelines/1. If no
program pipeline exists with name Pipeline then a new pipeline object is
created with that name and initialized to the default state vector.
External documentation.

 bindRenderbuffer(Target, Renderbuffer)

 -spec bindRenderbuffer(Target :: enum(), Renderbuffer :: i()) -> ok.

gl:bindRenderbuffer/2 binds the renderbuffer object
with name Renderbuffer to the renderbuffer target specified by Target.
Target must be ?GL_RENDERBUFFER. Renderbuffer is the name of a
renderbuffer object previously returned from a call to
gl:genRenderbuffers/1, or zero to break the existing
binding of a renderbuffer object to Target.
External documentation.

 bindSampler(Unit, Sampler)

 -spec bindSampler(Unit :: i(), Sampler :: i()) -> ok.

gl:bindSampler/2 binds Sampler to the texture unit at
index Unit. Sampler must be zero or the name of a sampler object previously
returned from a call to gl:genSamplers/1. Unit must be
less than the value of ?GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS.
External documentation.

 bindSamplers(First, Samplers)

 -spec bindSamplers(First :: i(), Samplers :: [i()]) -> ok.

gl:bindSamplers/2 binds samplers from an array of existing
sampler objects to a specified number of consecutive sampler units. Count
specifies the number of sampler objects whose names are stored in the array
Samplers. That number of sampler names is read from the array and bound to the
Count consecutive sampler units starting from First.
External documentation.

 bindTexture(Target, Texture)

 -spec bindTexture(Target :: enum(), Texture :: i()) -> ok.

gl:bindTexture/2 lets you create or use a named texture.
Calling gl:bindTexture/2 with Target set to
?GL_TEXTURE_1D, ?GL_TEXTURE_2D, ?GL_TEXTURE_3D, ?GL_TEXTURE_1D_ARRAY,
?GL_TEXTURE_2D_ARRAY, ?GL_TEXTURE_RECTANGLE, ?GL_TEXTURE_CUBE_MAP,
?GL_TEXTURE_CUBE_MAP_ARRAY, ?GL_TEXTURE_BUFFER, ?GL_TEXTURE_2D_MULTISAMPLE
or ?GL_TEXTURE_2D_MULTISAMPLE_ARRAY and Texture set to the name of the new
texture binds the texture name to the target. When a texture is bound to a
target, the previous binding for that target is automatically broken.
External documentation.

 bindTextures(First, Textures)

 -spec bindTextures(First :: i(), Textures :: [i()]) -> ok.

gl:bindTextures/2 binds an array of existing texture
objects to a specified number of consecutive texture units. Count specifies
the number of texture objects whose names are stored in the array Textures.
That number of texture names are read from the array and bound to the Count
consecutive texture units starting from First. The target, or type of texture
is deduced from the texture object and each texture is bound to the
corresponding target of the texture unit. If the name zero appears in the
Textures array, any existing binding to any target of the texture unit is
reset and the default texture for that target is bound in its place. Any
non-zero entry in Textures must be the name of an existing texture object. If
Textures is ?NULL then it is as if an appropriately sized array containing
only zeros had been specified.
External documentation.

 bindTextureUnit(Unit, Texture)

 -spec bindTextureUnit(Unit :: i(), Texture :: i()) -> ok.

gl:bindTextureUnit/2 binds an existing texture object
to the texture unit numbered Unit.
External documentation.

 bindTransformFeedback(Target, Id)

 -spec bindTransformFeedback(Target :: enum(), Id :: i()) -> ok.

gl:bindTransformFeedback/2 binds the transform
feedback object with name Id to the current GL state. Id must be a name
previously returned from a call to
gl:genTransformFeedbacks/1. If Id has not
previously been bound, a new transform feedback object with name Id and
initialized with the default transform state vector is created.
External documentation.

 bindVertexArray(Array)

 -spec bindVertexArray(Array :: i()) -> ok.

gl:bindVertexArray/1 binds the vertex array object with
name Array. Array is the name of a vertex array object previously returned
from a call to gl:genVertexArrays/1, or zero to break
the existing vertex array object binding.
External documentation.

 bindVertexBuffer(Bindingindex, Buffer, Offset, Stride)

 -spec bindVertexBuffer(Bindingindex :: i(), Buffer :: i(), Offset :: i(), Stride :: i()) -> ok.

Equivalent to vertexArrayVertexBuffer/5.

 bindVertexBuffers(First, Buffers, Offsets, Strides)

 -spec bindVertexBuffers(First :: i(), Buffers :: [i()], Offsets :: [i()], Strides :: [i()]) -> ok.

Equivalent to vertexArrayVertexBuffers/5.

 bitmap(Width, Height, Xorig, Yorig, Xmove, Ymove, Bitmap)

 -spec bitmap(Width, Height, Xorig, Yorig, Xmove, Ymove, Bitmap) -> ok
 when
 Width :: i(),
 Height :: i(),
 Xorig :: f(),
 Yorig :: f(),
 Xmove :: f(),
 Ymove :: f(),
 Bitmap :: offset() | mem().

A bitmap is a binary image. When drawn, the bitmap is positioned relative to the
current raster position, and frame buffer pixels corresponding to 1's in the
bitmap are written using the current raster color or index. Frame buffer pixels
corresponding to 0's in the bitmap are not modified.
External documentation.

 blendColor(Red, Green, Blue, Alpha)

 -spec blendColor(Red :: clamp(), Green :: clamp(), Blue :: clamp(), Alpha :: clamp()) -> ok.

The ?GL_BLEND_COLOR may be used to calculate the source and destination
blending factors. The color components are clamped to the range [0 1] before
being stored. See gl:blendFunc/2 for a complete description
of the blending operations. Initially the ?GL_BLEND_COLOR is set to (0, 0, 0,
0).
External documentation.

 blendEquation(Mode)

 -spec blendEquation(Mode :: enum()) -> ok.

Equivalent to blendEquationi/2.

 blendEquationi(Buf, Mode)

 -spec blendEquationi(Buf :: i(), Mode :: enum()) -> ok.

The blend equations determine how a new pixel (the ''source'' color) is combined
with a pixel already in the framebuffer (the ''destination'' color). This
function sets both the RGB blend equation and the alpha blend equation to a
single equation. gl:blendEquationi/2 specifies the blend
equation for a single draw buffer whereas
gl:blendEquation/1 sets the blend equation for all draw
buffers.
External documentation.

 blendEquationSeparate(ModeRGB, ModeAlpha)

 -spec blendEquationSeparate(ModeRGB :: enum(), ModeAlpha :: enum()) -> ok.

Equivalent to blendEquationSeparatei/3.

 blendEquationSeparatei(Buf, ModeRGB, ModeAlpha)

 -spec blendEquationSeparatei(Buf :: i(), ModeRGB :: enum(), ModeAlpha :: enum()) -> ok.

The blend equations determines how a new pixel (the ''source'' color) is
combined with a pixel already in the framebuffer (the ''destination'' color).
These functions specify one blend equation for the RGB-color components and one
blend equation for the alpha component.
gl:blendEquationSeparatei/3 specifies the blend
equations for a single draw buffer whereas
gl:blendEquationSeparate/2 sets the blend
equations for all draw buffers.
External documentation.

 blendFunc(Sfactor, Dfactor)

 -spec blendFunc(Sfactor :: enum(), Dfactor :: enum()) -> ok.

Equivalent to blendFunci/3.

 blendFunci(Buf, Src, Dst)

 -spec blendFunci(Buf :: i(), Src :: enum(), Dst :: enum()) -> ok.

Pixels can be drawn using a function that blends the incoming (source) RGBA
values with the RGBA values that are already in the frame buffer (the
destination values). Blending is initially disabled. Use
gl:enable/1 and gl:disable/1 with argument
?GL_BLEND to enable and disable blending.
External documentation.

 blendFuncSeparate(SfactorRGB, DfactorRGB, SfactorAlpha, DfactorAlpha)

 -spec blendFuncSeparate(SfactorRGB, DfactorRGB, SfactorAlpha, DfactorAlpha) -> ok
 when
 SfactorRGB :: enum(),
 DfactorRGB :: enum(),
 SfactorAlpha :: enum(),
 DfactorAlpha :: enum().

Equivalent to blendFuncSeparatei/5.

 blendFuncSeparatei(Buf, SrcRGB, DstRGB, SrcAlpha, DstAlpha)

 -spec blendFuncSeparatei(Buf :: i(),
 SrcRGB :: enum(),
 DstRGB :: enum(),
 SrcAlpha :: enum(),
 DstAlpha :: enum()) ->
 ok.

Pixels can be drawn using a function that blends the incoming (source) RGBA
values with the RGBA values that are already in the frame buffer (the
destination values). Blending is initially disabled. Use
gl:enable/1 and gl:disable/1 with argument
?GL_BLEND to enable and disable blending.
External documentation.

 blitFramebuffer(SrcX0, SrcY0, SrcX1, SrcY1, DstX0, DstY0, DstX1, DstY1, Mask, Filter)

 -spec blitFramebuffer(SrcX0, SrcY0, SrcX1, SrcY1, DstX0, DstY0, DstX1, DstY1, Mask, Filter) -> ok
 when
 SrcX0 :: i(),
 SrcY0 :: i(),
 SrcX1 :: i(),
 SrcY1 :: i(),
 DstX0 :: i(),
 DstY0 :: i(),
 DstX1 :: i(),
 DstY1 :: i(),
 Mask :: i(),
 Filter :: enum().

gl:blitFramebuffer/10 and glBlitNamedFramebuffer
transfer a rectangle of pixel values from one region of a read framebuffer to
another region of a draw framebuffer.
External documentation.

 bufferData(Target, Size, Data, Usage)

 -spec bufferData(Target :: enum(), Size :: i(), Data :: offset() | mem(), Usage :: enum()) -> ok.

gl:bufferData/4 and glNamedBufferData create a new data
store for a buffer object. In case of gl:bufferData/4, the
buffer object currently bound to Target is used. For glNamedBufferData, a
buffer object associated with ID specified by the caller in Buffer will be
used instead.
External documentation.

 bufferStorage(Target, Size, Data, Flags)

 -spec bufferStorage(Target :: enum(), Size :: i(), Data :: offset() | mem(), Flags :: i()) -> ok.

gl:bufferStorage/4 and glNamedBufferStorage create a
new immutable data store. For gl:bufferStorage/4, the
buffer object currently bound to Target will be initialized. For
glNamedBufferStorage, Buffer is the name of the buffer object that will be
configured. The size of the data store is specified by Size. If an initial
data is available, its address may be supplied in Data. Otherwise, to create
an uninitialized data store, Data should be ?NULL.
External documentation.

 bufferSubData(Target, Offset, Size, Data)

 -spec bufferSubData(Target :: enum(), Offset :: i(), Size :: i(), Data :: offset() | mem()) -> ok.

gl:bufferSubData/4 and glNamedBufferSubData redefine
some or all of the data store for the specified buffer object. Data starting at
byte offset Offset and extending for Size bytes is copied to the data store
from the memory pointed to by Data. Offset and Size must define a range
lying entirely within the buffer object's data store.
External documentation.

 callList(List)

 -spec callList(List :: i()) -> ok.

gl:callList/1 causes the named display list to be executed.
The commands saved in the display list are executed in order, just as if they
were called without using a display list. If List has not been defined as a
display list, gl:callList/1 is ignored.
External documentation.

 callLists(Lists)

 -spec callLists(Lists :: [i()]) -> ok.

gl:callLists/1 causes each display list in the list of names
passed as Lists to be executed. As a result, the commands saved in each
display list are executed in order, just as if they were called without using a
display list. Names of display lists that have not been defined are ignored.
External documentation.

 checkFramebufferStatus(Target)

 -spec checkFramebufferStatus(Target :: enum()) -> enum().

gl:checkFramebufferStatus/1 and
glCheckNamedFramebufferStatus return the completeness status of a framebuffer
object when treated as a read or draw framebuffer, depending on the value of
Target.
External documentation.

 clampColor(Target, Clamp)

 -spec clampColor(Target :: enum(), Clamp :: enum()) -> ok.

gl:clampColor/2 controls color clamping that is performed
during gl:readPixels/7. Target must be
?GL_CLAMP_READ_COLOR. If Clamp is ?GL_TRUE, read color clamping is
enabled; if Clamp is ?GL_FALSE, read color clamping is disabled. If Clamp
is ?GL_FIXED_ONLY, read color clamping is enabled only if the selected read
buffer has fixed point components and disabled otherwise.
External documentation.

 clear(Mask)

 -spec clear(Mask :: i()) -> ok.

gl:clear/1 sets the bitplane area of the window to values
previously selected by gl:clearColor/4,
gl:clearDepth/1, and
gl:clearStencil/1. Multiple color buffers can be cleared
simultaneously by selecting more than one buffer at a time using
gl:drawBuffer/1.
External documentation.

 clearAccum(Red, Green, Blue, Alpha)

 -spec clearAccum(Red :: f(), Green :: f(), Blue :: f(), Alpha :: f()) -> ok.

gl:clearAccum/4 specifies the red, green, blue, and alpha
values used by gl:clear/1 to clear the accumulation buffer.
External documentation.

 clearBufferData(Target, Internalformat, Format, Type, Data)

 -spec clearBufferData(Target, Internalformat, Format, Type, Data) -> ok
 when
 Target :: enum(),
 Internalformat :: enum(),
 Format :: enum(),
 Type :: enum(),
 Data :: offset() | mem().

Equivalent to clearBufferuiv/3.

 clearBufferfi(Buffer, Drawbuffer, Depth, Stencil)

 -spec clearBufferfi(Buffer :: enum(), Drawbuffer :: i(), Depth :: f(), Stencil :: i()) -> ok.

Equivalent to clearBufferuiv/3.

 clearBufferfv(Buffer, Drawbuffer, Value)

 -spec clearBufferfv(Buffer :: enum(), Drawbuffer :: i(), Value :: tuple()) -> ok.

Equivalent to clearBufferuiv/3.

 clearBufferiv(Buffer, Drawbuffer, Value)

 -spec clearBufferiv(Buffer :: enum(), Drawbuffer :: i(), Value :: tuple()) -> ok.

Equivalent to clearBufferuiv/3.

 clearBufferSubData(Target, Internalformat, Offset, Size, Format, Type, Data)

 -spec clearBufferSubData(Target, Internalformat, Offset, Size, Format, Type, Data) -> ok
 when
 Target :: enum(),
 Internalformat :: enum(),
 Offset :: i(),
 Size :: i(),
 Format :: enum(),
 Type :: enum(),
 Data :: offset() | mem().

Equivalent to clearBufferuiv/3.

 clearBufferuiv(Buffer, Drawbuffer, Value)

 -spec clearBufferuiv(Buffer :: enum(), Drawbuffer :: i(), Value :: tuple()) -> ok.

These commands clear a specified buffer of a framebuffer to specified value(s).
For gl:clearBuffer*(), the framebuffer is the currently
bound draw framebuffer object. For glClearNamedFramebuffer*, Framebuffer is
zero, indicating the default draw framebuffer, or the name of a framebuffer
object.
External documentation.

 clearColor(Red, Green, Blue, Alpha)

 -spec clearColor(Red :: clamp(), Green :: clamp(), Blue :: clamp(), Alpha :: clamp()) -> ok.

gl:clearColor/4 specifies the red, green, blue, and alpha
values used by gl:clear/1 to clear the color buffers. Values
specified by gl:clearColor/4 are clamped to the range [0
1].
External documentation.

 clearDepth(Depth)

 -spec clearDepth(Depth :: clamp()) -> ok.

Equivalent to clearDepthf/1.

 clearDepthf(D)

 -spec clearDepthf(D :: f()) -> ok.

gl:clearDepth/1 specifies the depth value used by
gl:clear/1 to clear the depth buffer. Values specified by
gl:clearDepth/1 are clamped to the range [0 1].
External documentation.

 clearIndex(C)

 -spec clearIndex(C :: f()) -> ok.

gl:clearIndex/1 specifies the index used by
gl:clear/1 to clear the color index buffers. C is not clamped.
Rather, C is converted to a fixed-point value with unspecified precision to
the right of the binary point. The integer part of this value is then masked
with 2 m-1, where m is the number of bits in a color index stored in the frame
buffer.
External documentation.

 clearStencil(S)

 -spec clearStencil(S :: i()) -> ok.

gl:clearStencil/1 specifies the index used by
gl:clear/1 to clear the stencil buffer. S is masked with 2 m-1,
where m is the number of bits in the stencil buffer.
External documentation.

 clearTexImage(Texture, Level, Format, Type, Data)

 -spec clearTexImage(Texture :: i(),
 Level :: i(),
 Format :: enum(),
 Type :: enum(),
 Data :: offset() | mem()) ->
 ok.

gl:clearTexImage/5 fills all an image contained in a
texture with an application supplied value. Texture must be the name of an
existing texture. Further, Texture may not be the name of a buffer texture,
nor may its internal format be compressed.
External documentation.

 clearTexSubImage(Texture, Level, Xoffset, Yoffset, Zoffset, Width, Height, Depth, Format, Type, Data)

 -spec clearTexSubImage(Texture, Level, Xoffset, Yoffset, Zoffset, Width, Height, Depth, Format, Type,
 Data) ->
 ok
 when
 Texture :: i(),
 Level :: i(),
 Xoffset :: i(),
 Yoffset :: i(),
 Zoffset :: i(),
 Width :: i(),
 Height :: i(),
 Depth :: i(),
 Format :: enum(),
 Type :: enum(),
 Data :: offset() | mem().

gl:clearTexSubImage/11 fills all or part of an image
contained in a texture with an application supplied value. Texture must be the
name of an existing texture. Further, Texture may not be the name of a buffer
texture, nor may its internal format be compressed.
External documentation.

 clientActiveTexture(Texture)

 -spec clientActiveTexture(Texture :: enum()) -> ok.

gl:clientActiveTexture/1 selects the vertex array
client state parameters to be modified by
gl:texCoordPointer/4, and enabled or disabled with
gl:enableClientState/1 or
gl:disableClientState/1, respectively, when called
with a parameter of ?GL_TEXTURE_COORD_ARRAY.
External documentation.

 clientWaitSync(Sync, Flags, Timeout)

 -spec clientWaitSync(Sync :: i(), Flags :: i(), Timeout :: i()) -> enum().

gl:clientWaitSync/3 causes the client to block and wait
for the sync object specified by Sync to become signaled. If Sync is
signaled when gl:clientWaitSync/3 is called,
gl:clientWaitSync/3 returns immediately, otherwise it
will block and wait for up to Timeout nanoseconds for Sync to become
signaled.
External documentation.

 clipControl(Origin, Depth)

 -spec clipControl(Origin :: enum(), Depth :: enum()) -> ok.

gl:clipControl/2 controls the clipping volume behavior and
the clip coordinate to window coordinate transformation behavior.
External documentation.

 clipPlane(Plane, Equation)

 -spec clipPlane(Plane :: enum(), Equation :: {f(), f(), f(), f()}) -> ok.

Geometry is always clipped against the boundaries of a six-plane frustum in x,
y, and z. gl:clipPlane/2 allows the specification of
additional planes, not necessarily perpendicular to the x, y, or z axis,
against which all geometry is clipped. To determine the maximum number of
additional clipping planes, call gl:getIntegerv/1 with
argument ?GL_MAX_CLIP_PLANES. All implementations support at least six such
clipping planes. Because the resulting clipping region is the intersection of
the defined half-spaces, it is always convex.
External documentation.

 color3b(Red, Green, Blue)

 -spec color3b(Red :: i(), Green :: i(), Blue :: i()) -> ok.

Equivalent to color4usv/1.

 color3bv/1

 -spec color3bv({Red :: i(), Green :: i(), Blue :: i()}) -> ok.

Equivalent to color4usv/1.

 color3d(Red, Green, Blue)

 -spec color3d(Red :: f(), Green :: f(), Blue :: f()) -> ok.

Equivalent to color4usv/1.

 color3dv/1

 -spec color3dv({Red :: f(), Green :: f(), Blue :: f()}) -> ok.

Equivalent to color4usv/1.

 color3f(Red, Green, Blue)

 -spec color3f(Red :: f(), Green :: f(), Blue :: f()) -> ok.

Equivalent to color4usv/1.

 color3fv/1

 -spec color3fv({Red :: f(), Green :: f(), Blue :: f()}) -> ok.

Equivalent to color4usv/1.

 color3i(Red, Green, Blue)

 -spec color3i(Red :: i(), Green :: i(), Blue :: i()) -> ok.

Equivalent to color4usv/1.

 color3iv/1

 -spec color3iv({Red :: i(), Green :: i(), Blue :: i()}) -> ok.

Equivalent to color4usv/1.

 color3s(Red, Green, Blue)

 -spec color3s(Red :: i(), Green :: i(), Blue :: i()) -> ok.

Equivalent to color4usv/1.

 color3sv/1

 -spec color3sv({Red :: i(), Green :: i(), Blue :: i()}) -> ok.

Equivalent to color4usv/1.

 color3ub(Red, Green, Blue)

 -spec color3ub(Red :: i(), Green :: i(), Blue :: i()) -> ok.

Equivalent to color4usv/1.

 color3ubv/1

 -spec color3ubv({Red :: i(), Green :: i(), Blue :: i()}) -> ok.

Equivalent to color4usv/1.

 color3ui(Red, Green, Blue)

 -spec color3ui(Red :: i(), Green :: i(), Blue :: i()) -> ok.

Equivalent to color4usv/1.

 color3uiv/1

 -spec color3uiv({Red :: i(), Green :: i(), Blue :: i()}) -> ok.

Equivalent to color4usv/1.

 color3us(Red, Green, Blue)

 -spec color3us(Red :: i(), Green :: i(), Blue :: i()) -> ok.

Equivalent to color4usv/1.

 color3usv/1

 -spec color3usv({Red :: i(), Green :: i(), Blue :: i()}) -> ok.

Equivalent to color4usv/1.

 color4b(Red, Green, Blue, Alpha)

 -spec color4b(Red :: i(), Green :: i(), Blue :: i(), Alpha :: i()) -> ok.

Equivalent to color4usv/1.

 color4bv/1

 -spec color4bv({Red :: i(), Green :: i(), Blue :: i(), Alpha :: i()}) -> ok.

Equivalent to color4usv/1.

 color4d(Red, Green, Blue, Alpha)

 -spec color4d(Red :: f(), Green :: f(), Blue :: f(), Alpha :: f()) -> ok.

Equivalent to color4usv/1.

 color4dv/1

 -spec color4dv({Red :: f(), Green :: f(), Blue :: f(), Alpha :: f()}) -> ok.

Equivalent to color4usv/1.

 color4f(Red, Green, Blue, Alpha)

 -spec color4f(Red :: f(), Green :: f(), Blue :: f(), Alpha :: f()) -> ok.

Equivalent to color4usv/1.

 color4fv/1

 -spec color4fv({Red :: f(), Green :: f(), Blue :: f(), Alpha :: f()}) -> ok.

Equivalent to color4usv/1.

 color4i(Red, Green, Blue, Alpha)

 -spec color4i(Red :: i(), Green :: i(), Blue :: i(), Alpha :: i()) -> ok.

Equivalent to color4usv/1.

 color4iv/1

 -spec color4iv({Red :: i(), Green :: i(), Blue :: i(), Alpha :: i()}) -> ok.

Equivalent to color4usv/1.

 color4s(Red, Green, Blue, Alpha)

 -spec color4s(Red :: i(), Green :: i(), Blue :: i(), Alpha :: i()) -> ok.

Equivalent to color4usv/1.

 color4sv/1

 -spec color4sv({Red :: i(), Green :: i(), Blue :: i(), Alpha :: i()}) -> ok.

Equivalent to color4usv/1.

 color4ub(Red, Green, Blue, Alpha)

 -spec color4ub(Red :: i(), Green :: i(), Blue :: i(), Alpha :: i()) -> ok.

Equivalent to color4usv/1.

 color4ubv/1

 -spec color4ubv({Red :: i(), Green :: i(), Blue :: i(), Alpha :: i()}) -> ok.

Equivalent to color4usv/1.

 color4ui(Red, Green, Blue, Alpha)

 -spec color4ui(Red :: i(), Green :: i(), Blue :: i(), Alpha :: i()) -> ok.

Equivalent to color4usv/1.

 color4uiv/1

 -spec color4uiv({Red :: i(), Green :: i(), Blue :: i(), Alpha :: i()}) -> ok.

Equivalent to color4usv/1.

 color4us(Red, Green, Blue, Alpha)

 -spec color4us(Red :: i(), Green :: i(), Blue :: i(), Alpha :: i()) -> ok.

Equivalent to color4usv/1.

 color4usv/1

 -spec color4usv({Red :: i(), Green :: i(), Blue :: i(), Alpha :: i()}) -> ok.

The GL stores both a current single-valued color index and a current four-valued
RGBA color. gl:color() sets a new four-valued RGBA color.
gl:color() has two major variants: gl:color3()
and gl:color4(). gl:color3() variants specify
new red, green, and blue values explicitly and set the current alpha value to
1.0 (full intensity) implicitly. gl:color4() variants specify
all four color components explicitly.
External documentation.

 colorMask(Red, Green, Blue, Alpha)

 -spec colorMask(Red :: 0 | 1, Green :: 0 | 1, Blue :: 0 | 1, Alpha :: 0 | 1) -> ok.

Equivalent to colorMaski/5.

 colorMaski(Index, R, G, B, A)

 -spec colorMaski(Index :: i(), R :: 0 | 1, G :: 0 | 1, B :: 0 | 1, A :: 0 | 1) -> ok.

gl:colorMask/4 and gl:colorMaski/5 specify
whether the individual color components in the frame buffer can or cannot be
written. gl:colorMaski/5 sets the mask for a specific draw
buffer, whereas gl:colorMask/4 sets the mask for all draw
buffers. If Red is ?GL_FALSE, for example, no change is made to the red
component of any pixel in any of the color buffers, regardless of the drawing
operation attempted.
External documentation.

 colorMaterial(Face, Mode)

 -spec colorMaterial(Face :: enum(), Mode :: enum()) -> ok.

gl:colorMaterial/2 specifies which material parameters
track the current color. When ?GL_COLOR_MATERIAL is enabled, the material
parameter or parameters specified by Mode, of the material or materials
specified by Face, track the current color at all times.
External documentation.

 colorPointer(Size, Type, Stride, Ptr)

 -spec colorPointer(Size :: i(), Type :: enum(), Stride :: i(), Ptr :: offset() | mem()) -> ok.

gl:colorPointer/4 specifies the location and data format
of an array of color components to use when rendering. Size specifies the
number of components per color, and must be 3 or 4. Type specifies the data
type of each color component, and Stride specifies the byte stride from one
color to the next, allowing vertices and attributes to be packed into a single
array or stored in separate arrays. (Single-array storage may be more efficient
on some implementations; see gl:interleavedArrays/3.)
External documentation.

 colorSubTable(Target, Start, Count, Format, Type, Data)

 -spec colorSubTable(Target, Start, Count, Format, Type, Data) -> ok
 when
 Target :: enum(),
 Start :: i(),
 Count :: i(),
 Format :: enum(),
 Type :: enum(),
 Data :: offset() | mem().

gl:colorSubTable/6 is used to respecify a contiguous
portion of a color table previously defined using
gl:colorTable/6. The pixels referenced by Data replace the
portion of the existing table from indices Start to start+count-1, inclusive.
This region may not include any entries outside the range of the color table as
it was originally specified. It is not an error to specify a subtexture with
width of 0, but such a specification has no effect.
External documentation.

 colorTable(Target, Internalformat, Width, Format, Type, Table)

 -spec colorTable(Target, Internalformat, Width, Format, Type, Table) -> ok
 when
 Target :: enum(),
 Internalformat :: enum(),
 Width :: i(),
 Format :: enum(),
 Type :: enum(),
 Table :: offset() | mem().

gl:colorTable/6 may be used in two ways: to test the actual
size and color resolution of a lookup table given a particular set of
parameters, or to load the contents of a color lookup table. Use the targets
?GL_PROXY_* for the first case and the other targets for the second case.
External documentation.

 colorTableParameterfv(Target, Pname, Params)

 -spec colorTableParameterfv(Target :: enum(), Pname :: enum(), Params :: {f(), f(), f(), f()}) -> ok.

Equivalent to colorTableParameteriv/3.

 colorTableParameteriv(Target, Pname, Params)

 -spec colorTableParameteriv(Target :: enum(), Pname :: enum(), Params :: {i(), i(), i(), i()}) -> ok.

gl:colorTableParameter() is used to specify the
scale factors and bias terms applied to color components when they are loaded
into a color table. Target indicates which color table the scale and bias
terms apply to; it must be set to ?GL_COLOR_TABLE,
?GL_POST_CONVOLUTION_COLOR_TABLE, or ?GL_POST_COLOR_MATRIX_COLOR_TABLE.
External documentation.

 compileShader(Shader)

 -spec compileShader(Shader :: i()) -> ok.

gl:compileShader/1 compiles the source code strings that
have been stored in the shader object specified by Shader.
External documentation.

 compressedTexImage1D(Target, Level, Internalformat, Width, Border, ImageSize, Data)

 -spec compressedTexImage1D(Target, Level, Internalformat, Width, Border, ImageSize, Data) -> ok
 when
 Target :: enum(),
 Level :: i(),
 Internalformat :: enum(),
 Width :: i(),
 Border :: i(),
 ImageSize :: i(),
 Data :: offset() | mem().

Texturing allows elements of an image array to be read by shaders.
External documentation.

 compressedTexImage2D(Target, Level, Internalformat, Width, Height, Border, ImageSize, Data)

 -spec compressedTexImage2D(Target, Level, Internalformat, Width, Height, Border, ImageSize, Data) -> ok
 when
 Target :: enum(),
 Level :: i(),
 Internalformat :: enum(),
 Width :: i(),
 Height :: i(),
 Border :: i(),
 ImageSize :: i(),
 Data :: offset() | mem().

Texturing allows elements of an image array to be read by shaders.
External documentation.

 compressedTexImage3D(Target, Level, Internalformat, Width, Height, Depth, Border, ImageSize, Data)

 -spec compressedTexImage3D(Target, Level, Internalformat, Width, Height, Depth, Border, ImageSize, Data) ->
 ok
 when
 Target :: enum(),
 Level :: i(),
 Internalformat :: enum(),
 Width :: i(),
 Height :: i(),
 Depth :: i(),
 Border :: i(),
 ImageSize :: i(),
 Data :: offset() | mem().

Texturing allows elements of an image array to be read by shaders.
External documentation.

 compressedTexSubImage1D(Target, Level, Xoffset, Width, Format, ImageSize, Data)

 -spec compressedTexSubImage1D(Target, Level, Xoffset, Width, Format, ImageSize, Data) -> ok
 when
 Target :: enum(),
 Level :: i(),
 Xoffset :: i(),
 Width :: i(),
 Format :: enum(),
 ImageSize :: i(),
 Data :: offset() | mem().

Equivalent to compressedTextureSubImage1D/7.

 compressedTexSubImage2D(Target, Level, Xoffset, Yoffset, Width, Height, Format, ImageSize, Data)

 -spec compressedTexSubImage2D(Target, Level, Xoffset, Yoffset, Width, Height, Format, ImageSize, Data) ->
 ok
 when
 Target :: enum(),
 Level :: i(),
 Xoffset :: i(),
 Yoffset :: i(),
 Width :: i(),
 Height :: i(),
 Format :: enum(),
 ImageSize :: i(),
 Data :: offset() | mem().

Equivalent to compressedTextureSubImage2D/9.

 compressedTexSubImage3D(Target, Level, Xoffset, Yoffset, Zoffset, Width, Height, Depth, Format, ImageSize, Data)

 -spec compressedTexSubImage3D(Target, Level, Xoffset, Yoffset, Zoffset, Width, Height, Depth, Format,
 ImageSize, Data) ->
 ok
 when
 Target :: enum(),
 Level :: i(),
 Xoffset :: i(),
 Yoffset :: i(),
 Zoffset :: i(),
 Width :: i(),
 Height :: i(),
 Depth :: i(),
 Format :: enum(),
 ImageSize :: i(),
 Data :: offset() | mem().

Equivalent to compressedTextureSubImage3D/11.

 compressedTextureSubImage1D(Texture, Level, Xoffset, Width, Format, ImageSize, Data)

 -spec compressedTextureSubImage1D(Texture, Level, Xoffset, Width, Format, ImageSize, Data) -> ok
 when
 Texture :: i(),
 Level :: i(),
 Xoffset :: i(),
 Width :: i(),
 Format :: enum(),
 ImageSize :: i(),
 Data :: offset() | mem().

Texturing allows elements of an image array to be read by shaders.
External documentation.

 compressedTextureSubImage2D(Texture, Level, Xoffset, Yoffset, Width, Height, Format, ImageSize, Data)

 -spec compressedTextureSubImage2D(Texture, Level, Xoffset, Yoffset, Width, Height, Format, ImageSize,
 Data) ->
 ok
 when
 Texture :: i(),
 Level :: i(),
 Xoffset :: i(),
 Yoffset :: i(),
 Width :: i(),
 Height :: i(),
 Format :: enum(),
 ImageSize :: i(),
 Data :: offset() | mem().

Texturing allows elements of an image array to be read by shaders.
External documentation.

 compressedTextureSubImage3D(Texture, Level, Xoffset, Yoffset, Zoffset, Width, Height, Depth, Format, ImageSize, Data)

 -spec compressedTextureSubImage3D(Texture, Level, Xoffset, Yoffset, Zoffset, Width, Height, Depth,
 Format, ImageSize, Data) ->
 ok
 when
 Texture :: i(),
 Level :: i(),
 Xoffset :: i(),
 Yoffset :: i(),
 Zoffset :: i(),
 Width :: i(),
 Height :: i(),
 Depth :: i(),
 Format :: enum(),
 ImageSize :: i(),
 Data :: offset() | mem().

Texturing allows elements of an image array to be read by shaders.
External documentation.

 convolutionFilter1D(Target, Internalformat, Width, Format, Type, Image)

 -spec convolutionFilter1D(Target, Internalformat, Width, Format, Type, Image) -> ok
 when
 Target :: enum(),
 Internalformat :: enum(),
 Width :: i(),
 Format :: enum(),
 Type :: enum(),
 Image :: offset() | mem().

gl:convolutionFilter1D/6 builds a one-dimensional
convolution filter kernel from an array of pixels.
External documentation.

 convolutionFilter2D(Target, Internalformat, Width, Height, Format, Type, Image)

 -spec convolutionFilter2D(Target, Internalformat, Width, Height, Format, Type, Image) -> ok
 when
 Target :: enum(),
 Internalformat :: enum(),
 Width :: i(),
 Height :: i(),
 Format :: enum(),
 Type :: enum(),
 Image :: offset() | mem().

gl:convolutionFilter2D/7 builds a two-dimensional
convolution filter kernel from an array of pixels.
External documentation.

 convolutionParameterf(Target, Pname, Params)

 -spec convolutionParameterf(Target :: enum(), Pname :: enum(), Params :: tuple()) -> ok.

Equivalent to convolutionParameteriv/3.

 convolutionParameterfv(Target, Pname, Params)

 -spec convolutionParameterfv(Target :: enum(), Pname :: enum(), Params :: tuple()) -> ok.

Equivalent to convolutionParameteriv/3.

 convolutionParameteri(Target, Pname, Params)

 -spec convolutionParameteri(Target :: enum(), Pname :: enum(), Params :: tuple()) -> ok.

Equivalent to convolutionParameteriv/3.

 convolutionParameteriv(Target, Pname, Params)

 -spec convolutionParameteriv(Target :: enum(), Pname :: enum(), Params :: tuple()) -> ok.

gl:convolutionParameter() sets the value of a
convolution parameter.
External documentation.

 copyBufferSubData(ReadTarget, WriteTarget, ReadOffset, WriteOffset, Size)

 -spec copyBufferSubData(ReadTarget, WriteTarget, ReadOffset, WriteOffset, Size) -> ok
 when
 ReadTarget :: enum(),
 WriteTarget :: enum(),
 ReadOffset :: i(),
 WriteOffset :: i(),
 Size :: i().

gl:copyBufferSubData/5 and glCopyNamedBufferSubData
copy part of the data store attached to a source buffer object to the data store
attached to a destination buffer object. The number of basic machine units
indicated by Size is copied from the source at offset ReadOffset to the
destination at WriteOffset. ReadOffset, WriteOffset and Size are in
terms of basic machine units.
External documentation.

 copyColorSubTable(Target, Start, X, Y, Width)

 -spec copyColorSubTable(Target :: enum(), Start :: i(), X :: i(), Y :: i(), Width :: i()) -> ok.

gl:copyColorSubTable/5 is used to respecify a
contiguous portion of a color table previously defined using
gl:colorTable/6. The pixels copied from the framebuffer
replace the portion of the existing table from indices Start to start+x-1,
inclusive. This region may not include any entries outside the range of the
color table, as was originally specified. It is not an error to specify a
subtexture with width of 0, but such a specification has no effect.
External documentation.

 copyColorTable(Target, Internalformat, X, Y, Width)

 -spec copyColorTable(Target :: enum(), Internalformat :: enum(), X :: i(), Y :: i(), Width :: i()) -> ok.

gl:copyColorTable/5 loads a color table with pixels from
the current ?GL_READ_BUFFER (rather than from main memory, as is the case for
gl:colorTable/6).
External documentation.

 copyConvolutionFilter1D(Target, Internalformat, X, Y, Width)

 -spec copyConvolutionFilter1D(Target :: enum(),
 Internalformat :: enum(),
 X :: i(),
 Y :: i(),
 Width :: i()) ->
 ok.

gl:copyConvolutionFilter1D/5 defines a
one-dimensional convolution filter kernel with pixels from the current
?GL_READ_BUFFER (rather than from main memory, as is the case for
gl:convolutionFilter1D/6).
External documentation.

 copyConvolutionFilter2D(Target, Internalformat, X, Y, Width, Height)

 -spec copyConvolutionFilter2D(Target :: enum(),
 Internalformat :: enum(),
 X :: i(),
 Y :: i(),
 Width :: i(),
 Height :: i()) ->
 ok.

gl:copyConvolutionFilter2D/6 defines a
two-dimensional convolution filter kernel with pixels from the current
?GL_READ_BUFFER (rather than from main memory, as is the case for
gl:convolutionFilter2D/7).
External documentation.

 copyImageSubData(SrcName, SrcTarget, SrcLevel, SrcX, SrcY, SrcZ, DstName, DstTarget, DstLevel, DstX, DstY, DstZ, SrcWidth, SrcHeight, SrcDepth)

 -spec copyImageSubData(SrcName, SrcTarget, SrcLevel, SrcX, SrcY, SrcZ, DstName, DstTarget, DstLevel,
 DstX, DstY, DstZ, SrcWidth, SrcHeight, SrcDepth) ->
 ok
 when
 SrcName :: i(),
 SrcTarget :: enum(),
 SrcLevel :: i(),
 SrcX :: i(),
 SrcY :: i(),
 SrcZ :: i(),
 DstName :: i(),
 DstTarget :: enum(),
 DstLevel :: i(),
 DstX :: i(),
 DstY :: i(),
 DstZ :: i(),
 SrcWidth :: i(),
 SrcHeight :: i(),
 SrcDepth :: i().

gl:copyImageSubData/15 may be used to copy data from
one image (i.e. texture or renderbuffer) to another.
gl:copyImageSubData/15 does not perform
general-purpose conversions such as scaling, resizing, blending, color-space, or
format conversions. It should be considered to operate in a manner similar to a
CPU memcpy. CopyImageSubData can copy between images with different internal
formats, provided the formats are compatible.
External documentation.

 copyPixels(X, Y, Width, Height, Type)

 -spec copyPixels(X :: i(), Y :: i(), Width :: i(), Height :: i(), Type :: enum()) -> ok.

gl:copyPixels/5 copies a screen-aligned rectangle of pixels
from the specified frame buffer location to a region relative to the current
raster position. Its operation is well defined only if the entire pixel source
region is within the exposed portion of the window. Results of copies from
outside the window, or from regions of the window that are not exposed, are
hardware dependent and undefined.
External documentation.

 copyTexImage1D(Target, Level, Internalformat, X, Y, Width, Border)

 -spec copyTexImage1D(Target, Level, Internalformat, X, Y, Width, Border) -> ok
 when
 Target :: enum(),
 Level :: i(),
 Internalformat :: enum(),
 X :: i(),
 Y :: i(),
 Width :: i(),
 Border :: i().

gl:copyTexImage1D/7 defines a one-dimensional texture
image with pixels from the current ?GL_READ_BUFFER.
External documentation.

 copyTexImage2D(Target, Level, Internalformat, X, Y, Width, Height, Border)

 -spec copyTexImage2D(Target, Level, Internalformat, X, Y, Width, Height, Border) -> ok
 when
 Target :: enum(),
 Level :: i(),
 Internalformat :: enum(),
 X :: i(),
 Y :: i(),
 Width :: i(),
 Height :: i(),
 Border :: i().

gl:copyTexImage2D/8 defines a two-dimensional texture
image, or cube-map texture image with pixels from the current ?GL_READ_BUFFER.
External documentation.

 copyTexSubImage1D(Target, Level, Xoffset, X, Y, Width)

 -spec copyTexSubImage1D(Target :: enum(),
 Level :: i(),
 Xoffset :: i(),
 X :: i(),
 Y :: i(),
 Width :: i()) ->
 ok.

gl:copyTexSubImage1D/6 and glCopyTextureSubImage1D
replace a portion of a one-dimensional texture image with pixels from the
current ?GL_READ_BUFFER (rather than from main memory, as is the case for
gl:texSubImage1D/7). For
gl:copyTexSubImage1D/6, the texture object that is
bound to Target will be used for the process. For glCopyTextureSubImage1D,
Texture tells which texture object should be used for the purpose of the call.
External documentation.

 copyTexSubImage2D(Target, Level, Xoffset, Yoffset, X, Y, Width, Height)

 -spec copyTexSubImage2D(Target, Level, Xoffset, Yoffset, X, Y, Width, Height) -> ok
 when
 Target :: enum(),
 Level :: i(),
 Xoffset :: i(),
 Yoffset :: i(),
 X :: i(),
 Y :: i(),
 Width :: i(),
 Height :: i().

gl:copyTexSubImage2D/8 and glCopyTextureSubImage2D
replace a rectangular portion of a two-dimensional texture image, cube-map
texture image, rectangular image, or a linear portion of a number of slices of a
one-dimensional array texture with pixels from the current ?GL_READ_BUFFER
(rather than from main memory, as is the case for
gl:texSubImage2D/9).
External documentation.

 copyTexSubImage3D(Target, Level, Xoffset, Yoffset, Zoffset, X, Y, Width, Height)

 -spec copyTexSubImage3D(Target, Level, Xoffset, Yoffset, Zoffset, X, Y, Width, Height) -> ok
 when
 Target :: enum(),
 Level :: i(),
 Xoffset :: i(),
 Yoffset :: i(),
 Zoffset :: i(),
 X :: i(),
 Y :: i(),
 Width :: i(),
 Height :: i().

gl:copyTexSubImage3D/9 and glCopyTextureSubImage3D
functions replace a rectangular portion of a three-dimensional or
two-dimensional array texture image with pixels from the current
?GL_READ_BUFFER (rather than from main memory, as is the case for
gl:texSubImage3D/11).
External documentation.

 createBuffers(N)

 -spec createBuffers(N :: i()) -> [i()].

gl:createBuffers/1 returns N previously unused buffer
names in Buffers, each representing a new buffer object initialized as if it
had been bound to an unspecified target.
External documentation.

 createFramebuffers(N)

 -spec createFramebuffers(N :: i()) -> [i()].

gl:createFramebuffers/1 returns N previously
unused framebuffer names in Framebuffers, each representing a new framebuffer
object initialized to the default state.
External documentation.

 createProgram()

 -spec createProgram() -> i().

gl:createProgram/0 creates an empty program object and
returns a non-zero value by which it can be referenced. A program object is an
object to which shader objects can be attached. This provides a mechanism to
specify the shader objects that will be linked to create a program. It also
provides a means for checking the compatibility of the shaders that will be used
to create a program (for instance, checking the compatibility between a vertex
shader and a fragment shader). When no longer needed as part of a program
object, shader objects can be detached.
External documentation.

 createProgramPipelines(N)

 -spec createProgramPipelines(N :: i()) -> [i()].

gl:createProgramPipelines/1 returns N
previously unused program pipeline names in Pipelines, each representing a new
program pipeline object initialized to the default state.
External documentation.

 createQueries(Target, N)

 -spec createQueries(Target :: enum(), N :: i()) -> [i()].

gl:createQueries/2 returns N previously unused query
object names in Ids, each representing a new query object with the specified
Target.
External documentation.

 createRenderbuffers(N)

 -spec createRenderbuffers(N :: i()) -> [i()].

gl:createRenderbuffers/1 returns N previously
unused renderbuffer object names in Renderbuffers, each representing a new
renderbuffer object initialized to the default state.
External documentation.

 createSamplers(N)

 -spec createSamplers(N :: i()) -> [i()].

gl:createSamplers/1 returns N previously unused
sampler names in Samplers, each representing a new sampler object initialized
to the default state.
External documentation.

 createShader(Type)

 -spec createShader(Type :: enum()) -> i().

gl:createShader/1 creates an empty shader object and
returns a non-zero value by which it can be referenced. A shader object is used
to maintain the source code strings that define a shader. ShaderType indicates
the type of shader to be created. Five types of shader are supported. A shader
of type ?GL_COMPUTE_SHADER is a shader that is intended to run on the
programmable compute processor. A shader of type ?GL_VERTEX_SHADER is a shader
that is intended to run on the programmable vertex processor. A shader of type
?GL_TESS_CONTROL_SHADER is a shader that is intended to run on the
programmable tessellation processor in the control stage. A shader of type
?GL_TESS_EVALUATION_SHADER is a shader that is intended to run on the
programmable tessellation processor in the evaluation stage. A shader of type
?GL_GEOMETRY_SHADER is a shader that is intended to run on the programmable
geometry processor. A shader of type ?GL_FRAGMENT_SHADER is a shader that is
intended to run on the programmable fragment processor.
External documentation.

 createShaderProgramv(Type, Strings)

 -spec createShaderProgramv(Type :: enum(), Strings :: [unicode:chardata()]) -> i().

gl:createShaderProgram() creates a program object
containing compiled and linked shaders for a single stage specified by Type.
Strings refers to an array of Count strings from which to create the shader
executables.
External documentation.

 createTextures(Target, N)

 -spec createTextures(Target :: enum(), N :: i()) -> [i()].

gl:createTextures/2 returns N previously unused
texture names in Textures, each representing a new texture object of the
dimensionality and type specified by Target and initialized to the default
values for that texture type.
External documentation.

 createTransformFeedbacks(N)

 -spec createTransformFeedbacks(N :: i()) -> [i()].

gl:createTransformFeedbacks/1 returns N
previously unused transform feedback object names in Ids, each representing a
new transform feedback object initialized to the default state.
External documentation.

 createVertexArrays(N)

 -spec createVertexArrays(N :: i()) -> [i()].

gl:createVertexArrays/1 returns N previously
unused vertex array object names in Arrays, each representing a new vertex
array object initialized to the default state.
External documentation.

 cullFace(Mode)

 -spec cullFace(Mode :: enum()) -> ok.

gl:cullFace/1 specifies whether front- or back-facing facets
are culled (as specified by mode) when facet culling is enabled. Facet culling
is initially disabled. To enable and disable facet culling, call the
gl:enable/1 and gl:disable/1 commands with the
argument ?GL_CULL_FACE. Facets include triangles, quadrilaterals, polygons,
and rectangles.
External documentation.

 debugMessageControl(Source, Type, Severity, Ids, Enabled)

 -spec debugMessageControl(Source :: enum(),
 Type :: enum(),
 Severity :: enum(),
 Ids :: [i()],
 Enabled :: 0 | 1) ->
 ok.

gl:debugMessageControl/5 controls the reporting of
debug messages generated by a debug context. The parameters Source, Type and
Severity form a filter to select messages from the pool of potential messages
generated by the GL.
External documentation.

 debugMessageInsert(Source, Type, Id, Severity, Buf)

 -spec debugMessageInsert(Source :: enum(),
 Type :: enum(),
 Id :: i(),
 Severity :: enum(),
 Buf :: string()) ->
 ok.

gl:debugMessageInsert/5 inserts a user-supplied
message into the debug output queue. Source specifies the source that will be
used to classify the message and must be ?GL_DEBUG_SOURCE_APPLICATION or
?GL_DEBUG_SOURCE_THIRD_PARTY. All other sources are reserved for use by the GL
implementation. Type indicates the type of the message to be inserted and may
be one of ?GL_DEBUG_TYPE_ERROR, ?GL_DEBUG_TYPE_DEPRECATED_BEHAVIOR,
?GL_DEBUG_TYPE_UNDEFINED_BEHAVIOR, ?GL_DEBUG_TYPE_PORTABILITY,
?GL_DEBUG_TYPE_PERFORMANCE, ?GL_DEBUG_TYPE_MARKER,
?GL_DEBUG_TYPE_PUSH_GROUP, ?GL_DEBUG_TYPE_POP_GROUP, or
?GL_DEBUG_TYPE_OTHER. Severity indicates the severity of the message and may
be ?GL_DEBUG_SEVERITY_LOW, ?GL_DEBUG_SEVERITY_MEDIUM,
?GL_DEBUG_SEVERITY_HIGH or ?GL_DEBUG_SEVERITY_NOTIFICATION. Id is
available for application defined use and may be any value. This value will be
recorded and used to identify the message.
External documentation.

 deleteBuffers(Buffers)

 -spec deleteBuffers(Buffers :: [i()]) -> ok.

gl:deleteBuffers/1 deletes N buffer objects named by
the elements of the array Buffers. After a buffer object is deleted, it has no
contents, and its name is free for reuse (for example by
gl:genBuffers/1). If a buffer object that is currently bound
is deleted, the binding reverts to 0 (the absence of any buffer object).
External documentation.

 deleteFramebuffers(Framebuffers)

 -spec deleteFramebuffers(Framebuffers :: [i()]) -> ok.

gl:deleteFramebuffers/1 deletes the N framebuffer
objects whose names are stored in the array addressed by Framebuffers. The
name zero is reserved by the GL and is silently ignored, should it occur in
Framebuffers, as are other unused names. Once a framebuffer object is deleted,
its name is again unused and it has no attachments. If a framebuffer that is
currently bound to one or more of the targets ?GL_DRAW_FRAMEBUFFER or
?GL_READ_FRAMEBUFFER is deleted, it is as though
gl:bindFramebuffer/2 had been executed with the
corresponding Target and Framebuffer zero.
External documentation.

 deleteLists(List, Range)

 -spec deleteLists(List :: i(), Range :: i()) -> ok.

gl:deleteLists/2 causes a contiguous group of display lists
to be deleted. List is the name of the first display list to be deleted, and
Range is the number of display lists to delete. All display lists d with
list<= d<= list+range-1 are deleted.
External documentation.

 deleteProgram(Program)

 -spec deleteProgram(Program :: i()) -> ok.

gl:deleteProgram/1 frees the memory and invalidates the
name associated with the program object specified by Program. This command
effectively undoes the effects of a call to
gl:createProgram/0.
External documentation.

 deleteProgramPipelines(Pipelines)

 -spec deleteProgramPipelines(Pipelines :: [i()]) -> ok.

gl:deleteProgramPipelines/1 deletes the N
program pipeline objects whose names are stored in the array Pipelines. Unused
names in Pipelines are ignored, as is the name zero. After a program pipeline
object is deleted, its name is again unused and it has no contents. If program
pipeline object that is currently bound is deleted, the binding for that object
reverts to zero and no program pipeline object becomes current.
External documentation.

 deleteQueries(Ids)

 -spec deleteQueries(Ids :: [i()]) -> ok.

gl:deleteQueries/1 deletes N query objects named by the
elements of the array Ids. After a query object is deleted, it has no
contents, and its name is free for reuse (for example by
gl:genQueries/1).
External documentation.

 deleteRenderbuffers(Renderbuffers)

 -spec deleteRenderbuffers(Renderbuffers :: [i()]) -> ok.

gl:deleteRenderbuffers/1 deletes the N
renderbuffer objects whose names are stored in the array addressed by
Renderbuffers. The name zero is reserved by the GL and is silently ignored,
should it occur in Renderbuffers, as are other unused names. Once a
renderbuffer object is deleted, its name is again unused and it has no contents.
If a renderbuffer that is currently bound to the target ?GL_RENDERBUFFER is
deleted, it is as though gl:bindRenderbuffer/2 had
been executed with a Target of ?GL_RENDERBUFFER and a Name of zero.
External documentation.

 deleteSamplers(Samplers)

 -spec deleteSamplers(Samplers :: [i()]) -> ok.

gl:deleteSamplers/1 deletes N sampler objects named by
the elements of the array Samplers. After a sampler object is deleted, its
name is again unused. If a sampler object that is currently bound to a sampler
unit is deleted, it is as though gl:bindSampler/2 is called
with unit set to the unit the sampler is bound to and sampler zero. Unused names
in samplers are silently ignored, as is the reserved name zero.
External documentation.

 deleteShader(Shader)

 -spec deleteShader(Shader :: i()) -> ok.

gl:deleteShader/1 frees the memory and invalidates the
name associated with the shader object specified by Shader. This command
effectively undoes the effects of a call to
gl:createShader/1.
External documentation.

 deleteSync(Sync)

 -spec deleteSync(Sync :: i()) -> ok.

gl:deleteSync/1 deletes the sync object specified by Sync.
If the fence command corresponding to the specified sync object has completed,
or if no gl:waitSync/3 or
gl:clientWaitSync/3 commands are blocking on Sync, the
object is deleted immediately. Otherwise, Sync is flagged for deletion and
will be deleted when it is no longer associated with any fence command and is no
longer blocking any gl:waitSync/3 or
gl:clientWaitSync/3 command. In either case, after
gl:deleteSync/1 returns, the name Sync is invalid and can
no longer be used to refer to the sync object.
External documentation.

 deleteTextures(Textures)

 -spec deleteTextures(Textures :: [i()]) -> ok.

gl:deleteTextures/1 deletes N textures named by the
elements of the array Textures. After a texture is deleted, it has no contents
or dimensionality, and its name is free for reuse (for example by
gl:genTextures/1). If a texture that is currently bound is
deleted, the binding reverts to 0 (the default texture).
External documentation.

 deleteTransformFeedbacks(Ids)

 -spec deleteTransformFeedbacks(Ids :: [i()]) -> ok.

gl:deleteTransformFeedbacks/1 deletes the N
transform feedback objects whose names are stored in the array Ids. Unused
names in Ids are ignored, as is the name zero. After a transform feedback
object is deleted, its name is again unused and it has no contents. If an active
transform feedback object is deleted, its name immediately becomes unused, but
the underlying object is not deleted until it is no longer active.
External documentation.

 deleteVertexArrays(Arrays)

 -spec deleteVertexArrays(Arrays :: [i()]) -> ok.

gl:deleteVertexArrays/1 deletes N vertex array
objects whose names are stored in the array addressed by Arrays. Once a vertex
array object is deleted it has no contents and its name is again unused. If a
vertex array object that is currently bound is deleted, the binding for that
object reverts to zero and the default vertex array becomes current. Unused
names in Arrays are silently ignored, as is the value zero.
External documentation.

 depthFunc(Func)

 -spec depthFunc(Func :: enum()) -> ok.

gl:depthFunc/1 specifies the function used to compare each
incoming pixel depth value with the depth value present in the depth buffer. The
comparison is performed only if depth testing is enabled. (See
gl:enable/1 and gl:disable/1 of
?GL_DEPTH_TEST.)
External documentation.

 depthMask(Flag)

 -spec depthMask(Flag :: 0 | 1) -> ok.

gl:depthMask/1 specifies whether the depth buffer is enabled
for writing. If Flag is ?GL_FALSE, depth buffer writing is disabled.
Otherwise, it is enabled. Initially, depth buffer writing is enabled.
External documentation.

 depthRange(Near_val, Far_val)

 -spec depthRange(Near_val :: clamp(), Far_val :: clamp()) -> ok.

Equivalent to depthRangef/2.

 depthRangeArrayv(First, V)

 -spec depthRangeArrayv(First :: i(), V :: [{f(), f()}]) -> ok.

After clipping and division by w, depth coordinates range from -1 to 1,
corresponding to the near and far clipping planes. Each viewport has an
independent depth range specified as a linear mapping of the normalized depth
coordinates in this range to window depth coordinates. Regardless of the actual
depth buffer implementation, window coordinate depth values are treated as
though they range from 0 through 1 (like color components).
gl:depthRangeArray() specifies a linear mapping of the
normalized depth coordinates in this range to window depth coordinates for each
viewport in the range [First, First + Count). Thus, the values accepted
by gl:depthRangeArray() are both clamped to this range
before they are accepted.
External documentation.

 depthRangef(N, F)

 -spec depthRangef(N :: f(), F :: f()) -> ok.

After clipping and division by w, depth coordinates range from -1 to 1,
corresponding to the near and far clipping planes.
gl:depthRange/2 specifies a linear mapping of the normalized
depth coordinates in this range to window depth coordinates. Regardless of the
actual depth buffer implementation, window coordinate depth values are treated
as though they range from 0 through 1 (like color components). Thus, the values
accepted by gl:depthRange/2 are both clamped to this range
before they are accepted.
External documentation.

 depthRangeIndexed(Index, N, F)

 -spec depthRangeIndexed(Index :: i(), N :: f(), F :: f()) -> ok.

After clipping and division by w, depth coordinates range from -1 to 1,
corresponding to the near and far clipping planes. Each viewport has an
independent depth range specified as a linear mapping of the normalized depth
coordinates in this range to window depth coordinates. Regardless of the actual
depth buffer implementation, window coordinate depth values are treated as
though they range from 0 through 1 (like color components).
gl:depthRangeIndexed/3 specifies a linear mapping of
the normalized depth coordinates in this range to window depth coordinates for a
specified viewport. Thus, the values accepted by
gl:depthRangeIndexed/3 are both clamped to this range
before they are accepted.
External documentation.

 detachShader(Program, Shader)

 -spec detachShader(Program :: i(), Shader :: i()) -> ok.

gl:detachShader/2 detaches the shader object specified by
Shader from the program object specified by Program. This command can be
used to undo the effect of the command gl:attachShader/2.
External documentation.

 disable(Cap)

 -spec disable(Cap :: enum()) -> ok.

Equivalent to enablei/2.

 disableClientState(Cap)

 -spec disableClientState(Cap :: enum()) -> ok.

Equivalent to enableClientState/1.

 disablei(Target, Index)

 -spec disablei(Target :: enum(), Index :: i()) -> ok.

Equivalent to enablei/2.

 disableVertexArrayAttrib(Vaobj, Index)

 -spec disableVertexArrayAttrib(Vaobj :: i(), Index :: i()) -> ok.

Equivalent to enableVertexAttribArray/1.

 disableVertexAttribArray(Index)

 -spec disableVertexAttribArray(Index :: i()) -> ok.

Equivalent to enableVertexAttribArray/1.

 dispatchCompute(Num_groups_x, Num_groups_y, Num_groups_z)

 -spec dispatchCompute(Num_groups_x :: i(), Num_groups_y :: i(), Num_groups_z :: i()) -> ok.

gl:dispatchCompute/3 launches one or more compute work
groups. Each work group is processed by the active program object for the
compute shader stage. While the individual shader invocations within a work
group are executed as a unit, work groups are executed completely independently
and in unspecified order. Num_groups_x, Num_groups_y and Num_groups_z
specify the number of local work groups that will be dispatched in the X, Y and
Z dimensions, respectively.
External documentation.

 dispatchComputeIndirect(Indirect)

 -spec dispatchComputeIndirect(Indirect :: i()) -> ok.

gl:dispatchComputeIndirect/1 launches one or
more compute work groups using parameters stored in the buffer object currently
bound to the ?GL_DISPATCH_INDIRECT_BUFFER target. Each work group is processed
by the active program object for the compute shader stage. While the individual
shader invocations within a work group are executed as a unit, work groups are
executed completely independently and in unspecified order. Indirect contains
the offset into the data store of the buffer object bound to the
?GL_DISPATCH_INDIRECT_BUFFER target at which the parameters are stored.
External documentation.

 drawArrays(Mode, First, Count)

 -spec drawArrays(Mode :: enum(), First :: i(), Count :: i()) -> ok.

gl:drawArrays/3 specifies multiple geometric primitives with
very few subroutine calls. Instead of calling a GL procedure to pass each
individual vertex, normal, texture coordinate, edge flag, or color, you can
prespecify separate arrays of vertices, normals, and colors and use them to
construct a sequence of primitives with a single call to
gl:drawArrays/3.
External documentation.

 drawArraysIndirect(Mode, Indirect)

 -spec drawArraysIndirect(Mode :: enum(), Indirect :: offset() | mem()) -> ok.

gl:drawArraysIndirect/2 specifies multiple geometric
primitives with very few subroutine calls.
gl:drawArraysIndirect/2 behaves similarly to
gl:drawArraysInstancedBaseInstance/5,
execept that the parameters to
gl:drawArraysInstancedBaseInstance/5
are stored in memory at the address given by Indirect.
External documentation.

 drawArraysInstanced(Mode, First, Count, Instancecount)

 -spec drawArraysInstanced(Mode :: enum(), First :: i(), Count :: i(), Instancecount :: i()) -> ok.

gl:drawArraysInstanced/4 behaves identically to
gl:drawArrays/3 except that Instancecount instances of the
range of elements are executed and the value of the internal counter
InstanceID advances for each iteration. InstanceID is an internal 32-bit
integer counter that may be read by a vertex shader as ?gl_InstanceID.
External documentation.

 drawArraysInstancedBaseInstance(Mode, First, Count, Instancecount, Baseinstance)

 -spec drawArraysInstancedBaseInstance(Mode :: enum(),
 First :: i(),
 Count :: i(),
 Instancecount :: i(),
 Baseinstance :: i()) ->
 ok.

gl:drawArraysInstancedBaseInstance/5
behaves identically to gl:drawArrays/3 except that
Instancecount instances of the range of elements are executed and the value of
the internal counter InstanceID advances for each iteration. InstanceID is
an internal 32-bit integer counter that may be read by a vertex shader as
?gl_InstanceID.
External documentation.

 drawBuffer(Mode)

 -spec drawBuffer(Mode :: enum()) -> ok.

When colors are written to the frame buffer, they are written into the color
buffers specified by gl:drawBuffer/1. One of the following
values can be used for default framebuffer:
External documentation.

 drawBuffers(Bufs)

 -spec drawBuffers(Bufs :: [enum()]) -> ok.

gl:drawBuffers/1 and glNamedFramebufferDrawBuffers define
an array of buffers into which outputs from the fragment shader data will be
written. If a fragment shader writes a value to one or more user defined output
variables, then the value of each variable will be written into the buffer
specified at a location within Bufs corresponding to the location assigned to
that user defined output. The draw buffer used for user defined outputs assigned
to locations greater than or equal to N is implicitly set to ?GL_NONE and
any data written to such an output is discarded.
External documentation.

 drawElements(Mode, Count, Type, Indices)

 -spec drawElements(Mode :: enum(), Count :: i(), Type :: enum(), Indices :: offset() | mem()) -> ok.

gl:drawElements/4 specifies multiple geometric primitives
with very few subroutine calls. Instead of calling a GL function to pass each
individual vertex, normal, texture coordinate, edge flag, or color, you can
prespecify separate arrays of vertices, normals, and so on, and use them to
construct a sequence of primitives with a single call to
gl:drawElements/4.
External documentation.

 drawElementsBaseVertex(Mode, Count, Type, Indices, Basevertex)

 -spec drawElementsBaseVertex(Mode, Count, Type, Indices, Basevertex) -> ok
 when
 Mode :: enum(),
 Count :: i(),
 Type :: enum(),
 Indices :: offset() | mem(),
 Basevertex :: i().

gl:drawElementsBaseVertex/5 behaves identically
to gl:drawElements/4 except that the ith element
transferred by the corresponding draw call will be taken from element
Indices[i] + Basevertex of each enabled array. If the resulting value is
larger than the maximum value representable by Type, it is as if the
calculation were upconverted to 32-bit unsigned integers (with wrapping on
overflow conditions). The operation is undefined if the sum would be negative.
External documentation.

 drawElementsIndirect(Mode, Type, Indirect)

 -spec drawElementsIndirect(Mode :: enum(), Type :: enum(), Indirect :: offset() | mem()) -> ok.

gl:drawElementsIndirect/3 specifies multiple
indexed geometric primitives with very few subroutine calls.
gl:drawElementsIndirect/3 behaves similarly to
gl:drawElementsInstancedBaseVertexBaseInstance/7,
execpt that the parameters to
gl:drawElementsInstancedBaseVertexBaseInstance/7
are stored in memory at the address given by Indirect.
External documentation.

 drawElementsInstanced(Mode, Count, Type, Indices, Instancecount)

 -spec drawElementsInstanced(Mode, Count, Type, Indices, Instancecount) -> ok
 when
 Mode :: enum(),
 Count :: i(),
 Type :: enum(),
 Indices :: offset() | mem(),
 Instancecount :: i().

gl:drawElementsInstanced/5 behaves identically to
gl:drawElements/4 except that Instancecount instances of
the set of elements are executed and the value of the internal counter
InstanceID advances for each iteration. InstanceID is an internal 32-bit
integer counter that may be read by a vertex shader as ?gl_InstanceID.
External documentation.

 drawElementsInstancedBaseInstance(Mode, Count, Type, Indices, Instancecount, Baseinstance)

 -spec drawElementsInstancedBaseInstance(Mode, Count, Type, Indices, Instancecount, Baseinstance) -> ok
 when
 Mode :: enum(),
 Count :: i(),
 Type :: enum(),
 Indices :: offset() | mem(),
 Instancecount :: i(),
 Baseinstance :: i().

gl:drawElementsInstancedBaseInstance/6
behaves identically to gl:drawElements/4 except that
Instancecount instances of the set of elements are executed and the value of
the internal counter InstanceID advances for each iteration. InstanceID is
an internal 32-bit integer counter that may be read by a vertex shader as
?gl_InstanceID.
External documentation.

 drawElementsInstancedBaseVertex(Mode, Count, Type, Indices, Instancecount, Basevertex)

 -spec drawElementsInstancedBaseVertex(Mode, Count, Type, Indices, Instancecount, Basevertex) -> ok
 when
 Mode :: enum(),
 Count :: i(),
 Type :: enum(),
 Indices :: offset() | mem(),
 Instancecount :: i(),
 Basevertex :: i().

gl:drawElementsInstancedBaseVertex/6
behaves identically to gl:drawElementsInstanced/5
except that the ith element transferred by the corresponding draw call will be
taken from element Indices[i] + Basevertex of each enabled array. If the
resulting value is larger than the maximum value representable by Type, it is
as if the calculation were upconverted to 32-bit unsigned integers (with
wrapping on overflow conditions). The operation is undefined if the sum would be
negative.
External documentation.

 drawElementsInstancedBaseVertexBaseInstance(Mode, Count, Type, Indices, Instancecount, Basevertex, Baseinstance)

 -spec drawElementsInstancedBaseVertexBaseInstance(Mode, Count, Type, Indices, Instancecount, Basevertex,
 Baseinstance) ->
 ok
 when
 Mode :: enum(),
 Count :: i(),
 Type :: enum(),
 Indices :: offset() | mem(),
 Instancecount :: i(),
 Basevertex :: i(),
 Baseinstance :: i().

gl:drawElementsInstancedBaseVertexBaseInstance/7
behaves identically to gl:drawElementsInstanced/5
except that the ith element transferred by the corresponding draw call will be
taken from element Indices[i] + Basevertex of each enabled array. If the
resulting value is larger than the maximum value representable by Type, it is
as if the calculation were upconverted to 32-bit unsigned integers (with
wrapping on overflow conditions). The operation is undefined if the sum would be
negative.
External documentation.

 drawPixels(Width, Height, Format, Type, Pixels)

 -spec drawPixels(Width :: i(),
 Height :: i(),
 Format :: enum(),
 Type :: enum(),
 Pixels :: offset() | mem()) ->
 ok.

gl:drawPixels/5 reads pixel data from memory and writes it
into the frame buffer relative to the current raster position, provided that the
raster position is valid. Use gl:rasterPos() or
gl:windowPos() to set the current raster position; use
gl:get() with argument ?GL_CURRENT_RASTER_POSITION_VALID
to determine if the specified raster position is valid, and
gl:get() with argument ?GL_CURRENT_RASTER_POSITION to
query the raster position.
External documentation.

 drawRangeElements(Mode, Start, End, Count, Type, Indices)

 -spec drawRangeElements(Mode, Start, End, Count, Type, Indices) -> ok
 when
 Mode :: enum(),
 Start :: i(),
 End :: i(),
 Count :: i(),
 Type :: enum(),
 Indices :: offset() | mem().

gl:drawRangeElements/6 is a restricted form of
gl:drawElements/4. Mode, and Count match the
corresponding arguments to gl:drawElements/4, with the
additional constraint that all values in the arrays Count must lie between
Start and End, inclusive.
External documentation.

 drawRangeElementsBaseVertex(Mode, Start, End, Count, Type, Indices, Basevertex)

 -spec drawRangeElementsBaseVertex(Mode, Start, End, Count, Type, Indices, Basevertex) -> ok
 when
 Mode :: enum(),
 Start :: i(),
 End :: i(),
 Count :: i(),
 Type :: enum(),
 Indices :: offset() | mem(),
 Basevertex :: i().

gl:drawRangeElementsBaseVertex/7 is a
restricted form of gl:drawElementsBaseVertex/5.
Mode, Count and Basevertex match the corresponding arguments to
gl:drawElementsBaseVertex/5, with the additional
constraint that all values in the array Indices must lie between Start and
End, inclusive, prior to adding Basevertex. Index values lying outside the
range [Start, End] are treated in the same way as
gl:drawElementsBaseVertex/5. The ith element
transferred by the corresponding draw call will be taken from element
Indices[i] + Basevertex of each enabled array. If the resulting value is
larger than the maximum value representable by Type, it is as if the
calculation were upconverted to 32-bit unsigned integers (with wrapping on
overflow conditions). The operation is undefined if the sum would be negative.
External documentation.

 drawTransformFeedback(Mode, Id)

 -spec drawTransformFeedback(Mode :: enum(), Id :: i()) -> ok.

gl:drawTransformFeedback/2 draws primitives of a
type specified by Mode using a count retrieved from the transform feedback
specified by Id. Calling
gl:drawTransformFeedback/2 is equivalent to
calling gl:drawArrays/3 with Mode as specified, First
set to zero, and Count set to the number of vertices captured on vertex stream
zero the last time transform feedback was active on the transform feedback
object named by Id.
External documentation.

 drawTransformFeedbackInstanced(Mode, Id, Instancecount)

 -spec drawTransformFeedbackInstanced(Mode :: enum(), Id :: i(), Instancecount :: i()) -> ok.

gl:drawTransformFeedbackInstanced/3
draws multiple copies of a range of primitives of a type specified by Mode
using a count retrieved from the transform feedback stream specified by Stream
of the transform feedback object specified by Id. Calling
gl:drawTransformFeedbackInstanced/3 is
equivalent to calling gl:drawArraysInstanced/4 with
Mode and Instancecount as specified, First set to zero, and Count set to
the number of vertices captured on vertex stream zero the last time transform
feedback was active on the transform feedback object named by Id.
External documentation.

 drawTransformFeedbackStream(Mode, Id, Stream)

 -spec drawTransformFeedbackStream(Mode :: enum(), Id :: i(), Stream :: i()) -> ok.

gl:drawTransformFeedbackStream/3 draws
primitives of a type specified by Mode using a count retrieved from the
transform feedback stream specified by Stream of the transform feedback object
specified by Id. Calling
gl:drawTransformFeedbackStream/3 is
equivalent to calling gl:drawArrays/3 with Mode as
specified, First set to zero, and Count set to the number of vertices
captured on vertex stream Stream the last time transform feedback was active
on the transform feedback object named by Id.
External documentation.

 drawTransformFeedbackStreamInstanced(Mode, Id, Stream, Instancecount)

 -spec drawTransformFeedbackStreamInstanced(Mode :: enum(),
 Id :: i(),
 Stream :: i(),
 Instancecount :: i()) ->
 ok.

gl:drawTransformFeedbackStreamInstanced/4
draws multiple copies of a range of primitives of a type specified by Mode
using a count retrieved from the transform feedback stream specified by Stream
of the transform feedback object specified by Id. Calling
gl:drawTransformFeedbackStreamInstanced/4
is equivalent to calling gl:drawArraysInstanced/4
with Mode and Instancecount as specified, First set to zero, and Count
set to the number of vertices captured on vertex stream Stream the last time
transform feedback was active on the transform feedback object named by Id.
External documentation.

 edgeFlag(Flag)

 -spec edgeFlag(Flag :: 0 | 1) -> ok.

Equivalent to edgeFlagv/1.

 edgeFlagPointer(Stride, Ptr)

 -spec edgeFlagPointer(Stride :: i(), Ptr :: offset() | mem()) -> ok.

gl:edgeFlagPointer/2 specifies the location and data
format of an array of boolean edge flags to use when rendering. Stride
specifies the byte stride from one edge flag to the next, allowing vertices and
attributes to be packed into a single array or stored in separate arrays.
External documentation.

 edgeFlagv/1

 -spec edgeFlagv({Flag :: 0 | 1}) -> ok.

Each vertex of a polygon, separate triangle, or separate quadrilateral specified
between a gl:'begin'/1/gl:'end'/0 pair is
marked as the start of either a boundary or nonboundary edge. If the current
edge flag is true when the vertex is specified, the vertex is marked as the
start of a boundary edge. Otherwise, the vertex is marked as the start of a
nonboundary edge. gl:edgeFlag/1 sets the edge flag bit to
?GL_TRUE if Flag is ?GL_TRUE and to ?GL_FALSE otherwise.
External documentation.

 enable(Cap)

 -spec enable(Cap :: enum()) -> ok.

Equivalent to enablei/2.

 enableClientState(Cap)

 -spec enableClientState(Cap :: enum()) -> ok.

gl:enableClientState/1 and
gl:disableClientState/1 enable or disable individual
client-side capabilities. By default, all client-side capabilities are disabled.
Both gl:enableClientState/1 and
gl:disableClientState/1 take a single argument,
Cap, which can assume one of the following values:
External documentation.

 enablei(Target, Index)

 -spec enablei(Target :: enum(), Index :: i()) -> ok.

gl:enable/1 and gl:disable/1 enable and disable
various capabilities. Use gl:isEnabled/1 or
gl:get() to determine the current setting of any
capability. The initial value for each capability with the exception of
?GL_DITHER and ?GL_MULTISAMPLE is ?GL_FALSE. The initial value for
?GL_DITHER and ?GL_MULTISAMPLE is ?GL_TRUE.
External documentation.

 enableVertexArrayAttrib(Vaobj, Index)

 -spec enableVertexArrayAttrib(Vaobj :: i(), Index :: i()) -> ok.

Equivalent to enableVertexAttribArray/1.

 enableVertexAttribArray(Index)

 -spec enableVertexAttribArray(Index :: i()) -> ok.

gl:enableVertexAttribArray/1 and
gl:enableVertexArrayAttrib/2 enable the
generic vertex attribute array specified by Index.
gl:enableVertexAttribArray/1 uses currently
bound vertex array object for the operation, whereas
gl:enableVertexArrayAttrib/2 updates state of
the vertex array object with ID Vaobj.
External documentation.

 'end'()

 -spec 'end'() -> ok.

gl:'begin'/1 and gl:'end'/0 delimit the
vertices that define a primitive or a group of like primitives.
gl:'begin'/1 accepts a single argument that specifies in which
of ten ways the vertices are interpreted. Taking n as an integer count starting
at one, and N as the total number of vertices specified, the interpretations are
as follows:
External documentation.

 endConditionalRender()

 -spec endConditionalRender() -> ok.

Conditional rendering is started using
gl:beginConditionalRender/2 and ended using
gl:endConditionalRender/0. During conditional
rendering, all vertex array commands, as well as gl:clear/1 and
gl:clearBuffer() have no effect if the
(?GL_SAMPLES_PASSED) result of the query object Id is zero, or if the
(?GL_ANY_SAMPLES_PASSED) result is ?GL_FALSE. The results of commands
setting the current vertex state, such as
gl:vertexAttrib() are undefined. If the
(?GL_SAMPLES_PASSED) result is non-zero or if the (?GL_ANY_SAMPLES_PASSED)
result is ?GL_TRUE, such commands are not discarded. The Id parameter to
gl:beginConditionalRender/2 must be the name of
a query object previously returned from a call to
gl:genQueries/1. Mode specifies how the results of the
query object are to be interpreted. If Mode is ?GL_QUERY_WAIT, the GL waits
for the results of the query to be available and then uses the results to
determine if subsequent rendering commands are discarded. If Mode is
?GL_QUERY_NO_WAIT, the GL may choose to unconditionally execute the subsequent
rendering commands without waiting for the query to complete.
External documentation.

 endList()

 -spec endList() -> ok.

Equivalent to newList/2.

 endQuery(Target)

 -spec endQuery(Target :: enum()) -> ok.

gl:beginQuery/2 and gl:endQuery/1
delimit the boundaries of a query object. Query must be a name previously
returned from a call to gl:genQueries/1. If a query object
with name Id does not yet exist it is created with the type determined by
Target. Target must be one of ?GL_SAMPLES_PASSED,
?GL_ANY_SAMPLES_PASSED, ?GL_PRIMITIVES_GENERATED,
?GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN, or ?GL_TIME_ELAPSED. The behavior
of the query object depends on its type and is as follows.
External documentation.

 endQueryIndexed(Target, Index)

 -spec endQueryIndexed(Target :: enum(), Index :: i()) -> ok.

gl:beginQueryIndexed/3 and
gl:endQueryIndexed/2 delimit the boundaries of a
query object. Query must be a name previously returned from a call to
gl:genQueries/1. If a query object with name Id does not
yet exist it is created with the type determined by Target. Target must be
one of ?GL_SAMPLES_PASSED, ?GL_ANY_SAMPLES_PASSED,
?GL_PRIMITIVES_GENERATED, ?GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN, or
?GL_TIME_ELAPSED. The behavior of the query object depends on its type and is
as follows.
External documentation.

 endTransformFeedback()

 -spec endTransformFeedback() -> ok.

Transform feedback mode captures the values of varying variables written by the
vertex shader (or, if active, the geometry shader). Transform feedback is said
to be active after a call to
gl:beginTransformFeedback/1 until a subsequent
call to gl:endTransformFeedback/0. Transform
feedback commands must be paired.
External documentation.

 evalCoord1d(U)

 -spec evalCoord1d(U :: f()) -> ok.

Equivalent to evalCoord2fv/1.

 evalCoord1dv/1

 -spec evalCoord1dv({U :: f()}) -> ok.

Equivalent to evalCoord2fv/1.

 evalCoord1f(U)

 -spec evalCoord1f(U :: f()) -> ok.

Equivalent to evalCoord2fv/1.

 evalCoord1fv/1

 -spec evalCoord1fv({U :: f()}) -> ok.

Equivalent to evalCoord2fv/1.

 evalCoord2d(U, V)

 -spec evalCoord2d(U :: f(), V :: f()) -> ok.

Equivalent to evalCoord2fv/1.

 evalCoord2dv/1

 -spec evalCoord2dv({U :: f(), V :: f()}) -> ok.

Equivalent to evalCoord2fv/1.

 evalCoord2f(U, V)

 -spec evalCoord2f(U :: f(), V :: f()) -> ok.

Equivalent to evalCoord2fv/1.

 evalCoord2fv/1

 -spec evalCoord2fv({U :: f(), V :: f()}) -> ok.

gl:evalCoord1() evaluates enabled one-dimensional maps at
argument U. gl:evalCoord2() does the same for
two-dimensional maps using two domain values, U and V. To define a map, call
glMap1 and glMap2; to enable and disable it, call
gl:enable/1 and gl:disable/1.
External documentation.

 evalMesh1(Mode, I1, I2)

 -spec evalMesh1(Mode :: enum(), I1 :: i(), I2 :: i()) -> ok.

Equivalent to evalMesh2/5.

 evalMesh2(Mode, I1, I2, J1, J2)

 -spec evalMesh2(Mode :: enum(), I1 :: i(), I2 :: i(), J1 :: i(), J2 :: i()) -> ok.

gl:mapGrid() and gl:evalMesh() are used in
tandem to efficiently generate and evaluate a series of evenly-spaced map domain
values. gl:evalMesh() steps through the integer domain of a
one- or two-dimensional grid, whose range is the domain of the evaluation maps
specified by glMap1 and glMap2. Mode determines whether the resulting
vertices are connected as points, lines, or filled polygons.
External documentation.

 evalPoint1(I)

 -spec evalPoint1(I :: i()) -> ok.

Equivalent to evalPoint2/2.

 evalPoint2(I, J)

 -spec evalPoint2(I :: i(), J :: i()) -> ok.

gl:mapGrid() and gl:evalMesh() are used in
tandem to efficiently generate and evaluate a series of evenly spaced map domain
values. gl:evalPoint() can be used to evaluate a single grid
point in the same gridspace that is traversed by
gl:evalMesh(). Calling gl:evalPoint1/1 is
equivalent to calling glEvalCoord1(i.ð u+u 1); where ð u=(u 2-u 1)/n
External documentation.

 feedbackBuffer(Size, Type, Buffer)

 -spec feedbackBuffer(Size :: i(), Type :: enum(), Buffer :: mem()) -> ok.

The gl:feedbackBuffer/3 function controls feedback.
Feedback, like selection, is a GL mode. The mode is selected by calling
gl:renderMode/1 with ?GL_FEEDBACK. When the GL is in
feedback mode, no pixels are produced by rasterization. Instead, information
about primitives that would have been rasterized is fed back to the application
using the GL.
External documentation.

 fenceSync(Condition, Flags)

 -spec fenceSync(Condition :: enum(), Flags :: i()) -> i().

gl:fenceSync/2 creates a new fence sync object, inserts a
fence command into the GL command stream and associates it with that sync
object, and returns a non-zero name corresponding to the sync object.
External documentation.

 finish()

 -spec finish() -> ok.

gl:finish/0 does not return until the effects of all previously
called GL commands are complete. Such effects include all changes to GL state,
all changes to connection state, and all changes to the frame buffer contents.
External documentation.

 flush()

 -spec flush() -> ok.

Different GL implementations buffer commands in several different locations,
including network buffers and the graphics accelerator itself.
gl:flush/0 empties all of these buffers, causing all issued
commands to be executed as quickly as they are accepted by the actual rendering
engine. Though this execution may not be completed in any particular time
period, it does complete in finite time.
External documentation.

 flushMappedBufferRange(Target, Offset, Length)

 -spec flushMappedBufferRange(Target :: enum(), Offset :: i(), Length :: i()) -> ok.

Equivalent to flushMappedNamedBufferRange/3.

 flushMappedNamedBufferRange(Buffer, Offset, Length)

 -spec flushMappedNamedBufferRange(Buffer :: i(), Offset :: i(), Length :: i()) -> ok.

gl:flushMappedBufferRange/3 indicates that
modifications have been made to a range of a mapped buffer object. The buffer
object must previously have been mapped with the ?GL_MAP_FLUSH_EXPLICIT_BIT
flag.
External documentation.

 fogCoordd(Coord)

 -spec fogCoordd(Coord :: f()) -> ok.

Equivalent to fogCoordfv/1.

 fogCoorddv/1

 -spec fogCoorddv({Coord :: f()}) -> ok.

Equivalent to fogCoordfv/1.

 fogCoordf(Coord)

 -spec fogCoordf(Coord :: f()) -> ok.

Equivalent to fogCoordfv/1.

 fogCoordfv/1

 -spec fogCoordfv({Coord :: f()}) -> ok.

gl:fogCoord() specifies the fog coordinate that is associated
with each vertex and the current raster position. The value specified is
interpolated and used in computing the fog color (see gl:fog()).
External documentation.

 fogCoordPointer(Type, Stride, Pointer)

 -spec fogCoordPointer(Type :: enum(), Stride :: i(), Pointer :: offset() | mem()) -> ok.

gl:fogCoordPointer/3 specifies the location and data
format of an array of fog coordinates to use when rendering. Type specifies
the data type of each fog coordinate, and Stride specifies the byte stride
from one fog coordinate to the next, allowing vertices and attributes to be
packed into a single array or stored in separate arrays.
External documentation.

 fogf(Pname, Param)

 -spec fogf(Pname :: enum(), Param :: f()) -> ok.

Equivalent to fogiv/2.

 fogfv(Pname, Params)

 -spec fogfv(Pname :: enum(), Params :: tuple()) -> ok.

Equivalent to fogiv/2.

 fogi(Pname, Param)

 -spec fogi(Pname :: enum(), Param :: i()) -> ok.

Equivalent to fogiv/2.

 fogiv(Pname, Params)

 -spec fogiv(Pname :: enum(), Params :: tuple()) -> ok.

Fog is initially disabled. While enabled, fog affects rasterized geometry,
bitmaps, and pixel blocks, but not buffer clear operations. To enable and
disable fog, call gl:enable/1 and gl:disable/1
with argument ?GL_FOG.
External documentation.

 framebufferParameteri(Target, Pname, Param)

 -spec framebufferParameteri(Target :: enum(), Pname :: enum(), Param :: i()) -> ok.

gl:framebufferParameteri/3 and
glNamedFramebufferParameteri modify the value of the parameter named Pname
in the specified framebuffer object. There are no modifiable parameters of the
default draw and read framebuffer, so they are not valid targets of these
commands.
External documentation.

 framebufferRenderbuffer(Target, Attachment, Renderbuffertarget, Renderbuffer)

 -spec framebufferRenderbuffer(Target, Attachment, Renderbuffertarget, Renderbuffer) -> ok
 when
 Target :: enum(),
 Attachment :: enum(),
 Renderbuffertarget :: enum(),
 Renderbuffer :: i().

gl:framebufferRenderbuffer/4 and
glNamedFramebufferRenderbuffer attaches a renderbuffer as one of the logical
buffers of the specified framebuffer object. Renderbuffers cannot be attached to
the default draw and read framebuffer, so they are not valid targets of these
commands.
External documentation.

 framebufferTexture1D(Target, Attachment, Textarget, Texture, Level)

 -spec framebufferTexture1D(Target :: enum(),
 Attachment :: enum(),
 Textarget :: enum(),
 Texture :: i(),
 Level :: i()) ->
 ok.

Equivalent to framebufferTextureLayer/5.

 framebufferTexture2D(Target, Attachment, Textarget, Texture, Level)

 -spec framebufferTexture2D(Target :: enum(),
 Attachment :: enum(),
 Textarget :: enum(),
 Texture :: i(),
 Level :: i()) ->
 ok.

Equivalent to framebufferTextureLayer/5.

 framebufferTexture3D(Target, Attachment, Textarget, Texture, Level, Zoffset)

 -spec framebufferTexture3D(Target, Attachment, Textarget, Texture, Level, Zoffset) -> ok
 when
 Target :: enum(),
 Attachment :: enum(),
 Textarget :: enum(),
 Texture :: i(),
 Level :: i(),
 Zoffset :: i().

Equivalent to framebufferTextureLayer/5.

 framebufferTexture(Target, Attachment, Texture, Level)

 -spec framebufferTexture(Target :: enum(), Attachment :: enum(), Texture :: i(), Level :: i()) -> ok.

Equivalent to framebufferTextureLayer/5.

 framebufferTextureFaceARB(Target, Attachment, Texture, Level, Face)

 -spec framebufferTextureFaceARB(Target :: enum(),
 Attachment :: enum(),
 Texture :: i(),
 Level :: i(),
 Face :: enum()) ->
 ok.

Equivalent to framebufferTextureLayer/5.

 framebufferTextureLayer(Target, Attachment, Texture, Level, Layer)

 -spec framebufferTextureLayer(Target :: enum(),
 Attachment :: enum(),
 Texture :: i(),
 Level :: i(),
 Layer :: i()) ->
 ok.

These commands attach a selected mipmap level or image of a texture object as
one of the logical buffers of the specified framebuffer object. Textures cannot
be attached to the default draw and read framebuffer, so they are not valid
targets of these commands.
External documentation.

 frontFace(Mode)

 -spec frontFace(Mode :: enum()) -> ok.

In a scene composed entirely of opaque closed surfaces, back-facing polygons are
never visible. Eliminating these invisible polygons has the obvious benefit of
speeding up the rendering of the image. To enable and disable elimination of
back-facing polygons, call gl:enable/1 and
gl:disable/1 with argument ?GL_CULL_FACE.
External documentation.

 frustum(Left, Right, Bottom, Top, Near_val, Far_val)

 -spec frustum(Left :: f(), Right :: f(), Bottom :: f(), Top :: f(), Near_val :: f(), Far_val :: f()) ->
 ok.

gl:frustum/6 describes a perspective matrix that produces a
perspective projection. The current matrix (see
gl:matrixMode/1) is multiplied by this matrix and the result
replaces the current matrix, as if gl:multMatrix() were
called with the following matrix as its argument:
External documentation.

 genBuffers(N)

 -spec genBuffers(N :: i()) -> [i()].

gl:genBuffers/1 returns N buffer object names in
Buffers. There is no guarantee that the names form a contiguous set of
integers; however, it is guaranteed that none of the returned names was in use
immediately before the call to gl:genBuffers/1.
External documentation.

 generateMipmap(Target)

 -spec generateMipmap(Target :: enum()) -> ok.

Equivalent to generateTextureMipmap/1.

 generateTextureMipmap(Texture)

 -spec generateTextureMipmap(Texture :: i()) -> ok.

gl:generateMipmap/1 and
gl:generateTextureMipmap/1 generates mipmaps for the
specified texture object. For gl:generateMipmap/1, the
texture object that is bound to Target. For
gl:generateTextureMipmap/1, Texture is the name of the
texture object.
External documentation.

 genFramebuffers(N)

 -spec genFramebuffers(N :: i()) -> [i()].

gl:genFramebuffers/1 returns N framebuffer object
names in Ids. There is no guarantee that the names form a contiguous set of
integers; however, it is guaranteed that none of the returned names was in use
immediately before the call to gl:genFramebuffers/1.
External documentation.

 genLists(Range)

 -spec genLists(Range :: i()) -> i().

gl:genLists/1 has one argument, Range. It returns an integer
n such that Range contiguous empty display lists, named n, n+1, ...,
n+range-1, are created. If Range is 0, if there is no group of Range
contiguous names available, or if any error is generated, no display lists are
generated, and 0 is returned.
External documentation.

 genProgramPipelines(N)

 -spec genProgramPipelines(N :: i()) -> [i()].

gl:genProgramPipelines/1 returns N previously
unused program pipeline object names in Pipelines. These names are marked as
used, for the purposes of gl:genProgramPipelines/1
only, but they acquire program pipeline state only when they are first bound.
External documentation.

 genQueries(N)

 -spec genQueries(N :: i()) -> [i()].

gl:genQueries/1 returns N query object names in Ids.
There is no guarantee that the names form a contiguous set of integers; however,
it is guaranteed that none of the returned names was in use immediately before
the call to gl:genQueries/1.
External documentation.

 genRenderbuffers(N)

 -spec genRenderbuffers(N :: i()) -> [i()].

gl:genRenderbuffers/1 returns N renderbuffer object
names in Renderbuffers. There is no guarantee that the names form a contiguous
set of integers; however, it is guaranteed that none of the returned names was
in use immediately before the call to
gl:genRenderbuffers/1.
External documentation.

 genSamplers(Count)

 -spec genSamplers(Count :: i()) -> [i()].

gl:genSamplers/1 returns N sampler object names in
Samplers. There is no guarantee that the names form a contiguous set of
integers; however, it is guaranteed that none of the returned names was in use
immediately before the call to gl:genSamplers/1.
External documentation.

 genTextures(N)

 -spec genTextures(N :: i()) -> [i()].

gl:genTextures/1 returns N texture names in Textures.
There is no guarantee that the names form a contiguous set of integers; however,
it is guaranteed that none of the returned names was in use immediately before
the call to gl:genTextures/1.
External documentation.

 genTransformFeedbacks(N)

 -spec genTransformFeedbacks(N :: i()) -> [i()].

gl:genTransformFeedbacks/1 returns N previously
unused transform feedback object names in Ids. These names are marked as used,
for the purposes of gl:genTransformFeedbacks/1
only, but they acquire transform feedback state only when they are first bound.
External documentation.

 genVertexArrays(N)

 -spec genVertexArrays(N :: i()) -> [i()].

gl:genVertexArrays/1 returns N vertex array object
names in Arrays. There is no guarantee that the names form a contiguous set of
integers; however, it is guaranteed that none of the returned names was in use
immediately before the call to gl:genVertexArrays/1.
External documentation.

 getActiveAttrib(Program, Index, BufSize)

 -spec getActiveAttrib(Program :: i(), Index :: i(), BufSize :: i()) ->
 {Size :: i(), Type :: enum(), Name :: string()}.

gl:getActiveAttrib/3 returns information about an
active attribute variable in the program object specified by Program. The
number of active attributes can be obtained by calling
gl:getProgram() with the value ?GL_ACTIVE_ATTRIBUTES. A
value of 0 for Index selects the first active attribute variable. Permissible
values for Index range from zero to the number of active attribute variables
minus one.
External documentation.

 getActiveSubroutineName(Program, Shadertype, Index, Bufsize)

 -spec getActiveSubroutineName(Program :: i(), Shadertype :: enum(), Index :: i(), Bufsize :: i()) ->
 string().

gl:getActiveSubroutineName/4 queries the name
of an active shader subroutine uniform from the program object given in
Program. Index specifies the index of the shader subroutine uniform within
the shader stage given by Stage, and must between zero and the value of
?GL_ACTIVE_SUBROUTINES minus one for the shader stage.
External documentation.

 getActiveSubroutineUniformName(Program, Shadertype, Index, Bufsize)

 -spec getActiveSubroutineUniformName(Program :: i(), Shadertype :: enum(), Index :: i(), Bufsize :: i()) ->
 string().

gl:getActiveSubroutineUniformName/4
retrieves the name of an active shader subroutine uniform. Program contains
the name of the program containing the uniform. Shadertype specifies the stage
for which the uniform location, given by Index, is valid. Index must be
between zero and the value of ?GL_ACTIVE_SUBROUTINE_UNIFORMS minus one for the
shader stage.
External documentation.

 getActiveUniform(Program, Index, BufSize)

 -spec getActiveUniform(Program :: i(), Index :: i(), BufSize :: i()) ->
 {Size :: i(), Type :: enum(), Name :: string()}.

gl:getActiveUniform/3 returns information about an
active uniform variable in the program object specified by Program. The number
of active uniform variables can be obtained by calling
gl:getProgram() with the value ?GL_ACTIVE_UNIFORMS. A
value of 0 for Index selects the first active uniform variable. Permissible
values for Index range from zero to the number of active uniform variables
minus one.
External documentation.

 getActiveUniformBlockiv(Program, UniformBlockIndex, Pname, Params)

 -spec getActiveUniformBlockiv(Program :: i(),
 UniformBlockIndex :: i(),
 Pname :: enum(),
 Params :: mem()) ->
 ok.

gl:getActiveUniformBlockiv/4 retrieves
information about an active uniform block within Program.
External documentation.

 getActiveUniformBlockName(Program, UniformBlockIndex, BufSize)

 -spec getActiveUniformBlockName(Program :: i(), UniformBlockIndex :: i(), BufSize :: i()) -> string().

gl:getActiveUniformBlockName/3 retrieves the
name of the active uniform block at UniformBlockIndex within Program.
External documentation.

 getActiveUniformName(Program, UniformIndex, BufSize)

 -spec getActiveUniformName(Program :: i(), UniformIndex :: i(), BufSize :: i()) -> string().

gl:getActiveUniformName/3 returns the name of the
active uniform at UniformIndex within Program. If UniformName is not NULL,
up to BufSize characters (including a nul-terminator) will be written into the
array whose address is specified by UniformName. If Length is not NULL, the
number of characters that were (or would have been) written into UniformName
(not including the nul-terminator) will be placed in the variable whose address
is specified in Length. If Length is NULL, no length is returned. The length
of the longest uniform name in Program is given by the value of
?GL_ACTIVE_UNIFORM_MAX_LENGTH, which can be queried with
gl:getProgram().
External documentation.

 getActiveUniformsiv(Program, UniformIndices, Pname)

 -spec getActiveUniformsiv(Program :: i(), UniformIndices :: [i()], Pname :: enum()) -> [i()].

gl:getActiveUniformsiv/3 queries the value of the
parameter named Pname for each of the uniforms within Program whose indices
are specified in the array of UniformCount unsigned integers UniformIndices.
Upon success, the value of the parameter for each uniform is written into the
corresponding entry in the array whose address is given in Params. If an error
is generated, nothing is written into Params.
External documentation.

 getAttachedShaders(Program, MaxCount)

 -spec getAttachedShaders(Program :: i(), MaxCount :: i()) -> [i()].

gl:getAttachedShaders/2 returns the names of the
shader objects attached to Program. The names of shader objects that are
attached to Program will be returned in Shaders. The actual number of shader
names written into Shaders is returned in Count. If no shader objects are
attached to Program, Count is set to 0. The maximum number of shader names
that may be returned in Shaders is specified by MaxCount.
External documentation.

 getAttribLocation(Program, Name)

 -spec getAttribLocation(Program :: i(), Name :: string()) -> i().

gl:getAttribLocation/2 queries the previously linked
program object specified by Program for the attribute variable specified by
Name and returns the index of the generic vertex attribute that is bound to
that attribute variable. If Name is a matrix attribute variable, the index of
the first column of the matrix is returned. If the named attribute variable is
not an active attribute in the specified program object or if Name starts with
the reserved prefix "gl_", a value of -1 is returned.
External documentation.

 getBooleani_v(Target, Index)

 -spec getBooleani_v(Target :: enum(), Index :: i()) -> [0 | 1].

Equivalent to getIntegerv/1.

 getBooleanv(Pname)

 -spec getBooleanv(Pname :: enum()) -> [0 | 1].

Equivalent to getIntegerv/1.

 getBufferParameteri64v(Target, Pname)

 -spec getBufferParameteri64v(Target :: enum(), Pname :: enum()) -> [i()].

Equivalent to getBufferParameterivARB/2.

 getBufferParameteriv(Target, Pname)

 -spec getBufferParameteriv(Target :: enum(), Pname :: enum()) -> i().

gl:getBufferParameteriv/2 returns in Data a
selected parameter of the buffer object specified by Target.
External documentation.

 getBufferParameterivARB(Target, Pname)

 -spec getBufferParameterivARB(Target :: enum(), Pname :: enum()) -> [i()].

These functions return in Data a selected parameter of the specified buffer
object.
External documentation.

 getBufferSubData(Target, Offset, Size, Data)

 -spec getBufferSubData(Target :: enum(), Offset :: i(), Size :: i(), Data :: mem()) -> ok.

gl:getBufferSubData/4 and glGetNamedBufferSubData
return some or all of the data contents of the data store of the specified
buffer object. Data starting at byte offset Offset and extending for Size
bytes is copied from the buffer object's data store to the memory pointed to by
Data. An error is thrown if the buffer object is currently mapped, or if
Offset and Size together define a range beyond the bounds of the buffer
object's data store.
External documentation.

 getClipPlane(Plane)

 -spec getClipPlane(Plane :: enum()) -> {f(), f(), f(), f()}.

gl:getClipPlane/1 returns in Equation the four
coefficients of the plane equation for Plane.
External documentation.

 getColorTable(Target, Format, Type, Table)

 -spec getColorTable(Target :: enum(), Format :: enum(), Type :: enum(), Table :: mem()) -> ok.

gl:getColorTable/4 returns in Table the contents of the
color table specified by Target. No pixel transfer operations are performed,
but pixel storage modes that are applicable to
gl:readPixels/7 are performed.
External documentation.

 getColorTableParameterfv(Target, Pname)

 -spec getColorTableParameterfv(Target :: enum(), Pname :: enum()) -> {f(), f(), f(), f()}.

Equivalent to getColorTableParameteriv/2.

 getColorTableParameteriv(Target, Pname)

 -spec getColorTableParameteriv(Target :: enum(), Pname :: enum()) -> {i(), i(), i(), i()}.

Returns parameters specific to color table Target.
External documentation.

 getCompressedTexImage(Target, Lod, Img)

 -spec getCompressedTexImage(Target :: enum(), Lod :: i(), Img :: mem()) -> ok.

gl:getCompressedTexImage/3 and
glGetnCompressedTexImage return the compressed texture image associated with
Target and Lod into Pixels. glGetCompressedTextureImage serves the same
purpose, but instead of taking a texture target, it takes the ID of the texture
object. Pixels should be an array of BufSize bytes for
glGetnCompresedTexImage and glGetCompressedTextureImage functions, and of
?GL_TEXTURE_COMPRESSED_IMAGE_SIZE bytes in case of
gl:getCompressedTexImage/3. If the actual data
takes less space than BufSize, the remaining bytes will not be touched.
Target specifies the texture target, to which the texture the data the
function should extract the data from is bound to. Lod specifies the
level-of-detail number of the desired image.
External documentation.

 getConvolutionFilter(Target, Format, Type, Image)

 -spec getConvolutionFilter(Target :: enum(), Format :: enum(), Type :: enum(), Image :: mem()) -> ok.

gl:getConvolutionFilter/4 returns the current 1D
or 2D convolution filter kernel as an image. The one- or two-dimensional image
is placed in Image according to the specifications in Format and Type. No
pixel transfer operations are performed on this image, but the relevant pixel
storage modes are applied.
External documentation.

 getConvolutionParameterfv(Target, Pname)

 -spec getConvolutionParameterfv(Target :: enum(), Pname :: enum()) -> {f(), f(), f(), f()}.

Equivalent to getConvolutionParameteriv/2.

 getConvolutionParameteriv(Target, Pname)

 -spec getConvolutionParameteriv(Target :: enum(), Pname :: enum()) -> {i(), i(), i(), i()}.

gl:getConvolutionParameter() retrieves
convolution parameters. Target determines which convolution filter is queried.
Pname determines which parameter is returned:
External documentation.

 getDebugMessageLog(Count, BufSize)

 -spec getDebugMessageLog(Count :: i(), BufSize :: i()) ->
 {i(),
 Sources :: [enum()],
 Types :: [enum()],
 Ids :: [i()],
 Severities :: [enum()],
 MessageLog :: [string()]}.

gl:getDebugMessageLog/2 retrieves messages from the
debug message log. A maximum of Count messages are retrieved from the log. If
Sources is not NULL then the source of each message is written into up to
Count elements of the array. If Types is not NULL then the type of each
message is written into up to Count elements of the array. If Id is not NULL
then the identifier of each message is written into up to Count elements of
the array. If Severities is not NULL then the severity of each message is
written into up to Count elements of the array. If Lengths is not NULL then
the length of each message is written into up to Count elements of the array.
External documentation.

 getDoublei_v(Target, Index)

 -spec getDoublei_v(Target :: enum(), Index :: i()) -> [f()].

Equivalent to getIntegerv/1.

 getDoublev(Pname)

 -spec getDoublev(Pname :: enum()) -> [f()].

Equivalent to getIntegerv/1.

 getError()

 -spec getError() -> enum().

gl:getError/0 returns the value of the error flag. Each
detectable error is assigned a numeric code and symbolic name. When an error
occurs, the error flag is set to the appropriate error code value. No other
errors are recorded until gl:getError/0 is called, the error
code is returned, and the flag is reset to ?GL_NO_ERROR. If a call to
gl:getError/0 returns ?GL_NO_ERROR, there has been no
detectable error since the last call to gl:getError/0, or
since the GL was initialized.
External documentation.

 getFloati_v(Target, Index)

 -spec getFloati_v(Target :: enum(), Index :: i()) -> [f()].

Equivalent to getIntegerv/1.

 getFloatv(Pname)

 -spec getFloatv(Pname :: enum()) -> [f()].

Equivalent to getIntegerv/1.

 getFragDataIndex(Program, Name)

 -spec getFragDataIndex(Program :: i(), Name :: string()) -> i().

gl:getFragDataIndex/2 returns the index of the
fragment color to which the variable Name was bound when the program object
Program was last linked. If Name is not a varying out variable of Program,
or if an error occurs, -1 will be returned.
External documentation.

 getFragDataLocation(Program, Name)

 -spec getFragDataLocation(Program :: i(), Name :: string()) -> i().

gl:getFragDataLocation/2 retrieves the assigned
color number binding for the user-defined varying out variable Name for
program Program. Program must have previously been linked. Name must be a
null-terminated string. If Name is not the name of an active user-defined
varying out fragment shader variable within Program, -1 will be returned.
External documentation.

 getFramebufferAttachmentParameteriv(Target, Attachment, Pname)

 -spec getFramebufferAttachmentParameteriv(Target :: enum(), Attachment :: enum(), Pname :: enum()) ->
 i().

gl:getFramebufferAttachmentParameteriv/3
and glGetNamedFramebufferAttachmentParameteriv return parameters of
attachments of a specified framebuffer object.
External documentation.

 getFramebufferParameteriv(Target, Pname)

 -spec getFramebufferParameteriv(Target :: enum(), Pname :: enum()) -> i().

gl:getFramebufferParameteriv/2 and
glGetNamedFramebufferParameteriv query parameters of a specified framebuffer
object.
External documentation.

 getGraphicsResetStatus()

 -spec getGraphicsResetStatus() -> enum().

Certain events can result in a reset of the GL context. Such a reset causes all
context state to be lost and requires the application to recreate all objects in
the affected context.
External documentation.

 getHistogram(Target, Reset, Format, Type, Values)

 -spec getHistogram(Target :: enum(), Reset :: 0 | 1, Format :: enum(), Type :: enum(), Values :: mem()) ->
 ok.

gl:getHistogram/5 returns the current histogram table as a
one-dimensional image with the same width as the histogram. No pixel transfer
operations are performed on this image, but pixel storage modes that are
applicable to 1D images are honored.
External documentation.

 getHistogramParameterfv(Target, Pname)

 -spec getHistogramParameterfv(Target :: enum(), Pname :: enum()) -> {f()}.

Equivalent to getHistogramParameteriv/2.

 getHistogramParameteriv(Target, Pname)

 -spec getHistogramParameteriv(Target :: enum(), Pname :: enum()) -> {i()}.

gl:getHistogramParameter() is used to query
parameter values for the current histogram or for a proxy. The histogram state
information may be queried by calling
gl:getHistogramParameter() with a Target of
?GL_HISTOGRAM (to obtain information for the current histogram table) or
?GL_PROXY_HISTOGRAM (to obtain information from the most recent proxy request)
and one of the following values for the Pname argument:
External documentation.

 getInteger64i_v(Target, Index)

 -spec getInteger64i_v(Target :: enum(), Index :: i()) -> [i()].

Equivalent to getIntegerv/1.

 getInteger64v(Pname)

 -spec getInteger64v(Pname :: enum()) -> [i()].

Equivalent to getIntegerv/1.

 getIntegeri_v(Target, Index)

 -spec getIntegeri_v(Target :: enum(), Index :: i()) -> [i()].

Equivalent to getIntegerv/1.

 getIntegerv(Pname)

 -spec getIntegerv(Pname :: enum()) -> [i()].

These commands return values for simple state variables in GL. Pname is a
symbolic constant indicating the state variable to be returned, and Data is a
pointer to an array of the indicated type in which to place the returned data.
External documentation.

 getInternalformati64v(Target, Internalformat, Pname, BufSize)

 -spec getInternalformati64v(Target :: enum(), Internalformat :: enum(), Pname :: enum(), BufSize :: i()) ->
 [i()].

Equivalent to getInternalformativ/4.

 getInternalformativ(Target, Internalformat, Pname, BufSize)

 -spec getInternalformativ(Target :: enum(), Internalformat :: enum(), Pname :: enum(), BufSize :: i()) ->
 [i()].

No documentation available.

 getLightfv(Light, Pname)

 -spec getLightfv(Light :: enum(), Pname :: enum()) -> {f(), f(), f(), f()}.

Equivalent to getLightiv/2.

 getLightiv(Light, Pname)

 -spec getLightiv(Light :: enum(), Pname :: enum()) -> {i(), i(), i(), i()}.

gl:getLight() returns in Params the value or values of a
light source parameter. Light names the light and is a symbolic name of the
form ?GL_LIGHT i where i ranges from 0 to the value of ?GL_MAX_LIGHTS - 1.
?GL_MAX_LIGHTS is an implementation dependent constant that is greater than or
equal to eight. Pname specifies one of ten light source parameters, again by
symbolic name.
External documentation.

 getMapdv(Target, Query, V)

 -spec getMapdv(Target :: enum(), Query :: enum(), V :: mem()) -> ok.

Equivalent to getMapiv/3.

 getMapfv(Target, Query, V)

 -spec getMapfv(Target :: enum(), Query :: enum(), V :: mem()) -> ok.

Equivalent to getMapiv/3.

 getMapiv(Target, Query, V)

 -spec getMapiv(Target :: enum(), Query :: enum(), V :: mem()) -> ok.

glMap1 and glMap2 define evaluators. gl:getMap() returns
evaluator parameters. Target chooses a map, Query selects a specific
parameter, and V points to storage where the values will be returned.
External documentation.

 getMaterialfv(Face, Pname)

 -spec getMaterialfv(Face :: enum(), Pname :: enum()) -> {f(), f(), f(), f()}.

Equivalent to getMaterialiv/2.

 getMaterialiv(Face, Pname)

 -spec getMaterialiv(Face :: enum(), Pname :: enum()) -> {i(), i(), i(), i()}.

gl:getMaterial() returns in Params the value or values
of parameter Pname of material Face. Six parameters are defined:
External documentation.

 getMinmax(Target, Reset, Format, Types, Values)

 -spec getMinmax(Target :: enum(), Reset :: 0 | 1, Format :: enum(), Types :: enum(), Values :: mem()) ->
 ok.

gl:getMinmax/5 returns the accumulated minimum and maximum
pixel values (computed on a per-component basis) in a one-dimensional image of
width 2. The first set of return values are the minima, and the second set of
return values are the maxima. The format of the return values is determined by
Format, and their type is determined by Types.
External documentation.

 getMinmaxParameterfv(Target, Pname)

 -spec getMinmaxParameterfv(Target :: enum(), Pname :: enum()) -> {f()}.

Equivalent to getMinmaxParameteriv/2.

 getMinmaxParameteriv(Target, Pname)

 -spec getMinmaxParameteriv(Target :: enum(), Pname :: enum()) -> {i()}.

gl:getMinmaxParameter() retrieves parameters for
the current minmax table by setting Pname to one of the following values:
External documentation.

 getMultisamplefv(Pname, Index)

 -spec getMultisamplefv(Pname :: enum(), Index :: i()) -> {f(), f()}.

gl:getMultisamplefv/2 queries the location of a given
sample. Pname specifies the sample parameter to retrieve and must be
?GL_SAMPLE_POSITION. Index corresponds to the sample for which the location
should be returned. The sample location is returned as two floating-point values
in Val[0] and Val[1], each between 0 and 1, corresponding to the X and Y
locations respectively in the GL pixel space of that sample. (0.5, 0.5) this
corresponds to the pixel center. Index must be between zero and the value of
?GL_SAMPLES minus one.
External documentation.

 getPixelMapfv(Map, Values)

 -spec getPixelMapfv(Map :: enum(), Values :: mem()) -> ok.

Equivalent to getPixelMapusv/2.

 getPixelMapuiv(Map, Values)

 -spec getPixelMapuiv(Map :: enum(), Values :: mem()) -> ok.

Equivalent to getPixelMapusv/2.

 getPixelMapusv(Map, Values)

 -spec getPixelMapusv(Map :: enum(), Values :: mem()) -> ok.

See the gl:pixelMap() reference page for a description of
the acceptable values for the Map parameter.
gl:getPixelMap() returns in Data the contents of the
pixel map specified in Map. Pixel maps are used during the execution of
gl:readPixels/7, gl:drawPixels/5,
gl:copyPixels/5, gl:texImage1D/8,
gl:texImage2D/9, gl:texImage3D/10,
gl:texSubImage1D/7,
gl:texSubImage2D/9,
gl:texSubImage3D/11,
gl:copyTexImage1D/7,
gl:copyTexImage2D/8,
gl:copyTexSubImage1D/6,
gl:copyTexSubImage2D/8, and
gl:copyTexSubImage3D/9. to map color indices, stencil
indices, color components, and depth components to other values.
External documentation.

 getPolygonStipple()

 -spec getPolygonStipple() -> binary().

gl:getPolygonStipple/0 returns to Pattern a 32×32
polygon stipple pattern. The pattern is packed into memory as if
gl:readPixels/7 with both height and width of 32, type
of ?GL_BITMAP, and format of ?GL_COLOR_INDEX were called, and the stipple
pattern were stored in an internal 32×32 color index buffer. Unlike
gl:readPixels/7, however, pixel transfer operations (shift,
offset, pixel map) are not applied to the returned stipple image.
External documentation.

 getProgramBinary(Program, BufSize)

 -spec getProgramBinary(Program :: i(), BufSize :: i()) -> {BinaryFormat :: enum(), Binary :: binary()}.

gl:getProgramBinary/2 returns a binary representation
of the compiled and linked executable for Program into the array of bytes
whose address is specified in Binary. The maximum number of bytes that may be
written into Binary is specified by BufSize. If the program binary is
greater in size than BufSize bytes, then an error is generated, otherwise the
actual number of bytes written into Binary is returned in the variable whose
address is given by Length. If Length is ?NULL, then no length is
returned.
External documentation.

 getProgramInfoLog(Program, BufSize)

 -spec getProgramInfoLog(Program :: i(), BufSize :: i()) -> string().

gl:getProgramInfoLog/2 returns the information log
for the specified program object. The information log for a program object is
modified when the program object is linked or validated. The string that is
returned will be null terminated.
External documentation.

 getProgramInterfaceiv(Program, ProgramInterface, Pname)

 -spec getProgramInterfaceiv(Program :: i(), ProgramInterface :: enum(), Pname :: enum()) -> i().

gl:getProgramInterfaceiv/3 queries the property
of the interface identifed by ProgramInterface in Program, the property name
of which is given by Pname.
External documentation.

 getProgramiv(Program, Pname)

 -spec getProgramiv(Program :: i(), Pname :: enum()) -> i().

gl:getProgram() returns in Params the value of a
parameter for a specific program object. The following parameters are defined:
External documentation.

 getProgramPipelineInfoLog(Pipeline, BufSize)

 -spec getProgramPipelineInfoLog(Pipeline :: i(), BufSize :: i()) -> string().

gl:getProgramPipelineInfoLog/2 retrieves the
info log for the program pipeline object Pipeline. The info log, including its
null terminator, is written into the array of characters whose address is given
by InfoLog. The maximum number of characters that may be written into
InfoLog is given by BufSize, and the actual number of characters written
into InfoLog is returned in the integer whose address is given by Length. If
Length is ?NULL, no length is returned.
External documentation.

 getProgramPipelineiv(Pipeline, Pname)

 -spec getProgramPipelineiv(Pipeline :: i(), Pname :: enum()) -> i().

gl:getProgramPipelineiv/2 retrieves the value of a
property of the program pipeline object Pipeline. Pname specifies the name
of the parameter whose value to retrieve. The value of the parameter is written
to the variable whose address is given by Params.
External documentation.

 getProgramResourceIndex(Program, ProgramInterface, Name)

 -spec getProgramResourceIndex(Program :: i(), ProgramInterface :: enum(), Name :: string()) -> i().

gl:getProgramResourceIndex/3 returns the
unsigned integer index assigned to a resource named Name in the interface type
ProgramInterface of program object Program.
External documentation.

 getProgramResourceLocation(Program, ProgramInterface, Name)

 -spec getProgramResourceLocation(Program :: i(), ProgramInterface :: enum(), Name :: string()) -> i().

gl:getProgramResourceLocation/3 returns the
location assigned to the variable named Name in interface ProgramInterface
of program object Program. Program must be the name of a program that has
been linked successfully. ProgramInterface must be one of ?GL_UNIFORM,
?GL_PROGRAM_INPUT, ?GL_PROGRAM_OUTPUT, ?GL_VERTEX_SUBROUTINE_UNIFORM,
?GL_TESS_CONTROL_SUBROUTINE_UNIFORM, ?GL_TESS_EVALUATION_SUBROUTINE_UNIFORM,
?GL_GEOMETRY_SUBROUTINE_UNIFORM, ?GL_FRAGMENT_SUBROUTINE_UNIFORM,
?GL_COMPUTE_SUBROUTINE_UNIFORM, or ?GL_TRANSFORM_FEEDBACK_BUFFER.
External documentation.

 getProgramResourceLocationIndex(Program, ProgramInterface, Name)

 -spec getProgramResourceLocationIndex(Program :: i(), ProgramInterface :: enum(), Name :: string()) ->
 i().

gl:getProgramResourceLocationIndex/3
returns the fragment color index assigned to the variable named Name in
interface ProgramInterface of program object Program. Program must be the
name of a program that has been linked successfully. ProgramInterface must be
?GL_PROGRAM_OUTPUT.
External documentation.

 getProgramResourceName(Program, ProgramInterface, Index, BufSize)

 -spec getProgramResourceName(Program :: i(), ProgramInterface :: enum(), Index :: i(), BufSize :: i()) ->
 string().

gl:getProgramResourceName/4 retrieves the name
string assigned to the single active resource with an index of Index in the
interface ProgramInterface of program object Program. Index must be less
than the number of entries in the active resource list for ProgramInterface.
External documentation.

 getProgramStageiv(Program, Shadertype, Pname)

 -spec getProgramStageiv(Program :: i(), Shadertype :: enum(), Pname :: enum()) -> i().

gl:getProgramStage() queries a parameter of a shader
stage attached to a program object. Program contains the name of the program
to which the shader is attached. Shadertype specifies the stage from which to
query the parameter. Pname specifies which parameter should be queried. The
value or values of the parameter to be queried is returned in the variable whose
address is given in Values.
External documentation.

 getQueryBufferObjecti64v(Id, Buffer, Pname, Offset)

 -spec getQueryBufferObjecti64v(Id :: i(), Buffer :: i(), Pname :: enum(), Offset :: i()) -> ok.

Equivalent to getQueryObjectuiv/2.

 getQueryBufferObjectiv(Id, Buffer, Pname, Offset)

 -spec getQueryBufferObjectiv(Id :: i(), Buffer :: i(), Pname :: enum(), Offset :: i()) -> ok.

Equivalent to getQueryObjectuiv/2.

 getQueryBufferObjectui64v(Id, Buffer, Pname, Offset)

 -spec getQueryBufferObjectui64v(Id :: i(), Buffer :: i(), Pname :: enum(), Offset :: i()) -> ok.

Equivalent to getQueryObjectuiv/2.

 getQueryBufferObjectuiv(Id, Buffer, Pname, Offset)

 -spec getQueryBufferObjectuiv(Id :: i(), Buffer :: i(), Pname :: enum(), Offset :: i()) -> ok.

Equivalent to getQueryObjectuiv/2.

 getQueryIndexediv(Target, Index, Pname)

 -spec getQueryIndexediv(Target :: enum(), Index :: i(), Pname :: enum()) -> i().

gl:getQueryIndexediv/3 returns in Params a selected
parameter of the indexed query object target specified by Target and Index.
Index specifies the index of the query object target and must be between zero
and a target-specific maxiumum.
External documentation.

 getQueryiv(Target, Pname)

 -spec getQueryiv(Target :: enum(), Pname :: enum()) -> i().

gl:getQueryiv/2 returns in Params a selected parameter of
the query object target specified by Target.
External documentation.

 getQueryObjecti64v(Id, Pname)

 -spec getQueryObjecti64v(Id :: i(), Pname :: enum()) -> i().

Equivalent to getQueryObjectuiv/2.

 getQueryObjectiv(Id, Pname)

 -spec getQueryObjectiv(Id :: i(), Pname :: enum()) -> i().

Equivalent to getQueryObjectuiv/2.

 getQueryObjectui64v(Id, Pname)

 -spec getQueryObjectui64v(Id :: i(), Pname :: enum()) -> i().

Equivalent to getQueryObjectuiv/2.

 getQueryObjectuiv(Id, Pname)

 -spec getQueryObjectuiv(Id :: i(), Pname :: enum()) -> i().

These commands return a selected parameter of the query object specified by
Id. gl:getQueryObject() returns in Params a
selected parameter of the query object specified by Id.
gl:getQueryBufferObject() returns in Buffer a
selected parameter of the query object specified by Id, by writing it to
Buffer's data store at the byte offset specified by Offset.
External documentation.

 getRenderbufferParameteriv(Target, Pname)

 -spec getRenderbufferParameteriv(Target :: enum(), Pname :: enum()) -> i().

gl:getRenderbufferParameteriv/2 and
glGetNamedRenderbufferParameteriv query parameters of a specified renderbuffer
object.
External documentation.

 getSamplerParameterfv(Sampler, Pname)

 -spec getSamplerParameterfv(Sampler :: i(), Pname :: enum()) -> [f()].

Equivalent to getSamplerParameteriv/2.

 getSamplerParameterIiv(Sampler, Pname)

 -spec getSamplerParameterIiv(Sampler :: i(), Pname :: enum()) -> [i()].

Equivalent to getSamplerParameteriv/2.

 getSamplerParameterIuiv(Sampler, Pname)

 -spec getSamplerParameterIuiv(Sampler :: i(), Pname :: enum()) -> [i()].

Equivalent to getSamplerParameteriv/2.

 getSamplerParameteriv(Sampler, Pname)

 -spec getSamplerParameteriv(Sampler :: i(), Pname :: enum()) -> [i()].

gl:getSamplerParameter() returns in Params the
value or values of the sampler parameter specified as Pname. Sampler defines
the target sampler, and must be the name of an existing sampler object, returned
from a previous call to gl:genSamplers/1. Pname accepts
the same symbols as gl:samplerParameter(), with the
same interpretations:
External documentation.

 getShaderInfoLog(Shader, BufSize)

 -spec getShaderInfoLog(Shader :: i(), BufSize :: i()) -> string().

gl:getShaderInfoLog/2 returns the information log for
the specified shader object. The information log for a shader object is modified
when the shader is compiled. The string that is returned will be null
terminated.
External documentation.

 getShaderiv(Shader, Pname)

 -spec getShaderiv(Shader :: i(), Pname :: enum()) -> i().

gl:getShader() returns in Params the value of a parameter
for a specific shader object. The following parameters are defined:
External documentation.

 getShaderPrecisionFormat(Shadertype, Precisiontype)

 -spec getShaderPrecisionFormat(Shadertype :: enum(), Precisiontype :: enum()) ->
 {Range :: {i(), i()}, Precision :: i()}.

gl:getShaderPrecisionFormat/2 retrieves the
numeric range and precision for the implementation's representation of
quantities in different numeric formats in specified shader type. ShaderType
specifies the type of shader for which the numeric precision and range is to be
retrieved and must be one of ?GL_VERTEX_SHADER or ?GL_FRAGMENT_SHADER.
PrecisionType specifies the numeric format to query and must be one of
?GL_LOW_FLOAT, ?GL_MEDIUM_FLOAT``?GL_HIGH_FLOAT, ?GL_LOW_INT,
?GL_MEDIUM_INT, or ?GL_HIGH_INT.
External documentation.

 getShaderSource(Shader, BufSize)

 -spec getShaderSource(Shader :: i(), BufSize :: i()) -> string().

gl:getShaderSource/2 returns the concatenation of the
source code strings from the shader object specified by Shader. The source
code strings for a shader object are the result of a previous call to
gl:shaderSource/2. The string returned by the function
will be null terminated.
External documentation.

 getString(Name)

 -spec getString(Name :: enum()) -> string().

Equivalent to getStringi/2.

 getStringi(Name, Index)

 -spec getStringi(Name :: enum(), Index :: i()) -> string().

gl:getString/1 returns a pointer to a static string
describing some aspect of the current GL connection. Name can be one of the
following:
External documentation.

 getSubroutineIndex(Program, Shadertype, Name)

 -spec getSubroutineIndex(Program :: i(), Shadertype :: enum(), Name :: string()) -> i().

gl:getSubroutineIndex/3 returns the index of a
subroutine uniform within a shader stage attached to a program object. Program
contains the name of the program to which the shader is attached. Shadertype
specifies the stage from which to query shader subroutine index. Name contains
the null-terminated name of the subroutine uniform whose name to query.
External documentation.

 getSubroutineUniformLocation(Program, Shadertype, Name)

 -spec getSubroutineUniformLocation(Program :: i(), Shadertype :: enum(), Name :: string()) -> i().

gl:getSubroutineUniformLocation/3 returns
the location of the subroutine uniform variable Name in the shader stage of
type Shadertype attached to Program, with behavior otherwise identical to
gl:getUniformLocation/2.
External documentation.

 getSynciv(Sync, Pname, BufSize)

 -spec getSynciv(Sync :: i(), Pname :: enum(), BufSize :: i()) -> [i()].

gl:getSynciv/3 retrieves properties of a sync object. Sync
specifies the name of the sync object whose properties to retrieve.
External documentation.

 getTexEnvfv(Target, Pname)

 -spec getTexEnvfv(Target :: enum(), Pname :: enum()) -> {f(), f(), f(), f()}.

Equivalent to getTexEnviv/2.

 getTexEnviv(Target, Pname)

 -spec getTexEnviv(Target :: enum(), Pname :: enum()) -> {i(), i(), i(), i()}.

gl:getTexEnv() returns in Params selected values of a
texture environment that was specified with gl:texEnv().
Target specifies a texture environment.
External documentation.

 getTexGendv(Coord, Pname)

 -spec getTexGendv(Coord :: enum(), Pname :: enum()) -> {f(), f(), f(), f()}.

Equivalent to getTexGeniv/2.

 getTexGenfv(Coord, Pname)

 -spec getTexGenfv(Coord :: enum(), Pname :: enum()) -> {f(), f(), f(), f()}.

Equivalent to getTexGeniv/2.

 getTexGeniv(Coord, Pname)

 -spec getTexGeniv(Coord :: enum(), Pname :: enum()) -> {i(), i(), i(), i()}.

gl:getTexGen() returns in Params selected parameters of a
texture coordinate generation function that was specified using
gl:texGen(). Coord names one of the (s, t, r, q)
texture coordinates, using the symbolic constant ?GL_S, ?GL_T, ?GL_R, or
?GL_Q.
External documentation.

 getTexImage(Target, Level, Format, Type, Pixels)

 -spec getTexImage(Target :: enum(), Level :: i(), Format :: enum(), Type :: enum(), Pixels :: mem()) ->
 ok.

gl:getTexImage/5, glGetnTexImage and glGetTextureImage
functions return a texture image into Pixels. For
gl:getTexImage/5 and glGetnTexImage, Target specifies
whether the desired texture image is one specified by
gl:texImage1D/8 (?GL_TEXTURE_1D),
gl:texImage2D/9 (?GL_TEXTURE_1D_ARRAY,
?GL_TEXTURE_RECTANGLE, ?GL_TEXTURE_2D or any of ?GL_TEXTURE_CUBE_MAP_*),
or gl:texImage3D/10 (?GL_TEXTURE_2D_ARRAY,
?GL_TEXTURE_3D, ?GL_TEXTURE_CUBE_MAP_ARRAY). For glGetTextureImage,
Texture specifies the texture object name. In addition to types of textures
accepted by gl:getTexImage/5 and glGetnTexImage, the
function also accepts cube map texture objects (with effective target
?GL_TEXTURE_CUBE_MAP). Level specifies the level-of-detail number of the
desired image. Format and Type specify the format and type of the desired
image array. See the reference page for gl:texImage1D/8 for
a description of the acceptable values for the Format and Type parameters,
respectively. For glGetnTexImage and glGetTextureImage functions, bufSize tells
the size of the buffer to receive the retrieved pixel data. glGetnTexImage and
glGetTextureImage do not write more than BufSize bytes into Pixels.
External documentation.

 getTexLevelParameterfv(Target, Level, Pname)

 -spec getTexLevelParameterfv(Target :: enum(), Level :: i(), Pname :: enum()) -> {f()}.

Equivalent to getTexLevelParameteriv/3.

 getTexLevelParameteriv(Target, Level, Pname)

 -spec getTexLevelParameteriv(Target :: enum(), Level :: i(), Pname :: enum()) -> {i()}.

gl:getTexLevelParameterfv/3,
gl:getTexLevelParameteriv/3,
glGetTextureLevelParameterfv and glGetTextureLevelParameteriv return in
Params texture parameter values for a specific level-of-detail value,
specified as Level. For the first two functions, Target defines the target
texture, either ?GL_TEXTURE_1D, ?GL_TEXTURE_2D, ?GL_TEXTURE_3D,
?GL_PROXY_TEXTURE_1D, ?GL_PROXY_TEXTURE_2D, ?GL_PROXY_TEXTURE_3D,
?GL_TEXTURE_CUBE_MAP_POSITIVE_X, ?GL_TEXTURE_CUBE_MAP_NEGATIVE_X,
?GL_TEXTURE_CUBE_MAP_POSITIVE_Y, ?GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
?GL_TEXTURE_CUBE_MAP_POSITIVE_Z, ?GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, or
?GL_PROXY_TEXTURE_CUBE_MAP. The remaining two take a Texture argument which
specifies the name of the texture object.
External documentation.

 getTexParameterfv(Target, Pname)

 -spec getTexParameterfv(Target :: enum(), Pname :: enum()) -> {f(), f(), f(), f()}.

Equivalent to getTexParameteriv/2.

 getTexParameterIiv(Target, Pname)

 -spec getTexParameterIiv(Target :: enum(), Pname :: enum()) -> {i(), i(), i(), i()}.

Equivalent to getTexParameteriv/2.

 getTexParameterIuiv(Target, Pname)

 -spec getTexParameterIuiv(Target :: enum(), Pname :: enum()) -> {i(), i(), i(), i()}.

Equivalent to getTexParameteriv/2.

 getTexParameteriv(Target, Pname)

 -spec getTexParameteriv(Target :: enum(), Pname :: enum()) -> {i(), i(), i(), i()}.

gl:getTexParameter() and glGetTextureParameter
return in Params the value or values of the texture parameter specified as
Pname. Target defines the target texture. ?GL_TEXTURE_1D,
?GL_TEXTURE_2D, ?GL_TEXTURE_3D, ?GL_TEXTURE_1D_ARRAY,
?GL_TEXTURE_2D_ARRAY, ?GL_TEXTURE_RECTANGLE, ?GL_TEXTURE_CUBE_MAP,
?GL_TEXTURE_CUBE_MAP_ARRAY, ?GL_TEXTURE_2D_MULTISAMPLE, or
?GL_TEXTURE_2D_MULTISAMPLE_ARRAY specify one-, two-, or three-dimensional,
one-dimensional array, two-dimensional array, rectangle, cube-mapped or
cube-mapped array, two-dimensional multisample, or two-dimensional multisample
array texturing, respectively. Pname accepts the same symbols as
gl:texParameter(), with the same interpretations:
External documentation.

 getTransformFeedbackVarying(Program, Index, BufSize)

 -spec getTransformFeedbackVarying(Program :: i(), Index :: i(), BufSize :: i()) ->
 {Size :: i(), Type :: enum(), Name :: string()}.

Information about the set of varying variables in a linked program that will be
captured during transform feedback may be retrieved by calling
gl:getTransformFeedbackVarying/3.
gl:getTransformFeedbackVarying/3 provides
information about the varying variable selected by Index. An Index of 0
selects the first varying variable specified in the Varyings array passed to
gl:transformFeedbackVaryings/3, and an
Index of the value of ?GL_TRANSFORM_FEEDBACK_VARYINGS minus one selects the
last such variable.
External documentation.

 getUniformBlockIndex(Program, UniformBlockName)

 -spec getUniformBlockIndex(Program :: i(), UniformBlockName :: string()) -> i().

gl:getUniformBlockIndex/2 retrieves the index of a
uniform block within Program.
External documentation.

 getUniformdv(Program, Location)

 -spec getUniformdv(Program :: i(), Location :: i()) -> matrix().

Equivalent to getUniformuiv/2.

 getUniformfv(Program, Location)

 -spec getUniformfv(Program :: i(), Location :: i()) -> matrix().

Equivalent to getUniformuiv/2.

 getUniformIndices(Program, UniformNames)

 -spec getUniformIndices(Program :: i(), UniformNames :: [unicode:chardata()]) -> [i()].

gl:getUniformIndices/2 retrieves the indices of a
number of uniforms within Program.
External documentation.

 getUniformiv(Program, Location)

 -spec getUniformiv(Program :: i(), Location :: i()) ->
 {i(), i(), i(), i(), i(), i(), i(), i(), i(), i(), i(), i(), i(), i(), i(), i()}.

Equivalent to getUniformuiv/2.

 getUniformLocation(Program, Name)

 -spec getUniformLocation(Program :: i(), Name :: string()) -> i().

glGetUniformLocationreturns an integer that represents the location of a
specific uniform variable within a program object. Name must be a null
terminated string that contains no white space. Name must be an active uniform
variable name in Program that is not a structure, an array of structures, or a
subcomponent of a vector or a matrix. This function returns -1 if Name does
not correspond to an active uniform variable in Program, if Name starts with
the reserved prefix "gl_", or if Name is associated with an atomic counter or
a named uniform block.
External documentation.

 getUniformSubroutineuiv(Shadertype, Location)

 -spec getUniformSubroutineuiv(Shadertype :: enum(), Location :: i()) ->
 {i(),
 i(),
 i(),
 i(),
 i(),
 i(),
 i(),
 i(),
 i(),
 i(),
 i(),
 i(),
 i(),
 i(),
 i(),
 i()}.

gl:getUniformSubroutine() retrieves the value
of the subroutine uniform at location Location for shader stage Shadertype
of the current program. Location must be less than the value of
?GL_ACTIVE_SUBROUTINE_UNIFORM_LOCATIONS for the shader currently in use at
shader stage Shadertype. The value of the subroutine uniform is returned in
Values.
External documentation.

 getUniformuiv(Program, Location)

 -spec getUniformuiv(Program :: i(), Location :: i()) ->
 {i(), i(), i(), i(), i(), i(), i(), i(), i(), i(), i(), i(), i(), i(), i(), i()}.

gl:getUniform() and glGetnUniform return in Params the
value(s) of the specified uniform variable. The type of the uniform variable
specified by Location determines the number of values returned. If the uniform
variable is defined in the shader as a boolean, int, or float, a single value
will be returned. If it is defined as a vec2, ivec2, or bvec2, two values will
be returned. If it is defined as a vec3, ivec3, or bvec3, three values will be
returned, and so on. To query values stored in uniform variables declared as
arrays, call gl:getUniform() for each element of the
array. To query values stored in uniform variables declared as structures, call
gl:getUniform() for each field in the structure. The
values for uniform variables declared as a matrix will be returned in column
major order.
External documentation.

 getVertexAttribdv(Index, Pname)

 -spec getVertexAttribdv(Index :: i(), Pname :: enum()) -> {f(), f(), f(), f()}.

Equivalent to getVertexAttribiv/2.

 getVertexAttribfv(Index, Pname)

 -spec getVertexAttribfv(Index :: i(), Pname :: enum()) -> {f(), f(), f(), f()}.

Equivalent to getVertexAttribiv/2.

 getVertexAttribIiv(Index, Pname)

 -spec getVertexAttribIiv(Index :: i(), Pname :: enum()) -> {i(), i(), i(), i()}.

Equivalent to getVertexAttribiv/2.

 getVertexAttribIuiv(Index, Pname)

 -spec getVertexAttribIuiv(Index :: i(), Pname :: enum()) -> {i(), i(), i(), i()}.

Equivalent to getVertexAttribiv/2.

 getVertexAttribiv(Index, Pname)

 -spec getVertexAttribiv(Index :: i(), Pname :: enum()) -> {i(), i(), i(), i()}.

gl:getVertexAttrib() returns in Params the value of
a generic vertex attribute parameter. The generic vertex attribute to be queried
is specified by Index, and the parameter to be queried is specified by
Pname.
External documentation.

 getVertexAttribLdv(Index, Pname)

 -spec getVertexAttribLdv(Index :: i(), Pname :: enum()) -> {f(), f(), f(), f()}.

Equivalent to getVertexAttribiv/2.

 hint(Target, Mode)

 -spec hint(Target :: enum(), Mode :: enum()) -> ok.

Certain aspects of GL behavior, when there is room for interpretation, can be
controlled with hints. A hint is specified with two arguments. Target is a
symbolic constant indicating the behavior to be controlled, and Mode is
another symbolic constant indicating the desired behavior. The initial value for
each Target is ?GL_DONT_CARE. Mode can be one of the following:
External documentation.

 histogram(Target, Width, Internalformat, Sink)

 -spec histogram(Target :: enum(), Width :: i(), Internalformat :: enum(), Sink :: 0 | 1) -> ok.

When ?GL_HISTOGRAM is enabled, RGBA color components are converted to
histogram table indices by clamping to the range [0,1], multiplying by the
width of the histogram table, and rounding to the nearest integer. The table
entries selected by the RGBA indices are then incremented. (If the internal
format of the histogram table includes luminance, then the index derived from
the R color component determines the luminance table entry to be incremented.)
If a histogram table entry is incremented beyond its maximum value, then its
value becomes undefined. (This is not an error.)
External documentation.

 indexd(C)

 -spec indexd(C :: f()) -> ok.

Equivalent to indexubv/1.

 indexdv/1

 -spec indexdv({C :: f()}) -> ok.

Equivalent to indexubv/1.

 indexf(C)

 -spec indexf(C :: f()) -> ok.

Equivalent to indexubv/1.

 indexfv/1

 -spec indexfv({C :: f()}) -> ok.

Equivalent to indexubv/1.

 indexi(C)

 -spec indexi(C :: i()) -> ok.

Equivalent to indexubv/1.

 indexiv/1

 -spec indexiv({C :: i()}) -> ok.

Equivalent to indexubv/1.

 indexMask(Mask)

 -spec indexMask(Mask :: i()) -> ok.

gl:indexMask/1 controls the writing of individual bits in the
color index buffers. The least significant n bits of Mask, where n is the
number of bits in a color index buffer, specify a mask. Where a 1 (one) appears
in the mask, it's possible to write to the corresponding bit in the color index
buffer (or buffers). Where a 0 (zero) appears, the corresponding bit is
write-protected.
External documentation.

 indexPointer(Type, Stride, Ptr)

 -spec indexPointer(Type :: enum(), Stride :: i(), Ptr :: offset() | mem()) -> ok.

gl:indexPointer/3 specifies the location and data format
of an array of color indexes to use when rendering. Type specifies the data
type of each color index and Stride specifies the byte stride from one color
index to the next, allowing vertices and attributes to be packed into a single
array or stored in separate arrays.
External documentation.

 indexs(C)

 -spec indexs(C :: i()) -> ok.

Equivalent to indexubv/1.

 indexsv/1

 -spec indexsv({C :: i()}) -> ok.

Equivalent to indexubv/1.

 indexub(C)

 -spec indexub(C :: i()) -> ok.

Equivalent to indexubv/1.

 indexubv/1

 -spec indexubv({C :: i()}) -> ok.

gl:index() updates the current (single-valued) color index. It
takes one argument, the new value for the current color index.
External documentation.

 initNames()

 -spec initNames() -> ok.

The name stack is used during selection mode to allow sets of rendering commands
to be uniquely identified. It consists of an ordered set of unsigned integers.
gl:initNames/0 causes the name stack to be initialized to its
default empty state.
External documentation.

 interleavedArrays(Format, Stride, Pointer)

 -spec interleavedArrays(Format :: enum(), Stride :: i(), Pointer :: offset() | mem()) -> ok.

gl:interleavedArrays/3 lets you specify and enable
individual color, normal, texture and vertex arrays whose elements are part of a
larger aggregate array element. For some implementations, this is more efficient
than specifying the arrays separately.
External documentation.

 invalidateBufferData(Buffer)

 -spec invalidateBufferData(Buffer :: i()) -> ok.

gl:invalidateBufferData/1 invalidates all of the
content of the data store of a buffer object. After invalidation, the content of
the buffer's data store becomes undefined.
External documentation.

 invalidateBufferSubData(Buffer, Offset, Length)

 -spec invalidateBufferSubData(Buffer :: i(), Offset :: i(), Length :: i()) -> ok.

gl:invalidateBufferSubData/3 invalidates all or
part of the content of the data store of a buffer object. After invalidation,
the content of the specified range of the buffer's data store becomes undefined.
The start of the range is given by Offset and its size is given by Length,
both measured in basic machine units.
External documentation.

 invalidateFramebuffer(Target, Attachments)

 -spec invalidateFramebuffer(Target :: enum(), Attachments :: [enum()]) -> ok.

gl:invalidateFramebuffer/2 and
glInvalidateNamedFramebufferData invalidate the entire contents of a specified
set of attachments of a framebuffer.
External documentation.

 invalidateSubFramebuffer(Target, Attachments, X, Y, Width, Height)

 -spec invalidateSubFramebuffer(Target :: enum(),
 Attachments :: [enum()],
 X :: i(),
 Y :: i(),
 Width :: i(),
 Height :: i()) ->
 ok.

gl:invalidateSubFramebuffer/6 and
glInvalidateNamedFramebufferSubData invalidate the contents of a specified
region of a specified set of attachments of a framebuffer.
External documentation.

 invalidateTexImage(Texture, Level)

 -spec invalidateTexImage(Texture :: i(), Level :: i()) -> ok.

gl:invalidateTexSubImage/8 invalidates all of a
texture image. Texture and Level indicated which texture image is being
invalidated. After this command, data in the texture image has undefined values.
External documentation.

 invalidateTexSubImage(Texture, Level, Xoffset, Yoffset, Zoffset, Width, Height, Depth)

 -spec invalidateTexSubImage(Texture, Level, Xoffset, Yoffset, Zoffset, Width, Height, Depth) -> ok
 when
 Texture :: i(),
 Level :: i(),
 Xoffset :: i(),
 Yoffset :: i(),
 Zoffset :: i(),
 Width :: i(),
 Height :: i(),
 Depth :: i().

gl:invalidateTexSubImage/8 invalidates all or
part of a texture image. Texture and Level indicated which texture image is
being invalidated. After this command, data in that subregion have undefined
values. Xoffset, Yoffset, Zoffset, Width, Height, and Depth are
interpreted as they are in gl:texSubImage3D/11. For
texture targets that don't have certain dimensions, this command treats those
dimensions as having a size of 1. For example, to invalidate a portion of a two-
dimensional texture, the application would use Zoffset equal to zero and
Depth equal to one. Cube map textures are treated as an array of six slices in
the z-dimension, where a value of Zoffset is interpreted as specifying face
?GL_TEXTURE_CUBE_MAP_POSITIVE_X + Zoffset.
External documentation.

 isBuffer(Buffer)

 -spec isBuffer(Buffer :: i()) -> 0 | 1.

gl:isBuffer/1 returns ?GL_TRUE if Buffer is currently the
name of a buffer object. If Buffer is zero, or is a non-zero value that is not
currently the name of a buffer object, or if an error occurs,
gl:isBuffer/1 returns ?GL_FALSE.
External documentation.

 isEnabled(Cap)

 -spec isEnabled(Cap :: enum()) -> 0 | 1.

Equivalent to isEnabledi/2.

 isEnabledi(Target, Index)

 -spec isEnabledi(Target :: enum(), Index :: i()) -> 0 | 1.

gl:isEnabled/1 returns ?GL_TRUE if Cap is an enabled
capability and returns ?GL_FALSE otherwise. Boolean states that are indexed
may be tested with gl:isEnabledi/2. For
gl:isEnabledi/2, Index specifies the index of the
capability to test. Index must be between zero and the count of indexed
capabilities for Cap. Initially all capabilities except ?GL_DITHER are
disabled; ?GL_DITHER is initially enabled.
External documentation.

 isFramebuffer(Framebuffer)

 -spec isFramebuffer(Framebuffer :: i()) -> 0 | 1.

gl:isFramebuffer/1 returns ?GL_TRUE if Framebuffer is
currently the name of a framebuffer object. If Framebuffer is zero, or if
?framebuffer is not the name of a framebuffer object, or if an error occurs,
gl:isFramebuffer/1 returns ?GL_FALSE. If Framebuffer
is a name returned by gl:genFramebuffers/1, by that has
not yet been bound through a call to
gl:bindFramebuffer/2, then the name is not a
framebuffer object and gl:isFramebuffer/1 returns
?GL_FALSE.
External documentation.

 isList(List)

 -spec isList(List :: i()) -> 0 | 1.

gl:isList/1 returns ?GL_TRUE if List is the name of a
display list and returns ?GL_FALSE if it is not, or if an error occurs.
External documentation.

 isProgram(Program)

 -spec isProgram(Program :: i()) -> 0 | 1.

gl:isProgram/1 returns ?GL_TRUE if Program is the name of
a program object previously created with
gl:createProgram/0 and not yet deleted with
gl:deleteProgram/1. If Program is zero or a non-zero
value that is not the name of a program object, or if an error occurs,
gl:isProgram/1 returns ?GL_FALSE.
External documentation.

 isProgramPipeline(Pipeline)

 -spec isProgramPipeline(Pipeline :: i()) -> 0 | 1.

gl:isProgramPipeline/1 returns ?GL_TRUE if
Pipeline is currently the name of a program pipeline object. If Pipeline is
zero, or if ?pipeline is not the name of a program pipeline object, or if an
error occurs, gl:isProgramPipeline/1 returns
?GL_FALSE. If Pipeline is a name returned by
gl:genProgramPipelines/1, but that has not yet been
bound through a call to gl:bindProgramPipeline/1,
then the name is not a program pipeline object and
gl:isProgramPipeline/1 returns ?GL_FALSE.
External documentation.

 isQuery(Id)

 -spec isQuery(Id :: i()) -> 0 | 1.

gl:isQuery/1 returns ?GL_TRUE if Id is currently the name
of a query object. If Id is zero, or is a non-zero value that is not currently
the name of a query object, or if an error occurs, gl:isQuery/1
returns ?GL_FALSE.
External documentation.

 isRenderbuffer(Renderbuffer)

 -spec isRenderbuffer(Renderbuffer :: i()) -> 0 | 1.

gl:isRenderbuffer/1 returns ?GL_TRUE if Renderbuffer
is currently the name of a renderbuffer object. If Renderbuffer is zero, or if
Renderbuffer is not the name of a renderbuffer object, or if an error occurs,
gl:isRenderbuffer/1 returns ?GL_FALSE. If
Renderbuffer is a name returned by
gl:genRenderbuffers/1, by that has not yet been bound
through a call to gl:bindRenderbuffer/2 or
gl:framebufferRenderbuffer/4, then the name is
not a renderbuffer object and gl:isRenderbuffer/1
returns ?GL_FALSE.
External documentation.

 isSampler(Sampler)

 -spec isSampler(Sampler :: i()) -> 0 | 1.

gl:isSampler/1 returns ?GL_TRUE if Id is currently the
name of a sampler object. If Id is zero, or is a non-zero value that is not
currently the name of a sampler object, or if an error occurs,
gl:isSampler/1 returns ?GL_FALSE.
External documentation.

 isShader(Shader)

 -spec isShader(Shader :: i()) -> 0 | 1.

gl:isShader/1 returns ?GL_TRUE if Shader is the name of a
shader object previously created with gl:createShader/1
and not yet deleted with gl:deleteShader/1. If Shader is
zero or a non-zero value that is not the name of a shader object, or if an error
occurs, glIsShaderreturns ?GL_FALSE.
External documentation.

 isSync(Sync)

 -spec isSync(Sync :: i()) -> 0 | 1.

gl:isSync/1 returns ?GL_TRUE if Sync is currently the name
of a sync object. If Sync is not the name of a sync object, or if an error
occurs, gl:isSync/1 returns ?GL_FALSE. Note that zero is not
the name of a sync object.
External documentation.

 isTexture(Texture)

 -spec isTexture(Texture :: i()) -> 0 | 1.

gl:isTexture/1 returns ?GL_TRUE if Texture is currently
the name of a texture. If Texture is zero, or is a non-zero value that is not
currently the name of a texture, or if an error occurs,
gl:isTexture/1 returns ?GL_FALSE.
External documentation.

 isTransformFeedback(Id)

 -spec isTransformFeedback(Id :: i()) -> 0 | 1.

gl:isTransformFeedback/1 returns ?GL_TRUE if Id
is currently the name of a transform feedback object. If Id is zero, or if
?id is not the name of a transform feedback object, or if an error occurs,
gl:isTransformFeedback/1 returns ?GL_FALSE. If
Id is a name returned by
gl:genTransformFeedbacks/1, but that has not yet
been bound through a call to
gl:bindTransformFeedback/2, then the name is not
a transform feedback object and
gl:isTransformFeedback/1 returns ?GL_FALSE.
External documentation.

 isVertexArray(Array)

 -spec isVertexArray(Array :: i()) -> 0 | 1.

gl:isVertexArray/1 returns ?GL_TRUE if Array is
currently the name of a vertex array object. If Array is zero, or if Array
is not the name of a vertex array object, or if an error occurs,
gl:isVertexArray/1 returns ?GL_FALSE. If Array is a
name returned by gl:genVertexArrays/1, by that has not
yet been bound through a call to gl:bindVertexArray/1,
then the name is not a vertex array object and
gl:isVertexArray/1 returns ?GL_FALSE.
External documentation.

 lightf(Light, Pname, Param)

 -spec lightf(Light :: enum(), Pname :: enum(), Param :: f()) -> ok.

Equivalent to lightiv/3.

 lightfv(Light, Pname, Params)

 -spec lightfv(Light :: enum(), Pname :: enum(), Params :: tuple()) -> ok.

Equivalent to lightiv/3.

 lighti(Light, Pname, Param)

 -spec lighti(Light :: enum(), Pname :: enum(), Param :: i()) -> ok.

Equivalent to lightiv/3.

 lightiv(Light, Pname, Params)

 -spec lightiv(Light :: enum(), Pname :: enum(), Params :: tuple()) -> ok.

gl:light() sets the values of individual light source
parameters. Light names the light and is a symbolic name of the form
?GL_LIGHT i, where i ranges from 0 to the value of ?GL_MAX_LIGHTS - 1.
Pname specifies one of ten light source parameters, again by symbolic name.
Params is either a single value or a pointer to an array that contains the new
values.
External documentation.

 lightModelf(Pname, Param)

 -spec lightModelf(Pname :: enum(), Param :: f()) -> ok.

Equivalent to lightModeliv/2.

 lightModelfv(Pname, Params)

 -spec lightModelfv(Pname :: enum(), Params :: tuple()) -> ok.

Equivalent to lightModeliv/2.

 lightModeli(Pname, Param)

 -spec lightModeli(Pname :: enum(), Param :: i()) -> ok.

Equivalent to lightModeliv/2.

 lightModeliv(Pname, Params)

 -spec lightModeliv(Pname :: enum(), Params :: tuple()) -> ok.

gl:lightModel() sets the lighting model parameter. Pname
names a parameter and Params gives the new value. There are three lighting
model parameters:
External documentation.

 lineStipple(Factor, Pattern)

 -spec lineStipple(Factor :: i(), Pattern :: i()) -> ok.

Line stippling masks out certain fragments produced by rasterization; those
fragments will not be drawn. The masking is achieved by using three parameters:
the 16-bit line stipple pattern Pattern, the repeat count Factor, and an
integer stipple counter s.
External documentation.

 lineWidth(Width)

 -spec lineWidth(Width :: f()) -> ok.

gl:lineWidth/1 specifies the rasterized width of both aliased
and antialiased lines. Using a line width other than 1 has different effects,
depending on whether line antialiasing is enabled. To enable and disable line
antialiasing, call gl:enable/1 and gl:disable/1
with argument ?GL_LINE_SMOOTH. Line antialiasing is initially disabled.
External documentation.

 linkProgram(Program)

 -spec linkProgram(Program :: i()) -> ok.

gl:linkProgram/1 links the program object specified by
Program. If any shader objects of type ?GL_VERTEX_SHADER are attached to
Program, they will be used to create an executable that will run on the
programmable vertex processor. If any shader objects of type
?GL_GEOMETRY_SHADER are attached to Program, they will be used to create an
executable that will run on the programmable geometry processor. If any shader
objects of type ?GL_FRAGMENT_SHADER are attached to Program, they will be
used to create an executable that will run on the programmable fragment
processor.
External documentation.

 listBase(Base)

 -spec listBase(Base :: i()) -> ok.

gl:callLists/1 specifies an array of offsets. Display-list
names are generated by adding Base to each offset. Names that reference valid
display lists are executed; the others are ignored.
External documentation.

 loadIdentity()

 -spec loadIdentity() -> ok.

gl:loadIdentity/0 replaces the current matrix with the
identity matrix. It is semantically equivalent to calling
gl:loadMatrix() with the identity matrix
External documentation.

 loadMatrixd(M)

 -spec loadMatrixd(M :: matrix()) -> ok.

Equivalent to loadMatrixf/1.

 loadMatrixf(M)

 -spec loadMatrixf(M :: matrix()) -> ok.

gl:loadMatrix() replaces the current matrix with the one
whose elements are specified by M. The current matrix is the projection
matrix, modelview matrix, or texture matrix, depending on the current matrix
mode (see gl:matrixMode/1).
External documentation.

 loadName(Name)

 -spec loadName(Name :: i()) -> ok.

The name stack is used during selection mode to allow sets of rendering commands
to be uniquely identified. It consists of an ordered set of unsigned integers
and is initially empty.
External documentation.

 loadTransposeMatrixd(M)

 -spec loadTransposeMatrixd(M :: matrix()) -> ok.

Equivalent to loadTransposeMatrixf/1.

 loadTransposeMatrixf(M)

 -spec loadTransposeMatrixf(M :: matrix()) -> ok.

gl:loadTransposeMatrix() replaces the current
matrix with the one whose elements are specified by M. The current matrix is
the projection matrix, modelview matrix, or texture matrix, depending on the
current matrix mode (see gl:matrixMode/1).
External documentation.

 logicOp(Opcode)

 -spec logicOp(Opcode :: enum()) -> ok.

gl:logicOp/1 specifies a logical operation that, when enabled,
is applied between the incoming RGBA color and the RGBA color at the
corresponding location in the frame buffer. To enable or disable the logical
operation, call gl:enable/1 and gl:disable/1
using the symbolic constant ?GL_COLOR_LOGIC_OP. The initial value is disabled.
External documentation.

 map1d(Target, U1, U2, Stride, Order, Points)

 -spec map1d(Target :: enum(), U1 :: f(), U2 :: f(), Stride :: i(), Order :: i(), Points :: binary()) ->
 ok.

Equivalent to map1f/6.

 map1f(Target, U1, U2, Stride, Order, Points)

 -spec map1f(Target :: enum(), U1 :: f(), U2 :: f(), Stride :: i(), Order :: i(), Points :: binary()) ->
 ok.

Evaluators provide a way to use polynomial or rational polynomial mapping to
produce vertices, normals, texture coordinates, and colors. The values produced
by an evaluator are sent to further stages of GL processing just as if they had
been presented using gl:vertex(),
gl:normal(), gl:texCoord(), and
gl:color() commands, except that the generated values do not
update the current normal, texture coordinates, or color.
External documentation.

 map2d(Target, U1, U2, Ustride, Uorder, V1, V2, Vstride, Vorder, Points)

 -spec map2d(Target, U1, U2, Ustride, Uorder, V1, V2, Vstride, Vorder, Points) -> ok
 when
 Target :: enum(),
 U1 :: f(),
 U2 :: f(),
 Ustride :: i(),
 Uorder :: i(),
 V1 :: f(),
 V2 :: f(),
 Vstride :: i(),
 Vorder :: i(),
 Points :: binary().

Equivalent to map2f/10.

 map2f(Target, U1, U2, Ustride, Uorder, V1, V2, Vstride, Vorder, Points)

 -spec map2f(Target, U1, U2, Ustride, Uorder, V1, V2, Vstride, Vorder, Points) -> ok
 when
 Target :: enum(),
 U1 :: f(),
 U2 :: f(),
 Ustride :: i(),
 Uorder :: i(),
 V1 :: f(),
 V2 :: f(),
 Vstride :: i(),
 Vorder :: i(),
 Points :: binary().

Evaluators provide a way to use polynomial or rational polynomial mapping to
produce vertices, normals, texture coordinates, and colors. The values produced
by an evaluator are sent on to further stages of GL processing just as if they
had been presented using gl:vertex(),
gl:normal(), gl:texCoord(), and
gl:color() commands, except that the generated values do not
update the current normal, texture coordinates, or color.
External documentation.

 mapGrid1d(Un, U1, U2)

 -spec mapGrid1d(Un :: i(), U1 :: f(), U2 :: f()) -> ok.

Equivalent to mapGrid2f/6.

 mapGrid1f(Un, U1, U2)

 -spec mapGrid1f(Un :: i(), U1 :: f(), U2 :: f()) -> ok.

Equivalent to mapGrid2f/6.

 mapGrid2d(Un, U1, U2, Vn, V1, V2)

 -spec mapGrid2d(Un :: i(), U1 :: f(), U2 :: f(), Vn :: i(), V1 :: f(), V2 :: f()) -> ok.

Equivalent to mapGrid2f/6.

 mapGrid2f(Un, U1, U2, Vn, V1, V2)

 -spec mapGrid2f(Un :: i(), U1 :: f(), U2 :: f(), Vn :: i(), V1 :: f(), V2 :: f()) -> ok.

gl:mapGrid() and gl:evalMesh() are used
together to efficiently generate and evaluate a series of evenly-spaced map
domain values. gl:evalMesh() steps through the integer domain
of a one- or two-dimensional grid, whose range is the domain of the evaluation
maps specified by glMap1 and glMap2.
External documentation.

 materialf(Face, Pname, Param)

 -spec materialf(Face :: enum(), Pname :: enum(), Param :: f()) -> ok.

Equivalent to materialiv/3.

 materialfv(Face, Pname, Params)

 -spec materialfv(Face :: enum(), Pname :: enum(), Params :: tuple()) -> ok.

Equivalent to materialiv/3.

 materiali(Face, Pname, Param)

 -spec materiali(Face :: enum(), Pname :: enum(), Param :: i()) -> ok.

Equivalent to materialiv/3.

 materialiv(Face, Pname, Params)

 -spec materialiv(Face :: enum(), Pname :: enum(), Params :: tuple()) -> ok.

gl:material() assigns values to material parameters. There
are two matched sets of material parameters. One, the front-facing set, is
used to shade points, lines, bitmaps, and all polygons (when two-sided lighting
is disabled), or just front-facing polygons (when two-sided lighting is
enabled). The other set, back-facing, is used to shade back-facing polygons
only when two-sided lighting is enabled. Refer to the
gl:lightModel() reference page for details concerning one-
and two-sided lighting calculations.
External documentation.

 matrixMode(Mode)

 -spec matrixMode(Mode :: enum()) -> ok.

gl:matrixMode/1 sets the current matrix mode. Mode can
assume one of four values:
External documentation.

 memoryBarrier(Barriers)

 -spec memoryBarrier(Barriers :: i()) -> ok.

Equivalent to memoryBarrierByRegion/1.

 memoryBarrierByRegion(Barriers)

 -spec memoryBarrierByRegion(Barriers :: i()) -> ok.

gl:memoryBarrier/1 defines a barrier ordering the memory
transactions issued prior to the command relative to those issued after the
barrier. For the purposes of this ordering, memory transactions performed by
shaders are considered to be issued by the rendering command that triggered the
execution of the shader. Barriers is a bitfield indicating the set of
operations that are synchronized with shader stores; the bits used in Barriers
are as follows:
External documentation.

 minmax(Target, Internalformat, Sink)

 -spec minmax(Target :: enum(), Internalformat :: enum(), Sink :: 0 | 1) -> ok.

When ?GL_MINMAX is enabled, the RGBA components of incoming pixels are
compared to the minimum and maximum values for each component, which are stored
in the two-element minmax table. (The first element stores the minima, and the
second element stores the maxima.) If a pixel component is greater than the
corresponding component in the maximum element, then the maximum element is
updated with the pixel component value. If a pixel component is less than the
corresponding component in the minimum element, then the minimum element is
updated with the pixel component value. (In both cases, if the internal format
of the minmax table includes luminance, then the R color component of incoming
pixels is used for comparison.) The contents of the minmax table may be
retrieved at a later time by calling gl:getMinmax/5. The
minmax operation is enabled or disabled by calling gl:enable/1
or gl:disable/1, respectively, with an argument of ?GL_MINMAX.
External documentation.

 minSampleShading(Value)

 -spec minSampleShading(Value :: f()) -> ok.

gl:minSampleShading/1 specifies the rate at which
samples are shaded within a covered pixel. Sample-rate shading is enabled by
calling gl:enable/1 with the parameter ?GL_SAMPLE_SHADING. If
?GL_MULTISAMPLE or ?GL_SAMPLE_SHADING is disabled, sample shading has no
effect. Otherwise, an implementation must provide at least as many unique color
values for each covered fragment as specified by Value times Samples where
Samples is the value of ?GL_SAMPLES for the current framebuffer. At least 1
sample for each covered fragment is generated.
External documentation.

 multiDrawArrays(Mode, First, Count)

 -spec multiDrawArrays(Mode :: enum(), First :: [integer()] | mem(), Count :: [integer()] | mem()) -> ok.

gl:multiDrawArrays/3 specifies multiple sets of
geometric primitives with very few subroutine calls. Instead of calling a GL
procedure to pass each individual vertex, normal, texture coordinate, edge flag,
or color, you can prespecify separate arrays of vertices, normals, and colors
and use them to construct a sequence of primitives with a single call to
gl:multiDrawArrays/3.
External documentation.

 multiDrawArraysIndirect(Mode, Indirect, Drawcount, Stride)

 -spec multiDrawArraysIndirect(Mode :: enum(),
 Indirect :: offset() | mem(),
 Drawcount :: i(),
 Stride :: i()) ->
 ok.

gl:multiDrawArraysIndirect/4 specifies multiple
geometric primitives with very few subroutine calls.
gl:multiDrawArraysIndirect/4 behaves similarly
to a multitude of calls to
gl:drawArraysInstancedBaseInstance/5,
execept that the parameters to each call to
gl:drawArraysInstancedBaseInstance/5
are stored in an array in memory at the address given by Indirect, separated
by the stride, in basic machine units, specified by Stride. If Stride is
zero, then the array is assumed to be tightly packed in memory.
External documentation.

 multiDrawArraysIndirectCount(Mode, Indirect, Drawcount, Maxdrawcount, Stride)

 -spec multiDrawArraysIndirectCount(Mode, Indirect, Drawcount, Maxdrawcount, Stride) -> ok
 when
 Mode :: enum(),
 Indirect :: offset() | mem(),
 Drawcount :: i(),
 Maxdrawcount :: i(),
 Stride :: i().

No documentation available.

 multiTexCoord1d(Target, S)

 -spec multiTexCoord1d(Target :: enum(), S :: f()) -> ok.

Equivalent to multiTexCoord4sv/2.

 multiTexCoord1dv/2

 -spec multiTexCoord1dv(Target :: enum(), {S :: f()}) -> ok.

Equivalent to multiTexCoord4sv/2.

 multiTexCoord1f(Target, S)

 -spec multiTexCoord1f(Target :: enum(), S :: f()) -> ok.

Equivalent to multiTexCoord4sv/2.

 multiTexCoord1fv/2

 -spec multiTexCoord1fv(Target :: enum(), {S :: f()}) -> ok.

Equivalent to multiTexCoord4sv/2.

 multiTexCoord1i(Target, S)

 -spec multiTexCoord1i(Target :: enum(), S :: i()) -> ok.

Equivalent to multiTexCoord4sv/2.

 multiTexCoord1iv/2

 -spec multiTexCoord1iv(Target :: enum(), {S :: i()}) -> ok.

Equivalent to multiTexCoord4sv/2.

 multiTexCoord1s(Target, S)

 -spec multiTexCoord1s(Target :: enum(), S :: i()) -> ok.

Equivalent to multiTexCoord4sv/2.

 multiTexCoord1sv/2

 -spec multiTexCoord1sv(Target :: enum(), {S :: i()}) -> ok.

Equivalent to multiTexCoord4sv/2.

 multiTexCoord2d(Target, S, T)

 -spec multiTexCoord2d(Target :: enum(), S :: f(), T :: f()) -> ok.

Equivalent to multiTexCoord4sv/2.

 multiTexCoord2dv/2

 -spec multiTexCoord2dv(Target :: enum(), {S :: f(), T :: f()}) -> ok.

Equivalent to multiTexCoord4sv/2.

 multiTexCoord2f(Target, S, T)

 -spec multiTexCoord2f(Target :: enum(), S :: f(), T :: f()) -> ok.

Equivalent to multiTexCoord4sv/2.

 multiTexCoord2fv/2

 -spec multiTexCoord2fv(Target :: enum(), {S :: f(), T :: f()}) -> ok.

Equivalent to multiTexCoord4sv/2.

 multiTexCoord2i(Target, S, T)

 -spec multiTexCoord2i(Target :: enum(), S :: i(), T :: i()) -> ok.

Equivalent to multiTexCoord4sv/2.

 multiTexCoord2iv/2

 -spec multiTexCoord2iv(Target :: enum(), {S :: i(), T :: i()}) -> ok.

Equivalent to multiTexCoord4sv/2.

 multiTexCoord2s(Target, S, T)

 -spec multiTexCoord2s(Target :: enum(), S :: i(), T :: i()) -> ok.

Equivalent to multiTexCoord4sv/2.

 multiTexCoord2sv/2

 -spec multiTexCoord2sv(Target :: enum(), {S :: i(), T :: i()}) -> ok.

Equivalent to multiTexCoord4sv/2.

 multiTexCoord3d(Target, S, T, R)

 -spec multiTexCoord3d(Target :: enum(), S :: f(), T :: f(), R :: f()) -> ok.

Equivalent to multiTexCoord4sv/2.

 multiTexCoord3dv/2

 -spec multiTexCoord3dv(Target :: enum(), {S :: f(), T :: f(), R :: f()}) -> ok.

Equivalent to multiTexCoord4sv/2.

 multiTexCoord3f(Target, S, T, R)

 -spec multiTexCoord3f(Target :: enum(), S :: f(), T :: f(), R :: f()) -> ok.

Equivalent to multiTexCoord4sv/2.

 multiTexCoord3fv/2

 -spec multiTexCoord3fv(Target :: enum(), {S :: f(), T :: f(), R :: f()}) -> ok.

Equivalent to multiTexCoord4sv/2.

 multiTexCoord3i(Target, S, T, R)

 -spec multiTexCoord3i(Target :: enum(), S :: i(), T :: i(), R :: i()) -> ok.

Equivalent to multiTexCoord4sv/2.

 multiTexCoord3iv/2

 -spec multiTexCoord3iv(Target :: enum(), {S :: i(), T :: i(), R :: i()}) -> ok.

Equivalent to multiTexCoord4sv/2.

 multiTexCoord3s(Target, S, T, R)

 -spec multiTexCoord3s(Target :: enum(), S :: i(), T :: i(), R :: i()) -> ok.

Equivalent to multiTexCoord4sv/2.

 multiTexCoord3sv/2

 -spec multiTexCoord3sv(Target :: enum(), {S :: i(), T :: i(), R :: i()}) -> ok.

Equivalent to multiTexCoord4sv/2.

 multiTexCoord4d(Target, S, T, R, Q)

 -spec multiTexCoord4d(Target :: enum(), S :: f(), T :: f(), R :: f(), Q :: f()) -> ok.

Equivalent to multiTexCoord4sv/2.

 multiTexCoord4dv/2

 -spec multiTexCoord4dv(Target :: enum(), {S :: f(), T :: f(), R :: f(), Q :: f()}) -> ok.

Equivalent to multiTexCoord4sv/2.

 multiTexCoord4f(Target, S, T, R, Q)

 -spec multiTexCoord4f(Target :: enum(), S :: f(), T :: f(), R :: f(), Q :: f()) -> ok.

Equivalent to multiTexCoord4sv/2.

 multiTexCoord4fv/2

 -spec multiTexCoord4fv(Target :: enum(), {S :: f(), T :: f(), R :: f(), Q :: f()}) -> ok.

Equivalent to multiTexCoord4sv/2.

 multiTexCoord4i(Target, S, T, R, Q)

 -spec multiTexCoord4i(Target :: enum(), S :: i(), T :: i(), R :: i(), Q :: i()) -> ok.

Equivalent to multiTexCoord4sv/2.

 multiTexCoord4iv/2

 -spec multiTexCoord4iv(Target :: enum(), {S :: i(), T :: i(), R :: i(), Q :: i()}) -> ok.

Equivalent to multiTexCoord4sv/2.

 multiTexCoord4s(Target, S, T, R, Q)

 -spec multiTexCoord4s(Target :: enum(), S :: i(), T :: i(), R :: i(), Q :: i()) -> ok.

Equivalent to multiTexCoord4sv/2.

 multiTexCoord4sv/2

 -spec multiTexCoord4sv(Target :: enum(), {S :: i(), T :: i(), R :: i(), Q :: i()}) -> ok.

gl:multiTexCoord() specifies texture coordinates in
one, two, three, or four dimensions.
gl:multiTexCoord1() sets the current texture
coordinates to (s 0 0 1); a call to gl:multiTexCoord2()
sets them to (s t 0 1). Similarly, gl:multiTexCoord3()
specifies the texture coordinates as (s t r 1), and
gl:multiTexCoord4() defines all four components
explicitly as (s t r q).
External documentation.

 multMatrixd(M)

 -spec multMatrixd(M :: matrix()) -> ok.

Equivalent to multMatrixf/1.

 multMatrixf(M)

 -spec multMatrixf(M :: matrix()) -> ok.

gl:multMatrix() multiplies the current matrix with the one
specified using M, and replaces the current matrix with the product.
External documentation.

 multTransposeMatrixd(M)

 -spec multTransposeMatrixd(M :: matrix()) -> ok.

Equivalent to multTransposeMatrixf/1.

 multTransposeMatrixf(M)

 -spec multTransposeMatrixf(M :: matrix()) -> ok.

gl:multTransposeMatrix() multiplies the current
matrix with the one specified using M, and replaces the current matrix with
the product.
External documentation.

 newList(List, Mode)

 -spec newList(List :: i(), Mode :: enum()) -> ok.

Display lists are groups of GL commands that have been stored for subsequent
execution. Display lists are created with gl:newList/2. All
subsequent commands are placed in the display list, in the order issued, until
gl:endList/0 is called.
External documentation.

 normal3b(Nx, Ny, Nz)

 -spec normal3b(Nx :: i(), Ny :: i(), Nz :: i()) -> ok.

Equivalent to normal3sv/1.

 normal3bv/1

 -spec normal3bv({Nx :: i(), Ny :: i(), Nz :: i()}) -> ok.

Equivalent to normal3sv/1.

 normal3d(Nx, Ny, Nz)

 -spec normal3d(Nx :: f(), Ny :: f(), Nz :: f()) -> ok.

Equivalent to normal3sv/1.

 normal3dv/1

 -spec normal3dv({Nx :: f(), Ny :: f(), Nz :: f()}) -> ok.

Equivalent to normal3sv/1.

 normal3f(Nx, Ny, Nz)

 -spec normal3f(Nx :: f(), Ny :: f(), Nz :: f()) -> ok.

Equivalent to normal3sv/1.

 normal3fv/1

 -spec normal3fv({Nx :: f(), Ny :: f(), Nz :: f()}) -> ok.

Equivalent to normal3sv/1.

 normal3i(Nx, Ny, Nz)

 -spec normal3i(Nx :: i(), Ny :: i(), Nz :: i()) -> ok.

Equivalent to normal3sv/1.

 normal3iv/1

 -spec normal3iv({Nx :: i(), Ny :: i(), Nz :: i()}) -> ok.

Equivalent to normal3sv/1.

 normal3s(Nx, Ny, Nz)

 -spec normal3s(Nx :: i(), Ny :: i(), Nz :: i()) -> ok.

Equivalent to normal3sv/1.

 normal3sv/1

 -spec normal3sv({Nx :: i(), Ny :: i(), Nz :: i()}) -> ok.

The current normal is set to the given coordinates whenever
gl:normal() is issued. Byte, short, or integer arguments are
converted to floating-point format with a linear mapping that maps the most
positive representable integer value to 1.0 and the most negative representable
integer value to -1.0.
External documentation.

 normalPointer(Type, Stride, Ptr)

 -spec normalPointer(Type :: enum(), Stride :: i(), Ptr :: offset() | mem()) -> ok.

gl:normalPointer/3 specifies the location and data format
of an array of normals to use when rendering. Type specifies the data type of
each normal coordinate, and Stride specifies the byte stride from one normal
to the next, allowing vertices and attributes to be packed into a single array
or stored in separate arrays. (Single-array storage may be more efficient on
some implementations; see gl:interleavedArrays/3.)
External documentation.

 objectPtrLabel(Ptr, Length, Label)

 -spec objectPtrLabel(Ptr :: offset() | mem(), Length :: i(), Label :: string()) -> ok.

gl:objectPtrLabel/3 labels the sync object identified by
Ptr.
External documentation.

 ortho(Left, Right, Bottom, Top, Near_val, Far_val)

 -spec ortho(Left :: f(), Right :: f(), Bottom :: f(), Top :: f(), Near_val :: f(), Far_val :: f()) -> ok.

gl:ortho/6 describes a transformation that produces a parallel
projection. The current matrix (see gl:matrixMode/1) is
multiplied by this matrix and the result replaces the current matrix, as if
gl:multMatrix() were called with the following matrix as
its argument:
External documentation.

 passThrough(Token)

 -spec passThrough(Token :: f()) -> ok.

External documentation.

 patchParameterfv(Pname, Values)

 -spec patchParameterfv(Pname :: enum(), Values :: [f()]) -> ok.

Equivalent to patchParameteri/2.

 patchParameteri(Pname, Value)

 -spec patchParameteri(Pname :: enum(), Value :: i()) -> ok.

gl:patchParameter() specifies the parameters that will
be used for patch primitives. Pname specifies the parameter to modify and must
be either ?GL_PATCH_VERTICES, ?GL_PATCH_DEFAULT_OUTER_LEVEL or
?GL_PATCH_DEFAULT_INNER_LEVEL. For
gl:patchParameteri/2, Value specifies the new value
for the parameter specified by Pname. For
gl:patchParameterfv/2, Values specifies the address
of an array containing the new values for the parameter specified by Pname.
External documentation.

 pauseTransformFeedback()

 -spec pauseTransformFeedback() -> ok.

gl:pauseTransformFeedback/0 pauses transform
feedback operations on the currently active transform feedback object. When
transform feedback operations are paused, transform feedback is still considered
active and changing most transform feedback state related to the object results
in an error. However, a new transform feedback object may be bound while
transform feedback is paused.
External documentation.

 pixelMapfv(Map, Mapsize, Values)

 -spec pixelMapfv(Map :: enum(), Mapsize :: i(), Values :: binary()) -> ok.

Equivalent to pixelMapusv/3.

 pixelMapuiv(Map, Mapsize, Values)

 -spec pixelMapuiv(Map :: enum(), Mapsize :: i(), Values :: binary()) -> ok.

Equivalent to pixelMapusv/3.

 pixelMapusv(Map, Mapsize, Values)

 -spec pixelMapusv(Map :: enum(), Mapsize :: i(), Values :: binary()) -> ok.

gl:pixelMap() sets up translation tables, or maps, used by
gl:copyPixels/5,
gl:copyTexImage1D/7,
gl:copyTexImage2D/8,
gl:copyTexSubImage1D/6,
gl:copyTexSubImage2D/8,
gl:copyTexSubImage3D/9,
gl:drawPixels/5, gl:readPixels/7,
gl:texImage1D/8, gl:texImage2D/9,
gl:texImage3D/10,
gl:texSubImage1D/7,
gl:texSubImage2D/9, and
gl:texSubImage3D/11. Additionally, if the ARB_imaging
subset is supported, the routines gl:colorTable/6,
gl:colorSubTable/6,
gl:convolutionFilter1D/6,
gl:convolutionFilter2D/7,
gl:histogram/4, gl:minmax/3, and
gl:separableFilter2D/8. Use of these maps is
described completely in the gl:pixelTransfer() reference
page, and partly in the reference pages for the pixel and texture image
commands. Only the specification of the maps is described in this reference
page.
External documentation.

 pixelStoref(Pname, Param)

 -spec pixelStoref(Pname :: enum(), Param :: f()) -> ok.

Equivalent to pixelStorei/2.

 pixelStorei(Pname, Param)

 -spec pixelStorei(Pname :: enum(), Param :: i()) -> ok.

gl:pixelStore() sets pixel storage modes that affect the
operation of subsequent gl:readPixels/7 as well as the
unpacking of texture patterns (see gl:texImage1D/8,
gl:texImage2D/9, gl:texImage3D/10,
gl:texSubImage1D/7,
gl:texSubImage2D/9,
gl:texSubImage3D/11),
gl:compressedTexImage1D/7,
gl:compressedTexImage2D/8,
gl:compressedTexImage3D/9,
gl:compressedTexSubImage1D/7,
gl:compressedTexSubImage2D/9 or
gl:compressedTexSubImage1D/7.
External documentation.

 pixelTransferf(Pname, Param)

 -spec pixelTransferf(Pname :: enum(), Param :: f()) -> ok.

Equivalent to pixelTransferi/2.

 pixelTransferi(Pname, Param)

 -spec pixelTransferi(Pname :: enum(), Param :: i()) -> ok.

gl:pixelTransfer() sets pixel transfer modes that affect
the operation of subsequent gl:copyPixels/5,
gl:copyTexImage1D/7,
gl:copyTexImage2D/8,
gl:copyTexSubImage1D/6,
gl:copyTexSubImage2D/8,
gl:copyTexSubImage3D/9,
gl:drawPixels/5, gl:readPixels/7,
gl:texImage1D/8, gl:texImage2D/9,
gl:texImage3D/10,
gl:texSubImage1D/7,
gl:texSubImage2D/9, and
gl:texSubImage3D/11 commands. Additionally, if the
ARB_imaging subset is supported, the routines
gl:colorTable/6, gl:colorSubTable/6,
gl:convolutionFilter1D/6,
gl:convolutionFilter2D/7,
gl:histogram/4, gl:minmax/3, and
gl:separableFilter2D/8 are also affected. The
algorithms that are specified by pixel transfer modes operate on pixels after
they are read from the frame buffer
(gl:copyPixels/5gl:copyTexImage1D/7,
gl:copyTexImage2D/8,
gl:copyTexSubImage1D/6,
gl:copyTexSubImage2D/8,
gl:copyTexSubImage3D/9, and
gl:readPixels/7), or unpacked from client memory
(gl:drawPixels/5, gl:texImage1D/8,
gl:texImage2D/9, gl:texImage3D/10,
gl:texSubImage1D/7,
gl:texSubImage2D/9, and
gl:texSubImage3D/11). Pixel transfer operations happen
in the same order, and in the same manner, regardless of the command that
resulted in the pixel operation. Pixel storage modes (see
gl:pixelStore()) control the unpacking of pixels being read
from client memory and the packing of pixels being written back into client
memory.
External documentation.

 pixelZoom(Xfactor, Yfactor)

 -spec pixelZoom(Xfactor :: f(), Yfactor :: f()) -> ok.

gl:pixelZoom/2 specifies values for the x and y zoom factors.
During the execution of gl:drawPixels/5 or
gl:copyPixels/5, if (xr, yr) is the current raster
position, and a given element is in the mth row and nth column of the pixel
rectangle, then pixels whose centers are in the rectangle with corners at
External documentation.

 pointParameterf(Pname, Param)

 -spec pointParameterf(Pname :: enum(), Param :: f()) -> ok.

Equivalent to pointParameteriv/2.

 pointParameterfv(Pname, Params)

 -spec pointParameterfv(Pname :: enum(), Params :: tuple()) -> ok.

Equivalent to pointParameteriv/2.

 pointParameteri(Pname, Param)

 -spec pointParameteri(Pname :: enum(), Param :: i()) -> ok.

Equivalent to pointParameteriv/2.

 pointParameteriv(Pname, Params)

 -spec pointParameteriv(Pname :: enum(), Params :: tuple()) -> ok.

The following values are accepted for Pname:
External documentation.

 pointSize(Size)

 -spec pointSize(Size :: f()) -> ok.

gl:pointSize/1 specifies the rasterized diameter of points.
If point size mode is disabled (see gl:enable/1 with parameter
?GL_PROGRAM_POINT_SIZE), this value will be used to rasterize points.
Otherwise, the value written to the shading language built-in variable
gl_PointSize will be used.
External documentation.

 polygonMode(Face, Mode)

 -spec polygonMode(Face :: enum(), Mode :: enum()) -> ok.

gl:polygonMode/2 controls the interpretation of polygons
for rasterization. Face describes which polygons Mode applies to: both front
and back-facing polygons (?GL_FRONT_AND_BACK). The polygon mode affects only
the final rasterization of polygons. In particular, a polygon's vertices are lit
and the polygon is clipped and possibly culled before these modes are applied.
External documentation.

 polygonOffset(Factor, Units)

 -spec polygonOffset(Factor :: f(), Units :: f()) -> ok.

When ?GL_POLYGON_OFFSET_FILL, ?GL_POLYGON_OFFSET_LINE, or
?GL_POLYGON_OFFSET_POINT is enabled, each fragment's depth value will be
offset after it is interpolated from the depth values of the appropriate
vertices. The value of the offset is factor×DZ+r×units, where DZ is a
measurement of the change in depth relative to the screen area of the polygon,
and r is the smallest value that is guaranteed to produce a resolvable offset
for a given implementation. The offset is added before the depth test is
performed and before the value is written into the depth buffer.
External documentation.

 polygonOffsetClamp(Factor, Units, Clamp)

 -spec polygonOffsetClamp(Factor :: f(), Units :: f(), Clamp :: f()) -> ok.

No documentation available.

 polygonStipple(Mask)

 -spec polygonStipple(Mask :: binary()) -> ok.

Polygon stippling, like line stippling (see
gl:lineStipple/2), masks out certain fragments produced by
rasterization, creating a pattern. Stippling is independent of polygon
antialiasing.
External documentation.

 popAttrib()

 -spec popAttrib() -> ok.

Equivalent to pushAttrib/1.

 popClientAttrib()

 -spec popClientAttrib() -> ok.

Equivalent to pushClientAttrib/1.

 popDebugGroup()

 -spec popDebugGroup() -> ok.

Equivalent to pushDebugGroup/4.

 popMatrix()

 -spec popMatrix() -> ok.

Equivalent to pushMatrix/0.

 popName()

 -spec popName() -> ok.

Equivalent to pushName/1.

 primitiveRestartIndex(Index)

 -spec primitiveRestartIndex(Index :: i()) -> ok.

gl:primitiveRestartIndex/1 specifies a vertex
array element that is treated specially when primitive restarting is enabled.
This is known as the primitive restart index.
External documentation.

 prioritizeTextures(Textures, Priorities)

 -spec prioritizeTextures(Textures :: [i()], Priorities :: [clamp()]) -> ok.

gl:prioritizeTextures/2 assigns the N texture
priorities given in Priorities to the N textures named in Textures.
External documentation.

 programBinary(Program, BinaryFormat, Binary)

 -spec programBinary(Program :: i(), BinaryFormat :: enum(), Binary :: binary()) -> ok.

gl:programBinary/3 loads a program object with a program
binary previously returned from gl:getProgramBinary/2.
BinaryFormat and Binary must be those returned by a previous call to
gl:getProgramBinary/2, and Length must be the length
returned by gl:getProgramBinary/2, or by
gl:getProgram() when called with Pname set to
?GL_PROGRAM_BINARY_LENGTH. If these conditions are not met, loading the
program binary will fail and Program's ?GL_LINK_STATUS will be set to
?GL_FALSE.
External documentation.

 programParameteri(Program, Pname, Value)

 -spec programParameteri(Program :: i(), Pname :: enum(), Value :: i()) -> ok.

gl:programParameter() specifies a new value for the
parameter nameed by Pname for the program object Program.
External documentation.

 programUniform1d(Program, Location, V0)

 -spec programUniform1d(Program :: i(), Location :: i(), V0 :: f()) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 programUniform1dv(Program, Location, Value)

 -spec programUniform1dv(Program :: i(), Location :: i(), Value :: [f()]) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 programUniform1f(Program, Location, V0)

 -spec programUniform1f(Program :: i(), Location :: i(), V0 :: f()) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 programUniform1fv(Program, Location, Value)

 -spec programUniform1fv(Program :: i(), Location :: i(), Value :: [f()]) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 programUniform1i(Program, Location, V0)

 -spec programUniform1i(Program :: i(), Location :: i(), V0 :: i()) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 programUniform1iv(Program, Location, Value)

 -spec programUniform1iv(Program :: i(), Location :: i(), Value :: [i()]) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 programUniform1ui(Program, Location, V0)

 -spec programUniform1ui(Program :: i(), Location :: i(), V0 :: i()) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 programUniform1uiv(Program, Location, Value)

 -spec programUniform1uiv(Program :: i(), Location :: i(), Value :: [i()]) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 programUniform2d(Program, Location, V0, V1)

 -spec programUniform2d(Program :: i(), Location :: i(), V0 :: f(), V1 :: f()) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 programUniform2dv(Program, Location, Value)

 -spec programUniform2dv(Program :: i(), Location :: i(), Value :: [{f(), f()}]) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 programUniform2f(Program, Location, V0, V1)

 -spec programUniform2f(Program :: i(), Location :: i(), V0 :: f(), V1 :: f()) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 programUniform2fv(Program, Location, Value)

 -spec programUniform2fv(Program :: i(), Location :: i(), Value :: [{f(), f()}]) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 programUniform2i(Program, Location, V0, V1)

 -spec programUniform2i(Program :: i(), Location :: i(), V0 :: i(), V1 :: i()) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 programUniform2iv(Program, Location, Value)

 -spec programUniform2iv(Program :: i(), Location :: i(), Value :: [{i(), i()}]) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 programUniform2ui(Program, Location, V0, V1)

 -spec programUniform2ui(Program :: i(), Location :: i(), V0 :: i(), V1 :: i()) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 programUniform2uiv(Program, Location, Value)

 -spec programUniform2uiv(Program :: i(), Location :: i(), Value :: [{i(), i()}]) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 programUniform3d(Program, Location, V0, V1, V2)

 -spec programUniform3d(Program :: i(), Location :: i(), V0 :: f(), V1 :: f(), V2 :: f()) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 programUniform3dv(Program, Location, Value)

 -spec programUniform3dv(Program :: i(), Location :: i(), Value :: [{f(), f(), f()}]) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 programUniform3f(Program, Location, V0, V1, V2)

 -spec programUniform3f(Program :: i(), Location :: i(), V0 :: f(), V1 :: f(), V2 :: f()) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 programUniform3fv(Program, Location, Value)

 -spec programUniform3fv(Program :: i(), Location :: i(), Value :: [{f(), f(), f()}]) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 programUniform3i(Program, Location, V0, V1, V2)

 -spec programUniform3i(Program :: i(), Location :: i(), V0 :: i(), V1 :: i(), V2 :: i()) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 programUniform3iv(Program, Location, Value)

 -spec programUniform3iv(Program :: i(), Location :: i(), Value :: [{i(), i(), i()}]) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 programUniform3ui(Program, Location, V0, V1, V2)

 -spec programUniform3ui(Program :: i(), Location :: i(), V0 :: i(), V1 :: i(), V2 :: i()) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 programUniform3uiv(Program, Location, Value)

 -spec programUniform3uiv(Program :: i(), Location :: i(), Value :: [{i(), i(), i()}]) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 programUniform4d(Program, Location, V0, V1, V2, V3)

 -spec programUniform4d(Program :: i(), Location :: i(), V0 :: f(), V1 :: f(), V2 :: f(), V3 :: f()) ->
 ok.

Equivalent to programUniformMatrix4x3fv/4.

 programUniform4dv(Program, Location, Value)

 -spec programUniform4dv(Program :: i(), Location :: i(), Value :: [{f(), f(), f(), f()}]) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 programUniform4f(Program, Location, V0, V1, V2, V3)

 -spec programUniform4f(Program :: i(), Location :: i(), V0 :: f(), V1 :: f(), V2 :: f(), V3 :: f()) ->
 ok.

Equivalent to programUniformMatrix4x3fv/4.

 programUniform4fv(Program, Location, Value)

 -spec programUniform4fv(Program :: i(), Location :: i(), Value :: [{f(), f(), f(), f()}]) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 programUniform4i(Program, Location, V0, V1, V2, V3)

 -spec programUniform4i(Program :: i(), Location :: i(), V0 :: i(), V1 :: i(), V2 :: i(), V3 :: i()) ->
 ok.

Equivalent to programUniformMatrix4x3fv/4.

 programUniform4iv(Program, Location, Value)

 -spec programUniform4iv(Program :: i(), Location :: i(), Value :: [{i(), i(), i(), i()}]) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 programUniform4ui(Program, Location, V0, V1, V2, V3)

 -spec programUniform4ui(Program :: i(), Location :: i(), V0 :: i(), V1 :: i(), V2 :: i(), V3 :: i()) ->
 ok.

Equivalent to programUniformMatrix4x3fv/4.

 programUniform4uiv(Program, Location, Value)

 -spec programUniform4uiv(Program :: i(), Location :: i(), Value :: [{i(), i(), i(), i()}]) -> ok.

Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix2dv(Program, Location, Transpose, Value)

 -spec programUniformMatrix2dv(Program :: i(),
 Location :: i(),
 Transpose :: 0 | 1,
 Value :: [{f(), f(), f(), f()}]) ->
 ok.

Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix2fv(Program, Location, Transpose, Value)

 -spec programUniformMatrix2fv(Program :: i(),
 Location :: i(),
 Transpose :: 0 | 1,
 Value :: [{f(), f(), f(), f()}]) ->
 ok.

Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix2x3dv(Program, Location, Transpose, Value)

 -spec programUniformMatrix2x3dv(Program :: i(),
 Location :: i(),
 Transpose :: 0 | 1,
 Value :: [{f(), f(), f(), f(), f(), f()}]) ->
 ok.

Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix2x3fv(Program, Location, Transpose, Value)

 -spec programUniformMatrix2x3fv(Program :: i(),
 Location :: i(),
 Transpose :: 0 | 1,
 Value :: [{f(), f(), f(), f(), f(), f()}]) ->
 ok.

Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix2x4dv(Program, Location, Transpose, Value)

 -spec programUniformMatrix2x4dv(Program, Location, Transpose, Value) -> ok
 when
 Program :: i(),
 Location :: i(),
 Transpose :: 0 | 1,
 Value :: [{f(), f(), f(), f(), f(), f(), f(), f()}].

Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix2x4fv(Program, Location, Transpose, Value)

 -spec programUniformMatrix2x4fv(Program, Location, Transpose, Value) -> ok
 when
 Program :: i(),
 Location :: i(),
 Transpose :: 0 | 1,
 Value :: [{f(), f(), f(), f(), f(), f(), f(), f()}].

Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix3dv(Program, Location, Transpose, Value)

 -spec programUniformMatrix3dv(Program, Location, Transpose, Value) -> ok
 when
 Program :: i(),
 Location :: i(),
 Transpose :: 0 | 1,
 Value :: [{f(), f(), f(), f(), f(), f(), f(), f(), f()}].

Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix3fv(Program, Location, Transpose, Value)

 -spec programUniformMatrix3fv(Program, Location, Transpose, Value) -> ok
 when
 Program :: i(),
 Location :: i(),
 Transpose :: 0 | 1,
 Value :: [{f(), f(), f(), f(), f(), f(), f(), f(), f()}].

Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix3x2dv(Program, Location, Transpose, Value)

 -spec programUniformMatrix3x2dv(Program :: i(),
 Location :: i(),
 Transpose :: 0 | 1,
 Value :: [{f(), f(), f(), f(), f(), f()}]) ->
 ok.

Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix3x2fv(Program, Location, Transpose, Value)

 -spec programUniformMatrix3x2fv(Program :: i(),
 Location :: i(),
 Transpose :: 0 | 1,
 Value :: [{f(), f(), f(), f(), f(), f()}]) ->
 ok.

Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix3x4dv(Program, Location, Transpose, Value)

 -spec programUniformMatrix3x4dv(Program, Location, Transpose, Value) -> ok
 when
 Program :: i(),
 Location :: i(),
 Transpose :: 0 | 1,
 Value ::
 [{f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f()}].

Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix3x4fv(Program, Location, Transpose, Value)

 -spec programUniformMatrix3x4fv(Program, Location, Transpose, Value) -> ok
 when
 Program :: i(),
 Location :: i(),
 Transpose :: 0 | 1,
 Value ::
 [{f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f()}].

Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix4dv(Program, Location, Transpose, Value)

 -spec programUniformMatrix4dv(Program, Location, Transpose, Value) -> ok
 when
 Program :: i(),
 Location :: i(),
 Transpose :: 0 | 1,
 Value ::
 [{f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f()}].

Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix4fv(Program, Location, Transpose, Value)

 -spec programUniformMatrix4fv(Program, Location, Transpose, Value) -> ok
 when
 Program :: i(),
 Location :: i(),
 Transpose :: 0 | 1,
 Value ::
 [{f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f()}].

Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix4x2dv(Program, Location, Transpose, Value)

 -spec programUniformMatrix4x2dv(Program, Location, Transpose, Value) -> ok
 when
 Program :: i(),
 Location :: i(),
 Transpose :: 0 | 1,
 Value :: [{f(), f(), f(), f(), f(), f(), f(), f()}].

Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix4x2fv(Program, Location, Transpose, Value)

 -spec programUniformMatrix4x2fv(Program, Location, Transpose, Value) -> ok
 when
 Program :: i(),
 Location :: i(),
 Transpose :: 0 | 1,
 Value :: [{f(), f(), f(), f(), f(), f(), f(), f()}].

Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix4x3dv(Program, Location, Transpose, Value)

 -spec programUniformMatrix4x3dv(Program, Location, Transpose, Value) -> ok
 when
 Program :: i(),
 Location :: i(),
 Transpose :: 0 | 1,
 Value ::
 [{f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f()}].

Equivalent to programUniformMatrix4x3fv/4.

 programUniformMatrix4x3fv(Program, Location, Transpose, Value)

 -spec programUniformMatrix4x3fv(Program, Location, Transpose, Value) -> ok
 when
 Program :: i(),
 Location :: i(),
 Transpose :: 0 | 1,
 Value ::
 [{f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f()}].

gl:programUniform() modifies the value of a uniform
variable or a uniform variable array. The location of the uniform variable to be
modified is specified by Location, which should be a value returned by
gl:getUniformLocation/2.
gl:programUniform() operates on the program object
specified by Program.
External documentation.

 provokingVertex(Mode)

 -spec provokingVertex(Mode :: enum()) -> ok.

Flatshading a vertex shader varying output means to assign all vetices of the
primitive the same value for that output. The vertex from which these values is
derived is known as the provoking vertex and
gl:provokingVertex/1 specifies which vertex is to be
used as the source of data for flat shaded varyings.
External documentation.

 pushAttrib(Mask)

 -spec pushAttrib(Mask :: i()) -> ok.

gl:pushAttrib/1 takes one argument, a mask that indicates
which groups of state variables to save on the attribute stack. Symbolic
constants are used to set bits in the mask. Mask is typically constructed by
specifying the bitwise-or of several of these constants together. The special
mask ?GL_ALL_ATTRIB_BITS can be used to save all stackable states.
External documentation.

 pushClientAttrib(Mask)

 -spec pushClientAttrib(Mask :: i()) -> ok.

gl:pushClientAttrib/1 takes one argument, a mask that
indicates which groups of client-state variables to save on the client attribute
stack. Symbolic constants are used to set bits in the mask. Mask is typically
constructed by specifying the bitwise-or of several of these constants together.
The special mask ?GL_CLIENT_ALL_ATTRIB_BITS can be used to save all stackable
client state.
External documentation.

 pushDebugGroup(Source, Id, Length, Message)

 -spec pushDebugGroup(Source :: enum(), Id :: i(), Length :: i(), Message :: string()) -> ok.

gl:pushDebugGroup/4 pushes a debug group described by
the string Message into the command stream. The value of Id specifies the ID
of messages generated. The parameter Length contains the number of characters
in Message. If Length is negative, it is implied that Message contains a
null terminated string. The message has the specified Source and Id, the
Type``?GL_DEBUG_TYPE_PUSH_GROUP, and
Severity``?GL_DEBUG_SEVERITY_NOTIFICATION. The GL will put a new debug group
on top of the debug group stack which inherits the control of the volume of
debug output of the debug group previously residing on the top of the debug
group stack. Because debug groups are strictly hierarchical, any additional
control of the debug output volume will only apply within the active debug group
and the debug groups pushed on top of the active debug group.
External documentation.

 pushMatrix()

 -spec pushMatrix() -> ok.

There is a stack of matrices for each of the matrix modes. In ?GL_MODELVIEW
mode, the stack depth is at least 32. In the other modes, ?GL_COLOR,
?GL_PROJECTION, and ?GL_TEXTURE, the depth is at least 2. The current matrix
in any mode is the matrix on the top of the stack for that mode.
External documentation.

 pushName(Name)

 -spec pushName(Name :: i()) -> ok.

The name stack is used during selection mode to allow sets of rendering commands
to be uniquely identified. It consists of an ordered set of unsigned integers
and is initially empty.
External documentation.

 queryCounter(Id, Target)

 -spec queryCounter(Id :: i(), Target :: enum()) -> ok.

gl:queryCounter/2 causes the GL to record the current time
into the query object named Id. Target must be ?GL_TIMESTAMP. The time is
recorded after all previous commands on the GL client and server state and the
framebuffer have been fully realized. When the time is recorded, the query
result for that object is marked available.
gl:queryCounter/2 timer queries can be used within a
gl:beginQuery/2 / gl:endQuery/1 block
where the target is ?GL_TIME_ELAPSED and it does not affect the result of that
query object.
External documentation.

 rasterPos2d(X, Y)

 -spec rasterPos2d(X :: f(), Y :: f()) -> ok.

Equivalent to rasterPos4sv/1.

 rasterPos2dv/1

 -spec rasterPos2dv({X :: f(), Y :: f()}) -> ok.

Equivalent to rasterPos4sv/1.

 rasterPos2f(X, Y)

 -spec rasterPos2f(X :: f(), Y :: f()) -> ok.

Equivalent to rasterPos4sv/1.

 rasterPos2fv/1

 -spec rasterPos2fv({X :: f(), Y :: f()}) -> ok.

Equivalent to rasterPos4sv/1.

 rasterPos2i(X, Y)

 -spec rasterPos2i(X :: i(), Y :: i()) -> ok.

Equivalent to rasterPos4sv/1.

 rasterPos2iv/1

 -spec rasterPos2iv({X :: i(), Y :: i()}) -> ok.

Equivalent to rasterPos4sv/1.

 rasterPos2s(X, Y)

 -spec rasterPos2s(X :: i(), Y :: i()) -> ok.

Equivalent to rasterPos4sv/1.

 rasterPos2sv/1

 -spec rasterPos2sv({X :: i(), Y :: i()}) -> ok.

Equivalent to rasterPos4sv/1.

 rasterPos3d(X, Y, Z)

 -spec rasterPos3d(X :: f(), Y :: f(), Z :: f()) -> ok.

Equivalent to rasterPos4sv/1.

 rasterPos3dv/1

 -spec rasterPos3dv({X :: f(), Y :: f(), Z :: f()}) -> ok.

Equivalent to rasterPos4sv/1.

 rasterPos3f(X, Y, Z)

 -spec rasterPos3f(X :: f(), Y :: f(), Z :: f()) -> ok.

Equivalent to rasterPos4sv/1.

 rasterPos3fv/1

 -spec rasterPos3fv({X :: f(), Y :: f(), Z :: f()}) -> ok.

Equivalent to rasterPos4sv/1.

 rasterPos3i(X, Y, Z)

 -spec rasterPos3i(X :: i(), Y :: i(), Z :: i()) -> ok.

Equivalent to rasterPos4sv/1.

 rasterPos3iv/1

 -spec rasterPos3iv({X :: i(), Y :: i(), Z :: i()}) -> ok.

Equivalent to rasterPos4sv/1.

 rasterPos3s(X, Y, Z)

 -spec rasterPos3s(X :: i(), Y :: i(), Z :: i()) -> ok.

Equivalent to rasterPos4sv/1.

 rasterPos3sv/1

 -spec rasterPos3sv({X :: i(), Y :: i(), Z :: i()}) -> ok.

Equivalent to rasterPos4sv/1.

 rasterPos4d(X, Y, Z, W)

 -spec rasterPos4d(X :: f(), Y :: f(), Z :: f(), W :: f()) -> ok.

Equivalent to rasterPos4sv/1.

 rasterPos4dv/1

 -spec rasterPos4dv({X :: f(), Y :: f(), Z :: f(), W :: f()}) -> ok.

Equivalent to rasterPos4sv/1.

 rasterPos4f(X, Y, Z, W)

 -spec rasterPos4f(X :: f(), Y :: f(), Z :: f(), W :: f()) -> ok.

Equivalent to rasterPos4sv/1.

 rasterPos4fv/1

 -spec rasterPos4fv({X :: f(), Y :: f(), Z :: f(), W :: f()}) -> ok.

Equivalent to rasterPos4sv/1.

 rasterPos4i(X, Y, Z, W)

 -spec rasterPos4i(X :: i(), Y :: i(), Z :: i(), W :: i()) -> ok.

Equivalent to rasterPos4sv/1.

 rasterPos4iv/1

 -spec rasterPos4iv({X :: i(), Y :: i(), Z :: i(), W :: i()}) -> ok.

Equivalent to rasterPos4sv/1.

 rasterPos4s(X, Y, Z, W)

 -spec rasterPos4s(X :: i(), Y :: i(), Z :: i(), W :: i()) -> ok.

Equivalent to rasterPos4sv/1.

 rasterPos4sv/1

 -spec rasterPos4sv({X :: i(), Y :: i(), Z :: i(), W :: i()}) -> ok.

The GL maintains a 3D position in window coordinates. This position, called the
raster position, is used to position pixel and bitmap write operations. It is
maintained with subpixel accuracy. See gl:bitmap/7,
gl:drawPixels/5, and gl:copyPixels/5.
External documentation.

 readBuffer(Mode)

 -spec readBuffer(Mode :: enum()) -> ok.

gl:readBuffer/1 specifies a color buffer as the source for
subsequent gl:readPixels/7,
gl:copyTexImage1D/7,
gl:copyTexImage2D/8,
gl:copyTexSubImage1D/6,
gl:copyTexSubImage2D/8, and
gl:copyTexSubImage3D/9 commands. Mode accepts one
of twelve or more predefined values. In a fully configured system, ?GL_FRONT,
?GL_LEFT, and ?GL_FRONT_LEFT all name the front left buffer,
?GL_FRONT_RIGHT and ?GL_RIGHT name the front right buffer, and
?GL_BACK_LEFT and ?GL_BACK name the back left buffer. Further more, the
constants ?GL_COLOR_ATTACHMENT``i may be used to indicate the ith color
attachment where i ranges from zero to the value of
?GL_MAX_COLOR_ATTACHMENTS minus one.
External documentation.

 readPixels(X, Y, Width, Height, Format, Type, Pixels)

 -spec readPixels(X, Y, Width, Height, Format, Type, Pixels) -> ok
 when
 X :: i(),
 Y :: i(),
 Width :: i(),
 Height :: i(),
 Format :: enum(),
 Type :: enum(),
 Pixels :: mem().

gl:readPixels/7 and glReadnPixels return pixel data from
the frame buffer, starting with the pixel whose lower left corner is at location
(X, Y), into client memory starting at location Data. Several parameters
control the processing of the pixel data before it is placed into client memory.
These parameters are set with gl:pixelStore(). This
reference page describes the effects on gl:readPixels/7 and
glReadnPixels of most, but not all of the parameters specified by these three
commands.
External documentation.

 rectd(X1, Y1, X2, Y2)

 -spec rectd(X1 :: f(), Y1 :: f(), X2 :: f(), Y2 :: f()) -> ok.

Equivalent to rectsv/2.

 rectdv(V1, V2)

 -spec rectdv(V1 :: {f(), f()}, V2 :: {f(), f()}) -> ok.

Equivalent to rectsv/2.

 rectf(X1, Y1, X2, Y2)

 -spec rectf(X1 :: f(), Y1 :: f(), X2 :: f(), Y2 :: f()) -> ok.

Equivalent to rectsv/2.

 rectfv(V1, V2)

 -spec rectfv(V1 :: {f(), f()}, V2 :: {f(), f()}) -> ok.

Equivalent to rectsv/2.

 recti(X1, Y1, X2, Y2)

 -spec recti(X1 :: i(), Y1 :: i(), X2 :: i(), Y2 :: i()) -> ok.

Equivalent to rectsv/2.

 rectiv(V1, V2)

 -spec rectiv(V1 :: {i(), i()}, V2 :: {i(), i()}) -> ok.

Equivalent to rectsv/2.

 rects(X1, Y1, X2, Y2)

 -spec rects(X1 :: i(), Y1 :: i(), X2 :: i(), Y2 :: i()) -> ok.

Equivalent to rectsv/2.

 rectsv(V1, V2)

 -spec rectsv(V1 :: {i(), i()}, V2 :: {i(), i()}) -> ok.

gl:rect() supports efficient specification of rectangles as two
corner points. Each rectangle command takes four arguments, organized either as
two consecutive pairs of (x y) coordinates or as two pointers to arrays, each
containing an (x y) pair. The resulting rectangle is defined in the z=0 plane.
External documentation.

 releaseShaderCompiler()

 -spec releaseShaderCompiler() -> ok.

gl:releaseShaderCompiler/0 provides a hint to the
implementation that it may free internal resources associated with its shader
compiler. gl:compileShader/1 may subsequently be called
and the implementation may at that time reallocate resources previously freed by
the call to gl:releaseShaderCompiler/0.
External documentation.

 renderbufferStorage(Target, Internalformat, Width, Height)

 -spec renderbufferStorage(Target :: enum(), Internalformat :: enum(), Width :: i(), Height :: i()) -> ok.

gl:renderbufferStorage/4 is equivalent to calling
gl:renderbufferStorageMultisample/5 with
the Samples set to zero, and glNamedRenderbufferStorage is equivalent to
calling glNamedRenderbufferStorageMultisample with the samples set to zero.
External documentation.

 renderbufferStorageMultisample(Target, Samples, Internalformat, Width, Height)

 -spec renderbufferStorageMultisample(Target :: enum(),
 Samples :: i(),
 Internalformat :: enum(),
 Width :: i(),
 Height :: i()) ->
 ok.

gl:renderbufferStorageMultisample/5 and
glNamedRenderbufferStorageMultisample establish the data storage, format,
dimensions and number of samples of a renderbuffer object's image.
External documentation.

 renderMode(Mode)

 -spec renderMode(Mode :: enum()) -> i().

gl:renderMode/1 sets the rasterization mode. It takes one
argument, Mode, which can assume one of three predefined values:
External documentation.

 resetHistogram(Target)

 -spec resetHistogram(Target :: enum()) -> ok.

gl:resetHistogram/1 resets all the elements of the
current histogram table to zero.
External documentation.

 resetMinmax(Target)

 -spec resetMinmax(Target :: enum()) -> ok.

gl:resetMinmax/1 resets the elements of the current minmax
table to their initial values: the ``maximum'' element receives the minimum
possible component values, and the ``minimum'' element receives the maximum
possible component values.
External documentation.

 resumeTransformFeedback()

 -spec resumeTransformFeedback() -> ok.

gl:resumeTransformFeedback/0 resumes transform
feedback operations on the currently active transform feedback object. When
transform feedback operations are paused, transform feedback is still considered
active and changing most transform feedback state related to the object results
in an error. However, a new transform feedback object may be bound while
transform feedback is paused.
External documentation.

 rotated(Angle, X, Y, Z)

 -spec rotated(Angle :: f(), X :: f(), Y :: f(), Z :: f()) -> ok.

Equivalent to rotatef/4.

 rotatef(Angle, X, Y, Z)

 -spec rotatef(Angle :: f(), X :: f(), Y :: f(), Z :: f()) -> ok.

gl:rotate() produces a rotation of Angle degrees around the
vector (x y z). The current matrix (see gl:matrixMode/1) is
multiplied by a rotation matrix with the product replacing the current matrix,
as if gl:multMatrix() were called with the following matrix
as its argument:
External documentation.

 sampleCoverage(Value, Invert)

 -spec sampleCoverage(Value :: clamp(), Invert :: 0 | 1) -> ok.

Multisampling samples a pixel multiple times at various implementation-dependent
subpixel locations to generate antialiasing effects. Multisampling transparently
antialiases points, lines, polygons, and images if it is enabled.
External documentation.

 sampleMaski(MaskNumber, Mask)

 -spec sampleMaski(MaskNumber :: i(), Mask :: i()) -> ok.

gl:sampleMaski/2 sets one 32-bit sub-word of the multi-word
sample mask, ?GL_SAMPLE_MASK_VALUE.
External documentation.

 samplerParameterf(Sampler, Pname, Param)

 -spec samplerParameterf(Sampler :: i(), Pname :: enum(), Param :: f()) -> ok.

Equivalent to samplerParameteriv/3.

 samplerParameterfv(Sampler, Pname, Param)

 -spec samplerParameterfv(Sampler :: i(), Pname :: enum(), Param :: [f()]) -> ok.

Equivalent to samplerParameteriv/3.

 samplerParameterIiv(Sampler, Pname, Param)

 -spec samplerParameterIiv(Sampler :: i(), Pname :: enum(), Param :: [i()]) -> ok.

Equivalent to samplerParameteriv/3.

 samplerParameterIuiv(Sampler, Pname, Param)

 -spec samplerParameterIuiv(Sampler :: i(), Pname :: enum(), Param :: [i()]) -> ok.

Equivalent to samplerParameteriv/3.

 samplerParameteri(Sampler, Pname, Param)

 -spec samplerParameteri(Sampler :: i(), Pname :: enum(), Param :: i()) -> ok.

Equivalent to samplerParameteriv/3.

 samplerParameteriv(Sampler, Pname, Param)

 -spec samplerParameteriv(Sampler :: i(), Pname :: enum(), Param :: [i()]) -> ok.

gl:samplerParameter() assigns the value or values in
Params to the sampler parameter specified as Pname. Sampler specifies the
sampler object to be modified, and must be the name of a sampler object
previously returned from a call to gl:genSamplers/1. The
following symbols are accepted in Pname:
External documentation.

 scaled(X, Y, Z)

 -spec scaled(X :: f(), Y :: f(), Z :: f()) -> ok.

Equivalent to scalef/3.

 scalef(X, Y, Z)

 -spec scalef(X :: f(), Y :: f(), Z :: f()) -> ok.

gl:scale() produces a nonuniform scaling along the x, y, and
z axes. The three parameters indicate the desired scale factor along each of
the three axes.
External documentation.

 scissor(X, Y, Width, Height)

 -spec scissor(X :: i(), Y :: i(), Width :: i(), Height :: i()) -> ok.

gl:scissor/4 defines a rectangle, called the scissor box, in
window coordinates. The first two arguments, X and Y, specify the lower left
corner of the box. Width and Height specify the width and height of the box.
External documentation.

 scissorArrayv(First, V)

 -spec scissorArrayv(First :: i(), V :: [{i(), i(), i(), i()}]) -> ok.

gl:scissorArrayv/2 defines rectangles, called scissor
boxes, in window coordinates for each viewport. First specifies the index of
the first scissor box to modify and Count specifies the number of scissor
boxes to modify. First must be less than the value of ?GL_MAX_VIEWPORTS, and
First + Count must be less than or equal to the value of
?GL_MAX_VIEWPORTS. V specifies the address of an array containing integers
specifying the lower left corner of the scissor boxes, and the width and height
of the scissor boxes, in that order.
External documentation.

 scissorIndexed(Index, Left, Bottom, Width, Height)

 -spec scissorIndexed(Index :: i(), Left :: i(), Bottom :: i(), Width :: i(), Height :: i()) -> ok.

Equivalent to scissorIndexedv/2.

 scissorIndexedv(Index, V)

 -spec scissorIndexedv(Index :: i(), V :: {i(), i(), i(), i()}) -> ok.

gl:scissorIndexed/5 defines the scissor box for a
specified viewport. Index specifies the index of scissor box to modify.
Index must be less than the value of ?GL_MAX_VIEWPORTS. For
gl:scissorIndexed/5, Left, Bottom, Width and
Height specify the left, bottom, width and height of the scissor box, in
pixels, respectively. For gl:scissorIndexedv/2, V
specifies the address of an array containing integers specifying the lower left
corner of the scissor box, and the width and height of the scissor box, in that
order.
External documentation.

 secondaryColor3b(Red, Green, Blue)

 -spec secondaryColor3b(Red :: i(), Green :: i(), Blue :: i()) -> ok.

Equivalent to secondaryColor3usv/1.

 secondaryColor3bv/1

 -spec secondaryColor3bv({Red :: i(), Green :: i(), Blue :: i()}) -> ok.

Equivalent to secondaryColor3usv/1.

 secondaryColor3d(Red, Green, Blue)

 -spec secondaryColor3d(Red :: f(), Green :: f(), Blue :: f()) -> ok.

Equivalent to secondaryColor3usv/1.

 secondaryColor3dv/1

 -spec secondaryColor3dv({Red :: f(), Green :: f(), Blue :: f()}) -> ok.

Equivalent to secondaryColor3usv/1.

 secondaryColor3f(Red, Green, Blue)

 -spec secondaryColor3f(Red :: f(), Green :: f(), Blue :: f()) -> ok.

Equivalent to secondaryColor3usv/1.

 secondaryColor3fv/1

 -spec secondaryColor3fv({Red :: f(), Green :: f(), Blue :: f()}) -> ok.

Equivalent to secondaryColor3usv/1.

 secondaryColor3i(Red, Green, Blue)

 -spec secondaryColor3i(Red :: i(), Green :: i(), Blue :: i()) -> ok.

Equivalent to secondaryColor3usv/1.

 secondaryColor3iv/1

 -spec secondaryColor3iv({Red :: i(), Green :: i(), Blue :: i()}) -> ok.

Equivalent to secondaryColor3usv/1.

 secondaryColor3s(Red, Green, Blue)

 -spec secondaryColor3s(Red :: i(), Green :: i(), Blue :: i()) -> ok.

Equivalent to secondaryColor3usv/1.

 secondaryColor3sv/1

 -spec secondaryColor3sv({Red :: i(), Green :: i(), Blue :: i()}) -> ok.

Equivalent to secondaryColor3usv/1.

 secondaryColor3ub(Red, Green, Blue)

 -spec secondaryColor3ub(Red :: i(), Green :: i(), Blue :: i()) -> ok.

Equivalent to secondaryColor3usv/1.

 secondaryColor3ubv/1

 -spec secondaryColor3ubv({Red :: i(), Green :: i(), Blue :: i()}) -> ok.

Equivalent to secondaryColor3usv/1.

 secondaryColor3ui(Red, Green, Blue)

 -spec secondaryColor3ui(Red :: i(), Green :: i(), Blue :: i()) -> ok.

Equivalent to secondaryColor3usv/1.

 secondaryColor3uiv/1

 -spec secondaryColor3uiv({Red :: i(), Green :: i(), Blue :: i()}) -> ok.

Equivalent to secondaryColor3usv/1.

 secondaryColor3us(Red, Green, Blue)

 -spec secondaryColor3us(Red :: i(), Green :: i(), Blue :: i()) -> ok.

Equivalent to secondaryColor3usv/1.

 secondaryColor3usv/1

 -spec secondaryColor3usv({Red :: i(), Green :: i(), Blue :: i()}) -> ok.

The GL stores both a primary four-valued RGBA color and a secondary four-valued
RGBA color (where alpha is always set to 0.0) that is associated with every
vertex.
External documentation.

 secondaryColorPointer(Size, Type, Stride, Pointer)

 -spec secondaryColorPointer(Size :: i(), Type :: enum(), Stride :: i(), Pointer :: offset() | mem()) ->
 ok.

gl:secondaryColorPointer/4 specifies the location
and data format of an array of color components to use when rendering. Size
specifies the number of components per color, and must be 3. Type specifies
the data type of each color component, and Stride specifies the byte stride
from one color to the next, allowing vertices and attributes to be packed into a
single array or stored in separate arrays.
External documentation.

 selectBuffer(Size, Buffer)

 -spec selectBuffer(Size :: i(), Buffer :: mem()) -> ok.

gl:selectBuffer/2 has two arguments: Buffer is a pointer
to an array of unsigned integers, and Size indicates the size of the array.
Buffer returns values from the name stack (see
gl:initNames/0, gl:loadName/1,
gl:pushName/1) when the rendering mode is ?GL_SELECT (see
gl:renderMode/1). gl:selectBuffer/2
must be issued before selection mode is enabled, and it must not be issued while
the rendering mode is ?GL_SELECT.
External documentation.

 separableFilter2D(Target, Internalformat, Width, Height, Format, Type, Row, Column)

 -spec separableFilter2D(Target, Internalformat, Width, Height, Format, Type, Row, Column) -> ok
 when
 Target :: enum(),
 Internalformat :: enum(),
 Width :: i(),
 Height :: i(),
 Format :: enum(),
 Type :: enum(),
 Row :: offset() | mem(),
 Column :: offset() | mem().

gl:separableFilter2D/8 builds a two-dimensional
separable convolution filter kernel from two arrays of pixels.
External documentation.

 shadeModel(Mode)

 -spec shadeModel(Mode :: enum()) -> ok.

GL primitives can have either flat or smooth shading. Smooth shading, the
default, causes the computed colors of vertices to be interpolated as the
primitive is rasterized, typically assigning different colors to each resulting
pixel fragment. Flat shading selects the computed color of just one vertex and
assigns it to all the pixel fragments generated by rasterizing a single
primitive. In either case, the computed color of a vertex is the result of
lighting if lighting is enabled, or it is the current color at the time the
vertex was specified if lighting is disabled.
External documentation.

 shaderBinary(Shaders, Binaryformat, Binary)

 -spec shaderBinary(Shaders :: [i()], Binaryformat :: enum(), Binary :: binary()) -> ok.

gl:shaderBinary/3 loads pre-compiled shader binary code
into the Count shader objects whose handles are given in Shaders. Binary
points to Length bytes of binary shader code stored in client memory.
BinaryFormat specifies the format of the pre-compiled code.
External documentation.

 shaderSource(Shader, String)

 -spec shaderSource(Shader :: i(), String :: [unicode:chardata()]) -> ok.

gl:shaderSource/2 sets the source code in Shader to the
source code in the array of strings specified by String. Any source code
previously stored in the shader object is completely replaced. The number of
strings in the array is specified by Count. If Length is ?NULL, each
string is assumed to be null terminated. If Length is a value other than
?NULL, it points to an array containing a string length for each of the
corresponding elements of String. Each element in the Length array may
contain the length of the corresponding string (the null character is not
counted as part of the string length) or a value less than 0 to indicate that
the string is null terminated. The source code strings are not scanned or parsed
at this time; they are simply copied into the specified shader object.
External documentation.

 shaderStorageBlockBinding(Program, StorageBlockIndex, StorageBlockBinding)

 -spec shaderStorageBlockBinding(Program :: i(), StorageBlockIndex :: i(), StorageBlockBinding :: i()) ->
 ok.

gl:shaderStorageBlockBinding/3, changes the
active shader storage block with an assigned index of StorageBlockIndex in
program object Program. StorageBlockIndex must be an active shader storage
block index in Program. StorageBlockBinding must be less than the value of
?GL_MAX_SHADER_STORAGE_BUFFER_BINDINGS. If successful,
gl:shaderStorageBlockBinding/3 specifies that
Program will use the data store of the buffer object bound to the binding
point StorageBlockBinding to read and write the values of the buffer variables
in the shader storage block identified by StorageBlockIndex.
External documentation.

 stencilFunc(Func, Ref, Mask)

 -spec stencilFunc(Func :: enum(), Ref :: i(), Mask :: i()) -> ok.

Stenciling, like depth-buffering, enables and disables drawing on a per-pixel
basis. Stencil planes are first drawn into using GL drawing primitives, then
geometry and images are rendered using the stencil planes to mask out portions
of the screen. Stenciling is typically used in multipass rendering algorithms to
achieve special effects, such as decals, outlining, and constructive solid
geometry rendering.
External documentation.

 stencilFuncSeparate(Face, Func, Ref, Mask)

 -spec stencilFuncSeparate(Face :: enum(), Func :: enum(), Ref :: i(), Mask :: i()) -> ok.

Stenciling, like depth-buffering, enables and disables drawing on a per-pixel
basis. You draw into the stencil planes using GL drawing primitives, then render
geometry and images, using the stencil planes to mask out portions of the
screen. Stenciling is typically used in multipass rendering algorithms to
achieve special effects, such as decals, outlining, and constructive solid
geometry rendering.
External documentation.

 stencilMask(Mask)

 -spec stencilMask(Mask :: i()) -> ok.

gl:stencilMask/1 controls the writing of individual bits in
the stencil planes. The least significant n bits of Mask, where n is the
number of bits in the stencil buffer, specify a mask. Where a 1 appears in the
mask, it's possible to write to the corresponding bit in the stencil buffer.
Where a 0 appears, the corresponding bit is write-protected. Initially, all bits
are enabled for writing.
External documentation.

 stencilMaskSeparate(Face, Mask)

 -spec stencilMaskSeparate(Face :: enum(), Mask :: i()) -> ok.

gl:stencilMaskSeparate/2 controls the writing of
individual bits in the stencil planes. The least significant n bits of Mask,
where n is the number of bits in the stencil buffer, specify a mask. Where a 1
appears in the mask, it's possible to write to the corresponding bit in the
stencil buffer. Where a 0 appears, the corresponding bit is write-protected.
Initially, all bits are enabled for writing.
External documentation.

 stencilOp(Fail, Zfail, Zpass)

 -spec stencilOp(Fail :: enum(), Zfail :: enum(), Zpass :: enum()) -> ok.

Stenciling, like depth-buffering, enables and disables drawing on a per-pixel
basis. You draw into the stencil planes using GL drawing primitives, then render
geometry and images, using the stencil planes to mask out portions of the
screen. Stenciling is typically used in multipass rendering algorithms to
achieve special effects, such as decals, outlining, and constructive solid
geometry rendering.
External documentation.

 stencilOpSeparate(Face, Sfail, Dpfail, Dppass)

 -spec stencilOpSeparate(Face :: enum(), Sfail :: enum(), Dpfail :: enum(), Dppass :: enum()) -> ok.

Stenciling, like depth-buffering, enables and disables drawing on a per-pixel
basis. You draw into the stencil planes using GL drawing primitives, then render
geometry and images, using the stencil planes to mask out portions of the
screen. Stenciling is typically used in multipass rendering algorithms to
achieve special effects, such as decals, outlining, and constructive solid
geometry rendering.
External documentation.

 texBuffer(Target, Internalformat, Buffer)

 -spec texBuffer(Target :: enum(), Internalformat :: enum(), Buffer :: i()) -> ok.

Equivalent to textureBuffer/3.

 texBufferRange(Target, Internalformat, Buffer, Offset, Size)

 -spec texBufferRange(Target :: enum(),
 Internalformat :: enum(),
 Buffer :: i(),
 Offset :: i(),
 Size :: i()) ->
 ok.

Equivalent to textureBufferRange/5.

 texCoord1d(S)

 -spec texCoord1d(S :: f()) -> ok.

Equivalent to texCoord4sv/1.

 texCoord1dv/1

 -spec texCoord1dv({S :: f()}) -> ok.

Equivalent to texCoord4sv/1.

 texCoord1f(S)

 -spec texCoord1f(S :: f()) -> ok.

Equivalent to texCoord4sv/1.

 texCoord1fv/1

 -spec texCoord1fv({S :: f()}) -> ok.

Equivalent to texCoord4sv/1.

 texCoord1i(S)

 -spec texCoord1i(S :: i()) -> ok.

Equivalent to texCoord4sv/1.

 texCoord1iv/1

 -spec texCoord1iv({S :: i()}) -> ok.

Equivalent to texCoord4sv/1.

 texCoord1s(S)

 -spec texCoord1s(S :: i()) -> ok.

Equivalent to texCoord4sv/1.

 texCoord1sv/1

 -spec texCoord1sv({S :: i()}) -> ok.

Equivalent to texCoord4sv/1.

 texCoord2d(S, T)

 -spec texCoord2d(S :: f(), T :: f()) -> ok.

Equivalent to texCoord4sv/1.

 texCoord2dv/1

 -spec texCoord2dv({S :: f(), T :: f()}) -> ok.

Equivalent to texCoord4sv/1.

 texCoord2f(S, T)

 -spec texCoord2f(S :: f(), T :: f()) -> ok.

Equivalent to texCoord4sv/1.

 texCoord2fv/1

 -spec texCoord2fv({S :: f(), T :: f()}) -> ok.

Equivalent to texCoord4sv/1.

 texCoord2i(S, T)

 -spec texCoord2i(S :: i(), T :: i()) -> ok.

Equivalent to texCoord4sv/1.

 texCoord2iv/1

 -spec texCoord2iv({S :: i(), T :: i()}) -> ok.

Equivalent to texCoord4sv/1.

 texCoord2s(S, T)

 -spec texCoord2s(S :: i(), T :: i()) -> ok.

Equivalent to texCoord4sv/1.

 texCoord2sv/1

 -spec texCoord2sv({S :: i(), T :: i()}) -> ok.

Equivalent to texCoord4sv/1.

 texCoord3d(S, T, R)

 -spec texCoord3d(S :: f(), T :: f(), R :: f()) -> ok.

Equivalent to texCoord4sv/1.

 texCoord3dv/1

 -spec texCoord3dv({S :: f(), T :: f(), R :: f()}) -> ok.

Equivalent to texCoord4sv/1.

 texCoord3f(S, T, R)

 -spec texCoord3f(S :: f(), T :: f(), R :: f()) -> ok.

Equivalent to texCoord4sv/1.

 texCoord3fv/1

 -spec texCoord3fv({S :: f(), T :: f(), R :: f()}) -> ok.

Equivalent to texCoord4sv/1.

 texCoord3i(S, T, R)

 -spec texCoord3i(S :: i(), T :: i(), R :: i()) -> ok.

Equivalent to texCoord4sv/1.

 texCoord3iv/1

 -spec texCoord3iv({S :: i(), T :: i(), R :: i()}) -> ok.

Equivalent to texCoord4sv/1.

 texCoord3s(S, T, R)

 -spec texCoord3s(S :: i(), T :: i(), R :: i()) -> ok.

Equivalent to texCoord4sv/1.

 texCoord3sv/1

 -spec texCoord3sv({S :: i(), T :: i(), R :: i()}) -> ok.

Equivalent to texCoord4sv/1.

 texCoord4d(S, T, R, Q)

 -spec texCoord4d(S :: f(), T :: f(), R :: f(), Q :: f()) -> ok.

Equivalent to texCoord4sv/1.

 texCoord4dv/1

 -spec texCoord4dv({S :: f(), T :: f(), R :: f(), Q :: f()}) -> ok.

Equivalent to texCoord4sv/1.

 texCoord4f(S, T, R, Q)

 -spec texCoord4f(S :: f(), T :: f(), R :: f(), Q :: f()) -> ok.

Equivalent to texCoord4sv/1.

 texCoord4fv/1

 -spec texCoord4fv({S :: f(), T :: f(), R :: f(), Q :: f()}) -> ok.

Equivalent to texCoord4sv/1.

 texCoord4i(S, T, R, Q)

 -spec texCoord4i(S :: i(), T :: i(), R :: i(), Q :: i()) -> ok.

Equivalent to texCoord4sv/1.

 texCoord4iv/1

 -spec texCoord4iv({S :: i(), T :: i(), R :: i(), Q :: i()}) -> ok.

Equivalent to texCoord4sv/1.

 texCoord4s(S, T, R, Q)

 -spec texCoord4s(S :: i(), T :: i(), R :: i(), Q :: i()) -> ok.

Equivalent to texCoord4sv/1.

 texCoord4sv/1

 -spec texCoord4sv({S :: i(), T :: i(), R :: i(), Q :: i()}) -> ok.

gl:texCoord() specifies texture coordinates in one, two,
three, or four dimensions. gl:texCoord1() sets the current
texture coordinates to (s 0 0 1); a call to gl:texCoord2()
sets them to (s t 0 1). Similarly, gl:texCoord3() specifies
the texture coordinates as (s t r 1), and gl:texCoord4()
defines all four components explicitly as (s t r q).
External documentation.

 texCoordPointer(Size, Type, Stride, Ptr)

 -spec texCoordPointer(Size :: i(), Type :: enum(), Stride :: i(), Ptr :: offset() | mem()) -> ok.

gl:texCoordPointer/4 specifies the location and data
format of an array of texture coordinates to use when rendering. Size
specifies the number of coordinates per texture coordinate set, and must be 1,
2, 3, or 4. Type specifies the data type of each texture coordinate, and
Stride specifies the byte stride from one texture coordinate set to the next,
allowing vertices and attributes to be packed into a single array or stored in
separate arrays. (Single-array storage may be more efficient on some
implementations; see gl:interleavedArrays/3.)
External documentation.

 texEnvf(Target, Pname, Param)

 -spec texEnvf(Target :: enum(), Pname :: enum(), Param :: f()) -> ok.

Equivalent to texEnviv/3.

 texEnvfv(Target, Pname, Params)

 -spec texEnvfv(Target :: enum(), Pname :: enum(), Params :: tuple()) -> ok.

Equivalent to texEnviv/3.

 texEnvi(Target, Pname, Param)

 -spec texEnvi(Target :: enum(), Pname :: enum(), Param :: i()) -> ok.

Equivalent to texEnviv/3.

 texEnviv(Target, Pname, Params)

 -spec texEnviv(Target :: enum(), Pname :: enum(), Params :: tuple()) -> ok.

A texture environment specifies how texture values are interpreted when a
fragment is textured. When Target is ?GL_TEXTURE_FILTER_CONTROL, Pname
must be ?GL_TEXTURE_LOD_BIAS. When Target is ?GL_TEXTURE_ENV, Pname can
be ?GL_TEXTURE_ENV_MODE, ?GL_TEXTURE_ENV_COLOR, ?GL_COMBINE_RGB,
?GL_COMBINE_ALPHA, ?GL_RGB_SCALE, ?GL_ALPHA_SCALE, ?GL_SRC0_RGB,
?GL_SRC1_RGB, ?GL_SRC2_RGB, ?GL_SRC0_ALPHA, ?GL_SRC1_ALPHA, or
?GL_SRC2_ALPHA.
External documentation.

 texGend(Coord, Pname, Param)

 -spec texGend(Coord :: enum(), Pname :: enum(), Param :: f()) -> ok.

Equivalent to texGeniv/3.

 texGendv(Coord, Pname, Params)

 -spec texGendv(Coord :: enum(), Pname :: enum(), Params :: tuple()) -> ok.

Equivalent to texGeniv/3.

 texGenf(Coord, Pname, Param)

 -spec texGenf(Coord :: enum(), Pname :: enum(), Param :: f()) -> ok.

Equivalent to texGeniv/3.

 texGenfv(Coord, Pname, Params)

 -spec texGenfv(Coord :: enum(), Pname :: enum(), Params :: tuple()) -> ok.

Equivalent to texGeniv/3.

 texGeni(Coord, Pname, Param)

 -spec texGeni(Coord :: enum(), Pname :: enum(), Param :: i()) -> ok.

Equivalent to texGeniv/3.

 texGeniv(Coord, Pname, Params)

 -spec texGeniv(Coord :: enum(), Pname :: enum(), Params :: tuple()) -> ok.

gl:texGen() selects a texture-coordinate generation function or
supplies coefficients for one of the functions. Coord names one of the (s,
t, r, q) texture coordinates; it must be one of the symbols ?GL_S,
?GL_T, ?GL_R, or ?GL_Q. Pname must be one of three symbolic constants:
?GL_TEXTURE_GEN_MODE, ?GL_OBJECT_PLANE, or ?GL_EYE_PLANE. If Pname is
?GL_TEXTURE_GEN_MODE, then Params chooses a mode, one of
?GL_OBJECT_LINEAR, ?GL_EYE_LINEAR, ?GL_SPHERE_MAP, ?GL_NORMAL_MAP, or
?GL_REFLECTION_MAP. If Pname is either ?GL_OBJECT_PLANE or
?GL_EYE_PLANE, Params contains coefficients for the corresponding texture
generation function.
External documentation.

 texImage1D(Target, Level, InternalFormat, Width, Border, Format, Type, Pixels)

 -spec texImage1D(Target, Level, InternalFormat, Width, Border, Format, Type, Pixels) -> ok
 when
 Target :: enum(),
 Level :: i(),
 InternalFormat :: i(),
 Width :: i(),
 Border :: i(),
 Format :: enum(),
 Type :: enum(),
 Pixels :: offset() | mem().

Texturing maps a portion of a specified texture image onto each graphical
primitive for which texturing is enabled. To enable and disable one-dimensional
texturing, call gl:enable/1 and gl:disable/1
with argument ?GL_TEXTURE_1D.
External documentation.

 texImage2D(Target, Level, InternalFormat, Width, Height, Border, Format, Type, Pixels)

 -spec texImage2D(Target, Level, InternalFormat, Width, Height, Border, Format, Type, Pixels) -> ok
 when
 Target :: enum(),
 Level :: i(),
 InternalFormat :: i(),
 Width :: i(),
 Height :: i(),
 Border :: i(),
 Format :: enum(),
 Type :: enum(),
 Pixels :: offset() | mem().

Texturing allows elements of an image array to be read by shaders.
External documentation.

 texImage2DMultisample(Target, Samples, Internalformat, Width, Height, Fixedsamplelocations)

 -spec texImage2DMultisample(Target, Samples, Internalformat, Width, Height, Fixedsamplelocations) -> ok
 when
 Target :: enum(),
 Samples :: i(),
 Internalformat :: enum(),
 Width :: i(),
 Height :: i(),
 Fixedsamplelocations :: 0 | 1.

gl:texImage2DMultisample/6 establishes the data
storage, format, dimensions and number of samples of a multisample texture's
image.
External documentation.

 texImage3D(Target, Level, InternalFormat, Width, Height, Depth, Border, Format, Type, Pixels)

 -spec texImage3D(Target, Level, InternalFormat, Width, Height, Depth, Border, Format, Type, Pixels) ->
 ok
 when
 Target :: enum(),
 Level :: i(),
 InternalFormat :: i(),
 Width :: i(),
 Height :: i(),
 Depth :: i(),
 Border :: i(),
 Format :: enum(),
 Type :: enum(),
 Pixels :: offset() | mem().

Texturing maps a portion of a specified texture image onto each graphical
primitive for which texturing is enabled. To enable and disable
three-dimensional texturing, call gl:enable/1 and
gl:disable/1 with argument ?GL_TEXTURE_3D.
External documentation.

 texImage3DMultisample(Target, Samples, Internalformat, Width, Height, Depth, Fixedsamplelocations)

 -spec texImage3DMultisample(Target, Samples, Internalformat, Width, Height, Depth, Fixedsamplelocations) ->
 ok
 when
 Target :: enum(),
 Samples :: i(),
 Internalformat :: enum(),
 Width :: i(),
 Height :: i(),
 Depth :: i(),
 Fixedsamplelocations :: 0 | 1.

gl:texImage3DMultisample/7 establishes the data
storage, format, dimensions and number of samples of a multisample texture's
image.
External documentation.

 texParameterf(Target, Pname, Param)

 -spec texParameterf(Target :: enum(), Pname :: enum(), Param :: f()) -> ok.

Equivalent to texParameteriv/3.

 texParameterfv(Target, Pname, Params)

 -spec texParameterfv(Target :: enum(), Pname :: enum(), Params :: tuple()) -> ok.

Equivalent to texParameteriv/3.

 texParameterIiv(Target, Pname, Params)

 -spec texParameterIiv(Target :: enum(), Pname :: enum(), Params :: tuple()) -> ok.

Equivalent to texParameteriv/3.

 texParameterIuiv(Target, Pname, Params)

 -spec texParameterIuiv(Target :: enum(), Pname :: enum(), Params :: tuple()) -> ok.

Equivalent to texParameteriv/3.

 texParameteri(Target, Pname, Param)

 -spec texParameteri(Target :: enum(), Pname :: enum(), Param :: i()) -> ok.

Equivalent to texParameteriv/3.

 texParameteriv(Target, Pname, Params)

 -spec texParameteriv(Target :: enum(), Pname :: enum(), Params :: tuple()) -> ok.

gl:texParameter() and
gl:textureParameter() assign the value or values in
Params to the texture parameter specified as Pname. For
gl:texParameter(), Target defines the target texture,
either ?GL_TEXTURE_1D, ?GL_TEXTURE_1D_ARRAY, ?GL_TEXTURE_2D,
?GL_TEXTURE_2D_ARRAY, ?GL_TEXTURE_2D_MULTISAMPLE,
?GL_TEXTURE_2D_MULTISAMPLE_ARRAY, ?GL_TEXTURE_3D, ?GL_TEXTURE_CUBE_MAP,
?GL_TEXTURE_CUBE_MAP_ARRAY, or ?GL_TEXTURE_RECTANGLE. The following symbols
are accepted in Pname:
External documentation.

 texStorage1D(Target, Levels, Internalformat, Width)

 -spec texStorage1D(Target :: enum(), Levels :: i(), Internalformat :: enum(), Width :: i()) -> ok.

gl:texStorage1D/4 and
gl:textureStorage1D() specify the storage requirements for
all levels of a one-dimensional texture simultaneously. Once a texture is
specified with this command, the format and dimensions of all levels become
immutable unless it is a proxy texture. The contents of the image may still be
modified, however, its storage requirements may not change. Such a texture is
referred to as an immutable-format texture.
External documentation.

 texStorage2D(Target, Levels, Internalformat, Width, Height)

 -spec texStorage2D(Target :: enum(),
 Levels :: i(),
 Internalformat :: enum(),
 Width :: i(),
 Height :: i()) ->
 ok.

gl:texStorage2D/5 and
gl:textureStorage2D() specify the storage requirements for
all levels of a two-dimensional texture or one-dimensional texture array
simultaneously. Once a texture is specified with this command, the format and
dimensions of all levels become immutable unless it is a proxy texture. The
contents of the image may still be modified, however, its storage requirements
may not change. Such a texture is referred to as an immutable-format texture.
External documentation.

 texStorage2DMultisample(Target, Samples, Internalformat, Width, Height, Fixedsamplelocations)

 -spec texStorage2DMultisample(Target, Samples, Internalformat, Width, Height, Fixedsamplelocations) ->
 ok
 when
 Target :: enum(),
 Samples :: i(),
 Internalformat :: enum(),
 Width :: i(),
 Height :: i(),
 Fixedsamplelocations :: 0 | 1.

gl:texStorage2DMultisample/6 and
gl:textureStorage2DMultisample() specify the
storage requirements for a two-dimensional multisample texture. Once a texture
is specified with this command, its format and dimensions become immutable
unless it is a proxy texture. The contents of the image may still be modified,
however, its storage requirements may not change. Such a texture is referred to
as an immutable-format texture.
External documentation.

 texStorage3D(Target, Levels, Internalformat, Width, Height, Depth)

 -spec texStorage3D(Target, Levels, Internalformat, Width, Height, Depth) -> ok
 when
 Target :: enum(),
 Levels :: i(),
 Internalformat :: enum(),
 Width :: i(),
 Height :: i(),
 Depth :: i().

gl:texStorage3D/6 and
gl:textureStorage3D() specify the storage requirements for
all levels of a three-dimensional, two-dimensional array or cube-map array
texture simultaneously. Once a texture is specified with this command, the
format and dimensions of all levels become immutable unless it is a proxy
texture. The contents of the image may still be modified, however, its storage
requirements may not change. Such a texture is referred to as an
immutable-format texture.
External documentation.

 texStorage3DMultisample(Target, Samples, Internalformat, Width, Height, Depth, Fixedsamplelocations)

 -spec texStorage3DMultisample(Target, Samples, Internalformat, Width, Height, Depth,
 Fixedsamplelocations) ->
 ok
 when
 Target :: enum(),
 Samples :: i(),
 Internalformat :: enum(),
 Width :: i(),
 Height :: i(),
 Depth :: i(),
 Fixedsamplelocations :: 0 | 1.

gl:texStorage3DMultisample/7 and
gl:textureStorage3DMultisample() specify the
storage requirements for a two-dimensional multisample array texture. Once a
texture is specified with this command, its format and dimensions become
immutable unless it is a proxy texture. The contents of the image may still be
modified, however, its storage requirements may not change. Such a texture is
referred to as an immutable-format texture.
External documentation.

 texSubImage1D(Target, Level, Xoffset, Width, Format, Type, Pixels)

 -spec texSubImage1D(Target, Level, Xoffset, Width, Format, Type, Pixels) -> ok
 when
 Target :: enum(),
 Level :: i(),
 Xoffset :: i(),
 Width :: i(),
 Format :: enum(),
 Type :: enum(),
 Pixels :: offset() | mem().

Texturing maps a portion of a specified texture image onto each graphical
primitive for which texturing is enabled. To enable or disable one-dimensional
texturing, call gl:enable/1 and gl:disable/1
with argument ?GL_TEXTURE_1D.
External documentation.

 texSubImage2D(Target, Level, Xoffset, Yoffset, Width, Height, Format, Type, Pixels)

 -spec texSubImage2D(Target, Level, Xoffset, Yoffset, Width, Height, Format, Type, Pixels) -> ok
 when
 Target :: enum(),
 Level :: i(),
 Xoffset :: i(),
 Yoffset :: i(),
 Width :: i(),
 Height :: i(),
 Format :: enum(),
 Type :: enum(),
 Pixels :: offset() | mem().

Texturing maps a portion of a specified texture image onto each graphical
primitive for which texturing is enabled.
External documentation.

 texSubImage3D(Target, Level, Xoffset, Yoffset, Zoffset, Width, Height, Depth, Format, Type, Pixels)

 -spec texSubImage3D(Target, Level, Xoffset, Yoffset, Zoffset, Width, Height, Depth, Format, Type,
 Pixels) ->
 ok
 when
 Target :: enum(),
 Level :: i(),
 Xoffset :: i(),
 Yoffset :: i(),
 Zoffset :: i(),
 Width :: i(),
 Height :: i(),
 Depth :: i(),
 Format :: enum(),
 Type :: enum(),
 Pixels :: offset() | mem().

Texturing maps a portion of a specified texture image onto each graphical
primitive for which texturing is enabled.
External documentation.

 textureBarrier()

 -spec textureBarrier() -> ok.

The values of rendered fragments are undefined when a shader stage fetches
texels and the same texels are written via fragment shader outputs, even if the
reads and writes are not in the same drawing command. To safely read the result
of a written texel via a texel fetch in a subsequent drawing command, call
gl:textureBarrier/0 between the two drawing commands to
guarantee that writes have completed and caches have been invalidated before
subsequent drawing commands are executed.
External documentation.

 textureBuffer(Texture, Internalformat, Buffer)

 -spec textureBuffer(Texture :: i(), Internalformat :: enum(), Buffer :: i()) -> ok.

gl:texBuffer/3 and gl:textureBuffer/3
attaches the data store of a specified buffer object to a specified texture
object, and specify the storage format for the texture image found in the buffer
object. The texture object must be a buffer texture.
External documentation.

 textureBufferRange(Texture, Internalformat, Buffer, Offset, Size)

 -spec textureBufferRange(Texture :: i(),
 Internalformat :: enum(),
 Buffer :: i(),
 Offset :: i(),
 Size :: i()) ->
 ok.

gl:texBufferRange/5 and
gl:textureBufferRange/5 attach a range of the data store
of a specified buffer object to a specified texture object, and specify the
storage format for the texture image found in the buffer object. The texture
object must be a buffer texture.
External documentation.

 textureView(Texture, Target, Origtexture, Internalformat, Minlevel, Numlevels, Minlayer, Numlayers)

 -spec textureView(Texture, Target, Origtexture, Internalformat, Minlevel, Numlevels, Minlayer,
 Numlayers) ->
 ok
 when
 Texture :: i(),
 Target :: enum(),
 Origtexture :: i(),
 Internalformat :: enum(),
 Minlevel :: i(),
 Numlevels :: i(),
 Minlayer :: i(),
 Numlayers :: i().

gl:textureView/8 initializes a texture object as an alias,
or view of another texture object, sharing some or all of the parent texture's
data store with the initialized texture. Texture specifies a name previously
reserved by a successful call to gl:genTextures/1 but that
has not yet been bound or given a target. Target specifies the target for the
newly initialized texture and must be compatible with the target of the parent
texture, given in Origtexture as specified in the following table:
External documentation.

 transformFeedbackBufferBase(Xfb, Index, Buffer)

 -spec transformFeedbackBufferBase(Xfb :: i(), Index :: i(), Buffer :: i()) -> ok.

gl:transformFeedbackBufferBase/3 binds the
buffer object Buffer to the binding point at index Index of the transform
feedback object Xfb.
External documentation.

 transformFeedbackBufferRange(Xfb, Index, Buffer, Offset, Size)

 -spec transformFeedbackBufferRange(Xfb :: i(), Index :: i(), Buffer :: i(), Offset :: i(), Size :: i()) ->
 ok.

gl:transformFeedbackBufferRange/5 binds a
range of the buffer object Buffer represented by Offset and Size to the
binding point at index Index of the transform feedback object Xfb.
External documentation.

 transformFeedbackVaryings(Program, Varyings, BufferMode)

 -spec transformFeedbackVaryings(Program :: i(), Varyings :: [unicode:chardata()], BufferMode :: enum()) ->
 ok.

The names of the vertex or geometry shader outputs to be recorded in transform
feedback mode are specified using
gl:transformFeedbackVaryings/3. When a
geometry shader is active, transform feedback records the values of selected
geometry shader output variables from the emitted vertices. Otherwise, the
values of the selected vertex shader outputs are recorded.
External documentation.

 translated(X, Y, Z)

 -spec translated(X :: f(), Y :: f(), Z :: f()) -> ok.

Equivalent to translatef/3.

 translatef(X, Y, Z)

 -spec translatef(X :: f(), Y :: f(), Z :: f()) -> ok.

gl:translate() produces a translation by (x y z). The
current matrix (see gl:matrixMode/1) is multiplied by this
translation matrix, with the product replacing the current matrix, as if
gl:multMatrix() were called with the following matrix for
its argument:
External documentation.

 uniform1d(Location, X)

 -spec uniform1d(Location :: i(), X :: f()) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 uniform1dv(Location, Value)

 -spec uniform1dv(Location :: i(), Value :: [f()]) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 uniform1f(Location, V0)

 -spec uniform1f(Location :: i(), V0 :: f()) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 uniform1fv(Location, Value)

 -spec uniform1fv(Location :: i(), Value :: [f()]) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 uniform1i(Location, V0)

 -spec uniform1i(Location :: i(), V0 :: i()) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 uniform1iv(Location, Value)

 -spec uniform1iv(Location :: i(), Value :: [i()]) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 uniform1ui(Location, V0)

 -spec uniform1ui(Location :: i(), V0 :: i()) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 uniform1uiv(Location, Value)

 -spec uniform1uiv(Location :: i(), Value :: [i()]) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 uniform2d(Location, X, Y)

 -spec uniform2d(Location :: i(), X :: f(), Y :: f()) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 uniform2dv(Location, Value)

 -spec uniform2dv(Location :: i(), Value :: [{f(), f()}]) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 uniform2f(Location, V0, V1)

 -spec uniform2f(Location :: i(), V0 :: f(), V1 :: f()) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 uniform2fv(Location, Value)

 -spec uniform2fv(Location :: i(), Value :: [{f(), f()}]) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 uniform2i(Location, V0, V1)

 -spec uniform2i(Location :: i(), V0 :: i(), V1 :: i()) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 uniform2iv(Location, Value)

 -spec uniform2iv(Location :: i(), Value :: [{i(), i()}]) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 uniform2ui(Location, V0, V1)

 -spec uniform2ui(Location :: i(), V0 :: i(), V1 :: i()) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 uniform2uiv(Location, Value)

 -spec uniform2uiv(Location :: i(), Value :: [{i(), i()}]) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 uniform3d(Location, X, Y, Z)

 -spec uniform3d(Location :: i(), X :: f(), Y :: f(), Z :: f()) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 uniform3dv(Location, Value)

 -spec uniform3dv(Location :: i(), Value :: [{f(), f(), f()}]) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 uniform3f(Location, V0, V1, V2)

 -spec uniform3f(Location :: i(), V0 :: f(), V1 :: f(), V2 :: f()) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 uniform3fv(Location, Value)

 -spec uniform3fv(Location :: i(), Value :: [{f(), f(), f()}]) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 uniform3i(Location, V0, V1, V2)

 -spec uniform3i(Location :: i(), V0 :: i(), V1 :: i(), V2 :: i()) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 uniform3iv(Location, Value)

 -spec uniform3iv(Location :: i(), Value :: [{i(), i(), i()}]) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 uniform3ui(Location, V0, V1, V2)

 -spec uniform3ui(Location :: i(), V0 :: i(), V1 :: i(), V2 :: i()) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 uniform3uiv(Location, Value)

 -spec uniform3uiv(Location :: i(), Value :: [{i(), i(), i()}]) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 uniform4d(Location, X, Y, Z, W)

 -spec uniform4d(Location :: i(), X :: f(), Y :: f(), Z :: f(), W :: f()) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 uniform4dv(Location, Value)

 -spec uniform4dv(Location :: i(), Value :: [{f(), f(), f(), f()}]) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 uniform4f(Location, V0, V1, V2, V3)

 -spec uniform4f(Location :: i(), V0 :: f(), V1 :: f(), V2 :: f(), V3 :: f()) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 uniform4fv(Location, Value)

 -spec uniform4fv(Location :: i(), Value :: [{f(), f(), f(), f()}]) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 uniform4i(Location, V0, V1, V2, V3)

 -spec uniform4i(Location :: i(), V0 :: i(), V1 :: i(), V2 :: i(), V3 :: i()) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 uniform4iv(Location, Value)

 -spec uniform4iv(Location :: i(), Value :: [{i(), i(), i(), i()}]) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 uniform4ui(Location, V0, V1, V2, V3)

 -spec uniform4ui(Location :: i(), V0 :: i(), V1 :: i(), V2 :: i(), V3 :: i()) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 uniform4uiv(Location, Value)

 -spec uniform4uiv(Location :: i(), Value :: [{i(), i(), i(), i()}]) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 uniformBlockBinding(Program, UniformBlockIndex, UniformBlockBinding)

 -spec uniformBlockBinding(Program :: i(), UniformBlockIndex :: i(), UniformBlockBinding :: i()) -> ok.

Binding points for active uniform blocks are assigned using
gl:uniformBlockBinding/3. Each of a program's
active uniform blocks has a corresponding uniform buffer binding point.
Program is the name of a program object for which the command
gl:linkProgram/1 has been issued in the past.
External documentation.

 uniformMatrix2dv(Location, Transpose, Value)

 -spec uniformMatrix2dv(Location :: i(), Transpose :: 0 | 1, Value :: [{f(), f(), f(), f()}]) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 uniformMatrix2fv(Location, Transpose, Value)

 -spec uniformMatrix2fv(Location :: i(), Transpose :: 0 | 1, Value :: [{f(), f(), f(), f()}]) -> ok.

Equivalent to uniformMatrix4x3fv/3.

 uniformMatrix2x3dv(Location, Transpose, Value)

 -spec uniformMatrix2x3dv(Location :: i(), Transpose :: 0 | 1, Value :: [{f(), f(), f(), f(), f(), f()}]) ->
 ok.

Equivalent to uniformMatrix4x3fv/3.

 uniformMatrix2x3fv(Location, Transpose, Value)

 -spec uniformMatrix2x3fv(Location :: i(), Transpose :: 0 | 1, Value :: [{f(), f(), f(), f(), f(), f()}]) ->
 ok.

Equivalent to uniformMatrix4x3fv/3.

 uniformMatrix2x4dv(Location, Transpose, Value)

 -spec uniformMatrix2x4dv(Location :: i(),
 Transpose :: 0 | 1,
 Value :: [{f(), f(), f(), f(), f(), f(), f(), f()}]) ->
 ok.

Equivalent to uniformMatrix4x3fv/3.

 uniformMatrix2x4fv(Location, Transpose, Value)

 -spec uniformMatrix2x4fv(Location :: i(),
 Transpose :: 0 | 1,
 Value :: [{f(), f(), f(), f(), f(), f(), f(), f()}]) ->
 ok.

Equivalent to uniformMatrix4x3fv/3.

 uniformMatrix3dv(Location, Transpose, Value)

 -spec uniformMatrix3dv(Location :: i(),
 Transpose :: 0 | 1,
 Value :: [{f(), f(), f(), f(), f(), f(), f(), f(), f()}]) ->
 ok.

Equivalent to uniformMatrix4x3fv/3.

 uniformMatrix3fv(Location, Transpose, Value)

 -spec uniformMatrix3fv(Location :: i(),
 Transpose :: 0 | 1,
 Value :: [{f(), f(), f(), f(), f(), f(), f(), f(), f()}]) ->
 ok.

Equivalent to uniformMatrix4x3fv/3.

 uniformMatrix3x2dv(Location, Transpose, Value)

 -spec uniformMatrix3x2dv(Location :: i(), Transpose :: 0 | 1, Value :: [{f(), f(), f(), f(), f(), f()}]) ->
 ok.

Equivalent to uniformMatrix4x3fv/3.

 uniformMatrix3x2fv(Location, Transpose, Value)

 -spec uniformMatrix3x2fv(Location :: i(), Transpose :: 0 | 1, Value :: [{f(), f(), f(), f(), f(), f()}]) ->
 ok.

Equivalent to uniformMatrix4x3fv/3.

 uniformMatrix3x4dv(Location, Transpose, Value)

 -spec uniformMatrix3x4dv(Location, Transpose, Value) -> ok
 when
 Location :: i(),
 Transpose :: 0 | 1,
 Value :: [{f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f()}].

Equivalent to uniformMatrix4x3fv/3.

 uniformMatrix3x4fv(Location, Transpose, Value)

 -spec uniformMatrix3x4fv(Location, Transpose, Value) -> ok
 when
 Location :: i(),
 Transpose :: 0 | 1,
 Value :: [{f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f()}].

Equivalent to uniformMatrix4x3fv/3.

 uniformMatrix4dv(Location, Transpose, Value)

 -spec uniformMatrix4dv(Location, Transpose, Value) -> ok
 when
 Location :: i(),
 Transpose :: 0 | 1,
 Value ::
 [{f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f()}].

Equivalent to uniformMatrix4x3fv/3.

 uniformMatrix4fv(Location, Transpose, Value)

 -spec uniformMatrix4fv(Location, Transpose, Value) -> ok
 when
 Location :: i(),
 Transpose :: 0 | 1,
 Value ::
 [{f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f(),
 f()}].

Equivalent to uniformMatrix4x3fv/3.

 uniformMatrix4x2dv(Location, Transpose, Value)

 -spec uniformMatrix4x2dv(Location :: i(),
 Transpose :: 0 | 1,
 Value :: [{f(), f(), f(), f(), f(), f(), f(), f()}]) ->
 ok.

Equivalent to uniformMatrix4x3fv/3.

 uniformMatrix4x2fv(Location, Transpose, Value)

 -spec uniformMatrix4x2fv(Location :: i(),
 Transpose :: 0 | 1,
 Value :: [{f(), f(), f(), f(), f(), f(), f(), f()}]) ->
 ok.

Equivalent to uniformMatrix4x3fv/3.

 uniformMatrix4x3dv(Location, Transpose, Value)

 -spec uniformMatrix4x3dv(Location, Transpose, Value) -> ok
 when
 Location :: i(),
 Transpose :: 0 | 1,
 Value :: [{f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f()}].

Equivalent to uniformMatrix4x3fv/3.

 uniformMatrix4x3fv(Location, Transpose, Value)

 -spec uniformMatrix4x3fv(Location, Transpose, Value) -> ok
 when
 Location :: i(),
 Transpose :: 0 | 1,
 Value :: [{f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f()}].

gl:uniform() modifies the value of a uniform variable or a
uniform variable array. The location of the uniform variable to be modified is
specified by Location, which should be a value returned by
gl:getUniformLocation/2.
gl:uniform() operates on the program object that was made
part of current state by calling gl:useProgram/1.
External documentation.

 uniformSubroutinesuiv(Shadertype, Indices)

 -spec uniformSubroutinesuiv(Shadertype :: enum(), Indices :: [i()]) -> ok.

gl:uniformSubroutines() loads all active
subroutine uniforms for shader stage Shadertype of the current program with
subroutine indices from Indices, storing Indices[i] into the uniform at
location I. Count must be equal to the value of
?GL_ACTIVE_SUBROUTINE_UNIFORM_LOCATIONS for the program currently in use at
shader stage Shadertype. Furthermore, all values in Indices must be less
than the value of ?GL_ACTIVE_SUBROUTINES for the shader stage.
External documentation.

 useProgram(Program)

 -spec useProgram(Program :: i()) -> ok.

gl:useProgram/1 installs the program object specified by
Program as part of current rendering state. One or more executables are
created in a program object by successfully attaching shader objects to it with
gl:attachShader/2, successfully compiling the shader
objects with gl:compileShader/1, and successfully linking
the program object with gl:linkProgram/1.
External documentation.

 useProgramStages(Pipeline, Stages, Program)

 -spec useProgramStages(Pipeline :: i(), Stages :: i(), Program :: i()) -> ok.

gl:useProgramStages/3 binds executables from a program
object associated with a specified set of shader stages to the program pipeline
object given by Pipeline. Pipeline specifies the program pipeline object to
which to bind the executables. Stages contains a logical combination of bits
indicating the shader stages to use within Program with the program pipeline
object Pipeline. Stages must be a logical combination of
?GL_VERTEX_SHADER_BIT, ?GL_TESS_CONTROL_SHADER_BIT,
?GL_TESS_EVALUATION_SHADER_BIT, ?GL_GEOMETRY_SHADER_BIT,
?GL_FRAGMENT_SHADER_BIT and ?GL_COMPUTE_SHADER_BIT. Additionally, the
special value ?GL_ALL_SHADER_BITS may be specified to indicate that all
executables contained in Program should be installed in Pipeline.
External documentation.

 validateProgram(Program)

 -spec validateProgram(Program :: i()) -> ok.

gl:validateProgram/1 checks to see whether the
executables contained in Program can execute given the current OpenGL state.
The information generated by the validation process will be stored in
Program's information log. The validation information may consist of an empty
string, or it may be a string containing information about how the current
program object interacts with the rest of current OpenGL state. This provides a
way for OpenGL implementers to convey more information about why the current
program is inefficient, suboptimal, failing to execute, and so on.
External documentation.

 validateProgramPipeline(Pipeline)

 -spec validateProgramPipeline(Pipeline :: i()) -> ok.

gl:validateProgramPipeline/1 instructs the
implementation to validate the shader executables contained in Pipeline
against the current GL state. The implementation may use this as an opportunity
to perform any internal shader modifications that may be required to ensure
correct operation of the installed shaders given the current GL state.
External documentation.

 vertex2d(X, Y)

 -spec vertex2d(X :: f(), Y :: f()) -> ok.

Equivalent to vertex4sv/1.

 vertex2dv/1

 -spec vertex2dv({X :: f(), Y :: f()}) -> ok.

Equivalent to vertex4sv/1.

 vertex2f(X, Y)

 -spec vertex2f(X :: f(), Y :: f()) -> ok.

Equivalent to vertex4sv/1.

 vertex2fv/1

 -spec vertex2fv({X :: f(), Y :: f()}) -> ok.

Equivalent to vertex4sv/1.

 vertex2i(X, Y)

 -spec vertex2i(X :: i(), Y :: i()) -> ok.

Equivalent to vertex4sv/1.

 vertex2iv/1

 -spec vertex2iv({X :: i(), Y :: i()}) -> ok.

Equivalent to vertex4sv/1.

 vertex2s(X, Y)

 -spec vertex2s(X :: i(), Y :: i()) -> ok.

Equivalent to vertex4sv/1.

 vertex2sv/1

 -spec vertex2sv({X :: i(), Y :: i()}) -> ok.

Equivalent to vertex4sv/1.

 vertex3d(X, Y, Z)

 -spec vertex3d(X :: f(), Y :: f(), Z :: f()) -> ok.

Equivalent to vertex4sv/1.

 vertex3dv/1

 -spec vertex3dv({X :: f(), Y :: f(), Z :: f()}) -> ok.

Equivalent to vertex4sv/1.

 vertex3f(X, Y, Z)

 -spec vertex3f(X :: f(), Y :: f(), Z :: f()) -> ok.

Equivalent to vertex4sv/1.

 vertex3fv/1

 -spec vertex3fv({X :: f(), Y :: f(), Z :: f()}) -> ok.

Equivalent to vertex4sv/1.

 vertex3i(X, Y, Z)

 -spec vertex3i(X :: i(), Y :: i(), Z :: i()) -> ok.

Equivalent to vertex4sv/1.

 vertex3iv/1

 -spec vertex3iv({X :: i(), Y :: i(), Z :: i()}) -> ok.

Equivalent to vertex4sv/1.

 vertex3s(X, Y, Z)

 -spec vertex3s(X :: i(), Y :: i(), Z :: i()) -> ok.

Equivalent to vertex4sv/1.

 vertex3sv/1

 -spec vertex3sv({X :: i(), Y :: i(), Z :: i()}) -> ok.

Equivalent to vertex4sv/1.

 vertex4d(X, Y, Z, W)

 -spec vertex4d(X :: f(), Y :: f(), Z :: f(), W :: f()) -> ok.

Equivalent to vertex4sv/1.

 vertex4dv/1

 -spec vertex4dv({X :: f(), Y :: f(), Z :: f(), W :: f()}) -> ok.

Equivalent to vertex4sv/1.

 vertex4f(X, Y, Z, W)

 -spec vertex4f(X :: f(), Y :: f(), Z :: f(), W :: f()) -> ok.

Equivalent to vertex4sv/1.

 vertex4fv/1

 -spec vertex4fv({X :: f(), Y :: f(), Z :: f(), W :: f()}) -> ok.

Equivalent to vertex4sv/1.

 vertex4i(X, Y, Z, W)

 -spec vertex4i(X :: i(), Y :: i(), Z :: i(), W :: i()) -> ok.

Equivalent to vertex4sv/1.

 vertex4iv/1

 -spec vertex4iv({X :: i(), Y :: i(), Z :: i(), W :: i()}) -> ok.

Equivalent to vertex4sv/1.

 vertex4s(X, Y, Z, W)

 -spec vertex4s(X :: i(), Y :: i(), Z :: i(), W :: i()) -> ok.

Equivalent to vertex4sv/1.

 vertex4sv/1

 -spec vertex4sv({X :: i(), Y :: i(), Z :: i(), W :: i()}) -> ok.

gl:vertex() commands are used within
gl:'begin'/1/gl:'end'/0 pairs to specify
point, line, and polygon vertices. The current color, normal, texture
coordinates, and fog coordinate are associated with the vertex when
gl:vertex() is called.
External documentation.

 vertexArrayAttribBinding(Vaobj, Attribindex, Bindingindex)

 -spec vertexArrayAttribBinding(Vaobj :: i(), Attribindex :: i(), Bindingindex :: i()) -> ok.

Equivalent to vertexAttribBinding/2.

 vertexArrayAttribFormat(Vaobj, Attribindex, Size, Type, Normalized, Relativeoffset)

 -spec vertexArrayAttribFormat(Vaobj, Attribindex, Size, Type, Normalized, Relativeoffset) -> ok
 when
 Vaobj :: i(),
 Attribindex :: i(),
 Size :: i(),
 Type :: enum(),
 Normalized :: 0 | 1,
 Relativeoffset :: i().

Equivalent to vertexAttribLPointer/5.

 vertexArrayAttribIFormat(Vaobj, Attribindex, Size, Type, Relativeoffset)

 -spec vertexArrayAttribIFormat(Vaobj :: i(),
 Attribindex :: i(),
 Size :: i(),
 Type :: enum(),
 Relativeoffset :: i()) ->
 ok.

Equivalent to vertexAttribLPointer/5.

 vertexArrayAttribLFormat(Vaobj, Attribindex, Size, Type, Relativeoffset)

 -spec vertexArrayAttribLFormat(Vaobj :: i(),
 Attribindex :: i(),
 Size :: i(),
 Type :: enum(),
 Relativeoffset :: i()) ->
 ok.

Equivalent to vertexAttribLPointer/5.

 vertexArrayBindingDivisor(Vaobj, Bindingindex, Divisor)

 -spec vertexArrayBindingDivisor(Vaobj :: i(), Bindingindex :: i(), Divisor :: i()) -> ok.

Equivalent to vertexBindingDivisor/2.

 vertexArrayElementBuffer(Vaobj, Buffer)

 -spec vertexArrayElementBuffer(Vaobj :: i(), Buffer :: i()) -> ok.

gl:vertexArrayElementBuffer/2 binds a buffer
object with id Buffer to the element array buffer bind point of a vertex array
object with id Vaobj. If Buffer is zero, any existing element array buffer
binding to Vaobj is removed.
External documentation.

 vertexArrayVertexBuffer(Vaobj, Bindingindex, Buffer, Offset, Stride)

 -spec vertexArrayVertexBuffer(Vaobj :: i(),
 Bindingindex :: i(),
 Buffer :: i(),
 Offset :: i(),
 Stride :: i()) ->
 ok.

gl:bindVertexBuffer/4 and
gl:vertexArrayVertexBuffer/5 bind the buffer named
Buffer to the vertex buffer binding point whose index is given by
Bindingindex. gl:bindVertexBuffer/4 modifies the
binding of the currently bound vertex array object, whereas
gl:vertexArrayVertexBuffer/5 allows the caller to
specify ID of the vertex array object with an argument named Vaobj, for which
the binding should be modified. Offset and Stride specify the offset of the
first element within the buffer and the distance between elements within the
buffer, respectively, and are both measured in basic machine units.
Bindingindex must be less than the value of ?GL_MAX_VERTEX_ATTRIB_BINDINGS.
Offset and Stride must be greater than or equal to zero. If Buffer is
zero, then any buffer currently bound to the specified binding point is unbound.
External documentation.

 vertexArrayVertexBuffers(Vaobj, First, Buffers, Offsets, Strides)

 -spec vertexArrayVertexBuffers(Vaobj :: i(),
 First :: i(),
 Buffers :: [i()],
 Offsets :: [i()],
 Strides :: [i()]) ->
 ok.

gl:bindVertexBuffers/4 and
gl:vertexArrayVertexBuffers/5 bind storage from an
array of existing buffer objects to a specified number of consecutive vertex
buffer binding points units in a vertex array object. For
gl:bindVertexBuffers/4, the vertex array object is
the currently bound vertex array object. For
gl:vertexArrayVertexBuffers/5, Vaobj is the name of
the vertex array object.
External documentation.

 vertexAttrib1d(Index, X)

 -spec vertexAttrib1d(Index :: i(), X :: f()) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttrib1dv/2

 -spec vertexAttrib1dv(Index :: i(), {X :: f()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttrib1f(Index, X)

 -spec vertexAttrib1f(Index :: i(), X :: f()) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttrib1fv/2

 -spec vertexAttrib1fv(Index :: i(), {X :: f()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttrib1s(Index, X)

 -spec vertexAttrib1s(Index :: i(), X :: i()) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttrib1sv/2

 -spec vertexAttrib1sv(Index :: i(), {X :: i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttrib2d(Index, X, Y)

 -spec vertexAttrib2d(Index :: i(), X :: f(), Y :: f()) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttrib2dv/2

 -spec vertexAttrib2dv(Index :: i(), {X :: f(), Y :: f()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttrib2f(Index, X, Y)

 -spec vertexAttrib2f(Index :: i(), X :: f(), Y :: f()) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttrib2fv/2

 -spec vertexAttrib2fv(Index :: i(), {X :: f(), Y :: f()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttrib2s(Index, X, Y)

 -spec vertexAttrib2s(Index :: i(), X :: i(), Y :: i()) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttrib2sv/2

 -spec vertexAttrib2sv(Index :: i(), {X :: i(), Y :: i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttrib3d(Index, X, Y, Z)

 -spec vertexAttrib3d(Index :: i(), X :: f(), Y :: f(), Z :: f()) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttrib3dv/2

 -spec vertexAttrib3dv(Index :: i(), {X :: f(), Y :: f(), Z :: f()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttrib3f(Index, X, Y, Z)

 -spec vertexAttrib3f(Index :: i(), X :: f(), Y :: f(), Z :: f()) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttrib3fv/2

 -spec vertexAttrib3fv(Index :: i(), {X :: f(), Y :: f(), Z :: f()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttrib3s(Index, X, Y, Z)

 -spec vertexAttrib3s(Index :: i(), X :: i(), Y :: i(), Z :: i()) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttrib3sv/2

 -spec vertexAttrib3sv(Index :: i(), {X :: i(), Y :: i(), Z :: i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttrib4bv(Index, V)

 -spec vertexAttrib4bv(Index :: i(), V :: {i(), i(), i(), i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttrib4d(Index, X, Y, Z, W)

 -spec vertexAttrib4d(Index :: i(), X :: f(), Y :: f(), Z :: f(), W :: f()) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttrib4dv/2

 -spec vertexAttrib4dv(Index :: i(), {X :: f(), Y :: f(), Z :: f(), W :: f()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttrib4f(Index, X, Y, Z, W)

 -spec vertexAttrib4f(Index :: i(), X :: f(), Y :: f(), Z :: f(), W :: f()) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttrib4fv/2

 -spec vertexAttrib4fv(Index :: i(), {X :: f(), Y :: f(), Z :: f(), W :: f()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttrib4iv(Index, V)

 -spec vertexAttrib4iv(Index :: i(), V :: {i(), i(), i(), i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttrib4Nbv(Index, V)

 -spec vertexAttrib4Nbv(Index :: i(), V :: {i(), i(), i(), i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttrib4Niv(Index, V)

 -spec vertexAttrib4Niv(Index :: i(), V :: {i(), i(), i(), i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttrib4Nsv(Index, V)

 -spec vertexAttrib4Nsv(Index :: i(), V :: {i(), i(), i(), i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttrib4Nub(Index, X, Y, Z, W)

 -spec vertexAttrib4Nub(Index :: i(), X :: i(), Y :: i(), Z :: i(), W :: i()) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttrib4Nubv/2

 -spec vertexAttrib4Nubv(Index :: i(), {X :: i(), Y :: i(), Z :: i(), W :: i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttrib4Nuiv(Index, V)

 -spec vertexAttrib4Nuiv(Index :: i(), V :: {i(), i(), i(), i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttrib4Nusv(Index, V)

 -spec vertexAttrib4Nusv(Index :: i(), V :: {i(), i(), i(), i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttrib4s(Index, X, Y, Z, W)

 -spec vertexAttrib4s(Index :: i(), X :: i(), Y :: i(), Z :: i(), W :: i()) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttrib4sv/2

 -spec vertexAttrib4sv(Index :: i(), {X :: i(), Y :: i(), Z :: i(), W :: i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttrib4ubv(Index, V)

 -spec vertexAttrib4ubv(Index :: i(), V :: {i(), i(), i(), i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttrib4uiv(Index, V)

 -spec vertexAttrib4uiv(Index :: i(), V :: {i(), i(), i(), i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttrib4usv(Index, V)

 -spec vertexAttrib4usv(Index :: i(), V :: {i(), i(), i(), i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttribBinding(Attribindex, Bindingindex)

 -spec vertexAttribBinding(Attribindex :: i(), Bindingindex :: i()) -> ok.

gl:vertexAttribBinding/2 and
gl:vertexArrayAttribBinding/3 establishes an
association between the generic vertex attribute of a vertex array object whose
index is given by Attribindex, and a vertex buffer binding whose index is
given by Bindingindex. For
gl:vertexAttribBinding/2, the vertex array object
affected is that currently bound. For
gl:vertexArrayAttribBinding/3, Vaobj is the name
of the vertex array object.
External documentation.

 vertexAttribDivisor(Index, Divisor)

 -spec vertexAttribDivisor(Index :: i(), Divisor :: i()) -> ok.

gl:vertexAttribDivisor/2 modifies the rate at which
generic vertex attributes advance when rendering multiple instances of
primitives in a single draw call. If Divisor is zero, the attribute at slot
Index advances once per vertex. If Divisor is non-zero, the attribute
advances once per Divisor instances of the set(s) of vertices being rendered.
An attribute is referred to as instanced if its
?GL_VERTEX_ATTRIB_ARRAY_DIVISOR value is non-zero.
External documentation.

 vertexAttribFormat(Attribindex, Size, Type, Normalized, Relativeoffset)

 -spec vertexAttribFormat(Attribindex :: i(),
 Size :: i(),
 Type :: enum(),
 Normalized :: 0 | 1,
 Relativeoffset :: i()) ->
 ok.

Equivalent to vertexAttribLPointer/5.

 vertexAttribI1i(Index, X)

 -spec vertexAttribI1i(Index :: i(), X :: i()) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttribI1iv/2

 -spec vertexAttribI1iv(Index :: i(), {X :: i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttribI1ui(Index, X)

 -spec vertexAttribI1ui(Index :: i(), X :: i()) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttribI1uiv/2

 -spec vertexAttribI1uiv(Index :: i(), {X :: i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttribI2i(Index, X, Y)

 -spec vertexAttribI2i(Index :: i(), X :: i(), Y :: i()) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttribI2iv/2

 -spec vertexAttribI2iv(Index :: i(), {X :: i(), Y :: i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttribI2ui(Index, X, Y)

 -spec vertexAttribI2ui(Index :: i(), X :: i(), Y :: i()) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttribI2uiv/2

 -spec vertexAttribI2uiv(Index :: i(), {X :: i(), Y :: i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttribI3i(Index, X, Y, Z)

 -spec vertexAttribI3i(Index :: i(), X :: i(), Y :: i(), Z :: i()) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttribI3iv/2

 -spec vertexAttribI3iv(Index :: i(), {X :: i(), Y :: i(), Z :: i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttribI3ui(Index, X, Y, Z)

 -spec vertexAttribI3ui(Index :: i(), X :: i(), Y :: i(), Z :: i()) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttribI3uiv/2

 -spec vertexAttribI3uiv(Index :: i(), {X :: i(), Y :: i(), Z :: i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttribI4bv(Index, V)

 -spec vertexAttribI4bv(Index :: i(), V :: {i(), i(), i(), i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttribI4i(Index, X, Y, Z, W)

 -spec vertexAttribI4i(Index :: i(), X :: i(), Y :: i(), Z :: i(), W :: i()) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttribI4iv/2

 -spec vertexAttribI4iv(Index :: i(), {X :: i(), Y :: i(), Z :: i(), W :: i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttribI4sv(Index, V)

 -spec vertexAttribI4sv(Index :: i(), V :: {i(), i(), i(), i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttribI4ubv(Index, V)

 -spec vertexAttribI4ubv(Index :: i(), V :: {i(), i(), i(), i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttribI4ui(Index, X, Y, Z, W)

 -spec vertexAttribI4ui(Index :: i(), X :: i(), Y :: i(), Z :: i(), W :: i()) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttribI4uiv/2

 -spec vertexAttribI4uiv(Index :: i(), {X :: i(), Y :: i(), Z :: i(), W :: i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttribI4usv(Index, V)

 -spec vertexAttribI4usv(Index :: i(), V :: {i(), i(), i(), i()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttribIFormat(Attribindex, Size, Type, Relativeoffset)

 -spec vertexAttribIFormat(Attribindex :: i(), Size :: i(), Type :: enum(), Relativeoffset :: i()) -> ok.

Equivalent to vertexAttribLPointer/5.

 vertexAttribIPointer(Index, Size, Type, Stride, Pointer)

 -spec vertexAttribIPointer(Index :: i(),
 Size :: i(),
 Type :: enum(),
 Stride :: i(),
 Pointer :: offset() | mem()) ->
 ok.

Equivalent to vertexAttribLPointer/5.

 vertexAttribL1d(Index, X)

 -spec vertexAttribL1d(Index :: i(), X :: f()) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttribL1dv/2

 -spec vertexAttribL1dv(Index :: i(), {X :: f()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttribL2d(Index, X, Y)

 -spec vertexAttribL2d(Index :: i(), X :: f(), Y :: f()) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttribL2dv/2

 -spec vertexAttribL2dv(Index :: i(), {X :: f(), Y :: f()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttribL3d(Index, X, Y, Z)

 -spec vertexAttribL3d(Index :: i(), X :: f(), Y :: f(), Z :: f()) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttribL3dv/2

 -spec vertexAttribL3dv(Index :: i(), {X :: f(), Y :: f(), Z :: f()}) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttribL4d(Index, X, Y, Z, W)

 -spec vertexAttribL4d(Index :: i(), X :: f(), Y :: f(), Z :: f(), W :: f()) -> ok.

Equivalent to vertexAttribL4dv/2.

 vertexAttribL4dv/2

 -spec vertexAttribL4dv(Index :: i(), {X :: f(), Y :: f(), Z :: f(), W :: f()}) -> ok.

The gl:vertexAttrib() family of entry points allows an
application to pass generic vertex attributes in numbered locations.
External documentation.

 vertexAttribLFormat(Attribindex, Size, Type, Relativeoffset)

 -spec vertexAttribLFormat(Attribindex :: i(), Size :: i(), Type :: enum(), Relativeoffset :: i()) -> ok.

Equivalent to vertexAttribLPointer/5.

 vertexAttribLPointer(Index, Size, Type, Stride, Pointer)

 -spec vertexAttribLPointer(Index :: i(),
 Size :: i(),
 Type :: enum(),
 Stride :: i(),
 Pointer :: offset() | mem()) ->
 ok.

gl:vertexAttribFormat/5,
gl:vertexAttribIFormat/4 and
gl:vertexAttribLFormat/4, as well as
gl:vertexArrayAttribFormat/6,
gl:vertexArrayAttribIFormat/5 and
gl:vertexArrayAttribLFormat/5 specify the
organization of data in vertex arrays. The first three calls operate on the
bound vertex array object, whereas the last three ones modify the state of a
vertex array object with ID Vaobj. Attribindex specifies the index of the
generic vertex attribute array whose data layout is being described, and must be
less than the value of ?GL_MAX_VERTEX_ATTRIBS.
External documentation.

 vertexAttribPointer(Index, Size, Type, Normalized, Stride, Pointer)

 -spec vertexAttribPointer(Index, Size, Type, Normalized, Stride, Pointer) -> ok
 when
 Index :: i(),
 Size :: i(),
 Type :: enum(),
 Normalized :: 0 | 1,
 Stride :: i(),
 Pointer :: offset() | mem().

gl:vertexAttribPointer/6,
gl:vertexAttribIPointer/5 and
gl:vertexAttribLPointer/5 specify the location and
data format of the array of generic vertex attributes at index Index to use
when rendering. Size specifies the number of components per attribute and must
be 1, 2, 3, 4, or ?GL_BGRA. Type specifies the data type of each component,
and Stride specifies the byte stride from one attribute to the next, allowing
vertices and attributes to be packed into a single array or stored in separate
arrays.
External documentation.

 vertexBindingDivisor(Bindingindex, Divisor)

 -spec vertexBindingDivisor(Bindingindex :: i(), Divisor :: i()) -> ok.

gl:vertexBindingDivisor/2 and
gl:vertexArrayBindingDivisor/3 modify the rate at
which generic vertex attributes advance when rendering multiple instances of
primitives in a single draw command. If Divisor is zero, the attributes using
the buffer bound to Bindingindex advance once per vertex. If Divisor is
non-zero, the attributes advance once per Divisor instances of the set(s) of
vertices being rendered. An attribute is referred to as instanced if the
corresponding Divisor value is non-zero.
External documentation.

 vertexPointer(Size, Type, Stride, Ptr)

 -spec vertexPointer(Size :: i(), Type :: enum(), Stride :: i(), Ptr :: offset() | mem()) -> ok.

gl:vertexPointer/4 specifies the location and data format
of an array of vertex coordinates to use when rendering. Size specifies the
number of coordinates per vertex, and must be 2, 3, or 4. Type specifies the
data type of each coordinate, and Stride specifies the byte stride from one
vertex to the next, allowing vertices and attributes to be packed into a single
array or stored in separate arrays. (Single-array storage may be more efficient
on some implementations; see gl:interleavedArrays/3.)
External documentation.

 viewport(X, Y, Width, Height)

 -spec viewport(X :: i(), Y :: i(), Width :: i(), Height :: i()) -> ok.

gl:viewport/4 specifies the affine transformation of x and y
from normalized device coordinates to window coordinates. Let (x nd y nd) be
normalized device coordinates. Then the window coordinates (x w y w) are
computed as follows:
External documentation.

 viewportArrayv(First, V)

 -spec viewportArrayv(First :: i(), V :: [{f(), f(), f(), f()}]) -> ok.

gl:viewportArrayv/2 specifies the parameters for
multiple viewports simulataneously. First specifies the index of the first
viewport to modify and Count specifies the number of viewports to modify.
First must be less than the value of ?GL_MAX_VIEWPORTS, and First +
Count must be less than or equal to the value of ?GL_MAX_VIEWPORTS.
Viewports whose indices lie outside the range [First, First + Count) are
not modified. V contains the address of an array of floating point values
specifying the left (x), bottom (y), width (w), and height (h) of each
viewport, in that order. x and y give the location of the viewport's lower left
corner, and w and h give the width and height of the viewport, respectively. The
viewport specifies the affine transformation of x and y from normalized device
coordinates to window coordinates. Let (x nd y nd) be normalized device
coordinates. Then the window coordinates (x w y w) are computed as follows:
External documentation.

 viewportIndexedf(Index, X, Y, W, H)

 -spec viewportIndexedf(Index :: i(), X :: f(), Y :: f(), W :: f(), H :: f()) -> ok.

Equivalent to viewportIndexedfv/2.

 viewportIndexedfv(Index, V)

 -spec viewportIndexedfv(Index :: i(), V :: {f(), f(), f(), f()}) -> ok.

gl:viewportIndexedf/5 and
gl:viewportIndexedfv/2 specify the parameters for a
single viewport. Index specifies the index of the viewport to modify. Index
must be less than the value of ?GL_MAX_VIEWPORTS. For
gl:viewportIndexedf/5, X, Y, W, and H specify
the left, bottom, width and height of the viewport in pixels, respectively. For
gl:viewportIndexedfv/2, V contains the address of an
array of floating point values specifying the left (x), bottom (y), width (
w), and height (h) of each viewport, in that order. x and y give the location
of the viewport's lower left corner, and w and h give the width and height of
the viewport, respectively. The viewport specifies the affine transformation of
x and y from normalized device coordinates to window coordinates. Let (x nd y
nd) be normalized device coordinates. Then the window coordinates (x w y w) are
computed as follows:
External documentation.

 waitSync(Sync, Flags, Timeout)

 -spec waitSync(Sync :: i(), Flags :: i(), Timeout :: i()) -> ok.

gl:waitSync/3 causes the GL server to block and wait until
Sync becomes signaled. Sync is the name of an existing sync object upon
which to wait. Flags and Timeout are currently not used and must be set to
zero and the special value ?GL_TIMEOUT_IGNORED, respectively
Flags and Timeout are placeholders for anticipated future extensions of sync
object capabilities. They must have these reserved values in order that existing
code calling gl:waitSync/3 operate properly in the presence of
such extensions.
External documentation.

 windowPos2d(X, Y)

 -spec windowPos2d(X :: f(), Y :: f()) -> ok.

Equivalent to windowPos3sv/1.

 windowPos2dv/1

 -spec windowPos2dv({X :: f(), Y :: f()}) -> ok.

Equivalent to windowPos3sv/1.

 windowPos2f(X, Y)

 -spec windowPos2f(X :: f(), Y :: f()) -> ok.

Equivalent to windowPos3sv/1.

 windowPos2fv/1

 -spec windowPos2fv({X :: f(), Y :: f()}) -> ok.

Equivalent to windowPos3sv/1.

 windowPos2i(X, Y)

 -spec windowPos2i(X :: i(), Y :: i()) -> ok.

Equivalent to windowPos3sv/1.

 windowPos2iv/1

 -spec windowPos2iv({X :: i(), Y :: i()}) -> ok.

Equivalent to windowPos3sv/1.

 windowPos2s(X, Y)

 -spec windowPos2s(X :: i(), Y :: i()) -> ok.

Equivalent to windowPos3sv/1.

 windowPos2sv/1

 -spec windowPos2sv({X :: i(), Y :: i()}) -> ok.

Equivalent to windowPos3sv/1.

 windowPos3d(X, Y, Z)

 -spec windowPos3d(X :: f(), Y :: f(), Z :: f()) -> ok.

Equivalent to windowPos3sv/1.

 windowPos3dv/1

 -spec windowPos3dv({X :: f(), Y :: f(), Z :: f()}) -> ok.

Equivalent to windowPos3sv/1.

 windowPos3f(X, Y, Z)

 -spec windowPos3f(X :: f(), Y :: f(), Z :: f()) -> ok.

Equivalent to windowPos3sv/1.

 windowPos3fv/1

 -spec windowPos3fv({X :: f(), Y :: f(), Z :: f()}) -> ok.

Equivalent to windowPos3sv/1.

 windowPos3i(X, Y, Z)

 -spec windowPos3i(X :: i(), Y :: i(), Z :: i()) -> ok.

Equivalent to windowPos3sv/1.

 windowPos3iv/1

 -spec windowPos3iv({X :: i(), Y :: i(), Z :: i()}) -> ok.

Equivalent to windowPos3sv/1.

 windowPos3s(X, Y, Z)

 -spec windowPos3s(X :: i(), Y :: i(), Z :: i()) -> ok.

Equivalent to windowPos3sv/1.

 windowPos3sv/1

 -spec windowPos3sv({X :: i(), Y :: i(), Z :: i()}) -> ok.

The GL maintains a 3D position in window coordinates. This position, called the
raster position, is used to position pixel and bitmap write operations. It is
maintained with subpixel accuracy. See gl:bitmap/7,
gl:drawPixels/5, and gl:copyPixels/5.
External documentation.

glu

Erlang wrapper functions for OpenGL
Standard OpenGL API
This documents the functions as a brief version of the complete
OpenGL reference pages.

 Summary

 Types

 enum()

 f()

 i()

 m12()

 m16()

 matrix()

 mem()

 vertex()

 Functions

 build1DMipmapLevels(Target, InternalFormat, Width, Format, Type, Level, Base, Max, Data)

 glu:build1DMipmapLevels/9 builds a subset of
prefiltered one-dimensional texture maps of decreasing resolutions called a
mipmap. This is used for the antialiasing of texture mapped primitives.

 build1DMipmaps(Target, InternalFormat, Width, Format, Type, Data)

 glu:build1DMipmaps/6 builds a series of prefiltered
one-dimensional texture maps of decreasing resolutions called a mipmap. This is
used for the antialiasing of texture mapped primitives.

 build2DMipmapLevels(Target, InternalFormat, Width, Height, Format, Type, Level, Base, Max, Data)

 glu:build2DMipmapLevels/10 builds a subset of
prefiltered two-dimensional texture maps of decreasing resolutions called a
mipmap. This is used for the antialiasing of texture mapped primitives.

 build2DMipmaps(Target, InternalFormat, Width, Height, Format, Type, Data)

 glu:build2DMipmaps/7 builds a series of prefiltered
two-dimensional texture maps of decreasing resolutions called a mipmap. This is
used for the antialiasing of texture-mapped primitives.

 build3DMipmapLevels(Target, InternalFormat, Width, Height, Depth, Format, Type, Level, Base, Max, Data)

 glu:build3DMipmapLevels/11 builds a subset of
prefiltered three-dimensional texture maps of decreasing resolutions called a
mipmap. This is used for the antialiasing of texture mapped primitives.

 build3DMipmaps(Target, InternalFormat, Width, Height, Depth, Format, Type, Data)

 glu:build3DMipmaps/8 builds a series of prefiltered
three-dimensional texture maps of decreasing resolutions called a mipmap. This
is used for the antialiasing of texture-mapped primitives.

 checkExtension(ExtName, ExtString)

 glu:checkExtension/2 returns ?GLU_TRUE if ExtName is
supported otherwise ?GLU_FALSE is returned.

 cylinder(Quad, Base, Top, Height, Slices, Stacks)

 glu:cylinder/6 draws a cylinder oriented along the z axis.
The base of the cylinder is placed at z = 0 and the top at z=height. Like a
sphere, a cylinder is subdivided around the z axis into slices and along the
z axis into stacks.

 deleteQuadric(Quad)

 glu:deleteQuadric/1 destroys the quadrics object (created
with glu:newQuadric/0) and frees any memory it uses. Once
glu:deleteQuadric/1 has been called, Quad cannot be
used again.

 disk(Quad, Inner, Outer, Slices, Loops)

 glu:disk/5 renders a disk on the z = 0 plane. The disk has a
radius of Outer and contains a concentric circular hole with a radius of
Inner. If Inner is 0, then no hole is generated. The disk is subdivided
around the z axis into slices (like pizza slices) and also about the z axis
into rings (as specified by Slices and Loops, respectively).

 errorString(Error)

 glu:errorString/1 produces an error string from a GL or GLU
error code. The string is in ISO Latin 1 format. For example,
glu:errorString/1(?GLU_OUT_OF_MEMORY) returns the string
out of memory.

 getString(Name)

 glu:getString/1 returns a pointer to a static string
describing the GLU version or the GLU extensions that are supported.

 lookAt(EyeX, EyeY, EyeZ, CenterX, CenterY, CenterZ, UpX, UpY, UpZ)

 glu:lookAt/9 creates a viewing matrix derived from an eye point,
a reference point indicating the center of the scene, and an UP vector.

 newQuadric()

 glu:newQuadric/0 creates and returns a pointer to a new
quadrics object. This object must be referred to when calling quadrics rendering
and control functions. A return value of 0 means that there is not enough memory
to allocate the object.

 ortho2D(Left, Right, Bottom, Top)

 glu:ortho2D/4 sets up a two-dimensional orthographic viewing
region. This is equivalent to calling gl:ortho/6 with near=-1 and far=1.

 partialDisk(Quad, Inner, Outer, Slices, Loops, Start, Sweep)

 glu:partialDisk/7 renders a partial disk on the z=0 plane.
A partial disk is similar to a full disk, except that only the subset of the
disk from Start through Start + Sweep is included (where 0 degrees is
along the +f2yf axis, 90 degrees along the +x axis, 180 degrees along the -y
axis, and 270 degrees along the -x axis).

 perspective(Fovy, Aspect, ZNear, ZFar)

 glu:perspective/4 specifies a viewing frustum into the
world coordinate system. In general, the aspect ratio in
glu:perspective/4 should match the aspect ratio of the
associated viewport. For example, aspect=2.0 means the viewer's angle of view is
twice as wide in x as it is in y. If the viewport is twice as wide as it is
tall, it displays the image without distortion.

 pickMatrix(X, Y, DelX, DelY, Viewport)

 glu:pickMatrix/5 creates a projection matrix that can be
used to restrict drawing to a small region of the viewport. This is typically
useful to determine what objects are being drawn near the cursor. Use
glu:pickMatrix/5 to restrict drawing to a small region
around the cursor. Then, enter selection mode (with gl:renderMode/1) and
rerender the scene. All primitives that would have been drawn near the cursor
are identified and stored in the selection buffer.

 project(ObjX, ObjY, ObjZ, Model, Proj, View)

 glu:project/6 transforms the specified object coordinates into
window coordinates using Model, Proj, and View. The result is stored in
WinX, WinY, and WinZ. A return value of ?GLU_TRUE indicates success, a
return value of ?GLU_FALSE indicates failure.

 quadricDrawStyle(Quad, Draw)

 glu:quadricDrawStyle/2 specifies the draw style for
quadrics rendered with Quad. The legal values are as follows

 quadricNormals(Quad, Normal)

 glu:quadricNormals/2 specifies what kind of normals are
desired for quadrics rendered with Quad. The legal values are as follows

 quadricOrientation(Quad, Orientation)

 glu:quadricOrientation/2 specifies what kind of
orientation is desired for quadrics rendered with Quad. The Orientation
values are as follows

 quadricTexture(Quad, Texture)

 glu:quadricTexture/2 specifies if texture coordinates
should be generated for quadrics rendered with Quad. If the value of Texture
is ?GLU_TRUE, then texture coordinates are generated, and if Texture is
?GLU_FALSE, they are not. The initial value is ?GLU_FALSE.

 scaleImage(Format, WIn, HIn, TypeIn, DataIn, WOut, HOut, TypeOut, DataOut)

 glu:scaleImage/9 scales a pixel image using the appropriate
pixel store modes to unpack data from the source image and pack data into the
destination image.

 sphere(Quad, Radius, Slices, Stacks)

 glu:sphere/4 draws a sphere of the given radius centered around
the origin. The sphere is subdivided around the z axis into slices and along
the z axis into stacks (similar to lines of longitude and latitude).

 tesselate(Normal, Vs)

 Triangulates a polygon, the polygon is specified by a Normal and Vs a list
of vertex positions.

 unProject4(WinX, WinY, WinZ, ClipW, Model, Proj, View, NearVal, FarVal)

 glu:unProject/6 maps the specified window coordinates into
object coordinates using Model, Proj, and View. The result is stored in
ObjX, ObjY, and ObjZ. A return value of ?GLU_TRUE indicates success; a
return value of ?GLU_FALSE indicates failure.

 unProject(WinX, WinY, WinZ, Model, Proj, View)

 Equivalent to unProject4/9.

 Types

 enum()

 (not exported)

 -type enum() :: non_neg_integer().

 f()

 (not exported)

 -type f() :: float().

 i()

 (not exported)

 -type i() :: integer().

 m12()

 (not exported)

 -type m12() :: {f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f()}.

 m16()

 (not exported)

 -type m16() :: {f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f(), f()}.

 matrix()

 (not exported)

 -type matrix() :: m12() | m16().

 mem()

 (not exported)

 -type mem() :: binary() | tuple().

 vertex()

 (not exported)

 -type vertex() :: {float(), float(), float()}.

 Functions

 build1DMipmapLevels(Target, InternalFormat, Width, Format, Type, Level, Base, Max, Data)

 -spec build1DMipmapLevels(Target, InternalFormat, Width, Format, Type, Level, Base, Max, Data) -> i()
 when
 Target :: enum(),
 InternalFormat :: i(),
 Width :: i(),
 Format :: enum(),
 Type :: enum(),
 Level :: i(),
 Base :: i(),
 Max :: i(),
 Data :: binary().

glu:build1DMipmapLevels/9 builds a subset of
prefiltered one-dimensional texture maps of decreasing resolutions called a
mipmap. This is used for the antialiasing of texture mapped primitives.
External documentation.

 build1DMipmaps(Target, InternalFormat, Width, Format, Type, Data)

 -spec build1DMipmaps(Target, InternalFormat, Width, Format, Type, Data) -> i()
 when
 Target :: enum(),
 InternalFormat :: i(),
 Width :: i(),
 Format :: enum(),
 Type :: enum(),
 Data :: binary().

glu:build1DMipmaps/6 builds a series of prefiltered
one-dimensional texture maps of decreasing resolutions called a mipmap. This is
used for the antialiasing of texture mapped primitives.
External documentation.

 build2DMipmapLevels(Target, InternalFormat, Width, Height, Format, Type, Level, Base, Max, Data)

 -spec build2DMipmapLevels(Target, InternalFormat, Width, Height, Format, Type, Level, Base, Max, Data) ->
 i()
 when
 Target :: enum(),
 InternalFormat :: i(),
 Width :: i(),
 Height :: i(),
 Format :: enum(),
 Type :: enum(),
 Level :: i(),
 Base :: i(),
 Max :: i(),
 Data :: binary().

glu:build2DMipmapLevels/10 builds a subset of
prefiltered two-dimensional texture maps of decreasing resolutions called a
mipmap. This is used for the antialiasing of texture mapped primitives.
External documentation.

 build2DMipmaps(Target, InternalFormat, Width, Height, Format, Type, Data)

 -spec build2DMipmaps(Target, InternalFormat, Width, Height, Format, Type, Data) -> i()
 when
 Target :: enum(),
 InternalFormat :: i(),
 Width :: i(),
 Height :: i(),
 Format :: enum(),
 Type :: enum(),
 Data :: binary().

glu:build2DMipmaps/7 builds a series of prefiltered
two-dimensional texture maps of decreasing resolutions called a mipmap. This is
used for the antialiasing of texture-mapped primitives.
External documentation.

 build3DMipmapLevels(Target, InternalFormat, Width, Height, Depth, Format, Type, Level, Base, Max, Data)

 -spec build3DMipmapLevels(Target, InternalFormat, Width, Height, Depth, Format, Type, Level, Base, Max,
 Data) ->
 i()
 when
 Target :: enum(),
 InternalFormat :: i(),
 Width :: i(),
 Height :: i(),
 Depth :: i(),
 Format :: enum(),
 Type :: enum(),
 Level :: i(),
 Base :: i(),
 Max :: i(),
 Data :: binary().

glu:build3DMipmapLevels/11 builds a subset of
prefiltered three-dimensional texture maps of decreasing resolutions called a
mipmap. This is used for the antialiasing of texture mapped primitives.
External documentation.

 build3DMipmaps(Target, InternalFormat, Width, Height, Depth, Format, Type, Data)

 -spec build3DMipmaps(Target, InternalFormat, Width, Height, Depth, Format, Type, Data) -> i()
 when
 Target :: enum(),
 InternalFormat :: i(),
 Width :: i(),
 Height :: i(),
 Depth :: i(),
 Format :: enum(),
 Type :: enum(),
 Data :: binary().

glu:build3DMipmaps/8 builds a series of prefiltered
three-dimensional texture maps of decreasing resolutions called a mipmap. This
is used for the antialiasing of texture-mapped primitives.
External documentation.

 checkExtension(ExtName, ExtString)

 -spec checkExtension(ExtName :: string(), ExtString :: string()) -> 0 | 1.

glu:checkExtension/2 returns ?GLU_TRUE if ExtName is
supported otherwise ?GLU_FALSE is returned.
External documentation.

 cylinder(Quad, Base, Top, Height, Slices, Stacks)

 -spec cylinder(Quad :: i(), Base :: f(), Top :: f(), Height :: f(), Slices :: i(), Stacks :: i()) -> ok.

glu:cylinder/6 draws a cylinder oriented along the z axis.
The base of the cylinder is placed at z = 0 and the top at z=height. Like a
sphere, a cylinder is subdivided around the z axis into slices and along the
z axis into stacks.
External documentation.

 deleteQuadric(Quad)

 -spec deleteQuadric(Quad :: i()) -> ok.

glu:deleteQuadric/1 destroys the quadrics object (created
with glu:newQuadric/0) and frees any memory it uses. Once
glu:deleteQuadric/1 has been called, Quad cannot be
used again.
External documentation.

 disk(Quad, Inner, Outer, Slices, Loops)

 -spec disk(Quad :: i(), Inner :: f(), Outer :: f(), Slices :: i(), Loops :: i()) -> ok.

glu:disk/5 renders a disk on the z = 0 plane. The disk has a
radius of Outer and contains a concentric circular hole with a radius of
Inner. If Inner is 0, then no hole is generated. The disk is subdivided
around the z axis into slices (like pizza slices) and also about the z axis
into rings (as specified by Slices and Loops, respectively).
External documentation.

 errorString(Error)

 -spec errorString(Error :: enum()) -> string().

glu:errorString/1 produces an error string from a GL or GLU
error code. The string is in ISO Latin 1 format. For example,
glu:errorString/1(?GLU_OUT_OF_MEMORY) returns the string
out of memory.
External documentation.

 getString(Name)

 -spec getString(Name :: enum()) -> string().

glu:getString/1 returns a pointer to a static string
describing the GLU version or the GLU extensions that are supported.
External documentation.

 lookAt(EyeX, EyeY, EyeZ, CenterX, CenterY, CenterZ, UpX, UpY, UpZ)

 -spec lookAt(EyeX, EyeY, EyeZ, CenterX, CenterY, CenterZ, UpX, UpY, UpZ) -> ok
 when
 EyeX :: f(),
 EyeY :: f(),
 EyeZ :: f(),
 CenterX :: f(),
 CenterY :: f(),
 CenterZ :: f(),
 UpX :: f(),
 UpY :: f(),
 UpZ :: f().

glu:lookAt/9 creates a viewing matrix derived from an eye point,
a reference point indicating the center of the scene, and an UP vector.
External documentation.

 newQuadric()

 -spec newQuadric() -> i().

glu:newQuadric/0 creates and returns a pointer to a new
quadrics object. This object must be referred to when calling quadrics rendering
and control functions. A return value of 0 means that there is not enough memory
to allocate the object.
External documentation.

 ortho2D(Left, Right, Bottom, Top)

 -spec ortho2D(Left :: f(), Right :: f(), Bottom :: f(), Top :: f()) -> ok.

glu:ortho2D/4 sets up a two-dimensional orthographic viewing
region. This is equivalent to calling gl:ortho/6 with near=-1 and far=1.
External documentation.

 partialDisk(Quad, Inner, Outer, Slices, Loops, Start, Sweep)

 -spec partialDisk(Quad, Inner, Outer, Slices, Loops, Start, Sweep) -> ok
 when
 Quad :: i(),
 Inner :: f(),
 Outer :: f(),
 Slices :: i(),
 Loops :: i(),
 Start :: f(),
 Sweep :: f().

glu:partialDisk/7 renders a partial disk on the z=0 plane.
A partial disk is similar to a full disk, except that only the subset of the
disk from Start through Start + Sweep is included (where 0 degrees is
along the +f2yf axis, 90 degrees along the +x axis, 180 degrees along the -y
axis, and 270 degrees along the -x axis).
External documentation.

 perspective(Fovy, Aspect, ZNear, ZFar)

 -spec perspective(Fovy :: f(), Aspect :: f(), ZNear :: f(), ZFar :: f()) -> ok.

glu:perspective/4 specifies a viewing frustum into the
world coordinate system. In general, the aspect ratio in
glu:perspective/4 should match the aspect ratio of the
associated viewport. For example, aspect=2.0 means the viewer's angle of view is
twice as wide in x as it is in y. If the viewport is twice as wide as it is
tall, it displays the image without distortion.
External documentation.

 pickMatrix(X, Y, DelX, DelY, Viewport)

 -spec pickMatrix(X :: f(), Y :: f(), DelX :: f(), DelY :: f(), Viewport :: {i(), i(), i(), i()}) -> ok.

glu:pickMatrix/5 creates a projection matrix that can be
used to restrict drawing to a small region of the viewport. This is typically
useful to determine what objects are being drawn near the cursor. Use
glu:pickMatrix/5 to restrict drawing to a small region
around the cursor. Then, enter selection mode (with gl:renderMode/1) and
rerender the scene. All primitives that would have been drawn near the cursor
are identified and stored in the selection buffer.
External documentation.

 project(ObjX, ObjY, ObjZ, Model, Proj, View)

 -spec project(ObjX, ObjY, ObjZ, Model, Proj, View) -> {i(), WinX :: f(), WinY :: f(), WinZ :: f()}
 when
 ObjX :: f(),
 ObjY :: f(),
 ObjZ :: f(),
 Model :: matrix(),
 Proj :: matrix(),
 View :: {i(), i(), i(), i()}.

glu:project/6 transforms the specified object coordinates into
window coordinates using Model, Proj, and View. The result is stored in
WinX, WinY, and WinZ. A return value of ?GLU_TRUE indicates success, a
return value of ?GLU_FALSE indicates failure.
External documentation.

 quadricDrawStyle(Quad, Draw)

 -spec quadricDrawStyle(Quad :: i(), Draw :: enum()) -> ok.

glu:quadricDrawStyle/2 specifies the draw style for
quadrics rendered with Quad. The legal values are as follows:
External documentation.

 quadricNormals(Quad, Normal)

 -spec quadricNormals(Quad :: i(), Normal :: enum()) -> ok.

glu:quadricNormals/2 specifies what kind of normals are
desired for quadrics rendered with Quad. The legal values are as follows:
External documentation.

 quadricOrientation(Quad, Orientation)

 -spec quadricOrientation(Quad :: i(), Orientation :: enum()) -> ok.

glu:quadricOrientation/2 specifies what kind of
orientation is desired for quadrics rendered with Quad. The Orientation
values are as follows:
External documentation.

 quadricTexture(Quad, Texture)

 -spec quadricTexture(Quad :: i(), Texture :: 0 | 1) -> ok.

glu:quadricTexture/2 specifies if texture coordinates
should be generated for quadrics rendered with Quad. If the value of Texture
is ?GLU_TRUE, then texture coordinates are generated, and if Texture is
?GLU_FALSE, they are not. The initial value is ?GLU_FALSE.
External documentation.

 scaleImage(Format, WIn, HIn, TypeIn, DataIn, WOut, HOut, TypeOut, DataOut)

 -spec scaleImage(Format, WIn, HIn, TypeIn, DataIn, WOut, HOut, TypeOut, DataOut) -> i()
 when
 Format :: enum(),
 WIn :: i(),
 HIn :: i(),
 TypeIn :: enum(),
 DataIn :: binary(),
 WOut :: i(),
 HOut :: i(),
 TypeOut :: enum(),
 DataOut :: mem().

glu:scaleImage/9 scales a pixel image using the appropriate
pixel store modes to unpack data from the source image and pack data into the
destination image.
External documentation.

 sphere(Quad, Radius, Slices, Stacks)

 -spec sphere(Quad :: i(), Radius :: f(), Slices :: i(), Stacks :: i()) -> ok.

glu:sphere/4 draws a sphere of the given radius centered around
the origin. The sphere is subdivided around the z axis into slices and along
the z axis into stacks (similar to lines of longitude and latitude).
External documentation.

 tesselate(Normal, Vs)

 -spec tesselate(Normal, [Vs]) -> {Triangles, VertexPos}
 when
 Normal :: vertex(),
 Vs :: vertex(),
 Triangles :: [integer()],
 VertexPos :: binary().

Triangulates a polygon, the polygon is specified by a Normal and Vs a list
of vertex positions.
The function returns a list of indices of the vertices and a binary (64bit
native float) containing an array of vertex positions, it starts with the
vertices in Vs and may contain newly created vertices in the end.

 unProject4(WinX, WinY, WinZ, ClipW, Model, Proj, View, NearVal, FarVal)

 -spec unProject4(WinX, WinY, WinZ, ClipW, Model, Proj, View, NearVal, FarVal) ->
 {i(), ObjX :: f(), ObjY :: f(), ObjZ :: f(), ObjW :: f()}
 when
 WinX :: f(),
 WinY :: f(),
 WinZ :: f(),
 ClipW :: f(),
 Model :: matrix(),
 Proj :: matrix(),
 View :: {i(), i(), i(), i()},
 NearVal :: f(),
 FarVal :: f().

glu:unProject/6 maps the specified window coordinates into
object coordinates using Model, Proj, and View. The result is stored in
ObjX, ObjY, and ObjZ. A return value of ?GLU_TRUE indicates success; a
return value of ?GLU_FALSE indicates failure.
External documentation.

 unProject(WinX, WinY, WinZ, Model, Proj, View)

 -spec unProject(WinX, WinY, WinZ, Model, Proj, View) -> {i(), ObjX :: f(), ObjY :: f(), ObjZ :: f()}
 when
 WinX :: f(),
 WinY :: f(),
 WinZ :: f(),
 Model :: matrix(),
 Proj :: matrix(),
 View :: {i(), i(), i(), i()}.

Equivalent to unProject4/9.

wx

A port of wxWidgets.
This is the base api of wxWidgets. This module
contains functions for starting and stopping the wx-server, as well as other
utility functions.
wxWidgets is object oriented, and not functional. Thus, in Wx a module
represents a class, and the object created by this class has an own type,
wxCLASS(). This module represents the base class, and all other wxMODULE's are
sub-classes of this class.
Objects of a class are created with wxCLASS:new(...) and destroyed with
wxCLASS:destroy(). Member functions are called with wxCLASS:member(Object, ...)
instead of as in C++ Object.member(...).
Sub class modules inherit (non static) functions from their parents. The
inherited functions are not documented in the sub-classes.
This erlang port of wxWidgets tries to be a one-to-one mapping with the original
wxWidgets library. Some things are different though, as the optional arguments
use property lists and can be in any order. The main difference is the event
handling which is different from the original library. See wxEvtHandler.
The following classes are implemented directly as erlang types:
wxPoint={x,y},wxSize={w,h},wxRect={x,y,w,h},wxColour={r,g,b [,a]},
wxString=unicode:chardata(),
wxGBPosition={r,c},wxGBSpan={rs,cs},wxGridCellCoords={r,c}.
wxWidgets uses a process specific environment, which is created by
wx:new/0. To be able to use the environment from other processes,
call get_env/0 to retrieve the environment and set_env/1 to assign the
environment in the other process.
Global (classless) functions are located in the wx_misc module.
DATA TYPES
	 wx_colour() = {R::byte(), G::byte(), B::byte()} |
wx_colour4()

	 wx_colour4() = {R::byte(), G::byte(), B::byte(),
A::byte()}

	 wx_datetime() = {{Year::integer(),
Month::integer(), Day::integer()}, {Hour::integer(), Minute::integer(),
Second::integer()}}
In Local Timezone

	 wx_enum() = integer()
Constant defined in wx.hrl

	 wx_env() = #wx_env{}
Opaque process environment

	 wx_memory() = binary() | #wx_mem{}
Opaque memory reference

	 wx_object() = #wx_ref{}
Opaque object reference

	 wx_wxHtmlLinkInfo() =
#wxHtmlLinkInfo{href=unicode:chardata(),
target=unicode:chardata()}

	 wx_wxMouseState() =
#wxMouseState{x=integer(), y=integer(), leftDown=boolean(),
middleDown=boolean(), rightDown=boolean(), controlDown=boolean(),
shiftDown=boolean(), altDown=boolean(), metaDown=boolean(),
cmdDown=boolean()}
See #wxMouseState{} defined in wx.hrl

 Summary

 Types

 wx_colour4()

 wx_colour()

 wx_datetime()

 wx_enum()

 wx_env()

 wx_memory()

 wx_object()

 wx_wxHtmlLinkInfo()

 wx_wxMouseState()

 Functions

 batch(Fun)

 Batches all wx commands used in the fun. Improves performance of the command
processing by grabbing the wxWidgets thread so that no event processing will be
done before the complete batch of commands is invoked.

 create_memory(Size)

 Creates a memory area (of Size in bytes) which can be used by an external
library (i.e. opengl). It is up to the client to keep a reference to this object
so it does not get garbage collected by erlang while still in use by the
external library.

 debug(Level)

 Sets debug level. If debug level is 'verbose' or 'trace' each call is printed on
console. If Level is 'driver' each allocated object and deletion is printed on
the console.

 demo()

 Starts a Wx demo if examples directory exists and is compiled

 destroy()

 Stops a wx server.

 equal(Ref1, Ref2)

 Returns true if both arguments references the same object, false otherwise

 foldl(Fun, Acc, List)

 Behaves like lists:foldl/3 but batches wx commands. See batch/1.

 foldr(Fun, Acc, List)

 Behaves like lists:foldr/3 but batches wx commands. See batch/1.

 foreach(Fun, List)

 Behaves like lists:foreach/2 but batches wx commands. See batch/1.

 get_env()

 Gets this process's current wx environment. Can be sent to other processes to
allow them use this process wx environment.

 get_memory_bin(Wx_mem)

 Returns the memory area as a binary.

 getObjectType(Wx_ref)

 Returns the object type

 is_null(Wx_ref)

 Returns true if object is null, false otherwise

 map(Fun, List)

 Behaves like lists:map/2 but batches wx commands. See batch/1.

 new()

 Starts a wx server.

 new(Options)

 Starts a wx server.

 null()

 Returns the null object

 parent_class(Wx_ref)

 release_memory(Wx_mem)

 Releases the memory retained by retain_memory/1

 retain_memory(Wx_mem)

 Saves the memory from deletion until release_memory/1 is called. If
release_memory/1 is not called the memory will not be garbage collected.

 set_env(Wx_env)

 Sets the process wx environment, allows this process to use another process wx
environment.

 subscribe_events()

 Adds the calling process to the list of of processes that are listening to wx
application events.

 typeCast/2

 Casts the object to class NewType. It is needed when using functions like
wxWindow:findWindow/2, which returns a generic wxObject type.

 Types

 wx_colour4()

 -type wx_colour4() :: {R :: byte(), G :: byte(), B :: byte(), A :: byte()}.

 wx_colour()

 -type wx_colour() :: {R :: byte(), G :: byte(), B :: byte()} | wx_colour4().

 wx_datetime()

 -type wx_datetime() ::
 {{Year :: integer(), Month :: integer(), Day :: integer()},
 {Hour :: integer(), Minute :: integer(), Second :: integer()}}.

 wx_enum()

 -type wx_enum() :: integer().

 wx_env()

 -type wx_env() :: #wx_env{ref :: term(), sv :: term(), debug :: term()}.

 wx_memory()

 -type wx_memory() :: binary() | #wx_mem{bin :: term(), size :: term()}.

 wx_object()

 -type wx_object() :: #wx_ref{ref :: term(), type :: term(), state :: term()}.

 wx_wxHtmlLinkInfo()

 -type wx_wxHtmlLinkInfo() :: #wxHtmlLinkInfo{href :: unicode:chardata(), target :: unicode:chardata()}.

 wx_wxMouseState()

 -type wx_wxMouseState() ::
 #wxMouseState{x :: integer(),
 y :: integer(),
 leftDown :: boolean(),
 middleDown :: boolean(),
 rightDown :: boolean(),
 controlDown :: boolean(),
 shiftDown :: boolean(),
 altDown :: boolean(),
 metaDown :: boolean(),
 cmdDown :: boolean(),
 aux1Down :: boolean(),
 aux2Down :: boolean()}.

 Functions

 batch(Fun)

 -spec batch(function()) -> term().

Batches all wx commands used in the fun. Improves performance of the command
processing by grabbing the wxWidgets thread so that no event processing will be
done before the complete batch of commands is invoked.
See also: foldl/3, foldr/3, foreach/2, map/2.

 create_memory(Size)

 -spec create_memory(Size :: integer()) -> wx_memory().

Creates a memory area (of Size in bytes) which can be used by an external
library (i.e. opengl). It is up to the client to keep a reference to this object
so it does not get garbage collected by erlang while still in use by the
external library.
This is far from erlang's intentional usage and can crash the erlang emulator.
Use it carefully.

 debug(Level)

 -spec debug(Level | [Level]) -> ok when Level :: none | verbose | trace | driver | integer().

Sets debug level. If debug level is 'verbose' or 'trace' each call is printed on
console. If Level is 'driver' each allocated object and deletion is printed on
the console.

 demo()

 -spec demo() -> ok | {error, atom()}.

Starts a Wx demo if examples directory exists and is compiled

 destroy()

 -spec destroy() -> ok.

Stops a wx server.

 equal(Ref1, Ref2)

 -spec equal(Ref1 :: wx_object(), Ref2 :: wx_object()) -> boolean().

Returns true if both arguments references the same object, false otherwise

 foldl(Fun, Acc, List)

 -spec foldl(function(), term(), list()) -> term().

Behaves like lists:foldl/3 but batches wx commands. See batch/1.

 foldr(Fun, Acc, List)

 -spec foldr(function(), term(), list()) -> term().

Behaves like lists:foldr/3 but batches wx commands. See batch/1.

 foreach(Fun, List)

 -spec foreach(function(), list()) -> ok.

Behaves like lists:foreach/2 but batches wx commands. See batch/1.

 get_env()

 -spec get_env() -> wx_env().

Gets this process's current wx environment. Can be sent to other processes to
allow them use this process wx environment.
See also: set_env/1.

 get_memory_bin(Wx_mem)

 -spec get_memory_bin(Wx_mem :: wx_memory()) -> binary().

Returns the memory area as a binary.

 getObjectType(Wx_ref)

 -spec getObjectType(Wx_ref :: wx_object()) -> atom().

Returns the object type

 is_null(Wx_ref)

 -spec is_null(Wx_ref :: wx_object()) -> boolean().

Returns true if object is null, false otherwise

 map(Fun, List)

 -spec map(function(), list()) -> list().

Behaves like lists:map/2 but batches wx commands. See batch/1.

 new()

 -spec new() -> wx_object().

Starts a wx server.

 new(Options)

 -spec new([Option]) -> wx_object() when Option :: {debug, list() | atom()} | {silent_start, boolean()}.

Starts a wx server.
Option may be {debug, Level}, see debug/1. Or {silent_start, Bool},
which causes error messages at startup to be suppressed.
The latter can be used as a silent test of whether wx is properly installed or
not.

 null()

 -spec null() -> wx_object().

Returns the null object

 parent_class(Wx_ref)

 -spec parent_class(Wx_ref :: wx_object()) -> boolean().

 release_memory(Wx_mem)

 -spec release_memory(Wx_mem :: wx_memory()) -> ok.

Releases the memory retained by retain_memory/1

 retain_memory(Wx_mem)

 -spec retain_memory(Wx_mem :: wx_memory()) -> ok.

Saves the memory from deletion until release_memory/1 is called. If
release_memory/1 is not called the memory will not be garbage collected.

 set_env(Wx_env)

 -spec set_env(Wx_env :: wx_env()) -> ok.

Sets the process wx environment, allows this process to use another process wx
environment.

 subscribe_events()

 -spec subscribe_events() -> ok.

Adds the calling process to the list of of processes that are listening to wx
application events.
At the moment these are all MacOSX specific events corresponding to
MacNewFile() and friends from wxWidgets
wxApp:
	{new_file, ""}
	{open_file, Filename}
	{print_file, Filename}
	{open_url, Url}
	{reopen_app, ""}

The call always returns ok but will have sent any already received events to the
calling process.

 typeCast/2

 -spec typeCast(wx_object(), atom()) -> wx_object().

Casts the object to class NewType. It is needed when using functions like
wxWindow:findWindow/2, which returns a generic wxObject type.

wxAcceleratorEntry

An object used by an application wishing to create an accelerator table (see wxAcceleratorTable).
See:
	wxAcceleratorTable

	wxWindow:setAcceleratorTable/2

wxWidgets docs: wxAcceleratorEntry

 Summary

 Types

 wxAcceleratorEntry()

 Functions

 destroy(This)

 Destroys the object

 getCommand(This)

 Returns the command identifier for the accelerator table entry.

 getFlags(This)

 Returns the flags for the accelerator table entry.

 getKeyCode(This)

 Returns the keycode for the accelerator table entry.

 new()

 Equivalent to new([]).

 new/1

 Copy ctor.

 set(This, Flags, KeyCode, Cmd)

 Equivalent to set(This, Flags, KeyCode, Cmd, []).

 set/5

 Sets the accelerator entry parameters.

 Types

 wxAcceleratorEntry()

 -type wxAcceleratorEntry() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxAcceleratorEntry()) -> ok.

Destroys the object

 getCommand(This)

 -spec getCommand(This) -> integer() when This :: wxAcceleratorEntry().

Returns the command identifier for the accelerator table entry.

 getFlags(This)

 -spec getFlags(This) -> integer() when This :: wxAcceleratorEntry().

Returns the flags for the accelerator table entry.

 getKeyCode(This)

 -spec getKeyCode(This) -> integer() when This :: wxAcceleratorEntry().

Returns the keycode for the accelerator table entry.

 new()

 -spec new() -> wxAcceleratorEntry().

Equivalent to new([]).

 new/1

 -spec new([Option]) -> wxAcceleratorEntry()
 when
 Option ::
 {flags, integer()} |
 {keyCode, integer()} |
 {cmd, integer()} |
 {item, wxMenuItem:wxMenuItem()};
 (Entry) -> wxAcceleratorEntry() when Entry :: wxAcceleratorEntry().

Copy ctor.

 set(This, Flags, KeyCode, Cmd)

 -spec set(This, Flags, KeyCode, Cmd) -> ok
 when
 This :: wxAcceleratorEntry(),
 Flags :: integer(),
 KeyCode :: integer(),
 Cmd :: integer().

Equivalent to set(This, Flags, KeyCode, Cmd, []).

 set/5

 -spec set(This, Flags, KeyCode, Cmd, [Option]) -> ok
 when
 This :: wxAcceleratorEntry(),
 Flags :: integer(),
 KeyCode :: integer(),
 Cmd :: integer(),
 Option :: {item, wxMenuItem:wxMenuItem()}.

Sets the accelerator entry parameters.

wxAcceleratorTable

An accelerator table allows the application to specify a table of keyboard shortcuts for
menu or button commands.
The object ?wxNullAcceleratorTable is defined to be a table with no data, and is the
initial accelerator table for a window.
Example:
Remark: An accelerator takes precedence over normal processing and can be a convenient
way to program some event handling. For example, you can use an accelerator table to
enable a dialog with a multi-line text control to accept CTRL-Enter as meaning 'OK'.
Predefined objects (include wx.hrl): ?wxNullAcceleratorTable
See:
	wxAcceleratorEntry

	wxWindow:setAcceleratorTable/2

wxWidgets docs: wxAcceleratorTable

 Summary

 Types

 wxAcceleratorTable()

 Functions

 destroy(This)

 Destroys the object

 isOk(This)

 Returns true if the accelerator table is valid.

 new()

 Default ctor.

 new(N, Entries)

 Initializes the accelerator table from an array of wxAcceleratorEntry.

 ok(This)

 Equivalent to: isOk/1

 Types

 wxAcceleratorTable()

 -type wxAcceleratorTable() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxAcceleratorTable()) -> ok.

Destroys the object

 isOk(This)

 -spec isOk(This) -> boolean() when This :: wxAcceleratorTable().

Returns true if the accelerator table is valid.

 new()

 -spec new() -> wxAcceleratorTable().

Default ctor.

 new(N, Entries)

 -spec new(N, Entries) -> wxAcceleratorTable()
 when N :: integer(), Entries :: [wxAcceleratorEntry:wxAcceleratorEntry()].

Initializes the accelerator table from an array of wxAcceleratorEntry.

 ok(This)

 -spec ok(This) -> boolean() when This :: wxAcceleratorTable().

Equivalent to: isOk/1

wxActivateEvent

An activate event is sent when a window or application is being activated or deactivated.
See: Overview events
This class is derived, and can use functions, from:
	wxEvent

wxWidgets docs: wxActivateEvent
Events
Use wxEvtHandler:connect/3 with wxActivateEventType to subscribe to events of this type.

 Summary

 Types

 wxActivate()

 wxActivateEvent()

 wxActivateEventType()

 Functions

 getActive(This)

 Returns true if the application or window is being activated, false otherwise.

 Types

 wxActivate()

 -type wxActivate() :: #wxActivate{type :: wxActivateEvent:wxActivateEventType(), active :: boolean()}.

 wxActivateEvent()

 -type wxActivateEvent() :: wx:wx_object().

 wxActivateEventType()

 -type wxActivateEventType() :: activate | activate_app | hibernate.

 Functions

 getActive(This)

 -spec getActive(This) -> boolean() when This :: wxActivateEvent().

Returns true if the application or window is being activated, false otherwise.

wxArtProvider

wxArtProvider class is used to customize the look of wxWidgets application.
When wxWidgets needs to display an icon or a bitmap (e.g. in the standard file dialog),
it does not use a hard-coded resource but asks wxArtProvider for it instead. This way
users can plug in their own wxArtProvider class and easily replace standard art with
their own version.
All that is needed is to derive a class from wxArtProvider, override either its wxArtProvider::CreateBitmap()
(not implemented in wx) and/or its wxArtProvider::CreateIconBundle() (not implemented
in wx) methods and register the provider with wxArtProvider::Push() (not implemented in wx):
If you need bitmap images (of the same artwork) that should be displayed at different
sizes you should probably consider overriding wxArtProvider::CreateIconBundle (not
implemented in wx) and supplying icon bundles that contain different bitmap sizes.
There's another way of taking advantage of this class: you can use it in your code and
use platform native icons as provided by getBitmap/2 or getIcon/2.
Identifying art resources
Every bitmap and icon bundle are known to wxArtProvider under an unique ID that is
used when requesting a resource from it. The ID is represented by the ?wxArtID type and
can have one of these predefined values (you can see bitmaps represented by these
constants in the page_samples_artprov):
Additionally, any string recognized by custom art providers registered using wxArtProvider::Push
(not implemented in wx) may be used.
Note: When running under GTK+ 2, GTK+ stock item IDs (e.g. "gtk-cdrom") may be used as
well: For a list of the GTK+ stock items please refer to the GTK+ documentation page.
It is also possible to load icons from the current icon theme by specifying their name
(without extension and directory components). Icon themes recognized by GTK+ follow the
freedesktop.org Icon Themes specification.
Note that themes are not guaranteed to contain all icons, so wxArtProvider may return
?wxNullBitmap or ?wxNullIcon. The default theme is typically installed in /usr/share/icons/hicolor.
Clients
The client is the entity that calls wxArtProvider's getBitmap/2 or getIcon/2 function. It is
represented by wxClientID type and can have one of these values:
	wxART_TOOLBAR

	wxART_MENU

	wxART_BUTTON

	wxART_FRAME_ICON

	wxART_CMN_DIALOG

	wxART_HELP_BROWSER

	wxART_MESSAGE_BOX

	wxART_OTHER (used for all requests that don't fit into any of the categories above)

Client ID serve as a hint to wxArtProvider that is supposed to help it to choose the
best looking bitmap. For example it is often desirable to use slightly different icons in
menus and toolbars even though they represent the same action (e.g. wxART_FILE_OPEN).
Remember that this is really only a hint for wxArtProvider - it is common that getBitmap/2
returns identical bitmap for different client values!
See:
	Examples

	wxArtProvider

wxWidgets docs: wxArtProvider

 Summary

 Types

 wxArtProvider()

 Functions

 getBitmap(Id)

 Equivalent to getBitmap(Id, []).

 getBitmap(Id, Options)

 Query registered providers for bitmap with given ID.

 getIcon(Id)

 Equivalent to getIcon(Id, []).

 getIcon(Id, Options)

 Same as getBitmap/2, but return a wxIcon object (or ?wxNullIcon on failure).

 Types

 wxArtProvider()

 -type wxArtProvider() :: wx:wx_object().

 Functions

 getBitmap(Id)

 -spec getBitmap(Id) -> wxBitmap:wxBitmap() when Id :: unicode:chardata().

Equivalent to getBitmap(Id, []).

 getBitmap(Id, Options)

 -spec getBitmap(Id, [Option]) -> wxBitmap:wxBitmap()
 when
 Id :: unicode:chardata(),
 Option :: {client, unicode:chardata()} | {size, {W :: integer(), H :: integer()}}.

Query registered providers for bitmap with given ID.
Return: The bitmap if one of registered providers recognizes the ID or wxNullBitmap
otherwise.

 getIcon(Id)

 -spec getIcon(Id) -> wxIcon:wxIcon() when Id :: unicode:chardata().

Equivalent to getIcon(Id, []).

 getIcon(Id, Options)

 -spec getIcon(Id, [Option]) -> wxIcon:wxIcon()
 when
 Id :: unicode:chardata(),
 Option :: {client, unicode:chardata()} | {size, {W :: integer(), H :: integer()}}.

Same as getBitmap/2, but return a wxIcon object (or ?wxNullIcon on failure).

wxAuiDockArt

wxAuiDockArt is part of the wxAUI class framework.
See also overview_aui.
wxAuiDockArt is the art provider: provides all drawing functionality to the wxAui
dock manager. This allows the dock manager to have a pluggable look-and-feel.
By default, a wxAuiManager uses an instance of this class called wxAuiDefaultDockArt
(not implemented in wx) which provides bitmap art and a colour scheme that is adapted to
the major platforms' look. You can either derive from that class to alter its behaviour or
write a completely new dock art class. Call wxAuiManager:setArtProvider/2 to force wxAUI to use your new dock art provider.
See:
	wxAuiManager

	wxAuiPaneInfo

wxWidgets docs: wxAuiDockArt

 Summary

 Types

 wxAuiDockArt()

 Functions

 getColour(This, Id)

 Get the colour of a certain setting.

 getFont(This, Id)

 Get a font setting.

 getMetric(This, Id)

 Get the value of a certain setting.

 setColour(This, Id, Colour)

 Set a certain setting with the value colour.

 setFont(This, Id, Font)

 Set a font setting.

 setMetric(This, Id, New_val)

 Set a certain setting with the value new_val.

 Types

 wxAuiDockArt()

 -type wxAuiDockArt() :: wx:wx_object().

 Functions

 getColour(This, Id)

 -spec getColour(This, Id) -> wx:wx_colour4() when This :: wxAuiDockArt(), Id :: integer().

Get the colour of a certain setting.
id can be one of the colour values of wxAuiPaneDockArtSetting.

 getFont(This, Id)

 -spec getFont(This, Id) -> wxFont:wxFont() when This :: wxAuiDockArt(), Id :: integer().

Get a font setting.

 getMetric(This, Id)

 -spec getMetric(This, Id) -> integer() when This :: wxAuiDockArt(), Id :: integer().

Get the value of a certain setting.
id can be one of the size values of wxAuiPaneDockArtSetting.

 setColour(This, Id, Colour)

 -spec setColour(This, Id, Colour) -> ok
 when This :: wxAuiDockArt(), Id :: integer(), Colour :: wx:wx_colour().

Set a certain setting with the value colour.
id can be one of the colour values of wxAuiPaneDockArtSetting.

 setFont(This, Id, Font)

 -spec setFont(This, Id, Font) -> ok
 when This :: wxAuiDockArt(), Id :: integer(), Font :: wxFont:wxFont().

Set a font setting.

 setMetric(This, Id, New_val)

 -spec setMetric(This, Id, New_val) -> ok
 when This :: wxAuiDockArt(), Id :: integer(), New_val :: integer().

Set a certain setting with the value new_val.
id can be one of the size values of wxAuiPaneDockArtSetting.

wxAuiManager

wxAuiManager is the central class of the wxAUI class framework.
wxAuiManager manages the panes associated with it for a particular wxFrame, using
a pane's wxAuiPaneInfo information to determine each pane's docking and floating behaviour.
wxAuiManager uses wxWidgets' sizer mechanism to plan the layout of each frame. It
uses a replaceable dock art class to do all drawing, so all drawing is localized in one
area, and may be customized depending on an application's specific needs.
wxAuiManager works as follows: the programmer adds panes to the class, or makes
changes to existing pane properties (dock position, floating state, show state, etc.). To
apply these changes, wxAuiManager's update/1 function is called. This batch processing can be
used to avoid flicker, by modifying more than one pane at a time, and then "committing"
all of the changes at once by calling update/1.
Panes can be added quite easily:
Later on, the positions can be modified easily. The following will float an existing pane
in a tool window:
Layers, Rows and Directions, Positions
Inside wxAUI, the docking layout is figured out by checking several pane parameters. Four
of these are important for determining where a pane will end up:
	Direction: Each docked pane has a direction, Top, Bottom, Left, Right, or Center. This is
fairly self-explanatory. The pane will be placed in the location specified by this
variable.

	Position: More than one pane can be placed inside of a dock. Imagine two panes being
docked on the left side of a window. One pane can be placed over another. In
proportionally managed docks, the pane position indicates its sequential position,
starting with zero. So, in our scenario with two panes docked on the left side, the top
pane in the dock would have position 0, and the second one would occupy position 1.

	Row: A row can allow for two docks to be placed next to each other. One of the most
common places for this to happen is in the toolbar. Multiple toolbar rows are allowed, the
first row being row 0, and the second row 1. Rows can also be used on vertically docked
panes.

	Layer: A layer is akin to an onion. Layer 0 is the very center of the managed pane. Thus,
if a pane is in layer 0, it will be closest to the center window (also sometimes known as
the "content window"). Increasing layers "swallow up" all layers of a lower value. This
can look very similar to multiple rows, but is different because all panes in a lower
level yield to panes in higher levels. The best way to understand layers is by running the
wxAUI sample.

Styles
This class supports the following styles:
	wxAUI_MGR_ALLOW_FLOATING: Allow a pane to be undocked to take the form of a wxMiniFrame.

	wxAUI_MGR_ALLOW_ACTIVE_PANE: Change the color of the title bar of the pane when it is
activated.

	wxAUI_MGR_TRANSPARENT_DRAG: Make the pane transparent during its movement.

	wxAUI_MGR_TRANSPARENT_HINT: The possible location for docking is indicated by a
translucent area.

	wxAUI_MGR_VENETIAN_BLINDS_HINT: The possible location for docking is indicated by
gradually appearing partially transparent hint.

	wxAUI_MGR_RECTANGLE_HINT: The possible location for docking is indicated by a rectangular
outline.

	wxAUI_MGR_HINT_FADE: The translucent area where the pane could be docked appears
gradually.

	wxAUI_MGR_NO_VENETIAN_BLINDS_FADE: Used in complement of wxAUI_MGR_VENETIAN_BLINDS_HINT
to show the docking hint immediately.

	wxAUI_MGR_LIVE_RESIZE: When a docked pane is resized, its content is refreshed in live
(instead of moving the border alone and refreshing the content at the end).

	wxAUI_MGR_DEFAULT: Default behaviour, combines: wxAUI_MGR_ALLOW_FLOATING |
wxAUI_MGR_TRANSPARENT_HINT | wxAUI_MGR_HINT_FADE | wxAUI_MGR_NO_VENETIAN_BLINDS_FADE.

See:
	Overview aui

	wxAuiNotebook

	wxAuiDockArt

	wxAuiPaneInfo

This class is derived, and can use functions, from:
	wxEvtHandler

wxWidgets docs: wxAuiManager
Events
Event types emitted from this class:
	aui_pane_button

	aui_pane_close

	aui_pane_maximize

	aui_pane_restore

	aui_pane_activated

	aui_render

 Summary

 Types

 wxAuiManager()

 Functions

 addPane(This, Window)

 Equivalent to addPane(This, Window, []).

 addPane/3

 addPane/4 tells the frame manager to start managing a child window.

 addPane(This, Window, Pane_info, Drop_pos)

 destroy(This)

 Destroys the object

 detachPane(This, Window)

 Tells the wxAuiManager to stop managing the pane specified by window.

 getAllPanes(This)

 Returns an array of all panes managed by the frame manager.

 getArtProvider(This)

 Returns the current art provider being used.

 getDockSizeConstraint(This)

 Returns the current dock constraint values.

 getFlags(This)

 Returns the current ?wxAuiManagerOption's flags.

 getManagedWindow(This)

 Returns the frame currently being managed by wxAuiManager.

 getManager(Window)

 Calling this method will return the wxAuiManager for a given window.

 getPane/2

 getPane/2 is used to lookup a wxAuiPaneInfo object either by window pointer or by
pane name, which acts as a unique id for a window pane.

 hideHint(This)

 hideHint/1 hides any docking hint that may be visible.

 insertPane(This, Window, Insert_location)

 Equivalent to insertPane(This, Window, Insert_location, []).

 insertPane/4

 This method is used to insert either a previously unmanaged pane window into the frame
manager, or to insert a currently managed pane somewhere else.

 loadPaneInfo(This, Pane_part, Pane)

 loadPaneInfo/3 is similar to LoadPerspective, with the exception that it only loads
information about a single pane.

 loadPerspective(This, Perspective)

 Equivalent to loadPerspective(This, Perspective, []).

 loadPerspective/3

 Loads a saved perspective.

 new()

 Equivalent to new([]).

 new(Options)

 Constructor.

 savePaneInfo(This, Pane)

 savePaneInfo/2 is similar to SavePerspective, with the exception that it only saves
information about a single pane.

 savePerspective(This)

 Saves the entire user interface layout into an encoded wxString (not implemented in
wx), which can then be stored by the application (probably using wxConfig).

 setArtProvider(This, Art_provider)

 Instructs wxAuiManager to use art provider specified by parameter art_provider for
all drawing calls.

 setDockSizeConstraint(This, Widthpct, Heightpct)

 When a user creates a new dock by dragging a window into a docked position, often times
the large size of the window will create a dock that is unwieldy large.

 setFlags(This, Flags)

 This method is used to specify ?wxAuiManagerOption's flags.

 setManagedWindow(This, Managed_wnd)

 Called to specify the frame or window which is to be managed by wxAuiManager.

 showHint(This, Rect)

 This function is used by controls to explicitly show a hint window at the specified
rectangle.

 unInit(This)

 Dissociate the managed window from the manager.

 update(This)

 This method is called after any number of changes are made to any of the managed panes.

 Types

 wxAuiManager()

 -type wxAuiManager() :: wx:wx_object().

 Functions

 addPane(This, Window)

 -spec addPane(This, Window) -> boolean() when This :: wxAuiManager(), Window :: wxWindow:wxWindow().

Equivalent to addPane(This, Window, []).

 addPane/3

 -spec addPane(This, Window, [Option]) -> boolean()
 when
 This :: wxAuiManager(),
 Window :: wxWindow:wxWindow(),
 Option :: {direction, integer()} | {caption, unicode:chardata()};
 (This, Window, Pane_info) -> boolean()
 when
 This :: wxAuiManager(),
 Window :: wxWindow:wxWindow(),
 Pane_info :: wxAuiPaneInfo:wxAuiPaneInfo().

addPane/4 tells the frame manager to start managing a child window.
There are several versions of this function. The first version allows the full spectrum
of pane parameter possibilities. The second version is used for simpler user interfaces
which do not require as much configuration. The last version allows a drop position to be
specified, which will determine where the pane will be added.

 addPane(This, Window, Pane_info, Drop_pos)

 -spec addPane(This, Window, Pane_info, Drop_pos) -> boolean()
 when
 This :: wxAuiManager(),
 Window :: wxWindow:wxWindow(),
 Pane_info :: wxAuiPaneInfo:wxAuiPaneInfo(),
 Drop_pos :: {X :: integer(), Y :: integer()}.

 destroy(This)

 -spec destroy(This :: wxAuiManager()) -> ok.

Destroys the object

 detachPane(This, Window)

 -spec detachPane(This, Window) -> boolean() when This :: wxAuiManager(), Window :: wxWindow:wxWindow().

Tells the wxAuiManager to stop managing the pane specified by window.
The window, if in a floated frame, is reparented to the frame managed by wxAuiManager.

 getAllPanes(This)

 -spec getAllPanes(This) -> [wxAuiPaneInfo:wxAuiPaneInfo()] when This :: wxAuiManager().

Returns an array of all panes managed by the frame manager.

 getArtProvider(This)

 -spec getArtProvider(This) -> wxAuiDockArt:wxAuiDockArt() when This :: wxAuiManager().

Returns the current art provider being used.
See: wxAuiDockArt

 getDockSizeConstraint(This)

 -spec getDockSizeConstraint(This) -> {Widthpct :: number(), Heightpct :: number()}
 when This :: wxAuiManager().

Returns the current dock constraint values.
See setDockSizeConstraint/3 for more information.

 getFlags(This)

 -spec getFlags(This) -> integer() when This :: wxAuiManager().

Returns the current ?wxAuiManagerOption's flags.

 getManagedWindow(This)

 -spec getManagedWindow(This) -> wxWindow:wxWindow() when This :: wxAuiManager().

Returns the frame currently being managed by wxAuiManager.

 getManager(Window)

 -spec getManager(Window) -> wxAuiManager() when Window :: wxWindow:wxWindow().

Calling this method will return the wxAuiManager for a given window.
The window parameter should specify any child window or sub-child window of the frame
or window managed by wxAuiManager.
The window parameter need not be managed by the manager itself, nor does it even need
to be a child or sub-child of a managed window. It must however be inside the window
hierarchy underneath the managed window.

 getPane/2

 -spec getPane(This, Name) -> wxAuiPaneInfo:wxAuiPaneInfo()
 when This :: wxAuiManager(), Name :: unicode:chardata();
 (This, Window) -> wxAuiPaneInfo:wxAuiPaneInfo()
 when This :: wxAuiManager(), Window :: wxWindow:wxWindow().

getPane/2 is used to lookup a wxAuiPaneInfo object either by window pointer or by
pane name, which acts as a unique id for a window pane.
The returned wxAuiPaneInfo object may then be modified to change a pane's look, state
or position. After one or more modifications to wxAuiPaneInfo, update/1 should be called to
commit the changes to the user interface. If the lookup failed (meaning the pane could not
be found in the manager), a call to the returned wxAuiPaneInfo's IsOk() method will
return false.

 hideHint(This)

 -spec hideHint(This) -> ok when This :: wxAuiManager().

hideHint/1 hides any docking hint that may be visible.

 insertPane(This, Window, Insert_location)

 -spec insertPane(This, Window, Insert_location) -> boolean()
 when
 This :: wxAuiManager(),
 Window :: wxWindow:wxWindow(),
 Insert_location :: wxAuiPaneInfo:wxAuiPaneInfo().

Equivalent to insertPane(This, Window, Insert_location, []).

 insertPane/4

 -spec insertPane(This, Window, Insert_location, [Option]) -> boolean()
 when
 This :: wxAuiManager(),
 Window :: wxWindow:wxWindow(),
 Insert_location :: wxAuiPaneInfo:wxAuiPaneInfo(),
 Option :: {insert_level, integer()}.

This method is used to insert either a previously unmanaged pane window into the frame
manager, or to insert a currently managed pane somewhere else.
insertPane/4 will push all panes, rows, or docks aside and insert the window into the position
specified by insert_location.
Because insert_location can specify either a pane, dock row, or dock layer, the insert_level
parameter is used to disambiguate this. The parameter insert_level can take a value of
wxAUI_INSERT_PANE, wxAUI_INSERT_ROW or wxAUI_INSERT_DOCK.

 loadPaneInfo(This, Pane_part, Pane)

 -spec loadPaneInfo(This, Pane_part, Pane) -> ok
 when
 This :: wxAuiManager(),
 Pane_part :: unicode:chardata(),
 Pane :: wxAuiPaneInfo:wxAuiPaneInfo().

loadPaneInfo/3 is similar to LoadPerspective, with the exception that it only loads
information about a single pane.
This method writes the serialized data into the passed pane. Pointers to UI elements are
not modified.
Note: This operation also changes the name in the pane information!
See: loadPerspective/3
See: savePaneInfo/2
See: savePerspective/1

 loadPerspective(This, Perspective)

 -spec loadPerspective(This, Perspective) -> boolean()
 when This :: wxAuiManager(), Perspective :: unicode:chardata().

Equivalent to loadPerspective(This, Perspective, []).

 loadPerspective/3

 -spec loadPerspective(This, Perspective, [Option]) -> boolean()
 when
 This :: wxAuiManager(),
 Perspective :: unicode:chardata(),
 Option :: {update, boolean()}.

Loads a saved perspective.
A perspective is the layout state of an AUI managed window.
All currently existing panes that have an object in "perspective" with the same name
("equivalent") will receive the layout parameters of the object in "perspective". Existing
panes that do not have an equivalent in "perspective" remain unchanged, objects in
"perspective" having no equivalent in the manager are ignored.
See: loadPaneInfo/3
See: loadPerspective/3
See: savePerspective/1

 new()

 -spec new() -> wxAuiManager().

Equivalent to new([]).

 new(Options)

 -spec new([Option]) -> wxAuiManager()
 when Option :: {managed_wnd, wxWindow:wxWindow()} | {flags, integer()}.

Constructor.

 savePaneInfo(This, Pane)

 -spec savePaneInfo(This, Pane) -> unicode:charlist()
 when This :: wxAuiManager(), Pane :: wxAuiPaneInfo:wxAuiPaneInfo().

savePaneInfo/2 is similar to SavePerspective, with the exception that it only saves
information about a single pane.
Return: The serialized layout parameters of the pane are returned within the string.
Information about the pointers to UI elements stored in the pane are not serialized.
See: loadPaneInfo/3
See: loadPerspective/3
See: savePerspective/1

 savePerspective(This)

 -spec savePerspective(This) -> unicode:charlist() when This :: wxAuiManager().

Saves the entire user interface layout into an encoded wxString (not implemented in
wx), which can then be stored by the application (probably using wxConfig).
See: loadPerspective/3
See: loadPaneInfo/3
See: savePaneInfo/2

 setArtProvider(This, Art_provider)

 -spec setArtProvider(This, Art_provider) -> ok
 when This :: wxAuiManager(), Art_provider :: wxAuiDockArt:wxAuiDockArt().

Instructs wxAuiManager to use art provider specified by parameter art_provider for
all drawing calls.
This allows pluggable look-and-feel features. The previous art provider object, if any,
will be deleted by wxAuiManager.
See: wxAuiDockArt

 setDockSizeConstraint(This, Widthpct, Heightpct)

 -spec setDockSizeConstraint(This, Widthpct, Heightpct) -> ok
 when This :: wxAuiManager(), Widthpct :: number(), Heightpct :: number().

When a user creates a new dock by dragging a window into a docked position, often times
the large size of the window will create a dock that is unwieldy large.
wxAuiManager by default limits the size of any new dock to 1/3 of the window size.
For horizontal docks, this would be 1/3 of the window height. For vertical docks, 1/3 of
the width.
Calling this function will adjust this constraint value. The numbers must be between 0.0
and 1.0. For instance, calling SetDockSizeContraint with 0.5, 0.5 will cause new docks to
be limited to half of the size of the entire managed window.

 setFlags(This, Flags)

 -spec setFlags(This, Flags) -> ok when This :: wxAuiManager(), Flags :: integer().

This method is used to specify ?wxAuiManagerOption's flags.
flags specifies options which allow the frame management behaviour to be modified.

 setManagedWindow(This, Managed_wnd)

 -spec setManagedWindow(This, Managed_wnd) -> ok
 when This :: wxAuiManager(), Managed_wnd :: wxWindow:wxWindow().

Called to specify the frame or window which is to be managed by wxAuiManager.
Frame management is not restricted to just frames. Child windows or custom controls are
also allowed.

 showHint(This, Rect)

 -spec showHint(This, Rect) -> ok
 when
 This :: wxAuiManager(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}.

This function is used by controls to explicitly show a hint window at the specified
rectangle.
It is rarely called, and is mostly used by controls implementing custom pane drag/drop
behaviour. The specified rectangle should be in screen coordinates.

 unInit(This)

 -spec unInit(This) -> ok when This :: wxAuiManager().

Dissociate the managed window from the manager.
This function may be called before the managed frame or window is destroyed, but, since
wxWidgets 3.1.4, it's unnecessary to call it explicitly, as it will be called
automatically when this window is destroyed, as well as when the manager itself is.

 update(This)

 -spec update(This) -> ok when This :: wxAuiManager().

This method is called after any number of changes are made to any of the managed panes.
update/1 must be invoked after addPane/4 or insertPane/4 are called in order to "realize" or "commit" the changes. In
addition, any number of changes may be made to wxAuiPaneInfo structures (retrieved
with getPane/2), but to realize the changes, update/1 must be called. This construction allows pane flicker
to be avoided by updating the whole layout at one time.

wxAuiManagerEvent

Event used to indicate various actions taken with wxAuiManager.
See wxAuiManager for available event types.
See:
	wxAuiManager

	wxAuiPaneInfo

This class is derived, and can use functions, from:
	wxEvent

wxWidgets docs: wxAuiManagerEvent
Events
Use wxEvtHandler:connect/3 with wxAuiManagerEventType to subscribe to events of this type.

 Summary

 Types

 wxAuiManager()

 wxAuiManagerEvent()

 wxAuiManagerEventType()

 Functions

 canVeto(This)

 Return: true if this event can be vetoed.

 getButton(This)

 Return: The ID of the button that was clicked.

 getDC(This)

 getManager(This)

 Return: The wxAuiManager this event is associated with.

 getPane(This)

 Return: The pane this event is associated with.

 getVeto(This)

 Return: true if this event was vetoed.

 setButton(This, Button)

 Sets the ID of the button clicked that triggered this event.

 setCanVeto(This, Can_veto)

 Sets whether or not this event can be vetoed.

 setDC(This, Pdc)

 setManager(This, Manager)

 Sets the wxAuiManager this event is associated with.

 setPane(This, Pane)

 Sets the pane this event is associated with.

 veto(This)

 Equivalent to veto(This, []).

 veto/2

 Cancels the action indicated by this event if canVeto/1 is true.

 Types

 wxAuiManager()

 -type wxAuiManager() ::
 #wxAuiManager{type :: wxAuiManagerEvent:wxAuiManagerEventType(),
 manager :: wxAuiManager:wxAuiManager(),
 pane :: wxAuiPaneInfo:wxAuiPaneInfo(),
 button :: integer(),
 veto_flag :: boolean(),
 canveto_flag :: boolean(),
 dc :: wxDC:wxDC()}.

 wxAuiManagerEvent()

 -type wxAuiManagerEvent() :: wx:wx_object().

 wxAuiManagerEventType()

 -type wxAuiManagerEventType() ::
 aui_pane_button | aui_pane_close | aui_pane_maximize | aui_pane_restore | aui_pane_activated |
 aui_render | aui_find_manager.

 Functions

 canVeto(This)

 -spec canVeto(This) -> boolean() when This :: wxAuiManagerEvent().

Return: true if this event can be vetoed.
See: veto/2

 getButton(This)

 -spec getButton(This) -> integer() when This :: wxAuiManagerEvent().

Return: The ID of the button that was clicked.

 getDC(This)

 -spec getDC(This) -> wxDC:wxDC() when This :: wxAuiManagerEvent().

 getManager(This)

 -spec getManager(This) -> wxAuiManager:wxAuiManager() when This :: wxAuiManagerEvent().

Return: The wxAuiManager this event is associated with.

 getPane(This)

 -spec getPane(This) -> wxAuiPaneInfo:wxAuiPaneInfo() when This :: wxAuiManagerEvent().

Return: The pane this event is associated with.

 getVeto(This)

 -spec getVeto(This) -> boolean() when This :: wxAuiManagerEvent().

Return: true if this event was vetoed.
See: veto/2

 setButton(This, Button)

 -spec setButton(This, Button) -> ok when This :: wxAuiManagerEvent(), Button :: integer().

Sets the ID of the button clicked that triggered this event.

 setCanVeto(This, Can_veto)

 -spec setCanVeto(This, Can_veto) -> ok when This :: wxAuiManagerEvent(), Can_veto :: boolean().

Sets whether or not this event can be vetoed.

 setDC(This, Pdc)

 -spec setDC(This, Pdc) -> ok when This :: wxAuiManagerEvent(), Pdc :: wxDC:wxDC().

 setManager(This, Manager)

 -spec setManager(This, Manager) -> ok
 when This :: wxAuiManagerEvent(), Manager :: wxAuiManager:wxAuiManager().

Sets the wxAuiManager this event is associated with.

 setPane(This, Pane)

 -spec setPane(This, Pane) -> ok when This :: wxAuiManagerEvent(), Pane :: wxAuiPaneInfo:wxAuiPaneInfo().

Sets the pane this event is associated with.

 veto(This)

 -spec veto(This) -> ok when This :: wxAuiManagerEvent().

Equivalent to veto(This, []).

 veto/2

 -spec veto(This, [Option]) -> ok when This :: wxAuiManagerEvent(), Option :: {veto, boolean()}.

Cancels the action indicated by this event if canVeto/1 is true.

wxAuiNotebook

wxAuiNotebook is part of the wxAUI class framework, which represents a notebook
control, managing multiple windows with associated tabs.
See also overview_aui.
wxAuiNotebook is a notebook control which implements many features common in
applications with dockable panes. Specifically, wxAuiNotebook implements functionality
which allows the user to rearrange tab order via drag-and-drop, split the tab window into
many different splitter configurations, and toggle through different themes to customize
the control's look and feel.
The default theme that is used is wxAuiDefaultTabArt (not implemented in wx), which
provides a modern, glossy look and feel. The theme can be changed by calling setArtProvider/2.
Styles
This class supports the following styles:
	wxAUI_NB_DEFAULT_STYLE: Defined as wxAUI_NB_TOP | wxAUI_NB_TAB_SPLIT | wxAUI_NB_TAB_MOVE
| wxAUI_NB_SCROLL_BUTTONS | wxAUI_NB_CLOSE_ON_ACTIVE_TAB | wxAUI_NB_MIDDLE_CLICK_CLOSE.

	wxAUI_NB_TAB_SPLIT: Allows the tab control to be split by dragging a tab.

	wxAUI_NB_TAB_MOVE: Allows a tab to be moved horizontally by dragging.

	wxAUI_NB_TAB_EXTERNAL_MOVE: Allows a tab to be moved to another tab control.

	wxAUI_NB_TAB_FIXED_WIDTH: With this style, all tabs have the same width.

	wxAUI_NB_SCROLL_BUTTONS: With this style, left and right scroll buttons are displayed.

	wxAUI_NB_WINDOWLIST_BUTTON: With this style, a drop-down list of windows is available.

	wxAUI_NB_CLOSE_BUTTON: With this style, a close button is available on the tab bar.

	wxAUI_NB_CLOSE_ON_ACTIVE_TAB: With this style, the close button is visible on the active
tab.

	wxAUI_NB_CLOSE_ON_ALL_TABS: With this style, the close button is visible on all tabs.

	wxAUI_NB_MIDDLE_CLICK_CLOSE: With this style, middle click on a tab closes the tab.

	wxAUI_NB_TOP: With this style, tabs are drawn along the top of the notebook.

	wxAUI_NB_BOTTOM: With this style, tabs are drawn along the bottom of the notebook.

This class is derived, and can use functions, from:
	wxControl

	wxWindow

	wxEvtHandler

wxWidgets docs: wxAuiNotebook
Events
Event types emitted from this class:
	command_auinotebook_page_close

	command_auinotebook_page_closed

	command_auinotebook_page_changed

	command_auinotebook_page_changing

	command_auinotebook_button

	command_auinotebook_begin_drag

	command_auinotebook_end_drag

	command_auinotebook_drag_motion

	command_auinotebook_allow_dnd

	command_auinotebook_drag_done

	command_auinotebook_tab_middle_down

	command_auinotebook_tab_middle_up

	command_auinotebook_tab_right_down

	command_auinotebook_tab_right_up

	command_auinotebook_bg_dclick

 Summary

 Types

 wxAuiNotebook()

 Functions

 addPage(This, Page, Caption)

 Equivalent to addPage(This, Page, Caption, []).

 addPage/4

 Adds a page.

 addPage(This, Page, Text, Select, ImageId)

 Adds a new page.

 create(This, Parent)

 Equivalent to create(This, Parent, []).

 create/3

 Creates the notebook window.

 create/4

 Constructs the book control with the given parameters.

 deletePage(This, Page)

 Deletes a page at the given index.

 destroy(This)

 Destroys the object

 getArtProvider(This)

 Returns the associated art provider.

 getPage(This, Page_idx)

 Returns the page specified by the given index.

 getPageBitmap(This, Page)

 Returns the tab bitmap for the page.

 getPageCount(This)

 Returns the number of pages in the notebook.

 getPageIndex(This, Page_wnd)

 Returns the page index for the specified window.

 getPageText(This, Page)

 Returns the tab label for the page.

 getSelection(This)

 Returns the currently selected page.

 insertPage(This, Page_idx, Page, Caption)

 Equivalent to insertPage(This, Page_idx, Page, Caption, []).

 insertPage/5

 insertPage/6 is similar to AddPage, but allows the ability to specify the insert
location.

 insertPage(This, Index, Page, Text, Select, ImageId)

 Inserts a new page at the specified position.

 new()

 Default ctor.

 new(Parent)

 Equivalent to new(Parent, []).

 new/2

 Constructor.

 removePage(This, Page)

 Removes a page, without deleting the window pointer.

 setArtProvider(This, Art)

 Sets the art provider to be used by the notebook.

 setFont(This, Font)

 Sets the font for drawing the tab labels, using a bold version of the font for selected
tab labels.

 setPageBitmap(This, Page, Bitmap)

 Sets the bitmap for the page.

 setPageText(This, Page, Text)

 Sets the tab label for the page.

 setSelection(This, New_page)

 Sets the page selection.

 setTabCtrlHeight(This, Height)

 Sets the tab height.

 setUniformBitmapSize(This, Size)

 Ensure that all tabs have the same height, even if some of them don't have bitmaps.

 Types

 wxAuiNotebook()

 -type wxAuiNotebook() :: wx:wx_object().

 Functions

 addPage(This, Page, Caption)

 -spec addPage(This, Page, Caption) -> boolean()
 when
 This :: wxAuiNotebook(), Page :: wxWindow:wxWindow(), Caption :: unicode:chardata().

Equivalent to addPage(This, Page, Caption, []).

 addPage/4

 -spec addPage(This, Page, Caption, [Option]) -> boolean()
 when
 This :: wxAuiNotebook(),
 Page :: wxWindow:wxWindow(),
 Caption :: unicode:chardata(),
 Option :: {select, boolean()} | {bitmap, wxBitmap:wxBitmap()}.

Adds a page.
If the select parameter is true, calling this will generate a page change event.

 addPage(This, Page, Text, Select, ImageId)

 -spec addPage(This, Page, Text, Select, ImageId) -> boolean()
 when
 This :: wxAuiNotebook(),
 Page :: wxWindow:wxWindow(),
 Text :: unicode:chardata(),
 Select :: boolean(),
 ImageId :: integer().

Adds a new page.
The page must have the book control itself as the parent and must not have been added to
this control previously.
The call to this function may generate the page changing events.
Return: true if successful, false otherwise.
Remark: Do not delete the page, it will be deleted by the book control.
See: insertPage/6
Since: 2.9.3

 create(This, Parent)

 -spec create(This, Parent) -> boolean() when This :: wxAuiNotebook(), Parent :: wxWindow:wxWindow().

Equivalent to create(This, Parent, []).

 create/3

 -spec create(This, Parent, Winid) -> boolean()
 when This :: wxAuiNotebook(), Parent :: wxWindow:wxWindow(), Winid :: integer();
 (This, Parent, [Option]) -> boolean()
 when
 This :: wxAuiNotebook(),
 Parent :: wxWindow:wxWindow(),
 Option ::
 {id, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Creates the notebook window.

 create/4

 -spec create(This, Parent, Winid, [Option]) -> boolean()
 when
 This :: wxAuiNotebook(),
 Parent :: wxWindow:wxWindow(),
 Winid :: integer(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Constructs the book control with the given parameters.

 deletePage(This, Page)

 -spec deletePage(This, Page) -> boolean() when This :: wxAuiNotebook(), Page :: integer().

Deletes a page at the given index.
Calling this method will generate a page change event.

 destroy(This)

 -spec destroy(This :: wxAuiNotebook()) -> ok.

Destroys the object

 getArtProvider(This)

 -spec getArtProvider(This) -> wxAuiTabArt:wxAuiTabArt() when This :: wxAuiNotebook().

Returns the associated art provider.

 getPage(This, Page_idx)

 -spec getPage(This, Page_idx) -> wxWindow:wxWindow() when This :: wxAuiNotebook(), Page_idx :: integer().

Returns the page specified by the given index.

 getPageBitmap(This, Page)

 -spec getPageBitmap(This, Page) -> wxBitmap:wxBitmap() when This :: wxAuiNotebook(), Page :: integer().

Returns the tab bitmap for the page.

 getPageCount(This)

 -spec getPageCount(This) -> integer() when This :: wxAuiNotebook().

Returns the number of pages in the notebook.

 getPageIndex(This, Page_wnd)

 -spec getPageIndex(This, Page_wnd) -> integer()
 when This :: wxAuiNotebook(), Page_wnd :: wxWindow:wxWindow().

Returns the page index for the specified window.
If the window is not found in the notebook, wxNOT_FOUND is returned.

 getPageText(This, Page)

 -spec getPageText(This, Page) -> unicode:charlist() when This :: wxAuiNotebook(), Page :: integer().

Returns the tab label for the page.

 getSelection(This)

 -spec getSelection(This) -> integer() when This :: wxAuiNotebook().

Returns the currently selected page.

 insertPage(This, Page_idx, Page, Caption)

 -spec insertPage(This, Page_idx, Page, Caption) -> boolean()
 when
 This :: wxAuiNotebook(),
 Page_idx :: integer(),
 Page :: wxWindow:wxWindow(),
 Caption :: unicode:chardata().

Equivalent to insertPage(This, Page_idx, Page, Caption, []).

 insertPage/5

 -spec insertPage(This, Page_idx, Page, Caption, [Option]) -> boolean()
 when
 This :: wxAuiNotebook(),
 Page_idx :: integer(),
 Page :: wxWindow:wxWindow(),
 Caption :: unicode:chardata(),
 Option :: {select, boolean()} | {bitmap, wxBitmap:wxBitmap()}.

insertPage/6 is similar to AddPage, but allows the ability to specify the insert
location.
If the select parameter is true, calling this will generate a page change event.

 insertPage(This, Index, Page, Text, Select, ImageId)

 -spec insertPage(This, Index, Page, Text, Select, ImageId) -> boolean()
 when
 This :: wxAuiNotebook(),
 Index :: integer(),
 Page :: wxWindow:wxWindow(),
 Text :: unicode:chardata(),
 Select :: boolean(),
 ImageId :: integer().

Inserts a new page at the specified position.
Return: true if successful, false otherwise.
Remark: Do not delete the page, it will be deleted by the book control.
See: addPage/5
Since: 2.9.3

 new()

 -spec new() -> wxAuiNotebook().

Default ctor.

 new(Parent)

 -spec new(Parent) -> wxAuiNotebook() when Parent :: wxWindow:wxWindow().

Equivalent to new(Parent, []).

 new/2

 -spec new(Parent, [Option]) -> wxAuiNotebook()
 when
 Parent :: wxWindow:wxWindow(),
 Option ::
 {id, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Constructor.
Creates a wxAuiNotebok control.

 removePage(This, Page)

 -spec removePage(This, Page) -> boolean() when This :: wxAuiNotebook(), Page :: integer().

Removes a page, without deleting the window pointer.

 setArtProvider(This, Art)

 -spec setArtProvider(This, Art) -> ok when This :: wxAuiNotebook(), Art :: wxAuiTabArt:wxAuiTabArt().

Sets the art provider to be used by the notebook.

 setFont(This, Font)

 -spec setFont(This, Font) -> boolean() when This :: wxAuiNotebook(), Font :: wxFont:wxFont().

Sets the font for drawing the tab labels, using a bold version of the font for selected
tab labels.

 setPageBitmap(This, Page, Bitmap)

 -spec setPageBitmap(This, Page, Bitmap) -> boolean()
 when This :: wxAuiNotebook(), Page :: integer(), Bitmap :: wxBitmap:wxBitmap().

Sets the bitmap for the page.
To remove a bitmap from the tab caption, pass wxNullBitmap.

 setPageText(This, Page, Text)

 -spec setPageText(This, Page, Text) -> boolean()
 when This :: wxAuiNotebook(), Page :: integer(), Text :: unicode:chardata().

Sets the tab label for the page.

 setSelection(This, New_page)

 -spec setSelection(This, New_page) -> integer() when This :: wxAuiNotebook(), New_page :: integer().

Sets the page selection.
Calling this method will generate a page change event.

 setTabCtrlHeight(This, Height)

 -spec setTabCtrlHeight(This, Height) -> ok when This :: wxAuiNotebook(), Height :: integer().

Sets the tab height.
By default, the tab control height is calculated by measuring the text height and bitmap
sizes on the tab captions. Calling this method will override that calculation and set the
tab control to the specified height parameter. A call to this method will override any
call to setUniformBitmapSize/2.
Specifying -1 as the height will return the control to its default auto-sizing behaviour.

 setUniformBitmapSize(This, Size)

 -spec setUniformBitmapSize(This, Size) -> ok
 when This :: wxAuiNotebook(), Size :: {W :: integer(), H :: integer()}.

Ensure that all tabs have the same height, even if some of them don't have bitmaps.
Passing ?wxDefaultSize as size undoes the effect of a previous call to this function
and instructs the control to use dynamic tab height.

wxAuiNotebookEvent

This class is used by the events generated by wxAuiNotebook.
See:
	wxAuiNotebook

	wxBookCtrlEvent

This class is derived, and can use functions, from:
	wxBookCtrlEvent

	wxNotifyEvent

	wxCommandEvent

	wxEvent

wxWidgets docs: wxAuiNotebookEvent
Events
Use wxEvtHandler:connect/3 with wxAuiNotebookEventType to subscribe to events of this type.

 Summary

 Types

 wxAuiNotebook()

 wxAuiNotebookEvent()

 wxAuiNotebookEventType()

 Functions

 getDragSource(This)

 getOldSelection(This)

 Returns the page that was selected before the change, wxNOT_FOUND if none was
selected.

 getSelection(This)

 Returns the currently selected page, or wxNOT_FOUND if none was selected.

 setDragSource(This, S)

 setOldSelection(This, Page)

 Sets the id of the page selected before the change.

 setSelection(This, Page)

 Sets the selection member variable.

 Types

 wxAuiNotebook()

 -type wxAuiNotebook() ::
 #wxAuiNotebook{type :: wxAuiNotebookEvent:wxAuiNotebookEventType(),
 old_selection :: integer(),
 selection :: integer(),
 drag_source :: wxAuiNotebook:wxAuiNotebook()}.

 wxAuiNotebookEvent()

 -type wxAuiNotebookEvent() :: wx:wx_object().

 wxAuiNotebookEventType()

 -type wxAuiNotebookEventType() ::
 command_auinotebook_page_close | command_auinotebook_page_changed |
 command_auinotebook_page_changing | command_auinotebook_button |
 command_auinotebook_begin_drag | command_auinotebook_end_drag |
 command_auinotebook_drag_motion | command_auinotebook_allow_dnd |
 command_auinotebook_tab_middle_down | command_auinotebook_tab_middle_up |
 command_auinotebook_tab_right_down | command_auinotebook_tab_right_up |
 command_auinotebook_page_closed | command_auinotebook_drag_done |
 command_auinotebook_bg_dclick.

 Functions

 getDragSource(This)

 -spec getDragSource(This) -> wxAuiNotebook:wxAuiNotebook() when This :: wxAuiNotebookEvent().

 getOldSelection(This)

 -spec getOldSelection(This) -> integer() when This :: wxAuiNotebookEvent().

Returns the page that was selected before the change, wxNOT_FOUND if none was
selected.

 getSelection(This)

 -spec getSelection(This) -> integer() when This :: wxAuiNotebookEvent().

Returns the currently selected page, or wxNOT_FOUND if none was selected.
Note: under Windows, getSelection/1 will return the same value as getOldSelection/1 when called from the EVT_BOOKCTRL_PAGE_CHANGING
handler and not the page which is going to be selected.

 setDragSource(This, S)

 -spec setDragSource(This, S) -> ok when This :: wxAuiNotebookEvent(), S :: wxAuiNotebook:wxAuiNotebook().

 setOldSelection(This, Page)

 -spec setOldSelection(This, Page) -> ok when This :: wxAuiNotebookEvent(), Page :: integer().

Sets the id of the page selected before the change.

 setSelection(This, Page)

 -spec setSelection(This, Page) -> ok when This :: wxAuiNotebookEvent(), Page :: integer().

Sets the selection member variable.

wxAuiPaneInfo

wxAuiPaneInfo is part of the wxAUI class framework.
See also overview_aui.
wxAuiPaneInfo specifies all the parameters for a pane. These parameters specify where
the pane is on the screen, whether it is docked or floating, or hidden. In addition, these
parameters specify the pane's docked position, floating position, preferred size, minimum
size, caption text among many other parameters.
See:
	wxAuiManager

	wxAuiDockArt

wxWidgets docs: wxAuiPaneInfo

 Summary

 Types

 wxAuiPaneInfo()

 Functions

 bestSize(This, Size)

 bestSize/3 sets the ideal size for the pane.

 bestSize(This, X, Y)

 bottom(This)

 bottom/1 sets the pane dock position to the bottom side of the frame.

 bottomDockable(This)

 Equivalent to bottomDockable(This, []).

 bottomDockable/2

 bottomDockable/2 indicates whether a pane can be docked at the bottom of the frame.

 caption(This, C)

 caption/2 sets the caption of the pane.

 captionVisible(This)

 Equivalent to captionVisible(This, []).

 captionVisible/2

 CaptionVisible indicates that a pane caption should be visible.

 centre(This)

 Center() (not implemented in wx) sets the pane dock position to the left side of the
frame.

 centrePane(This)

 centrePane/1 specifies that the pane should adopt the default center pane settings.

 closeButton(This)

 Equivalent to closeButton(This, []).

 closeButton/2

 closeButton/2 indicates that a close button should be drawn for the pane.

 defaultPane(This)

 defaultPane/1 specifies that the pane should adopt the default pane settings.

 destroy(This)

 Destroys the object

 destroyOnClose(This)

 Equivalent to destroyOnClose(This, []).

 destroyOnClose/2

 destroyOnClose/2 indicates whether a pane should be destroyed when it is closed.

 direction(This, Direction)

 direction/2 determines the direction of the docked pane.

 dock(This)

 dock/1 indicates that a pane should be docked.

 dockable(This)

 Equivalent to dockable(This, []).

 dockable/2

 dockable/2 specifies whether a frame can be docked or not.

 fixed(This)

 fixed/1 forces a pane to be fixed size so that it cannot be resized.

 float(This)

 float/1 indicates that a pane should be floated.

 floatable(This)

 Equivalent to floatable(This, []).

 floatable/2

 floatable/2 sets whether the user will be able to undock a pane and turn it into a
floating window.

 floatingPosition(This, Pos)

 floatingPosition/3 sets the position of the floating pane.

 floatingPosition(This, X, Y)

 floatingSize(This, Size)

 floatingSize/3 sets the size of the floating pane.

 floatingSize(This, X, Y)

 getDirection(This)

 getFloatingPosition(This)

 getFloatingSize(This)

 getFrame(This)

 getLayer(This)

 getPosition(This)

 getRow(This)

 getWindow(This)

 gripper(This)

 Equivalent to gripper(This, []).

 gripper/2

 gripper/2 indicates that a gripper should be drawn for the pane.

 gripperTop(This)

 Equivalent to gripperTop(This, []).

 gripperTop/2

 gripperTop/2 indicates that a gripper should be drawn at the top of the pane.

 hasBorder(This)

 hasBorder/1 returns true if the pane displays a border.

 hasCaption(This)

 hasCaption/1 returns true if the pane displays a caption.

 hasCloseButton(This)

 hasCloseButton/1 returns true if the pane displays a button to close the pane.

 hasFlag(This, Flag)

 hasFlag/2 returns true if the property specified by flag is active for the pane.

 hasGripper(This)

 hasGripper/1 returns true if the pane displays a gripper.

 hasGripperTop(This)

 hasGripper/1 returns true if the pane displays a gripper at the top.

 hasMaximizeButton(This)

 hasMaximizeButton/1 returns true if the pane displays a button to maximize the pane.

 hasMinimizeButton(This)

 hasMinimizeButton/1 returns true if the pane displays a button to minimize the pane.

 hasPinButton(This)

 hasPinButton/1 returns true if the pane displays a button to float the pane.

 hide(This)

 hide/1 indicates that a pane should be hidden.

 isBottomDockable(This)

 isBottomDockable/1 returns true if the pane can be docked at the bottom of the managed
frame.

 isDocked(This)

 isDocked/1 returns true if the pane is currently docked.

 isFixed(This)

 isFixed/1 returns true if the pane cannot be resized.

 isFloatable(This)

 isFloatable/1 returns true if the pane can be undocked and displayed as a floating
window.

 isFloating(This)

 isFloating/1 returns true if the pane is floating.

 isLeftDockable(This)

 isLeftDockable/1 returns true if the pane can be docked on the left of the managed
frame.

 isMovable(This)

 IsMoveable() returns true if the docked frame can be undocked or moved to another dock
position.

 isOk(This)

 isOk/1 returns true if the wxAuiPaneInfo structure is valid.

 isResizable(This)

 isResizable/1 returns true if the pane can be resized.

 isRightDockable(This)

 isRightDockable/1 returns true if the pane can be docked on the right of the managed
frame.

 isShown(This)

 isShown/1 returns true if the pane is currently shown.

 isToolbar(This)

 isToolbar/1 returns true if the pane contains a toolbar.

 isTopDockable(This)

 isTopDockable/1 returns true if the pane can be docked at the top of the managed frame.

 layer(This, Layer)

 layer/2 determines the layer of the docked pane.

 left(This)

 left/1 sets the pane dock position to the left side of the frame.

 leftDockable(This)

 Equivalent to leftDockable(This, []).

 leftDockable/2

 leftDockable/2 indicates whether a pane can be docked on the left of the frame.

 maximizeButton(This)

 Equivalent to maximizeButton(This, []).

 maximizeButton/2

 maximizeButton/2 indicates that a maximize button should be drawn for the pane.

 maxSize(This, Size)

 maxSize/3 sets the maximum size of the pane.

 maxSize(This, X, Y)

 minimizeButton(This)

 Equivalent to minimizeButton(This, []).

 minimizeButton/2

 minimizeButton/2 indicates that a minimize button should be drawn for the pane.

 minSize(This, Size)

 minSize/3 sets the minimum size of the pane.

 minSize(This, X, Y)

 movable(This)

 Equivalent to movable(This, []).

 movable/2

 Movable indicates whether a frame can be moved.

 name(This, N)

 name/2 sets the name of the pane so it can be referenced in lookup functions.

 new()

 new(C)

 Copy constructor.

 paneBorder(This)

 Equivalent to paneBorder(This, []).

 paneBorder/2

 PaneBorder indicates that a border should be drawn for the pane.

 pinButton(This)

 Equivalent to pinButton(This, []).

 pinButton/2

 pinButton/2 indicates that a pin button should be drawn for the pane.

 position(This, Pos)

 position/2 determines the position of the docked pane.

 resizable(This)

 Equivalent to resizable(This, []).

 resizable/2

 resizable/2 allows a pane to be resized if the parameter is true, and forces it to be a
fixed size if the parameter is false.

 right(This)

 right/1 sets the pane dock position to the right side of the frame.

 rightDockable(This)

 Equivalent to rightDockable(This, []).

 rightDockable/2

 rightDockable/2 indicates whether a pane can be docked on the right of the frame.

 row(This, Row)

 row/2 determines the row of the docked pane.

 safeSet(This, Source)

 Write the safe parts of a PaneInfo object "source" into "this".

 setFlag(This, Flag, Option_state)

 setFlag/3 turns the property given by flag on or off with the option_state parameter.

 show(This)

 Equivalent to show(This, []).

 show/2

 show/2 indicates that a pane should be shown.

 toolbarPane(This)

 toolbarPane/1 specifies that the pane should adopt the default toolbar pane settings.

 top(This)

 top/1 sets the pane dock position to the top of the frame.

 topDockable(This)

 Equivalent to topDockable(This, []).

 topDockable/2

 topDockable/2 indicates whether a pane can be docked at the top of the frame.

 window(This, W)

 window/2 assigns the window pointer that the wxAuiPaneInfo should use.

 Types

 wxAuiPaneInfo()

 -type wxAuiPaneInfo() :: wx:wx_object().

 Functions

 bestSize(This, Size)

 -spec bestSize(This, Size) -> wxAuiPaneInfo()
 when This :: wxAuiPaneInfo(), Size :: {W :: integer(), H :: integer()}.

bestSize/3 sets the ideal size for the pane.
The docking manager will attempt to use this size as much as possible when docking or
floating the pane.

 bestSize(This, X, Y)

 -spec bestSize(This, X, Y) -> wxAuiPaneInfo()
 when This :: wxAuiPaneInfo(), X :: integer(), Y :: integer().

 bottom(This)

 -spec bottom(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

bottom/1 sets the pane dock position to the bottom side of the frame.
This is the same thing as calling Direction(wxAUI_DOCK_BOTTOM).

 bottomDockable(This)

 -spec bottomDockable(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

Equivalent to bottomDockable(This, []).

 bottomDockable/2

 -spec bottomDockable(This, [Option]) -> wxAuiPaneInfo()
 when This :: wxAuiPaneInfo(), Option :: {b, boolean()}.

bottomDockable/2 indicates whether a pane can be docked at the bottom of the frame.

 caption(This, C)

 -spec caption(This, C) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo(), C :: unicode:chardata().

caption/2 sets the caption of the pane.

 captionVisible(This)

 -spec captionVisible(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

Equivalent to captionVisible(This, []).

 captionVisible/2

 -spec captionVisible(This, [Option]) -> wxAuiPaneInfo()
 when This :: wxAuiPaneInfo(), Option :: {visible, boolean()}.

CaptionVisible indicates that a pane caption should be visible.
If false, no pane caption is drawn.

 centre(This)

 -spec centre(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

Center() (not implemented in wx) sets the pane dock position to the left side of the
frame.
The centre pane is the space in the middle after all border panes (left, top, right,
bottom) are subtracted from the layout. This is the same thing as calling
Direction(wxAUI_DOCK_CENTRE).

 centrePane(This)

 -spec centrePane(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

centrePane/1 specifies that the pane should adopt the default center pane settings.
Centre panes usually do not have caption bars. This function provides an easy way of
preparing a pane to be displayed in the center dock position.

 closeButton(This)

 -spec closeButton(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

Equivalent to closeButton(This, []).

 closeButton/2

 -spec closeButton(This, [Option]) -> wxAuiPaneInfo()
 when This :: wxAuiPaneInfo(), Option :: {visible, boolean()}.

closeButton/2 indicates that a close button should be drawn for the pane.

 defaultPane(This)

 -spec defaultPane(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

defaultPane/1 specifies that the pane should adopt the default pane settings.

 destroy(This)

 -spec destroy(This :: wxAuiPaneInfo()) -> ok.

Destroys the object

 destroyOnClose(This)

 -spec destroyOnClose(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

Equivalent to destroyOnClose(This, []).

 destroyOnClose/2

 -spec destroyOnClose(This, [Option]) -> wxAuiPaneInfo()
 when This :: wxAuiPaneInfo(), Option :: {b, boolean()}.

destroyOnClose/2 indicates whether a pane should be destroyed when it is closed.
Normally a pane is simply hidden when the close button is clicked. Setting DestroyOnClose
to true will cause the window to be destroyed when the user clicks the pane's close
button.

 direction(This, Direction)

 -spec direction(This, Direction) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo(), Direction :: integer().

direction/2 determines the direction of the docked pane.
It is functionally the same as calling left/1, right/1, top/1 or bottom/1, except that docking direction may be
specified programmatically via the parameter.

 dock(This)

 -spec dock(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

dock/1 indicates that a pane should be docked.
It is the opposite of float/1.

 dockable(This)

 -spec dockable(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

Equivalent to dockable(This, []).

 dockable/2

 -spec dockable(This, [Option]) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo(), Option :: {b, boolean()}.

dockable/2 specifies whether a frame can be docked or not.
It is the same as specifying
TopDockable(b).BottomDockable(b).LeftDockable(b).RightDockable(b).

 fixed(This)

 -spec fixed(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

fixed/1 forces a pane to be fixed size so that it cannot be resized.
After calling fixed/1, isFixed/1 will return true.

 float(This)

 -spec float(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

float/1 indicates that a pane should be floated.
It is the opposite of dock/1.

 floatable(This)

 -spec floatable(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

Equivalent to floatable(This, []).

 floatable/2

 -spec floatable(This, [Option]) -> wxAuiPaneInfo()
 when This :: wxAuiPaneInfo(), Option :: {b, boolean()}.

floatable/2 sets whether the user will be able to undock a pane and turn it into a
floating window.

 floatingPosition(This, Pos)

 -spec floatingPosition(This, Pos) -> wxAuiPaneInfo()
 when This :: wxAuiPaneInfo(), Pos :: {X :: integer(), Y :: integer()}.

floatingPosition/3 sets the position of the floating pane.

 floatingPosition(This, X, Y)

 -spec floatingPosition(This, X, Y) -> wxAuiPaneInfo()
 when This :: wxAuiPaneInfo(), X :: integer(), Y :: integer().

 floatingSize(This, Size)

 -spec floatingSize(This, Size) -> wxAuiPaneInfo()
 when This :: wxAuiPaneInfo(), Size :: {W :: integer(), H :: integer()}.

floatingSize/3 sets the size of the floating pane.

 floatingSize(This, X, Y)

 -spec floatingSize(This, X, Y) -> wxAuiPaneInfo()
 when This :: wxAuiPaneInfo(), X :: integer(), Y :: integer().

 getDirection(This)

 -spec getDirection(This) -> integer() when This :: wxAuiPaneInfo().

 getFloatingPosition(This)

 -spec getFloatingPosition(This) -> {X :: integer(), Y :: integer()} when This :: wxAuiPaneInfo().

 getFloatingSize(This)

 -spec getFloatingSize(This) -> {W :: integer(), H :: integer()} when This :: wxAuiPaneInfo().

 getFrame(This)

 -spec getFrame(This) -> wxFrame:wxFrame() when This :: wxAuiPaneInfo().

 getLayer(This)

 -spec getLayer(This) -> integer() when This :: wxAuiPaneInfo().

 getPosition(This)

 -spec getPosition(This) -> integer() when This :: wxAuiPaneInfo().

 getRow(This)

 -spec getRow(This) -> integer() when This :: wxAuiPaneInfo().

 getWindow(This)

 -spec getWindow(This) -> wxWindow:wxWindow() when This :: wxAuiPaneInfo().

 gripper(This)

 -spec gripper(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

Equivalent to gripper(This, []).

 gripper/2

 -spec gripper(This, [Option]) -> wxAuiPaneInfo()
 when This :: wxAuiPaneInfo(), Option :: {visible, boolean()}.

gripper/2 indicates that a gripper should be drawn for the pane.

 gripperTop(This)

 -spec gripperTop(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

Equivalent to gripperTop(This, []).

 gripperTop/2

 -spec gripperTop(This, [Option]) -> wxAuiPaneInfo()
 when This :: wxAuiPaneInfo(), Option :: {attop, boolean()}.

gripperTop/2 indicates that a gripper should be drawn at the top of the pane.

 hasBorder(This)

 -spec hasBorder(This) -> boolean() when This :: wxAuiPaneInfo().

hasBorder/1 returns true if the pane displays a border.

 hasCaption(This)

 -spec hasCaption(This) -> boolean() when This :: wxAuiPaneInfo().

hasCaption/1 returns true if the pane displays a caption.

 hasCloseButton(This)

 -spec hasCloseButton(This) -> boolean() when This :: wxAuiPaneInfo().

hasCloseButton/1 returns true if the pane displays a button to close the pane.

 hasFlag(This, Flag)

 -spec hasFlag(This, Flag) -> boolean() when This :: wxAuiPaneInfo(), Flag :: integer().

hasFlag/2 returns true if the property specified by flag is active for the pane.

 hasGripper(This)

 -spec hasGripper(This) -> boolean() when This :: wxAuiPaneInfo().

hasGripper/1 returns true if the pane displays a gripper.

 hasGripperTop(This)

 -spec hasGripperTop(This) -> boolean() when This :: wxAuiPaneInfo().

hasGripper/1 returns true if the pane displays a gripper at the top.

 hasMaximizeButton(This)

 -spec hasMaximizeButton(This) -> boolean() when This :: wxAuiPaneInfo().

hasMaximizeButton/1 returns true if the pane displays a button to maximize the pane.

 hasMinimizeButton(This)

 -spec hasMinimizeButton(This) -> boolean() when This :: wxAuiPaneInfo().

hasMinimizeButton/1 returns true if the pane displays a button to minimize the pane.

 hasPinButton(This)

 -spec hasPinButton(This) -> boolean() when This :: wxAuiPaneInfo().

hasPinButton/1 returns true if the pane displays a button to float the pane.

 hide(This)

 -spec hide(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

hide/1 indicates that a pane should be hidden.

 isBottomDockable(This)

 -spec isBottomDockable(This) -> boolean() when This :: wxAuiPaneInfo().

isBottomDockable/1 returns true if the pane can be docked at the bottom of the managed
frame.

 isDocked(This)

 -spec isDocked(This) -> boolean() when This :: wxAuiPaneInfo().

isDocked/1 returns true if the pane is currently docked.

 isFixed(This)

 -spec isFixed(This) -> boolean() when This :: wxAuiPaneInfo().

isFixed/1 returns true if the pane cannot be resized.

 isFloatable(This)

 -spec isFloatable(This) -> boolean() when This :: wxAuiPaneInfo().

isFloatable/1 returns true if the pane can be undocked and displayed as a floating
window.

 isFloating(This)

 -spec isFloating(This) -> boolean() when This :: wxAuiPaneInfo().

isFloating/1 returns true if the pane is floating.

 isLeftDockable(This)

 -spec isLeftDockable(This) -> boolean() when This :: wxAuiPaneInfo().

isLeftDockable/1 returns true if the pane can be docked on the left of the managed
frame.

 isMovable(This)

 -spec isMovable(This) -> boolean() when This :: wxAuiPaneInfo().

IsMoveable() returns true if the docked frame can be undocked or moved to another dock
position.

 isOk(This)

 -spec isOk(This) -> boolean() when This :: wxAuiPaneInfo().

isOk/1 returns true if the wxAuiPaneInfo structure is valid.
A pane structure is valid if it has an associated window.

 isResizable(This)

 -spec isResizable(This) -> boolean() when This :: wxAuiPaneInfo().

isResizable/1 returns true if the pane can be resized.

 isRightDockable(This)

 -spec isRightDockable(This) -> boolean() when This :: wxAuiPaneInfo().

isRightDockable/1 returns true if the pane can be docked on the right of the managed
frame.

 isShown(This)

 -spec isShown(This) -> boolean() when This :: wxAuiPaneInfo().

isShown/1 returns true if the pane is currently shown.

 isToolbar(This)

 -spec isToolbar(This) -> boolean() when This :: wxAuiPaneInfo().

isToolbar/1 returns true if the pane contains a toolbar.

 isTopDockable(This)

 -spec isTopDockable(This) -> boolean() when This :: wxAuiPaneInfo().

isTopDockable/1 returns true if the pane can be docked at the top of the managed frame.

 layer(This, Layer)

 -spec layer(This, Layer) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo(), Layer :: integer().

layer/2 determines the layer of the docked pane.
The dock layer is similar to an onion, the inner-most layer being layer 0. Each shell
moving in the outward direction has a higher layer number. This allows for more complex
docking layout formation.

 left(This)

 -spec left(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

left/1 sets the pane dock position to the left side of the frame.
This is the same thing as calling Direction(wxAUI_DOCK_LEFT).

 leftDockable(This)

 -spec leftDockable(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

Equivalent to leftDockable(This, []).

 leftDockable/2

 -spec leftDockable(This, [Option]) -> wxAuiPaneInfo()
 when This :: wxAuiPaneInfo(), Option :: {b, boolean()}.

leftDockable/2 indicates whether a pane can be docked on the left of the frame.

 maximizeButton(This)

 -spec maximizeButton(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

Equivalent to maximizeButton(This, []).

 maximizeButton/2

 -spec maximizeButton(This, [Option]) -> wxAuiPaneInfo()
 when This :: wxAuiPaneInfo(), Option :: {visible, boolean()}.

maximizeButton/2 indicates that a maximize button should be drawn for the pane.

 maxSize(This, Size)

 -spec maxSize(This, Size) -> wxAuiPaneInfo()
 when This :: wxAuiPaneInfo(), Size :: {W :: integer(), H :: integer()}.

maxSize/3 sets the maximum size of the pane.

 maxSize(This, X, Y)

 -spec maxSize(This, X, Y) -> wxAuiPaneInfo()
 when This :: wxAuiPaneInfo(), X :: integer(), Y :: integer().

 minimizeButton(This)

 -spec minimizeButton(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

Equivalent to minimizeButton(This, []).

 minimizeButton/2

 -spec minimizeButton(This, [Option]) -> wxAuiPaneInfo()
 when This :: wxAuiPaneInfo(), Option :: {visible, boolean()}.

minimizeButton/2 indicates that a minimize button should be drawn for the pane.

 minSize(This, Size)

 -spec minSize(This, Size) -> wxAuiPaneInfo()
 when This :: wxAuiPaneInfo(), Size :: {W :: integer(), H :: integer()}.

minSize/3 sets the minimum size of the pane.
Please note that this is only partially supported as of this writing.

 minSize(This, X, Y)

 -spec minSize(This, X, Y) -> wxAuiPaneInfo()
 when This :: wxAuiPaneInfo(), X :: integer(), Y :: integer().

 movable(This)

 -spec movable(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

Equivalent to movable(This, []).

 movable/2

 -spec movable(This, [Option]) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo(), Option :: {b, boolean()}.

Movable indicates whether a frame can be moved.

 name(This, N)

 -spec name(This, N) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo(), N :: unicode:chardata().

name/2 sets the name of the pane so it can be referenced in lookup functions.
If a name is not specified by the user, a random name is assigned to the pane when it is
added to the manager.

 new()

 -spec new() -> wxAuiPaneInfo().

 new(C)

 -spec new(C) -> wxAuiPaneInfo() when C :: wxAuiPaneInfo().

Copy constructor.

 paneBorder(This)

 -spec paneBorder(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

Equivalent to paneBorder(This, []).

 paneBorder/2

 -spec paneBorder(This, [Option]) -> wxAuiPaneInfo()
 when This :: wxAuiPaneInfo(), Option :: {visible, boolean()}.

PaneBorder indicates that a border should be drawn for the pane.

 pinButton(This)

 -spec pinButton(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

Equivalent to pinButton(This, []).

 pinButton/2

 -spec pinButton(This, [Option]) -> wxAuiPaneInfo()
 when This :: wxAuiPaneInfo(), Option :: {visible, boolean()}.

pinButton/2 indicates that a pin button should be drawn for the pane.

 position(This, Pos)

 -spec position(This, Pos) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo(), Pos :: integer().

position/2 determines the position of the docked pane.

 resizable(This)

 -spec resizable(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

Equivalent to resizable(This, []).

 resizable/2

 -spec resizable(This, [Option]) -> wxAuiPaneInfo()
 when This :: wxAuiPaneInfo(), Option :: {resizable, boolean()}.

resizable/2 allows a pane to be resized if the parameter is true, and forces it to be a
fixed size if the parameter is false.
This is simply an antonym for fixed/1.

 right(This)

 -spec right(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

right/1 sets the pane dock position to the right side of the frame.
This is the same thing as calling Direction(wxAUI_DOCK_RIGHT).

 rightDockable(This)

 -spec rightDockable(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

Equivalent to rightDockable(This, []).

 rightDockable/2

 -spec rightDockable(This, [Option]) -> wxAuiPaneInfo()
 when This :: wxAuiPaneInfo(), Option :: {b, boolean()}.

rightDockable/2 indicates whether a pane can be docked on the right of the frame.

 row(This, Row)

 -spec row(This, Row) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo(), Row :: integer().

row/2 determines the row of the docked pane.

 safeSet(This, Source)

 -spec safeSet(This, Source) -> ok when This :: wxAuiPaneInfo(), Source :: wxAuiPaneInfo().

Write the safe parts of a PaneInfo object "source" into "this".
"Safe parts" are all non-UI elements (e.g. all layout determining parameters like the
size, position etc.). "Unsafe parts" (pointers to button, frame and window) are not
modified by this write operation.
Remark: This method is used when loading perspectives.

 setFlag(This, Flag, Option_state)

 -spec setFlag(This, Flag, Option_state) -> wxAuiPaneInfo()
 when This :: wxAuiPaneInfo(), Flag :: integer(), Option_state :: boolean().

setFlag/3 turns the property given by flag on or off with the option_state parameter.

 show(This)

 -spec show(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

Equivalent to show(This, []).

 show/2

 -spec show(This, [Option]) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo(), Option :: {show, boolean()}.

show/2 indicates that a pane should be shown.

 toolbarPane(This)

 -spec toolbarPane(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

toolbarPane/1 specifies that the pane should adopt the default toolbar pane settings.

 top(This)

 -spec top(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

top/1 sets the pane dock position to the top of the frame.
This is the same thing as calling Direction(wxAUI_DOCK_TOP).

 topDockable(This)

 -spec topDockable(This) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo().

Equivalent to topDockable(This, []).

 topDockable/2

 -spec topDockable(This, [Option]) -> wxAuiPaneInfo()
 when This :: wxAuiPaneInfo(), Option :: {b, boolean()}.

topDockable/2 indicates whether a pane can be docked at the top of the frame.

 window(This, W)

 -spec window(This, W) -> wxAuiPaneInfo() when This :: wxAuiPaneInfo(), W :: wxWindow:wxWindow().

window/2 assigns the window pointer that the wxAuiPaneInfo should use.
This normally does not need to be specified, as the window pointer is automatically
assigned to the wxAuiPaneInfo structure as soon as it is added to the manager.

wxAuiSimpleTabArt

Another standard tab art provider for wxAuiNotebook.
wxAuiSimpleTabArt is derived from wxAuiTabArt demonstrating how to write a
completely new tab art class. It can also be used as alternative to wxAuiDefaultTabArt
(not implemented in wx).
This class is derived, and can use functions, from:
	wxAuiTabArt

wxWidgets docs: wxAuiSimpleTabArt

 Summary

 Types

 wxAuiSimpleTabArt()

 Functions

 destroy(This)

 Destroys the object

 new()

 Types

 wxAuiSimpleTabArt()

 -type wxAuiSimpleTabArt() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxAuiSimpleTabArt()) -> ok.

Destroys the object

 new()

 -spec new() -> wxAuiSimpleTabArt().

wxAuiTabArt

Tab art provider defines all the drawing functions used by wxAuiNotebook.
This allows the wxAuiNotebook to have a pluggable look-and-feel.
By default, a wxAuiNotebook uses an instance of this class called wxAuiDefaultTabArt
(not implemented in wx) which provides bitmap art and a colour scheme that is adapted to
the major platforms' look. You can either derive from that class to alter its behaviour or
write a completely new tab art class.
Another example of creating a new wxAuiNotebook tab bar is wxAuiSimpleTabArt.
Call wxAuiNotebook:setArtProvider/2 to make use of this new tab art.
wxWidgets docs: wxAuiTabArt

 Summary

 Types

 wxAuiTabArt()

 Functions

 setActiveColour(This, Colour)

 Sets the colour of the selected tab.

 setColour(This, Colour)

 Sets the colour of the inactive tabs.

 setFlags(This, Flags)

 Sets flags.

 setMeasuringFont(This, Font)

 Sets the font used for calculating measurements.

 setNormalFont(This, Font)

 Sets the normal font for drawing labels.

 setSelectedFont(This, Font)

 Sets the font for drawing text for selected UI elements.

 Types

 wxAuiTabArt()

 -type wxAuiTabArt() :: wx:wx_object().

 Functions

 setActiveColour(This, Colour)

 -spec setActiveColour(This, Colour) -> ok when This :: wxAuiTabArt(), Colour :: wx:wx_colour().

Sets the colour of the selected tab.
Since: 2.9.2

 setColour(This, Colour)

 -spec setColour(This, Colour) -> ok when This :: wxAuiTabArt(), Colour :: wx:wx_colour().

Sets the colour of the inactive tabs.
Since: 2.9.2

 setFlags(This, Flags)

 -spec setFlags(This, Flags) -> ok when This :: wxAuiTabArt(), Flags :: integer().

Sets flags.

 setMeasuringFont(This, Font)

 -spec setMeasuringFont(This, Font) -> ok when This :: wxAuiTabArt(), Font :: wxFont:wxFont().

Sets the font used for calculating measurements.

 setNormalFont(This, Font)

 -spec setNormalFont(This, Font) -> ok when This :: wxAuiTabArt(), Font :: wxFont:wxFont().

Sets the normal font for drawing labels.

 setSelectedFont(This, Font)

 -spec setSelectedFont(This, Font) -> ok when This :: wxAuiTabArt(), Font :: wxFont:wxFont().

Sets the font for drawing text for selected UI elements.

wxBitmap

This class encapsulates the concept of a platform-dependent bitmap, either monochrome or
colour or colour with alpha channel support.
If you need direct access the bitmap data instead going through drawing to it using wxMemoryDC
you need to use the wxPixelData (not implemented in wx) class (either wxNativePixelData
for RGB bitmaps or wxAlphaPixelData for bitmaps with an additionally alpha channel).
Note that many wxBitmap functions take a type parameter, which is a value of the
?wxBitmapType enumeration. The validity of those values depends however on the platform
where your program is running and from the wxWidgets configuration. If all possible
wxWidgets settings are used:
	wxMSW supports BMP and ICO files, BMP and ICO resources;

	wxGTK supports any file supported by gdk-pixbuf;

	wxMac supports PICT resources;

	wxX11 supports XPM files, XPM data, XBM data;

In addition, wxBitmap can load and save all formats that wxImage can; see wxImage
for more info. Of course, you must have loaded the wxImage handlers (see
?wxInitAllImageHandlers() and wxImage::AddHandler (not implemented in wx)). Note that
all available wxBitmapHandlers for a given wxWidgets port are automatically loaded at
startup so you won't need to use wxBitmap::AddHandler (not implemented in wx).
More on the difference between wxImage and wxBitmap: wxImage is just a buffer
of RGB bytes with an optional buffer for the alpha bytes. It is all generic, platform
independent and image file format independent code. It includes generic code for scaling,
resizing, clipping, and other manipulations of the image data. OTOH, wxBitmap is
intended to be a wrapper of whatever is the native image format that is quickest/easiest
to draw to a DC or to be the target of the drawing operations performed on a wxMemoryDC.
By splitting the responsibilities between wxImage/wxBitmap like this then it's easier to
use generic code shared by all platforms and image types for generic operations and
platform specific code where performance or compatibility is needed.
Predefined objects (include wx.hrl): ?wxNullBitmap
See:
	Overview bitmap

	Overview bitmap

	wxDC:blit/6

	wxIcon

	wxCursor

	wxMemoryDC

	wxImage

wxWidgets docs: wxBitmap

 Summary

 Types

 wxBitmap()

 Functions

 convertToImage(This)

 Creates an image from a platform-dependent bitmap.

 copyFromIcon(This, Icon)

 Creates the bitmap from an icon.

 create(This, Sz)

 Equivalent to create(This, Sz, []).

 create/3

 This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 create/4

 Create a bitmap compatible with the given DC, inheriting its magnification factor.

 destroy(This)

 Destroys the object

 getDepth(This)

 Gets the colour depth of the bitmap.

 getHeight(This)

 Gets the height of the bitmap in pixels.

 getMask(This)

 Gets the associated mask (if any) which may have been loaded from a file or set for the
bitmap.

 getPalette(This)

 Gets the associated palette (if any) which may have been loaded from a file or set for
the bitmap.

 getSubBitmap(This, Rect)

 Returns a sub bitmap of the current one as long as the rect belongs entirely to the
bitmap.

 getWidth(This)

 Gets the width of the bitmap in pixels.

 isOk(This)

 Returns true if bitmap data is present.

 loadFile(This, Name)

 Equivalent to loadFile(This, Name, []).

 loadFile/3

 Loads a bitmap from a file or resource.

 new()

 Default constructor.

 new/1

 new/2

 Creates this bitmap object from the given image.

 new/3

 Creates a new bitmap.

 new(Bits, Width, Height, Options)

 Creates a bitmap from the given array bits.

 ok(This)

 Equivalent to: isOk/1

 saveFile(This, Name, Type)

 Equivalent to saveFile(This, Name, Type, []).

 saveFile/4

 Saves a bitmap in the named file.

 setDepth(This, Depth)

 Deprecated

 setHeight(This, Height)

 Deprecated

 setMask(This, Mask)

 Sets the mask for this bitmap.

 setPalette(This, Palette)

 Sets the associated palette.

 setWidth(This, Width)

 Deprecated

 Types

 wxBitmap()

 -type wxBitmap() :: wx:wx_object().

 Functions

 convertToImage(This)

 -spec convertToImage(This) -> wxImage:wxImage() when This :: wxBitmap().

Creates an image from a platform-dependent bitmap.
This preserves mask information so that bitmaps and images can be converted back and
forth without loss in that respect.

 copyFromIcon(This, Icon)

 -spec copyFromIcon(This, Icon) -> boolean() when This :: wxBitmap(), Icon :: wxIcon:wxIcon().

Creates the bitmap from an icon.

 create(This, Sz)

 -spec create(This, Sz) -> boolean() when This :: wxBitmap(), Sz :: {W :: integer(), H :: integer()}.

Equivalent to create(This, Sz, []).

 create/3

 -spec create(This, Width, Height) -> boolean()
 when This :: wxBitmap(), Width :: integer(), Height :: integer();
 (This, Sz, [Option]) -> boolean()
 when
 This :: wxBitmap(),
 Sz :: {W :: integer(), H :: integer()},
 Option :: {depth, integer()}.

This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 create/4

 -spec create(This, Width, Height, [Option]) -> boolean()
 when
 This :: wxBitmap(),
 Width :: integer(),
 Height :: integer(),
 Option :: {depth, integer()};
 (This, Width, Height, Dc) -> boolean()
 when This :: wxBitmap(), Width :: integer(), Height :: integer(), Dc :: wxDC:wxDC().

Create a bitmap compatible with the given DC, inheriting its magnification factor.
Return: true if the creation was successful.
Since: 3.1.0

 destroy(This)

 -spec destroy(This :: wxBitmap()) -> ok.

Destroys the object

 getDepth(This)

 -spec getDepth(This) -> integer() when This :: wxBitmap().

Gets the colour depth of the bitmap.
A value of 1 indicates a monochrome bitmap.

 getHeight(This)

 -spec getHeight(This) -> integer() when This :: wxBitmap().

Gets the height of the bitmap in pixels.
See: getWidth/1

 getMask(This)

 -spec getMask(This) -> wxMask:wxMask() when This :: wxBitmap().

Gets the associated mask (if any) which may have been loaded from a file or set for the
bitmap.
See:
	setMask/2

	wxMask

 getPalette(This)

 -spec getPalette(This) -> wxPalette:wxPalette() when This :: wxBitmap().

Gets the associated palette (if any) which may have been loaded from a file or set for
the bitmap.
See: wxPalette

 getSubBitmap(This, Rect)

 -spec getSubBitmap(This, Rect) -> wxBitmap()
 when
 This :: wxBitmap(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}.

Returns a sub bitmap of the current one as long as the rect belongs entirely to the
bitmap.
This function preserves bit depth and mask information.

 getWidth(This)

 -spec getWidth(This) -> integer() when This :: wxBitmap().

Gets the width of the bitmap in pixels.
See: getHeight/1

 isOk(This)

 -spec isOk(This) -> boolean() when This :: wxBitmap().

Returns true if bitmap data is present.

 loadFile(This, Name)

 -spec loadFile(This, Name) -> boolean() when This :: wxBitmap(), Name :: unicode:chardata().

Equivalent to loadFile(This, Name, []).

 loadFile/3

 -spec loadFile(This, Name, [Option]) -> boolean()
 when This :: wxBitmap(), Name :: unicode:chardata(), Option :: {type, wx:wx_enum()}.

Loads a bitmap from a file or resource.
Return: true if the operation succeeded, false otherwise.
Remark: A palette may be associated with the bitmap if one exists (especially for colour
Windows bitmaps), and if the code supports it. You can check if one has been created by
using the getPalette/1 member.
See: saveFile/4

 new()

 -spec new() -> wxBitmap().

Default constructor.
Constructs a bitmap object with no data; an assignment or another member function such as create/4
or loadFile/3 must be called subsequently.

 new/1

 -spec new(Name) -> wxBitmap() when Name :: unicode:chardata();
 (Sz) -> wxBitmap() when Sz :: {W :: integer(), H :: integer()};
 (Img) -> wxBitmap() when Img :: wxImage:wxImage() | wxBitmap:wxBitmap().

 new/2

 -spec new(Width, Height) -> wxBitmap() when Width :: integer(), Height :: integer();
 (Name, [Option]) -> wxBitmap() when Name :: unicode:chardata(), Option :: {type, wx:wx_enum()};
 (Sz, [Option]) -> wxBitmap()
 when Sz :: {W :: integer(), H :: integer()}, Option :: {depth, integer()};
 (Img, [Option]) -> wxBitmap() when Img :: wxImage:wxImage(), Option :: {depth, integer()}.

Creates this bitmap object from the given image.
This has to be done to actually display an image as you cannot draw an image directly on
a window.
The resulting bitmap will use the provided colour depth (or that of the current system if
depth is ?wxBITMAP_SCREEN_DEPTH) which entails that a colour reduction may take place.
On Windows, if there is a palette present (set with SetPalette), it will be used when
creating the wxBitmap (most useful in 8-bit display mode). On other platforms, the
palette is currently ignored.

 new/3

 -spec new(Bits, Width, Height) -> wxBitmap()
 when Bits :: binary(), Width :: integer(), Height :: integer();
 (Width, Height, [Option]) -> wxBitmap()
 when Width :: integer(), Height :: integer(), Option :: {depth, integer()}.

Creates a new bitmap.
A depth of ?wxBITMAP_SCREEN_DEPTH indicates the depth of the current screen or visual.
Some platforms only support 1 for monochrome and ?wxBITMAP_SCREEN_DEPTH for the current
colour setting.
A depth of 32 including an alpha channel is supported under MSW, Mac and GTK+.

 new(Bits, Width, Height, Options)

 -spec new(Bits, Width, Height, [Option]) -> wxBitmap()
 when
 Bits :: binary(), Width :: integer(), Height :: integer(), Option :: {depth, integer()}.

Creates a bitmap from the given array bits.
You should only use this function for monochrome bitmaps (depth 1) in portable programs:
in this case the bits parameter should contain an XBM image.
For other bit depths, the behaviour is platform dependent: under Windows, the data is
passed without any changes to the underlying CreateBitmap() API. Under other platforms,
only monochrome bitmaps may be created using this constructor and wxImage should be
used for creating colour bitmaps from static data.

 ok(This)

 -spec ok(This) -> boolean() when This :: wxBitmap().

Equivalent to: isOk/1

 saveFile(This, Name, Type)

 -spec saveFile(This, Name, Type) -> boolean()
 when This :: wxBitmap(), Name :: unicode:chardata(), Type :: wx:wx_enum().

Equivalent to saveFile(This, Name, Type, []).

 saveFile/4

 -spec saveFile(This, Name, Type, [Option]) -> boolean()
 when
 This :: wxBitmap(),
 Name :: unicode:chardata(),
 Type :: wx:wx_enum(),
 Option :: {palette, wxPalette:wxPalette()}.

Saves a bitmap in the named file.
Return: true if the operation succeeded, false otherwise.
Remark: Depending on how wxWidgets has been configured, not all formats may be available.
See: loadFile/3

 setDepth(This, Depth)

 -spec setDepth(This, Depth) -> ok when This :: wxBitmap(), Depth :: integer().

Deprecated:
This function is deprecated since version 3.1.2, dimensions and depth can only be set at
construction time.
Sets the depth member (does not affect the bitmap data).

 setHeight(This, Height)

 -spec setHeight(This, Height) -> ok when This :: wxBitmap(), Height :: integer().

Deprecated:
This function is deprecated since version 3.1.2, dimensions and depth can only be set at
construction time.
Sets the height member (does not affect the bitmap data).

 setMask(This, Mask)

 -spec setMask(This, Mask) -> ok when This :: wxBitmap(), Mask :: wxMask:wxMask().

Sets the mask for this bitmap.
Remark: The bitmap object owns the mask once this has been called.
Note: A mask can be set also for bitmap with an alpha channel but doing so under wxMSW is
not recommended because performance of drawing such bitmap is not very good.
See:
	getMask/1

	wxMask

 setPalette(This, Palette)

 -spec setPalette(This, Palette) -> ok when This :: wxBitmap(), Palette :: wxPalette:wxPalette().

Sets the associated palette.
(Not implemented under GTK+).
See: wxPalette

 setWidth(This, Width)

 -spec setWidth(This, Width) -> ok when This :: wxBitmap(), Width :: integer().

Deprecated:
This function is deprecated since version 3.1.2, dimensions and depth can only be set at
construction time.
Sets the width member (does not affect the bitmap data).

wxBitmapButton

A bitmap button is a control that contains a bitmap.
Notice that since wxWidgets 2.9.1 bitmap display is supported by the base wxButton
class itself and the only tiny advantage of using this class is that it allows specifying
the bitmap in its constructor, unlike wxButton. Please see the base class
documentation for more information about images support in wxButton.
Styles
This class supports the following styles:
	wxBU_LEFT: Left-justifies the bitmap label.

	wxBU_TOP: Aligns the bitmap label to the top of the button.

	wxBU_RIGHT: Right-justifies the bitmap label.

	wxBU_BOTTOM: Aligns the bitmap label to the bottom of the button. Note that the
wxBU_EXACTFIT style supported by wxButton is not used by this class as bitmap buttons
don't have any minimal standard size by default.

See: wxButton
This class is derived, and can use functions, from:
	wxButton

	wxControl

	wxWindow

	wxEvtHandler

wxWidgets docs: wxBitmapButton
Events
Event types emitted from this class:
	command_button_clicked

 Summary

 Types

 wxBitmapButton()

 Functions

 create(This, Parent, Id, Bitmap)

 Equivalent to create(This, Parent, Id, Bitmap, []).

 create/5

 Button creation function for two-step creation.

 destroy(This)

 Destroys the object

 new()

 Default ctor.

 new(Parent, Id, Bitmap)

 Equivalent to new(Parent, Id, Bitmap, []).

 new/4

 Constructor, creating and showing a button.

 newCloseButton(Parent, Winid)

 Helper function creating a standard-looking "Close" button.

 Types

 wxBitmapButton()

 -type wxBitmapButton() :: wx:wx_object().

 Functions

 create(This, Parent, Id, Bitmap)

 -spec create(This, Parent, Id, Bitmap) -> boolean()
 when
 This :: wxBitmapButton(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Bitmap :: wxBitmap:wxBitmap().

Equivalent to create(This, Parent, Id, Bitmap, []).

 create/5

 -spec create(This, Parent, Id, Bitmap, [Option]) -> boolean()
 when
 This :: wxBitmapButton(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Bitmap :: wxBitmap:wxBitmap(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Button creation function for two-step creation.
For more details, see new/4.

 destroy(This)

 -spec destroy(This :: wxBitmapButton()) -> ok.

Destroys the object

 new()

 -spec new() -> wxBitmapButton().

Default ctor.

 new(Parent, Id, Bitmap)

 -spec new(Parent, Id, Bitmap) -> wxBitmapButton()
 when Parent :: wxWindow:wxWindow(), Id :: integer(), Bitmap :: wxBitmap:wxBitmap().

Equivalent to new(Parent, Id, Bitmap, []).

 new/4

 -spec new(Parent, Id, Bitmap, [Option]) -> wxBitmapButton()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Bitmap :: wxBitmap:wxBitmap(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Constructor, creating and showing a button.
Remark: The bitmap parameter is normally the only bitmap you need to provide, and
wxWidgets will draw the button correctly in its different states. If you want more
control, call any of the functions SetBitmapPressed() (not implemented in wx), wxButton:setBitmapFocus/2, wxButton:setBitmapDisabled/2.
See: create/5

 newCloseButton(Parent, Winid)

 -spec newCloseButton(Parent, Winid) -> wxBitmapButton()
 when Parent :: wxWindow:wxWindow(), Winid :: integer().

Helper function creating a standard-looking "Close" button.
To get the best results, platform-specific code may need to be used to create a small,
title bar-like "Close" button. This function is provided to avoid the need to test for the
current platform and creates the button with as native look as possible.
Return: The new button.
Since: 2.9.5

wxBitmapDataObject

wxBitmapDataObject is a specialization of wxDataObject for bitmap data.
It can be used without change to paste data into the wxClipboard or a wxDropSource
(not implemented in wx). A user may wish to derive a new class from this class for
providing a bitmap on-demand in order to minimize memory consumption when offering data in
several formats, such as a bitmap and GIF.
This class may be used as is, but getBitmap/1 may be overridden to increase efficiency.
See:
	Overview dnd

	wxDataObject

	wxFileDataObject

	wxTextDataObject

	wxDataObject

This class is derived, and can use functions, from:
	wxDataObject

wxWidgets docs: wxBitmapDataObject

 Summary

 Types

 wxBitmapDataObject()

 Functions

 destroy(This)

 Destroys the object

 getBitmap(This)

 Returns the bitmap associated with the data object.

 new()

 Equivalent to new([]).

 new/1

 Constructor, optionally passing a bitmap (otherwise use setBitmap/2 later).

 setBitmap(This, Bitmap)

 Sets the bitmap associated with the data object.

 Types

 wxBitmapDataObject()

 -type wxBitmapDataObject() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxBitmapDataObject()) -> ok.

Destroys the object

 getBitmap(This)

 -spec getBitmap(This) -> wxBitmap:wxBitmap() when This :: wxBitmapDataObject().

Returns the bitmap associated with the data object.
You may wish to override this method when offering data on-demand, but this is not
required by wxWidgets' internals. Use this method to get data in bitmap form from the wxClipboard.

 new()

 -spec new() -> wxBitmapDataObject().

Equivalent to new([]).

 new/1

 -spec new([Option]) -> wxBitmapDataObject() when Option :: {bitmap, wxBitmap:wxBitmap()};
 (Bitmap) -> wxBitmapDataObject() when Bitmap :: wxBitmap:wxBitmap().

Constructor, optionally passing a bitmap (otherwise use setBitmap/2 later).

 setBitmap(This, Bitmap)

 -spec setBitmap(This, Bitmap) -> ok when This :: wxBitmapDataObject(), Bitmap :: wxBitmap:wxBitmap().

Sets the bitmap associated with the data object.
This method is called when the data object receives data. Usually there will be no reason
to override this function.

wxBookCtrlBase

A book control is a convenient way of displaying multiple pages of information, displayed
one page at a time.
wxWidgets has five variants of this control:
	wxChoicebook: controlled by a wxChoice

	wxListbook: controlled by a wxListCtrl

	wxNotebook: uses a row of tabs

	wxTreebook: controlled by a wxTreeCtrl

	wxToolbook: controlled by a wxToolBar

This abstract class is the parent of all these book controls, and provides their basic
interface. This is a pure virtual class so you cannot allocate it directly.
See: Overview bookctrl
This class is derived, and can use functions, from:
	wxControl

	wxWindow

	wxEvtHandler

wxWidgets docs: wxBookCtrlBase

 Summary

 Types

 wxBookCtrlBase()

 Functions

 addPage(This, Page, Text)

 Equivalent to addPage(This, Page, Text, []).

 addPage/4

 Adds a new page.

 advanceSelection(This)

 Equivalent to advanceSelection(This, []).

 advanceSelection/2

 Cycles through the tabs.

 changeSelection(This, Page)

 Changes the selection to the given page, returning the previous selection.

 deleteAllPages(This)

 Deletes all pages.

 deletePage(This, Page)

 Deletes the specified page, and the associated window.

 getCurrentPage(This)

 Returns the currently selected page or NULL.

 getPage(This, Page)

 Returns the window at the given page position.

 getPageCount(This)

 Returns the number of pages in the control.

 getPageText(This, NPage)

 Returns the string for the given page.

 getSelection(This)

 Returns the currently selected page, or wxNOT_FOUND if none was selected.

 hitTest(This, Pt)

 Returns the index of the tab at the specified position or wxNOT_FOUND if none.

 insertPage(This, Index, Page, Text)

 Equivalent to insertPage(This, Index, Page, Text, []).

 insertPage/5

 Inserts a new page at the specified position.

 removePage(This, Page)

 Deletes the specified page, without deleting the associated window.

 setPageText(This, Page, Text)

 Sets the text for the given page.

 setSelection(This, Page)

 Sets the selection to the given page, returning the previous selection.

 Types

 wxBookCtrlBase()

 -type wxBookCtrlBase() :: wx:wx_object().

 Functions

 addPage(This, Page, Text)

 -spec addPage(This, Page, Text) -> boolean()
 when This :: wxBookCtrlBase(), Page :: wxWindow:wxWindow(), Text :: unicode:chardata().

Equivalent to addPage(This, Page, Text, []).

 addPage/4

 -spec addPage(This, Page, Text, [Option]) -> boolean()
 when
 This :: wxBookCtrlBase(),
 Page :: wxWindow:wxWindow(),
 Text :: unicode:chardata(),
 Option :: {bSelect, boolean()} | {imageId, integer()}.

Adds a new page.
The page must have the book control itself as the parent and must not have been added to
this control previously.
The call to this function will generate the page changing and page changed events if select
is true, but not when inserting the very first page (as there is no previous page
selection to switch from in this case and so it wouldn't make sense to e.g. veto such event).
Return: true if successful, false otherwise.
Remark: Do not delete the page, it will be deleted by the book control.
See: insertPage/5

 advanceSelection(This)

 -spec advanceSelection(This) -> ok when This :: wxBookCtrlBase().

Equivalent to advanceSelection(This, []).

 advanceSelection/2

 -spec advanceSelection(This, [Option]) -> ok
 when This :: wxBookCtrlBase(), Option :: {forward, boolean()}.

Cycles through the tabs.
The call to this function generates the page changing events.

 changeSelection(This, Page)

 -spec changeSelection(This, Page) -> integer() when This :: wxBookCtrlBase(), Page :: integer().

Changes the selection to the given page, returning the previous selection.
This function behaves as setSelection/2 but does not generate the page changing events.
See overview_events_prog for more information.

 deleteAllPages(This)

 -spec deleteAllPages(This) -> boolean() when This :: wxBookCtrlBase().

Deletes all pages.

 deletePage(This, Page)

 -spec deletePage(This, Page) -> boolean() when This :: wxBookCtrlBase(), Page :: integer().

Deletes the specified page, and the associated window.
The call to this function generates the page changing events when deleting the currently
selected page or a page preceding it in the index order, but it does not send any events
when deleting the last page: while in this case the selection also changes, it becomes
invalid and for compatibility reasons the control never generates events with the invalid
selection index.

 getCurrentPage(This)

 -spec getCurrentPage(This) -> wxWindow:wxWindow() when This :: wxBookCtrlBase().

Returns the currently selected page or NULL.

 getPage(This, Page)

 -spec getPage(This, Page) -> wxWindow:wxWindow() when This :: wxBookCtrlBase(), Page :: integer().

Returns the window at the given page position.

 getPageCount(This)

 -spec getPageCount(This) -> integer() when This :: wxBookCtrlBase().

Returns the number of pages in the control.

 getPageText(This, NPage)

 -spec getPageText(This, NPage) -> unicode:charlist() when This :: wxBookCtrlBase(), NPage :: integer().

Returns the string for the given page.

 getSelection(This)

 -spec getSelection(This) -> integer() when This :: wxBookCtrlBase().

Returns the currently selected page, or wxNOT_FOUND if none was selected.
Note that this method may return either the previously or newly selected page when called
from the EVT_BOOKCTRL_PAGE_CHANGED handler depending on the platform and so wxBookCtrlEvent:getSelection/1 should be
used instead in this case.

 hitTest(This, Pt)

 -spec hitTest(This, Pt) -> Result
 when
 Result :: {Res :: integer(), Flags :: integer()},
 This :: wxBookCtrlBase(),
 Pt :: {X :: integer(), Y :: integer()}.

Returns the index of the tab at the specified position or wxNOT_FOUND if none.
If flags parameter is non-NULL, the position of the point inside the tab is returned as well.
Return: Returns the zero-based tab index or wxNOT_FOUND if there is no tab at the
specified position.

 insertPage(This, Index, Page, Text)

 -spec insertPage(This, Index, Page, Text) -> boolean()
 when
 This :: wxBookCtrlBase(),
 Index :: integer(),
 Page :: wxWindow:wxWindow(),
 Text :: unicode:chardata().

Equivalent to insertPage(This, Index, Page, Text, []).

 insertPage/5

 -spec insertPage(This, Index, Page, Text, [Option]) -> boolean()
 when
 This :: wxBookCtrlBase(),
 Index :: integer(),
 Page :: wxWindow:wxWindow(),
 Text :: unicode:chardata(),
 Option :: {bSelect, boolean()} | {imageId, integer()}.

Inserts a new page at the specified position.
Return: true if successful, false otherwise.
Remark: Do not delete the page, it will be deleted by the book control.
See: addPage/4

 removePage(This, Page)

 -spec removePage(This, Page) -> boolean() when This :: wxBookCtrlBase(), Page :: integer().

Deletes the specified page, without deleting the associated window.
See deletePage/2 for a note about the events generated by this function.

 setPageText(This, Page, Text)

 -spec setPageText(This, Page, Text) -> boolean()
 when This :: wxBookCtrlBase(), Page :: integer(), Text :: unicode:chardata().

Sets the text for the given page.

 setSelection(This, Page)

 -spec setSelection(This, Page) -> integer() when This :: wxBookCtrlBase(), Page :: integer().

Sets the selection to the given page, returning the previous selection.
Notice that the call to this function generates the page changing events, use the changeSelection/2
function if you don't want these events to be generated.
See: getSelection/1

wxBookCtrlEvent

This class represents the events generated by book controls (wxNotebook, wxListbook, wxChoicebook, wxTreebook, wxAuiNotebook).
The PAGE_CHANGING events are sent before the current page is changed. It allows the
program to examine the current page (which can be retrieved with getOldSelection/1) and to veto the page
change by calling wxNotifyEvent:veto/1 if, for example, the current values in the controls of the old page are invalid.
The PAGE_CHANGED events are sent after the page has been changed and the program cannot
veto it any more, it just informs it about the page change.
To summarize, if the program is interested in validating the page values before allowing
the user to change it, it should process the PAGE_CHANGING event, otherwise PAGE_CHANGED
is probably enough. In any case, it is probably unnecessary to process both events at once.
See:
	wxNotebook

	wxListbook

	wxChoicebook

	wxTreebook

	wxToolbook

	wxAuiNotebook

This class is derived, and can use functions, from:
	wxNotifyEvent

	wxCommandEvent

	wxEvent

wxWidgets docs: wxBookCtrlEvent

 Summary

 Types

 wxBookCtrl()

 wxBookCtrlEvent()

 wxBookCtrlEventType()

 Functions

 getOldSelection(This)

 Returns the page that was selected before the change, wxNOT_FOUND if none was
selected.

 getSelection(This)

 Returns the currently selected page, or wxNOT_FOUND if none was selected.

 setOldSelection(This, Page)

 Sets the id of the page selected before the change.

 setSelection(This, Page)

 Sets the selection member variable.

 Types

 wxBookCtrl()

 -type wxBookCtrl() ::
 #wxBookCtrl{type :: wxBookCtrlEvent:wxBookCtrlEventType(),
 nSel :: integer(),
 nOldSel :: integer()}.

 wxBookCtrlEvent()

 -type wxBookCtrlEvent() :: wx:wx_object().

 wxBookCtrlEventType()

 -type wxBookCtrlEventType() ::
 command_notebook_page_changed | command_notebook_page_changing | choicebook_page_changed |
 choicebook_page_changing | treebook_page_changed | treebook_page_changing |
 toolbook_page_changed | toolbook_page_changing | listbook_page_changed |
 listbook_page_changing.

 Functions

 getOldSelection(This)

 -spec getOldSelection(This) -> integer() when This :: wxBookCtrlEvent().

Returns the page that was selected before the change, wxNOT_FOUND if none was
selected.

 getSelection(This)

 -spec getSelection(This) -> integer() when This :: wxBookCtrlEvent().

Returns the currently selected page, or wxNOT_FOUND if none was selected.
Note: under Windows, getSelection/1 will return the same value as getOldSelection/1 when called from the EVT_BOOKCTRL_PAGE_CHANGING
handler and not the page which is going to be selected.

 setOldSelection(This, Page)

 -spec setOldSelection(This, Page) -> ok when This :: wxBookCtrlEvent(), Page :: integer().

Sets the id of the page selected before the change.

 setSelection(This, Page)

 -spec setSelection(This, Page) -> ok when This :: wxBookCtrlEvent(), Page :: integer().

Sets the selection member variable.

wxBoxSizer

The basic idea behind a box sizer is that windows will most often be laid out in rather
simple basic geometry, typically in a row or a column or several hierarchies of either.
For more information, please see overview_sizer_box.
See:
	wxSizer

	Overview sizer

This class is derived, and can use functions, from:
	wxSizer

wxWidgets docs: wxBoxSizer

 Summary

 Types

 wxBoxSizer()

 Functions

 destroy(This)

 Destroys the object

 getOrientation(This)

 Returns the orientation of the box sizer, either wxVERTICAL or wxHORIZONTAL.

 new(Orient)

 Constructor for a wxBoxSizer.

 Types

 wxBoxSizer()

 -type wxBoxSizer() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxBoxSizer()) -> ok.

Destroys the object

 getOrientation(This)

 -spec getOrientation(This) -> integer() when This :: wxBoxSizer().

Returns the orientation of the box sizer, either wxVERTICAL or wxHORIZONTAL.

 new(Orient)

 -spec new(Orient) -> wxBoxSizer() when Orient :: integer().

Constructor for a wxBoxSizer.
orient may be either of wxVERTICAL or wxHORIZONTAL for creating either a column sizer
or a row sizer.

wxBrush

A brush is a drawing tool for filling in areas.
It is used for painting the background of rectangles, ellipses, etc. It has a colour and
a style.
On a monochrome display, wxWidgets shows all brushes as white unless the colour is really black.
Do not initialize objects on the stack before the program commences, since other required
structures may not have been set up yet. Instead, define global pointers to objects and
create them in wxApp::OnInit (not implemented in wx) or when required.
An application may wish to create brushes with different characteristics dynamically, and
there is the consequent danger that a large number of duplicate brushes will be created.
Therefore an application may wish to get a pointer to a brush by using the global list of
brushes ?wxTheBrushList, and calling the member function wxBrushList::FindOrCreateBrush()
(not implemented in wx).
This class uses reference counting and copy-on-write internally so that assignments
between two instances of this class are very cheap. You can therefore use actual objects
instead of pointers without efficiency problems. If an instance of this class is changed
it will create its own data internally so that other instances, which previously shared
the data using the reference counting, are not affected.
Predefined objects (include wx.hrl):
	?wxNullBrush

	?wxBLACK_BRUSH

	?wxBLUE_BRUSH

	?wxCYAN_BRUSH

	?wxGREEN_BRUSH

	?wxYELLOW_BRUSH

	?wxGREY_BRUSH

	?wxLIGHT_GREY_BRUSH

	?wxMEDIUM_GREY_BRUSH

	?wxRED_BRUSH

	?wxTRANSPARENT_BRUSH

	?wxWHITE_BRUSH

See:
	wxDC

	wxDC:setBrush/2

wxWidgets docs: wxBrush

 Summary

 Types

 wxBrush()

 Functions

 destroy(This)

 Destroys the object

 getColour(This)

 Returns a reference to the brush colour.

 getStipple(This)

 Gets a pointer to the stipple bitmap.

 getStyle(This)

 Returns the brush style, one of the ?wxBrushStyle values.

 isHatch(This)

 Returns true if the style of the brush is any of hatched fills.

 isOk(This)

 Returns true if the brush is initialised.

 new()

 Default constructor.

 new/1

 Copy constructor, uses reference counting.

 new(Colour, Options)

 Constructs a brush from a colour object and style.

 setColour(This, Colour)

 Sets the brush colour using red, green and blue values.

 setColour(This, Red, Green, Blue)

 setStipple(This, Bitmap)

 Sets the stipple bitmap.

 setStyle(This, Style)

 Sets the brush style.

 Types

 wxBrush()

 -type wxBrush() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxBrush()) -> ok.

Destroys the object

 getColour(This)

 -spec getColour(This) -> wx:wx_colour4() when This :: wxBrush().

Returns a reference to the brush colour.
See: setColour/4

 getStipple(This)

 -spec getStipple(This) -> wxBitmap:wxBitmap() when This :: wxBrush().

Gets a pointer to the stipple bitmap.
If the brush does not have a wxBRUSHSTYLE_STIPPLE style, this bitmap may be non-NULL
but uninitialised (i.e. wxBitmap:isOk/1 returns false).
See: setStipple/2

 getStyle(This)

 -spec getStyle(This) -> wx:wx_enum() when This :: wxBrush().

Returns the brush style, one of the ?wxBrushStyle values.
See:
	setStyle/2

	setColour/4

	setStipple/2

 isHatch(This)

 -spec isHatch(This) -> boolean() when This :: wxBrush().

Returns true if the style of the brush is any of hatched fills.
See: getStyle/1

 isOk(This)

 -spec isOk(This) -> boolean() when This :: wxBrush().

Returns true if the brush is initialised.
Notice that an uninitialized brush object can't be queried for any brush properties and
all calls to the accessor methods on it will result in an assert failure.

 new()

 -spec new() -> wxBrush().

Default constructor.
The brush will be uninitialised, and wxBrush:isOk/1 will return false.

 new/1

 -spec new(Colour) -> wxBrush() when Colour :: wx:wx_colour();
 (Brush) -> wxBrush() when Brush :: wxBrush:wxBrush() | wxBitmap:wxBitmap().

Copy constructor, uses reference counting.

 new(Colour, Options)

 -spec new(Colour, [Option]) -> wxBrush() when Colour :: wx:wx_colour(), Option :: {style, wx:wx_enum()}.

Constructs a brush from a colour object and style.

 setColour(This, Colour)

 -spec setColour(This, Colour) -> ok when This :: wxBrush(), Colour :: wx:wx_colour().

Sets the brush colour using red, green and blue values.
See: getColour/1

 setColour(This, Red, Green, Blue)

 -spec setColour(This, Red, Green, Blue) -> ok
 when This :: wxBrush(), Red :: integer(), Green :: integer(), Blue :: integer().

 setStipple(This, Bitmap)

 -spec setStipple(This, Bitmap) -> ok when This :: wxBrush(), Bitmap :: wxBitmap:wxBitmap().

Sets the stipple bitmap.
Remark: The style will be set to wxBRUSHSTYLE_STIPPLE, unless the bitmap has a mask
associated to it, in which case the style will be set to wxBRUSHSTYLE_STIPPLE_MASK_OPAQUE.
See: wxBitmap

 setStyle(This, Style)

 -spec setStyle(This, Style) -> ok when This :: wxBrush(), Style :: wx:wx_enum().

Sets the brush style.
See: getStyle/1

wxBufferedDC

This class provides a simple way to avoid flicker: when drawing on it, everything is in
fact first drawn on an in-memory buffer (a wxBitmap) and then copied to the screen,
using the associated wxDC, only once, when this object is destroyed.
wxBufferedDC itself is typically associated with wxClientDC, if you want to use
it in your EVT_PAINT handler, you should look at wxBufferedPaintDC instead.
When used like this, a valid DC must be specified in the constructor while the buffer
bitmap doesn't have to be explicitly provided, by default this class will allocate the
bitmap of required size itself. However using a dedicated bitmap can speed up the
redrawing process by eliminating the repeated creation and destruction of a possibly big
bitmap. Otherwise, wxBufferedDC can be used in the same way as any other device context.
Another possible use for wxBufferedDC is to use it to maintain a backing store for
the window contents. In this case, the associated DC may be NULL but a valid backing
store bitmap should be specified.
Finally, please note that GTK+ 2.0 as well as macOS provide double buffering themselves
natively. You can either use wxWindow:isDoubleBuffered/1 to determine whether you need to use buffering or not, or
use wxAutoBufferedPaintDC (not implemented in wx) to avoid needless double buffering on
the systems which already do it automatically.
See:
	wxDC

	wxMemoryDC

	wxBufferedPaintDC

This class is derived, and can use functions, from:
	wxMemoryDC

	wxDC

wxWidgets docs: wxBufferedDC

 Summary

 Types

 wxBufferedDC()

 Functions

 destroy(This)

 Destroys the object

 init(This, Dc)

 Equivalent to init(This, Dc, []).

 init/3

 init/4

 Initializes the object created using the default constructor.

 new()

 Default constructor.

 new(Dc)

 Equivalent to new(Dc, []).

 new/2

 Creates a buffer for the provided dc.

 new/3

 Creates a buffer for the provided dc.

 Types

 wxBufferedDC()

 -type wxBufferedDC() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxBufferedDC()) -> ok.

Destroys the object

 init(This, Dc)

 -spec init(This, Dc) -> ok when This :: wxBufferedDC(), Dc :: wxDC:wxDC().

Equivalent to init(This, Dc, []).

 init/3

 -spec init(This, Dc, Area) -> ok
 when This :: wxBufferedDC(), Dc :: wxDC:wxDC(), Area :: {W :: integer(), H :: integer()};
 (This, Dc, [Option]) -> ok
 when
 This :: wxBufferedDC(),
 Dc :: wxDC:wxDC(),
 Option :: {buffer, wxBitmap:wxBitmap()} | {style, integer()}.

 init/4

 -spec init(This, Dc, Area, [Option]) -> ok
 when
 This :: wxBufferedDC(),
 Dc :: wxDC:wxDC(),
 Area :: {W :: integer(), H :: integer()},
 Option :: {style, integer()}.

Initializes the object created using the default constructor.
Please see the constructors for parameter details.

 new()

 -spec new() -> wxBufferedDC().

Default constructor.
You must call one of the init/4 methods later in order to use the device context.

 new(Dc)

 -spec new(Dc) -> wxBufferedDC() when Dc :: wxDC:wxDC().

Equivalent to new(Dc, []).

 new/2

 -spec new(Dc, Area) -> wxBufferedDC() when Dc :: wxDC:wxDC(), Area :: {W :: integer(), H :: integer()};
 (Dc, [Option]) -> wxBufferedDC()
 when Dc :: wxDC:wxDC(), Option :: {buffer, wxBitmap:wxBitmap()} | {style, integer()}.

Creates a buffer for the provided dc.
init/4 must not be called when using this constructor.

 new/3

 -spec new(Dc, Area, [Option]) -> wxBufferedDC()
 when
 Dc :: wxDC:wxDC(),
 Area :: {W :: integer(), H :: integer()},
 Option :: {style, integer()}.

Creates a buffer for the provided dc.
init/4 must not be called when using this constructor.

wxBufferedPaintDC

This is a subclass of wxBufferedDC which can be used inside of an EVT_PAINT()
event handler to achieve double-buffered drawing.
Just use this class instead of wxPaintDC and make sure wxWindow:setBackgroundStyle/2 is called with
wxBG_STYLE_PAINT somewhere in the class initialization code, and that's all you have to do
to (mostly) avoid flicker. The only thing to watch out for is that if you are using this
class together with wxScrolled (not implemented in wx), you probably do not want to
call wxScrolledWindow:prepareDC/2 on it as it already does this internally for the real underlying wxPaintDC.
See:
	wxDC

	wxBufferedDC

	wxPaintDC

This class is derived, and can use functions, from:
	wxBufferedDC

	wxMemoryDC

	wxDC

wxWidgets docs: wxBufferedPaintDC

 Summary

 Types

 wxBufferedPaintDC()

 Functions

 destroy(This)

 Destroys the object

 new(Window)

 Equivalent to new(Window, []).

 new/2

 new/3

 As with wxBufferedDC, you may either provide the bitmap to be used for buffering or
let this object create one internally (in the latter case, the size of the client part of
the window is used).

 Types

 wxBufferedPaintDC()

 -type wxBufferedPaintDC() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxBufferedPaintDC()) -> ok.

Destroys the object

 new(Window)

 -spec new(Window) -> wxBufferedPaintDC() when Window :: wxWindow:wxWindow().

Equivalent to new(Window, []).

 new/2

 -spec new(Window, Buffer) -> wxBufferedPaintDC()
 when Window :: wxWindow:wxWindow(), Buffer :: wxBitmap:wxBitmap();
 (Window, [Option]) -> wxBufferedPaintDC()
 when Window :: wxWindow:wxWindow(), Option :: {style, integer()}.

 new/3

 -spec new(Window, Buffer, [Option]) -> wxBufferedPaintDC()
 when
 Window :: wxWindow:wxWindow(),
 Buffer :: wxBitmap:wxBitmap(),
 Option :: {style, integer()}.

As with wxBufferedDC, you may either provide the bitmap to be used for buffering or
let this object create one internally (in the latter case, the size of the client part of
the window is used).
Pass wxBUFFER_CLIENT_AREA for the style parameter to indicate that just the client area
of the window is buffered, or wxBUFFER_VIRTUAL_AREA to indicate that the buffer bitmap
covers the virtual area.

wxButton

A button is a control that contains a text string, and is one of the most common elements
of a GUI.
It may be placed on a wxDialog or on a wxPanel panel, or indeed on almost any
other window.
By default, i.e. if none of the alignment styles are specified, the label is centered
both horizontally and vertically. If the button has both a label and a bitmap, the
alignment styles above specify the location of the rectangle combining both the label and
the bitmap and the bitmap position set with wxButton::SetBitmapPosition() (not
implemented in wx) defines the relative position of the bitmap with respect to the label
(however currently non-default alignment combinations are not implemented on all platforms).
Since version 2.9.1 wxButton supports showing both text and an image (currently only
when using wxMSW, wxGTK or wxOSX/Cocoa ports), see SetBitmap() (not implemented in wx)
and setBitmapLabel/2, setBitmapDisabled/2 &c methods. In the previous wxWidgets versions this functionality was only
available in (the now trivial) wxBitmapButton class which was only capable of showing
an image without text.
A button may have either a single image for all states or different images for the
following states (different images are not currently supported under macOS where the
normal image is used for all states):
	normal: the default state

	disabled: bitmap shown when the button is disabled.

	pressed: bitmap shown when the button is pushed (e.g. while the user keeps the mouse
button pressed on it)

	focus: bitmap shown when the button has keyboard focus (but is not pressed as in this
case the button is in the pressed state)

	current: bitmap shown when the mouse is over the button (but it is not pressed although
it may have focus). Notice that if current bitmap is not specified but the current
platform UI uses hover images for the buttons (such as Windows or GTK+), then the focus
bitmap is used for hover state as well. This makes it possible to set focus bitmap only to
get reasonably good behaviour on all platforms.

All of the bitmaps must be of the same size and the normal bitmap must be set first (to
a valid bitmap), before setting any other ones. Also, if the size of the bitmaps is
changed later, you need to change the size of the normal bitmap before setting any other
bitmaps with the new size (and you do need to reset all of them as their original values
can be lost when the normal bitmap size changes).
The position of the image inside the button be configured using SetBitmapPosition()
(not implemented in wx). By default the image is on the left of the text.
Please also notice that GTK+ uses a global setting called gtk-button-images to
determine if the images should be shown in the buttons at all. If it is off (which is the
case in e.g. Gnome 2.28 by default), no images will be shown, consistently with the native behaviour.
Styles
This class supports the following styles:
	wxBU_LEFT: Left-justifies the label. Windows and GTK+ only.

	wxBU_TOP: Aligns the label to the top of the button. Windows and GTK+ only.

	wxBU_RIGHT: Right-justifies the bitmap label. Windows and GTK+ only.

	wxBU_BOTTOM: Aligns the label to the bottom of the button. Windows and GTK+ only.

	wxBU_EXACTFIT: By default, all buttons are made of at least the standard button size,
even if their contents is small enough to fit into a smaller size. This is done for
consistency as most platforms use buttons of the same size in the native dialogs, but can
be overridden by specifying this flag. If it is given, the button will be made just big
enough for its contents. Notice that under MSW the button will still have at least the
standard height, even with this style, if it has a non-empty label.

	wxBU_NOTEXT: Disables the display of the text label in the button even if it has one or
its id is one of the standard stock ids with an associated label: without using this style
a button which is only supposed to show a bitmap but uses a standard id would display a
label too.

	wxBORDER_NONE: Creates a button without border. This is currently implemented in MSW,
GTK2 and OSX/Cocoa.

See: wxBitmapButton
This class is derived, and can use functions, from:
	wxControl

	wxWindow

	wxEvtHandler

wxWidgets docs: wxButton
Events
Event types emitted from this class:
	command_button_clicked

 Summary

 Types

 wxButton()

 Functions

 create(This, Parent, Id)

 Equivalent to create(This, Parent, Id, []).

 create/4

 Button creation function for two-step creation.

 destroy(This)

 Destroys the object

 getBitmapDisabled(This)

 Returns the bitmap for the disabled state, which may be invalid.

 getBitmapFocus(This)

 Returns the bitmap for the focused state, which may be invalid.

 getBitmapLabel(This)

 Returns the bitmap for the normal state.

 getDefaultSize()

 Returns the default size for the buttons.

 getDefaultSize(Win)

 new()

 Default ctor.

 new(Parent, Id)

 Equivalent to new(Parent, Id, []).

 new/3

 Constructor, creating and showing a button.

 setBitmapDisabled(This, Bitmap)

 Sets the bitmap for the disabled button appearance.

 setBitmapFocus(This, Bitmap)

 Sets the bitmap for the button appearance when it has the keyboard focus.

 setBitmapLabel(This, Bitmap)

 Sets the bitmap label for the button.

 setDefault(This)

 This sets the button to be the default item in its top-level window (e.g.

 setLabel(This, Label)

 Sets the string label for the button.

 Types

 wxButton()

 -type wxButton() :: wx:wx_object().

 Functions

 create(This, Parent, Id)

 -spec create(This, Parent, Id) -> boolean()
 when This :: wxButton(), Parent :: wxWindow:wxWindow(), Id :: integer().

Equivalent to create(This, Parent, Id, []).

 create/4

 -spec create(This, Parent, Id, [Option]) -> boolean()
 when
 This :: wxButton(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {label, unicode:chardata()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Button creation function for two-step creation.
For more details, see new/3.

 destroy(This)

 -spec destroy(This :: wxButton()) -> ok.

Destroys the object

 getBitmapDisabled(This)

 -spec getBitmapDisabled(This) -> wxBitmap:wxBitmap() when This :: wxButton().

Returns the bitmap for the disabled state, which may be invalid.
See: setBitmapDisabled/2
Since: 2.9.1 (available in wxBitmapButton only in previous versions)

 getBitmapFocus(This)

 -spec getBitmapFocus(This) -> wxBitmap:wxBitmap() when This :: wxButton().

Returns the bitmap for the focused state, which may be invalid.
See: setBitmapFocus/2
Since: 2.9.1 (available in wxBitmapButton only in previous versions)

 getBitmapLabel(This)

 -spec getBitmapLabel(This) -> wxBitmap:wxBitmap() when This :: wxButton().

Returns the bitmap for the normal state.
This is exactly the same as GetBitmap() (not implemented in wx) but uses a name
backwards-compatible with wxBitmapButton.
See: setBitmapLabel/2
Since: 2.9.1 (available in wxBitmapButton only in previous versions)

 getDefaultSize()

 -spec getDefaultSize() -> {W :: integer(), H :: integer()}.

Returns the default size for the buttons.
It is advised to make all the dialog buttons of the same size and this function allows
retrieving the (platform, and current font dependent) size which should be the best suited
for this.
The optional win argument is new since wxWidgets 3.1.3 and allows to get a per-monitor
DPI specific size.

 getDefaultSize(Win)

 -spec getDefaultSize(Win) -> {W :: integer(), H :: integer()} when Win :: wxWindow:wxWindow().

 new()

 -spec new() -> wxButton().

Default ctor.

 new(Parent, Id)

 -spec new(Parent, Id) -> wxButton() when Parent :: wxWindow:wxWindow(), Id :: integer().

Equivalent to new(Parent, Id, []).

 new/3

 -spec new(Parent, Id, [Option]) -> wxButton()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {label, unicode:chardata()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Constructor, creating and showing a button.
The preferred way to create standard buttons is to use default value of label. If no
label is supplied and id is one of standard IDs from this list, a standard label will be
used. In other words, if you use a predefined wxID_XXX constant, just omit the label
completely rather than specifying it. In particular, help buttons (the ones with id of wxID_HELP)
under macOS can't display any label at all and while wxButton will detect if the
standard "Help" label is used and ignore it, using any other label will prevent the button
from correctly appearing as a help button and so should be avoided.
In addition to that, the button will be decorated with stock icons under GTK+ 2.
See: create/4

 setBitmapDisabled(This, Bitmap)

 -spec setBitmapDisabled(This, Bitmap) -> ok when This :: wxButton(), Bitmap :: wxBitmap:wxBitmap().

Sets the bitmap for the disabled button appearance.
If bitmap is invalid, the disabled bitmap is set to the automatically generated greyed
out version of the normal bitmap, i.e. the same bitmap as is used by default if this
method is not called at all. Use SetBitmap() (not implemented in wx) with an invalid
bitmap to remove the bitmap completely (for all states).
See:
	getBitmapDisabled/1

	setBitmapLabel/2

	setBitmapFocus/2

Since: 2.9.1 (available in wxBitmapButton only in previous versions)

 setBitmapFocus(This, Bitmap)

 -spec setBitmapFocus(This, Bitmap) -> ok when This :: wxButton(), Bitmap :: wxBitmap:wxBitmap().

Sets the bitmap for the button appearance when it has the keyboard focus.
If bitmap is invalid, the normal bitmap will be used in the focused state.
See:
	getBitmapFocus/1

	setBitmapLabel/2

	setBitmapDisabled/2

Since: 2.9.1 (available in wxBitmapButton only in previous versions)

 setBitmapLabel(This, Bitmap)

 -spec setBitmapLabel(This, Bitmap) -> ok when This :: wxButton(), Bitmap :: wxBitmap:wxBitmap().

Sets the bitmap label for the button.
Remark: This is the bitmap used for the unselected state, and for all other states if no
other bitmaps are provided.
See: getBitmapLabel/1
Since: 2.9.1 (available in wxBitmapButton only in previous versions)

 setDefault(This)

 -spec setDefault(This) -> wxWindow:wxWindow() when This :: wxButton().

This sets the button to be the default item in its top-level window (e.g.
the panel or the dialog box containing it).
As normal, pressing return causes the default button to be depressed when the return key
is pressed.
See also wxWindow:setFocus/1 which sets the keyboard focus for windows and text panel items, and wxTopLevelWindow::SetDefaultItem()
(not implemented in wx).
Remark: Under Windows, only dialog box buttons respond to this function.
Return: the old default item (possibly NULL)

 setLabel(This, Label)

 -spec setLabel(This, Label) -> ok when This :: wxButton(), Label :: unicode:chardata().

Sets the string label for the button.

wxCalendarCtrl

The calendar control allows the user to pick a date.
The user can move the current selection using the keyboard and select the date
(generating EVT_CALENDAR event) by pressing <Return> or double clicking it.
Generic calendar has advanced possibilities for the customization of its display,
described below. If you want to use these possibilities on every platform, use
wxGenericCalendarCtrl instead of wxCalendarCtrl.
All global settings (such as colours and fonts used) can, of course, be changed. But
also, the display style for each day in the month can be set independently using wxCalendarDateAttr
class.
An item without custom attributes is drawn with the default colours and font and without
border, but setting custom attributes with setAttr/3 allows modifying its appearance. Just create a
custom attribute object and set it for the day you want to be displayed specially (note
that the control will take ownership of the pointer, i.e. it will delete it itself). A day
may be marked as being a holiday, even if it is not recognized as one by wx_datetime() using the wxCalendarDateAttr:setHoliday/2 method.
As the attributes are specified for each day, they may change when the month is changed,
so you will often want to update them in EVT_CALENDAR_PAGE_CHANGED event handler.
If neither the wxCAL_SUNDAY_FIRST or wxCAL_MONDAY_FIRST style is given, the first day
of the week is determined from operating system's settings, if possible. The native wxGTK
calendar chooses the first weekday based on locale, and these styles have no effect on it.
Styles
This class supports the following styles:
	wxCAL_SUNDAY_FIRST: Show Sunday as the first day in the week (not in wxGTK)

	wxCAL_MONDAY_FIRST: Show Monday as the first day in the week (not in wxGTK)

	wxCAL_SHOW_HOLIDAYS: Highlight holidays in the calendar (only generic)

	wxCAL_NO_YEAR_CHANGE: Disable the year changing (deprecated, only generic)

	wxCAL_NO_MONTH_CHANGE: Disable the month (and, implicitly, the year) changing

	wxCAL_SHOW_SURROUNDING_WEEKS: Show the neighbouring weeks in the previous and next months
(only generic, always on for the native controls)

	wxCAL_SEQUENTIAL_MONTH_SELECTION: Use alternative, more compact, style for the month and
year selection controls. (only generic)

	wxCAL_SHOW_WEEK_NUMBERS: Show week numbers on the left side of the calendar. (not in
generic)

See:
	Examples

	wxCalendarDateAttr

	wxCalendarEvent

	wxDatePickerCtrl

This class is derived, and can use functions, from:
	wxControl

	wxWindow

	wxEvtHandler

wxWidgets docs: wxCalendarCtrl
Events
Event types emitted from this class:
	calendar_sel_changed

	calendar_weekday_clicked

 Summary

 Types

 wxCalendarCtrl()

 Functions

 create(This, Parent, Id)

 Equivalent to create(This, Parent, Id, []).

 create/4

 Creates the control.

 destroy(This)

 Destroys the object

 enableHolidayDisplay(This)

 Equivalent to enableHolidayDisplay(This, []).

 enableHolidayDisplay/2

 This function should be used instead of changing wxCAL_SHOW_HOLIDAYS style bit
directly.

 enableMonthChange(This)

 Equivalent to enableMonthChange(This, []).

 enableMonthChange/2

 This function should be used instead of changing wxCAL_NO_MONTH_CHANGE style bit.

 enableYearChange(This)

 deprecated

 Equivalent to enableYearChange(This, []).

 enableYearChange/2

 deprecated

 Deprecated

 getAttr(This, Day)

 Returns the attribute for the given date (should be in the range 1...31).

 getDate(This)

 Gets the currently selected date.

 getHeaderColourBg(This)

 Gets the background colour of the header part of the calendar window.

 getHeaderColourFg(This)

 Gets the foreground colour of the header part of the calendar window.

 getHighlightColourBg(This)

 Gets the background highlight colour.

 getHighlightColourFg(This)

 Gets the foreground highlight colour.

 getHolidayColourBg(This)

 Return the background colour currently used for holiday highlighting.

 getHolidayColourFg(This)

 Return the foreground colour currently used for holiday highlighting.

 hitTest(This, Pos)

 Returns one of wxCalendarHitTestResult constants and fills either date or wd pointer
with the corresponding value depending on the hit test code.

 new()

 Default constructor.

 new(Parent, Id)

 Equivalent to new(Parent, Id, []).

 new/3

 Does the same as create/4 method.

 resetAttr(This, Day)

 Clears any attributes associated with the given day (in the range 1...31).

 setAttr(This, Day, Attr)

 Associates the attribute with the specified date (in the range 1...31).

 setDate(This, Date)

 Sets the current date.

 setHeaderColours(This, ColFg, ColBg)

 Set the colours used for painting the weekdays at the top of the control.

 setHighlightColours(This, ColFg, ColBg)

 Set the colours to be used for highlighting the currently selected date.

 setHoliday(This, Day)

 Marks the specified day as being a holiday in the current month.

 setHolidayColours(This, ColFg, ColBg)

 Sets the colours to be used for the holidays highlighting.

 Types

 wxCalendarCtrl()

 -type wxCalendarCtrl() :: wx:wx_object().

 Functions

 create(This, Parent, Id)

 -spec create(This, Parent, Id) -> boolean()
 when This :: wxCalendarCtrl(), Parent :: wxWindow:wxWindow(), Id :: integer().

Equivalent to create(This, Parent, Id, []).

 create/4

 -spec create(This, Parent, Id, [Option]) -> boolean()
 when
 This :: wxCalendarCtrl(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {date, wx:wx_datetime()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Creates the control.
See wxWindow:new/3 for the meaning of the parameters and the control overview for the possible styles.

 destroy(This)

 -spec destroy(This :: wxCalendarCtrl()) -> ok.

Destroys the object

 enableHolidayDisplay(This)

 -spec enableHolidayDisplay(This) -> ok when This :: wxCalendarCtrl().

Equivalent to enableHolidayDisplay(This, []).

 enableHolidayDisplay/2

 -spec enableHolidayDisplay(This, [Option]) -> ok
 when This :: wxCalendarCtrl(), Option :: {display, boolean()}.

This function should be used instead of changing wxCAL_SHOW_HOLIDAYS style bit
directly.
It enables or disables the special highlighting of the holidays.

 enableMonthChange(This)

 -spec enableMonthChange(This) -> boolean() when This :: wxCalendarCtrl().

Equivalent to enableMonthChange(This, []).

 enableMonthChange/2

 -spec enableMonthChange(This, [Option]) -> boolean()
 when This :: wxCalendarCtrl(), Option :: {enable, boolean()}.

This function should be used instead of changing wxCAL_NO_MONTH_CHANGE style bit.
It allows or disallows the user to change the month interactively. Note that if the month
cannot be changed, the year cannot be changed neither.
Return: true if the value of this option really changed or false if it was already set to
the requested value.

 enableYearChange(This)

 This function is deprecated. wxCalendarCtrl:enableYearChange/1 is deprecated; not available in wxWidgets-2.9 and later.

 -spec enableYearChange(This) -> ok when This :: wxCalendarCtrl().

Equivalent to enableYearChange(This, []).

 enableYearChange/2

 This function is deprecated. wxCalendarCtrl:enableYearChange/2 is deprecated; not available in wxWidgets-2.9 and later.

 -spec enableYearChange(This, [Option]) -> ok
 when This :: wxCalendarCtrl(), Option :: {enable, boolean()}.

Deprecated:
This function should be used instead of changing wxCAL_NO_YEAR_CHANGE style bit
directly. It allows or disallows the user to change the year interactively. Only in
generic wxCalendarCtrl.

 getAttr(This, Day)

 -spec getAttr(This, Day) -> wxCalendarDateAttr:wxCalendarDateAttr()
 when This :: wxCalendarCtrl(), Day :: integer().

Returns the attribute for the given date (should be in the range 1...31).
The returned pointer may be NULL. Only in generic wxCalendarCtrl.

 getDate(This)

 -spec getDate(This) -> wx:wx_datetime() when This :: wxCalendarCtrl().

Gets the currently selected date.

 getHeaderColourBg(This)

 -spec getHeaderColourBg(This) -> wx:wx_colour4() when This :: wxCalendarCtrl().

Gets the background colour of the header part of the calendar window.
This method is currently only implemented in generic wxCalendarCtrl and always
returns wxNullColour in the native versions.
See: setHeaderColours/3

 getHeaderColourFg(This)

 -spec getHeaderColourFg(This) -> wx:wx_colour4() when This :: wxCalendarCtrl().

Gets the foreground colour of the header part of the calendar window.
This method is currently only implemented in generic wxCalendarCtrl and always
returns wxNullColour in the native versions.
See: setHeaderColours/3

 getHighlightColourBg(This)

 -spec getHighlightColourBg(This) -> wx:wx_colour4() when This :: wxCalendarCtrl().

Gets the background highlight colour.
Only in generic wxCalendarCtrl.
This method is currently only implemented in generic wxCalendarCtrl and always
returns wxNullColour in the native versions.
See: setHighlightColours/3

 getHighlightColourFg(This)

 -spec getHighlightColourFg(This) -> wx:wx_colour4() when This :: wxCalendarCtrl().

Gets the foreground highlight colour.
Only in generic wxCalendarCtrl.
This method is currently only implemented in generic wxCalendarCtrl and always
returns wxNullColour in the native versions.
See: setHighlightColours/3

 getHolidayColourBg(This)

 -spec getHolidayColourBg(This) -> wx:wx_colour4() when This :: wxCalendarCtrl().

Return the background colour currently used for holiday highlighting.
Only useful with generic wxCalendarCtrl as native versions currently don't support
holidays display at all and always return wxNullColour.
See: setHolidayColours/3

 getHolidayColourFg(This)

 -spec getHolidayColourFg(This) -> wx:wx_colour4() when This :: wxCalendarCtrl().

Return the foreground colour currently used for holiday highlighting.
Only useful with generic wxCalendarCtrl as native versions currently don't support
holidays display at all and always return wxNullColour.
See: setHolidayColours/3

 hitTest(This, Pos)

 -spec hitTest(This, Pos) -> Result
 when
 Result :: {Res :: wx:wx_enum(), Date :: wx:wx_datetime(), Wd :: wx:wx_enum()},
 This :: wxCalendarCtrl(),
 Pos :: {X :: integer(), Y :: integer()}.

Returns one of wxCalendarHitTestResult constants and fills either date or wd pointer
with the corresponding value depending on the hit test code.
Not implemented in wxGTK currently.

 new()

 -spec new() -> wxCalendarCtrl().

Default constructor.

 new(Parent, Id)

 -spec new(Parent, Id) -> wxCalendarCtrl() when Parent :: wxWindow:wxWindow(), Id :: integer().

Equivalent to new(Parent, Id, []).

 new/3

 -spec new(Parent, Id, [Option]) -> wxCalendarCtrl()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {date, wx:wx_datetime()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Does the same as create/4 method.

 resetAttr(This, Day)

 -spec resetAttr(This, Day) -> ok when This :: wxCalendarCtrl(), Day :: integer().

Clears any attributes associated with the given day (in the range 1...31).
Only in generic wxCalendarCtrl.

 setAttr(This, Day, Attr)

 -spec setAttr(This, Day, Attr) -> ok
 when
 This :: wxCalendarCtrl(),
 Day :: integer(),
 Attr :: wxCalendarDateAttr:wxCalendarDateAttr().

Associates the attribute with the specified date (in the range 1...31).
If the pointer is NULL, the items attribute is cleared. Only in generic wxCalendarCtrl.

 setDate(This, Date)

 -spec setDate(This, Date) -> boolean() when This :: wxCalendarCtrl(), Date :: wx:wx_datetime().

Sets the current date.
The date parameter must be valid and in the currently valid range as set by SetDateRange()
(not implemented in wx), otherwise the current date is not changed and the function
returns false and, additionally, triggers an assertion failure if the date is invalid.

 setHeaderColours(This, ColFg, ColBg)

 -spec setHeaderColours(This, ColFg, ColBg) -> ok
 when
 This :: wxCalendarCtrl(), ColFg :: wx:wx_colour(), ColBg :: wx:wx_colour().

Set the colours used for painting the weekdays at the top of the control.
This method is currently only implemented in generic wxCalendarCtrl and does nothing
in the native versions.

 setHighlightColours(This, ColFg, ColBg)

 -spec setHighlightColours(This, ColFg, ColBg) -> ok
 when
 This :: wxCalendarCtrl(),
 ColFg :: wx:wx_colour(),
 ColBg :: wx:wx_colour().

Set the colours to be used for highlighting the currently selected date.
This method is currently only implemented in generic wxCalendarCtrl and does nothing
in the native versions.

 setHoliday(This, Day)

 -spec setHoliday(This, Day) -> ok when This :: wxCalendarCtrl(), Day :: integer().

Marks the specified day as being a holiday in the current month.
This method is only implemented in the generic version of the control and does nothing in
the native ones.

 setHolidayColours(This, ColFg, ColBg)

 -spec setHolidayColours(This, ColFg, ColBg) -> ok
 when
 This :: wxCalendarCtrl(),
 ColFg :: wx:wx_colour(),
 ColBg :: wx:wx_colour().

Sets the colours to be used for the holidays highlighting.
This method is only implemented in the generic version of the control and does nothing in
the native ones. It should also only be called if the window style includes wxCAL_SHOW_HOLIDAYS
flag or enableHolidayDisplay/2 had been called.

wxCalendarDateAttr

wxCalendarDateAttr is a custom attributes for a calendar date.
The objects of this class are used with wxCalendarCtrl.
See: wxCalendarCtrl
wxWidgets docs: wxCalendarDateAttr

 Summary

 Types

 wxCalendarDateAttr()

 Functions

 destroy(This)

 Destroys the object

 getBackgroundColour(This)

 Returns the background colour set for the calendar date.

 getBorder(This)

 Returns the border set for the calendar date.

 getBorderColour(This)

 Returns the border colour set for the calendar date.

 getFont(This)

 Returns the font set for the calendar date.

 getTextColour(This)

 Returns the text colour set for the calendar date.

 hasBackgroundColour(This)

 Returns true if a non-default text background colour is set.

 hasBorder(This)

 Returns true if a non-default (i.e. any) border is set.

 hasBorderColour(This)

 Returns true if a non-default border colour is set.

 hasFont(This)

 Returns true if a non-default font is set.

 hasTextColour(This)

 Returns true if a non-default text foreground colour is set.

 isHoliday(This)

 Returns true if this calendar day is displayed as a holiday.

 new()

 Equivalent to new([]).

 new/1

 Constructor for specifying all wxCalendarDateAttr properties.

 new(Border, Options)

 Constructor using default properties except the given border.

 setBackgroundColour(This, ColBack)

 Sets the text background colour to use.

 setBorder(This, Border)

 Sets the border to use.

 setBorderColour(This, Col)

 Sets the border colour to use.

 setFont(This, Font)

 Sets the font to use.

 setHoliday(This, Holiday)

 If holiday is true, this calendar day will be displayed as a holiday.

 setTextColour(This, ColText)

 Sets the text (foreground) colour to use.

 Types

 wxCalendarDateAttr()

 -type wxCalendarDateAttr() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxCalendarDateAttr()) -> ok.

Destroys the object

 getBackgroundColour(This)

 -spec getBackgroundColour(This) -> wx:wx_colour4() when This :: wxCalendarDateAttr().

Returns the background colour set for the calendar date.

 getBorder(This)

 -spec getBorder(This) -> wx:wx_enum() when This :: wxCalendarDateAttr().

Returns the border set for the calendar date.

 getBorderColour(This)

 -spec getBorderColour(This) -> wx:wx_colour4() when This :: wxCalendarDateAttr().

Returns the border colour set for the calendar date.

 getFont(This)

 -spec getFont(This) -> wxFont:wxFont() when This :: wxCalendarDateAttr().

Returns the font set for the calendar date.

 getTextColour(This)

 -spec getTextColour(This) -> wx:wx_colour4() when This :: wxCalendarDateAttr().

Returns the text colour set for the calendar date.

 hasBackgroundColour(This)

 -spec hasBackgroundColour(This) -> boolean() when This :: wxCalendarDateAttr().

Returns true if a non-default text background colour is set.

 hasBorder(This)

 -spec hasBorder(This) -> boolean() when This :: wxCalendarDateAttr().

Returns true if a non-default (i.e. any) border is set.

 hasBorderColour(This)

 -spec hasBorderColour(This) -> boolean() when This :: wxCalendarDateAttr().

Returns true if a non-default border colour is set.

 hasFont(This)

 -spec hasFont(This) -> boolean() when This :: wxCalendarDateAttr().

Returns true if a non-default font is set.

 hasTextColour(This)

 -spec hasTextColour(This) -> boolean() when This :: wxCalendarDateAttr().

Returns true if a non-default text foreground colour is set.

 isHoliday(This)

 -spec isHoliday(This) -> boolean() when This :: wxCalendarDateAttr().

Returns true if this calendar day is displayed as a holiday.

 new()

 -spec new() -> wxCalendarDateAttr().

Equivalent to new([]).

 new/1

 -spec new(Border) -> wxCalendarDateAttr() when Border :: wx:wx_enum();
 ([Option]) -> wxCalendarDateAttr()
 when
 Option ::
 {colText, wx:wx_colour()} |
 {colBack, wx:wx_colour()} |
 {colBorder, wx:wx_colour()} |
 {font, wxFont:wxFont()} |
 {border, wx:wx_enum()}.

Constructor for specifying all wxCalendarDateAttr properties.

 new(Border, Options)

 -spec new(Border, [Option]) -> wxCalendarDateAttr()
 when Border :: wx:wx_enum(), Option :: {colBorder, wx:wx_colour()}.

Constructor using default properties except the given border.

 setBackgroundColour(This, ColBack)

 -spec setBackgroundColour(This, ColBack) -> ok
 when This :: wxCalendarDateAttr(), ColBack :: wx:wx_colour().

Sets the text background colour to use.

 setBorder(This, Border)

 -spec setBorder(This, Border) -> ok when This :: wxCalendarDateAttr(), Border :: wx:wx_enum().

Sets the border to use.

 setBorderColour(This, Col)

 -spec setBorderColour(This, Col) -> ok when This :: wxCalendarDateAttr(), Col :: wx:wx_colour().

Sets the border colour to use.

 setFont(This, Font)

 -spec setFont(This, Font) -> ok when This :: wxCalendarDateAttr(), Font :: wxFont:wxFont().

Sets the font to use.

 setHoliday(This, Holiday)

 -spec setHoliday(This, Holiday) -> ok when This :: wxCalendarDateAttr(), Holiday :: boolean().

If holiday is true, this calendar day will be displayed as a holiday.

 setTextColour(This, ColText)

 -spec setTextColour(This, ColText) -> ok when This :: wxCalendarDateAttr(), ColText :: wx:wx_colour().

Sets the text (foreground) colour to use.

wxCalendarEvent

The wxCalendarEvent class is used together with wxCalendarCtrl.
See: wxCalendarCtrl
This class is derived, and can use functions, from:
	wxDateEvent

	wxCommandEvent

	wxEvent

wxWidgets docs: wxCalendarEvent

 Summary

 Types

 wxCalendar()

 wxCalendarEvent()

 wxCalendarEventType()

 Functions

 getDate(This)

 Returns the date.

 getWeekDay(This)

 Returns the week day on which the user clicked in EVT_CALENDAR_WEEKDAY_CLICKED
handler.

 Types

 wxCalendar()

 -type wxCalendar() ::
 #wxCalendar{type :: wxCalendarEvent:wxCalendarEventType(),
 wday :: wx:wx_enum(),
 date :: wx:wx_datetime()}.

 wxCalendarEvent()

 -type wxCalendarEvent() :: wx:wx_object().

 wxCalendarEventType()

 -type wxCalendarEventType() ::
 calendar_sel_changed | calendar_day_changed | calendar_month_changed | calendar_year_changed |
 calendar_doubleclicked | calendar_weekday_clicked.

 Functions

 getDate(This)

 -spec getDate(This) -> wx:wx_datetime() when This :: wxCalendarEvent().

Returns the date.

 getWeekDay(This)

 -spec getWeekDay(This) -> wx:wx_enum() when This :: wxCalendarEvent().

Returns the week day on which the user clicked in EVT_CALENDAR_WEEKDAY_CLICKED
handler.
It doesn't make sense to call this function in other handlers.

wxCaret

A caret is a blinking cursor showing the position where the typed text will appear.
Text controls usually have their own caret but wxCaret provides a way to use a caret
in other windows.
Currently, the caret appears as a rectangle of the given size. In the future, it will be
possible to specify a bitmap to be used for the caret shape.
A caret is always associated with a window and the current caret can be retrieved using wxWindow:getCaret/1.
The same caret can't be reused in two different windows.
wxWidgets docs: wxCaret

 Summary

 Types

 wxCaret()

 Functions

 create(This, Window, Size)

 create(This, Window, Width, Height)

 Creates a caret with the given size (in pixels) and associates it with the window (same
as the equivalent constructors).

 destroy(This)

 Destroys the object

 getBlinkTime()

 Returns the blink time which is measured in milliseconds and is the time elapsed between
2 inversions of the caret (blink time of the caret is the same for all carets, so this
functions is static).

 getPosition(This)

 getSize(This)

 getWindow(This)

 Get the window the caret is associated with.

 hide(This)

 Hides the caret, same as Show(false).

 isOk(This)

 Returns true if the caret was created successfully.

 isVisible(This)

 Returns true if the caret is visible and false if it is permanently hidden (if it is
blinking and not shown currently but will be after the next blink, this method still
returns true).

 move(This, Pt)

 move(This, X, Y)

 Move the caret to given position (in logical coordinates).

 new(Window, Size)

 new(Window, Width, Height)

 Creates a caret with the given size (in pixels) and associates it with the window.

 setBlinkTime(Milliseconds)

 Sets the blink time for all the carets.

 setSize(This, Size)

 setSize(This, Width, Height)

 Changes the size of the caret.

 show(This)

 Equivalent to show(This, []).

 show/2

 Shows or hides the caret.

 Types

 wxCaret()

 -type wxCaret() :: wx:wx_object().

 Functions

 create(This, Window, Size)

 -spec create(This, Window, Size) -> boolean()
 when
 This :: wxCaret(),
 Window :: wxWindow:wxWindow(),
 Size :: {W :: integer(), H :: integer()}.

 create(This, Window, Width, Height)

 -spec create(This, Window, Width, Height) -> boolean()
 when
 This :: wxCaret(),
 Window :: wxWindow:wxWindow(),
 Width :: integer(),
 Height :: integer().

Creates a caret with the given size (in pixels) and associates it with the window (same
as the equivalent constructors).

 destroy(This)

 -spec destroy(This :: wxCaret()) -> ok.

Destroys the object

 getBlinkTime()

 -spec getBlinkTime() -> integer().

Returns the blink time which is measured in milliseconds and is the time elapsed between
2 inversions of the caret (blink time of the caret is the same for all carets, so this
functions is static).

 getPosition(This)

 -spec getPosition(This) -> {X :: integer(), Y :: integer()} when This :: wxCaret().

 getSize(This)

 -spec getSize(This) -> {W :: integer(), H :: integer()} when This :: wxCaret().

 getWindow(This)

 -spec getWindow(This) -> wxWindow:wxWindow() when This :: wxCaret().

Get the window the caret is associated with.

 hide(This)

 -spec hide(This) -> ok when This :: wxCaret().

Hides the caret, same as Show(false).

 isOk(This)

 -spec isOk(This) -> boolean() when This :: wxCaret().

Returns true if the caret was created successfully.

 isVisible(This)

 -spec isVisible(This) -> boolean() when This :: wxCaret().

Returns true if the caret is visible and false if it is permanently hidden (if it is
blinking and not shown currently but will be after the next blink, this method still
returns true).

 move(This, Pt)

 -spec move(This, Pt) -> ok when This :: wxCaret(), Pt :: {X :: integer(), Y :: integer()}.

 move(This, X, Y)

 -spec move(This, X, Y) -> ok when This :: wxCaret(), X :: integer(), Y :: integer().

Move the caret to given position (in logical coordinates).

 new(Window, Size)

 -spec new(Window, Size) -> wxCaret()
 when Window :: wxWindow:wxWindow(), Size :: {W :: integer(), H :: integer()}.

 new(Window, Width, Height)

 -spec new(Window, Width, Height) -> wxCaret()
 when Window :: wxWindow:wxWindow(), Width :: integer(), Height :: integer().

Creates a caret with the given size (in pixels) and associates it with the window.

 setBlinkTime(Milliseconds)

 -spec setBlinkTime(Milliseconds) -> ok when Milliseconds :: integer().

Sets the blink time for all the carets.
Warning:
Under Windows, this function will change the blink time for all carets permanently (until
the next time it is called), even for carets in other applications.
See: getBlinkTime/0

 setSize(This, Size)

 -spec setSize(This, Size) -> ok when This :: wxCaret(), Size :: {W :: integer(), H :: integer()}.

 setSize(This, Width, Height)

 -spec setSize(This, Width, Height) -> ok when This :: wxCaret(), Width :: integer(), Height :: integer().

Changes the size of the caret.

 show(This)

 -spec show(This) -> ok when This :: wxCaret().

Equivalent to show(This, []).

 show/2

 -spec show(This, [Option]) -> ok when This :: wxCaret(), Option :: {show, boolean()}.

Shows or hides the caret.
Notice that if the caret was hidden N times, it must be shown N times as well to reappear
on the screen.

wxCheckBox

A checkbox is a labelled box which by default is either on (checkmark is visible) or off
(no checkmark).
Optionally (when the wxCHK_3STATE style flag is set) it can have a third state, called
the mixed or undetermined state. Often this is used as a "Does Not Apply" state.
Styles
This class supports the following styles:
	wxCHK_2STATE: Create a 2-state checkbox. This is the default.

	wxCHK_3STATE: Create a 3-state checkbox. Not implemented in wxGTK1.

	wxCHK_ALLOW_3RD_STATE_FOR_USER: By default a user can't set a 3-state checkbox to the
third state. It can only be done from code. Using this flags allows the user to set the
checkbox to the third state by clicking.

	wxALIGN_RIGHT: Makes the text appear on the left of the checkbox.

See:
	wxRadioButton

	wxCommandEvent

This class is derived, and can use functions, from:
	wxControl

	wxWindow

	wxEvtHandler

wxWidgets docs: wxCheckBox
Events
Event types emitted from this class:
	command_checkbox_clicked

 Summary

 Types

 wxCheckBox()

 Functions

 create(This, Parent, Id, Label)

 Equivalent to create(This, Parent, Id, Label, []).

 create/5

 Creates the checkbox for two-step construction.

 destroy(This)

 Destroys the object

 get3StateValue(This)

 Gets the state of a 3-state checkbox.

 getValue(This)

 Gets the state of a 2-state checkbox.

 is3rdStateAllowedForUser(This)

 Returns whether or not the user can set the checkbox to the third state.

 is3State(This)

 Returns whether or not the checkbox is a 3-state checkbox.

 isChecked(This)

 This is just a maybe more readable synonym for getValue/1: just as the latter, it
returns true if the checkbox is checked and false otherwise.

 new()

 Default constructor.

 new(Parent, Id, Label)

 Equivalent to new(Parent, Id, Label, []).

 new/4

 Constructor, creating and showing a checkbox.

 set3StateValue(This, State)

 Sets the checkbox to the given state.

 setValue(This, State)

 Sets the checkbox to the given state.

 Types

 wxCheckBox()

 -type wxCheckBox() :: wx:wx_object().

 Functions

 create(This, Parent, Id, Label)

 -spec create(This, Parent, Id, Label) -> boolean()
 when
 This :: wxCheckBox(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Label :: unicode:chardata().

Equivalent to create(This, Parent, Id, Label, []).

 create/5

 -spec create(This, Parent, Id, Label, [Option]) -> boolean()
 when
 This :: wxCheckBox(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Label :: unicode:chardata(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Creates the checkbox for two-step construction.
See new/4 for details.

 destroy(This)

 -spec destroy(This :: wxCheckBox()) -> ok.

Destroys the object

 get3StateValue(This)

 -spec get3StateValue(This) -> wx:wx_enum() when This :: wxCheckBox().

Gets the state of a 3-state checkbox.
Asserts when the function is used with a 2-state checkbox.

 getValue(This)

 -spec getValue(This) -> boolean() when This :: wxCheckBox().

Gets the state of a 2-state checkbox.
Return: Returns true if it is checked, false otherwise.

 is3rdStateAllowedForUser(This)

 -spec is3rdStateAllowedForUser(This) -> boolean() when This :: wxCheckBox().

Returns whether or not the user can set the checkbox to the third state.
Return: true if the user can set the third state of this checkbox, false if it can only
be set programmatically or if it's a 2-state checkbox.

 is3State(This)

 -spec is3State(This) -> boolean() when This :: wxCheckBox().

Returns whether or not the checkbox is a 3-state checkbox.
Return: true if this checkbox is a 3-state checkbox, false if it's a 2-state checkbox.

 isChecked(This)

 -spec isChecked(This) -> boolean() when This :: wxCheckBox().

This is just a maybe more readable synonym for getValue/1: just as the latter, it
returns true if the checkbox is checked and false otherwise.

 new()

 -spec new() -> wxCheckBox().

Default constructor.
See: create/5

 new(Parent, Id, Label)

 -spec new(Parent, Id, Label) -> wxCheckBox()
 when Parent :: wxWindow:wxWindow(), Id :: integer(), Label :: unicode:chardata().

Equivalent to new(Parent, Id, Label, []).

 new/4

 -spec new(Parent, Id, Label, [Option]) -> wxCheckBox()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Label :: unicode:chardata(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Constructor, creating and showing a checkbox.
See: create/5

 set3StateValue(This, State)

 -spec set3StateValue(This, State) -> ok when This :: wxCheckBox(), State :: wx:wx_enum().

Sets the checkbox to the given state.
This does not cause a wxEVT_CHECKBOX event to get emitted.
Asserts when the checkbox is a 2-state checkbox and setting the state to
wxCHK_UNDETERMINED.

 setValue(This, State)

 -spec setValue(This, State) -> ok when This :: wxCheckBox(), State :: boolean().

Sets the checkbox to the given state.
This does not cause a wxEVT_CHECKBOX event to get emitted.

wxCheckListBox

A wxCheckListBox is like a wxListBox, but allows items to be checked or
unchecked.
When using this class under Windows wxWidgets must be compiled with wxUSE_OWNER_DRAWN set
to 1.
See:
	wxListBox

	wxChoice

	wxComboBox

	wxListCtrl

	wxCommandEvent

This class is derived, and can use functions, from:
	wxListBox

	wxControlWithItems

	wxControl

	wxWindow

	wxEvtHandler

wxWidgets docs: wxCheckListBox
Events
Event types emitted from this class:
	command_checklistbox_toggled

 Summary

 Types

 wxCheckListBox()

 Functions

 check(This, Item)

 Equivalent to check(This, Item, []).

 check/3

 Checks the given item.

 destroy(This)

 Destroys the object

 isChecked(This, Item)

 Returns true if the given item is checked, false otherwise.

 new()

 Default constructor.

 new(Parent, Id)

 Equivalent to new(Parent, Id, []).

 new/3

 Constructor, creating and showing a list box.

 Types

 wxCheckListBox()

 -type wxCheckListBox() :: wx:wx_object().

 Functions

 check(This, Item)

 -spec check(This, Item) -> ok when This :: wxCheckListBox(), Item :: integer().

Equivalent to check(This, Item, []).

 check/3

 -spec check(This, Item, [Option]) -> ok
 when This :: wxCheckListBox(), Item :: integer(), Option :: {check, boolean()}.

Checks the given item.
Note that calling this method does not result in a wxEVT_CHECKLISTBOX event being emitted.

 destroy(This)

 -spec destroy(This :: wxCheckListBox()) -> ok.

Destroys the object

 isChecked(This, Item)

 -spec isChecked(This, Item) -> boolean() when This :: wxCheckListBox(), Item :: integer().

Returns true if the given item is checked, false otherwise.

 new()

 -spec new() -> wxCheckListBox().

Default constructor.

 new(Parent, Id)

 -spec new(Parent, Id) -> wxCheckListBox() when Parent :: wxWindow:wxWindow(), Id :: integer().

Equivalent to new(Parent, Id, []).

 new/3

 -spec new(Parent, Id, [Option]) -> wxCheckListBox()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {choices, [unicode:chardata()]} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Constructor, creating and showing a list box.

wxChildFocusEvent

A child focus event is sent to a (parent-)window when one of its child windows gains
focus, so that the window could restore the focus back to its corresponding child if it
loses it now and regains later.
Notice that child window is the direct child of the window receiving event. Use wxWindow:findFocus/0 to
retrieve the window which is actually getting focus.
See: Overview events
This class is derived, and can use functions, from:
	wxCommandEvent

	wxEvent

wxWidgets docs: wxChildFocusEvent
Events
Use wxEvtHandler:connect/3 with wxChildFocusEventType to subscribe to events of this type.

 Summary

 Types

 wxChildFocus()

 wxChildFocusEvent()

 wxChildFocusEventType()

 Functions

 getWindow(This)

 Returns the direct child which receives the focus, or a (grand-)parent of the control
receiving the focus.

 Types

 wxChildFocus()

 -type wxChildFocus() :: #wxChildFocus{type :: wxChildFocusEvent:wxChildFocusEventType()}.

 wxChildFocusEvent()

 -type wxChildFocusEvent() :: wx:wx_object().

 wxChildFocusEventType()

 -type wxChildFocusEventType() :: child_focus.

 Functions

 getWindow(This)

 -spec getWindow(This) -> wxWindow:wxWindow() when This :: wxChildFocusEvent().

Returns the direct child which receives the focus, or a (grand-)parent of the control
receiving the focus.
To get the actually focused control use wxWindow:findFocus/0.

wxChoice

A choice item is used to select one of a list of strings.
Unlike a wxListBox, only the selection is visible until the user pulls down the menu
of choices.
Styles
This class supports the following styles:
	wxCB_SORT: Sorts the entries alphabetically.

See:
	wxListBox

	wxComboBox

	wxCommandEvent

This class is derived, and can use functions, from:
	wxControlWithItems

	wxControl

	wxWindow

	wxEvtHandler

wxWidgets docs: wxChoice
Events
Event types emitted from this class:
	command_choice_selected

 Summary

 Types

 wxChoice()

 Functions

 create(This, Parent, Id, Pos, Size, Choices)

 Equivalent to create(This, Parent, Id, Pos, Size, Choices, []).

 create/7

 delete(This, N)

 Deletes an item from the control.

 destroy(This)

 Destroys the object

 getColumns(This)

 Gets the number of columns in this choice item.

 new()

 Default constructor.

 new(Parent, Id)

 Equivalent to new(Parent, Id, []).

 new/3

 Constructor, creating and showing a choice.

 setColumns(This)

 Equivalent to setColumns(This, []).

 setColumns/2

 Sets the number of columns in this choice item.

 Types

 wxChoice()

 -type wxChoice() :: wx:wx_object().

 Functions

 create(This, Parent, Id, Pos, Size, Choices)

 -spec create(This, Parent, Id, Pos, Size, Choices) -> boolean()
 when
 This :: wxChoice(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Pos :: {X :: integer(), Y :: integer()},
 Size :: {W :: integer(), H :: integer()},
 Choices :: [unicode:chardata()].

Equivalent to create(This, Parent, Id, Pos, Size, Choices, []).

 create/7

 -spec create(This, Parent, Id, Pos, Size, Choices, [Option]) -> boolean()
 when
 This :: wxChoice(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Pos :: {X :: integer(), Y :: integer()},
 Size :: {W :: integer(), H :: integer()},
 Choices :: [unicode:chardata()],
 Option :: {style, integer()} | {validator, wx:wx_object()}.

 delete(This, N)

 -spec delete(This, N) -> ok when This :: wxChoice(), N :: integer().

Deletes an item from the control.
The client data associated with the item will be also deleted if it is owned by the
control. Note that it is an error (signalled by an assert failure in debug builds) to
remove an item with the index negative or greater or equal than the number of items in the control.
If there is a currently selected item below the item being deleted, i.e. if wxControlWithItems:getSelection/1 returns a
valid index greater than or equal to n, the selection is invalidated when this function
is called. However if the selected item appears before the item being deleted, the
selection is preserved unchanged.
See: wxControlWithItems:clear/1

 destroy(This)

 -spec destroy(This :: wxChoice()) -> ok.

Destroys the object

 getColumns(This)

 -spec getColumns(This) -> integer() when This :: wxChoice().

Gets the number of columns in this choice item.
Remark: This is implemented for GTK and Motif only and always returns 1 for the other
platforms.

 new()

 -spec new() -> wxChoice().

Default constructor.
See: create/7

 new(Parent, Id)

 -spec new(Parent, Id) -> wxChoice() when Parent :: wxWindow:wxWindow(), Id :: integer().

Equivalent to new(Parent, Id, []).

 new/3

 -spec new(Parent, Id, [Option]) -> wxChoice()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {choices, [unicode:chardata()]} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Constructor, creating and showing a choice.
See: create/7

 setColumns(This)

 -spec setColumns(This) -> ok when This :: wxChoice().

Equivalent to setColumns(This, []).

 setColumns/2

 -spec setColumns(This, [Option]) -> ok when This :: wxChoice(), Option :: {n, integer()}.

Sets the number of columns in this choice item.
Remark: This is implemented for GTK and Motif only and doesn’t do anything under other
platforms.

wxChoicebook

wxChoicebook is a class similar to wxNotebook, but uses a wxChoice control to
show the labels instead of the tabs.
For usage documentation of this class, please refer to the base abstract class
wxBookCtrl. You can also use the page_samples_notebook to see wxChoicebook in action.
wxChoicebook allows the use of wxBookCtrlBase::GetControlSizer(), allowing a program
to add other controls next to the choice control. This is particularly useful when screen
space is restricted, as it often is when wxChoicebook is being employed.
Styles
This class supports the following styles:
	wxCHB_DEFAULT: Choose the default location for the labels depending on the current
platform (but currently it's the same everywhere, namely wxCHB_TOP).

	wxCHB_TOP: Place labels above the page area.

	wxCHB_LEFT: Place labels on the left side.

	wxCHB_RIGHT: Place labels on the right side.

	wxCHB_BOTTOM: Place labels below the page area.

See:
	Overview bookctrl

	wxNotebook

	Examples

This class is derived, and can use functions, from:
	wxBookCtrlBase

	wxControl

	wxWindow

	wxEvtHandler

wxWidgets docs: wxChoicebook
Events
Event types emitted from this class:
	choicebook_page_changed

	choicebook_page_changing

 Summary

 Types

 wxChoicebook()

 Functions

 addPage(This, Page, Text)

 Equivalent to addPage(This, Page, Text, []).

 addPage/4

 Adds a new page.

 advanceSelection(This)

 Equivalent to advanceSelection(This, []).

 advanceSelection/2

 Cycles through the tabs.

 assignImageList(This, ImageList)

 Sets the image list for the page control and takes ownership of the list.

 changeSelection(This, Page)

 Changes the selection to the given page, returning the previous selection.

 create(This, Parent, Id)

 Equivalent to create(This, Parent, Id, []).

 create/4

 Create the choicebook control that has already been constructed with the default
constructor.

 deleteAllPages(This)

 Deletes all pages.

 destroy(This)

 Destroys the object

 getCurrentPage(This)

 Returns the currently selected page or NULL.

 getImageList(This)

 Returns the associated image list, may be NULL.

 getPage(This, Page)

 Returns the window at the given page position.

 getPageCount(This)

 Returns the number of pages in the control.

 getPageImage(This, NPage)

 Returns the image index for the given page.

 getPageText(This, NPage)

 Returns the string for the given page.

 getSelection(This)

 Returns the currently selected page, or wxNOT_FOUND if none was selected.

 hitTest(This, Pt)

 Returns the index of the tab at the specified position or wxNOT_FOUND if none.

 insertPage(This, Index, Page, Text)

 Equivalent to insertPage(This, Index, Page, Text, []).

 insertPage/5

 Inserts a new page at the specified position.

 new()

 Constructs a choicebook control.

 new(Parent, Id)

 Equivalent to new(Parent, Id, []).

 new/3

 setImageList(This, ImageList)

 Sets the image list to use.

 setPageImage(This, Page, Image)

 Sets the image index for the given page.

 setPageSize(This, Size)

 Sets the width and height of the pages.

 setPageText(This, Page, Text)

 Sets the text for the given page.

 setSelection(This, Page)

 Sets the selection to the given page, returning the previous selection.

 Types

 wxChoicebook()

 -type wxChoicebook() :: wx:wx_object().

 Functions

 addPage(This, Page, Text)

 -spec addPage(This, Page, Text) -> boolean()
 when This :: wxChoicebook(), Page :: wxWindow:wxWindow(), Text :: unicode:chardata().

Equivalent to addPage(This, Page, Text, []).

 addPage/4

 -spec addPage(This, Page, Text, [Option]) -> boolean()
 when
 This :: wxChoicebook(),
 Page :: wxWindow:wxWindow(),
 Text :: unicode:chardata(),
 Option :: {bSelect, boolean()} | {imageId, integer()}.

Adds a new page.
The page must have the book control itself as the parent and must not have been added to
this control previously.
The call to this function will generate the page changing and page changed events if select
is true, but not when inserting the very first page (as there is no previous page
selection to switch from in this case and so it wouldn't make sense to e.g. veto such event).
Return: true if successful, false otherwise.
Remark: Do not delete the page, it will be deleted by the book control.
See: insertPage/5

 advanceSelection(This)

 -spec advanceSelection(This) -> ok when This :: wxChoicebook().

Equivalent to advanceSelection(This, []).

 advanceSelection/2

 -spec advanceSelection(This, [Option]) -> ok when This :: wxChoicebook(), Option :: {forward, boolean()}.

Cycles through the tabs.
The call to this function generates the page changing events.

 assignImageList(This, ImageList)

 -spec assignImageList(This, ImageList) -> ok
 when This :: wxChoicebook(), ImageList :: wxImageList:wxImageList().

Sets the image list for the page control and takes ownership of the list.
See:
	wxImageList

	setImageList/2

 changeSelection(This, Page)

 -spec changeSelection(This, Page) -> integer() when This :: wxChoicebook(), Page :: integer().

Changes the selection to the given page, returning the previous selection.
This function behaves as setSelection/2 but does not generate the page changing events.
See overview_events_prog for more information.

 create(This, Parent, Id)

 -spec create(This, Parent, Id) -> boolean()
 when This :: wxChoicebook(), Parent :: wxWindow:wxWindow(), Id :: integer().

Equivalent to create(This, Parent, Id, []).

 create/4

 -spec create(This, Parent, Id, [Option]) -> boolean()
 when
 This :: wxChoicebook(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Create the choicebook control that has already been constructed with the default
constructor.

 deleteAllPages(This)

 -spec deleteAllPages(This) -> boolean() when This :: wxChoicebook().

Deletes all pages.

 destroy(This)

 -spec destroy(This :: wxChoicebook()) -> ok.

Destroys the object

 getCurrentPage(This)

 -spec getCurrentPage(This) -> wxWindow:wxWindow() when This :: wxChoicebook().

Returns the currently selected page or NULL.

 getImageList(This)

 -spec getImageList(This) -> wxImageList:wxImageList() when This :: wxChoicebook().

Returns the associated image list, may be NULL.
See:
	wxImageList

	setImageList/2

 getPage(This, Page)

 -spec getPage(This, Page) -> wxWindow:wxWindow() when This :: wxChoicebook(), Page :: integer().

Returns the window at the given page position.

 getPageCount(This)

 -spec getPageCount(This) -> integer() when This :: wxChoicebook().

Returns the number of pages in the control.

 getPageImage(This, NPage)

 -spec getPageImage(This, NPage) -> integer() when This :: wxChoicebook(), NPage :: integer().

Returns the image index for the given page.

 getPageText(This, NPage)

 -spec getPageText(This, NPage) -> unicode:charlist() when This :: wxChoicebook(), NPage :: integer().

Returns the string for the given page.

 getSelection(This)

 -spec getSelection(This) -> integer() when This :: wxChoicebook().

Returns the currently selected page, or wxNOT_FOUND if none was selected.
Note that this method may return either the previously or newly selected page when called
from the EVT_BOOKCTRL_PAGE_CHANGED handler depending on the platform and so wxBookCtrlEvent:getSelection/1 should be
used instead in this case.

 hitTest(This, Pt)

 -spec hitTest(This, Pt) -> Result
 when
 Result :: {Res :: integer(), Flags :: integer()},
 This :: wxChoicebook(),
 Pt :: {X :: integer(), Y :: integer()}.

Returns the index of the tab at the specified position or wxNOT_FOUND if none.
If flags parameter is non-NULL, the position of the point inside the tab is returned as well.
Return: Returns the zero-based tab index or wxNOT_FOUND if there is no tab at the
specified position.

 insertPage(This, Index, Page, Text)

 -spec insertPage(This, Index, Page, Text) -> boolean()
 when
 This :: wxChoicebook(),
 Index :: integer(),
 Page :: wxWindow:wxWindow(),
 Text :: unicode:chardata().

Equivalent to insertPage(This, Index, Page, Text, []).

 insertPage/5

 -spec insertPage(This, Index, Page, Text, [Option]) -> boolean()
 when
 This :: wxChoicebook(),
 Index :: integer(),
 Page :: wxWindow:wxWindow(),
 Text :: unicode:chardata(),
 Option :: {bSelect, boolean()} | {imageId, integer()}.

Inserts a new page at the specified position.
Return: true if successful, false otherwise.
Remark: Do not delete the page, it will be deleted by the book control.
See: addPage/4

 new()

 -spec new() -> wxChoicebook().

Constructs a choicebook control.

 new(Parent, Id)

 -spec new(Parent, Id) -> wxChoicebook() when Parent :: wxWindow:wxWindow(), Id :: integer().

Equivalent to new(Parent, Id, []).

 new/3

 -spec new(Parent, Id, [Option]) -> wxChoicebook()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

 setImageList(This, ImageList)

 -spec setImageList(This, ImageList) -> ok
 when This :: wxChoicebook(), ImageList :: wxImageList:wxImageList().

Sets the image list to use.
It does not take ownership of the image list, you must delete it yourself.
See:
	wxImageList

	assignImageList/2

 setPageImage(This, Page, Image)

 -spec setPageImage(This, Page, Image) -> boolean()
 when This :: wxChoicebook(), Page :: integer(), Image :: integer().

Sets the image index for the given page.
image is an index into the image list which was set with setImageList/2.

 setPageSize(This, Size)

 -spec setPageSize(This, Size) -> ok
 when This :: wxChoicebook(), Size :: {W :: integer(), H :: integer()}.

Sets the width and height of the pages.
Note: This method is currently not implemented for wxGTK.

 setPageText(This, Page, Text)

 -spec setPageText(This, Page, Text) -> boolean()
 when This :: wxChoicebook(), Page :: integer(), Text :: unicode:chardata().

Sets the text for the given page.

 setSelection(This, Page)

 -spec setSelection(This, Page) -> integer() when This :: wxChoicebook(), Page :: integer().

Sets the selection to the given page, returning the previous selection.
Notice that the call to this function generates the page changing events, use the changeSelection/2
function if you don't want these events to be generated.
See: getSelection/1

wxClientDC

wxClientDC is primarily useful for obtaining information about the window from
outside EVT_PAINT() handler.
Typical use of this class is to obtain the extent of some text string in order to
allocate enough size for a window, e.g.
Note: While wxClientDC may also be used for drawing on the client area of a window
from outside an EVT_PAINT() handler in some ports, this does not work on all platforms
(neither wxOSX nor wxGTK with GTK 3 Wayland backend support this, so drawing using wxClientDC
simply doesn't have any effect there) and the only portable way of drawing is via wxPaintDC.
To redraw a small part of the window, use wxWindow:refreshRect/3 to invalidate just this part and check wxWindow:getUpdateRegion/1 in the
paint event handler to redraw this part only.
wxClientDC objects should normally be constructed as temporary stack objects, i.e.
don't store a wxClientDC object.
A wxClientDC object is initialized to use the same font and colours as the window it
is associated with.
See:
	wxDC

	wxMemoryDC

	wxPaintDC

	wxWindowDC

	wxScreenDC

This class is derived, and can use functions, from:
	wxWindowDC

	wxDC

wxWidgets docs: wxClientDC

 Summary

 Types

 wxClientDC()

 Functions

 destroy(This)

 Destroys the object

 new(Window)

 Constructor.

 Types

 wxClientDC()

 -type wxClientDC() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxClientDC()) -> ok.

Destroys the object

 new(Window)

 -spec new(Window) -> wxClientDC() when Window :: wxWindow:wxWindow().

Constructor.
Pass a pointer to the window on which you wish to paint.

wxClipboard

A class for manipulating the clipboard.
To use the clipboard, you call member functions of the global ?wxTheClipboard object.
See the overview_dataobject for further information.
Call open/1 to get ownership of the clipboard. If this operation returns true, you now own the
clipboard. Call setData/2 to put data on the clipboard, or getData/2 to retrieve data from the clipboard.
Call close/1 to close the clipboard and relinquish ownership. You should keep the clipboard open
only momentarily.
For example:
Note: On GTK, the clipboard behavior can vary depending on the configuration of the
end-user's machine. In order for the clipboard data to persist after the window closes, a
clipboard manager must be installed. Some clipboard managers will automatically flush the
clipboard after each new piece of data is added, while others will not. The @Flush()
function will force the clipboard manager to flush the data.
See:
	Overview dnd

	Overview dataobject

	wxDataObject

wxWidgets docs: wxClipboard

 Summary

 Types

 wxClipboard()

 Functions

 addData(This, Data)

 Call this function to add the data object to the clipboard.

 clear(This)

 Clears the global clipboard object and the system's clipboard if possible.

 close(This)

 Call this function to close the clipboard, having opened it with open/1.

 destroy(This)

 Destroys the object

 flush(This)

 Flushes the clipboard: this means that the data which is currently on clipboard will stay
available even after the application exits (possibly eating memory), otherwise the
clipboard will be emptied on exit.

 get()

 Returns the global instance (wxTheClipboard) of the clipboard object.

 getData(This, Data)

 Call this function to fill data with data on the clipboard, if available in the
required format.

 isOpened(This)

 Returns true if the clipboard has been opened.

 isSupported(This, Format)

 Returns true if there is data which matches the data format of the given data object
currently available on the clipboard.

 new()

 Default constructor.

 open(This)

 Call this function to open the clipboard before calling setData/2 and getData/2.

 setData(This, Data)

 Call this function to set the data object to the clipboard.

 usePrimarySelection(This)

 Equivalent to usePrimarySelection(This, []).

 usePrimarySelection/2

 On platforms supporting it (all X11-based ports), wxClipboard uses the CLIPBOARD X11
selection by default.

 Types

 wxClipboard()

 -type wxClipboard() :: wx:wx_object().

 Functions

 addData(This, Data)

 -spec addData(This, Data) -> boolean() when This :: wxClipboard(), Data :: wxDataObject:wxDataObject().

Call this function to add the data object to the clipboard.
This is an obsolete synonym for setData/2.

 clear(This)

 -spec clear(This) -> ok when This :: wxClipboard().

Clears the global clipboard object and the system's clipboard if possible.

 close(This)

 -spec close(This) -> ok when This :: wxClipboard().

Call this function to close the clipboard, having opened it with open/1.

 destroy(This)

 -spec destroy(This :: wxClipboard()) -> ok.

Destroys the object

 flush(This)

 -spec flush(This) -> boolean() when This :: wxClipboard().

Flushes the clipboard: this means that the data which is currently on clipboard will stay
available even after the application exits (possibly eating memory), otherwise the
clipboard will be emptied on exit.
Currently this method is implemented in MSW and GTK and always returns false otherwise.
Note: On GTK, only the non-primary selection can be flushed. Calling this function when
the clipboard is using the primary selection will return false and not make any data
available after the program exits.
Return: false if the operation is unsuccessful for any reason.

 get()

 -spec get() -> wxClipboard().

Returns the global instance (wxTheClipboard) of the clipboard object.

 getData(This, Data)

 -spec getData(This, Data) -> boolean() when This :: wxClipboard(), Data :: wxDataObject:wxDataObject().

Call this function to fill data with data on the clipboard, if available in the
required format.
Returns true on success.

 isOpened(This)

 -spec isOpened(This) -> boolean() when This :: wxClipboard().

Returns true if the clipboard has been opened.

 isSupported(This, Format)

 -spec isSupported(This, Format) -> boolean() when This :: wxClipboard(), Format :: wx:wx_enum().

Returns true if there is data which matches the data format of the given data object
currently available on the clipboard.

 new()

 -spec new() -> wxClipboard().

Default constructor.

 open(This)

 -spec open(This) -> boolean() when This :: wxClipboard().

Call this function to open the clipboard before calling setData/2 and getData/2.
Call close/1 when you have finished with the clipboard. You should keep the clipboard open for
only a very short time.
Return: true on success. This should be tested (as in the sample shown above).

 setData(This, Data)

 -spec setData(This, Data) -> boolean() when This :: wxClipboard(), Data :: wxDataObject:wxDataObject().

Call this function to set the data object to the clipboard.
The new data object replaces any previously set one, so if the application wants to
provide clipboard data in several different formats, it must use a composite data object
supporting all of the formats instead of calling this function several times with
different data objects as this would only leave data from the last one in the clipboard.
After this function has been called, the clipboard owns the data, so do not delete the
data explicitly.

 usePrimarySelection(This)

 -spec usePrimarySelection(This) -> ok when This :: wxClipboard().

Equivalent to usePrimarySelection(This, []).

 usePrimarySelection/2

 -spec usePrimarySelection(This, [Option]) -> ok
 when This :: wxClipboard(), Option :: {primary, boolean()}.

On platforms supporting it (all X11-based ports), wxClipboard uses the CLIPBOARD X11
selection by default.
When this function is called with true, all subsequent clipboard operations will use
PRIMARY selection until this function is called again with false.
On the other platforms, there is no PRIMARY selection and so all clipboard operations
will fail. This allows implementing the standard X11 handling of the clipboard which
consists in copying data to the CLIPBOARD selection only when the user explicitly requests
it (i.e. by selecting the "Copy" menu command) but putting the currently selected text
into the PRIMARY selection automatically, without overwriting the normal clipboard
contents with the currently selected text on the other platforms.

wxClipboardTextEvent

This class represents the events generated by a control (typically a wxTextCtrl but
other windows can generate these events as well) when its content gets copied or cut to,
or pasted from the clipboard.
There are three types of corresponding events wxEVT_TEXT_COPY, wxEVT_TEXT_CUT and wxEVT_TEXT_PASTE.
If any of these events is processed (without being skipped) by an event handler, the
corresponding operation doesn't take place which allows preventing the text from being
copied from or pasted to a control. It is also possible to examine the clipboard contents
in the PASTE event handler and transform it in some way before inserting in a control -
for example, changing its case or removing invalid characters.
Finally notice that a CUT event is always preceded by the COPY event which makes it
possible to only process the latter if it doesn't matter if the text was copied or cut.
Note: These events are currently only generated by wxTextCtrl in wxGTK and wxOSX but
are also generated by wxComboBox without wxCB_READONLY style in wxMSW.
See: wxClipboard
This class is derived, and can use functions, from:
	wxCommandEvent

	wxEvent

wxWidgets docs: wxClipboardTextEvent
Events
Use wxEvtHandler:connect/3 with wxClipboardTextEventType to subscribe to events of this type.

 Summary

 Types

 wxClipboardText()

 wxClipboardTextEvent()

 wxClipboardTextEventType()

 Types

 wxClipboardText()

 -type wxClipboardText() :: #wxClipboardText{type :: wxClipboardTextEvent:wxClipboardTextEventType()}.

 wxClipboardTextEvent()

 -type wxClipboardTextEvent() :: wx:wx_object().

 wxClipboardTextEventType()

 -type wxClipboardTextEventType() :: command_text_copy | command_text_cut | command_text_paste.

wxCloseEvent

This event class contains information about window and session close events.
The handler function for EVT_CLOSE is called when the user has tried to close a a frame
or dialog box using the window manager (X) or system menu (Windows). It can also be
invoked by the application itself programmatically, for example by calling the wxWindow:close/2 function.
You should check whether the application is forcing the deletion of the window using canVeto/1. If
this is false, you must destroy the window using wxWindow:'Destroy'/1.
If the return value is true, it is up to you whether you respond by destroying the window.
If you don't destroy the window, you should call veto/2 to let the calling code know that you
did not destroy the window. This allows the wxWindow:close/2 function to return true or false depending on
whether the close instruction was honoured or not.
Example of a wxCloseEvent handler:
The EVT_END_SESSION event is slightly different as it is sent by the system when the user
session is ending (e.g. because of log out or shutdown) and so all windows are being
forcefully closed. At least under MSW, after the handler for this event is executed the
program is simply killed by the system. Because of this, the default handler for this
event provided by wxWidgets calls all the usual cleanup code (including wxApp::OnExit()
(not implemented in wx)) so that it could still be executed and exit()s the process
itself, without waiting for being killed. If this behaviour is for some reason
undesirable, make sure that you define a handler for this event in your wxApp-derived
class and do not call event.Skip() in it (but be aware that the system will still kill
your application).
See:
	wxWindow:close/2

	Overview windowdeletion

This class is derived, and can use functions, from:
	wxEvent

wxWidgets docs: wxCloseEvent
Events
Use wxEvtHandler:connect/3 with wxCloseEventType to subscribe to events of this type.

 Summary

 Types

 wxClose()

 wxCloseEvent()

 wxCloseEventType()

 Functions

 canVeto(This)

 Returns true if you can veto a system shutdown or a window close event.

 getLoggingOff(This)

 Returns true if the user is just logging off or false if the system is shutting down.

 setCanVeto(This, CanVeto)

 Sets the 'can veto' flag.

 setLoggingOff(This, LoggingOff)

 Sets the 'logging off' flag.

 veto(This)

 Equivalent to veto(This, []).

 veto/2

 Call this from your event handler to veto a system shutdown or to signal to the calling
application that a window close did not happen.

 Types

 wxClose()

 -type wxClose() :: #wxClose{type :: wxCloseEvent:wxCloseEventType()}.

 wxCloseEvent()

 -type wxCloseEvent() :: wx:wx_object().

 wxCloseEventType()

 -type wxCloseEventType() :: close_window | end_session | query_end_session.

 Functions

 canVeto(This)

 -spec canVeto(This) -> boolean() when This :: wxCloseEvent().

Returns true if you can veto a system shutdown or a window close event.
Vetoing a window close event is not possible if the calling code wishes to force the
application to exit, and so this function must be called to check this.

 getLoggingOff(This)

 -spec getLoggingOff(This) -> boolean() when This :: wxCloseEvent().

Returns true if the user is just logging off or false if the system is shutting down.
This method can only be called for end session and query end session events, it doesn't
make sense for close window event.

 setCanVeto(This, CanVeto)

 -spec setCanVeto(This, CanVeto) -> ok when This :: wxCloseEvent(), CanVeto :: boolean().

Sets the 'can veto' flag.

 setLoggingOff(This, LoggingOff)

 -spec setLoggingOff(This, LoggingOff) -> ok when This :: wxCloseEvent(), LoggingOff :: boolean().

Sets the 'logging off' flag.

 veto(This)

 -spec veto(This) -> ok when This :: wxCloseEvent().

Equivalent to veto(This, []).

 veto/2

 -spec veto(This, [Option]) -> ok when This :: wxCloseEvent(), Option :: {veto, boolean()}.

Call this from your event handler to veto a system shutdown or to signal to the calling
application that a window close did not happen.
You can only veto a shutdown if canVeto/1 returns true.

wxColourData

This class holds a variety of information related to colour dialogs.
See:
	wx_color()

	wxColourDialog

	Overview cmndlg

wxWidgets docs: wxColourData

 Summary

 Types

 wxColourData()

 Functions

 destroy(This)

 Destroys the object

 getChooseFull(This)

 Under Windows, determines whether the Windows colour dialog will display the full dialog
with custom colour selection controls.

 getColour(This)

 Gets the current colour associated with the colour dialog.

 getCustomColour(This, I)

 Returns custom colours associated with the colour dialog.

 new()

 Constructor.

 setChooseFull(This, Flag)

 Under Windows, tells the Windows colour dialog to display the full dialog with custom
colour selection controls.

 setColour(This, Colour)

 Sets the default colour for the colour dialog.

 setCustomColour(This, I, Colour)

 Sets custom colours for the colour dialog.

 Types

 wxColourData()

 -type wxColourData() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxColourData()) -> ok.

Destroys the object

 getChooseFull(This)

 -spec getChooseFull(This) -> boolean() when This :: wxColourData().

Under Windows, determines whether the Windows colour dialog will display the full dialog
with custom colour selection controls.
Has no meaning under other platforms.
The default value is true.

 getColour(This)

 -spec getColour(This) -> wx:wx_colour4() when This :: wxColourData().

Gets the current colour associated with the colour dialog.
The default colour is black.

 getCustomColour(This, I)

 -spec getCustomColour(This, I) -> wx:wx_colour4() when This :: wxColourData(), I :: integer().

Returns custom colours associated with the colour dialog.

 new()

 -spec new() -> wxColourData().

Constructor.
Initializes the custom colours to wxNullColour, the data colour setting to black, and
the choose full setting to true.

 setChooseFull(This, Flag)

 -spec setChooseFull(This, Flag) -> ok when This :: wxColourData(), Flag :: boolean().

Under Windows, tells the Windows colour dialog to display the full dialog with custom
colour selection controls.
Under other platforms, has no effect.
The default value is true.

 setColour(This, Colour)

 -spec setColour(This, Colour) -> ok when This :: wxColourData(), Colour :: wx:wx_colour().

Sets the default colour for the colour dialog.
The default colour is black.

 setCustomColour(This, I, Colour)

 -spec setCustomColour(This, I, Colour) -> ok
 when This :: wxColourData(), I :: integer(), Colour :: wx:wx_colour().

Sets custom colours for the colour dialog.

wxColourDialog

This class represents the colour chooser dialog.
Starting from wxWidgets 3.1.3 and currently in the MSW port only, this dialog generates
wxEVT_COLOUR_CHANGED events while it is being shown, i.e. from inside its wxDialog:showModal/1 method, that
notify the program about the change of the currently selected colour and allow it to e.g.
preview the effect of selecting this colour. Note that if you react to this event, you
should also correctly revert to the previously selected colour if the dialog is cancelled
by the user.
Example of using this class with dynamic feedback for the selected colour:
See:
	Overview cmndlg

	wx_color()

	wxColourData

	?wxGetColourFromUser()

This class is derived, and can use functions, from:
	wxDialog

	wxTopLevelWindow

	wxWindow

	wxEvtHandler

wxWidgets docs: wxColourDialog

 Summary

 Types

 wxColourDialog()

 Functions

 create(This, Parent)

 Equivalent to create(This, Parent, []).

 create/3

 Same as new/2.

 destroy(This)

 Destroys the object

 getColourData(This)

 Returns the colour data associated with the colour dialog.

 new()

 new(Parent)

 Equivalent to new(Parent, []).

 new/2

 Constructor.

 Types

 wxColourDialog()

 -type wxColourDialog() :: wx:wx_object().

 Functions

 create(This, Parent)

 -spec create(This, Parent) -> boolean() when This :: wxColourDialog(), Parent :: wxWindow:wxWindow().

Equivalent to create(This, Parent, []).

 create/3

 -spec create(This, Parent, [Option]) -> boolean()
 when
 This :: wxColourDialog(),
 Parent :: wxWindow:wxWindow(),
 Option :: {data, wxColourData:wxColourData()}.

Same as new/2.

 destroy(This)

 -spec destroy(This :: wxColourDialog()) -> ok.

Destroys the object

 getColourData(This)

 -spec getColourData(This) -> wxColourData:wxColourData() when This :: wxColourDialog().

Returns the colour data associated with the colour dialog.

 new()

 -spec new() -> wxColourDialog().

 new(Parent)

 -spec new(Parent) -> wxColourDialog() when Parent :: wxWindow:wxWindow().

Equivalent to new(Parent, []).

 new/2

 -spec new(Parent, [Option]) -> wxColourDialog()
 when Parent :: wxWindow:wxWindow(), Option :: {data, wxColourData:wxColourData()}.

Constructor.
Pass a parent window, and optionally a pointer to a block of colour data, which will be
copied to the colour dialog's colour data.
Custom colours from colour data object will be used in the dialog's colour palette.
Invalid entries in custom colours list will be ignored on some platforms(GTK) or replaced
with white colour on platforms where custom colours palette has fixed size (MSW).
See: wxColourData

wxColourPickerCtrl

This control allows the user to select a colour.
The generic implementation is a button which brings up a wxColourDialog when clicked.
Native implementation may differ but this is usually a (small) widget which give access to
the colour-chooser dialog. It is only available if wxUSE_COLOURPICKERCTRL is set to 1
(the default).
Styles
This class supports the following styles:
	wxCLRP_DEFAULT_STYLE: The default style: 0.

	wxCLRP_USE_TEXTCTRL: Creates a text control to the left of the picker button which is
completely managed by the wxColourPickerCtrl and which can be used by the user to
specify a colour (see SetColour). The text control is automatically synchronized with
button's value. Use functions defined in wxPickerBase to modify the text control.

	wxCLRP_SHOW_LABEL: Shows the colour in HTML form (AABBCC) as colour button label (instead
of no label at all).

	wxCLRP_SHOW_ALPHA: Allows selecting opacity in the colour-chooser (effective under wxGTK
and wxOSX).

See:
	wxColourDialog

	wxColourPickerEvent

This class is derived, and can use functions, from:
	wxPickerBase

	wxControl

	wxWindow

	wxEvtHandler

wxWidgets docs: wxColourPickerCtrl
Events
Event types emitted from this class:
	command_colourpicker_changed

 Summary

 Types

 wxColourPickerCtrl()

 Functions

 create(This, Parent, Id)

 Equivalent to create(This, Parent, Id, []).

 create/4

 Creates a colour picker with the given arguments.

 destroy(This)

 Destroys the object

 getColour(This)

 Returns the currently selected colour.

 new()

 new(Parent, Id)

 Equivalent to new(Parent, Id, []).

 new/3

 Initializes the object and calls create/4 with all the parameters.

 setColour/2

 Sets the currently selected colour.

 Types

 wxColourPickerCtrl()

 -type wxColourPickerCtrl() :: wx:wx_object().

 Functions

 create(This, Parent, Id)

 -spec create(This, Parent, Id) -> boolean()
 when This :: wxColourPickerCtrl(), Parent :: wxWindow:wxWindow(), Id :: integer().

Equivalent to create(This, Parent, Id, []).

 create/4

 -spec create(This, Parent, Id, [Option]) -> boolean()
 when
 This :: wxColourPickerCtrl(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {col, wx:wx_colour()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Creates a colour picker with the given arguments.
Return: true if the control was successfully created or false if creation failed.

 destroy(This)

 -spec destroy(This :: wxColourPickerCtrl()) -> ok.

Destroys the object

 getColour(This)

 -spec getColour(This) -> wx:wx_colour4() when This :: wxColourPickerCtrl().

Returns the currently selected colour.

 new()

 -spec new() -> wxColourPickerCtrl().

 new(Parent, Id)

 -spec new(Parent, Id) -> wxColourPickerCtrl() when Parent :: wxWindow:wxWindow(), Id :: integer().

Equivalent to new(Parent, Id, []).

 new/3

 -spec new(Parent, Id, [Option]) -> wxColourPickerCtrl()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {col, wx:wx_colour()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Initializes the object and calls create/4 with all the parameters.

 setColour/2

 -spec setColour(This, Colname) -> ok when This :: wxColourPickerCtrl(), Colname :: unicode:chardata();
 (This, Col) -> ok when This :: wxColourPickerCtrl(), Col :: wx:wx_colour().

Sets the currently selected colour.
See wxColour::Set() (not implemented in wx).

wxColourPickerEvent

This event class is used for the events generated by wxColourPickerCtrl.
See: wxColourPickerCtrl
This class is derived, and can use functions, from:
	wxCommandEvent

	wxEvent

wxWidgets docs: wxColourPickerEvent
Events
Use wxEvtHandler:connect/3 with wxColourPickerEventType to subscribe to events of this type.

 Summary

 Types

 wxColourPicker()

 wxColourPickerEvent()

 wxColourPickerEventType()

 Functions

 getColour(This)

 Retrieve the colour the user has just selected.

 Types

 wxColourPicker()

 -type wxColourPicker() ::
 #wxColourPicker{type :: wxColourPickerEvent:wxColourPickerEventType(),
 colour :: wx:wx_colour()}.

 wxColourPickerEvent()

 -type wxColourPickerEvent() :: wx:wx_object().

 wxColourPickerEventType()

 -type wxColourPickerEventType() :: command_colourpicker_changed.

 Functions

 getColour(This)

 -spec getColour(This) -> wx:wx_colour4() when This :: wxColourPickerEvent().

Retrieve the colour the user has just selected.

wxComboBox

A combobox is like a combination of an edit control and a listbox.
It can be displayed as static list with editable or read-only text field; or a drop-down
list with text field; or a drop-down list without a text field depending on the platform
and presence of wxCB_READONLY style.
A combobox permits a single selection only. Combobox items are numbered from zero.
If you need a customized combobox, have a look at wxComboCtrl (not implemented in wx), wxOwnerDrawnComboBox
(not implemented in wx), wxComboPopup (not implemented in wx) and the ready-to-use wxBitmapComboBox
(not implemented in wx).
Please refer to wxTextEntry (not implemented in wx) documentation for the description
of methods operating with the text entry part of the combobox and to wxItemContainer
(not implemented in wx) for the methods operating with the list of strings. Notice that at
least under MSW wxComboBox doesn't behave correctly if it contains strings differing
in case only so portable programs should avoid adding such strings to this control.
Styles
This class supports the following styles:
	wxCB_SIMPLE: Creates a combobox with a permanently displayed list. Windows only.

	wxCB_DROPDOWN: Creates a combobox with a drop-down list. MSW and Motif only.

	wxCB_READONLY: A combobox with this style behaves like a wxChoice (and may look in
the same way as well, although this is platform-dependent), i.e. it allows the user to
choose from the list of options but doesn't allow to enter a value not present in the
list.

	wxCB_SORT: Sorts the entries in the list alphabetically.

	wxTE_PROCESS_ENTER: The control will generate the event wxEVT_TEXT_ENTER that can be
handled by the program. Otherwise, i.e. either if this style not specified at all, or it
is used, but there is no event handler for this event or the event handler called wxEvent:skip/2 to
avoid overriding the default handling, pressing Enter key is either processed internally
by the control or used to activate the default button of the dialog, if any.

See:
	wxListBox

	wxTextCtrl

	wxChoice

	wxCommandEvent

This class is derived, and can use functions, from:
	wxControlWithItems

	wxControl

	wxWindow

	wxEvtHandler

wxWidgets docs: wxComboBox
Events
Event types emitted from this class:
	command_combobox_selected

	command_text_updated

	command_text_enter

	combobox_dropdown

	combobox_closeup

 Summary

 Types

 wxComboBox()

 Functions

 canCopy(This)

 Returns true if the selection can be copied to the clipboard.

 canCut(This)

 Returns true if the selection can be cut to the clipboard.

 canPaste(This)

 Returns true if the contents of the clipboard can be pasted into the text control.

 canRedo(This)

 Returns true if there is a redo facility available and the last operation can be redone.

 canUndo(This)

 Returns true if there is an undo facility available and the last operation can be undone.

 copy(This)

 Copies the selected text to the clipboard.

 create(This, Parent, Id, Value, Pos, Size, Choices)

 Equivalent to create(This, Parent, Id, Value, Pos, Size, Choices, []).

 create/8

 cut(This)

 Copies the selected text to the clipboard and removes it from the control.

 destroy(This)

 Destroys the object

 getInsertionPoint(This)

 Same as wxTextCtrl:getInsertionPoint/1.

 getLastPosition(This)

 Returns the zero based index of the last position in the text control, which is equal to
the number of characters in the control.

 getValue(This)

 Gets the contents of the control.

 new()

 Default constructor.

 new(Parent, Id)

 Equivalent to new(Parent, Id, []).

 new/3

 Constructor, creating and showing a combobox.

 paste(This)

 Pastes text from the clipboard to the text item.

 redo(This)

 If there is a redo facility and the last operation can be redone, redoes the last
operation.

 remove(This, From, To)

 Removes the text starting at the first given position up to (but not including) the
character at the last position.

 replace(This, From, To, Value)

 Replaces the text starting at the first position up to (but not including) the character
at the last position with the given text.

 setInsertionPoint(This, Pos)

 Sets the insertion point at the given position.

 setInsertionPointEnd(This)

 Sets the insertion point at the end of the text control.

 setSelection(This, N)

 Sets the selection to the given item n or removes the selection entirely if n == wxNOT_FOUND.

 setSelection(This, From, To)

 Same as wxTextCtrl:setSelection/3.

 setValue(This, Text)

 Sets the text for the combobox text field.

 undo(This)

 If there is an undo facility and the last operation can be undone, undoes the last
operation.

 Types

 wxComboBox()

 -type wxComboBox() :: wx:wx_object().

 Functions

 canCopy(This)

 -spec canCopy(This) -> boolean() when This :: wxComboBox().

Returns true if the selection can be copied to the clipboard.

 canCut(This)

 -spec canCut(This) -> boolean() when This :: wxComboBox().

Returns true if the selection can be cut to the clipboard.

 canPaste(This)

 -spec canPaste(This) -> boolean() when This :: wxComboBox().

Returns true if the contents of the clipboard can be pasted into the text control.
On some platforms (Motif, GTK) this is an approximation and returns true if the control
is editable, false otherwise.

 canRedo(This)

 -spec canRedo(This) -> boolean() when This :: wxComboBox().

Returns true if there is a redo facility available and the last operation can be redone.

 canUndo(This)

 -spec canUndo(This) -> boolean() when This :: wxComboBox().

Returns true if there is an undo facility available and the last operation can be undone.

 copy(This)

 -spec copy(This) -> ok when This :: wxComboBox().

Copies the selected text to the clipboard.

 create(This, Parent, Id, Value, Pos, Size, Choices)

 -spec create(This, Parent, Id, Value, Pos, Size, Choices) -> boolean()
 when
 This :: wxComboBox(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Value :: unicode:chardata(),
 Pos :: {X :: integer(), Y :: integer()},
 Size :: {W :: integer(), H :: integer()},
 Choices :: [unicode:chardata()].

Equivalent to create(This, Parent, Id, Value, Pos, Size, Choices, []).

 create/8

 -spec create(This, Parent, Id, Value, Pos, Size, Choices, [Option]) -> boolean()
 when
 This :: wxComboBox(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Value :: unicode:chardata(),
 Pos :: {X :: integer(), Y :: integer()},
 Size :: {W :: integer(), H :: integer()},
 Choices :: [unicode:chardata()],
 Option :: {style, integer()} | {validator, wx:wx_object()}.

 cut(This)

 -spec cut(This) -> ok when This :: wxComboBox().

Copies the selected text to the clipboard and removes it from the control.

 destroy(This)

 -spec destroy(This :: wxComboBox()) -> ok.

Destroys the object

 getInsertionPoint(This)

 -spec getInsertionPoint(This) -> integer() when This :: wxComboBox().

Same as wxTextCtrl:getInsertionPoint/1.
Note: Under wxMSW, this function always returns 0 if the combobox doesn't have the focus.

 getLastPosition(This)

 -spec getLastPosition(This) -> integer() when This :: wxComboBox().

Returns the zero based index of the last position in the text control, which is equal to
the number of characters in the control.

 getValue(This)

 -spec getValue(This) -> unicode:charlist() when This :: wxComboBox().

Gets the contents of the control.
Notice that for a multiline text control, the lines will be separated by (Unix-style) \n
characters, even under Windows where they are separated by a \r\n sequence in the
native control.

 new()

 -spec new() -> wxComboBox().

Default constructor.

 new(Parent, Id)

 -spec new(Parent, Id) -> wxComboBox() when Parent :: wxWindow:wxWindow(), Id :: integer().

Equivalent to new(Parent, Id, []).

 new/3

 -spec new(Parent, Id, [Option]) -> wxComboBox()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {value, unicode:chardata()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {choices, [unicode:chardata()]} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Constructor, creating and showing a combobox.
See: create/8

 paste(This)

 -spec paste(This) -> ok when This :: wxComboBox().

Pastes text from the clipboard to the text item.

 redo(This)

 -spec redo(This) -> ok when This :: wxComboBox().

If there is a redo facility and the last operation can be redone, redoes the last
operation.
Does nothing if there is no redo facility.

 remove(This, From, To)

 -spec remove(This, From, To) -> ok when This :: wxComboBox(), From :: integer(), To :: integer().

Removes the text starting at the first given position up to (but not including) the
character at the last position.
This function puts the current insertion point position at to as a side effect.

 replace(This, From, To, Value)

 -spec replace(This, From, To, Value) -> ok
 when
 This :: wxComboBox(),
 From :: integer(),
 To :: integer(),
 Value :: unicode:chardata().

Replaces the text starting at the first position up to (but not including) the character
at the last position with the given text.
This function puts the current insertion point position at to as a side effect.

 setInsertionPoint(This, Pos)

 -spec setInsertionPoint(This, Pos) -> ok when This :: wxComboBox(), Pos :: integer().

Sets the insertion point at the given position.

 setInsertionPointEnd(This)

 -spec setInsertionPointEnd(This) -> ok when This :: wxComboBox().

Sets the insertion point at the end of the text control.
This is equivalent to calling setInsertionPoint/2 with getLastPosition/1 argument.

 setSelection(This, N)

 -spec setSelection(This, N) -> ok when This :: wxComboBox(), N :: integer().

Sets the selection to the given item n or removes the selection entirely if n == wxNOT_FOUND.
Note that this does not cause any command events to be emitted nor does it deselect any
other items in the controls which support multiple selections.
See:
	wxControlWithItems:setString/3

	wxControlWithItems:setStringSelection/2

 setSelection(This, From, To)

 -spec setSelection(This, From, To) -> ok when This :: wxComboBox(), From :: integer(), To :: integer().

Same as wxTextCtrl:setSelection/3.

 setValue(This, Text)

 -spec setValue(This, Text) -> ok when This :: wxComboBox(), Text :: unicode:chardata().

Sets the text for the combobox text field.
For normal, editable comboboxes with a text entry field calling this method will generate
a wxEVT_TEXT event, consistently with wxTextCtrl:setValue/2 behaviour, use wxTextCtrl:changeValue/2 if this is undesirable.
For controls with wxCB_READONLY style the method behaves somewhat differently: the
string must be in the combobox choices list (the check for this is case-insensitive) and wxEVT_TEXT
is not generated in this case.

 undo(This)

 -spec undo(This) -> ok when This :: wxComboBox().

If there is an undo facility and the last operation can be undone, undoes the last
operation.
Does nothing if there is no undo facility.

wxCommandEvent

This event class contains information about command events, which originate from a
variety of simple controls.
Note that wxCommandEvents and wxCommandEvent-derived event classes by default and unlike
other wxEvent-derived classes propagate upward from the source window (the window which
emits the event) up to the first parent which processes the event. Be sure to read overview_events_propagation.
More complex controls, such as wxTreeCtrl, have separate command event classes.
This class is derived, and can use functions, from:
	wxEvent

wxWidgets docs: wxCommandEvent
Events
Use wxEvtHandler:connect/3 with wxCommandEventType to subscribe to events of this type.

 Summary

 Types

 wxCommand()

 wxCommandEvent()

 wxCommandEventType()

 Functions

 getClientData(This)

 Returns client object pointer for a listbox or choice selection event (not valid for a
deselection).

 getExtraLong(This)

 Returns extra information dependent on the event objects type.

 getInt(This)

 Returns the integer identifier corresponding to a listbox, choice or radiobox selection
(only if the event was a selection, not a deselection), or a boolean value representing
the value of a checkbox.

 getSelection(This)

 Returns item index for a listbox or choice selection event (not valid for a deselection).

 getString(This)

 Returns item string for a listbox or choice selection event.

 isChecked(This)

 This method can be used with checkbox and menu events: for the checkboxes, the method
returns true for a selection event and false for a deselection one.

 isSelection(This)

 For a listbox or similar event, returns true if it is a selection, false if it is a
deselection.

 setInt(This, IntCommand)

 Sets the m_commandInt member.

 setString(This, String)

 Sets the m_commandString member.

 Types

 wxCommand()

 -type wxCommand() ::
 #wxCommand{type :: wxCommandEvent:wxCommandEventType(),
 cmdString :: unicode:chardata(),
 commandInt :: integer(),
 extraLong :: integer()}.

 wxCommandEvent()

 -type wxCommandEvent() :: wx:wx_object().

 wxCommandEventType()

 -type wxCommandEventType() ::
 command_button_clicked | command_checkbox_clicked | command_choice_selected |
 command_listbox_selected | command_listbox_doubleclicked | command_text_updated |
 command_text_enter | text_maxlen | command_menu_selected | command_slider_updated |
 command_radiobox_selected | command_radiobutton_selected | command_scrollbar_updated |
 command_vlbox_selected | command_combobox_selected | combobox_dropdown | combobox_closeup |
 command_tool_rclicked | command_tool_enter | tool_dropdown | command_checklistbox_toggled |
 command_togglebutton_clicked | command_left_click | command_left_dclick |
 command_right_click | command_set_focus | command_kill_focus | command_enter |
 notification_message_click | notification_message_dismissed | notification_message_action.

 Functions

 getClientData(This)

 -spec getClientData(This) -> term() when This :: wxCommandEvent().

Returns client object pointer for a listbox or choice selection event (not valid for a
deselection).

 getExtraLong(This)

 -spec getExtraLong(This) -> integer() when This :: wxCommandEvent().

Returns extra information dependent on the event objects type.
If the event comes from a listbox selection, it is a boolean determining whether the
event was a selection (true) or a deselection (false). A listbox deselection only occurs
for multiple-selection boxes, and in this case the index and string values are
indeterminate and the listbox must be examined by the application.

 getInt(This)

 -spec getInt(This) -> integer() when This :: wxCommandEvent().

Returns the integer identifier corresponding to a listbox, choice or radiobox selection
(only if the event was a selection, not a deselection), or a boolean value representing
the value of a checkbox.
For a menu item, this method returns -1 if the item is not checkable or a boolean value
(true or false) for checkable items indicating the new state of the item.

 getSelection(This)

 -spec getSelection(This) -> integer() when This :: wxCommandEvent().

Returns item index for a listbox or choice selection event (not valid for a deselection).

 getString(This)

 -spec getString(This) -> unicode:charlist() when This :: wxCommandEvent().

Returns item string for a listbox or choice selection event.
If one or several items have been deselected, returns the index of the first deselected
item. If some items have been selected and others deselected at the same time, it will
return the index of the first selected item.

 isChecked(This)

 -spec isChecked(This) -> boolean() when This :: wxCommandEvent().

This method can be used with checkbox and menu events: for the checkboxes, the method
returns true for a selection event and false for a deselection one.
For the menu events, this method indicates if the menu item just has become checked or
unchecked (and thus only makes sense for checkable menu items).
Notice that this method cannot be used with wxCheckListBox currently.

 isSelection(This)

 -spec isSelection(This) -> boolean() when This :: wxCommandEvent().

For a listbox or similar event, returns true if it is a selection, false if it is a
deselection.
If some items have been selected and others deselected at the same time, it will return
true.

 setInt(This, IntCommand)

 -spec setInt(This, IntCommand) -> ok when This :: wxCommandEvent(), IntCommand :: integer().

Sets the m_commandInt member.

 setString(This, String)

 -spec setString(This, String) -> ok when This :: wxCommandEvent(), String :: unicode:chardata().

Sets the m_commandString member.

wxContextMenuEvent

This class is used for context menu events, sent to give the application a chance to show
a context (popup) menu for a wxWindow.
Note that if getPosition/1 returns wxDefaultPosition, this means that the event originated from a
keyboard context button event, and you should compute a suitable position yourself, for
example by calling wx_misc:getMousePosition/0.
Notice that the exact sequence of mouse events is different across the platforms. For
example, under MSW the context menu event is generated after EVT_RIGHT_UP event and only
if it was not handled but under GTK the context menu event is generated after EVT_RIGHT_DOWN
event. This is correct in the sense that it ensures that the context menu is shown
according to the current platform UI conventions and also means that you must not handle
(or call wxEvent:skip/2 in your handler if you do have one) neither right mouse down nor right mouse up
event if you plan on handling EVT_CONTEXT_MENU event.
See:
	wxCommandEvent

	Overview events

This class is derived, and can use functions, from:
	wxCommandEvent

	wxEvent

wxWidgets docs: wxContextMenuEvent
Events
Use wxEvtHandler:connect/3 with wxContextMenuEventType to subscribe to events of this type.

 Summary

 Types

 wxContextMenu()

 wxContextMenuEvent()

 wxContextMenuEventType()

 Functions

 getPosition(This)

 Returns the position in screen coordinates at which the menu should be shown.

 setPosition(This, Point)

 Sets the position at which the menu should be shown.

 Types

 wxContextMenu()

 -type wxContextMenu() ::
 #wxContextMenu{type :: wxContextMenuEvent:wxContextMenuEventType(),
 pos :: {X :: integer(), Y :: integer()}}.

 wxContextMenuEvent()

 -type wxContextMenuEvent() :: wx:wx_object().

 wxContextMenuEventType()

 -type wxContextMenuEventType() :: context_menu.

 Functions

 getPosition(This)

 -spec getPosition(This) -> {X :: integer(), Y :: integer()} when This :: wxContextMenuEvent().

Returns the position in screen coordinates at which the menu should be shown.
Use wxWindow:screenToClient/2 to convert to client coordinates.
You can also omit a position from wxWindow:popupMenu/4 in order to use the current mouse pointer position.
If the event originated from a keyboard event, the value returned from this function will
be wxDefaultPosition.

 setPosition(This, Point)

 -spec setPosition(This, Point) -> ok
 when This :: wxContextMenuEvent(), Point :: {X :: integer(), Y :: integer()}.

Sets the position at which the menu should be shown.

wxControl

This is the base class for a control or "widget".
A control is generally a small window which processes user input and/or displays one or
more item of data.
This class is derived, and can use functions, from:
	wxWindow

	wxEvtHandler

wxWidgets docs: wxControl
Events
Event types emitted from this class:
	command_text_copy

	command_text_cut

	command_text_paste

 Summary

 Types

 wxControl()

 Functions

 getLabel(This)

 Returns the control's label, as it was passed to setLabel/2.

 setLabel(This, Label)

 Sets the control's label.

 Types

 wxControl()

 -type wxControl() :: wx:wx_object().

 Functions

 getLabel(This)

 -spec getLabel(This) -> unicode:charlist() when This :: wxControl().

Returns the control's label, as it was passed to setLabel/2.
Note that the returned string may contains mnemonics ("&" characters) if they were passed
to the setLabel/2 function; use GetLabelText() (not implemented in wx) if they are undesired.
Also note that the returned string is always the string which was passed to setLabel/2 but may be
different from the string passed to SetLabelText() (not implemented in wx) (since this
last one escapes mnemonic characters).

 setLabel(This, Label)

 -spec setLabel(This, Label) -> ok when This :: wxControl(), Label :: unicode:chardata().

Sets the control's label.
All "&" characters in the label are special and indicate that the following character
is a mnemonic for this control and can be used to activate it from the keyboard
(typically by using Alt key in combination with it). To insert a literal ampersand
character, you need to double it, i.e. use "&&". If this behaviour is undesirable, use SetLabelText()
(not implemented in wx) instead.

wxControlWithItems

This is convenience class that derives from both wxControl and wxItemContainer (not
implemented in wx).
It is used as basis for some wxWidgets controls (wxChoice and wxListBox).
This class is derived, and can use functions, from:
	wxControl

	wxWindow

	wxEvtHandler

wxWidgets docs: wxControlWithItems

 Summary

 Types

 wxControlWithItems()

 Functions

 append(This, Item)

 Appends item into the control.

 append(This, Item, ClientData)

 Appends item into the control.

 appendStrings(This, Items)

 Appends several items at once into the control.

 appendStrings(This, Items, ClientsData)

 Appends several items at once into the control.

 clear(This)

 Removes all items from the control.

 delete(This, N)

 Deletes an item from the control.

 findString(This, String)

 Equivalent to findString(This, String, []).

 findString/3

 Finds an item whose label matches the given string.

 getClientData(This, N)

 Returns a pointer to the client data associated with the given item (if any).

 getCount(This)

 Returns the number of items in the control.

 getSelection(This)

 Returns the index of the selected item or wxNOT_FOUND if no item is selected.

 getString(This, N)

 Returns the label of the item with the given index.

 getStringSelection(This)

 Returns the label of the selected item or an empty string if no item is selected.

 insert(This, Item, Pos)

 Inserts item into the control.

 insert(This, Item, Pos, ClientData)

 Inserts item into the control.

 insertStrings(This, Items, Pos)

 Inserts several items at once into the control.

 insertStrings(This, Items, Pos, ClientsData)

 Inserts several items at once into the control.

 isEmpty(This)

 Returns true if the control is empty or false if it has some items.

 select(This, N)

 This is the same as setSelection/2 and exists only because it is slightly more natural
for controls which support multiple selection.

 setClientData(This, N, Data)

 Associates the given typed client data pointer with the given item: the data object
will be deleted when the item is deleted (either explicitly by using delete/2 or
implicitly when the control itself is destroyed).

 setSelection(This, N)

 Sets the selection to the given item n or removes the selection entirely if n == wxNOT_FOUND.

 setString(This, N, String)

 Sets the label for the given item.

 setStringSelection(This, String)

 Selects the item with the specified string in the control.

 Types

 wxControlWithItems()

 -type wxControlWithItems() :: wx:wx_object().

 Functions

 append(This, Item)

 -spec append(This, Item) -> integer() when This :: wxControlWithItems(), Item :: unicode:chardata().

Appends item into the control.
Return: The return value is the index of the newly inserted item. Note that this may be
different from the last one if the control is sorted (e.g. has wxLB_SORT or wxCB_SORT
style).

 append(This, Item, ClientData)

 -spec append(This, Item, ClientData) -> integer()
 when This :: wxControlWithItems(), Item :: unicode:chardata(), ClientData :: term().

Appends item into the control.
Return: The return value is the index of the newly inserted item. Note that this may be
different from the last one if the control is sorted (e.g. has wxLB_SORT or wxCB_SORT
style).

 appendStrings(This, Items)

 -spec appendStrings(This, Items) -> integer()
 when This :: wxControlWithItems(), Items :: [unicode:chardata()].

Appends several items at once into the control.
Notice that calling this method is usually much faster than appending them one by one if
you need to add a lot of items.

 appendStrings(This, Items, ClientsData)

 -spec appendStrings(This, Items, ClientsData) -> integer()
 when
 This :: wxControlWithItems(),
 Items :: [unicode:chardata()],
 ClientsData :: [term()].

Appends several items at once into the control.
Notice that calling this method is usually much faster than appending them one by one if
you need to add a lot of items.

 clear(This)

 -spec clear(This) -> ok when This :: wxControlWithItems().

Removes all items from the control.
clear/1 also deletes the client data of the existing items if it is owned by the control.

 delete(This, N)

 -spec delete(This, N) -> ok when This :: wxControlWithItems(), N :: integer().

Deletes an item from the control.
The client data associated with the item will be also deleted if it is owned by the
control. Note that it is an error (signalled by an assert failure in debug builds) to
remove an item with the index negative or greater or equal than the number of items in the control.
If there is a currently selected item below the item being deleted, i.e. if getSelection/1 returns a
valid index greater than or equal to n, the selection is invalidated when this function
is called. However if the selected item appears before the item being deleted, the
selection is preserved unchanged.
See: clear/1

 findString(This, String)

 -spec findString(This, String) -> integer()
 when This :: wxControlWithItems(), String :: unicode:chardata().

Equivalent to findString(This, String, []).

 findString/3

 -spec findString(This, String, [Option]) -> integer()
 when
 This :: wxControlWithItems(),
 String :: unicode:chardata(),
 Option :: {bCase, boolean()}.

Finds an item whose label matches the given string.
Return: The zero-based position of the item, or wxNOT_FOUND if the string was not found.

 getClientData(This, N)

 -spec getClientData(This, N) -> term() when This :: wxControlWithItems(), N :: integer().

Returns a pointer to the client data associated with the given item (if any).
It is an error to call this function for a control which doesn't have typed client data
at all although it is OK to call it even if the given item doesn't have any client data
associated with it (but other items do).
Notice that the returned pointer is still owned by the control and will be deleted by it,
use DetachClientObject() (not implemented in wx) if you want to remove the pointer from
the control.
Return: A pointer to the client data, or NULL if not present.

 getCount(This)

 -spec getCount(This) -> integer() when This :: wxControlWithItems().

Returns the number of items in the control.
See: isEmpty/1

 getSelection(This)

 -spec getSelection(This) -> integer() when This :: wxControlWithItems().

Returns the index of the selected item or wxNOT_FOUND if no item is selected.
Return: The position of the current selection.
Remark: This method can be used with single selection list boxes only, you should use wxListBox:getSelections/1
for the list boxes with wxLB_MULTIPLE style.
See:
	setSelection/2

	getStringSelection/1

 getString(This, N)

 -spec getString(This, N) -> unicode:charlist() when This :: wxControlWithItems(), N :: integer().

Returns the label of the item with the given index.
Return: The label of the item or an empty string if the position was invalid.

 getStringSelection(This)

 -spec getStringSelection(This) -> unicode:charlist() when This :: wxControlWithItems().

Returns the label of the selected item or an empty string if no item is selected.
See: getSelection/1

 insert(This, Item, Pos)

 -spec insert(This, Item, Pos) -> integer()
 when This :: wxControlWithItems(), Item :: unicode:chardata(), Pos :: integer().

Inserts item into the control.
Return: The return value is the index of the newly inserted item. If the insertion failed
for some reason, -1 is returned.

 insert(This, Item, Pos, ClientData)

 -spec insert(This, Item, Pos, ClientData) -> integer()
 when
 This :: wxControlWithItems(),
 Item :: unicode:chardata(),
 Pos :: integer(),
 ClientData :: term().

Inserts item into the control.
Return: The return value is the index of the newly inserted item. If the insertion failed
for some reason, -1 is returned.

 insertStrings(This, Items, Pos)

 -spec insertStrings(This, Items, Pos) -> integer()
 when
 This :: wxControlWithItems(), Items :: [unicode:chardata()], Pos :: integer().

Inserts several items at once into the control.
Notice that calling this method is usually much faster than inserting them one by one if
you need to insert a lot of items.
Return: The return value is the index of the last inserted item. If the insertion failed
for some reason, -1 is returned.

 insertStrings(This, Items, Pos, ClientsData)

 -spec insertStrings(This, Items, Pos, ClientsData) -> integer()
 when
 This :: wxControlWithItems(),
 Items :: [unicode:chardata()],
 Pos :: integer(),
 ClientsData :: [term()].

Inserts several items at once into the control.
Notice that calling this method is usually much faster than inserting them one by one if
you need to insert a lot of items.
Return: The return value is the index of the last inserted item. If the insertion failed
for some reason, -1 is returned.

 isEmpty(This)

 -spec isEmpty(This) -> boolean() when This :: wxControlWithItems().

Returns true if the control is empty or false if it has some items.
See: getCount/1

 select(This, N)

 -spec select(This, N) -> ok when This :: wxControlWithItems(), N :: integer().

This is the same as setSelection/2 and exists only because it is slightly more natural
for controls which support multiple selection.

 setClientData(This, N, Data)

 -spec setClientData(This, N, Data) -> ok
 when This :: wxControlWithItems(), N :: integer(), Data :: term().

Associates the given typed client data pointer with the given item: the data object
will be deleted when the item is deleted (either explicitly by using delete/2 or
implicitly when the control itself is destroyed).
Note that it is an error to call this function if any untyped client data pointers had
been associated with the control items before.

 setSelection(This, N)

 -spec setSelection(This, N) -> ok when This :: wxControlWithItems(), N :: integer().

Sets the selection to the given item n or removes the selection entirely if n == wxNOT_FOUND.
Note that this does not cause any command events to be emitted nor does it deselect any
other items in the controls which support multiple selections.
See:
	setString/3

	setStringSelection/2

 setString(This, N, String)

 -spec setString(This, N, String) -> ok
 when This :: wxControlWithItems(), N :: integer(), String :: unicode:chardata().

Sets the label for the given item.

 setStringSelection(This, String)

 -spec setStringSelection(This, String) -> boolean()
 when This :: wxControlWithItems(), String :: unicode:chardata().

Selects the item with the specified string in the control.
This method doesn't cause any command events to be emitted.
Notice that this method is case-insensitive, i.e. the string is compared with all the
elements of the control case-insensitively and the first matching entry is selected, even
if it doesn't have exactly the same case as this string and there is an exact match afterwards.
Return: true if the specified string has been selected, false if it wasn't found in the
control.

wxCursor

A cursor is a small bitmap usually used for denoting where the mouse pointer is, with a
picture that might indicate the interpretation of a mouse click.
As with icons, cursors in X and MS Windows are created in a different manner. Therefore,
separate cursors will be created for the different environments. Platform-specific methods
for creating a wxCursor object are catered for, and this is an occasion where
conditional compilation will probably be required (see wxIcon for an example).
A single cursor object may be used in many windows (any subwindow type). The wxWidgets
convention is to set the cursor for a window, as in X, rather than to set it globally as
in MS Windows, although a global wx_misc:setCursor/1 function is also available for MS Windows use.
Creating a Custom Cursor
The following is an example of creating a cursor from 32x32 bitmap data (down_bits) and a
mask (down_mask) where 1 is black and 0 is white for the bits, and 1 is opaque and 0 is
transparent for the mask. It works on Windows and GTK+.
Predefined objects (include wx.hrl):
	?wxNullCursor

	?wxSTANDARD_CURSOR

	?wxHOURGLASS_CURSOR

	?wxCROSS_CURSOR

See:
	wxBitmap

	wxIcon

	wxWindow:setCursor/2

	wx_misc:setCursor/1

	?wxStockCursor

This class is derived, and can use functions, from:
	wxBitmap

wxWidgets docs: wxCursor

 Summary

 Types

 wxCursor()

 Functions

 destroy(This)

 Destroys the object

 isOk(This)

 Returns true if cursor data is present.

 new()

 Default constructor.

 new/1

 Constructs a cursor using a cursor identifier.

 new(CursorName, Options)

 Constructs a cursor by passing a string resource name or filename.

 ok(This)

 Equivalent to: isOk/1

 Types

 wxCursor()

 -type wxCursor() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxCursor()) -> ok.

Destroys the object

 isOk(This)

 -spec isOk(This) -> boolean() when This :: wxCursor().

Returns true if cursor data is present.

 new()

 -spec new() -> wxCursor().

Default constructor.

 new/1

 -spec new(CursorName) -> wxCursor() when CursorName :: unicode:chardata();
 (Image) -> wxCursor() when Image :: wxImage:wxImage() | wxCursor:wxCursor();
 (CursorId) -> wxCursor() when CursorId :: wx:wx_enum().

Constructs a cursor using a cursor identifier.

 new(CursorName, Options)

 -spec new(CursorName, [Option]) -> wxCursor()
 when
 CursorName :: unicode:chardata(),
 Option :: {type, wx:wx_enum()} | {hotSpotX, integer()} | {hotSpotY, integer()}.

Constructs a cursor by passing a string resource name or filename.
The arguments hotSpotX and hotSpotY are only used when there's no hotspot info in the
resource/image-file to load (e.g. when using wxBITMAP_TYPE_ICO under wxMSW or wxBITMAP_TYPE_XPM
under wxGTK).

 ok(This)

 -spec ok(This) -> boolean() when This :: wxCursor().

Equivalent to: isOk/1

wxDC

A wxDC is a "device context" onto which graphics and text can be drawn.
It is intended to represent different output devices and offers a common abstract API for
drawing on any of them.
wxWidgets offers an alternative drawing API based on the modern drawing backends GDI+,
CoreGraphics, Cairo and Direct2D. See wxGraphicsContext, wxGraphicsRenderer and
related classes. There is also a wxGCDC linking the APIs by offering the wxDC API
on top of a wxGraphicsContext.
wxDC is an abstract base class and cannot be created directly. Use wxPaintDC, wxClientDC, wxWindowDC, wxScreenDC, wxMemoryDC
or wxPrinterDC (not implemented in wx). Notice that device contexts which are
associated with windows (i.e. wxClientDC, wxWindowDC and wxPaintDC) use the
window font and colours by default (starting with wxWidgets 2.9.0) but the other device
context classes use system-default values so you always must set the appropriate fonts and
colours before using them.
In addition to the versions of the methods documented below, there are also versions
which accept single {X,Y} parameter instead of the two wxCoord ones or {X,Y} and
{Width,Height} instead of the four wxCoord parameters.
Beginning with wxWidgets 2.9.0 the entire wxDC code has been reorganized. All
platform dependent code (actually all drawing code) has been moved into backend classes
which derive from a common wxDCImpl class. The user-visible classes such as wxClientDC
and wxPaintDC merely forward all calls to the backend implementation.
Device and logical units
In the wxDC context there is a distinction between logical units and device units.
Device units are the units native to the particular device; e.g. for a screen, a device
unit is a pixel. For a printer, the device unit is defined by the resolution of the
printer (usually given in DPI: dot-per-inch).
All wxDC functions use instead logical units, unless where explicitly stated.
Logical units are arbitrary units mapped to device units using the current mapping mode
(see setMapMode/2).
This mechanism allows reusing the same code which prints on e.g. a window on the screen
to print on e.g. a paper.
Support for Transparency / Alpha Channel
In general wxDC methods don't support alpha transparency and the alpha component of wx_color()
is simply ignored and you need to use wxGraphicsContext for full transparency support.
There are, however, a few exceptions: first, under macOS and GTK+ 3 colours with alpha
channel are supported in all the normal wxDC-derived classes as they use wxGraphicsContext
internally. Second, under all platforms wxSVGFileDC (not implemented in wx) also fully
supports alpha channel. In both of these cases the instances of wxPen or wxBrush
that are built from wx_color() use the colour's alpha values when stroking or filling.
Support for Transformation Matrix
On some platforms (currently under MSW, GTK+ 3, macOS) wxDC has support for applying
an arbitrary affine transformation matrix to its coordinate system (since 3.1.1 this
feature is also supported by wxGCDC in all ports). Call CanUseTransformMatrix() (not
implemented in wx) to check if this support is available and then call SetTransformMatrix()
(not implemented in wx) if it is. If the transformation matrix is not supported, SetTransformMatrix()
(not implemented in wx) always simply returns false and doesn't do anything.
This feature is only available when wxUSE_DC_TRANSFORM_MATRIX build option is enabled.
See:
	Overview dc

	wxGraphicsContext

wxWidgets docs: wxDC

 Summary

 Types

 wxDC()

 Functions

 blit(This, Dest, Size, Source, Src)

 Equivalent to blit(This, Dest, Size, Source, Src, []).

 blit/6

 Copy from a source DC to this DC.

 calcBoundingBox(This, X, Y)

 Adds the specified point to the bounding box which can be retrieved with minX/1, maxX/1
and minY/1, maxY/1 functions.

 clear(This)

 Clears the device context using the current background brush.

 crossHair(This, Pt)

 This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 destroyClippingRegion(This)

 Destroys the current clipping region so that none of the DC is clipped.

 deviceToLogicalX(This, X)

 Convert device X coordinate to logical coordinate, using the current mapping mode, user
scale factor, device origin and axis orientation.

 deviceToLogicalXRel(This, X)

 Convert device X coordinate to relative logical coordinate, using the current mapping
mode and user scale factor but ignoring the axis orientation.

 deviceToLogicalY(This, Y)

 Converts device Y coordinate to logical coordinate, using the current mapping mode,
user scale factor, device origin and axis orientation.

 deviceToLogicalYRel(This, Y)

 Convert device Y coordinate to relative logical coordinate, using the current mapping
mode and user scale factor but ignoring the axis orientation.

 drawArc(This, PtStart, PtEnd, Centre)

 This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 drawBitmap(This, Bmp, Pt)

 Equivalent to drawBitmap(This, Bmp, Pt, []).

 drawBitmap/4

 This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 drawCheckMark(This, Rect)

 This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 drawCircle(This, Pt, Radius)

 This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 drawEllipse(This, Rect)

 This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 drawEllipse(This, Pt, Size)

 This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 drawEllipticArc(This, Pt, Sz, Sa, Ea)

 This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 drawIcon(This, Icon, Pt)

 This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 drawLabel(This, Text, Rect)

 Equivalent to drawLabel(This, Text, Rect, []).

 drawLabel/4

 This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 drawLine(This, Pt1, Pt2)

 This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 drawLines(This, Points)

 Equivalent to drawLines(This, Points, []).

 drawLines/3

 Draws lines using an array of points of size n adding the optional offset coordinate.

 drawPoint(This, Pt)

 This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 drawPolygon(This, Points)

 Equivalent to drawPolygon(This, Points, []).

 drawPolygon/3

 Draws a filled polygon using an array of points of size n, adding the optional offset
coordinate.

 drawRectangle(This, Rect)

 This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 drawRectangle(This, Pt, Sz)

 This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 drawRotatedText(This, Text, Point, Angle)

 This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 drawRoundedRectangle(This, Rect, Radius)

 This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 drawRoundedRectangle(This, Pt, Sz, Radius)

 This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 drawText(This, Text, Pt)

 This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 endDoc(This)

 Ends a document (only relevant when outputting to a printer).

 endPage(This)

 Ends a document page (only relevant when outputting to a printer).

 floodFill(This, Pt, Col)

 Equivalent to floodFill(This, Pt, Col, []).

 floodFill/4

 This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 getBackground(This)

 Gets the brush used for painting the background.

 getBackgroundMode(This)

 Returns the current background mode: wxPENSTYLE_SOLID or wxPENSTYLE_TRANSPARENT.

 getBrush(This)

 Gets the current brush.

 getCharHeight(This)

 Gets the character height of the currently set font.

 getCharWidth(This)

 Gets the average character width of the currently set font.

 getClippingBox(This)

 Gets the rectangle surrounding the current clipping region. If no clipping region is set this function returns the extent of the device context. @remarks Clipping region is given in logical coordinates. @param x If non-NULL, filled in with the logical horizontal coordinate of the top left corner of the clipping region if the function returns true or 0 otherwise. @param y If non-NULL, filled in with the logical vertical coordinate of the top left corner of the clipping region if the function returns true or 0 otherwise. @param width If non-NULL, filled in with the width of the clipping region if the function returns true or the device context width otherwise. @param height If non-NULL, filled in with the height of the clipping region if the function returns true or the device context height otherwise.

 getFont(This)

 Gets the current font.

 getLayoutDirection(This)

 Gets the current layout direction of the device context.

 getLogicalFunction(This)

 Gets the current logical function.

 getMapMode(This)

 Gets the current mapping mode for the device context.

 getMultiLineTextExtent(This, String)

 Gets the dimensions of the string using the currently selected font.

 getMultiLineTextExtent/3

 Gets the dimensions of the string using the currently selected font.

 getPartialTextExtents(This, Text)

 Fills the widths array with the widths from the beginning of text to the
corresponding character of text.

 getPen(This)

 Gets the current pen.

 getPixel(This, Pos)

 Gets in colour the colour at the specified location.

 getPPI(This)

 Returns the resolution of the device in pixels per inch.

 getSize(This)

 This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 getSizeMM(This)

 This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 getTextBackground(This)

 Gets the current text background colour.

 getTextExtent(This, String)

 This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 getTextExtent/3

 Gets the dimensions of the string using the currently selected font.

 getTextForeground(This)

 Gets the current text foreground colour.

 getUserScale(This)

 Gets the current user scale factor.

 gradientFillConcentric(This, Rect, InitialColour, DestColour)

 Fill the area specified by rect with a radial gradient, starting from initialColour at
the centre of the circle and fading to destColour on the circle outside.

 gradientFillConcentric(This, Rect, InitialColour, DestColour, CircleCenter)

 Fill the area specified by rect with a radial gradient, starting from initialColour at
the centre of the circle and fading to destColour on the circle outside.

 gradientFillLinear(This, Rect, InitialColour, DestColour)

 Equivalent to gradientFillLinear(This, Rect, InitialColour, DestColour, []).

 gradientFillLinear/5

 Fill the area specified by rect with a linear gradient, starting from initialColour
and eventually fading to destColour.

 isOk(This)

 Returns true if the DC is ok to use.

 logicalToDeviceX(This, X)

 Converts logical X coordinate to device coordinate, using the current mapping mode, user
scale factor, device origin and axis orientation.

 logicalToDeviceXRel(This, X)

 Converts logical X coordinate to relative device coordinate, using the current mapping
mode and user scale factor but ignoring the axis orientation.

 logicalToDeviceY(This, Y)

 Converts logical Y coordinate to device coordinate, using the current mapping mode, user
scale factor, device origin and axis orientation.

 logicalToDeviceYRel(This, Y)

 Converts logical Y coordinate to relative device coordinate, using the current mapping
mode and user scale factor but ignoring the axis orientation.

 maxX(This)

 Gets the maximum horizontal extent used in drawing commands so far.

 maxY(This)

 Gets the maximum vertical extent used in drawing commands so far.

 minX(This)

 Gets the minimum horizontal extent used in drawing commands so far.

 minY(This)

 Gets the minimum vertical extent used in drawing commands so far.

 resetBoundingBox(This)

 Resets the bounding box: after a call to this function, the bounding box doesn't contain
anything.

 setAxisOrientation(This, XLeftRight, YBottomUp)

 Sets the x and y axis orientation (i.e. the direction from lowest to highest values on
the axis).

 setBackground(This, Brush)

 Sets the current background brush for the DC.

 setBackgroundMode(This, Mode)

 mode may be one of wxPENSTYLE_SOLID and wxPENSTYLE_TRANSPARENT.

 setBrush(This, Brush)

 Sets the current brush for the DC.

 setClippingRegion(This, Rect)

 This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 setClippingRegion(This, Pt, Sz)

 This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 setDeviceOrigin(This, X, Y)

 Sets the device origin (i.e. the origin in pixels after scaling has been applied).

 setFont(This, Font)

 Sets the current font for the DC.

 setLayoutDirection(This, Dir)

 Sets the current layout direction for the device context.

 setLogicalFunction(This, Function)

 Sets the current logical function for the device context.

 setMapMode(This, Mode)

 The mapping mode of the device context defines the unit of measurement used to convert logical
units to device units.

 setPalette(This, Palette)

 If this is a window DC or memory DC, assigns the given palette to the window or bitmap
associated with the DC.

 setPen(This, Pen)

 Sets the current pen for the DC.

 setTextBackground(This, Colour)

 Sets the current text background colour for the DC.

 setTextForeground(This, Colour)

 Sets the current text foreground colour for the DC.

 setUserScale(This, XScale, YScale)

 Sets the user scaling factor, useful for applications which require 'zooming'.

 startDoc(This, Message)

 Starts a document (only relevant when outputting to a printer).

 startPage(This)

 Starts a document page (only relevant when outputting to a printer).

 Types

 wxDC()

 -type wxDC() :: wx:wx_object().

 Functions

 blit(This, Dest, Size, Source, Src)

 -spec blit(This, Dest, Size, Source, Src) -> boolean()
 when
 This :: wxDC(),
 Dest :: {X :: integer(), Y :: integer()},
 Size :: {W :: integer(), H :: integer()},
 Source :: wxDC(),
 Src :: {X :: integer(), Y :: integer()}.

Equivalent to blit(This, Dest, Size, Source, Src, []).

 blit/6

 -spec blit(This, Dest, Size, Source, Src, [Option]) -> boolean()
 when
 This :: wxDC(),
 Dest :: {X :: integer(), Y :: integer()},
 Size :: {W :: integer(), H :: integer()},
 Source :: wxDC(),
 Src :: {X :: integer(), Y :: integer()},
 Option ::
 {rop, wx:wx_enum()} |
 {useMask, boolean()} |
 {srcPtMask, {X :: integer(), Y :: integer()}}.

Copy from a source DC to this DC.
With this method you can specify the destination coordinates and the size of area to copy
which will be the same for both the source and target DCs. If you need to apply scaling
while copying, use StretchBlit() (not implemented in wx).
Notice that source DC coordinates xsrc and ysrc are interpreted using the current
source DC coordinate system, i.e. the scale, origin position and axis directions are taken
into account when transforming them to physical (pixel) coordinates.
Remark: There is partial support for blit/6 in wxPostScriptDC, under X.
See:
	wxMemoryDC

	wxBitmap

	wxMask

 calcBoundingBox(This, X, Y)

 -spec calcBoundingBox(This, X, Y) -> ok when This :: wxDC(), X :: integer(), Y :: integer().

Adds the specified point to the bounding box which can be retrieved with minX/1, maxX/1
and minY/1, maxY/1 functions.
See: resetBoundingBox/1

 clear(This)

 -spec clear(This) -> ok when This :: wxDC().

Clears the device context using the current background brush.
Note that setBackground/2 method must be used to set the brush used by clear/1, the brush used for filling the
shapes set by setBrush/2 is ignored by it.
If no background brush was set, solid white brush is used to clear the device context.

 crossHair(This, Pt)

 -spec crossHair(This, Pt) -> ok when This :: wxDC(), Pt :: {X :: integer(), Y :: integer()}.

This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 destroyClippingRegion(This)

 -spec destroyClippingRegion(This) -> ok when This :: wxDC().

Destroys the current clipping region so that none of the DC is clipped.
See: setClippingRegion/3

 deviceToLogicalX(This, X)

 -spec deviceToLogicalX(This, X) -> integer() when This :: wxDC(), X :: integer().

Convert device X coordinate to logical coordinate, using the current mapping mode, user
scale factor, device origin and axis orientation.

 deviceToLogicalXRel(This, X)

 -spec deviceToLogicalXRel(This, X) -> integer() when This :: wxDC(), X :: integer().

Convert device X coordinate to relative logical coordinate, using the current mapping
mode and user scale factor but ignoring the axis orientation.
Use this for converting a width, for example.

 deviceToLogicalY(This, Y)

 -spec deviceToLogicalY(This, Y) -> integer() when This :: wxDC(), Y :: integer().

Converts device Y coordinate to logical coordinate, using the current mapping mode,
user scale factor, device origin and axis orientation.

 deviceToLogicalYRel(This, Y)

 -spec deviceToLogicalYRel(This, Y) -> integer() when This :: wxDC(), Y :: integer().

Convert device Y coordinate to relative logical coordinate, using the current mapping
mode and user scale factor but ignoring the axis orientation.
Use this for converting a height, for example.

 drawArc(This, PtStart, PtEnd, Centre)

 -spec drawArc(This, PtStart, PtEnd, Centre) -> ok
 when
 This :: wxDC(),
 PtStart :: {X :: integer(), Y :: integer()},
 PtEnd :: {X :: integer(), Y :: integer()},
 Centre :: {X :: integer(), Y :: integer()}.

This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 drawBitmap(This, Bmp, Pt)

 -spec drawBitmap(This, Bmp, Pt) -> ok
 when
 This :: wxDC(),
 Bmp :: wxBitmap:wxBitmap(),
 Pt :: {X :: integer(), Y :: integer()}.

Equivalent to drawBitmap(This, Bmp, Pt, []).

 drawBitmap/4

 -spec drawBitmap(This, Bmp, Pt, [Option]) -> ok
 when
 This :: wxDC(),
 Bmp :: wxBitmap:wxBitmap(),
 Pt :: {X :: integer(), Y :: integer()},
 Option :: {useMask, boolean()}.

This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 drawCheckMark(This, Rect)

 -spec drawCheckMark(This, Rect) -> ok
 when
 This :: wxDC(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}.

This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 drawCircle(This, Pt, Radius)

 -spec drawCircle(This, Pt, Radius) -> ok
 when This :: wxDC(), Pt :: {X :: integer(), Y :: integer()}, Radius :: integer().

This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 drawEllipse(This, Rect)

 -spec drawEllipse(This, Rect) -> ok
 when
 This :: wxDC(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}.

This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 drawEllipse(This, Pt, Size)

 -spec drawEllipse(This, Pt, Size) -> ok
 when
 This :: wxDC(),
 Pt :: {X :: integer(), Y :: integer()},
 Size :: {W :: integer(), H :: integer()}.

This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 drawEllipticArc(This, Pt, Sz, Sa, Ea)

 -spec drawEllipticArc(This, Pt, Sz, Sa, Ea) -> ok
 when
 This :: wxDC(),
 Pt :: {X :: integer(), Y :: integer()},
 Sz :: {W :: integer(), H :: integer()},
 Sa :: number(),
 Ea :: number().

This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 drawIcon(This, Icon, Pt)

 -spec drawIcon(This, Icon, Pt) -> ok
 when This :: wxDC(), Icon :: wxIcon:wxIcon(), Pt :: {X :: integer(), Y :: integer()}.

This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 drawLabel(This, Text, Rect)

 -spec drawLabel(This, Text, Rect) -> ok
 when
 This :: wxDC(),
 Text :: unicode:chardata(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}.

Equivalent to drawLabel(This, Text, Rect, []).

 drawLabel/4

 -spec drawLabel(This, Text, Rect, [Option]) -> ok
 when
 This :: wxDC(),
 Text :: unicode:chardata(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()},
 Option :: {alignment, integer()} | {indexAccel, integer()}.

This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 drawLine(This, Pt1, Pt2)

 -spec drawLine(This, Pt1, Pt2) -> ok
 when
 This :: wxDC(),
 Pt1 :: {X :: integer(), Y :: integer()},
 Pt2 :: {X :: integer(), Y :: integer()}.

This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 drawLines(This, Points)

 -spec drawLines(This, Points) -> ok when This :: wxDC(), Points :: [{X :: integer(), Y :: integer()}].

Equivalent to drawLines(This, Points, []).

 drawLines/3

 -spec drawLines(This, Points, [Option]) -> ok
 when
 This :: wxDC(),
 Points :: [{X :: integer(), Y :: integer()}],
 Option :: {xoffset, integer()} | {yoffset, integer()}.

Draws lines using an array of points of size n adding the optional offset coordinate.
The current pen is used for drawing the lines.

 drawPoint(This, Pt)

 -spec drawPoint(This, Pt) -> ok when This :: wxDC(), Pt :: {X :: integer(), Y :: integer()}.

This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 drawPolygon(This, Points)

 -spec drawPolygon(This, Points) -> ok when This :: wxDC(), Points :: [{X :: integer(), Y :: integer()}].

Equivalent to drawPolygon(This, Points, []).

 drawPolygon/3

 -spec drawPolygon(This, Points, [Option]) -> ok
 when
 This :: wxDC(),
 Points :: [{X :: integer(), Y :: integer()}],
 Option ::
 {xoffset, integer()} | {yoffset, integer()} | {fillStyle, wx:wx_enum()}.

Draws a filled polygon using an array of points of size n, adding the optional offset
coordinate.
The first and last points are automatically closed.
The last argument specifies the fill rule: wxODDEVEN_RULE (the default) or wxWINDING_RULE.
The current pen is used for drawing the outline, and the current brush for filling the
shape. Using a transparent brush suppresses filling.

 drawRectangle(This, Rect)

 -spec drawRectangle(This, Rect) -> ok
 when
 This :: wxDC(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}.

This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 drawRectangle(This, Pt, Sz)

 -spec drawRectangle(This, Pt, Sz) -> ok
 when
 This :: wxDC(),
 Pt :: {X :: integer(), Y :: integer()},
 Sz :: {W :: integer(), H :: integer()}.

This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 drawRotatedText(This, Text, Point, Angle)

 -spec drawRotatedText(This, Text, Point, Angle) -> ok
 when
 This :: wxDC(),
 Text :: unicode:chardata(),
 Point :: {X :: integer(), Y :: integer()},
 Angle :: number().

This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 drawRoundedRectangle(This, Rect, Radius)

 -spec drawRoundedRectangle(This, Rect, Radius) -> ok
 when
 This :: wxDC(),
 Rect ::
 {X :: integer(), Y :: integer(), W :: integer(), H :: integer()},
 Radius :: number().

This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 drawRoundedRectangle(This, Pt, Sz, Radius)

 -spec drawRoundedRectangle(This, Pt, Sz, Radius) -> ok
 when
 This :: wxDC(),
 Pt :: {X :: integer(), Y :: integer()},
 Sz :: {W :: integer(), H :: integer()},
 Radius :: number().

This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 drawText(This, Text, Pt)

 -spec drawText(This, Text, Pt) -> ok
 when
 This :: wxDC(), Text :: unicode:chardata(), Pt :: {X :: integer(), Y :: integer()}.

This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 endDoc(This)

 -spec endDoc(This) -> ok when This :: wxDC().

Ends a document (only relevant when outputting to a printer).

 endPage(This)

 -spec endPage(This) -> ok when This :: wxDC().

Ends a document page (only relevant when outputting to a printer).

 floodFill(This, Pt, Col)

 -spec floodFill(This, Pt, Col) -> boolean()
 when This :: wxDC(), Pt :: {X :: integer(), Y :: integer()}, Col :: wx:wx_colour().

Equivalent to floodFill(This, Pt, Col, []).

 floodFill/4

 -spec floodFill(This, Pt, Col, [Option]) -> boolean()
 when
 This :: wxDC(),
 Pt :: {X :: integer(), Y :: integer()},
 Col :: wx:wx_colour(),
 Option :: {style, wx:wx_enum()}.

This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 getBackground(This)

 -spec getBackground(This) -> wxBrush:wxBrush() when This :: wxDC().

Gets the brush used for painting the background.
See: setBackground/2

 getBackgroundMode(This)

 -spec getBackgroundMode(This) -> integer() when This :: wxDC().

Returns the current background mode: wxPENSTYLE_SOLID or wxPENSTYLE_TRANSPARENT.
See: setBackgroundMode/2

 getBrush(This)

 -spec getBrush(This) -> wxBrush:wxBrush() when This :: wxDC().

Gets the current brush.
See: setBrush/2

 getCharHeight(This)

 -spec getCharHeight(This) -> integer() when This :: wxDC().

Gets the character height of the currently set font.

 getCharWidth(This)

 -spec getCharWidth(This) -> integer() when This :: wxDC().

Gets the average character width of the currently set font.

 getClippingBox(This)

 -spec getClippingBox(This) -> Result
 when
 Result ::
 {X :: integer(),
 Y :: integer(),
 Width :: integer(),
 Height :: integer()},
 This :: wxDC().

Gets the rectangle surrounding the current clipping region. If no clipping region is set this function returns the extent of the device context. @remarks Clipping region is given in logical coordinates. @param x If non-NULL, filled in with the logical horizontal coordinate of the top left corner of the clipping region if the function returns true or 0 otherwise. @param y If non-NULL, filled in with the logical vertical coordinate of the top left corner of the clipping region if the function returns true or 0 otherwise. @param width If non-NULL, filled in with the width of the clipping region if the function returns true or the device context width otherwise. @param height If non-NULL, filled in with the height of the clipping region if the function returns true or the device context height otherwise.
Return: true if there is a clipping region or false if there is no active clipping region
(note that this return value is available only since wxWidgets 3.1.2, this function didn't
return anything in the previous versions).

 getFont(This)

 -spec getFont(This) -> wxFont:wxFont() when This :: wxDC().

Gets the current font.
Notice that even although each device context object has some default font after
creation, this method would return a ?wxNullFont initially and only after calling setFont/2 a valid
font is returned.

 getLayoutDirection(This)

 -spec getLayoutDirection(This) -> wx:wx_enum() when This :: wxDC().

Gets the current layout direction of the device context.
On platforms where RTL layout is supported, the return value will either be wxLayout_LeftToRight
or wxLayout_RightToLeft. If RTL layout is not supported, the return value will be wxLayout_Default.
See: setLayoutDirection/2

 getLogicalFunction(This)

 -spec getLogicalFunction(This) -> wx:wx_enum() when This :: wxDC().

Gets the current logical function.
See: setLogicalFunction/2

 getMapMode(This)

 -spec getMapMode(This) -> wx:wx_enum() when This :: wxDC().

Gets the current mapping mode for the device context.
See: setMapMode/2

 getMultiLineTextExtent(This, String)

 -spec getMultiLineTextExtent(This, String) -> {W :: integer(), H :: integer()}
 when This :: wxDC(), String :: unicode:chardata().

Gets the dimensions of the string using the currently selected font.
string is the text string to measure.
Return: The text extent as a {Width,Height} object.
Note: This function works with both single-line and multi-line strings.
See:
	wxFont

	setFont/2

	getPartialTextExtents/2

	getTextExtent/3

 getMultiLineTextExtent/3

 -spec getMultiLineTextExtent(This, String, [Option]) ->
 {W :: integer(), H :: integer(), HeightLine :: integer()}
 when
 This :: wxDC(),
 String :: unicode:chardata(),
 Option :: {font, wxFont:wxFont()}.

Gets the dimensions of the string using the currently selected font.
string is the text string to measure, heightLine, if non NULL, is where to store the
height of a single line.
The text extent is set in the given w and h pointers.
If the optional parameter font is specified and valid, then it is used for the text
extent calculation, otherwise the currently selected font is used.
If string is empty, its horizontal extent is 0 but, for convenience when using this
function for allocating enough space for a possibly multi-line string, its vertical extent
is the same as the height of an empty line of text. Please note that this behaviour
differs from that of getTextExtent/3.
Note: This function works with both single-line and multi-line strings.
See:
	wxFont

	setFont/2

	getPartialTextExtents/2

	getTextExtent/3

 getPartialTextExtents(This, Text)

 -spec getPartialTextExtents(This, Text) -> Result
 when
 Result :: {Res :: boolean(), Widths :: [integer()]},
 This :: wxDC(),
 Text :: unicode:chardata().

Fills the widths array with the widths from the beginning of text to the
corresponding character of text.
The generic version simply builds a running total of the widths of each character using getTextExtent/3,
however if the various platforms have a native API function that is faster or more
accurate than the generic implementation then it should be used instead.
See:
	getMultiLineTextExtent/3

	getTextExtent/3

 getPen(This)

 -spec getPen(This) -> wxPen:wxPen() when This :: wxDC().

Gets the current pen.
See: setPen/2

 getPixel(This, Pos)

 -spec getPixel(This, Pos) -> Result
 when
 Result :: {Res :: boolean(), Colour :: wx:wx_colour4()},
 This :: wxDC(),
 Pos :: {X :: integer(), Y :: integer()}.

Gets in colour the colour at the specified location.
This method isn't available for wxPostScriptDC or wxMetafileDC (not implemented in
wx) nor for any DC in wxOSX port and simply returns false there.
Note: Setting a pixel can be done using drawPoint/2.
Note: This method shouldn't be used with wxPaintDC as accessing the DC while drawing
can result in unexpected results, notably in wxGTK.

 getPPI(This)

 -spec getPPI(This) -> {W :: integer(), H :: integer()} when This :: wxDC().

Returns the resolution of the device in pixels per inch.

 getSize(This)

 -spec getSize(This) -> {W :: integer(), H :: integer()} when This :: wxDC().

This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 getSizeMM(This)

 -spec getSizeMM(This) -> {W :: integer(), H :: integer()} when This :: wxDC().

This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 getTextBackground(This)

 -spec getTextBackground(This) -> wx:wx_colour4() when This :: wxDC().

Gets the current text background colour.
See: setTextBackground/2

 getTextExtent(This, String)

 -spec getTextExtent(This, String) -> {W :: integer(), H :: integer()}
 when This :: wxDC(), String :: unicode:chardata().

This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 getTextExtent/3

 -spec getTextExtent(This, String, [Option]) -> Result
 when
 Result ::
 {W :: integer(),
 H :: integer(),
 Descent :: integer(),
 ExternalLeading :: integer()},
 This :: wxDC(),
 String :: unicode:chardata(),
 Option :: {theFont, wxFont:wxFont()}.

Gets the dimensions of the string using the currently selected font.
string is the text string to measure, descent is the dimension from the baseline of
the font to the bottom of the descender, and externalLeading is any extra vertical space
added to the font by the font designer (usually is zero).
The text extent is returned in w and h pointers or as a {Width,Height} object
depending on which version of this function is used.
If the optional parameter font is specified and valid, then it is used for the text
extent calculation. Otherwise the currently selected font is.
If string is empty, its extent is 0 in both directions, as expected.
Note: This function only works with single-line strings.
See:
	wxFont

	setFont/2

	getPartialTextExtents/2

	getMultiLineTextExtent/3

 getTextForeground(This)

 -spec getTextForeground(This) -> wx:wx_colour4() when This :: wxDC().

Gets the current text foreground colour.
See: setTextForeground/2

 getUserScale(This)

 -spec getUserScale(This) -> {X :: number(), Y :: number()} when This :: wxDC().

Gets the current user scale factor.
See: setUserScale/3

 gradientFillConcentric(This, Rect, InitialColour, DestColour)

 -spec gradientFillConcentric(This, Rect, InitialColour, DestColour) -> ok
 when
 This :: wxDC(),
 Rect ::
 {X :: integer(), Y :: integer(), W :: integer(), H :: integer()},
 InitialColour :: wx:wx_colour(),
 DestColour :: wx:wx_colour().

Fill the area specified by rect with a radial gradient, starting from initialColour at
the centre of the circle and fading to destColour on the circle outside.
The circle is placed at the centre of rect.
Note: Currently this function is very slow, don't use it for real-time drawing.

 gradientFillConcentric(This, Rect, InitialColour, DestColour, CircleCenter)

 -spec gradientFillConcentric(This, Rect, InitialColour, DestColour, CircleCenter) -> ok
 when
 This :: wxDC(),
 Rect ::
 {X :: integer(), Y :: integer(), W :: integer(), H :: integer()},
 InitialColour :: wx:wx_colour(),
 DestColour :: wx:wx_colour(),
 CircleCenter :: {X :: integer(), Y :: integer()}.

Fill the area specified by rect with a radial gradient, starting from initialColour at
the centre of the circle and fading to destColour on the circle outside.
circleCenter are the relative coordinates of centre of the circle in the specified rect.
Note: Currently this function is very slow, don't use it for real-time drawing.

 gradientFillLinear(This, Rect, InitialColour, DestColour)

 -spec gradientFillLinear(This, Rect, InitialColour, DestColour) -> ok
 when
 This :: wxDC(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()},
 InitialColour :: wx:wx_colour(),
 DestColour :: wx:wx_colour().

Equivalent to gradientFillLinear(This, Rect, InitialColour, DestColour, []).

 gradientFillLinear/5

 -spec gradientFillLinear(This, Rect, InitialColour, DestColour, [Option]) -> ok
 when
 This :: wxDC(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()},
 InitialColour :: wx:wx_colour(),
 DestColour :: wx:wx_colour(),
 Option :: {nDirection, wx:wx_enum()}.

Fill the area specified by rect with a linear gradient, starting from initialColour
and eventually fading to destColour.
The nDirection specifies the direction of the colour change, default is to use initialColour
on the left part of the rectangle and destColour on the right one.

 isOk(This)

 -spec isOk(This) -> boolean() when This :: wxDC().

Returns true if the DC is ok to use.

 logicalToDeviceX(This, X)

 -spec logicalToDeviceX(This, X) -> integer() when This :: wxDC(), X :: integer().

Converts logical X coordinate to device coordinate, using the current mapping mode, user
scale factor, device origin and axis orientation.

 logicalToDeviceXRel(This, X)

 -spec logicalToDeviceXRel(This, X) -> integer() when This :: wxDC(), X :: integer().

Converts logical X coordinate to relative device coordinate, using the current mapping
mode and user scale factor but ignoring the axis orientation.
Use this for converting a width, for example.

 logicalToDeviceY(This, Y)

 -spec logicalToDeviceY(This, Y) -> integer() when This :: wxDC(), Y :: integer().

Converts logical Y coordinate to device coordinate, using the current mapping mode, user
scale factor, device origin and axis orientation.

 logicalToDeviceYRel(This, Y)

 -spec logicalToDeviceYRel(This, Y) -> integer() when This :: wxDC(), Y :: integer().

Converts logical Y coordinate to relative device coordinate, using the current mapping
mode and user scale factor but ignoring the axis orientation.
Use this for converting a height, for example.

 maxX(This)

 -spec maxX(This) -> integer() when This :: wxDC().

Gets the maximum horizontal extent used in drawing commands so far.

 maxY(This)

 -spec maxY(This) -> integer() when This :: wxDC().

Gets the maximum vertical extent used in drawing commands so far.

 minX(This)

 -spec minX(This) -> integer() when This :: wxDC().

Gets the minimum horizontal extent used in drawing commands so far.

 minY(This)

 -spec minY(This) -> integer() when This :: wxDC().

Gets the minimum vertical extent used in drawing commands so far.

 resetBoundingBox(This)

 -spec resetBoundingBox(This) -> ok when This :: wxDC().

Resets the bounding box: after a call to this function, the bounding box doesn't contain
anything.
See: calcBoundingBox/3

 setAxisOrientation(This, XLeftRight, YBottomUp)

 -spec setAxisOrientation(This, XLeftRight, YBottomUp) -> ok
 when This :: wxDC(), XLeftRight :: boolean(), YBottomUp :: boolean().

Sets the x and y axis orientation (i.e. the direction from lowest to highest values on
the axis).
The default orientation is x axis from left to right and y axis from top down.

 setBackground(This, Brush)

 -spec setBackground(This, Brush) -> ok when This :: wxDC(), Brush :: wxBrush:wxBrush().

Sets the current background brush for the DC.

 setBackgroundMode(This, Mode)

 -spec setBackgroundMode(This, Mode) -> ok when This :: wxDC(), Mode :: integer().

mode may be one of wxPENSTYLE_SOLID and wxPENSTYLE_TRANSPARENT.
This setting determines whether text will be drawn with a background colour or not.

 setBrush(This, Brush)

 -spec setBrush(This, Brush) -> ok when This :: wxDC(), Brush :: wxBrush:wxBrush().

Sets the current brush for the DC.
If the argument is ?wxNullBrush (or another invalid brush; see wxBrush:isOk/1), the current brush is
selected out of the device context (leaving wxDC without any valid brush), allowing
the current brush to be destroyed safely.
See:
	wxBrush

	wxMemoryDC

 setClippingRegion(This, Rect)

 -spec setClippingRegion(This, Rect) -> ok
 when
 This :: wxDC(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}.

This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 setClippingRegion(This, Pt, Sz)

 -spec setClippingRegion(This, Pt, Sz) -> ok
 when
 This :: wxDC(),
 Pt :: {X :: integer(), Y :: integer()},
 Sz :: {W :: integer(), H :: integer()}.

This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 setDeviceOrigin(This, X, Y)

 -spec setDeviceOrigin(This, X, Y) -> ok when This :: wxDC(), X :: integer(), Y :: integer().

Sets the device origin (i.e. the origin in pixels after scaling has been applied).
This function may be useful in Windows printing operations for placing a graphic on a
page.

 setFont(This, Font)

 -spec setFont(This, Font) -> ok when This :: wxDC(), Font :: wxFont:wxFont().

Sets the current font for the DC.
If the argument is ?wxNullFont (or another invalid font; see wxFont:isOk/1), the current font is
selected out of the device context (leaving wxDC without any valid font), allowing the
current font to be destroyed safely.
See: wxFont

 setLayoutDirection(This, Dir)

 -spec setLayoutDirection(This, Dir) -> ok when This :: wxDC(), Dir :: wx:wx_enum().

Sets the current layout direction for the device context.
See: getLayoutDirection/1

 setLogicalFunction(This, Function)

 -spec setLogicalFunction(This, Function) -> ok when This :: wxDC(), Function :: wx:wx_enum().

Sets the current logical function for the device context.
Note: This function is not fully supported in all ports, due to the limitations of the
underlying drawing model. Notably, wxINVERT which was commonly used for drawing rubber
bands or other moving outlines in the past, is not, and will not, be supported by wxGTK3
and wxMac. The suggested alternative is to draw temporarily objects normally and refresh
the (affected part of the) window to remove them later.
It determines how a source pixel (from a pen or brush colour, or source device context
if using blit/6) combines with a destination pixel in the current device context. Text drawing
is not affected by this function.
See ?wxRasterOperationMode enumeration values for more info.
The default is wxCOPY, which simply draws with the current colour. The others combine
the current colour and the background using a logical operation.

 setMapMode(This, Mode)

 -spec setMapMode(This, Mode) -> ok when This :: wxDC(), Mode :: wx:wx_enum().

The mapping mode of the device context defines the unit of measurement used to convert logical
units to device units.
Note that in X, text drawing isn't handled consistently with the mapping mode; a font is
always specified in point size. However, setting the user scale (see setUserScale/3) scales the text
appropriately. In Windows, scalable TrueType fonts are always used; in X, results depend
on availability of fonts, but usually a reasonable match is found.
The coordinate origin is always at the top left of the screen/printer.
Drawing to a Windows printer device context uses the current mapping mode, but mapping
mode is currently ignored for PostScript output.

 setPalette(This, Palette)

 -spec setPalette(This, Palette) -> ok when This :: wxDC(), Palette :: wxPalette:wxPalette().

If this is a window DC or memory DC, assigns the given palette to the window or bitmap
associated with the DC.
If the argument is ?wxNullPalette, the current palette is selected out of the device
context, and the original palette restored.
See: wxPalette

 setPen(This, Pen)

 -spec setPen(This, Pen) -> ok when This :: wxDC(), Pen :: wxPen:wxPen().

Sets the current pen for the DC.
If the argument is ?wxNullPen (or another invalid pen; see wxPen:isOk/1), the current pen is selected
out of the device context (leaving wxDC without any valid pen), allowing the current
pen to be destroyed safely.
See: wxMemoryDC

 setTextBackground(This, Colour)

 -spec setTextBackground(This, Colour) -> ok when This :: wxDC(), Colour :: wx:wx_colour().

Sets the current text background colour for the DC.

 setTextForeground(This, Colour)

 -spec setTextForeground(This, Colour) -> ok when This :: wxDC(), Colour :: wx:wx_colour().

Sets the current text foreground colour for the DC.
See: wxMemoryDC

 setUserScale(This, XScale, YScale)

 -spec setUserScale(This, XScale, YScale) -> ok
 when This :: wxDC(), XScale :: number(), YScale :: number().

Sets the user scaling factor, useful for applications which require 'zooming'.

 startDoc(This, Message)

 -spec startDoc(This, Message) -> boolean() when This :: wxDC(), Message :: unicode:chardata().

Starts a document (only relevant when outputting to a printer).
message is a message to show while printing.

 startPage(This)

 -spec startPage(This) -> ok when This :: wxDC().

Starts a document page (only relevant when outputting to a printer).

wxDCOverlay

Connects an overlay with a drawing DC.
See:
	wxOverlay

	wxDC

wxWidgets docs: wxDCOverlay

 Summary

 Types

 wxDCOverlay()

 Functions

 clear(This)

 Clears the layer, restoring the state at the last init.

 destroy(This)

 Destroys the object

 new(Overlay, Dc)

 Convenience wrapper that behaves the same using the entire area of the dc.

 new(Overlay, Dc, X, Y, Width, Height)

 Connects this overlay to the corresponding drawing dc, if the overlay is not initialized
yet this call will do so.

 Types

 wxDCOverlay()

 -type wxDCOverlay() :: wx:wx_object().

 Functions

 clear(This)

 -spec clear(This) -> ok when This :: wxDCOverlay().

Clears the layer, restoring the state at the last init.

 destroy(This)

 -spec destroy(This :: wxDCOverlay()) -> ok.

Destroys the object

 new(Overlay, Dc)

 -spec new(Overlay, Dc) -> wxDCOverlay() when Overlay :: wxOverlay:wxOverlay(), Dc :: wxDC:wxDC().

Convenience wrapper that behaves the same using the entire area of the dc.

 new(Overlay, Dc, X, Y, Width, Height)

 -spec new(Overlay, Dc, X, Y, Width, Height) -> wxDCOverlay()
 when
 Overlay :: wxOverlay:wxOverlay(),
 Dc :: wxDC:wxDC(),
 X :: integer(),
 Y :: integer(),
 Width :: integer(),
 Height :: integer().

Connects this overlay to the corresponding drawing dc, if the overlay is not initialized
yet this call will do so.

wxDataObject

A wxDataObject represents data that can be copied to or from the clipboard, or
dragged and dropped.
The important thing about wxDataObject is that this is a 'smart' piece of data unlike
'dumb' data containers such as memory buffers or files. Being 'smart' here means that the
data object itself should know what data formats it supports and how to render itself in
each of its supported formats.
A supported format, incidentally, is exactly the format in which the data can be
requested from a data object or from which the data object may be set. In the general
case, an object may support different formats on 'input' and 'output', i.e. it may be able
to render itself in a given format but not be created from data on this format or vice
versa. wxDataObject defines the wxDataObject::Direction (not implemented in wx)
enumeration type which distinguishes between them.
See wxDataFormat (not implemented in wx) documentation for more about formats.
Not surprisingly, being 'smart' comes at a price of added complexity. This is reasonable
for the situations when you really need to support multiple formats, but may be annoying
if you only want to do something simple like cut and paste text.
To provide a solution for both cases, wxWidgets has two predefined classes which derive
from wxDataObject: wxDataObjectSimple (not implemented in wx) and wxDataObjectComposite
(not implemented in wx). wxDataObjectSimple (not implemented in wx) is the simplest wxDataObject
possible and only holds data in a single format (such as HTML or text) and wxDataObjectComposite
(not implemented in wx) is the simplest way to implement a wxDataObject that does
support multiple formats because it achieves this by simply holding several wxDataObjectSimple
(not implemented in wx) objects.
So, you have several solutions when you need a wxDataObject class (and you need one
as soon as you want to transfer data via the clipboard or drag and drop):
Please note that the easiest way to use drag and drop and the clipboard with multiple
formats is by using wxDataObjectComposite (not implemented in wx), but it is not the
most efficient one as each wxDataObjectSimple (not implemented in wx) would contain the
whole data in its respective formats. Now imagine that you want to paste 200 pages of text
in your proprietary format, as well as Word, RTF, HTML, Unicode and plain text to the
clipboard and even today's computers are in trouble. For this case, you will have to
derive from wxDataObject directly and make it enumerate its formats and provide the
data in the requested format on demand.
Note that neither the GTK+ data transfer mechanisms for clipboard and drag and drop, nor
OLE data transfer, copies any data until another application actually requests the data.
This is in contrast to the 'feel' offered to the user of a program who would normally
think that the data resides in the clipboard after having pressed 'Copy' - in reality it
is only declared to be available.
You may also derive your own data object classes from wxCustomDataObject (not
implemented in wx) for user-defined types. The format of user-defined data is given as a
mime-type string literal, such as "application/word" or "image/png". These strings are
used as they are under Unix (so far only GTK+) to identify a format and are translated
into their Windows equivalent under Win32 (using the OLE IDataObject for data exchange to
and from the clipboard and for drag and drop). Note that the format string translation
under Windows is not yet finished.
Each class derived directly from wxDataObject must override and implement all of its
functions which are pure virtual in the base class. The data objects which only render
their data or only set it (i.e. work in only one direction), should return 0 from GetFormatCount()
(not implemented in wx).
See:
	Overview dnd

	Examples

	wxFileDataObject

	wxTextDataObject

	wxBitmapDataObject

wxWidgets docs: wxDataObject

 Summary

 Types

 wxDataObject()

 Types

 wxDataObject()

 -type wxDataObject() :: wx:wx_object().

wxDateEvent

This event class holds information about a date change and is used together with wxDatePickerCtrl.
It also serves as a base class for wxCalendarEvent.
This class is derived, and can use functions, from:
	wxCommandEvent

	wxEvent

wxWidgets docs: wxDateEvent

 Summary

 Types

 wxDate()

 wxDateEvent()

 wxDateEventType()

 Functions

 getDate(This)

 Returns the date.

 Types

 wxDate()

 -type wxDate() :: #wxDate{type :: wxDateEvent:wxDateEventType(), date :: wx:wx_datetime()}.

 wxDateEvent()

 -type wxDateEvent() :: wx:wx_object().

 wxDateEventType()

 -type wxDateEventType() :: date_changed.

 Functions

 getDate(This)

 -spec getDate(This) -> wx:wx_datetime() when This :: wxDateEvent().

Returns the date.

wxDatePickerCtrl

This control allows the user to select a date.
Unlike wxCalendarCtrl, which is a relatively big control, wxDatePickerCtrl is
implemented as a small window showing the currently selected date. The control can be
edited using the keyboard, and can also display a popup window for more user-friendly date
selection, depending on the styles used and the platform.
It is only available if wxUSE_DATEPICKCTRL is set to 1.
Styles
This class supports the following styles:
	wxDP_SPIN: Creates a control without a month calendar drop down but with
spin-control-like arrows to change individual date components. This style is not supported
by the generic version.

	wxDP_DROPDOWN: Creates a control with a month calendar drop-down part from which the user
can select a date. This style is not supported in OSX/Cocoa native version.

	wxDP_DEFAULT: Creates a control with the style that is best supported for the current
platform (currently wxDP_SPIN under Windows and OSX/Cocoa and wxDP_DROPDOWN elsewhere).

	wxDP_ALLOWNONE: With this style, the control allows the user to not enter any valid date
at all. Without it - the default - the control always has some valid date. This style is
not supported in OSX/Cocoa native version.

	wxDP_SHOWCENTURY: Forces display of the century in the default date format. Without this
style the century could be displayed, or not, depending on the default date representation
in the system. This style is not supported in OSX/Cocoa native version currently. As can
be seen from the remarks above, most of the control style are only supported in the native
MSW implementation. In portable code it's recommended to use wxDP_DEFAULT style only,
possibly combined with wxDP_SHOWCENTURY (this is also the style used by default if none
is specified).

See:
	wxCalendarCtrl

	wxDateEvent

This class is derived, and can use functions, from:
	wxPickerBase

	wxControl

	wxWindow

	wxEvtHandler

wxWidgets docs: wxDatePickerCtrl
Events
Event types emitted from this class:
	date_changed

 Summary

 Types

 wxDatePickerCtrl()

 Functions

 destroy(This)

 Destroys the object

 getRange(This, Dt1, Dt2)

 If the control had been previously limited to a range of dates using setRange/3,
returns the lower and upper bounds of this range.

 getValue(This)

 Returns the currently entered date.

 new()

 Default constructor.

 new(Parent, Id)

 Equivalent to new(Parent, Id, []).

 new/3

 Initializes the object and calls Create() (not implemented in wx) with all the
parameters.

 setRange(This, Dt1, Dt2)

 Sets the valid range for the date selection.

 setValue(This, Dt)

 Changes the current value of the control.

 Types

 wxDatePickerCtrl()

 -type wxDatePickerCtrl() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxDatePickerCtrl()) -> ok.

Destroys the object

 getRange(This, Dt1, Dt2)

 -spec getRange(This, Dt1, Dt2) -> boolean()
 when This :: wxDatePickerCtrl(), Dt1 :: wx:wx_datetime(), Dt2 :: wx:wx_datetime().

If the control had been previously limited to a range of dates using setRange/3,
returns the lower and upper bounds of this range.
If no range is set (or only one of the bounds is set), dt1 and/or dt2 are set to be invalid.
Notice that when using a native MSW implementation of this control the lower range is
always set, even if setRange/3 hadn't been called explicitly, as the native control only supports
dates later than year 1601.
Return: false if no range limits are currently set, true if at least one bound is set.

 getValue(This)

 -spec getValue(This) -> wx:wx_datetime() when This :: wxDatePickerCtrl().

Returns the currently entered date.
For a control with wxDP_ALLOWNONE style the returned value may be invalid if no date is
entered, otherwise it is always valid.

 new()

 -spec new() -> wxDatePickerCtrl().

Default constructor.

 new(Parent, Id)

 -spec new(Parent, Id) -> wxDatePickerCtrl() when Parent :: wxWindow:wxWindow(), Id :: integer().

Equivalent to new(Parent, Id, []).

 new/3

 -spec new(Parent, Id, [Option]) -> wxDatePickerCtrl()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {date, wx:wx_datetime()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Initializes the object and calls Create() (not implemented in wx) with all the
parameters.

 setRange(This, Dt1, Dt2)

 -spec setRange(This, Dt1, Dt2) -> ok
 when This :: wxDatePickerCtrl(), Dt1 :: wx:wx_datetime(), Dt2 :: wx:wx_datetime().

Sets the valid range for the date selection.
If dt1 is valid, it becomes the earliest date (inclusive) accepted by the control. If dt2
is valid, it becomes the latest possible date.
Notice that if the current value is not inside the new range, it will be adjusted to lie
inside it, i.e. calling this method can change the control value, however no events are
generated by it.
Remark: If the current value of the control is outside of the newly set range bounds, the
behaviour is undefined.

 setValue(This, Dt)

 -spec setValue(This, Dt) -> ok when This :: wxDatePickerCtrl(), Dt :: wx:wx_datetime().

Changes the current value of the control.
The date should be valid unless the control was created with wxDP_ALLOWNONE style and
included in the currently selected range, if any.
Calling this method does not result in a date change event.

wxDialog

A dialog box is a window with a title bar and sometimes a system menu, which can be moved
around the screen.
It can contain controls and other windows and is often used to allow the user to make
some choice or to answer a question.
Dialogs can be made scrollable, automatically, for computers with low resolution screens:
please see overview_dialog_autoscrolling for further details.
Dialogs usually contain either a single button allowing to close the dialog or two
buttons, one accepting the changes and the other one discarding them (such button, if
present, is automatically activated if the user presses the "Esc" key). By default,
buttons with the standard wxID_OK and wxID_CANCEL identifiers behave as expected. Starting
with wxWidgets 2.7 it is also possible to use a button with a different identifier
instead, see setAffirmativeId/2 and SetEscapeId() (not implemented in wx).
Also notice that the createButtonSizer/2 should be used to create the buttons appropriate for the current
platform and positioned correctly (including their order which is platform-dependent).
Modal and Modeless
There are two kinds of dialog, modal and modeless. A modal dialog blocks program flow and
user input on other windows until it is dismissed, whereas a modeless dialog behaves more
like a frame in that program flow continues, and input in other windows is still possible.
To show a modal dialog you should use the showModal/1 method while to show a dialog modelessly you
simply use show/2, just as with frames.
Note that the modal dialog is one of the very few examples of wxWindow-derived objects
which may be created on the stack and not on the heap. In other words, while most windows
would be created like this:
You can achieve the same result with dialogs by using simpler code:
An application can define a wxCloseEvent handler for the dialog to respond to system
close events.
Styles
This class supports the following styles:
	wxCAPTION: Puts a caption on the dialog box.

	wxDEFAULT_DIALOG_STYLE: Equivalent to a combination of wxCAPTION, wxCLOSE_BOX and
wxSYSTEM_MENU (the last one is not used under Unix).

	wxRESIZE_BORDER: Display a resizable frame around the window.

	wxSYSTEM_MENU: Display a system menu.

	wxCLOSE_BOX: Displays a close box on the frame.

	wxMAXIMIZE_BOX: Displays a maximize box on the dialog.

	wxMINIMIZE_BOX: Displays a minimize box on the dialog.

	wxTHICK_FRAME: Display a thick frame around the window.

	wxSTAY_ON_TOP: The dialog stays on top of all other windows.

	wxNO_3D: This style is obsolete and doesn't do anything any more, don't use it in any new
code.

	wxDIALOG_NO_PARENT: By default, a dialog created with a NULL parent window will be given
the application's top level window (not implemented in wx) as parent. Use this style to
prevent this from happening and create an orphan dialog. This is not recommended for modal
dialogs.

	wxDIALOG_EX_CONTEXTHELP: Under Windows, puts a query button on the caption. When pressed,
Windows will go into a context-sensitive help mode and wxWidgets will send a wxEVT_HELP
event if the user clicked on an application window. Note that this is an extended style
and must be set by calling wxWindow:setExtraStyle/2 before Create is called (two-step construction).

	wxDIALOG_EX_METAL: On macOS, frames with this style will be shown with a metallic look.
This is an extra style. Under Unix or Linux, MWM (the Motif Window Manager) or other
window managers recognizing the MHM hints should be running for any of these styles to
have an effect.

See:
	Overview dialog

	wxFrame

	Overview validator

This class is derived, and can use functions, from:
	wxTopLevelWindow

	wxWindow

	wxEvtHandler

wxWidgets docs: wxDialog
Events
Event types emitted from this class:
	close_window

	init_dialog

 Summary

 Types

 wxDialog()

 Functions

 create(This, Parent, Id, Title)

 Equivalent to create(This, Parent, Id, Title, []).

 create/5

 Used for two-step dialog box construction.

 createButtonSizer(This, Flags)

 Creates a sizer with standard buttons.

 createStdDialogButtonSizer(This, Flags)

 Creates a wxStdDialogButtonSizer with standard buttons.

 destroy(This)

 Destroys the object

 endModal(This, RetCode)

 Ends a modal dialog, passing a value to be returned from the showModal/1 invocation.

 getAffirmativeId(This)

 Gets the identifier of the button which works like standard OK button in this dialog.

 getReturnCode(This)

 Gets the return code for this window.

 isModal(This)

 Returns true if the dialog box is modal, false otherwise.

 new()

 Default constructor.

 new(Parent, Id, Title)

 Equivalent to new(Parent, Id, Title, []).

 new/4

 Constructor.

 setAffirmativeId(This, Id)

 Sets the identifier to be used as OK button.

 setReturnCode(This, RetCode)

 Sets the return code for this window.

 show(This)

 Equivalent to show(This, []).

 show/2

 Hides or shows the dialog.

 showModal(This)

 Shows an application-modal dialog.

 Types

 wxDialog()

 -type wxDialog() :: wx:wx_object().

 Functions

 create(This, Parent, Id, Title)

 -spec create(This, Parent, Id, Title) -> boolean()
 when
 This :: wxDialog(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Title :: unicode:chardata().

Equivalent to create(This, Parent, Id, Title, []).

 create/5

 -spec create(This, Parent, Id, Title, [Option]) -> boolean()
 when
 This :: wxDialog(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Title :: unicode:chardata(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Used for two-step dialog box construction.
See: new/4

 createButtonSizer(This, Flags)

 -spec createButtonSizer(This, Flags) -> wxSizer:wxSizer() when This :: wxDialog(), Flags :: integer().

Creates a sizer with standard buttons.
flags is a bit list of the following flags: wxOK, wxCANCEL, wxYES, wxNO, wxAPPLY,
wxCLOSE, wxHELP, wxNO_DEFAULT.
The sizer lays out the buttons in a manner appropriate to the platform.
This function uses createStdDialogButtonSizer/2 internally for most platforms but doesn't create the sizer at all for
the platforms with hardware buttons (such as smartphones) for which it sets up the
hardware buttons appropriately and returns NULL, so don't forget to test that the return
value is valid before using it.

 createStdDialogButtonSizer(This, Flags)

 -spec createStdDialogButtonSizer(This, Flags) -> wxStdDialogButtonSizer:wxStdDialogButtonSizer()
 when This :: wxDialog(), Flags :: integer().

Creates a wxStdDialogButtonSizer with standard buttons.
flags is a bit list of the following flags: wxOK, wxCANCEL, wxYES, wxNO, wxAPPLY,
wxCLOSE, wxHELP, wxNO_DEFAULT.
The sizer lays out the buttons in a manner appropriate to the platform.

 destroy(This)

 -spec destroy(This :: wxDialog()) -> ok.

Destroys the object

 endModal(This, RetCode)

 -spec endModal(This, RetCode) -> ok when This :: wxDialog(), RetCode :: integer().

Ends a modal dialog, passing a value to be returned from the showModal/1 invocation.
See:
	showModal/1

	getReturnCode/1

	setReturnCode/2

 getAffirmativeId(This)

 -spec getAffirmativeId(This) -> integer() when This :: wxDialog().

Gets the identifier of the button which works like standard OK button in this dialog.
See: setAffirmativeId/2

 getReturnCode(This)

 -spec getReturnCode(This) -> integer() when This :: wxDialog().

Gets the return code for this window.
Remark: A return code is normally associated with a modal dialog, where showModal/1 returns a code
to the application.
See:
	setReturnCode/2

	showModal/1

	endModal/2

 isModal(This)

 -spec isModal(This) -> boolean() when This :: wxDialog().

Returns true if the dialog box is modal, false otherwise.

 new()

 -spec new() -> wxDialog().

Default constructor.

 new(Parent, Id, Title)

 -spec new(Parent, Id, Title) -> wxDialog()
 when Parent :: wxWindow:wxWindow(), Id :: integer(), Title :: unicode:chardata().

Equivalent to new(Parent, Id, Title, []).

 new/4

 -spec new(Parent, Id, Title, [Option]) -> wxDialog()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Title :: unicode:chardata(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Constructor.
See: create/5

 setAffirmativeId(This, Id)

 -spec setAffirmativeId(This, Id) -> ok when This :: wxDialog(), Id :: integer().

Sets the identifier to be used as OK button.
When the button with this identifier is pressed, the dialog calls wxWindow:validate/1 and wxWindow:transferDataFromWindow/1 and, if they both
return true, closes the dialog with the affirmative id return code.
Also, when the user presses a hardware OK button on the devices having one or the special
OK button in the PocketPC title bar, an event with this id is generated.
By default, the affirmative id is wxID_OK.
See: getAffirmativeId/1

 setReturnCode(This, RetCode)

 -spec setReturnCode(This, RetCode) -> ok when This :: wxDialog(), RetCode :: integer().

Sets the return code for this window.
A return code is normally associated with a modal dialog, where showModal/1 returns a code to the
application. The function endModal/2 calls setReturnCode/2.
See:
	getReturnCode/1

	showModal/1

	endModal/2

 show(This)

 -spec show(This) -> boolean() when This :: wxDialog().

Equivalent to show(This, []).

 show/2

 -spec show(This, [Option]) -> boolean() when This :: wxDialog(), Option :: {show, boolean()}.

Hides or shows the dialog.
The preferred way of dismissing a modal dialog is to use endModal/2.

 showModal(This)

 -spec showModal(This) -> integer() when This :: wxDialog().

Shows an application-modal dialog.
Program flow does not return until the dialog has been dismissed with endModal/2.
Notice that it is possible to call showModal/1 for a dialog which had been previously shown with show/2,
this allows making an existing modeless dialog modal. However showModal/1 can't be called twice
without intervening endModal/2 calls.
Note that this function creates a temporary event loop which takes precedence over the
application's main event loop (see wxEventLoopBase (not implemented in wx)) and which is
destroyed when the dialog is dismissed. This also results in a call to wxApp::ProcessPendingEvents()
(not implemented in wx).
Return: The value set with setReturnCode/2.
See:
	endModal/2

	getReturnCode/1

	setReturnCode/2

wxDirDialog

This class represents the directory chooser dialog.
Styles
This class supports the following styles:
	wxDD_DEFAULT_STYLE: Equivalent to a combination of wxDEFAULT_DIALOG_STYLE and
wxRESIZE_BORDER.

	wxDD_DIR_MUST_EXIST: The dialog will allow the user to choose only an existing folder.
When this style is not given, a "Create new directory" button is added to the dialog (on
Windows) or some other way is provided to the user to type the name of a new folder.

	wxDD_CHANGE_DIR: Change the current working directory to the directory chosen by the
user.

Note: This flag cannot be used with the wxDD_MULTIPLE style.
	wxDD_MULTIPLE: Allow the user to select multiple directories. This flag is only
available since wxWidgets 3.1.4

	wxDD_SHOW_HIDDEN: Show hidden and system folders. This flag is only available since
wxWidgets 3.1.4 Notice that wxRESIZE_BORDER has special side effect under Windows where
two different directory selection dialogs are available and this style also implicitly
selects the new version as the old one always has fixed size. As the new version is almost
always preferable, it is recommended that wxRESIZE_BORDER style be always used. This is
the case if the dialog is created with the default style value but if you need to use any
additional styles you should still specify wxDD_DEFAULT_STYLE unless you explicitly need
to use the old dialog version under Windows. E.g. do instead of just using wxDD_DIR_MUST_EXIST
style alone.

Remark: MacOS 10.11+ does not display a title bar on the dialog. Use setMessage/2 to change the
string displayed to the user at the top of the dialog after creation. The wxTopLevelWindow:setTitle/2 method is
provided for compatibility with pre-10.11 MacOS versions that do still support displaying
the title bar.
See:
	Overview cmndlg

	wxFileDialog

This class is derived, and can use functions, from:
	wxDialog

	wxTopLevelWindow

	wxWindow

	wxEvtHandler

wxWidgets docs: wxDirDialog

 Summary

 Types

 wxDirDialog()

 Functions

 destroy(This)

 Destroys the object

 getMessage(This)

 Returns the message that will be displayed on the dialog.

 getPath(This)

 Returns the default or user-selected path.

 new(Parent)

 Equivalent to new(Parent, []).

 new/2

 Constructor.

 setMessage(This, Message)

 Sets the message that will be displayed on the dialog.

 setPath(This, Path)

 Sets the default path.

 Types

 wxDirDialog()

 -type wxDirDialog() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxDirDialog()) -> ok.

Destroys the object

 getMessage(This)

 -spec getMessage(This) -> unicode:charlist() when This :: wxDirDialog().

Returns the message that will be displayed on the dialog.

 getPath(This)

 -spec getPath(This) -> unicode:charlist() when This :: wxDirDialog().

Returns the default or user-selected path.
Note: This function can't be used with dialogs which have the wxDD_MULTIPLE style, use GetPaths()
(not implemented in wx) instead.

 new(Parent)

 -spec new(Parent) -> wxDirDialog() when Parent :: wxWindow:wxWindow().

Equivalent to new(Parent, []).

 new/2

 -spec new(Parent, [Option]) -> wxDirDialog()
 when
 Parent :: wxWindow:wxWindow(),
 Option ::
 {title, unicode:chardata()} |
 {defaultPath, unicode:chardata()} |
 {style, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {sz, {W :: integer(), H :: integer()}}.

Constructor.
Use wxDialog:showModal/1 to show the dialog.

 setMessage(This, Message)

 -spec setMessage(This, Message) -> ok when This :: wxDirDialog(), Message :: unicode:chardata().

Sets the message that will be displayed on the dialog.

 setPath(This, Path)

 -spec setPath(This, Path) -> ok when This :: wxDirDialog(), Path :: unicode:chardata().

Sets the default path.

wxDirPickerCtrl

This control allows the user to select a directory.
The generic implementation is a button which brings up a wxDirDialog when clicked.
Native implementation may differ but this is usually a (small) widget which give access to
the dir-chooser dialog. It is only available if wxUSE_DIRPICKERCTRL is set to 1 (the default).
Styles
This class supports the following styles:
	wxDIRP_DEFAULT_STYLE: The default style: includes wxDIRP_DIR_MUST_EXIST and, under wxMSW
only, wxDIRP_USE_TEXTCTRL.

	wxDIRP_USE_TEXTCTRL: Creates a text control to the left of the picker button which is
completely managed by the wxDirPickerCtrl and which can be used by the user to specify
a path (see SetPath). The text control is automatically synchronized with button's value.
Use functions defined in wxPickerBase to modify the text control.

	wxDIRP_DIR_MUST_EXIST: Creates a picker which allows selecting only existing directories
in the popup wxDirDialog. Notice that, as with wxFLP_FILE_MUST_EXIST, it is still
possible to enter a non-existent directory even when this file is specified if wxDIRP_USE_TEXTCTRL
style is also used. Also note that if wxDIRP_USE_TEXTCTRL is not used, the native wxGTK
implementation always uses this style as it doesn't support selecting non-existent
directories.

	wxDIRP_CHANGE_DIR: Change current working directory on each user directory selection
change.

	wxDIRP_SMALL: Use smaller version of the control with a small "..." button instead of the
normal "Browse" one. This flag is new since wxWidgets 2.9.3.

See:
	wxDirDialog

	wxFileDirPickerEvent

This class is derived, and can use functions, from:
	wxPickerBase

	wxControl

	wxWindow

	wxEvtHandler

wxWidgets docs: wxDirPickerCtrl
Events
Event types emitted from this class:
	command_dirpicker_changed

 Summary

 Types

 wxDirPickerCtrl()

 Functions

 create(This, Parent, Id)

 Equivalent to create(This, Parent, Id, []).

 create/4

 Creates the widgets with the given parameters.

 destroy(This)

 Destroys the object

 getPath(This)

 Returns the absolute path of the currently selected directory.

 new()

 new(Parent, Id)

 Equivalent to new(Parent, Id, []).

 new/3

 Initializes the object and calls create/4 with all the parameters.

 setPath(This, Dirname)

 Sets the absolute path of the currently selected directory.

 Types

 wxDirPickerCtrl()

 -type wxDirPickerCtrl() :: wx:wx_object().

 Functions

 create(This, Parent, Id)

 -spec create(This, Parent, Id) -> boolean()
 when This :: wxDirPickerCtrl(), Parent :: wxWindow:wxWindow(), Id :: integer().

Equivalent to create(This, Parent, Id, []).

 create/4

 -spec create(This, Parent, Id, [Option]) -> boolean()
 when
 This :: wxDirPickerCtrl(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {path, unicode:chardata()} |
 {message, unicode:chardata()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Creates the widgets with the given parameters.
Return: true if the control was successfully created or false if creation failed.

 destroy(This)

 -spec destroy(This :: wxDirPickerCtrl()) -> ok.

Destroys the object

 getPath(This)

 -spec getPath(This) -> unicode:charlist() when This :: wxDirPickerCtrl().

Returns the absolute path of the currently selected directory.

 new()

 -spec new() -> wxDirPickerCtrl().

 new(Parent, Id)

 -spec new(Parent, Id) -> wxDirPickerCtrl() when Parent :: wxWindow:wxWindow(), Id :: integer().

Equivalent to new(Parent, Id, []).

 new/3

 -spec new(Parent, Id, [Option]) -> wxDirPickerCtrl()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {path, unicode:chardata()} |
 {message, unicode:chardata()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Initializes the object and calls create/4 with all the parameters.

 setPath(This, Dirname)

 -spec setPath(This, Dirname) -> ok when This :: wxDirPickerCtrl(), Dirname :: unicode:chardata().

Sets the absolute path of the currently selected directory.
If the control uses wxDIRP_DIR_MUST_EXIST and does not use wxDIRP_USE_TEXTCTRL style,
the dirname must be a name of an existing directory and will be simply ignored by the
native wxGTK implementation if this is not the case.

wxDisplay

Determines the sizes and locations of displays connected to the system.
wxWidgets docs: wxDisplay

 Summary

 Types

 wxDisplay()

 Functions

 destroy(This)

 Destroys the object

 getClientArea(This)

 Returns the client area of the display.

 getCount()

 Returns the number of connected displays.

 getFromPoint(Pt)

 Returns the index of the display on which the given point lies, or wxNOT_FOUND if the
point is not on any connected display.

 getFromWindow(Win)

 Returns the index of the display on which the given window lies.

 getGeometry(This)

 Returns the bounding rectangle of the display whose index was passed to the constructor.

 getName(This)

 Returns the display's name.

 getPPI(This)

 Returns display resolution in pixels per inch.

 isOk(This)

 Returns true if the object was initialized successfully.

 isPrimary(This)

 Returns true if the display is the primary display.

 new()

 Default constructor creating wxDisplay object representing the primary display.

 new/1

 Constructor creating the display object associated with the given window.

 Types

 wxDisplay()

 -type wxDisplay() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxDisplay()) -> ok.

Destroys the object

 getClientArea(This)

 -spec getClientArea(This) -> {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}
 when This :: wxDisplay().

Returns the client area of the display.
The client area is the part of the display available for the normal (non full screen)
windows, usually it is the same as getGeometry/1 but it could be less if there is a taskbar (or
equivalent) on this display.

 getCount()

 -spec getCount() -> integer().

Returns the number of connected displays.

 getFromPoint(Pt)

 -spec getFromPoint(Pt) -> integer() when Pt :: {X :: integer(), Y :: integer()}.

Returns the index of the display on which the given point lies, or wxNOT_FOUND if the
point is not on any connected display.

 getFromWindow(Win)

 -spec getFromWindow(Win) -> integer() when Win :: wxWindow:wxWindow().

Returns the index of the display on which the given window lies.
If the window is on more than one display it gets the display that overlaps the window
the most.
Returns wxNOT_FOUND if the window is not on any connected display.

 getGeometry(This)

 -spec getGeometry(This) -> {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}
 when This :: wxDisplay().

Returns the bounding rectangle of the display whose index was passed to the constructor.
See:
	getClientArea/1

	wx_misc:displaySize/0

 getName(This)

 -spec getName(This) -> unicode:charlist() when This :: wxDisplay().

Returns the display's name.
The returned value is currently an empty string under all platforms except MSW.

 getPPI(This)

 -spec getPPI(This) -> {W :: integer(), H :: integer()} when This :: wxDisplay().

Returns display resolution in pixels per inch.
Horizontal and vertical resolution are returned in x and y components of the
{Width,Height} object respectively.
If the resolution information is not available, returns.
Since: 3.1.2

 isOk(This)

 -spec isOk(This) -> boolean() when This :: wxDisplay().

Returns true if the object was initialized successfully.

 isPrimary(This)

 -spec isPrimary(This) -> boolean() when This :: wxDisplay().

Returns true if the display is the primary display.
The primary display is the one whose index is 0.

 new()

 -spec new() -> wxDisplay().

Default constructor creating wxDisplay object representing the primary display.

 new/1

 -spec new(Index) -> wxDisplay() when Index :: integer();
 (Window) -> wxDisplay() when Window :: wxWindow:wxWindow().

Constructor creating the display object associated with the given window.
This is the most convenient way of finding the display on which the given window is shown
while falling back to the default display if it is not shown at all or positioned outside
of any display.
See: getFromWindow/1
Since: 3.1.2

wxDisplayChangedEvent

A display changed event is sent to top-level windows when the display resolution has
changed.
This event is currently emitted under Windows only.
See: wxDisplay
This class is derived, and can use functions, from:
	wxEvent

wxWidgets docs: wxDisplayChangedEvent
Events
Use wxEvtHandler:connect/3 with wxDisplayChangedEventType to subscribe to events of this type.

 Summary

 Types

 wxDisplayChanged()

 wxDisplayChangedEvent()

 wxDisplayChangedEventType()

 Types

 wxDisplayChanged()

 -type wxDisplayChanged() :: #wxDisplayChanged{type :: wxDisplayChangedEvent:wxDisplayChangedEventType()}.

 wxDisplayChangedEvent()

 -type wxDisplayChangedEvent() :: wx:wx_object().

 wxDisplayChangedEventType()

 -type wxDisplayChangedEventType() :: display_changed.

wxDropFilesEvent

This class is used for drop files events, that is, when files have been dropped onto the
window.
The window must have previously been enabled for dropping by calling wxWindow:dragAcceptFiles/2.
Important note: this is a separate implementation to the more general drag and drop
implementation documented in the overview_dnd. It uses the older, Windows message-based
approach of dropping files.
See:
	Overview events

	wxWindow:dragAcceptFiles/2

This class is derived, and can use functions, from:
	wxEvent

wxWidgets docs: wxDropFilesEvent
Events
Use wxEvtHandler:connect/3 with wxDropFilesEventType to subscribe to events of this type.

 Summary

 Types

 wxDropFiles()

 wxDropFilesEvent()

 wxDropFilesEventType()

 Functions

 getFiles(This)

 Returns an array of filenames.

 getNumberOfFiles(This)

 Returns the number of files dropped.

 getPosition(This)

 Returns the position at which the files were dropped.

 Types

 wxDropFiles()

 -type wxDropFiles() ::
 #wxDropFiles{type :: wxDropFilesEvent:wxDropFilesEventType(),
 pos :: {X :: integer(), Y :: integer()},
 files :: [unicode:chardata()]}.

 wxDropFilesEvent()

 -type wxDropFilesEvent() :: wx:wx_object().

 wxDropFilesEventType()

 -type wxDropFilesEventType() :: drop_files.

 Functions

 getFiles(This)

 -spec getFiles(This) -> [unicode:charlist()] when This :: wxDropFilesEvent().

Returns an array of filenames.

 getNumberOfFiles(This)

 -spec getNumberOfFiles(This) -> integer() when This :: wxDropFilesEvent().

Returns the number of files dropped.

 getPosition(This)

 -spec getPosition(This) -> {X :: integer(), Y :: integer()} when This :: wxDropFilesEvent().

Returns the position at which the files were dropped.
Returns an array of filenames.

wxEraseEvent

An erase event is sent when a window's background needs to be repainted.
On some platforms, such as GTK+, this event is simulated (simply generated just before
the paint event) and may cause flicker. It is therefore recommended that you set the text
background colour explicitly in order to prevent flicker. The default background colour
under GTK+ is grey.
To intercept this event, use the EVT_ERASE_BACKGROUND macro in an event table definition.
You must use the device context returned by getDC/1 to draw on, don't create a wxPaintDC in
the event handler.
See: Overview events
This class is derived, and can use functions, from:
	wxEvent

wxWidgets docs: wxEraseEvent
Events
Use wxEvtHandler:connect/3 with wxEraseEventType to subscribe to events of this type.

 Summary

 Types

 wxErase()

 wxEraseEvent()

 wxEraseEventType()

 Functions

 getDC(This)

 Returns the device context associated with the erase event to draw on.

 Types

 wxErase()

 -type wxErase() :: #wxErase{type :: wxEraseEvent:wxEraseEventType(), dc :: wxDC:wxDC()}.

 wxEraseEvent()

 -type wxEraseEvent() :: wx:wx_object().

 wxEraseEventType()

 -type wxEraseEventType() :: erase_background.

 Functions

 getDC(This)

 -spec getDC(This) -> wxDC:wxDC() when This :: wxEraseEvent().

Returns the device context associated with the erase event to draw on.
The returned pointer is never NULL.

wxEvent

An event is a structure holding information about an event passed to a callback or member
function.
wxEvent used to be a multipurpose event object, and is an abstract base class for
other event classes (see below).
For more information about events, see the overview_events overview.
See:
	wxCommandEvent

	wxMouseEvent

wxWidgets docs: wxEvent

 Summary

 Types

 wxEvent()

 Functions

 getId(This)

 Returns the identifier associated with this event, such as a button command id.

 getSkipped(This)

 Returns true if the event handler should be skipped, false otherwise.

 getTimestamp(This)

 Gets the timestamp for the event.

 isCommandEvent(This)

 Returns true if the event is or is derived from wxCommandEvent else it returns false.

 resumePropagation(This, PropagationLevel)

 Sets the propagation level to the given value (for example returned from an earlier call
to stopPropagation/1).

 shouldPropagate(This)

 Test if this event should be propagated or not, i.e. if the propagation level is
currently greater than 0.

 skip(This)

 Equivalent to skip(This, []).

 skip/2

 This method can be used inside an event handler to control whether further event handlers
bound to this event will be called after the current one returns.

 stopPropagation(This)

 Stop the event from propagating to its parent window.

 Types

 wxEvent()

 -type wxEvent() :: wx:wx_object().

 Functions

 getId(This)

 -spec getId(This) -> integer() when This :: wxEvent().

Returns the identifier associated with this event, such as a button command id.

 getSkipped(This)

 -spec getSkipped(This) -> boolean() when This :: wxEvent().

Returns true if the event handler should be skipped, false otherwise.

 getTimestamp(This)

 -spec getTimestamp(This) -> integer() when This :: wxEvent().

Gets the timestamp for the event.
The timestamp is the time in milliseconds since some fixed moment (not necessarily the
standard Unix Epoch, so only differences between the timestamps and not their absolute
values usually make sense).
Warning:
wxWidgets returns a non-NULL timestamp only for mouse and key events (see wxMouseEvent
and wxKeyEvent).

 isCommandEvent(This)

 -spec isCommandEvent(This) -> boolean() when This :: wxEvent().

Returns true if the event is or is derived from wxCommandEvent else it returns false.
Note: exists only for optimization purposes.

 resumePropagation(This, PropagationLevel)

 -spec resumePropagation(This, PropagationLevel) -> ok
 when This :: wxEvent(), PropagationLevel :: integer().

Sets the propagation level to the given value (for example returned from an earlier call
to stopPropagation/1).

 shouldPropagate(This)

 -spec shouldPropagate(This) -> boolean() when This :: wxEvent().

Test if this event should be propagated or not, i.e. if the propagation level is
currently greater than 0.

 skip(This)

 -spec skip(This) -> ok when This :: wxEvent().

Equivalent to skip(This, []).

 skip/2

 -spec skip(This, [Option]) -> ok when This :: wxEvent(), Option :: {skip, boolean()}.

This method can be used inside an event handler to control whether further event handlers
bound to this event will be called after the current one returns.
Without skip/2 (or equivalently if Skip(false) is used), the event will not be processed any
more. If Skip(true) is called, the event processing system continues searching for a
further handler function for this event, even though it has been processed already in the
current handler.
In general, it is recommended to skip all non-command events to allow the default
handling to take place. The command events are, however, normally not skipped as usually a
single command such as a button click or menu item selection must only be processed by one
handler.

 stopPropagation(This)

 -spec stopPropagation(This) -> integer() when This :: wxEvent().

Stop the event from propagating to its parent window.
Returns the old propagation level value which may be later passed to resumePropagation/2 to allow
propagating the event again.

wxEvtHandler

The Event handler
A class that can handle events from the windowing system. wxWindow is (and
therefore all window classes are) derived from this class.
To get events from wxwidgets objects you subscribe to them by calling connect/3.
If the callback option is not supplied events are sent as messages.
These messages will be #wx{} where EventRecord is a record that depends on
the wxEventType. The records are defined in: wx/include/wx.hrl.
If a callback was supplied to connect, the callback will be invoked (in another
process) to handle the event. The callback should be of arity 2.
fun Callback (EventRecord::wx(), EventObject::wxObject()).
Note: The callback will be in executed in new process each time.
See:
Overview events
wxWidgets docs:
wxEvtHandler

 Summary

 Types

 event()

 wx()

 wxEventType()

 wxEvtHandler()

 Functions

 connect(This, EventType)

 Equivalent to connect(This, EventType, []).

 connect/3

 This function subscribes to events.

 disconnect(This)

 Equivalent to disconnect(This, null, []).

 disconnect(This, EventType)

 Equivalent to disconnect(This, EventType, []).

 disconnect/3

 This function unsubscribes the process or callback fun from the event handler.

 Types

 event()

 -type event() ::
 wxActivateEvent:wxActivate() |
 wxAuiManagerEvent:wxAuiManager() |
 wxAuiNotebookEvent:wxAuiNotebook() |
 wxBookCtrlEvent:wxBookCtrl() |
 wxCalendarEvent:wxCalendar() |
 wxChildFocusEvent:wxChildFocus() |
 wxClipboardTextEvent:wxClipboardText() |
 wxCloseEvent:wxClose() |
 wxColourPickerEvent:wxColourPicker() |
 wxCommandEvent:wxCommand() |
 wxContextMenuEvent:wxContextMenu() |
 wxDateEvent:wxDate() |
 wxDisplayChangedEvent:wxDisplayChanged() |
 wxDropFilesEvent:wxDropFiles() |
 wxEraseEvent:wxErase() |
 wxFileDirPickerEvent:wxFileDirPicker() |
 wxFocusEvent:wxFocus() |
 wxFontPickerEvent:wxFontPicker() |
 wxGridEvent:wxGrid() |
 wxHelpEvent:wxHelp() |
 wxHtmlLinkEvent:wxHtmlLink() |
 wxIconizeEvent:wxIconize() |
 wxIdleEvent:wxIdle() |
 wxInitDialogEvent:wxInitDialog() |
 wxJoystickEvent:wxJoystick() |
 wxKeyEvent:wxKey() |
 wxListEvent:wxList() |
 wxMaximizeEvent:wxMaximize() |
 wxMenuEvent:wxMenu() |
 wxMouseCaptureChangedEvent:wxMouseCaptureChanged() |
 wxMouseCaptureLostEvent:wxMouseCaptureLost() |
 wxMouseEvent:wxMouse() |
 wxMoveEvent:wxMove() |
 wxNavigationKeyEvent:wxNavigationKey() |
 wxPaintEvent:wxPaint() |
 wxPaletteChangedEvent:wxPaletteChanged() |
 wxQueryNewPaletteEvent:wxQueryNewPalette() |
 wxSashEvent:wxSash() |
 wxScrollEvent:wxScroll() |
 wxScrollWinEvent:wxScrollWin() |
 wxSetCursorEvent:wxSetCursor() |
 wxShowEvent:wxShow() |
 wxSizeEvent:wxSize() |
 wxSpinEvent:wxSpin() |
 wxSplitterEvent:wxSplitter() |
 wxStyledTextEvent:wxStyledText() |
 wxSysColourChangedEvent:wxSysColourChanged() |
 wxTaskBarIconEvent:wxTaskBarIcon() |
 wxTreeEvent:wxTree() |
 wxUpdateUIEvent:wxUpdateUI() |
 wxWebViewEvent:wxWebView() |
 wxWindowCreateEvent:wxWindowCreate() |
 wxWindowDestroyEvent:wxWindowDestroy().

 wx()

 -type wx() :: #wx{id :: integer(), obj :: wx:wx_object(), userData :: term(), event :: event()}.

 wxEventType()

 (not exported)

 -type wxEventType() ::
 wxActivateEvent:wxActivateEventType() |
 wxAuiManagerEvent:wxAuiManagerEventType() |
 wxAuiNotebookEvent:wxAuiNotebookEventType() |
 wxBookCtrlEvent:wxBookCtrlEventType() |
 wxCalendarEvent:wxCalendarEventType() |
 wxChildFocusEvent:wxChildFocusEventType() |
 wxClipboardTextEvent:wxClipboardTextEventType() |
 wxCloseEvent:wxCloseEventType() |
 wxColourPickerEvent:wxColourPickerEventType() |
 wxCommandEvent:wxCommandEventType() |
 wxContextMenuEvent:wxContextMenuEventType() |
 wxDateEvent:wxDateEventType() |
 wxDisplayChangedEvent:wxDisplayChangedEventType() |
 wxDropFilesEvent:wxDropFilesEventType() |
 wxEraseEvent:wxEraseEventType() |
 wxFileDirPickerEvent:wxFileDirPickerEventType() |
 wxFocusEvent:wxFocusEventType() |
 wxFontPickerEvent:wxFontPickerEventType() |
 wxGridEvent:wxGridEventType() |
 wxHelpEvent:wxHelpEventType() |
 wxHtmlLinkEvent:wxHtmlLinkEventType() |
 wxIconizeEvent:wxIconizeEventType() |
 wxIdleEvent:wxIdleEventType() |
 wxInitDialogEvent:wxInitDialogEventType() |
 wxJoystickEvent:wxJoystickEventType() |
 wxKeyEvent:wxKeyEventType() |
 wxListEvent:wxListEventType() |
 wxMaximizeEvent:wxMaximizeEventType() |
 wxMenuEvent:wxMenuEventType() |
 wxMouseCaptureChangedEvent:wxMouseCaptureChangedEventType() |
 wxMouseCaptureLostEvent:wxMouseCaptureLostEventType() |
 wxMouseEvent:wxMouseEventType() |
 wxMoveEvent:wxMoveEventType() |
 wxNavigationKeyEvent:wxNavigationKeyEventType() |
 wxPaintEvent:wxPaintEventType() |
 wxPaletteChangedEvent:wxPaletteChangedEventType() |
 wxQueryNewPaletteEvent:wxQueryNewPaletteEventType() |
 wxSashEvent:wxSashEventType() |
 wxScrollEvent:wxScrollEventType() |
 wxScrollWinEvent:wxScrollWinEventType() |
 wxSetCursorEvent:wxSetCursorEventType() |
 wxShowEvent:wxShowEventType() |
 wxSizeEvent:wxSizeEventType() |
 wxSpinEvent:wxSpinEventType() |
 wxSplitterEvent:wxSplitterEventType() |
 wxStyledTextEvent:wxStyledTextEventType() |
 wxSysColourChangedEvent:wxSysColourChangedEventType() |
 wxTaskBarIconEvent:wxTaskBarIconEventType() |
 wxTreeEvent:wxTreeEventType() |
 wxUpdateUIEvent:wxUpdateUIEventType() |
 wxWebViewEvent:wxWebViewEventType() |
 wxWindowCreateEvent:wxWindowCreateEventType() |
 wxWindowDestroyEvent:wxWindowDestroyEventType().

 wxEvtHandler()

 -type wxEvtHandler() :: wx:wx_object().

 Functions

 connect(This, EventType)

 -spec connect(This :: wxEvtHandler(), EventType :: wxEventType()) -> ok.

Equivalent to connect(This, EventType, []).

 connect/3

 -spec connect(This :: wxEvtHandler(), EventType :: wxEventType(), [Option]) -> ok
 when
 Option ::
 {id, integer()} |
 {lastId, integer()} |
 {skip, boolean()} |
 callback |
 {callback, function()} |
 {userData, term()}.

This function subscribes to events.
Subscribes to events of type EventType, in the range id, lastId.
The events will be received as messages if no callback is supplied.
Options
id:{id, integer()}The identifier (or first of the identifier range) to be
associated with this event handler. Default is ?wxID_ANY
lastid:{lastId,integer()}The second part of the identifier range. If used
'id' must be set as the starting identifier range. Default is ?wxID_ANY
skip:{skip,boolean()}If skip is true further event_handlers will be called.
This is not used if the 'callback' option is used. Default is false.
callback:{callback,function()}Use a
callbackfun(EventRecord::wx(),EventObject::wxObject())to process the event.
Default not specified i.e. a message will be delivered to the process calling
this function.
userData:{userData,term()}An erlang term that will be sent with the event.
Default: [].

 disconnect(This)

 -spec disconnect(This :: wxEvtHandler()) -> boolean().

Equivalent to disconnect(This, null, []).

 disconnect(This, EventType)

 -spec disconnect(This :: wxEvtHandler(), EventType :: wxEventType()) -> boolean().

Equivalent to disconnect(This, EventType, []).

 disconnect/3

 -spec disconnect(This :: wxEvtHandler(), EventType :: wxEventType(), [Option]) -> boolean()
 when Option :: {id, integer()} | {lastId, integer()} | {callback, function()}.

This function unsubscribes the process or callback fun from the event handler.
EventType may be the atom 'null' to match any eventtype. Notice that the options
skip and userdata is not used to match the eventhandler.

wxFileDataObject

wxFileDataObject is a specialization of wxDataObject for file names.
The program works with it just as if it were a list of absolute file names, but
internally it uses the same format as Explorer and other compatible programs under Windows
or GNOME/KDE file manager under Unix which makes it possible to receive files from them
using this class.
See:
	wxDataObject

	wxTextDataObject

	wxBitmapDataObject

	wxDataObject

This class is derived, and can use functions, from:
	wxDataObject

wxWidgets docs: wxFileDataObject

 Summary

 Types

 wxFileDataObject()

 Functions

 addFile(This, File)

 Adds a file to the file list represented by this data object (Windows only).

 destroy(This)

 Destroys the object

 getFilenames(This)

 Returns the array of file names.

 new()

 Constructor.

 Types

 wxFileDataObject()

 -type wxFileDataObject() :: wx:wx_object().

 Functions

 addFile(This, File)

 -spec addFile(This, File) -> ok when This :: wxFileDataObject(), File :: unicode:chardata().

Adds a file to the file list represented by this data object (Windows only).

 destroy(This)

 -spec destroy(This :: wxFileDataObject()) -> ok.

Destroys the object

 getFilenames(This)

 -spec getFilenames(This) -> [unicode:charlist()] when This :: wxFileDataObject().

Returns the array of file names.

 new()

 -spec new() -> wxFileDataObject().

Constructor.

wxFileDialog

This class represents the file chooser dialog.
The path and filename are distinct elements of a full file pathname. If path is
?wxEmptyString, the current directory will be used. If filename is ?wxEmptyString, no
default filename will be supplied. The wildcard determines what files are displayed in the
file selector, and file extension supplies a type extension for the required filename.
The typical usage for the open file dialog is:
The typical usage for the save file dialog is instead somewhat simpler:
Remark: All implementations of the wxFileDialog provide a wildcard filter. Typing a
filename containing wildcards (, ?) in the filename text item, and clicking on Ok, will
result in only those files matching the pattern being displayed. The wildcard may be a
specification for multiple types of file with a description for each, such as: It must be
noted that wildcard support in the native Motif file dialog is quite limited: only one
file type is supported, and it is displayed without the descriptive test; "BMP files
(.bmp)|.bmp" is displayed as ".bmp", and both "BMP files (.bmp)|.bmp|GIF files
(.gif)|.gif" and "Image files|.bmp;.gif" are errors. On Mac macOS in the open file
dialog the filter choice box is not shown by default. Instead all given wildcards are
appplied at the same time: So in the above example all bmp, gif and png files are
displayed. To enforce the display of the filter choice set the corresponding wxSystemOptions
before calling the file open dialog: But in contrast to Windows and Unix, where the file
type choice filters only the selected files, on Mac macOS even in this case the dialog
shows all files matching all file types. The files which does not match the currently
selected file type are greyed out and are not selectable.
Styles
This class supports the following styles:
	wxFD_DEFAULT_STYLE: Equivalent to wxFD_OPEN.

	wxFD_OPEN: This is an open dialog; usually this means that the default button's label of
the dialog is "Open". Cannot be combined with wxFD_SAVE.

	wxFD_SAVE: This is a save dialog; usually this means that the default button's label of
the dialog is "Save". Cannot be combined with wxFD_OPEN.

	wxFD_OVERWRITE_PROMPT: For save dialog only: prompt for a confirmation if a file will be
overwritten.

	wxFD_NO_FOLLOW: Directs the dialog to return the path and file name of the selected
shortcut file, not its target as it does by default. Currently this flag is only
implemented in wxMSW and wxOSX (where it prevents aliases from being resolved). The
non-dereferenced link path is always returned, even without this flag, under Unix and so
using it there doesn't do anything. This flag was added in wxWidgets 3.1.0.

	wxFD_FILE_MUST_EXIST: For open dialog only: the user may only select files that actually
exist. Notice that under macOS the file dialog with wxFD_OPEN style always behaves as if
this style was specified, because it is impossible to choose a file that doesn't exist
from a standard macOS file dialog.

	wxFD_MULTIPLE: For open dialog only: allows selecting multiple files.

	wxFD_CHANGE_DIR: Change the current working directory (when the dialog is dismissed) to
the directory where the file(s) chosen by the user are.

	wxFD_PREVIEW: Show the preview of the selected files (currently only supported by wxGTK).

	wxFD_SHOW_HIDDEN: Show hidden files. This flag was added in wxWidgets 3.1.3

See:
	Overview cmndlg

	?wxFileSelector()

This class is derived, and can use functions, from:
	wxDialog

	wxTopLevelWindow

	wxWindow

	wxEvtHandler

wxWidgets docs: wxFileDialog

 Summary

 Types

 wxFileDialog()

 Functions

 destroy(This)

 Destroys the object

 getDirectory(This)

 Returns the default directory.

 getFilename(This)

 Returns the default filename.

 getFilenames(This)

 Fills the array filenames with the names of the files chosen.

 getFilterIndex(This)

 Returns the index into the list of filters supplied, optionally, in the wildcard
parameter.

 getMessage(This)

 Returns the message that will be displayed on the dialog.

 getPath(This)

 Returns the full path (directory and filename) of the selected file.

 getPaths(This)

 Fills the array paths with the full paths of the files chosen.

 getWildcard(This)

 Returns the file dialog wildcard.

 new(Parent)

 Equivalent to new(Parent, []).

 new/2

 Constructor.

 setDirectory(This, Directory)

 Sets the default directory.

 setFilename(This, Setfilename)

 Sets the default filename.

 setFilterIndex(This, FilterIndex)

 Sets the default filter index, starting from zero.

 setMessage(This, Message)

 Sets the message that will be displayed on the dialog.

 setPath(This, Path)

 Sets the path (the combined directory and filename that will be returned when the dialog
is dismissed).

 setWildcard(This, WildCard)

 Sets the wildcard, which can contain multiple file types, for example: "BMP files
(*.bmp)|*.bmp|GIF files (*.gif)|*.gif".

 Types

 wxFileDialog()

 -type wxFileDialog() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxFileDialog()) -> ok.

Destroys the object

 getDirectory(This)

 -spec getDirectory(This) -> unicode:charlist() when This :: wxFileDialog().

Returns the default directory.

 getFilename(This)

 -spec getFilename(This) -> unicode:charlist() when This :: wxFileDialog().

Returns the default filename.
Note: This function can't be used with dialogs which have the wxFD_MULTIPLE style, use getFilenames/1
instead.

 getFilenames(This)

 -spec getFilenames(This) -> [unicode:charlist()] when This :: wxFileDialog().

Fills the array filenames with the names of the files chosen.
This function should only be used with the dialogs which have wxFD_MULTIPLE style, use getFilename/1
for the others.
Note that under Windows, if the user selects shortcuts, the filenames include paths,
since the application cannot determine the full path of each referenced file by appending
the directory containing the shortcuts to the filename.

 getFilterIndex(This)

 -spec getFilterIndex(This) -> integer() when This :: wxFileDialog().

Returns the index into the list of filters supplied, optionally, in the wildcard
parameter.
Before the dialog is shown, this is the index which will be used when the dialog is first displayed.
After the dialog is shown, this is the index selected by the user.

 getMessage(This)

 -spec getMessage(This) -> unicode:charlist() when This :: wxFileDialog().

Returns the message that will be displayed on the dialog.

 getPath(This)

 -spec getPath(This) -> unicode:charlist() when This :: wxFileDialog().

Returns the full path (directory and filename) of the selected file.
Note: This function can't be used with dialogs which have the wxFD_MULTIPLE style, use getPaths/1
instead.

 getPaths(This)

 -spec getPaths(This) -> [unicode:charlist()] when This :: wxFileDialog().

Fills the array paths with the full paths of the files chosen.
This function should only be used with the dialogs which have wxFD_MULTIPLE style, use getPath/1
for the others.

 getWildcard(This)

 -spec getWildcard(This) -> unicode:charlist() when This :: wxFileDialog().

Returns the file dialog wildcard.

 new(Parent)

 -spec new(Parent) -> wxFileDialog() when Parent :: wxWindow:wxWindow().

Equivalent to new(Parent, []).

 new/2

 -spec new(Parent, [Option]) -> wxFileDialog()
 when
 Parent :: wxWindow:wxWindow(),
 Option ::
 {message, unicode:chardata()} |
 {defaultDir, unicode:chardata()} |
 {defaultFile, unicode:chardata()} |
 {wildCard, unicode:chardata()} |
 {style, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {sz, {W :: integer(), H :: integer()}}.

Constructor.
Use wxDialog:showModal/1 to show the dialog.

 setDirectory(This, Directory)

 -spec setDirectory(This, Directory) -> ok when This :: wxFileDialog(), Directory :: unicode:chardata().

Sets the default directory.

 setFilename(This, Setfilename)

 -spec setFilename(This, Setfilename) -> ok
 when This :: wxFileDialog(), Setfilename :: unicode:chardata().

Sets the default filename.
In wxGTK this will have little effect unless a default directory has previously been set.

 setFilterIndex(This, FilterIndex)

 -spec setFilterIndex(This, FilterIndex) -> ok when This :: wxFileDialog(), FilterIndex :: integer().

Sets the default filter index, starting from zero.

 setMessage(This, Message)

 -spec setMessage(This, Message) -> ok when This :: wxFileDialog(), Message :: unicode:chardata().

Sets the message that will be displayed on the dialog.

 setPath(This, Path)

 -spec setPath(This, Path) -> ok when This :: wxFileDialog(), Path :: unicode:chardata().

Sets the path (the combined directory and filename that will be returned when the dialog
is dismissed).

 setWildcard(This, WildCard)

 -spec setWildcard(This, WildCard) -> ok when This :: wxFileDialog(), WildCard :: unicode:chardata().

Sets the wildcard, which can contain multiple file types, for example: "BMP files
(*.bmp)|*.bmp|GIF files (*.gif)|*.gif".
Note that the native Motif dialog has some limitations with respect to wildcards; see the
Remarks section above.

wxFileDirPickerEvent

This event class is used for the events generated by wxFilePickerCtrl and by wxDirPickerCtrl.
See:
	wxFilePickerCtrl

	wxDirPickerCtrl

This class is derived, and can use functions, from:
	wxCommandEvent

	wxEvent

wxWidgets docs: wxFileDirPickerEvent
Events
Use wxEvtHandler:connect/3 with wxFileDirPickerEventType to subscribe to events of this type.

 Summary

 Types

 wxFileDirPicker()

 wxFileDirPickerEvent()

 wxFileDirPickerEventType()

 Functions

 getPath(This)

 Retrieve the absolute path of the file/directory the user has just selected.

 Types

 wxFileDirPicker()

 -type wxFileDirPicker() ::
 #wxFileDirPicker{type :: wxFileDirPickerEvent:wxFileDirPickerEventType(),
 path :: unicode:chardata()}.

 wxFileDirPickerEvent()

 -type wxFileDirPickerEvent() :: wx:wx_object().

 wxFileDirPickerEventType()

 -type wxFileDirPickerEventType() :: command_filepicker_changed | command_dirpicker_changed.

 Functions

 getPath(This)

 -spec getPath(This) -> unicode:charlist() when This :: wxFileDirPickerEvent().

Retrieve the absolute path of the file/directory the user has just selected.

wxFilePickerCtrl

This control allows the user to select a file.
The generic implementation is a button which brings up a wxFileDialog when clicked.
Native implementation may differ but this is usually a (small) widget which give access to
the file-chooser dialog. It is only available if wxUSE_FILEPICKERCTRL is set to 1 (the default).
Styles
This class supports the following styles:
	wxFLP_DEFAULT_STYLE: The default style: includes wxFLP_OPEN | wxFLP_FILE_MUST_EXIST and,
under wxMSW and wxOSX, wxFLP_USE_TEXTCTRL.

	wxFLP_USE_TEXTCTRL: Creates a text control to the left of the picker button which is
completely managed by the wxFilePickerCtrl and which can be used by the user to
specify a path (see SetPath). The text control is automatically synchronized with button's
value. Use functions defined in wxPickerBase to modify the text control.

	wxFLP_OPEN: Creates a picker which allows the user to select a file to open.

	wxFLP_SAVE: Creates a picker which allows the user to select a file to save.

	wxFLP_OVERWRITE_PROMPT: Can be combined with wxFLP_SAVE only: ask confirmation to the
user before selecting a file.

	wxFLP_FILE_MUST_EXIST: Can be combined with wxFLP_OPEN only: the file selected in the
popup wxFileDialog must be an existing file. Notice that it still remains possible for
the user to enter a non-existent file name in the text control if wxFLP_USE_TEXTCTRL is
also used, this flag is a hint for the user rather than a guarantee that the selected file
does exist for the program.

	wxFLP_CHANGE_DIR: Change current working directory on each user file selection change.

	wxFLP_SMALL: Use smaller version of the control with a small "..." button instead of the
normal "Browse" one. This flag is new since wxWidgets 2.9.3.

See:
	wxFileDialog

	wxFileDirPickerEvent

This class is derived, and can use functions, from:
	wxPickerBase

	wxControl

	wxWindow

	wxEvtHandler

wxWidgets docs: wxFilePickerCtrl
Events
Event types emitted from this class:
	command_filepicker_changed

 Summary

 Types

 wxFilePickerCtrl()

 Functions

 create(This, Parent, Id)

 Equivalent to create(This, Parent, Id, []).

 create/4

 Creates this widget with the given parameters.

 destroy(This)

 Destroys the object

 getPath(This)

 Returns the absolute path of the currently selected file.

 new()

 new(Parent, Id)

 Equivalent to new(Parent, Id, []).

 new/3

 Initializes the object and calls create/4 with all the parameters.

 setPath(This, Filename)

 Sets the absolute path of the currently selected file.

 Types

 wxFilePickerCtrl()

 -type wxFilePickerCtrl() :: wx:wx_object().

 Functions

 create(This, Parent, Id)

 -spec create(This, Parent, Id) -> boolean()
 when This :: wxFilePickerCtrl(), Parent :: wxWindow:wxWindow(), Id :: integer().

Equivalent to create(This, Parent, Id, []).

 create/4

 -spec create(This, Parent, Id, [Option]) -> boolean()
 when
 This :: wxFilePickerCtrl(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {path, unicode:chardata()} |
 {message, unicode:chardata()} |
 {wildcard, unicode:chardata()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Creates this widget with the given parameters.
Return: true if the control was successfully created or false if creation failed.

 destroy(This)

 -spec destroy(This :: wxFilePickerCtrl()) -> ok.

Destroys the object

 getPath(This)

 -spec getPath(This) -> unicode:charlist() when This :: wxFilePickerCtrl().

Returns the absolute path of the currently selected file.

 new()

 -spec new() -> wxFilePickerCtrl().

 new(Parent, Id)

 -spec new(Parent, Id) -> wxFilePickerCtrl() when Parent :: wxWindow:wxWindow(), Id :: integer().

Equivalent to new(Parent, Id, []).

 new/3

 -spec new(Parent, Id, [Option]) -> wxFilePickerCtrl()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {path, unicode:chardata()} |
 {message, unicode:chardata()} |
 {wildcard, unicode:chardata()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Initializes the object and calls create/4 with all the parameters.

 setPath(This, Filename)

 -spec setPath(This, Filename) -> ok when This :: wxFilePickerCtrl(), Filename :: unicode:chardata().

Sets the absolute path of the currently selected file.
If the control uses wxFLP_FILE_MUST_EXIST and does not use wxFLP_USE_TEXTCTRL style,
the filename must be a name of an existing file and will be simply ignored by the native
wxGTK implementation if this is not the case (the generic implementation used under the
other platforms accepts even invalid file names currently, but this is subject to change
in the future, don't rely on being able to use non-existent paths with it).

wxFindReplaceData

wxFindReplaceData holds the data for wxFindReplaceDialog.
It is used to initialize the dialog with the default values and will keep the last values
from the dialog when it is closed. It is also updated each time a wxFindDialogEvent (not
implemented in wx) is generated so instead of using the wxFindDialogEvent (not
implemented in wx) methods you can also directly query this object.
Note that all SetXXX() methods may only be called before showing the dialog and calling
them has no effect later.
wxWidgets docs: wxFindReplaceData

 Summary

 Types

 wxFindReplaceData()

 Functions

 destroy(This)

 Destroys the object

 getFindString(This)

 Get the string to find.

 getFlags(This)

 Get the combination of wxFindReplaceFlags values.

 getReplaceString(This)

 Get the replacement string.

 new()

 Equivalent to new([]).

 new(Options)

 Constructor initializes the flags to default value (0).

 setFindString(This, Str)

 Set the string to find (used as initial value by the dialog).

 setFlags(This, Flags)

 Set the flags to use to initialize the controls of the dialog.

 setReplaceString(This, Str)

 Set the replacement string (used as initial value by the dialog).

 Types

 wxFindReplaceData()

 -type wxFindReplaceData() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxFindReplaceData()) -> ok.

Destroys the object

 getFindString(This)

 -spec getFindString(This) -> unicode:charlist() when This :: wxFindReplaceData().

Get the string to find.

 getFlags(This)

 -spec getFlags(This) -> integer() when This :: wxFindReplaceData().

Get the combination of wxFindReplaceFlags values.

 getReplaceString(This)

 -spec getReplaceString(This) -> unicode:charlist() when This :: wxFindReplaceData().

Get the replacement string.

 new()

 -spec new() -> wxFindReplaceData().

Equivalent to new([]).

 new(Options)

 -spec new([Option]) -> wxFindReplaceData() when Option :: {flags, integer()}.

Constructor initializes the flags to default value (0).

 setFindString(This, Str)

 -spec setFindString(This, Str) -> ok when This :: wxFindReplaceData(), Str :: unicode:chardata().

Set the string to find (used as initial value by the dialog).

 setFlags(This, Flags)

 -spec setFlags(This, Flags) -> ok when This :: wxFindReplaceData(), Flags :: integer().

Set the flags to use to initialize the controls of the dialog.

 setReplaceString(This, Str)

 -spec setReplaceString(This, Str) -> ok when This :: wxFindReplaceData(), Str :: unicode:chardata().

Set the replacement string (used as initial value by the dialog).

wxFindReplaceDialog

wxFindReplaceDialog is a standard modeless dialog which is used to allow the user to
search for some text (and possibly replace it with something else).
The actual searching is supposed to be done in the owner window which is the parent of
this dialog. Note that it means that unlike for the other standard dialogs this one must
have a parent window. Also note that there is no way to use this dialog in a modal way; it
is always, by design and implementation, modeless.
Please see the page_samples_dialogs sample for an example of using it.
This class is derived, and can use functions, from:
	wxDialog

	wxTopLevelWindow

	wxWindow

	wxEvtHandler

wxWidgets docs: wxFindReplaceDialog

 Summary

 Types

 wxFindReplaceDialog()

 Functions

 create(This, Parent, Data, Title)

 Equivalent to create(This, Parent, Data, Title, []).

 create/5

 Creates the dialog; use wxWindow:show/2 to show it on screen.

 destroy(This)

 Destroys the object

 getData(This)

 Get the wxFindReplaceData object used by this dialog.

 new()

 new(Parent, Data, Title)

 Equivalent to new(Parent, Data, Title, []).

 new/4

 After using default constructor create/5 must be called.

 Types

 wxFindReplaceDialog()

 -type wxFindReplaceDialog() :: wx:wx_object().

 Functions

 create(This, Parent, Data, Title)

 -spec create(This, Parent, Data, Title) -> boolean()
 when
 This :: wxFindReplaceDialog(),
 Parent :: wxWindow:wxWindow(),
 Data :: wxFindReplaceData:wxFindReplaceData(),
 Title :: unicode:chardata().

Equivalent to create(This, Parent, Data, Title, []).

 create/5

 -spec create(This, Parent, Data, Title, [Option]) -> boolean()
 when
 This :: wxFindReplaceDialog(),
 Parent :: wxWindow:wxWindow(),
 Data :: wxFindReplaceData:wxFindReplaceData(),
 Title :: unicode:chardata(),
 Option :: {style, integer()}.

Creates the dialog; use wxWindow:show/2 to show it on screen.
The parent and data parameters must be non-NULL.

 destroy(This)

 -spec destroy(This :: wxFindReplaceDialog()) -> ok.

Destroys the object

 getData(This)

 -spec getData(This) -> wxFindReplaceData:wxFindReplaceData() when This :: wxFindReplaceDialog().

Get the wxFindReplaceData object used by this dialog.

 new()

 -spec new() -> wxFindReplaceDialog().

 new(Parent, Data, Title)

 -spec new(Parent, Data, Title) -> wxFindReplaceDialog()
 when
 Parent :: wxWindow:wxWindow(),
 Data :: wxFindReplaceData:wxFindReplaceData(),
 Title :: unicode:chardata().

Equivalent to new(Parent, Data, Title, []).

 new/4

 -spec new(Parent, Data, Title, [Option]) -> wxFindReplaceDialog()
 when
 Parent :: wxWindow:wxWindow(),
 Data :: wxFindReplaceData:wxFindReplaceData(),
 Title :: unicode:chardata(),
 Option :: {style, integer()}.

After using default constructor create/5 must be called.
The parent and data parameters must be non-NULL.

wxFlexGridSizer

A flex grid sizer is a sizer which lays out its children in a two-dimensional table with
all table fields in one row having the same height and all fields in one column having the
same width, but all rows or all columns are not necessarily the same height or width as in
the wxGridSizer.
Since wxWidgets 2.5.0, wxFlexGridSizer can also size items equally in one direction
but unequally ("flexibly") in the other. If the sizer is only flexible in one direction
(this can be changed using setFlexibleDirection/2), it needs to be decided how the sizer should grow in the other
("non-flexible") direction in order to fill the available space. The setNonFlexibleGrowMode/2 method serves this purpose.
See:
	wxSizer

	Overview sizer

This class is derived, and can use functions, from:
	wxGridSizer

	wxSizer

wxWidgets docs: wxFlexGridSizer

 Summary

 Types

 wxFlexGridSizer()

 Functions

 addGrowableCol(This, Idx)

 Equivalent to addGrowableCol(This, Idx, []).

 addGrowableCol/3

 Specifies that column idx (starting from zero) should be grown if there is extra space
available to the sizer.

 addGrowableRow(This, Idx)

 Equivalent to addGrowableRow(This, Idx, []).

 addGrowableRow/3

 Specifies that row idx (starting from zero) should be grown if there is extra space
available to the sizer.

 destroy(This)

 Destroys the object

 getFlexibleDirection(This)

 Returns a ?wxOrientation value that specifies whether the sizer flexibly resizes its
columns, rows, or both (default).

 getNonFlexibleGrowMode(This)

 Returns the value that specifies how the sizer grows in the "non-flexible" direction if
there is one.

 new(Cols)

 Equivalent to new(Cols, []).

 new(Cols, Options)

 new/3

 new(Rows, Cols, Vgap, Hgap)

 removeGrowableCol(This, Idx)

 Specifies that the idx column index is no longer growable.

 removeGrowableRow(This, Idx)

 Specifies that the idx row index is no longer growable.

 setFlexibleDirection(This, Direction)

 Specifies whether the sizer should flexibly resize its columns, rows, or both.

 setNonFlexibleGrowMode(This, Mode)

 Specifies how the sizer should grow in the non-flexible direction if there is one (so setFlexibleDirection/2
must have been called previously).

 Types

 wxFlexGridSizer()

 -type wxFlexGridSizer() :: wx:wx_object().

 Functions

 addGrowableCol(This, Idx)

 -spec addGrowableCol(This, Idx) -> ok when This :: wxFlexGridSizer(), Idx :: integer().

Equivalent to addGrowableCol(This, Idx, []).

 addGrowableCol/3

 -spec addGrowableCol(This, Idx, [Option]) -> ok
 when
 This :: wxFlexGridSizer(),
 Idx :: integer(),
 Option :: {proportion, integer()}.

Specifies that column idx (starting from zero) should be grown if there is extra space
available to the sizer.
The proportion parameter has the same meaning as the stretch factor for the sizers (see wxBoxSizer)
except that if all proportions are 0, then all columns are resized equally (instead of not
being resized at all).
Notice that the column must not be already growable, if you need to change the proportion
you must call removeGrowableCol/2 first and then make it growable (with a different proportion) again. You
can use IsColGrowable() (not implemented in wx) to check whether a column is already
growable.

 addGrowableRow(This, Idx)

 -spec addGrowableRow(This, Idx) -> ok when This :: wxFlexGridSizer(), Idx :: integer().

Equivalent to addGrowableRow(This, Idx, []).

 addGrowableRow/3

 -spec addGrowableRow(This, Idx, [Option]) -> ok
 when
 This :: wxFlexGridSizer(),
 Idx :: integer(),
 Option :: {proportion, integer()}.

Specifies that row idx (starting from zero) should be grown if there is extra space
available to the sizer.
This is identical to addGrowableCol/3 except that it works with rows and not columns.

 destroy(This)

 -spec destroy(This :: wxFlexGridSizer()) -> ok.

Destroys the object

 getFlexibleDirection(This)

 -spec getFlexibleDirection(This) -> integer() when This :: wxFlexGridSizer().

Returns a ?wxOrientation value that specifies whether the sizer flexibly resizes its
columns, rows, or both (default).
Return: One of the following values:
	wxVERTICAL: Rows are flexibly sized.

	wxHORIZONTAL: Columns are flexibly sized.

	wxBOTH: Both rows and columns are flexibly sized (this is the default value).

See: setFlexibleDirection/2

 getNonFlexibleGrowMode(This)

 -spec getNonFlexibleGrowMode(This) -> wx:wx_enum() when This :: wxFlexGridSizer().

Returns the value that specifies how the sizer grows in the "non-flexible" direction if
there is one.
The behaviour of the elements in the flexible direction (i.e. both rows and columns by
default, or rows only if getFlexibleDirection/1 is wxVERTICAL or columns only if it is wxHORIZONTAL) is
always governed by their proportion as specified in the call to addGrowableRow/3 or addGrowableCol/3. What happens in the
other direction depends on the value of returned by this function as described below.
Return: One of the following values:
	wxFLEX_GROWMODE_NONE: Sizer doesn't grow its elements at all in the non-flexible direction.

	wxFLEX_GROWMODE_SPECIFIED: Sizer honors growable columns/rows set with addGrowableCol/3 and addGrowableRow/3 in the
non-flexible direction as well. In this case equal sizing applies to minimum sizes of
columns or rows (this is the default value).

	wxFLEX_GROWMODE_ALL: Sizer equally stretches all columns or rows in the non-flexible
direction, independently of the proportions applied in the flexible direction.

See:
	setFlexibleDirection/2

	setNonFlexibleGrowMode/2

 new(Cols)

 -spec new(Cols) -> wxFlexGridSizer() when Cols :: integer().

Equivalent to new(Cols, []).

 new(Cols, Options)

 -spec new(Cols, [Option]) -> wxFlexGridSizer()
 when Cols :: integer(), Option :: {gap, {W :: integer(), H :: integer()}}.

 new/3

 -spec new(Cols, Vgap, Hgap) -> wxFlexGridSizer()
 when Cols :: integer(), Vgap :: integer(), Hgap :: integer();
 (Rows, Cols, Gap) -> wxFlexGridSizer()
 when Rows :: integer(), Cols :: integer(), Gap :: {W :: integer(), H :: integer()}.

 new(Rows, Cols, Vgap, Hgap)

 -spec new(Rows, Cols, Vgap, Hgap) -> wxFlexGridSizer()
 when Rows :: integer(), Cols :: integer(), Vgap :: integer(), Hgap :: integer().

 removeGrowableCol(This, Idx)

 -spec removeGrowableCol(This, Idx) -> ok when This :: wxFlexGridSizer(), Idx :: integer().

Specifies that the idx column index is no longer growable.

 removeGrowableRow(This, Idx)

 -spec removeGrowableRow(This, Idx) -> ok when This :: wxFlexGridSizer(), Idx :: integer().

Specifies that the idx row index is no longer growable.

 setFlexibleDirection(This, Direction)

 -spec setFlexibleDirection(This, Direction) -> ok when This :: wxFlexGridSizer(), Direction :: integer().

Specifies whether the sizer should flexibly resize its columns, rows, or both.
Argument direction can be wxVERTICAL, wxHORIZONTAL or wxBOTH (which is the
default value). Any other value is ignored.
See getFlexibleDirection/1 for the explanation of these values. Note that this method does not trigger
relayout.

 setNonFlexibleGrowMode(This, Mode)

 -spec setNonFlexibleGrowMode(This, Mode) -> ok when This :: wxFlexGridSizer(), Mode :: wx:wx_enum().

Specifies how the sizer should grow in the non-flexible direction if there is one (so setFlexibleDirection/2
must have been called previously).
Argument mode can be one of those documented in getNonFlexibleGrowMode/1, please see there for their
explanation. Note that this method does not trigger relayout.

wxFocusEvent

A focus event is sent when a window's focus changes.
The window losing focus receives a "kill focus" event while the window gaining it gets a
"set focus" one.
Notice that the set focus event happens both when the user gives focus to the window
(whether using the mouse or keyboard) and when it is done from the program itself using wxWindow:setFocus/1.
The focus event handlers should almost invariably call wxEvent:skip/2 on their event argument to allow
the default handling to take place. Failure to do this may result in incorrect behaviour
of the native controls. Also note that wxEVT_KILL_FOCUS handler must not call wxWindow:setFocus/1 as this,
again, is not supported by all native controls. If you need to do this, consider using the Delayed Action Mechanism
(not implemented in wx) described in wxIdleEvent documentation.
See: Overview events
This class is derived, and can use functions, from:
	wxEvent

wxWidgets docs: wxFocusEvent
Events
Use wxEvtHandler:connect/3 with wxFocusEventType to subscribe to events of this type.

 Summary

 Types

 wxFocus()

 wxFocusEvent()

 wxFocusEventType()

 Functions

 getWindow(This)

 Returns the window associated with this event, that is the window which had the focus
before for the wxEVT_SET_FOCUS event and the window which is going to receive focus
for the wxEVT_KILL_FOCUS one.

 Types

 wxFocus()

 -type wxFocus() :: #wxFocus{type :: wxFocusEvent:wxFocusEventType(), win :: wxWindow:wxWindow()}.

 wxFocusEvent()

 -type wxFocusEvent() :: wx:wx_object().

 wxFocusEventType()

 -type wxFocusEventType() :: set_focus | kill_focus.

 Functions

 getWindow(This)

 -spec getWindow(This) -> wxWindow:wxWindow() when This :: wxFocusEvent().

Returns the window associated with this event, that is the window which had the focus
before for the wxEVT_SET_FOCUS event and the window which is going to receive focus
for the wxEVT_KILL_FOCUS one.
Warning: the window pointer may be NULL!

wxFont

A font is an object which determines the appearance of text.
Fonts are used for drawing text to a device context, and setting the appearance of a
window's text, see wxDC:setFont/2 and wxWindow:setFont/2.
The easiest way to create a custom font is to use wxFontInfo (not implemented in wx)
object to specify the font attributes and then use new/5 constructor. Alternatively, you could
start with one of the pre-defined fonts or use wxWindow:getFont/1 and modify the font, e.g. by increasing
its size using MakeLarger() (not implemented in wx) or changing its weight using MakeBold()
(not implemented in wx).
This class uses reference counting and copy-on-write internally so that assignments
between two instances of this class are very cheap. You can therefore use actual objects
instead of pointers without efficiency problems. If an instance of this class is changed
it will create its own data internally so that other instances, which previously shared
the data using the reference counting, are not affected.
You can retrieve the current system font settings with wxSystemSettings.
Predefined objects (include wx.hrl): ?wxNullFont, ?wxNORMAL_FONT, ?wxSMALL_FONT,
?wxITALIC_FONT, ?wxSWISS_FONT
See:
	Overview font

	wxDC:setFont/2

	wxDC:drawText/3

	wxDC:getTextExtent/3

	wxFontDialog

	wxSystemSettings

wxWidgets docs: wxFont

 Summary

 Types

 wxFont()

 Functions

 destroy(This)

 Destroys the object

 getDefaultEncoding()

 Returns the current application's default encoding.

 getFaceName(This)

 Returns the face name associated with the font, or the empty string if there is no face
information.

 getFamily(This)

 Gets the font family if possible.

 getNativeFontInfoDesc(This)

 Returns the platform-dependent string completely describing this font.

 getNativeFontInfoUserDesc(This)

 Returns a user-friendly string for this font object.

 getPointSize(This)

 Gets the point size as an integer number.

 getStyle(This)

 Gets the font style.

 getUnderlined(This)

 Returns true if the font is underlined, false otherwise.

 getWeight(This)

 Gets the font weight.

 isFixedWidth(This)

 Returns true if the font is a fixed width (or monospaced) font, false if it is a
proportional one or font is invalid.

 isOk(This)

 Returns true if this object is a valid font, false otherwise.

 new()

 Default ctor.

 new/1

 Copy constructor, uses reference counting.

 new/4

 Equivalent to: new/5

 new/5

 Creates a font object with the specified attributes and size in pixels.

 ok(This)

 Equivalent to: isOk/1

 setDefaultEncoding(Encoding)

 Sets the default font encoding.

 setFaceName(This, FaceName)

 Sets the facename for the font.

 setFamily(This, Family)

 Sets the font family.

 setPointSize(This, PointSize)

 Sets the font size in points to an integer value.

 setStyle(This, Style)

 Sets the font style.

 setUnderlined(This, Underlined)

 Sets underlining.

 setWeight(This, Weight)

 Sets the font weight.

 Types

 wxFont()

 -type wxFont() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxFont()) -> ok.

Destroys the object

 getDefaultEncoding()

 -spec getDefaultEncoding() -> wx:wx_enum().

Returns the current application's default encoding.
See:
	Overview fontencoding

	setDefaultEncoding/1

 getFaceName(This)

 -spec getFaceName(This) -> unicode:charlist() when This :: wxFont().

Returns the face name associated with the font, or the empty string if there is no face
information.
See: setFaceName/2

 getFamily(This)

 -spec getFamily(This) -> wx:wx_enum() when This :: wxFont().

Gets the font family if possible.
As described in ?wxFontFamily docs the returned value acts as a rough, basic
classification of the main font properties (look, spacing).
If the current font face name is not recognized by wxFont or by the underlying
system, wxFONTFAMILY_DEFAULT is returned.
Note that currently this function is not very precise and so not particularly useful.
Font families mostly make sense only for font creation, see setFamily/2.
See: setFamily/2

 getNativeFontInfoDesc(This)

 -spec getNativeFontInfoDesc(This) -> unicode:charlist() when This :: wxFont().

Returns the platform-dependent string completely describing this font.
Returned string is always non-empty unless the font is invalid (in which case an assert
is triggered).
Note that the returned string is not meant to be shown or edited by the user: a typical
use of this function is for serializing in string-form a wxFont object.
See: getNativeFontInfoUserDesc/1

 getNativeFontInfoUserDesc(This)

 -spec getNativeFontInfoUserDesc(This) -> unicode:charlist() when This :: wxFont().

Returns a user-friendly string for this font object.
Returned string is always non-empty unless the font is invalid (in which case an assert
is triggered).
The string does not encode all wxFont infos under all platforms; e.g. under wxMSW the
font family is not present in the returned string.
Some examples of the formats of returned strings (which are platform-dependent) are in SetNativeFontInfoUserDesc()
(not implemented in wx).
See: getNativeFontInfoDesc/1

 getPointSize(This)

 -spec getPointSize(This) -> integer() when This :: wxFont().

Gets the point size as an integer number.
This function is kept for compatibility reasons. New code should use GetFractionalPointSize()
(not implemented in wx) and support fractional point sizes.
See: setPointSize/2

 getStyle(This)

 -spec getStyle(This) -> wx:wx_enum() when This :: wxFont().

Gets the font style.
See ?wxFontStyle for a list of valid styles.
See: setStyle/2

 getUnderlined(This)

 -spec getUnderlined(This) -> boolean() when This :: wxFont().

Returns true if the font is underlined, false otherwise.
See: setUnderlined/2

 getWeight(This)

 -spec getWeight(This) -> wx:wx_enum() when This :: wxFont().

Gets the font weight.
See ?wxFontWeight for a list of valid weight identifiers.
See: setWeight/2

 isFixedWidth(This)

 -spec isFixedWidth(This) -> boolean() when This :: wxFont().

Returns true if the font is a fixed width (or monospaced) font, false if it is a
proportional one or font is invalid.
Note that this function under some platforms is different from just testing for the font
family being equal to wxFONTFAMILY_TELETYPE because native platform-specific functions
are used for the check (resulting in a more accurate return value).

 isOk(This)

 -spec isOk(This) -> boolean() when This :: wxFont().

Returns true if this object is a valid font, false otherwise.

 new()

 -spec new() -> wxFont().

Default ctor.

 new/1

 -spec new(NativeInfoString) -> wxFont() when NativeInfoString :: unicode:chardata();
 (Font) -> wxFont() when Font :: wxFont().

Copy constructor, uses reference counting.

 new/4

 -spec new(PointSize, Family, Style, Weight) -> wxFont()
 when
 PointSize :: integer(),
 Family :: wx:wx_enum(),
 Style :: wx:wx_enum(),
 Weight :: wx:wx_enum();
 (PixelSize, Family, Style, Weight) -> wxFont()
 when
 PixelSize :: {W :: integer(), H :: integer()},
 Family :: wx:wx_enum(),
 Style :: wx:wx_enum(),
 Weight :: wx:wx_enum().

Equivalent to: new/5

 new/5

 -spec new(PointSize, Family, Style, Weight, [Option]) -> wxFont()
 when
 PointSize :: integer(),
 Family :: wx:wx_enum(),
 Style :: wx:wx_enum(),
 Weight :: wx:wx_enum(),
 Option ::
 {underlined, boolean()} | {face, unicode:chardata()} | {encoding, wx:wx_enum()};
 (PixelSize, Family, Style, Weight, [Option]) -> wxFont()
 when
 PixelSize :: {W :: integer(), H :: integer()},
 Family :: wx:wx_enum(),
 Style :: wx:wx_enum(),
 Weight :: wx:wx_enum(),
 Option ::
 {underline, boolean()} | {faceName, unicode:chardata()} | {encoding, wx:wx_enum()}.

Creates a font object with the specified attributes and size in pixels.
Notice that the use of this constructor is often more verbose and less readable than the
use of constructor from wxFontInfo (not implemented in wx), consider using that
constructor instead.
Remark: If the desired font does not exist, the closest match will be chosen. Under
Windows, only scalable TrueType fonts are used.

 ok(This)

 -spec ok(This) -> boolean() when This :: wxFont().

Equivalent to: isOk/1

 setDefaultEncoding(Encoding)

 -spec setDefaultEncoding(Encoding) -> ok when Encoding :: wx:wx_enum().

Sets the default font encoding.
See:
	Overview fontencoding

	getDefaultEncoding/0

 setFaceName(This, FaceName)

 -spec setFaceName(This, FaceName) -> boolean() when This :: wxFont(), FaceName :: unicode:chardata().

Sets the facename for the font.
Remark: To avoid portability problems, don't rely on a specific face, but specify the
font family instead (see ?wxFontFamily and setFamily/2).
Return: true if the given face name exists; if the face name doesn't exist in the user's
system then the font is invalidated (so that isOk/1 will return false) and false is returned.
See:
	getFaceName/1

	setFamily/2

 setFamily(This, Family)

 -spec setFamily(This, Family) -> ok when This :: wxFont(), Family :: wx:wx_enum().

Sets the font family.
As described in ?wxFontFamily docs the given family value acts as a rough, basic
indication of the main font properties (look, spacing).
Note that changing the font family results in changing the font face name.
See:
	getFamily/1

	setFaceName/2

 setPointSize(This, PointSize)

 -spec setPointSize(This, PointSize) -> ok when This :: wxFont(), PointSize :: integer().

Sets the font size in points to an integer value.
This is a legacy version of the function only supporting integer point sizes. It can
still be used, but to avoid unnecessarily restricting the font size in points to integer
values, consider using the new (added in wxWidgets 3.1.2) SetFractionalPointSize() (not
implemented in wx) function instead.

 setStyle(This, Style)

 -spec setStyle(This, Style) -> ok when This :: wxFont(), Style :: wx:wx_enum().

Sets the font style.
See: getStyle/1

 setUnderlined(This, Underlined)

 -spec setUnderlined(This, Underlined) -> ok when This :: wxFont(), Underlined :: boolean().

Sets underlining.
See: getUnderlined/1

 setWeight(This, Weight)

 -spec setWeight(This, Weight) -> ok when This :: wxFont(), Weight :: wx:wx_enum().

Sets the font weight.
See: getWeight/1

wxFontData

This class holds a variety of information related to font dialogs.
See:
	Overview cmndlg

	wxFont

	wxFontDialog

wxWidgets docs: wxFontData

 Summary

 Types

 wxFontData()

 Functions

 destroy(This)

 Destroys the object

 enableEffects(This, Enable)

 Enables or disables "effects" under Windows or generic only.

 getAllowSymbols(This)

 Under Windows, returns a flag determining whether symbol fonts can be selected.

 getChosenFont(This)

 Gets the font chosen by the user if the user pressed OK (wxFontDialog::ShowModal() (not
implemented in wx) returned wxID_OK).

 getColour(This)

 Gets the colour associated with the font dialog.

 getEnableEffects(This)

 Determines whether "effects" are enabled under Windows.

 getInitialFont(This)

 Gets the font that will be initially used by the font dialog.

 getShowHelp(This)

 Returns true if the Help button will be shown (Windows only).

 new()

 Constructor.

 new(Data)

 Copy Constructor.

 setAllowSymbols(This, AllowSymbols)

 Under Windows, determines whether symbol fonts can be selected.

 setChosenFont(This, Font)

 Sets the font that will be returned to the user (for internal use only).

 setColour(This, Colour)

 Sets the colour that will be used for the font foreground colour.

 setInitialFont(This, Font)

 Sets the font that will be initially used by the font dialog.

 setRange(This, Min, Max)

 Sets the valid range for the font point size (Windows only).

 setShowHelp(This, ShowHelp)

 Determines whether the Help button will be displayed in the font dialog (Windows only).

 Types

 wxFontData()

 -type wxFontData() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxFontData()) -> ok.

Destroys the object

 enableEffects(This, Enable)

 -spec enableEffects(This, Enable) -> ok when This :: wxFontData(), Enable :: boolean().

Enables or disables "effects" under Windows or generic only.
This refers to the controls for manipulating colour, strikeout and underline properties.
The default value is true.

 getAllowSymbols(This)

 -spec getAllowSymbols(This) -> boolean() when This :: wxFontData().

Under Windows, returns a flag determining whether symbol fonts can be selected.
Has no effect on other platforms.
The default value is true.

 getChosenFont(This)

 -spec getChosenFont(This) -> wxFont:wxFont() when This :: wxFontData().

Gets the font chosen by the user if the user pressed OK (wxFontDialog::ShowModal() (not
implemented in wx) returned wxID_OK).

 getColour(This)

 -spec getColour(This) -> wx:wx_colour4() when This :: wxFontData().

Gets the colour associated with the font dialog.
The default value is black.

 getEnableEffects(This)

 -spec getEnableEffects(This) -> boolean() when This :: wxFontData().

Determines whether "effects" are enabled under Windows.
This refers to the controls for manipulating colour, strikeout and underline properties.
The default value is true.

 getInitialFont(This)

 -spec getInitialFont(This) -> wxFont:wxFont() when This :: wxFontData().

Gets the font that will be initially used by the font dialog.
This should have previously been set by the application.

 getShowHelp(This)

 -spec getShowHelp(This) -> boolean() when This :: wxFontData().

Returns true if the Help button will be shown (Windows only).
The default value is false.

 new()

 -spec new() -> wxFontData().

Constructor.
Initializes fontColour to black, showHelp to false, allowSymbols to true, enableEffects
to true, minSize to 0 and maxSize to 0.

 new(Data)

 -spec new(Data) -> wxFontData() when Data :: wxFontData().

Copy Constructor.

 setAllowSymbols(This, AllowSymbols)

 -spec setAllowSymbols(This, AllowSymbols) -> ok when This :: wxFontData(), AllowSymbols :: boolean().

Under Windows, determines whether symbol fonts can be selected.
Has no effect on other platforms.
The default value is true.

 setChosenFont(This, Font)

 -spec setChosenFont(This, Font) -> ok when This :: wxFontData(), Font :: wxFont:wxFont().

Sets the font that will be returned to the user (for internal use only).

 setColour(This, Colour)

 -spec setColour(This, Colour) -> ok when This :: wxFontData(), Colour :: wx:wx_colour().

Sets the colour that will be used for the font foreground colour.
The default colour is black.

 setInitialFont(This, Font)

 -spec setInitialFont(This, Font) -> ok when This :: wxFontData(), Font :: wxFont:wxFont().

Sets the font that will be initially used by the font dialog.

 setRange(This, Min, Max)

 -spec setRange(This, Min, Max) -> ok when This :: wxFontData(), Min :: integer(), Max :: integer().

Sets the valid range for the font point size (Windows only).
The default is 0, 0 (unrestricted range).

 setShowHelp(This, ShowHelp)

 -spec setShowHelp(This, ShowHelp) -> ok when This :: wxFontData(), ShowHelp :: boolean().

Determines whether the Help button will be displayed in the font dialog (Windows only).
The default value is false.

wxFontDialog

This class represents the font chooser dialog.
See:
	Overview cmndlg

	wxFontData

	?wxGetFontFromUser()

This class is derived, and can use functions, from:
	wxDialog

	wxTopLevelWindow

	wxWindow

	wxEvtHandler

wxWidgets docs: wxFontDialog

 Summary

 Types

 wxFontDialog()

 Functions

 create(This, Parent, Data)

 Creates the dialog if the wxFontDialog object had been initialized using the default
constructor.

 destroy(This)

 Destroys the object

 getFontData(This)

 Returns the wxFontData associated with the font dialog.

 new()

 Default ctor.

 new(Parent, Data)

 Constructor.

 Types

 wxFontDialog()

 -type wxFontDialog() :: wx:wx_object().

 Functions

 create(This, Parent, Data)

 -spec create(This, Parent, Data) -> boolean()
 when
 This :: wxFontDialog(),
 Parent :: wxWindow:wxWindow(),
 Data :: wxFontData:wxFontData().

Creates the dialog if the wxFontDialog object had been initialized using the default
constructor.
Return: true on success and false if an error occurred.

 destroy(This)

 -spec destroy(This :: wxFontDialog()) -> ok.

Destroys the object

 getFontData(This)

 -spec getFontData(This) -> wxFontData:wxFontData() when This :: wxFontDialog().

Returns the wxFontData associated with the font dialog.

 new()

 -spec new() -> wxFontDialog().

Default ctor.
create/3 must be called before the dialog can be shown.

 new(Parent, Data)

 -spec new(Parent, Data) -> wxFontDialog()
 when Parent :: wxWindow:wxWindow(), Data :: wxFontData:wxFontData().

Constructor.
Pass a parent window, and the wxFontData object to be used to initialize the dialog
controls.

wxFontPickerCtrl

This control allows the user to select a font.
The generic implementation is a button which brings up a wxFontDialog when clicked.
Native implementation may differ but this is usually a (small) widget which give access to
the font-chooser dialog. It is only available if wxUSE_FONTPICKERCTRL is set to 1 (the default).
Styles
This class supports the following styles:
	wxFNTP_DEFAULT_STYLE: The default style: wxFNTP_FONTDESC_AS_LABEL |
wxFNTP_USEFONT_FOR_LABEL.

	wxFNTP_USE_TEXTCTRL: Creates a text control to the left of the picker button which is
completely managed by the wxFontPickerCtrl and which can be used by the user to
specify a font (see SetSelectedFont). The text control is automatically synchronized with
button's value. Use functions defined in wxPickerBase to modify the text control.

	wxFNTP_FONTDESC_AS_LABEL: Keeps the label of the button updated with the fontface name
and the font size. E.g. choosing "Times New Roman bold, italic with size 10" from the
fontdialog, will update the label (overwriting any previous label) with the "Times New
Roman, 10" text.

	wxFNTP_USEFONT_FOR_LABEL: Uses the currently selected font to draw the label of the
button.

See:
	wxFontDialog

	wxFontPickerEvent

This class is derived, and can use functions, from:
	wxPickerBase

	wxControl

	wxWindow

	wxEvtHandler

wxWidgets docs: wxFontPickerCtrl
Events
Event types emitted from this class:
	command_fontpicker_changed

 Summary

 Types

 wxFontPickerCtrl()

 Functions

 create(This, Parent, Id)

 Equivalent to create(This, Parent, Id, []).

 create/4

 Creates this widget with given parameters.

 destroy(This)

 Destroys the object

 getMaxPointSize(This)

 Returns the maximum point size value allowed for the user-chosen font.

 getSelectedFont(This)

 Returns the currently selected font.

 new()

 new(Parent, Id)

 Equivalent to new(Parent, Id, []).

 new/3

 Initializes the object and calls create/4 with all the parameters.

 setMaxPointSize(This, Max)

 Sets the maximum point size value allowed for the user-chosen font.

 setSelectedFont(This, Font)

 Sets the currently selected font.

 Types

 wxFontPickerCtrl()

 -type wxFontPickerCtrl() :: wx:wx_object().

 Functions

 create(This, Parent, Id)

 -spec create(This, Parent, Id) -> boolean()
 when This :: wxFontPickerCtrl(), Parent :: wxWindow:wxWindow(), Id :: integer().

Equivalent to create(This, Parent, Id, []).

 create/4

 -spec create(This, Parent, Id, [Option]) -> boolean()
 when
 This :: wxFontPickerCtrl(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {initial, wxFont:wxFont()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Creates this widget with given parameters.
Return: true if the control was successfully created or false if creation failed.

 destroy(This)

 -spec destroy(This :: wxFontPickerCtrl()) -> ok.

Destroys the object

 getMaxPointSize(This)

 -spec getMaxPointSize(This) -> integer() when This :: wxFontPickerCtrl().

Returns the maximum point size value allowed for the user-chosen font.

 getSelectedFont(This)

 -spec getSelectedFont(This) -> wxFont:wxFont() when This :: wxFontPickerCtrl().

Returns the currently selected font.
Note that this function is completely different from wxWindow:getFont/1.

 new()

 -spec new() -> wxFontPickerCtrl().

 new(Parent, Id)

 -spec new(Parent, Id) -> wxFontPickerCtrl() when Parent :: wxWindow:wxWindow(), Id :: integer().

Equivalent to new(Parent, Id, []).

 new/3

 -spec new(Parent, Id, [Option]) -> wxFontPickerCtrl()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {initial, wxFont:wxFont()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Initializes the object and calls create/4 with all the parameters.

 setMaxPointSize(This, Max)

 -spec setMaxPointSize(This, Max) -> ok when This :: wxFontPickerCtrl(), Max :: integer().

Sets the maximum point size value allowed for the user-chosen font.
The default value is 100. Note that big fonts can require a lot of memory and CPU time
both for creation and for rendering; thus, specially because the user has the option to
specify the fontsize through a text control (see wxFNTP_USE_TEXTCTRL), it's a good idea to
put a limit to the maximum font size when huge fonts do not make much sense.

 setSelectedFont(This, Font)

 -spec setSelectedFont(This, Font) -> ok when This :: wxFontPickerCtrl(), Font :: wxFont:wxFont().

Sets the currently selected font.
Note that this function is completely different from wxWindow:setFont/2.

wxFontPickerEvent

This event class is used for the events generated by wxFontPickerCtrl.
See: wxFontPickerCtrl
This class is derived, and can use functions, from:
	wxCommandEvent

	wxEvent

wxWidgets docs: wxFontPickerEvent
Events
Use wxEvtHandler:connect/3 with wxFontPickerEventType to subscribe to events of this type.

 Summary

 Types

 wxFontPicker()

 wxFontPickerEvent()

 wxFontPickerEventType()

 Functions

 getFont(This)

 Retrieve the font the user has just selected.

 Types

 wxFontPicker()

 -type wxFontPicker() ::
 #wxFontPicker{type :: wxFontPickerEvent:wxFontPickerEventType(), font :: wxFont:wxFont()}.

 wxFontPickerEvent()

 -type wxFontPickerEvent() :: wx:wx_object().

 wxFontPickerEventType()

 -type wxFontPickerEventType() :: command_fontpicker_changed.

 Functions

 getFont(This)

 -spec getFont(This) -> wxFont:wxFont() when This :: wxFontPickerEvent().

Retrieve the font the user has just selected.

wxFrame

A frame is a window whose size and position can (usually) be changed by the user.
It usually has thick borders and a title bar, and can optionally contain a menu bar,
toolbar and status bar. A frame can contain any window that is not a frame or dialog.
A frame that has a status bar and toolbar, created via the createStatusBar/2 and createToolBar/2 functions, manages these
windows and adjusts the value returned by wxWindow:getClientSize/1 to reflect the remaining size available to
application windows.
Remark: An application should normally define an wxCloseEvent handler for the frame
to respond to system close events, for example so that related data and subwindows can be
cleaned up.
Default event processing
wxFrame processes the following events:
	wxEVT_SIZE: if the frame has exactly one child window, not counting the status and
toolbar, this child is resized to take the entire frame client area. If two or more
windows are present, they should be laid out explicitly either by manually handling wxEVT_SIZE
or using sizers;

	wxEVT_MENU_HIGHLIGHT: the default implementation displays the help string associated
with the selected item in the first pane of the status bar, if there is one.

Styles
This class supports the following styles:
		wxDEFAULT_FRAME_STYLE: Defined as wxMINIMIZE_BOX	wxMAXIMIZE_BOX	wxRESIZE_BORDER	
	wxSYSTEM_MENU	wxCAPTION	wxCLOSE_BOX	wxCLIP_CHILDREN.

	wxICONIZE: Display the frame iconized (minimized). Windows only.

	wxCAPTION: Puts a caption on the frame. Notice that this flag is required by
wxMINIMIZE_BOX, wxMAXIMIZE_BOX and wxCLOSE_BOX on most systems as the corresponding
buttons cannot be shown if the window has no title bar at all. I.e. if wxCAPTION is not
specified those styles would be simply ignored.

	wxMINIMIZE: Identical to wxICONIZE. Windows only.

	wxMINIMIZE_BOX: Displays a minimize box on the frame.

	wxMAXIMIZE: Displays the frame maximized. Windows and GTK+ only.

	wxMAXIMIZE_BOX: Displays a maximize box on the frame. Notice that under wxGTK
wxRESIZE_BORDER must be used as well or this style is ignored.

	wxCLOSE_BOX: Displays a close box on the frame.

	wxSTAY_ON_TOP: Stay on top of all other windows, see also wxFRAME_FLOAT_ON_PARENT.

	wxSYSTEM_MENU: Displays a system menu containing the list of various windows commands in
the window title bar. Unlike wxMINIMIZE_BOX, wxMAXIMIZE_BOX and wxCLOSE_BOX styles this
style can be used without wxCAPTION, at least under Windows, and makes the system menu
available without showing it on screen in this case. However it is recommended to only use
it together with wxCAPTION for consistent behaviour under all platforms.

	wxRESIZE_BORDER: Displays a resizable border around the window.

	wxFRAME_TOOL_WINDOW: Causes a frame with a small title bar to be created; the frame does
not appear in the taskbar under Windows or GTK+.

	wxFRAME_NO_TASKBAR: Creates an otherwise normal frame but it does not appear in the
taskbar under Windows or GTK+ (note that it will minimize to the desktop window under
Windows which may seem strange to the users and thus it might be better to use this style
only without wxMINIMIZE_BOX style). In wxGTK, the flag is respected only if the window
manager supports _NET_WM_STATE_SKIP_TASKBAR hint.

	wxFRAME_FLOAT_ON_PARENT: The frame will always be on top of its parent (unlike
wxSTAY_ON_TOP). A frame created with this style must have a non-NULL parent.

	wxFRAME_SHAPED: Windows with this style are allowed to have their shape changed with the wxTopLevelWindow:setShape/2
method. The default frame style is for normal, resizable frames. To create a frame which
cannot be resized by user, you may use the following combination of styles:

See also the overview_windowstyles.
Extra Styles
This class supports the following extra styles:
	wxFRAME_EX_CONTEXTHELP: Under Windows, puts a query button on the caption. When pressed,
Windows will go into a context-sensitive help mode and wxWidgets will send a wxEVT_HELP
event if the user clicked on an application window. Note that this is an extended style
and must be set by calling SetExtraStyle before Create is called (two-step construction).
You cannot use this style together with wxMAXIMIZE_BOX or wxMINIMIZE_BOX, so you should
use wxDEFAULT_FRAME_STYLE ~ (wxMINIMIZE_BOX | wxMAXIMIZE_BOX) for the frames having this
style (the dialogs don't have a minimize or a maximize box by default)

	wxFRAME_EX_METAL: On macOS, frames with this style will be shown with a metallic look.
This is an extra style.

See:
	wxMDIParentFrame

	wxMDIChildFrame

	wxMiniFrame

	wxDialog

This class is derived, and can use functions, from:
	wxTopLevelWindow

	wxWindow

	wxEvtHandler

wxWidgets docs: wxFrame
Events
Event types emitted from this class:
	close_window

	iconize

	menu_open

	menu_close

	menu_highlight

 Summary

 Types

 wxFrame()

 Functions

 create(This, Parent, Id, Title)

 Equivalent to create(This, Parent, Id, Title, []).

 create/5

 Used in two-step frame construction.

 createStatusBar(This)

 Equivalent to createStatusBar(This, []).

 createStatusBar/2

 Creates a status bar at the bottom of the frame.

 createToolBar(This)

 Equivalent to createToolBar(This, []).

 createToolBar/2

 Creates a toolbar at the top or left of the frame.

 destroy(This)

 Destroys the object

 getClientAreaOrigin(This)

 Returns the origin of the frame client area (in client coordinates).

 getMenuBar(This)

 Returns a pointer to the menubar currently associated with the frame (if any).

 getStatusBar(This)

 Returns a pointer to the status bar currently associated with the frame (if any).

 getStatusBarPane(This)

 Returns the status bar pane used to display menu and toolbar help.

 getToolBar(This)

 Returns a pointer to the toolbar currently associated with the frame (if any).

 new()

 Default constructor.

 new(Parent, Id, Title)

 Equivalent to new(Parent, Id, Title, []).

 new/4

 Constructor, creating the window.

 processCommand(This, Id)

 Simulate a menu command.

 sendSizeEvent(This)

 Equivalent to sendSizeEvent(This, []).

 sendSizeEvent/2

 This function sends a dummy wxSizeEvent to the window allowing it to re-layout its
children positions.

 setMenuBar(This, MenuBar)

 Tells the frame to show the given menu bar.

 setStatusBar(This, StatusBar)

 Associates a status bar with the frame.

 setStatusBarPane(This, N)

 Set the status bar pane used to display menu and toolbar help.

 setStatusText(This, Text)

 Equivalent to setStatusText(This, Text, []).

 setStatusText/3

 Sets the status bar text and updates the status bar display.

 setStatusWidths(This, Widths_field)

 Sets the widths of the fields in the status bar.

 setToolBar(This, ToolBar)

 Associates a toolbar with the frame.

 Types

 wxFrame()

 -type wxFrame() :: wx:wx_object().

 Functions

 create(This, Parent, Id, Title)

 -spec create(This, Parent, Id, Title) -> boolean()
 when
 This :: wxFrame(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Title :: unicode:chardata().

Equivalent to create(This, Parent, Id, Title, []).

 create/5

 -spec create(This, Parent, Id, Title, [Option]) -> boolean()
 when
 This :: wxFrame(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Title :: unicode:chardata(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Used in two-step frame construction.
See new/4 for further details.

 createStatusBar(This)

 -spec createStatusBar(This) -> wxStatusBar:wxStatusBar() when This :: wxFrame().

Equivalent to createStatusBar(This, []).

 createStatusBar/2

 -spec createStatusBar(This, [Option]) -> wxStatusBar:wxStatusBar()
 when
 This :: wxFrame(),
 Option :: {number, integer()} | {style, integer()} | {id, integer()}.

Creates a status bar at the bottom of the frame.
Return: A pointer to the status bar if it was created successfully, NULL otherwise.
Remark: The width of the status bar is the whole width of the frame (adjusted
automatically when resizing), and the height and text size are chosen by the host
windowing system.
See:
	setStatusText/3

	getStatusBar/1

 createToolBar(This)

 -spec createToolBar(This) -> wxToolBar:wxToolBar() when This :: wxFrame().

Equivalent to createToolBar(This, []).

 createToolBar/2

 -spec createToolBar(This, [Option]) -> wxToolBar:wxToolBar()
 when This :: wxFrame(), Option :: {style, integer()} | {id, integer()}.

Creates a toolbar at the top or left of the frame.
Return: A pointer to the toolbar if it was created successfully, NULL otherwise.
Remark: By default, the toolbar is an instance of wxToolBar. To use a different
class, override OnCreateToolBar() (not implemented in wx). When a toolbar has been
created with this function, or made known to the frame with setToolBar/2, the frame will manage the
toolbar position and adjust the return value from wxWindow:getClientSize/1 to reflect the available space for
application windows. Under Pocket PC, you should always use this function for creating the
toolbar to be managed by the frame, so that wxWidgets can use a combined menubar and
toolbar. Where you manage your own toolbars, create a wxToolBar as usual.
See:
	createStatusBar/2

	setToolBar/2

	getToolBar/1

 destroy(This)

 -spec destroy(This :: wxFrame()) -> ok.

Destroys the object

 getClientAreaOrigin(This)

 -spec getClientAreaOrigin(This) -> {X :: integer(), Y :: integer()} when This :: wxFrame().

Returns the origin of the frame client area (in client coordinates).
It may be different from (0, 0) if the frame has a toolbar.

 getMenuBar(This)

 -spec getMenuBar(This) -> wxMenuBar:wxMenuBar() when This :: wxFrame().

Returns a pointer to the menubar currently associated with the frame (if any).
See:
	setMenuBar/2

	wxMenuBar

	wxMenu

 getStatusBar(This)

 -spec getStatusBar(This) -> wxStatusBar:wxStatusBar() when This :: wxFrame().

Returns a pointer to the status bar currently associated with the frame (if any).
See:
	createStatusBar/2

	wxStatusBar

 getStatusBarPane(This)

 -spec getStatusBarPane(This) -> integer() when This :: wxFrame().

Returns the status bar pane used to display menu and toolbar help.
See: setStatusBarPane/2

 getToolBar(This)

 -spec getToolBar(This) -> wxToolBar:wxToolBar() when This :: wxFrame().

Returns a pointer to the toolbar currently associated with the frame (if any).
See:
	createToolBar/2

	wxToolBar

	setToolBar/2

 new()

 -spec new() -> wxFrame().

Default constructor.

 new(Parent, Id, Title)

 -spec new(Parent, Id, Title) -> wxFrame()
 when Parent :: wxWindow:wxWindow(), Id :: integer(), Title :: unicode:chardata().

Equivalent to new(Parent, Id, Title, []).

 new/4

 -spec new(Parent, Id, Title, [Option]) -> wxFrame()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Title :: unicode:chardata(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Constructor, creating the window.
Remark: For Motif, MWM (the Motif Window Manager) should be running for any window styles
to work (otherwise all styles take effect).
See: create/5

 processCommand(This, Id)

 -spec processCommand(This, Id) -> boolean() when This :: wxFrame(), Id :: integer().

Simulate a menu command.

 sendSizeEvent(This)

 -spec sendSizeEvent(This) -> ok when This :: wxFrame().

Equivalent to sendSizeEvent(This, []).

 sendSizeEvent/2

 -spec sendSizeEvent(This, [Option]) -> ok when This :: wxFrame(), Option :: {flags, integer()}.

This function sends a dummy wxSizeEvent to the window allowing it to re-layout its
children positions.
It is sometimes useful to call this function after adding or deleting a children after
the frame creation or if a child size changes. Note that if the frame is using either
sizers or constraints for the children layout, it is enough to call wxWindow:layout/1 directly and this
function should not be used in this case.
If flags includes wxSEND_EVENT_POST value, this function posts the event, i.e.
schedules it for later processing, instead of dispatching it directly. You can also use PostSizeEvent()
(not implemented in wx) as a more readable equivalent of calling this function with this flag.

 setMenuBar(This, MenuBar)

 -spec setMenuBar(This, MenuBar) -> ok when This :: wxFrame(), MenuBar :: wxMenuBar:wxMenuBar().

Tells the frame to show the given menu bar.
Remark: If the frame is destroyed, the menu bar and its menus will be destroyed also, so
do not delete the menu bar explicitly (except by resetting the frame's menu bar to another
frame or NULL). Under Windows, a size event is generated, so be sure to initialize data
members properly before calling setMenuBar/2. Note that on some platforms, it is not possible to call
this function twice for the same frame object.
See:
	getMenuBar/1

	wxMenuBar

	wxMenu

 setStatusBar(This, StatusBar)

 -spec setStatusBar(This, StatusBar) -> ok when This :: wxFrame(), StatusBar :: wxStatusBar:wxStatusBar().

Associates a status bar with the frame.
If statusBar is NULL, then the status bar, if present, is detached from the frame, but not
deleted.
See:
	createStatusBar/2

	wxStatusBar

	getStatusBar/1

 setStatusBarPane(This, N)

 -spec setStatusBarPane(This, N) -> ok when This :: wxFrame(), N :: integer().

Set the status bar pane used to display menu and toolbar help.
Using -1 disables help display.

 setStatusText(This, Text)

 -spec setStatusText(This, Text) -> ok when This :: wxFrame(), Text :: unicode:chardata().

Equivalent to setStatusText(This, Text, []).

 setStatusText/3

 -spec setStatusText(This, Text, [Option]) -> ok
 when This :: wxFrame(), Text :: unicode:chardata(), Option :: {number, integer()}.

Sets the status bar text and updates the status bar display.
This is a simple wrapper for wxStatusBar:setStatusText/3 which doesn't do anything if the frame has no status bar,
i.e. getStatusBar/1 returns NULL.
Remark: Use an empty string to clear the status bar.
See:
	createStatusBar/2

	wxStatusBar

 setStatusWidths(This, Widths_field)

 -spec setStatusWidths(This, Widths_field) -> ok when This :: wxFrame(), Widths_field :: [integer()].

Sets the widths of the fields in the status bar.
Remark: The widths of the variable fields are calculated from the total width of all
fields, minus the sum of widths of the non-variable fields, divided by the number of
variable fields.

 setToolBar(This, ToolBar)

 -spec setToolBar(This, ToolBar) -> ok when This :: wxFrame(), ToolBar :: wxToolBar:wxToolBar().

Associates a toolbar with the frame.

wxGBSizerItem

The wxGBSizerItem class is used by the wxGridBagSizer for tracking the items in
the sizer.
It adds grid position and spanning information to the normal wxSizerItem by adding wxGBPosition
(not implemented in wx) and wxGBSpan (not implemented in wx) attributes. Most of the
time you will not need to use a wxGBSizerItem directly in your code, but there are a
couple of cases where it is handy.
This class is derived, and can use functions, from:
	wxSizerItem

wxWidgets docs: wxGBSizerItem

 Summary

 Types

 wxGBSizerItem()

 Types

 wxGBSizerItem()

 -type wxGBSizerItem() :: wx:wx_object().

wxGCDC

wxGCDC is a device context that draws on a wxGraphicsContext.
wxGCDC does its best to implement wxDC API, but the following features are not
(fully) implemented because wxGraphicsContext doesn't support them:
	wxDC:getPixel/2 method is not implemented and always returns false because modern graphics layers don't
support retrieving the contents of the drawn pixels.

	wxDC:floodFill/4 method is not, and can't be, implemented, as its functionality relies on reading the
pixels from wxGraphicsContext too.

	wxDC:setLogicalFunction/2 method only works with wxCOPY, wxOR, wxNO_OP, wxCLEAR and wxXOR functions,
attempts to use any other function (including wxINVERT) don't do anything.

	Similarly, ?wxRasterOperationMode parameter of wxDC:blit/6 and StretchBlit() (not implemented in
wx) can only be one of the supported logical functions listed above, using any other
function will result in an assertion failure and not drawing anything.

	For Direct2D-based wxGraphicsContext, only true-type fonts can be used in the
font-related functions.

See:
	wxDC

	wxGraphicsContext

This class is derived, and can use functions, from:
	wxDC

wxWidgets docs: wxGCDC

 Summary

 Types

 wxGCDC()

 Functions

 destroy(This)

 Destroys the object

 getGraphicsContext(This)

 Retrieves associated wxGraphicsContext.

 new()

 new(WindowDC)

 Constructs a wxGCDC from a wxWindowDC.

 setGraphicsContext(This, Context)

 Set the graphics context to be used for this wxGCDC.

 Types

 wxGCDC()

 -type wxGCDC() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxGCDC()) -> ok.

Destroys the object

 getGraphicsContext(This)

 -spec getGraphicsContext(This) -> wxGraphicsContext:wxGraphicsContext() when This :: wxGCDC().

Retrieves associated wxGraphicsContext.

 new()

 -spec new() -> wxGCDC().

 new(WindowDC)

 -spec new(WindowDC) -> wxGCDC()
 when
 WindowDC ::
 wxWindowDC:wxWindowDC() |
 wxMemoryDC:wxMemoryDC() |
 wxGraphicsContext:wxGraphicsContext().

Constructs a wxGCDC from a wxWindowDC.

 setGraphicsContext(This, Context)

 -spec setGraphicsContext(This, Context) -> ok
 when This :: wxGCDC(), Context :: wxGraphicsContext:wxGraphicsContext().

Set the graphics context to be used for this wxGCDC.
Note that this object takes ownership of context and will delete it when it is
destroyed or when setGraphicsContext/2 is called again.
Also, unlike the constructor taking wxGraphicsContext, this method will reapply the
current font, pen and brush, so that this object continues to use them, if they had been
changed before (which is never the case when constructing wxGCDC directly from wxGraphicsContext).

wxGLCanvas

wxGLCanvas is a class for displaying OpenGL graphics.
It is always used in conjunction with wxGLContext as the context can only be made
current (i.e. active for the OpenGL commands) when it is associated to a wxGLCanvas.
More precisely, you first need to create a wxGLCanvas window and then create an
instance of a wxGLContext that is initialized with this wxGLCanvas and then later
use either setCurrent/2 with the instance of the wxGLContext or wxGLContext:setCurrent/2 with the instance of the wxGLCanvas
(which might be not the same as was used for the creation of the context) to bind the
OpenGL state that is represented by the rendering context to the canvas, and then finally
call swapBuffers/1 to swap the buffers of the OpenGL canvas and thus show your current output.
Please note that wxGLContext always uses physical pixels, even on the platforms where wxWindow
uses logical pixels, affected by the coordinate scaling, on high DPI displays. Thus, if
you want to set the OpenGL view port to the size of entire window, you must multiply the
result returned by wxWindow:getClientSize/1 by wxWindow:getContentScaleFactor/1 before passing it to glViewport(). Same considerations apply to
other OpenGL functions and other coordinates, notably those retrieved from wxMouseEvent
in the event handlers.
Notice that versions of wxWidgets previous to 2.9 used to implicitly create a wxGLContext
inside wxGLCanvas itself. This is still supported in the current version but is
deprecated now and will be removed in the future, please update your code to create the
rendering contexts explicitly.
To set up the attributes for the canvas (number of bits for the depth buffer, number of
bits for the stencil buffer and so on) you pass them in the constructor using a wxGLAttributes
(not implemented in wx) instance. You can still use the way before 3.1.0 (setting up the
correct values of the attribList parameter) but it's discouraged.
Note: On those platforms which use a configure script (e.g. Linux and macOS) OpenGL
support is automatically enabled if the relative headers and libraries are found. To
switch it on under the other platforms (e.g. Windows), you need to edit the setup.h file
and set wxUSE_GLCANVAS to 1 and then also pass USE_OPENGL=1 to the make utility. You
may also need to add opengl32.lib (and glu32.lib for old OpenGL versions) to the list
of the libraries your program is linked with.
See: wxGLContext
This class is derived, and can use functions, from:
	wxWindow

	wxEvtHandler

wxWidgets docs: wxGLCanvas

 Summary

 Types

 wxGLCanvas()

 Functions

 createSurface(This)

 destroy(This)

 Destroys the object

 isDisplaySupported(AttribList)

 Determines if a canvas having the specified attributes is available.

 new(Parent)

 Equivalent to new(Parent, []).

 new/2

 This constructor is still available only for compatibility reasons.

 setCurrent(This, Context)

 Makes the OpenGL state that is represented by the OpenGL rendering context context
current, i.e.

 swapBuffers(This)

 Swaps the double-buffer of this window, making the back-buffer the front-buffer and vice
versa, so that the output of the previous OpenGL commands is displayed on the window.

 Types

 wxGLCanvas()

 -type wxGLCanvas() :: wx:wx_object().

 Functions

 createSurface(This)

 -spec createSurface(This) -> boolean() when This :: wxGLCanvas().

 destroy(This)

 -spec destroy(This :: wxGLCanvas()) -> ok.

Destroys the object

 isDisplaySupported(AttribList)

 -spec isDisplaySupported(AttribList) -> boolean() when AttribList :: [integer()].

Determines if a canvas having the specified attributes is available.
This only applies for visual attributes, not rendering context attributes. Please, use
the new form of this method, using wxGLAttributes (not implemented in wx).
Return: true if attributes are supported.

 new(Parent)

 -spec new(Parent) -> wxGLCanvas() when Parent :: wxWindow:wxWindow().

Equivalent to new(Parent, []).

 new/2

 -spec new(Parent, [Option]) -> wxGLCanvas()
 when
 Parent :: wxWindow:wxWindow(),
 Option ::
 {id, integer()} |
 {attribList, [integer()]} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {name, unicode:chardata()} |
 {palette, wxPalette:wxPalette()}.

This constructor is still available only for compatibility reasons.
Please use the constructor with wxGLAttributes (not implemented in wx) instead.
If attribList is not specified, wxGLAttributes::PlatformDefaults() (not implemented
in wx) is used, plus some other attributes (see below).

 setCurrent(This, Context)

 -spec setCurrent(This, Context) -> boolean()
 when This :: wxGLCanvas(), Context :: wxGLContext:wxGLContext().

Makes the OpenGL state that is represented by the OpenGL rendering context context
current, i.e.
it will be used by all subsequent OpenGL calls.
This is equivalent to wxGLContext:setCurrent/2 called with this window as parameter.
Note: This function may only be called when the window is shown on screen, in particular
it can't usually be called from the constructor as the window isn't yet shown at this moment.
Return: false if an error occurred.

 swapBuffers(This)

 -spec swapBuffers(This) -> boolean() when This :: wxGLCanvas().

Swaps the double-buffer of this window, making the back-buffer the front-buffer and vice
versa, so that the output of the previous OpenGL commands is displayed on the window.
Return: false if an error occurred.

wxGLContext

An instance of a wxGLContext represents the state of an OpenGL state machine and the
connection between OpenGL and the system.
The OpenGL state includes everything that can be set with the OpenGL API: colors,
rendering variables, buffer data ids, texture objects, etc. It is possible to have
multiple rendering contexts share buffer data and textures. This feature is specially
useful when the application use multiple threads for updating data into the memory of the
graphics card.
Whether one only rendering context is used with or bound to multiple output windows or if
each window has its own bound context is a developer decision. It is important to take
into account that GPU makers may set different pointers to the same OGL function for
different contexts. The way these pointers are retrieved from the OGL driver should be
used again for each new context.
Binding (making current) a rendering context with another instance of a wxGLCanvas
however works only if the both wxGLCanvas instances were created with the same attributes.
OpenGL version 3 introduced a new type of specification profile, the modern core profile.
The old compatibility profile maintains all legacy features. Since wxWidgets 3.1.0 you can
choose the type of context and even ask for a specified OGL version number. However, its
advised to use only core profile as the compatibility profile may run a bit slower.
OpenGL core profile specification defines several flags at context creation that
determine not only the type of context but also some features. Some of these flags can be
set in the list of attributes used at wxGLCanvas ctor. But since wxWidgets 3.1.0 it is
strongly encouraged to use the new mechanism: setting the context attributes with a wxGLContextAttrs
(not implemented in wx) object and the canvas attributes with a wxGLAttributes (not
implemented in wx) object.
The best way of knowing if your OpenGL environment supports a specific type of context is
creating a wxGLContext instance and checking isOK/1. If it returns false, then simply delete
that instance and create a new one with other attributes.
wxHAS_OPENGL_ES is defined on platforms that only have this implementation available
(e.g. the iPhone) and don't support the full specification.
See: wxGLCanvas
wxWidgets docs: wxGLContext

 Summary

 Types

 wxGLContext()

 Functions

 destroy(This)

 Destroys the object

 isOK(This)

 Checks if the underlying OpenGL rendering context was correctly created by the system
with the requested attributes.

 new(Win)

 Equivalent to new(Win, []).

 new/2

 Constructor.

 setCurrent(This, Win)

 Makes the OpenGL state that is represented by this rendering context current with the wxGLCanvas
win.

 Types

 wxGLContext()

 -type wxGLContext() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxGLContext()) -> ok.

Destroys the object

 isOK(This)

 -spec isOK(This) -> boolean() when This :: wxGLContext().

Checks if the underlying OpenGL rendering context was correctly created by the system
with the requested attributes.
If this function returns false then the wxGLContext object is useless and should be
deleted and recreated with different attributes.
Since: 3.1.0

 new(Win)

 -spec new(Win) -> wxGLContext() when Win :: wxGLCanvas:wxGLCanvas().

Equivalent to new(Win, []).

 new/2

 -spec new(Win, [Option]) -> wxGLContext()
 when Win :: wxGLCanvas:wxGLCanvas(), Option :: {other, wxGLContext()}.

Constructor.

 setCurrent(This, Win)

 -spec setCurrent(This, Win) -> boolean() when This :: wxGLContext(), Win :: wxGLCanvas:wxGLCanvas().

Makes the OpenGL state that is represented by this rendering context current with the wxGLCanvas
win.
Note: win can be a different wxGLCanvas window than the one that was passed to the
constructor of this rendering context. If RC is an object of type wxGLContext, the
statements "RC.SetCurrent(win);" and "win.SetCurrent(RC);" are equivalent, see wxGLCanvas:setCurrent/2.

wxGauge

A gauge is a horizontal or vertical bar which shows a quantity (often time).
wxGauge supports two working modes: determinate and indeterminate progress.
The first is the usual working mode (see setValue/2 and setRange/2) while the second can be used when the
program is doing some processing but you don't know how much progress is being done. In
this case, you can periodically call the pulse/1 function to make the progress bar switch to
indeterminate mode (graphically it's usually a set of blocks which move or bounce in the
bar control).
wxGauge supports dynamic switch between these two work modes.
There are no user commands for the gauge.
Styles
This class supports the following styles:
	wxGA_HORIZONTAL: Creates a horizontal gauge.

	wxGA_VERTICAL: Creates a vertical gauge.

	wxGA_SMOOTH: Creates smooth progress bar with one pixel wide update step (not supported
by all platforms).

	wxGA_TEXT: Display the current value in percents in the gauge itself. This style is only
supported in wxQt and ignored under the other platforms. This flag is only available in
wxWidgets 3.1.0 and later.

	wxGA_PROGRESS: Reflect the value of gauge in the application taskbar button under Windows
7 and later and the dock icon under macOS, ignored under the other platforms. This flag is
only available in wxWidgets 3.1.0 and later.

See:
	wxSlider

	wxScrollBar

This class is derived, and can use functions, from:
	wxControl

	wxWindow

	wxEvtHandler

wxWidgets docs: wxGauge

 Summary

 Types

 wxGauge()

 Functions

 create(This, Parent, Id, Range)

 Equivalent to create(This, Parent, Id, Range, []).

 create/5

 Creates the gauge for two-step construction.

 destroy(This)

 Destroys the object

 getRange(This)

 Returns the maximum position of the gauge.

 getValue(This)

 Returns the current position of the gauge.

 isVertical(This)

 Returns true if the gauge is vertical (has wxGA_VERTICAL style) and false otherwise.

 new()

 Default constructor.

 new(Parent, Id, Range)

 Equivalent to new(Parent, Id, Range, []).

 new/4

 Constructor, creating and showing a gauge.

 pulse(This)

 Switch the gauge to indeterminate mode (if required) and makes the gauge move a bit to
indicate the user that some progress has been made.

 setRange(This, Range)

 Sets the range (maximum value) of the gauge.

 setValue(This, Pos)

 Sets the position of the gauge.

 Types

 wxGauge()

 -type wxGauge() :: wx:wx_object().

 Functions

 create(This, Parent, Id, Range)

 -spec create(This, Parent, Id, Range) -> boolean()
 when
 This :: wxGauge(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Range :: integer().

Equivalent to create(This, Parent, Id, Range, []).

 create/5

 -spec create(This, Parent, Id, Range, [Option]) -> boolean()
 when
 This :: wxGauge(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Range :: integer(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Creates the gauge for two-step construction.
See new/4 for further details.

 destroy(This)

 -spec destroy(This :: wxGauge()) -> ok.

Destroys the object

 getRange(This)

 -spec getRange(This) -> integer() when This :: wxGauge().

Returns the maximum position of the gauge.
See: setRange/2

 getValue(This)

 -spec getValue(This) -> integer() when This :: wxGauge().

Returns the current position of the gauge.
See: setValue/2

 isVertical(This)

 -spec isVertical(This) -> boolean() when This :: wxGauge().

Returns true if the gauge is vertical (has wxGA_VERTICAL style) and false otherwise.

 new()

 -spec new() -> wxGauge().

Default constructor.

 new(Parent, Id, Range)

 -spec new(Parent, Id, Range) -> wxGauge()
 when Parent :: wxWindow:wxWindow(), Id :: integer(), Range :: integer().

Equivalent to new(Parent, Id, Range, []).

 new/4

 -spec new(Parent, Id, Range, [Option]) -> wxGauge()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Range :: integer(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Constructor, creating and showing a gauge.
See: create/5

 pulse(This)

 -spec pulse(This) -> ok when This :: wxGauge().

Switch the gauge to indeterminate mode (if required) and makes the gauge move a bit to
indicate the user that some progress has been made.
Note: After calling this function the value returned by getValue/1 is undefined and thus you need
to explicitly call setValue/2 if you want to restore the determinate mode.

 setRange(This, Range)

 -spec setRange(This, Range) -> ok when This :: wxGauge(), Range :: integer().

Sets the range (maximum value) of the gauge.
This function makes the gauge switch to determinate mode, if it's not already.
When the gauge is in indeterminate mode, under wxMSW the gauge repeatedly goes from zero
to range and back; under other ports when in indeterminate mode, the range setting is ignored.
See: getRange/1

 setValue(This, Pos)

 -spec setValue(This, Pos) -> ok when This :: wxGauge(), Pos :: integer().

Sets the position of the gauge.
The pos must be between 0 and the gauge range as returned by getRange/1, inclusive.
This function makes the gauge switch to determinate mode, if it was in indeterminate mode before.
See: getValue/1

wxGenericDirCtrl

This control can be used to place a directory listing (with optional files) on an
arbitrary window.
The control contains a wxTreeCtrl window representing the directory hierarchy, and
optionally, a wxChoice window containing a list of filters.
Styles
This class supports the following styles:
	wxDIRCTRL_DIR_ONLY: Only show directories, and not files.

	wxDIRCTRL_3D_INTERNAL: Use 3D borders for internal controls. This is the default.

	wxDIRCTRL_SELECT_FIRST: When setting the default path, select the first file in the
directory.

	wxDIRCTRL_SHOW_FILTERS: Show the drop-down filter list.

	wxDIRCTRL_EDIT_LABELS: Allow the folder and file labels to be editable.

	wxDIRCTRL_MULTIPLE: Allows multiple files and folders to be selected.

This class is derived, and can use functions, from:
	wxControl

	wxWindow

	wxEvtHandler

wxWidgets docs: wxGenericDirCtrl
Events
Event types emitted from this class:
	dirctrl_selectionchanged

	dirctrl_fileactivated

 Summary

 Types

 wxGenericDirCtrl()

 Functions

 collapseTree(This)

 Collapses the entire tree.

 create(This, Parent)

 Equivalent to create(This, Parent, []).

 create/3

 Create function for two-step construction.

 destroy(This)

 Destroys the object

 expandPath(This, Path)

 Tries to expand as much of the given path as possible, so that the filename or
directory is visible in the tree control.

 getDefaultPath(This)

 Gets the default path.

 getFilePath(This)

 Gets selected filename path only (else empty string).

 getFilter(This)

 Returns the filter string.

 getFilterIndex(This)

 Returns the current filter index (zero-based).

 getPath(This)

 Gets the currently-selected directory or filename.

 getPath(This, ItemId)

 Gets the path corresponding to the given tree control item.

 getRootId(This)

 Returns the root id for the tree control.

 getTreeCtrl(This)

 Returns a pointer to the tree control.

 init(This)

 Initializes variables.

 new()

 Default constructor.

 new(Parent)

 Equivalent to new(Parent, []).

 new/2

 Main constructor.

 reCreateTree(This)

 Collapse and expand the tree, thus re-creating it from scratch.

 setDefaultPath(This, Path)

 Sets the default path.

 setFilter(This, Filter)

 Sets the filter string.

 setFilterIndex(This, N)

 Sets the current filter index (zero-based).

 setPath(This, Path)

 Sets the current path.

 Types

 wxGenericDirCtrl()

 -type wxGenericDirCtrl() :: wx:wx_object().

 Functions

 collapseTree(This)

 -spec collapseTree(This) -> ok when This :: wxGenericDirCtrl().

Collapses the entire tree.

 create(This, Parent)

 -spec create(This, Parent) -> boolean() when This :: wxGenericDirCtrl(), Parent :: wxWindow:wxWindow().

Equivalent to create(This, Parent, []).

 create/3

 -spec create(This, Parent, [Option]) -> boolean()
 when
 This :: wxGenericDirCtrl(),
 Parent :: wxWindow:wxWindow(),
 Option ::
 {id, integer()} |
 {dir, unicode:chardata()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {filter, unicode:chardata()} |
 {defaultFilter, integer()}.

Create function for two-step construction.
See new/2 for details.

 destroy(This)

 -spec destroy(This :: wxGenericDirCtrl()) -> ok.

Destroys the object

 expandPath(This, Path)

 -spec expandPath(This, Path) -> boolean() when This :: wxGenericDirCtrl(), Path :: unicode:chardata().

Tries to expand as much of the given path as possible, so that the filename or
directory is visible in the tree control.

 getDefaultPath(This)

 -spec getDefaultPath(This) -> unicode:charlist() when This :: wxGenericDirCtrl().

Gets the default path.

 getFilePath(This)

 -spec getFilePath(This) -> unicode:charlist() when This :: wxGenericDirCtrl().

Gets selected filename path only (else empty string).
This function doesn't count a directory as a selection.

 getFilter(This)

 -spec getFilter(This) -> unicode:charlist() when This :: wxGenericDirCtrl().

Returns the filter string.

 getFilterIndex(This)

 -spec getFilterIndex(This) -> integer() when This :: wxGenericDirCtrl().

Returns the current filter index (zero-based).

 getPath(This)

 -spec getPath(This) -> unicode:charlist() when This :: wxGenericDirCtrl().

Gets the currently-selected directory or filename.

 getPath(This, ItemId)

 -spec getPath(This, ItemId) -> unicode:charlist() when This :: wxGenericDirCtrl(), ItemId :: integer().

Gets the path corresponding to the given tree control item.
Since: 2.9.5

 getRootId(This)

 -spec getRootId(This) -> integer() when This :: wxGenericDirCtrl().

Returns the root id for the tree control.

 getTreeCtrl(This)

 -spec getTreeCtrl(This) -> wxTreeCtrl:wxTreeCtrl() when This :: wxGenericDirCtrl().

Returns a pointer to the tree control.

 init(This)

 -spec init(This) -> ok when This :: wxGenericDirCtrl().

Initializes variables.

 new()

 -spec new() -> wxGenericDirCtrl().

Default constructor.

 new(Parent)

 -spec new(Parent) -> wxGenericDirCtrl() when Parent :: wxWindow:wxWindow().

Equivalent to new(Parent, []).

 new/2

 -spec new(Parent, [Option]) -> wxGenericDirCtrl()
 when
 Parent :: wxWindow:wxWindow(),
 Option ::
 {id, integer()} |
 {dir, unicode:chardata()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {filter, unicode:chardata()} |
 {defaultFilter, integer()}.

Main constructor.

 reCreateTree(This)

 -spec reCreateTree(This) -> ok when This :: wxGenericDirCtrl().

Collapse and expand the tree, thus re-creating it from scratch.
May be used to update the displayed directory content.

 setDefaultPath(This, Path)

 -spec setDefaultPath(This, Path) -> ok when This :: wxGenericDirCtrl(), Path :: unicode:chardata().

Sets the default path.

 setFilter(This, Filter)

 -spec setFilter(This, Filter) -> ok when This :: wxGenericDirCtrl(), Filter :: unicode:chardata().

Sets the filter string.

 setFilterIndex(This, N)

 -spec setFilterIndex(This, N) -> ok when This :: wxGenericDirCtrl(), N :: integer().

Sets the current filter index (zero-based).

 setPath(This, Path)

 -spec setPath(This, Path) -> ok when This :: wxGenericDirCtrl(), Path :: unicode:chardata().

Sets the current path.

wxGraphicsBrush

A wxGraphicsBrush is a native representation of a brush.
The contents are specific and private to the respective renderer. Instances are ref
counted and can therefore be assigned as usual. The only way to get a valid instance is
via wxGraphicsContext:createBrush/2 or wxGraphicsRenderer:createBrush/2.
This class is derived, and can use functions, from:
	wxGraphicsObject

wxWidgets docs: wxGraphicsBrush

 Summary

 Types

 wxGraphicsBrush()

 Types

 wxGraphicsBrush()

 -type wxGraphicsBrush() :: wx:wx_object().

wxGraphicsContext

A wxGraphicsContext instance is the object that is drawn upon.
It is created by a renderer using wxGraphicsRenderer:createContext/2. This can be either directly using a renderer
instance, or indirectly using the static convenience create/1 functions of wxGraphicsContext
that always delegate the task to the default renderer.
Remark: For some renderers (like Direct2D or Cairo) processing of drawing operations may
be deferred (Direct2D render target normally builds up a batch of rendering commands but
defers processing of these commands, Cairo operates on a separate surface) so to make
drawing results visible you need to update the content of the context by calling wxGraphicsContext::Flush()
(not implemented in wx) or by destroying the context.
See:
	wxGraphicsRenderer:createContext/2

	wxGCDC

	wxDC

This class is derived, and can use functions, from:
	wxGraphicsObject

wxWidgets docs: wxGraphicsContext

 Summary

 Types

 wxGraphicsContext()

 Functions

 clip(This, Region)

 Sets the clipping region to the intersection of the given region and the previously set
clipping region.

 clip(This, X, Y, W, H)

 This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 concatTransform(This, Matrix)

 Concatenates the passed in transform with the current transform of this context.

 create()

 Create a lightweight context that can be used only for measuring text.

 create(WindowDC)

 Creates a wxGraphicsContext from a wxWindowDC.

 createBrush(This, Brush)

 Creates a native brush from a wxBrush.

 createFont(This, Font)

 Equivalent to createFont(This, Font, []).

 createFont/3

 Creates a native graphics font from a wxFont and a text colour.

 createFont/4

 Creates a font object with the specified attributes.

 createLinearGradientBrush(This, X1, Y1, X2, Y2, Stops)

 This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 createLinearGradientBrush(This, X1, Y1, X2, Y2, C1, C2)

 Creates a native brush with a linear gradient. The brush starts at (@a x1, @a y1) and ends at (@a x2, @a y2). Either just the start and end gradient colours (@a c1 and @a c2) or full set of gradient @a stops can be specified. The version taking wxGraphicsGradientStops is new in wxWidgets 2.9.1.
The matrix parameter was added in wxWidgets 3.1.3

 createMatrix(This)

 Equivalent to createMatrix(This, []).

 createMatrix/2

 Creates a native affine transformation matrix from the passed in values.

 createPath(This)

 Creates a native graphics path which is initially empty.

 createPen(This, Pen)

 Creates a native pen from a wxPen.

 createRadialGradientBrush(This, StartX, StartY, EndX, EndY, Radius, Stops)

 This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 createRadialGradientBrush(This, StartX, StartY, EndX, EndY, Radius, OColor, CColor)

 Creates a native brush with a radial gradient. The brush originates at (@a startX, @a startY) and ends on a circle around (@a endX, @a endY) with the given @a radius. The gradient may be specified either by its start and end colours @a oColor and @a cColor or by a full set of gradient @a stops. The version taking wxGraphicsGradientStops is new in wxWidgets 2.9.1.
The ability to apply a transformation matrix to the gradient was added in 3.1.3

 destroy(This)

 Destroys the object

 drawBitmap(This, Bmp, X, Y, W, H)

 Draws the bitmap.

 drawEllipse(This, X, Y, W, H)

 Draws an ellipse.

 drawIcon(This, Icon, X, Y, W, H)

 Draws the icon.

 drawLines(This, Points)

 Equivalent to drawLines(This, Points, []).

 drawLines/3

 Draws a polygon.

 drawPath(This, Path)

 Equivalent to drawPath(This, Path, []).

 drawPath/3

 Draws the path by first filling and then stroking.

 drawRectangle(This, X, Y, W, H)

 Draws a rectangle.

 drawRoundedRectangle(This, X, Y, W, H, Radius)

 Draws a rounded rectangle.

 drawText(This, Str, X, Y)

 Draws text at the defined position.

 drawText/5

 Draws text at the defined position.

 drawText(This, Str, X, Y, Angle, BackgroundBrush)

 Draws text at the defined position.

 fillPath(This, Path)

 Equivalent to fillPath(This, Path, []).

 fillPath/3

 Fills the path with the current brush.

 getPartialTextExtents(This, Text)

 Fills the widths array with the widths from the beginning of text to the
corresponding character of text.

 getTextExtent(This, Text)

 Gets the dimensions of the string using the currently selected font.

 getTransform(This)

 Gets the current transformation matrix of this context.

 resetClip(This)

 Resets the clipping to original shape.

 rotate(This, Angle)

 Rotates the current transformation matrix (in radians).

 scale(This, XScale, YScale)

 Scales the current transformation matrix.

 setBrush(This, Brush)

 Sets the brush for filling paths.

 setFont(This, Font)

 Sets the font for drawing text.

 setFont(This, Font, Colour)

 Sets the font for drawing text.

 setPen(This, Pen)

 Sets the pen used for stroking.

 setTransform(This, Matrix)

 Sets the current transformation matrix of this context.

 strokeLine(This, X1, Y1, X2, Y2)

 Strokes a single line.

 strokeLines(This, Points)

 Stroke lines connecting all the points.

 strokePath(This, Path)

 Strokes along a path with the current pen.

 translate(This, Dx, Dy)

 Translates the current transformation matrix.

 Types

 wxGraphicsContext()

 -type wxGraphicsContext() :: wx:wx_object().

 Functions

 clip(This, Region)

 -spec clip(This, Region) -> ok when This :: wxGraphicsContext(), Region :: wxRegion:wxRegion().

Sets the clipping region to the intersection of the given region and the previously set
clipping region.
The clipping region is an area to which drawing is restricted.
Remark:
	Clipping region should be given in logical coordinates.

	Calling this function can only make the clipping region smaller, never larger.

	You need to call resetClip/1 first if you want to set the clipping region exactly to the region specified.

	If resulting clipping region is empty, then all drawing upon the context is clipped out
(all changes made by drawing operations are masked out).

 clip(This, X, Y, W, H)

 -spec clip(This, X, Y, W, H) -> ok
 when
 This :: wxGraphicsContext(),
 X :: number(),
 Y :: number(),
 W :: number(),
 H :: number().

This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 concatTransform(This, Matrix)

 -spec concatTransform(This, Matrix) -> ok
 when This :: wxGraphicsContext(), Matrix :: wxGraphicsMatrix:wxGraphicsMatrix().

Concatenates the passed in transform with the current transform of this context.

 create()

 -spec create() -> wxGraphicsContext().

Create a lightweight context that can be used only for measuring text.

 create(WindowDC)

 -spec create(WindowDC) -> wxGraphicsContext()
 when
 WindowDC ::
 wxWindowDC:wxWindowDC() |
 wxWindow:wxWindow() |
 wxMemoryDC:wxMemoryDC() |
 wxImage:wxImage().

Creates a wxGraphicsContext from a wxWindowDC.
See: wxGraphicsRenderer:createContext/2

 createBrush(This, Brush)

 -spec createBrush(This, Brush) -> wxGraphicsBrush:wxGraphicsBrush()
 when This :: wxGraphicsContext(), Brush :: wxBrush:wxBrush().

Creates a native brush from a wxBrush.

 createFont(This, Font)

 -spec createFont(This, Font) -> wxGraphicsFont:wxGraphicsFont()
 when This :: wxGraphicsContext(), Font :: wxFont:wxFont().

Equivalent to createFont(This, Font, []).

 createFont/3

 -spec createFont(This, SizeInPixels, Facename) -> wxGraphicsFont:wxGraphicsFont()
 when
 This :: wxGraphicsContext(),
 SizeInPixels :: number(),
 Facename :: unicode:chardata();
 (This, Font, [Option]) -> wxGraphicsFont:wxGraphicsFont()
 when
 This :: wxGraphicsContext(),
 Font :: wxFont:wxFont(),
 Option :: {col, wx:wx_colour()}.

Creates a native graphics font from a wxFont and a text colour.
Remark: For Direct2D graphics fonts can be created from TrueType fonts only.

 createFont/4

 -spec createFont(This, SizeInPixels, Facename, [Option]) -> wxGraphicsFont:wxGraphicsFont()
 when
 This :: wxGraphicsContext(),
 SizeInPixels :: number(),
 Facename :: unicode:chardata(),
 Option :: {flags, integer()} | {col, wx:wx_colour()}.

Creates a font object with the specified attributes.
The use of overload taking wxFont is preferred, see wxGraphicsRenderer:createFont/4 for more details.
Remark: For Direct2D graphics fonts can be created from TrueType fonts only.
Since: 2.9.3

 createLinearGradientBrush(This, X1, Y1, X2, Y2, Stops)

 -spec createLinearGradientBrush(This, X1, Y1, X2, Y2, Stops) -> wxGraphicsBrush:wxGraphicsBrush()
 when
 This :: wxGraphicsContext(),
 X1 :: number(),
 Y1 :: number(),
 X2 :: number(),
 Y2 :: number(),
 Stops :: wxGraphicsGradientStops:wxGraphicsGradientStops().

This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 createLinearGradientBrush(This, X1, Y1, X2, Y2, C1, C2)

 -spec createLinearGradientBrush(This, X1, Y1, X2, Y2, C1, C2) -> wxGraphicsBrush:wxGraphicsBrush()
 when
 This :: wxGraphicsContext(),
 X1 :: number(),
 Y1 :: number(),
 X2 :: number(),
 Y2 :: number(),
 C1 :: wx:wx_colour(),
 C2 :: wx:wx_colour().

Creates a native brush with a linear gradient. The brush starts at (@a x1, @a y1) and ends at (@a x2, @a y2). Either just the start and end gradient colours (@a c1 and @a c2) or full set of gradient @a stops can be specified. The version taking wxGraphicsGradientStops is new in wxWidgets 2.9.1.
The matrix parameter was added in wxWidgets 3.1.3

 createMatrix(This)

 -spec createMatrix(This) -> wxGraphicsMatrix:wxGraphicsMatrix() when This :: wxGraphicsContext().

Equivalent to createMatrix(This, []).

 createMatrix/2

 -spec createMatrix(This, [Option]) -> wxGraphicsMatrix:wxGraphicsMatrix()
 when
 This :: wxGraphicsContext(),
 Option ::
 {a, number()} |
 {b, number()} |
 {c, number()} |
 {d, number()} |
 {tx, number()} |
 {ty, number()}.

Creates a native affine transformation matrix from the passed in values.
The default parameters result in an identity matrix.

 createPath(This)

 -spec createPath(This) -> wxGraphicsPath:wxGraphicsPath() when This :: wxGraphicsContext().

Creates a native graphics path which is initially empty.

 createPen(This, Pen)

 -spec createPen(This, Pen) -> wxGraphicsPen:wxGraphicsPen()
 when This :: wxGraphicsContext(), Pen :: wxPen:wxPen().

Creates a native pen from a wxPen.
Prefer to use the overload taking wxGraphicsPenInfo (not implemented in wx) unless you
already have a wxPen as constructing one only to pass it to this method is wasteful.

 createRadialGradientBrush(This, StartX, StartY, EndX, EndY, Radius, Stops)

 -spec createRadialGradientBrush(This, StartX, StartY, EndX, EndY, Radius, Stops) ->
 wxGraphicsBrush:wxGraphicsBrush()
 when
 This :: wxGraphicsContext(),
 StartX :: number(),
 StartY :: number(),
 EndX :: number(),
 EndY :: number(),
 Radius :: number(),
 Stops :: wxGraphicsGradientStops:wxGraphicsGradientStops().

This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 createRadialGradientBrush(This, StartX, StartY, EndX, EndY, Radius, OColor, CColor)

 -spec createRadialGradientBrush(This, StartX, StartY, EndX, EndY, Radius, OColor, CColor) ->
 wxGraphicsBrush:wxGraphicsBrush()
 when
 This :: wxGraphicsContext(),
 StartX :: number(),
 StartY :: number(),
 EndX :: number(),
 EndY :: number(),
 Radius :: number(),
 OColor :: wx:wx_colour(),
 CColor :: wx:wx_colour().

Creates a native brush with a radial gradient. The brush originates at (@a startX, @a startY) and ends on a circle around (@a endX, @a endY) with the given @a radius. The gradient may be specified either by its start and end colours @a oColor and @a cColor or by a full set of gradient @a stops. The version taking wxGraphicsGradientStops is new in wxWidgets 2.9.1.
The ability to apply a transformation matrix to the gradient was added in 3.1.3

 destroy(This)

 -spec destroy(This :: wxGraphicsContext()) -> ok.

Destroys the object

 drawBitmap(This, Bmp, X, Y, W, H)

 -spec drawBitmap(This, Bmp, X, Y, W, H) -> ok
 when
 This :: wxGraphicsContext(),
 Bmp :: wxBitmap:wxBitmap(),
 X :: number(),
 Y :: number(),
 W :: number(),
 H :: number().

Draws the bitmap.
In case of a mono bitmap, this is treated as a mask and the current brushed is used for
filling.

 drawEllipse(This, X, Y, W, H)

 -spec drawEllipse(This, X, Y, W, H) -> ok
 when
 This :: wxGraphicsContext(),
 X :: number(),
 Y :: number(),
 W :: number(),
 H :: number().

Draws an ellipse.

 drawIcon(This, Icon, X, Y, W, H)

 -spec drawIcon(This, Icon, X, Y, W, H) -> ok
 when
 This :: wxGraphicsContext(),
 Icon :: wxIcon:wxIcon(),
 X :: number(),
 Y :: number(),
 W :: number(),
 H :: number().

Draws the icon.

 drawLines(This, Points)

 -spec drawLines(This, Points) -> ok
 when This :: wxGraphicsContext(), Points :: [{X :: float(), Y :: float()}].

Equivalent to drawLines(This, Points, []).

 drawLines/3

 -spec drawLines(This, Points, [Option]) -> ok
 when
 This :: wxGraphicsContext(),
 Points :: [{X :: float(), Y :: float()}],
 Option :: {fillStyle, wx:wx_enum()}.

Draws a polygon.

 drawPath(This, Path)

 -spec drawPath(This, Path) -> ok
 when This :: wxGraphicsContext(), Path :: wxGraphicsPath:wxGraphicsPath().

Equivalent to drawPath(This, Path, []).

 drawPath/3

 -spec drawPath(This, Path, [Option]) -> ok
 when
 This :: wxGraphicsContext(),
 Path :: wxGraphicsPath:wxGraphicsPath(),
 Option :: {fillStyle, wx:wx_enum()}.

Draws the path by first filling and then stroking.

 drawRectangle(This, X, Y, W, H)

 -spec drawRectangle(This, X, Y, W, H) -> ok
 when
 This :: wxGraphicsContext(),
 X :: number(),
 Y :: number(),
 W :: number(),
 H :: number().

Draws a rectangle.

 drawRoundedRectangle(This, X, Y, W, H, Radius)

 -spec drawRoundedRectangle(This, X, Y, W, H, Radius) -> ok
 when
 This :: wxGraphicsContext(),
 X :: number(),
 Y :: number(),
 W :: number(),
 H :: number(),
 Radius :: number().

Draws a rounded rectangle.

 drawText(This, Str, X, Y)

 -spec drawText(This, Str, X, Y) -> ok
 when
 This :: wxGraphicsContext(),
 Str :: unicode:chardata(),
 X :: number(),
 Y :: number().

Draws text at the defined position.

 drawText/5

 -spec drawText(This, Str, X, Y, Angle) -> ok
 when
 This :: wxGraphicsContext(),
 Str :: unicode:chardata(),
 X :: number(),
 Y :: number(),
 Angle :: number();
 (This, Str, X, Y, BackgroundBrush) -> ok
 when
 This :: wxGraphicsContext(),
 Str :: unicode:chardata(),
 X :: number(),
 Y :: number(),
 BackgroundBrush :: wxGraphicsBrush:wxGraphicsBrush().

Draws text at the defined position.

 drawText(This, Str, X, Y, Angle, BackgroundBrush)

 -spec drawText(This, Str, X, Y, Angle, BackgroundBrush) -> ok
 when
 This :: wxGraphicsContext(),
 Str :: unicode:chardata(),
 X :: number(),
 Y :: number(),
 Angle :: number(),
 BackgroundBrush :: wxGraphicsBrush:wxGraphicsBrush().

Draws text at the defined position.

 fillPath(This, Path)

 -spec fillPath(This, Path) -> ok
 when This :: wxGraphicsContext(), Path :: wxGraphicsPath:wxGraphicsPath().

Equivalent to fillPath(This, Path, []).

 fillPath/3

 -spec fillPath(This, Path, [Option]) -> ok
 when
 This :: wxGraphicsContext(),
 Path :: wxGraphicsPath:wxGraphicsPath(),
 Option :: {fillStyle, wx:wx_enum()}.

Fills the path with the current brush.

 getPartialTextExtents(This, Text)

 -spec getPartialTextExtents(This, Text) -> [number()]
 when This :: wxGraphicsContext(), Text :: unicode:chardata().

Fills the widths array with the widths from the beginning of text to the
corresponding character of text.

 getTextExtent(This, Text)

 -spec getTextExtent(This, Text) -> Result
 when
 Result ::
 {Width :: number(),
 Height :: number(),
 Descent :: number(),
 ExternalLeading :: number()},
 This :: wxGraphicsContext(),
 Text :: unicode:chardata().

Gets the dimensions of the string using the currently selected font.

 getTransform(This)

 -spec getTransform(This) -> wxGraphicsMatrix:wxGraphicsMatrix() when This :: wxGraphicsContext().

Gets the current transformation matrix of this context.

 resetClip(This)

 -spec resetClip(This) -> ok when This :: wxGraphicsContext().

Resets the clipping to original shape.

 rotate(This, Angle)

 -spec rotate(This, Angle) -> ok when This :: wxGraphicsContext(), Angle :: number().

Rotates the current transformation matrix (in radians).

 scale(This, XScale, YScale)

 -spec scale(This, XScale, YScale) -> ok
 when This :: wxGraphicsContext(), XScale :: number(), YScale :: number().

Scales the current transformation matrix.

 setBrush(This, Brush)

 -spec setBrush(This, Brush) -> ok
 when
 This :: wxGraphicsContext(),
 Brush :: wxGraphicsBrush:wxGraphicsBrush() | wxBrush:wxBrush().

Sets the brush for filling paths.

 setFont(This, Font)

 -spec setFont(This, Font) -> ok
 when This :: wxGraphicsContext(), Font :: wxGraphicsFont:wxGraphicsFont().

Sets the font for drawing text.

 setFont(This, Font, Colour)

 -spec setFont(This, Font, Colour) -> ok
 when This :: wxGraphicsContext(), Font :: wxFont:wxFont(), Colour :: wx:wx_colour().

Sets the font for drawing text.
Remark: For Direct2D only TrueType fonts can be used.

 setPen(This, Pen)

 -spec setPen(This, Pen) -> ok
 when This :: wxGraphicsContext(), Pen :: wxPen:wxPen() | wxGraphicsPen:wxGraphicsPen().

Sets the pen used for stroking.

 setTransform(This, Matrix)

 -spec setTransform(This, Matrix) -> ok
 when This :: wxGraphicsContext(), Matrix :: wxGraphicsMatrix:wxGraphicsMatrix().

Sets the current transformation matrix of this context.

 strokeLine(This, X1, Y1, X2, Y2)

 -spec strokeLine(This, X1, Y1, X2, Y2) -> ok
 when
 This :: wxGraphicsContext(),
 X1 :: number(),
 Y1 :: number(),
 X2 :: number(),
 Y2 :: number().

Strokes a single line.

 strokeLines(This, Points)

 -spec strokeLines(This, Points) -> ok
 when This :: wxGraphicsContext(), Points :: [{X :: float(), Y :: float()}].

Stroke lines connecting all the points.
Unlike the other overload of this function, this method draws a single polyline and not a
number of disconnected lines.

 strokePath(This, Path)

 -spec strokePath(This, Path) -> ok
 when This :: wxGraphicsContext(), Path :: wxGraphicsPath:wxGraphicsPath().

Strokes along a path with the current pen.

 translate(This, Dx, Dy)

 -spec translate(This, Dx, Dy) -> ok when This :: wxGraphicsContext(), Dx :: number(), Dy :: number().

Translates the current transformation matrix.

wxGraphicsFont

A wxGraphicsFont is a native representation of a font.
The contents are specific and private to the respective renderer. Instances are ref
counted and can therefore be assigned as usual. The only way to get a valid instance is
via wxGraphicsContext:createFont/4 or wxGraphicsRenderer:createFont/4.
This class is derived, and can use functions, from:
	wxGraphicsObject

wxWidgets docs: wxGraphicsFont

 Summary

 Types

 wxGraphicsFont()

 Types

 wxGraphicsFont()

 -type wxGraphicsFont() :: wx:wx_object().

wxGraphicsGradientStops

Represents a collection of wxGraphicGradientStop values for use with
CreateLinearGradientBrush and CreateRadialGradientBrush.
The stops are maintained in order of position. If two or more stops are added with the
same position then the one(s) added later come later. This can be useful for producing
discontinuities in the colour gradient.
Notice that this class is write-once, you can't modify the stops once they had been added.
Since: 2.9.1
wxWidgets docs: wxGraphicsGradientStops

 Summary

 Types

 wxGraphicsGradientStops()

 Functions

 add(This, Col, Pos)

 Add a new stop.

 destroy(This)

 Destroys the object

 getCount(This)

 Returns the number of stops.

 getEndColour(This)

 Returns the end colour.

 getStartColour(This)

 Returns the start colour.

 item(This, N)

 Returns the stop at the given index.

 new()

 Equivalent to new([]).

 new(Options)

 Initializes the gradient stops with the given boundary colours.

 setEndColour(This, Col)

 Set the end colour to col.

 setStartColour(This, Col)

 Set the start colour to col.

 Types

 wxGraphicsGradientStops()

 -type wxGraphicsGradientStops() :: wx:wx_object().

 Functions

 add(This, Col, Pos)

 -spec add(This, Col, Pos) -> ok
 when This :: wxGraphicsGradientStops(), Col :: wx:wx_colour(), Pos :: number().

Add a new stop.

 destroy(This)

 -spec destroy(This :: wxGraphicsGradientStops()) -> ok.

Destroys the object

 getCount(This)

 -spec getCount(This) -> integer() when This :: wxGraphicsGradientStops().

Returns the number of stops.

 getEndColour(This)

 -spec getEndColour(This) -> wx:wx_colour4() when This :: wxGraphicsGradientStops().

Returns the end colour.

 getStartColour(This)

 -spec getStartColour(This) -> wx:wx_colour4() when This :: wxGraphicsGradientStops().

Returns the start colour.

 item(This, N)

 -spec item(This, N) -> {wx:wx_colour4(), float()} when This :: wxGraphicsGradientStops(), N :: integer().

Returns the stop at the given index.

 new()

 -spec new() -> wxGraphicsGradientStops().

Equivalent to new([]).

 new(Options)

 -spec new([Option]) -> wxGraphicsGradientStops()
 when Option :: {startCol, wx:wx_colour()} | {endCol, wx:wx_colour()}.

Initializes the gradient stops with the given boundary colours.
Creates a wxGraphicsGradientStops instance with start colour given by startCol and
end colour given by endCol.

 setEndColour(This, Col)

 -spec setEndColour(This, Col) -> ok when This :: wxGraphicsGradientStops(), Col :: wx:wx_colour().

Set the end colour to col.

 setStartColour(This, Col)

 -spec setStartColour(This, Col) -> ok when This :: wxGraphicsGradientStops(), Col :: wx:wx_colour().

Set the start colour to col.

wxGraphicsMatrix

A wxGraphicsMatrix is a native representation of an affine matrix.
The contents are specific and private to the respective renderer. Instances are ref
counted and can therefore be assigned as usual. The only way to get a valid instance is
via wxGraphicsContext:createMatrix/2 or wxGraphicsRenderer:createMatrix/2.
This class is derived, and can use functions, from:
	wxGraphicsObject

wxWidgets docs: wxGraphicsMatrix

 Summary

 Types

 wxGraphicsMatrix()

 Functions

 concat(This, T)

 Concatenates the matrix passed with the current matrix.

 get(This)

 Returns the component values of the matrix via the argument pointers.

 invert(This)

 Inverts the matrix.

 isEqual(This, T)

 Returns true if the elements of the transformation matrix are equal.

 isIdentity(This)

 Return true if this is the identity matrix.

 rotate(This, Angle)

 Rotates this matrix clockwise (in radians).

 scale(This, XScale, YScale)

 Scales this matrix.

 set(This)

 Equivalent to set(This, []).

 set/2

 Sets the matrix to the respective values (default values are the identity matrix).

 transformDistance(This)

 Applies this matrix to a distance (ie.

 transformPoint(This)

 Applies this matrix to a point.

 translate(This, Dx, Dy)

 Translates this matrix.

 Types

 wxGraphicsMatrix()

 -type wxGraphicsMatrix() :: wx:wx_object().

 Functions

 concat(This, T)

 -spec concat(This, T) -> ok when This :: wxGraphicsMatrix(), T :: wxGraphicsMatrix().

Concatenates the matrix passed with the current matrix.
The effect of the resulting transformation is to first apply the transformation in t to
the coordinates and then apply the transformation in the current matrix to the coordinates.

 get(This)

 -spec get(This) -> Result
 when
 Result ::
 {A :: number(),
 B :: number(),
 C :: number(),
 D :: number(),
 Tx :: number(),
 Ty :: number()},
 This :: wxGraphicsMatrix().

Returns the component values of the matrix via the argument pointers.

 invert(This)

 -spec invert(This) -> ok when This :: wxGraphicsMatrix().

Inverts the matrix.

 isEqual(This, T)

 -spec isEqual(This, T) -> boolean() when This :: wxGraphicsMatrix(), T :: wxGraphicsMatrix().

Returns true if the elements of the transformation matrix are equal.

 isIdentity(This)

 -spec isIdentity(This) -> boolean() when This :: wxGraphicsMatrix().

Return true if this is the identity matrix.

 rotate(This, Angle)

 -spec rotate(This, Angle) -> ok when This :: wxGraphicsMatrix(), Angle :: number().

Rotates this matrix clockwise (in radians).

 scale(This, XScale, YScale)

 -spec scale(This, XScale, YScale) -> ok
 when This :: wxGraphicsMatrix(), XScale :: number(), YScale :: number().

Scales this matrix.

 set(This)

 -spec set(This) -> ok when This :: wxGraphicsMatrix().

Equivalent to set(This, []).

 set/2

 -spec set(This, [Option]) -> ok
 when
 This :: wxGraphicsMatrix(),
 Option ::
 {a, number()} |
 {b, number()} |
 {c, number()} |
 {d, number()} |
 {tx, number()} |
 {ty, number()}.

Sets the matrix to the respective values (default values are the identity matrix).

 transformDistance(This)

 -spec transformDistance(This) -> {Dx :: number(), Dy :: number()} when This :: wxGraphicsMatrix().

Applies this matrix to a distance (ie.
performs all transforms except translations).

 transformPoint(This)

 -spec transformPoint(This) -> {X :: number(), Y :: number()} when This :: wxGraphicsMatrix().

Applies this matrix to a point.

 translate(This, Dx, Dy)

 -spec translate(This, Dx, Dy) -> ok when This :: wxGraphicsMatrix(), Dx :: number(), Dy :: number().

Translates this matrix.

wxGraphicsObject

This class is the superclass of native graphics objects like pens etc.
It allows reference counting. Not instantiated by user code.
See:
	wxGraphicsBrush

	wxGraphicsPen

	wxGraphicsMatrix

	wxGraphicsPath

wxWidgets docs: wxGraphicsObject

 Summary

 Types

 wxGraphicsObject()

 Functions

 destroy(This)

 Destroys the object

 getRenderer(This)

 Returns the renderer that was used to create this instance, or NULL if it has not been
initialized yet.

 isNull(This)

 Return: false if this object is valid, otherwise returns true.

 Types

 wxGraphicsObject()

 -type wxGraphicsObject() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxGraphicsObject()) -> ok.

Destroys the object

 getRenderer(This)

 -spec getRenderer(This) -> wxGraphicsRenderer:wxGraphicsRenderer() when This :: wxGraphicsObject().

Returns the renderer that was used to create this instance, or NULL if it has not been
initialized yet.

 isNull(This)

 -spec isNull(This) -> boolean() when This :: wxGraphicsObject().

Return: false if this object is valid, otherwise returns true.

wxGraphicsPath

A wxGraphicsPath is a native representation of a geometric path.
The contents are specific and private to the respective renderer. Instances are reference
counted and can therefore be assigned as usual. The only way to get a valid instance is by
using wxGraphicsContext:createPath/1 or wxGraphicsRenderer:createPath/1.
This class is derived, and can use functions, from:
	wxGraphicsObject

wxWidgets docs: wxGraphicsPath

 Summary

 Types

 wxGraphicsPath()

 Functions

 addArc(This, C, R, StartAngle, EndAngle, Clockwise)

 addArc(This, X, Y, R, StartAngle, EndAngle, Clockwise)

 Adds an arc of a circle.

 addArcToPoint(This, X1, Y1, X2, Y2, R)

 Adds an arc (of a circle with radius r) that is tangent to the line connecting current
point and (x1, y1) and to the line connecting (x1, y1) and (x2, y2).

 addCircle(This, X, Y, R)

 Appends a circle around (x,y) with radius r as a new closed subpath.

 addCurveToPoint(This, C1, C2, E)

 Adds a cubic bezier curve from the current point, using two control points and an end
point.

 addCurveToPoint(This, Cx1, Cy1, Cx2, Cy2, X, Y)

 Adds a cubic bezier curve from the current point, using two control points and an end
point.

 addEllipse(This, X, Y, W, H)

 Appends an ellipse fitting into the passed in rectangle as a new closed subpath.

 addLineToPoint(This, P)

 Adds a straight line from the current point to p.

 addLineToPoint(This, X, Y)

 Adds a straight line from the current point to (x,y).

 addPath(This, Path)

 Adds another path onto the current path.

 addQuadCurveToPoint(This, Cx, Cy, X, Y)

 Adds a quadratic bezier curve from the current point, using a control point and an end
point.

 addRectangle(This, X, Y, W, H)

 Appends a rectangle as a new closed subpath.

 addRoundedRectangle(This, X, Y, W, H, Radius)

 Appends a rounded rectangle as a new closed subpath.

 closeSubpath(This)

 Closes the current sub-path.

 contains(This, C)

 Equivalent to contains(This, C, []).

 contains/3

 Return: true if the point is within the path.

 contains/4

 Return: true if the point is within the path.

 getBox(This)

 Gets the bounding box enclosing all points (possibly including control points).

 getCurrentPoint(This)

 Gets the last point of the current path, (0,0) if not yet set.

 moveToPoint(This, P)

 Begins a new subpath at p.

 moveToPoint(This, X, Y)

 Begins a new subpath at (x,y).

 transform(This, Matrix)

 Transforms each point of this path by the matrix.

 Types

 wxGraphicsPath()

 -type wxGraphicsPath() :: wx:wx_object().

 Functions

 addArc(This, C, R, StartAngle, EndAngle, Clockwise)

 -spec addArc(This, C, R, StartAngle, EndAngle, Clockwise) -> ok
 when
 This :: wxGraphicsPath(),
 C :: {X :: float(), Y :: float()},
 R :: number(),
 StartAngle :: number(),
 EndAngle :: number(),
 Clockwise :: boolean().

 addArc(This, X, Y, R, StartAngle, EndAngle, Clockwise)

 -spec addArc(This, X, Y, R, StartAngle, EndAngle, Clockwise) -> ok
 when
 This :: wxGraphicsPath(),
 X :: number(),
 Y :: number(),
 R :: number(),
 StartAngle :: number(),
 EndAngle :: number(),
 Clockwise :: boolean().

Adds an arc of a circle.
The circle is defined by the coordinates of its centre (x, y) or c and its radius r.
The arc goes from the starting angle startAngle to endAngle either clockwise or
counter-clockwise depending on the value of clockwise argument.
The angles are measured in radians but, contrary to the usual mathematical convention,
are always clockwise from the horizontal axis.
If for clockwise arc endAngle is less than startAngle it will be progressively
increased by 2pi until it is greater than startAngle. If for counter-clockwise arc endAngle
is greater than startAngle it will be progressively decreased by 2pi until it is less
than startAngle.
If there is a current point set, an initial line segment will be added to the path to
connect the current point to the beginning of the arc.

 addArcToPoint(This, X1, Y1, X2, Y2, R)

 -spec addArcToPoint(This, X1, Y1, X2, Y2, R) -> ok
 when
 This :: wxGraphicsPath(),
 X1 :: number(),
 Y1 :: number(),
 X2 :: number(),
 Y2 :: number(),
 R :: number().

Adds an arc (of a circle with radius r) that is tangent to the line connecting current
point and (x1, y1) and to the line connecting (x1, y1) and (x2, y2).
If the current point and the starting point of the arc are different, a straight line
connecting these points is also appended. If there is no current point before the call to addArcToPoint/6
this function will behave as if preceded by a call to MoveToPoint(0, 0). After this call
the current point will be at the ending point of the arc.

 addCircle(This, X, Y, R)

 -spec addCircle(This, X, Y, R) -> ok
 when This :: wxGraphicsPath(), X :: number(), Y :: number(), R :: number().

Appends a circle around (x,y) with radius r as a new closed subpath.
After this call the current point will be at (x+r, y).

 addCurveToPoint(This, C1, C2, E)

 -spec addCurveToPoint(This, C1, C2, E) -> ok
 when
 This :: wxGraphicsPath(),
 C1 :: {X :: float(), Y :: float()},
 C2 :: {X :: float(), Y :: float()},
 E :: {X :: float(), Y :: float()}.

Adds a cubic bezier curve from the current point, using two control points and an end
point.
If there is no current point before the call to addCurveToPoint/7 this function will behave as if preceded
by a call to MoveToPoint(c1).

 addCurveToPoint(This, Cx1, Cy1, Cx2, Cy2, X, Y)

 -spec addCurveToPoint(This, Cx1, Cy1, Cx2, Cy2, X, Y) -> ok
 when
 This :: wxGraphicsPath(),
 Cx1 :: number(),
 Cy1 :: number(),
 Cx2 :: number(),
 Cy2 :: number(),
 X :: number(),
 Y :: number().

Adds a cubic bezier curve from the current point, using two control points and an end
point.
If there is no current point before the call to addCurveToPoint/7 this function will behave as if preceded
by a call to MoveToPoint(cx1, cy1).

 addEllipse(This, X, Y, W, H)

 -spec addEllipse(This, X, Y, W, H) -> ok
 when
 This :: wxGraphicsPath(),
 X :: number(),
 Y :: number(),
 W :: number(),
 H :: number().

Appends an ellipse fitting into the passed in rectangle as a new closed subpath.
After this call the current point will be at (x+w, y+h/2).

 addLineToPoint(This, P)

 -spec addLineToPoint(This, P) -> ok when This :: wxGraphicsPath(), P :: {X :: float(), Y :: float()}.

Adds a straight line from the current point to p.
If current point is not yet set before the call to addLineToPoint/3 this function will behave as moveToPoint/3.

 addLineToPoint(This, X, Y)

 -spec addLineToPoint(This, X, Y) -> ok when This :: wxGraphicsPath(), X :: number(), Y :: number().

Adds a straight line from the current point to (x,y).
If current point is not yet set before the call to addLineToPoint/3 this function will behave as moveToPoint/3.

 addPath(This, Path)

 -spec addPath(This, Path) -> ok when This :: wxGraphicsPath(), Path :: wxGraphicsPath().

Adds another path onto the current path.
After this call the current point will be at the added path's current point. For Direct2D
the path being appended shouldn't contain a started non-empty subpath when this function
is called.

 addQuadCurveToPoint(This, Cx, Cy, X, Y)

 -spec addQuadCurveToPoint(This, Cx, Cy, X, Y) -> ok
 when
 This :: wxGraphicsPath(),
 Cx :: number(),
 Cy :: number(),
 X :: number(),
 Y :: number().

Adds a quadratic bezier curve from the current point, using a control point and an end
point.
If there is no current point before the call to addQuadCurveToPoint/5 this function will behave as if preceded
by a call to MoveToPoint(cx, cy).

 addRectangle(This, X, Y, W, H)

 -spec addRectangle(This, X, Y, W, H) -> ok
 when
 This :: wxGraphicsPath(),
 X :: number(),
 Y :: number(),
 W :: number(),
 H :: number().

Appends a rectangle as a new closed subpath.
After this call the current point will be at (x, y).

 addRoundedRectangle(This, X, Y, W, H, Radius)

 -spec addRoundedRectangle(This, X, Y, W, H, Radius) -> ok
 when
 This :: wxGraphicsPath(),
 X :: number(),
 Y :: number(),
 W :: number(),
 H :: number(),
 Radius :: number().

Appends a rounded rectangle as a new closed subpath.
If radius equals 0 this function will behave as addRectangle/5, otherwise after this call the current
point will be at (x+w, y+h/2).

 closeSubpath(This)

 -spec closeSubpath(This) -> ok when This :: wxGraphicsPath().

Closes the current sub-path.
After this call the current point will be at the joined endpoint of the sub-path.

 contains(This, C)

 -spec contains(This, C) -> boolean() when This :: wxGraphicsPath(), C :: {X :: float(), Y :: float()}.

Equivalent to contains(This, C, []).

 contains/3

 -spec contains(This, X, Y) -> boolean() when This :: wxGraphicsPath(), X :: number(), Y :: number();
 (This, C, [Option]) -> boolean()
 when
 This :: wxGraphicsPath(),
 C :: {X :: float(), Y :: float()},
 Option :: {fillStyle, wx:wx_enum()}.

Return: true if the point is within the path.

 contains/4

 -spec contains(This, X, Y, [Option]) -> boolean()
 when
 This :: wxGraphicsPath(),
 X :: number(),
 Y :: number(),
 Option :: {fillStyle, wx:wx_enum()}.

Return: true if the point is within the path.

 getBox(This)

 -spec getBox(This) -> {X :: float(), Y :: float(), W :: float(), H :: float()}
 when This :: wxGraphicsPath().

Gets the bounding box enclosing all points (possibly including control points).

 getCurrentPoint(This)

 -spec getCurrentPoint(This) -> {X :: float(), Y :: float()} when This :: wxGraphicsPath().

Gets the last point of the current path, (0,0) if not yet set.

 moveToPoint(This, P)

 -spec moveToPoint(This, P) -> ok when This :: wxGraphicsPath(), P :: {X :: float(), Y :: float()}.

Begins a new subpath at p.

 moveToPoint(This, X, Y)

 -spec moveToPoint(This, X, Y) -> ok when This :: wxGraphicsPath(), X :: number(), Y :: number().

Begins a new subpath at (x,y).

 transform(This, Matrix)

 -spec transform(This, Matrix) -> ok
 when This :: wxGraphicsPath(), Matrix :: wxGraphicsMatrix:wxGraphicsMatrix().

Transforms each point of this path by the matrix.
For Direct2D the current path shouldn't contain a started non-empty subpath when this
function is called.

wxGraphicsPen

A wxGraphicsPen is a native representation of a pen.
The contents are specific and private to the respective renderer. Instances are ref
counted and can therefore be assigned as usual. The only way to get a valid instance is
via wxGraphicsContext:createPen/2 or wxGraphicsRenderer::CreatePen() (not implemented in wx).
This class is derived, and can use functions, from:
	wxGraphicsObject

wxWidgets docs: wxGraphicsPen

 Summary

 Types

 wxGraphicsPen()

 Types

 wxGraphicsPen()

 -type wxGraphicsPen() :: wx:wx_object().

wxGraphicsRenderer

A wxGraphicsRenderer is the instance corresponding to the rendering engine used.
There may be multiple instances on a system, if there are different rendering engines
present, but there is always only one instance per engine. This instance is pointed back
to by all objects created by it (wxGraphicsContext, wxGraphicsPath etc.) and can
be retrieved through their wxGraphicsObject:getRenderer/1 method. Therefore you can create an additional instance of a
path etc. by calling wxGraphicsObject:getRenderer/1 and then using the appropriate CreateXXX() function of that renderer.
wxWidgets docs: wxGraphicsRenderer

 Summary

 Types

 wxGraphicsRenderer()

 Functions

 createBrush(This, Brush)

 Creates a native brush from a wxBrush.

 createContext(This, WindowDC)

 Creates a wxGraphicsContext from a wxWindowDC.

 createFont(This, Font)

 Equivalent to createFont(This, Font, []).

 createFont/3

 Creates a native graphics font from a wxFont and a text colour.

 createFont/4

 Creates a graphics font with the given characteristics.

 createLinearGradientBrush(This, X1, Y1, X2, Y2, Stops)

 Creates a native brush with a linear gradient.

 createMatrix(This)

 Equivalent to createMatrix(This, []).

 createMatrix/2

 Creates a native affine transformation matrix from the passed in values.

 createPath(This)

 Creates a native graphics path which is initially empty.

 createRadialGradientBrush(This, StartX, StartY, EndX, EndY, Radius, Stops)

 Creates a native brush with a radial gradient.

 getDefaultRenderer()

 Returns the default renderer on this platform.

 Types

 wxGraphicsRenderer()

 -type wxGraphicsRenderer() :: wx:wx_object().

 Functions

 createBrush(This, Brush)

 -spec createBrush(This, Brush) -> wxGraphicsBrush:wxGraphicsBrush()
 when This :: wxGraphicsRenderer(), Brush :: wxBrush:wxBrush().

Creates a native brush from a wxBrush.

 createContext(This, WindowDC)

 -spec createContext(This, WindowDC) -> wxGraphicsContext:wxGraphicsContext()
 when
 This :: wxGraphicsRenderer(),
 WindowDC ::
 wxWindowDC:wxWindowDC() | wxWindow:wxWindow() | wxMemoryDC:wxMemoryDC().

Creates a wxGraphicsContext from a wxWindowDC.

 createFont(This, Font)

 -spec createFont(This, Font) -> wxGraphicsFont:wxGraphicsFont()
 when This :: wxGraphicsRenderer(), Font :: wxFont:wxFont().

Equivalent to createFont(This, Font, []).

 createFont/3

 -spec createFont(This, SizeInPixels, Facename) -> wxGraphicsFont:wxGraphicsFont()
 when
 This :: wxGraphicsRenderer(),
 SizeInPixels :: number(),
 Facename :: unicode:chardata();
 (This, Font, [Option]) -> wxGraphicsFont:wxGraphicsFont()
 when
 This :: wxGraphicsRenderer(),
 Font :: wxFont:wxFont(),
 Option :: {col, wx:wx_colour()}.

Creates a native graphics font from a wxFont and a text colour.

 createFont/4

 -spec createFont(This, SizeInPixels, Facename, [Option]) -> wxGraphicsFont:wxGraphicsFont()
 when
 This :: wxGraphicsRenderer(),
 SizeInPixels :: number(),
 Facename :: unicode:chardata(),
 Option :: {flags, integer()} | {col, wx:wx_colour()}.

Creates a graphics font with the given characteristics.
If possible, the createFont/4 overload taking wxFont should be used instead. The main advantage
of this overload is that it can be used without X server connection under Unix when using Cairo.
Since: 2.9.3

 createLinearGradientBrush(This, X1, Y1, X2, Y2, Stops)

 -spec createLinearGradientBrush(This, X1, Y1, X2, Y2, Stops) -> wxGraphicsBrush:wxGraphicsBrush()
 when
 This :: wxGraphicsRenderer(),
 X1 :: number(),
 Y1 :: number(),
 X2 :: number(),
 Y2 :: number(),
 Stops :: wxGraphicsGradientStops:wxGraphicsGradientStops().

Creates a native brush with a linear gradient.
Stops support is new since wxWidgets 2.9.1, previously only the start and end colours
could be specified.
The ability to apply a transformation matrix to the gradient was added in 3.1.3

 createMatrix(This)

 -spec createMatrix(This) -> wxGraphicsMatrix:wxGraphicsMatrix() when This :: wxGraphicsRenderer().

Equivalent to createMatrix(This, []).

 createMatrix/2

 -spec createMatrix(This, [Option]) -> wxGraphicsMatrix:wxGraphicsMatrix()
 when
 This :: wxGraphicsRenderer(),
 Option ::
 {a, number()} |
 {b, number()} |
 {c, number()} |
 {d, number()} |
 {tx, number()} |
 {ty, number()}.

Creates a native affine transformation matrix from the passed in values.
The defaults result in an identity matrix.

 createPath(This)

 -spec createPath(This) -> wxGraphicsPath:wxGraphicsPath() when This :: wxGraphicsRenderer().

Creates a native graphics path which is initially empty.

 createRadialGradientBrush(This, StartX, StartY, EndX, EndY, Radius, Stops)

 -spec createRadialGradientBrush(This, StartX, StartY, EndX, EndY, Radius, Stops) ->
 wxGraphicsBrush:wxGraphicsBrush()
 when
 This :: wxGraphicsRenderer(),
 StartX :: number(),
 StartY :: number(),
 EndX :: number(),
 EndY :: number(),
 Radius :: number(),
 Stops :: wxGraphicsGradientStops:wxGraphicsGradientStops().

Creates a native brush with a radial gradient.
Stops support is new since wxWidgets 2.9.1, previously only the start and end colours
could be specified.
The ability to apply a transformation matrix to the gradient was added in 3.1.3

 getDefaultRenderer()

 -spec getDefaultRenderer() -> wxGraphicsRenderer().

Returns the default renderer on this platform.
On macOS this is the Core Graphics (a.k.a. Quartz 2D) renderer, on MSW the GDIPlus
renderer, and on GTK we currently default to the Cairo renderer.

wxGrid

wxGrid and its related classes are used for displaying and editing tabular data.
They provide a rich set of features for display, editing, and interacting with a variety
of data sources. For simple applications, and to help you get started, wxGrid is the
only class you need to refer to directly. It will set up default instances of the other
classes and manage them for you. For more complex applications you can derive your own
classes for custom grid views, grid data tables, cell editors and renderers. The
overview_grid has examples of simple and more complex applications, explains the
relationship between the various grid classes and has a summary of the keyboard shortcuts
and mouse functions provided by wxGrid.
A wxGridTableBase (not implemented in wx) class holds the actual data to be displayed
by a wxGrid class. One or more wxGrid classes may act as a view for one table
class. The default table class is called wxGridStringTable (not implemented in wx) and
holds an array of strings. An instance of such a class is created by createGrid/4.
wxGridCellRenderer is the abstract base class for rendering contents in a cell. The
following renderers are predefined:
	wxGridCellBoolRenderer

	wxGridCellFloatRenderer

	wxGridCellNumberRenderer

	wxGridCellStringRenderer

	wxGridCellDateRenderer (not implemented in wx)

	wxGridCellDateTimeRenderer (not implemented in wx)

The look of a cell can be further defined using wxGridCellAttr. An object of this
type may be returned by wxGridTableBase::GetAttr() (not implemented in wx).
wxGridCellEditor is the abstract base class for editing the value of a cell. The
following editors are predefined:
	wxGridCellBoolEditor

	wxGridCellChoiceEditor

	wxGridCellFloatEditor

	wxGridCellNumberEditor

	wxGridCellTextEditor

	wxGridCellDateEditor (not implemented in wx)

Please see wxGridEvent, wxGridSizeEvent (not implemented in wx), wxGridRangeSelectEvent
(not implemented in wx), and wxGridEditorCreatedEvent (not implemented in wx) for the
documentation of all event types you can use with wxGrid.
See: Overview grid
This class is derived, and can use functions, from:
	wxScrolledWindow

	wxPanel

	wxWindow

	wxEvtHandler

wxWidgets docs: wxGrid

 Summary

 Types

 wxGrid()

 Functions

 appendCols(This)

 Equivalent to appendCols(This, []).

 appendCols/2

 Appends one or more new columns to the right of the grid.

 appendRows(This)

 Equivalent to appendRows(This, []).

 appendRows/2

 Appends one or more new rows to the bottom of the grid.

 autoSize(This)

 Automatically sets the height and width of all rows and columns to fit their contents.

 autoSizeColumn(This, Col)

 Equivalent to autoSizeColumn(This, Col, []).

 autoSizeColumn/3

 Automatically sizes the column to fit its contents.

 autoSizeColumns(This)

 Equivalent to autoSizeColumns(This, []).

 autoSizeColumns/2

 Automatically sizes all columns to fit their contents.

 autoSizeRow(This, Row)

 Equivalent to autoSizeRow(This, Row, []).

 autoSizeRow/3

 Automatically sizes the row to fit its contents.

 autoSizeRows(This)

 Equivalent to autoSizeRows(This, []).

 autoSizeRows/2

 Automatically sizes all rows to fit their contents.

 beginBatch(This)

 Increments the grid's batch count.

 blockToDeviceRect(This, TopLeft, BottomRight)

 Convert grid cell coordinates to grid window pixel coordinates.

 canDragCell(This)

 Return true if the dragging of cells is enabled or false otherwise.

 canDragColMove(This)

 Returns true if columns can be moved by dragging with the mouse.

 canDragColSize(This, Col)

 Returns true if the given column can be resized by dragging with the mouse.

 canDragGridRowEdges(This)

 Return true if row edges inside the grid can be dragged to resize the rows.

 canDragGridSize(This)

 Return true if the dragging of grid lines to resize rows and columns is enabled or false
otherwise.

 canDragRowSize(This, Row)

 Returns true if the given row can be resized by dragging with the mouse.

 canEnableCellControl(This)

 Returns true if the in-place edit control for the current grid cell can be used and false
otherwise.

 cellToRect(This, Coords)

 Return the rectangle corresponding to the grid cell's size and position in logical
coordinates.

 cellToRect(This, Row, Col)

 Return the rectangle corresponding to the grid cell's size and position in logical
coordinates.

 clearGrid(This)

 Clears all data in the underlying grid table and repaints the grid.

 clearSelection(This)

 Deselects all cells that are currently selected.

 createGrid(This, NumRows, NumCols)

 Equivalent to createGrid(This, NumRows, NumCols, []).

 createGrid/4

 Creates a grid with the specified initial number of rows and columns.

 deleteCols(This)

 Equivalent to deleteCols(This, []).

 deleteCols/2

 Deletes one or more columns from a grid starting at the specified position.

 deleteRows(This)

 Equivalent to deleteRows(This, []).

 deleteRows/2

 Deletes one or more rows from a grid starting at the specified position.

 destroy(This)

 Destroys the object

 disableCellEditControl(This)

 Disables in-place editing of grid cells.

 disableDragColSize(This)

 Disables column sizing by dragging with the mouse.

 disableDragGridSize(This)

 Disable mouse dragging of grid lines to resize rows and columns.

 disableDragRowSize(This)

 Disables row sizing by dragging with the mouse.

 enableCellEditControl(This)

 Equivalent to enableCellEditControl(This, []).

 enableCellEditControl/2

 Enables or disables in-place editing of grid cell data.

 enableDragColSize(This)

 Equivalent to enableDragColSize(This, []).

 enableDragColSize/2

 Enables or disables column sizing by dragging with the mouse.

 enableDragGridSize(This)

 Equivalent to enableDragGridSize(This, []).

 enableDragGridSize/2

 Enables or disables row and column resizing by dragging gridlines with the mouse.

 enableDragRowSize(This)

 Equivalent to enableDragRowSize(This, []).

 enableDragRowSize/2

 Enables or disables row sizing by dragging with the mouse.

 enableEditing(This, Edit)

 Makes the grid globally editable or read-only.

 enableGridLines(This)

 Equivalent to enableGridLines(This, []).

 enableGridLines/2

 Turns the drawing of grid lines on or off.

 endBatch(This)

 Decrements the grid's batch count.

 fit(This)

 Overridden wxWindow method.

 forceRefresh(This)

 Causes immediate repainting of the grid.

 getBatchCount(This)

 Returns the number of times that beginBatch/1 has been called without (yet) matching
calls to endBatch/1.

 getCellAlignment(This, Row, Col)

 Sets the arguments to the horizontal and vertical text alignment values for the grid cell
at the specified location.

 getCellBackgroundColour(This, Row, Col)

 Returns the background colour of the cell at the specified location.

 getCellEditor(This, Row, Col)

 Returns a pointer to the editor for the cell at the specified location.

 getCellFont(This, Row, Col)

 Returns the font for text in the grid cell at the specified location.

 getCellRenderer(This, Row, Col)

 Returns a pointer to the renderer for the grid cell at the specified location.

 getCellTextColour(This, Row, Col)

 Returns the text colour for the grid cell at the specified location.

 getCellValue(This, Coords)

 Returns the string contained in the cell at the specified location.

 getCellValue(This, Row, Col)

 Returns the string contained in the cell at the specified location.

 getColLabelAlignment(This)

 Sets the arguments to the current column label alignment values.

 getColLabelSize(This)

 Returns the current height of the column labels.

 getColLabelValue(This, Col)

 Returns the specified column label.

 getColMinimalAcceptableWidth(This)

 Returns the minimal width to which a column may be resized.

 getDefaultCellAlignment(This)

 Returns the default cell alignment.

 getDefaultCellBackgroundColour(This)

 Returns the current default background colour for grid cells.

 getDefaultCellFont(This)

 Returns the current default font for grid cell text.

 getDefaultCellTextColour(This)

 Returns the current default colour for grid cell text.

 getDefaultColLabelSize(This)

 Returns the default height for column labels.

 getDefaultColSize(This)

 Returns the current default width for grid columns.

 getDefaultEditor(This)

 Returns a pointer to the current default grid cell editor.

 getDefaultEditorForCell(This, C)

 Returns the default editor for the specified cell.

 getDefaultEditorForCell(This, Row, Col)

 Returns the default editor for the specified cell.

 getDefaultEditorForType(This, TypeName)

 Returns the default editor for the cells containing values of the given type.

 getDefaultRenderer(This)

 Returns a pointer to the current default grid cell renderer.

 getDefaultRendererForCell(This, Row, Col)

 Returns the default renderer for the given cell.

 getDefaultRendererForType(This, TypeName)

 Returns the default renderer for the cell containing values of the given type.

 getDefaultRowLabelSize(This)

 Returns the default width for the row labels.

 getDefaultRowSize(This)

 Returns the current default height for grid rows.

 getGridColLabelWindow(This)

 Return the column labels window.

 getGridCornerLabelWindow(This)

 Return the window in the top left grid corner.

 getGridCursorCol(This)

 Returns the current grid cell column position.

 getGridCursorRow(This)

 Returns the current grid cell row position.

 getGridLineColour(This)

 Returns the colour used for grid lines.

 getGridRowLabelWindow(This)

 Return the row labels window.

 getGridWindow(This)

 Return the main grid window containing the grid cells.

 getLabelBackgroundColour(This)

 Returns the colour used for the background of row and column labels.

 getLabelFont(This)

 Returns the font used for row and column labels.

 getLabelTextColour(This)

 Returns the colour used for row and column label text.

 getNumberCols(This)

 Returns the total number of grid columns.

 getNumberRows(This)

 Returns the total number of grid rows.

 getOrCreateCellAttr(This, Row, Col)

 Returns the attribute for the given cell creating one if necessary.

 getRowLabelAlignment(This)

 Returns the alignment used for row labels.

 getRowLabelSize(This)

 Returns the current width of the row labels.

 getRowLabelValue(This, Row)

 Returns the specified row label.

 getRowMinimalAcceptableHeight(This)

 Returns the minimal size to which rows can be resized.

 getRowSize(This, Row)

 Returns the height of the specified row.

 getScrollLineX(This)

 Returns the number of pixels per horizontal scroll increment.

 getScrollLineY(This)

 Returns the number of pixels per vertical scroll increment.

 getSelectedCells(This)

 Returns an array of individually selected cells.

 getSelectedCols(This)

 Returns an array of selected columns.

 getSelectedRows(This)

 Returns an array of selected rows.

 getSelectionBackground(This)

 Returns the colour used for drawing the selection background.

 getSelectionBlockBottomRight(This)

 Returns an array of the bottom right corners of blocks of selected cells.

 getSelectionBlockTopLeft(This)

 Returns an array of the top left corners of blocks of selected cells.

 getSelectionForeground(This)

 Returns the colour used for drawing the selection foreground.

 gridLinesEnabled(This)

 Returns true if drawing of grid lines is turned on, false otherwise.

 hideCellEditControl(This)

 Hides the in-place cell edit control.

 insertCols(This)

 Equivalent to insertCols(This, []).

 insertCols/2

 Inserts one or more new columns into a grid with the first new column at the specified
position.

 insertRows(This)

 Equivalent to insertRows(This, []).

 insertRows/2

 Inserts one or more new rows into a grid with the first new row at the specified
position.

 isCellEditControlEnabled(This)

 Returns true if the in-place edit control is currently enabled.

 isCurrentCellReadOnly(This)

 Returns true if the current cell is read-only.

 isEditable(This)

 Returns false if the whole grid has been set as read-only or true otherwise.

 isInSelection(This, Coords)

 Returns true if the given cell is selected.

 isInSelection(This, Row, Col)

 Returns true if the given cell is selected.

 isReadOnly(This, Row, Col)

 Returns true if the cell at the specified location can't be edited.

 isSelection(This)

 Returns true if there are currently any selected cells, rows, columns or blocks.

 isVisible(This, Coords)

 Equivalent to isVisible(This, Coords, []).

 isVisible/3

 Returns true if a cell is either entirely or at least partially visible in the grid
window.

 isVisible/4

 Returns true if a cell is either entirely or at least partially visible in the grid
window.

 makeCellVisible(This, Coords)

 Brings the specified cell into the visible grid cell area with minimal scrolling.

 makeCellVisible(This, Row, Col)

 Brings the specified cell into the visible grid cell area with minimal scrolling.

 moveCursorDown(This, ExpandSelection)

 Moves the grid cursor down by one row.

 moveCursorDownBlock(This, ExpandSelection)

 Moves the grid cursor down in the current column such that it skips to the beginning or
end of a block of non-empty cells.

 moveCursorLeft(This, ExpandSelection)

 Moves the grid cursor left by one column.

 moveCursorLeftBlock(This, ExpandSelection)

 Moves the grid cursor left in the current row such that it skips to the beginning or end
of a block of non-empty cells.

 moveCursorRight(This, ExpandSelection)

 Moves the grid cursor right by one column.

 moveCursorRightBlock(This, ExpandSelection)

 Moves the grid cursor right in the current row such that it skips to the beginning or end
of a block of non-empty cells.

 moveCursorUp(This, ExpandSelection)

 Moves the grid cursor up by one row.

 moveCursorUpBlock(This, ExpandSelection)

 Moves the grid cursor up in the current column such that it skips to the beginning or end
of a block of non-empty cells.

 movePageDown(This)

 Moves the grid cursor down by some number of rows so that the previous bottom visible row
becomes the top visible row.

 movePageUp(This)

 Moves the grid cursor up by some number of rows so that the previous top visible row
becomes the bottom visible row.

 new()

 Default constructor.

 new(Parent, Id)

 Equivalent to new(Parent, Id, []).

 new/3

 Constructor creating the grid window.

 registerDataType(This, TypeName, Renderer, Editor)

 Register a new data type.

 saveEditControlValue(This)

 Sets the value of the current grid cell to the current in-place edit control value.

 selectAll(This)

 Selects all cells in the grid.

 selectBlock(This, TopLeft, BottomRight)

 Equivalent to selectBlock(This, TopLeft, BottomRight, []).

 selectBlock/4

 Selects a rectangular block of cells.

 selectBlock(This, TopRow, LeftCol, BottomRow, RightCol)

 Equivalent to selectBlock(This, TopRow, LeftCol, BottomRow, RightCol, []).

 selectBlock/6

 Selects a rectangular block of cells.

 selectCol(This, Col)

 Equivalent to selectCol(This, Col, []).

 selectCol/3

 Selects the specified column.

 selectRow(This, Row)

 Equivalent to selectRow(This, Row, []).

 selectRow/3

 Selects the specified row.

 setCellAlignment(This, Row, Col, Horiz, Vert)

 Sets the horizontal and vertical alignment for grid cell text at the specified location.

 setCellBackgroundColour(This, Row, Col, Colour)

 Set the background colour for the given cell or all cells by default.

 setCellEditor(This, Row, Col, Editor)

 Sets the editor for the grid cell at the specified location.

 setCellFont(This, Row, Col, Font)

 Sets the font for text in the grid cell at the specified location.

 setCellRenderer(This, Row, Col, Renderer)

 Sets the renderer for the grid cell at the specified location.

 setCellTextColour(This, Row, Col, Colour)

 Sets the text colour for the given cell.

 setCellValue(This, Coords, S)

 Sets the string value for the cell at the specified location.

 setCellValue(This, Row, Col, S)

 Sets the string value for the cell at the specified location.

 setColAttr(This, Col, Attr)

 Sets the cell attributes for all cells in the specified column.

 setColFormatBool(This, Col)

 Sets the specified column to display boolean values.

 setColFormatCustom(This, Col, TypeName)

 Sets the specified column to display data in a custom format.

 setColFormatFloat(This, Col)

 Equivalent to setColFormatFloat(This, Col, []).

 setColFormatFloat/3

 Sets the specified column to display floating point values with the given width and
precision.

 setColFormatNumber(This, Col)

 Sets the specified column to display integer values.

 setColLabelAlignment(This, Horiz, Vert)

 Sets the horizontal and vertical alignment of column label text.

 setColLabelSize(This, Height)

 Sets the height of the column labels.

 setColLabelValue(This, Col, Value)

 Set the value for the given column label.

 setColMinimalAcceptableWidth(This, Width)

 Sets the minimal width to which the user can resize columns.

 setColMinimalWidth(This, Col, Width)

 Sets the minimal width for the specified column col.

 setColSize(This, Col, Width)

 Sets the width of the specified column.

 setDefaultCellAlignment(This, Horiz, Vert)

 Sets the default horizontal and vertical alignment for grid cell text.

 setDefaultCellBackgroundColour(This, Colour)

 Sets the default background colour for grid cells.

 setDefaultCellFont(This, Font)

 Sets the default font to be used for grid cell text.

 setDefaultCellTextColour(This, Colour)

 Sets the current default colour for grid cell text.

 setDefaultColSize(This, Width)

 Equivalent to setDefaultColSize(This, Width, []).

 setDefaultColSize/3

 Sets the default width for columns in the grid.

 setDefaultEditor(This, Editor)

 Sets the default editor for grid cells.

 setDefaultRenderer(This, Renderer)

 Sets the default renderer for grid cells.

 setDefaultRowSize(This, Height)

 Equivalent to setDefaultRowSize(This, Height, []).

 setDefaultRowSize/3

 Sets the default height for rows in the grid.

 setGridCursor(This, Coords)

 Set the grid cursor to the specified cell.

 setGridCursor(This, Row, Col)

 Set the grid cursor to the specified cell.

 setGridLineColour(This, Colour)

 Sets the colour used to draw grid lines.

 setLabelBackgroundColour(This, Colour)

 Sets the background colour for row and column labels.

 setLabelFont(This, Font)

 Sets the font for row and column labels.

 setLabelTextColour(This, Colour)

 Sets the colour for row and column label text.

 setMargins(This, ExtraWidth, ExtraHeight)

 Sets the extra margins used around the grid area.

 setReadOnly(This, Row, Col)

 Equivalent to setReadOnly(This, Row, Col, []).

 setReadOnly/4

 Makes the cell at the specified location read-only or editable.

 setRowAttr(This, Row, Attr)

 Sets the cell attributes for all cells in the specified row.

 setRowLabelAlignment(This, Horiz, Vert)

 Sets the horizontal and vertical alignment of row label text.

 setRowLabelSize(This, Width)

 Sets the width of the row labels.

 setRowLabelValue(This, Row, Value)

 Sets the value for the given row label.

 setRowMinimalAcceptableHeight(This, Height)

 Sets the minimal row height used by default.

 setRowMinimalHeight(This, Row, Height)

 Sets the minimal height for the specified row.

 setRowSize(This, Row, Height)

 Sets the height of the specified row.

 setScrollLineX(This, X)

 Sets the number of pixels per horizontal scroll increment.

 setScrollLineY(This, Y)

 Sets the number of pixels per vertical scroll increment.

 setSelectionBackground(This, C)

 Set the colour to be used for drawing the selection background.

 setSelectionForeground(This, C)

 Set the colour to be used for drawing the selection foreground.

 setSelectionMode(This, Selmode)

 Set the selection behaviour of the grid.

 showCellEditControl(This)

 Displays the active in-place cell edit control for the current cell after it was hidden.

 xToCol(This, X)

 Equivalent to xToCol(This, X, []).

 xToCol/3

 Returns the column at the given pixel position depending on the window.

 xToEdgeOfCol(This, X)

 Returns the column whose right hand edge is close to the given logical x position.

 yToEdgeOfRow(This, Y)

 Returns the row whose bottom edge is close to the given logical y position.

 yToRow(This, Y)

 Equivalent to yToRow(This, Y, []).

 yToRow/3

 Returns the grid row that corresponds to the logical y coordinate.

 Types

 wxGrid()

 -type wxGrid() :: wx:wx_object().

 Functions

 appendCols(This)

 -spec appendCols(This) -> boolean() when This :: wxGrid().

Equivalent to appendCols(This, []).

 appendCols/2

 -spec appendCols(This, [Option]) -> boolean()
 when This :: wxGrid(), Option :: {numCols, integer()} | {updateLabels, boolean()}.

Appends one or more new columns to the right of the grid.
The updateLabels argument is not used at present. If you are using a derived grid table
class you will need to override wxGridTableBase::AppendCols() (not implemented in wx).
See insertCols/2 for further information.
Return: true on success or false if appending columns failed.

 appendRows(This)

 -spec appendRows(This) -> boolean() when This :: wxGrid().

Equivalent to appendRows(This, []).

 appendRows/2

 -spec appendRows(This, [Option]) -> boolean()
 when This :: wxGrid(), Option :: {numRows, integer()} | {updateLabels, boolean()}.

Appends one or more new rows to the bottom of the grid.
The updateLabels argument is not used at present. If you are using a derived grid table
class you will need to override wxGridTableBase::AppendRows() (not implemented in wx).
See insertRows/2 for further information.
Return: true on success or false if appending rows failed.

 autoSize(This)

 -spec autoSize(This) -> ok when This :: wxGrid().

Automatically sets the height and width of all rows and columns to fit their contents.

 autoSizeColumn(This, Col)

 -spec autoSizeColumn(This, Col) -> ok when This :: wxGrid(), Col :: integer().

Equivalent to autoSizeColumn(This, Col, []).

 autoSizeColumn/3

 -spec autoSizeColumn(This, Col, [Option]) -> ok
 when This :: wxGrid(), Col :: integer(), Option :: {setAsMin, boolean()}.

Automatically sizes the column to fit its contents.
If setAsMin is true the calculated width will also be set as the minimal width for the
column.

 autoSizeColumns(This)

 -spec autoSizeColumns(This) -> ok when This :: wxGrid().

Equivalent to autoSizeColumns(This, []).

 autoSizeColumns/2

 -spec autoSizeColumns(This, [Option]) -> ok when This :: wxGrid(), Option :: {setAsMin, boolean()}.

Automatically sizes all columns to fit their contents.
If setAsMin is true the calculated widths will also be set as the minimal widths for
the columns.

 autoSizeRow(This, Row)

 -spec autoSizeRow(This, Row) -> ok when This :: wxGrid(), Row :: integer().

Equivalent to autoSizeRow(This, Row, []).

 autoSizeRow/3

 -spec autoSizeRow(This, Row, [Option]) -> ok
 when This :: wxGrid(), Row :: integer(), Option :: {setAsMin, boolean()}.

Automatically sizes the row to fit its contents.
If setAsMin is true the calculated height will also be set as the minimal height for
the row.

 autoSizeRows(This)

 -spec autoSizeRows(This) -> ok when This :: wxGrid().

Equivalent to autoSizeRows(This, []).

 autoSizeRows/2

 -spec autoSizeRows(This, [Option]) -> ok when This :: wxGrid(), Option :: {setAsMin, boolean()}.

Automatically sizes all rows to fit their contents.
If setAsMin is true the calculated heights will also be set as the minimal heights for
the rows.

 beginBatch(This)

 -spec beginBatch(This) -> ok when This :: wxGrid().

Increments the grid's batch count.
When the count is greater than zero repainting of the grid is suppressed. Each call to
BeginBatch must be matched by a later call to endBatch/1. Code that does a lot of grid modification
can be enclosed between beginBatch/1 and endBatch/1 calls to avoid screen flicker. The final endBatch/1 call will cause
the grid to be repainted.
Notice that you should use wxGridUpdateLocker (not implemented in wx) which ensures
that there is always a matching endBatch/1 call for this beginBatch/1 if possible instead of calling this method
directly.

 blockToDeviceRect(This, TopLeft, BottomRight)

 -spec blockToDeviceRect(This, TopLeft, BottomRight) ->
 {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}
 when
 This :: wxGrid(),
 TopLeft :: {R :: integer(), C :: integer()},
 BottomRight :: {R :: integer(), C :: integer()}.

Convert grid cell coordinates to grid window pixel coordinates.
This function returns the rectangle that encloses the block of cells limited by topLeft
and bottomRight cell in device coords and clipped to the client size of the grid window.
Since: 3.1.3 Parameter gridWindow has been added.
See: cellToRect/3

 canDragCell(This)

 -spec canDragCell(This) -> boolean() when This :: wxGrid().

Return true if the dragging of cells is enabled or false otherwise.

 canDragColMove(This)

 -spec canDragColMove(This) -> boolean() when This :: wxGrid().

Returns true if columns can be moved by dragging with the mouse.
Columns can be moved by dragging on their labels.

 canDragColSize(This, Col)

 -spec canDragColSize(This, Col) -> boolean() when This :: wxGrid(), Col :: integer().

Returns true if the given column can be resized by dragging with the mouse.
This function returns true if resizing the columns interactively is globally enabled,
i.e. if disableDragColSize/1 hadn't been called, and if this column wasn't explicitly marked as non-resizable
with DisableColResize() (not implemented in wx).

 canDragGridRowEdges(This)

 -spec canDragGridRowEdges(This) -> boolean() when This :: wxGrid().

Return true if row edges inside the grid can be dragged to resize the rows.
See:
	canDragGridSize/1

	canDragRowSize/2

Since: 3.1.4

 canDragGridSize(This)

 -spec canDragGridSize(This) -> boolean() when This :: wxGrid().

Return true if the dragging of grid lines to resize rows and columns is enabled or false
otherwise.

 canDragRowSize(This, Row)

 -spec canDragRowSize(This, Row) -> boolean() when This :: wxGrid(), Row :: integer().

Returns true if the given row can be resized by dragging with the mouse.
This is the same as canDragColSize/2 but for rows.

 canEnableCellControl(This)

 -spec canEnableCellControl(This) -> boolean() when This :: wxGrid().

Returns true if the in-place edit control for the current grid cell can be used and false
otherwise.
This function always returns false for the read-only cells.

 cellToRect(This, Coords)

 -spec cellToRect(This, Coords) -> {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}
 when This :: wxGrid(), Coords :: {R :: integer(), C :: integer()}.

Return the rectangle corresponding to the grid cell's size and position in logical
coordinates.
See: blockToDeviceRect/3

 cellToRect(This, Row, Col)

 -spec cellToRect(This, Row, Col) -> {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}
 when This :: wxGrid(), Row :: integer(), Col :: integer().

Return the rectangle corresponding to the grid cell's size and position in logical
coordinates.
See: blockToDeviceRect/3

 clearGrid(This)

 -spec clearGrid(This) -> ok when This :: wxGrid().

Clears all data in the underlying grid table and repaints the grid.
The table is not deleted by this function. If you are using a derived table class then
you need to override wxGridTableBase::Clear() (not implemented in wx) for this function
to have any effect.

 clearSelection(This)

 -spec clearSelection(This) -> ok when This :: wxGrid().

Deselects all cells that are currently selected.

 createGrid(This, NumRows, NumCols)

 -spec createGrid(This, NumRows, NumCols) -> boolean()
 when This :: wxGrid(), NumRows :: integer(), NumCols :: integer().

Equivalent to createGrid(This, NumRows, NumCols, []).

 createGrid/4

 -spec createGrid(This, NumRows, NumCols, [Option]) -> boolean()
 when
 This :: wxGrid(),
 NumRows :: integer(),
 NumCols :: integer(),
 Option :: {selmode, wx:wx_enum()}.

Creates a grid with the specified initial number of rows and columns.
Call this directly after the grid constructor. When you use this function wxGrid will
create and manage a simple table of string values for you. All of the grid data will be
stored in memory.
For applications with more complex data types or relationships, or for dealing with very
large datasets, you should derive your own grid table class and pass a table object to the
grid with SetTable() (not implemented in wx) or AssignTable() (not implemented in wx).

 deleteCols(This)

 -spec deleteCols(This) -> boolean() when This :: wxGrid().

Equivalent to deleteCols(This, []).

 deleteCols/2

 -spec deleteCols(This, [Option]) -> boolean()
 when
 This :: wxGrid(),
 Option :: {pos, integer()} | {numCols, integer()} | {updateLabels, boolean()}.

Deletes one or more columns from a grid starting at the specified position.
The updateLabels argument is not used at present. If you are using a derived grid table
class you will need to override wxGridTableBase::DeleteCols() (not implemented in wx).
See insertCols/2 for further information.
Return: true on success or false if deleting columns failed.

 deleteRows(This)

 -spec deleteRows(This) -> boolean() when This :: wxGrid().

Equivalent to deleteRows(This, []).

 deleteRows/2

 -spec deleteRows(This, [Option]) -> boolean()
 when
 This :: wxGrid(),
 Option :: {pos, integer()} | {numRows, integer()} | {updateLabels, boolean()}.

Deletes one or more rows from a grid starting at the specified position.
The updateLabels argument is not used at present. If you are using a derived grid table
class you will need to override wxGridTableBase::DeleteRows() (not implemented in wx).
See insertRows/2 for further information.
Return: true on success or false if deleting rows failed.

 destroy(This)

 -spec destroy(This :: wxGrid()) -> ok.

Destroys the object

 disableCellEditControl(This)

 -spec disableCellEditControl(This) -> ok when This :: wxGrid().

Disables in-place editing of grid cells.
Equivalent to calling EnableCellEditControl(false).

 disableDragColSize(This)

 -spec disableDragColSize(This) -> ok when This :: wxGrid().

Disables column sizing by dragging with the mouse.
Equivalent to passing false to enableDragColSize/2.

 disableDragGridSize(This)

 -spec disableDragGridSize(This) -> ok when This :: wxGrid().

Disable mouse dragging of grid lines to resize rows and columns.
Equivalent to passing false to enableDragGridSize/2

 disableDragRowSize(This)

 -spec disableDragRowSize(This) -> ok when This :: wxGrid().

Disables row sizing by dragging with the mouse.
Equivalent to passing false to enableDragRowSize/2.

 enableCellEditControl(This)

 -spec enableCellEditControl(This) -> ok when This :: wxGrid().

Equivalent to enableCellEditControl(This, []).

 enableCellEditControl/2

 -spec enableCellEditControl(This, [Option]) -> ok when This :: wxGrid(), Option :: {enable, boolean()}.

Enables or disables in-place editing of grid cell data.
Enabling in-place editing generates wxEVT_GRID_EDITOR_SHOWN and, if it isn't vetoed by
the application, shows the in-place editor which allows the user to change the cell value.
Disabling in-place editing does nothing if the in-place editor isn't currently shown,
otherwise the wxEVT_GRID_EDITOR_HIDDEN event is generated but, unlike the "shown" event,
it can't be vetoed and the in-place editor is dismissed unconditionally.
Note that it is an error to call this function if the current cell is read-only, use canEnableCellControl/1 to
check for this precondition.

 enableDragColSize(This)

 -spec enableDragColSize(This) -> ok when This :: wxGrid().

Equivalent to enableDragColSize(This, []).

 enableDragColSize/2

 -spec enableDragColSize(This, [Option]) -> ok when This :: wxGrid(), Option :: {enable, boolean()}.

Enables or disables column sizing by dragging with the mouse.

 enableDragGridSize(This)

 -spec enableDragGridSize(This) -> ok when This :: wxGrid().

Equivalent to enableDragGridSize(This, []).

 enableDragGridSize/2

 -spec enableDragGridSize(This, [Option]) -> ok when This :: wxGrid(), Option :: {enable, boolean()}.

Enables or disables row and column resizing by dragging gridlines with the mouse.

 enableDragRowSize(This)

 -spec enableDragRowSize(This) -> ok when This :: wxGrid().

Equivalent to enableDragRowSize(This, []).

 enableDragRowSize/2

 -spec enableDragRowSize(This, [Option]) -> ok when This :: wxGrid(), Option :: {enable, boolean()}.

Enables or disables row sizing by dragging with the mouse.

 enableEditing(This, Edit)

 -spec enableEditing(This, Edit) -> ok when This :: wxGrid(), Edit :: boolean().

Makes the grid globally editable or read-only.
If the edit argument is false this function sets the whole grid as read-only. If the
argument is true the grid is set to the default state where cells may be editable. In the
default state you can set single grid cells and whole rows and columns to be editable or
read-only via wxGridCellAttr:setReadOnly/2. For single cells you can also use the shortcut function setReadOnly/4.
For more information about controlling grid cell attributes see the wxGridCellAttr
class and the overview_grid.

 enableGridLines(This)

 -spec enableGridLines(This) -> ok when This :: wxGrid().

Equivalent to enableGridLines(This, []).

 enableGridLines/2

 -spec enableGridLines(This, [Option]) -> ok when This :: wxGrid(), Option :: {enable, boolean()}.

Turns the drawing of grid lines on or off.

 endBatch(This)

 -spec endBatch(This) -> ok when This :: wxGrid().

Decrements the grid's batch count.
When the count is greater than zero repainting of the grid is suppressed. Each previous
call to beginBatch/1 must be matched by a later call to endBatch/1. Code that does a lot of grid modification
can be enclosed between beginBatch/1 and endBatch/1 calls to avoid screen flicker. The final endBatch/1 will cause the
grid to be repainted.

 fit(This)

 -spec fit(This) -> ok when This :: wxGrid().

Overridden wxWindow method.

 forceRefresh(This)

 -spec forceRefresh(This) -> ok when This :: wxGrid().

Causes immediate repainting of the grid.
Use this instead of the usual wxWindow:refresh/2.

 getBatchCount(This)

 -spec getBatchCount(This) -> integer() when This :: wxGrid().

Returns the number of times that beginBatch/1 has been called without (yet) matching
calls to endBatch/1.
While the grid's batch count is greater than zero the display will not be updated.

 getCellAlignment(This, Row, Col)

 -spec getCellAlignment(This, Row, Col) -> {Horiz :: integer(), Vert :: integer()}
 when This :: wxGrid(), Row :: integer(), Col :: integer().

Sets the arguments to the horizontal and vertical text alignment values for the grid cell
at the specified location.
Horizontal alignment will be one of wxALIGN_LEFT, wxALIGN_CENTRE or wxALIGN_RIGHT.
Vertical alignment will be one of wxALIGN_TOP, wxALIGN_CENTRE or wxALIGN_BOTTOM.

 getCellBackgroundColour(This, Row, Col)

 -spec getCellBackgroundColour(This, Row, Col) -> wx:wx_colour4()
 when This :: wxGrid(), Row :: integer(), Col :: integer().

Returns the background colour of the cell at the specified location.

 getCellEditor(This, Row, Col)

 -spec getCellEditor(This, Row, Col) -> wxGridCellEditor:wxGridCellEditor()
 when This :: wxGrid(), Row :: integer(), Col :: integer().

Returns a pointer to the editor for the cell at the specified location.
See wxGridCellEditor and the overview_grid for more information about cell editors
and renderers.
The caller must call DecRef() on the returned pointer.

 getCellFont(This, Row, Col)

 -spec getCellFont(This, Row, Col) -> wxFont:wxFont()
 when This :: wxGrid(), Row :: integer(), Col :: integer().

Returns the font for text in the grid cell at the specified location.

 getCellRenderer(This, Row, Col)

 -spec getCellRenderer(This, Row, Col) -> wxGridCellRenderer:wxGridCellRenderer()
 when This :: wxGrid(), Row :: integer(), Col :: integer().

Returns a pointer to the renderer for the grid cell at the specified location.
See wxGridCellRenderer and the overview_grid for more information about cell editors
and renderers.
The caller must call DecRef() on the returned pointer.

 getCellTextColour(This, Row, Col)

 -spec getCellTextColour(This, Row, Col) -> wx:wx_colour4()
 when This :: wxGrid(), Row :: integer(), Col :: integer().

Returns the text colour for the grid cell at the specified location.

 getCellValue(This, Coords)

 -spec getCellValue(This, Coords) -> unicode:charlist()
 when This :: wxGrid(), Coords :: {R :: integer(), C :: integer()}.

Returns the string contained in the cell at the specified location.
For simple applications where a grid object automatically uses a default grid table of
string values you use this function together with setCellValue/4 to access cell values. For more complex
applications where you have derived your own grid table class that contains various data
types (e.g. numeric, boolean or user-defined custom types) then you only use this function
for those cells that contain string values.
See wxGridTableBase::CanGetValueAs() (not implemented in wx) and the overview_grid for
more information.

 getCellValue(This, Row, Col)

 -spec getCellValue(This, Row, Col) -> unicode:charlist()
 when This :: wxGrid(), Row :: integer(), Col :: integer().

Returns the string contained in the cell at the specified location.
For simple applications where a grid object automatically uses a default grid table of
string values you use this function together with setCellValue/4 to access cell values. For more complex
applications where you have derived your own grid table class that contains various data
types (e.g. numeric, boolean or user-defined custom types) then you only use this function
for those cells that contain string values.
See wxGridTableBase::CanGetValueAs() (not implemented in wx) and the overview_grid for
more information.

 getColLabelAlignment(This)

 -spec getColLabelAlignment(This) -> {Horiz :: integer(), Vert :: integer()} when This :: wxGrid().

Sets the arguments to the current column label alignment values.
Horizontal alignment will be one of wxALIGN_LEFT, wxALIGN_CENTRE or wxALIGN_RIGHT.
Vertical alignment will be one of wxALIGN_TOP, wxALIGN_CENTRE or wxALIGN_BOTTOM.

 getColLabelSize(This)

 -spec getColLabelSize(This) -> integer() when This :: wxGrid().

Returns the current height of the column labels.

 getColLabelValue(This, Col)

 -spec getColLabelValue(This, Col) -> unicode:charlist() when This :: wxGrid(), Col :: integer().

Returns the specified column label.
The default grid table class provides column labels of the form A,B...Z,AA,AB...ZZ,AAA...
If you are using a custom grid table you can override wxGridTableBase::GetColLabelValue()
(not implemented in wx) to provide your own labels.

 getColMinimalAcceptableWidth(This)

 -spec getColMinimalAcceptableWidth(This) -> integer() when This :: wxGrid().

Returns the minimal width to which a column may be resized.
Use setColMinimalAcceptableWidth/2 to change this value globally or setColMinimalWidth/3 to do it for individual columns.
See: getRowMinimalAcceptableHeight/1

 getDefaultCellAlignment(This)

 -spec getDefaultCellAlignment(This) -> {Horiz :: integer(), Vert :: integer()} when This :: wxGrid().

Returns the default cell alignment.
Horizontal alignment will be one of wxALIGN_LEFT, wxALIGN_CENTRE or wxALIGN_RIGHT.
Vertical alignment will be one of wxALIGN_TOP, wxALIGN_CENTRE or wxALIGN_BOTTOM.
See: setDefaultCellAlignment/3

 getDefaultCellBackgroundColour(This)

 -spec getDefaultCellBackgroundColour(This) -> wx:wx_colour4() when This :: wxGrid().

Returns the current default background colour for grid cells.

 getDefaultCellFont(This)

 -spec getDefaultCellFont(This) -> wxFont:wxFont() when This :: wxGrid().

Returns the current default font for grid cell text.

 getDefaultCellTextColour(This)

 -spec getDefaultCellTextColour(This) -> wx:wx_colour4() when This :: wxGrid().

Returns the current default colour for grid cell text.

 getDefaultColLabelSize(This)

 -spec getDefaultColLabelSize(This) -> integer() when This :: wxGrid().

Returns the default height for column labels.

 getDefaultColSize(This)

 -spec getDefaultColSize(This) -> integer() when This :: wxGrid().

Returns the current default width for grid columns.

 getDefaultEditor(This)

 -spec getDefaultEditor(This) -> wxGridCellEditor:wxGridCellEditor() when This :: wxGrid().

Returns a pointer to the current default grid cell editor.
See wxGridCellEditor and the overview_grid for more information about cell editors
and renderers.

 getDefaultEditorForCell(This, C)

 -spec getDefaultEditorForCell(This, C) -> wxGridCellEditor:wxGridCellEditor()
 when This :: wxGrid(), C :: {R :: integer(), C :: integer()}.

Returns the default editor for the specified cell.
The base class version returns the editor appropriate for the current cell type but this
method may be overridden in the derived classes to use custom editors for some cells by default.
Notice that the same may be achieved in a usually simpler way by associating a custom
editor with the given cell or cells.
The caller must call DecRef() on the returned pointer.

 getDefaultEditorForCell(This, Row, Col)

 -spec getDefaultEditorForCell(This, Row, Col) -> wxGridCellEditor:wxGridCellEditor()
 when This :: wxGrid(), Row :: integer(), Col :: integer().

Returns the default editor for the specified cell.
The base class version returns the editor appropriate for the current cell type but this
method may be overridden in the derived classes to use custom editors for some cells by default.
Notice that the same may be achieved in a usually simpler way by associating a custom
editor with the given cell or cells.
The caller must call DecRef() on the returned pointer.

 getDefaultEditorForType(This, TypeName)

 -spec getDefaultEditorForType(This, TypeName) -> wxGridCellEditor:wxGridCellEditor()
 when This :: wxGrid(), TypeName :: unicode:chardata().

Returns the default editor for the cells containing values of the given type.
The base class version returns the editor which was associated with the specified typeName
when it was registered registerDataType/4 but this function may be overridden to return something
different. This allows overriding an editor used for one of the standard types.
The caller must call DecRef() on the returned pointer.

 getDefaultRenderer(This)

 -spec getDefaultRenderer(This) -> wxGridCellRenderer:wxGridCellRenderer() when This :: wxGrid().

Returns a pointer to the current default grid cell renderer.
See wxGridCellRenderer and the overview_grid for more information about cell editors
and renderers.
The caller must call DecRef() on the returned pointer.

 getDefaultRendererForCell(This, Row, Col)

 -spec getDefaultRendererForCell(This, Row, Col) -> wxGridCellRenderer:wxGridCellRenderer()
 when This :: wxGrid(), Row :: integer(), Col :: integer().

Returns the default renderer for the given cell.
The base class version returns the renderer appropriate for the current cell type but
this method may be overridden in the derived classes to use custom renderers for some
cells by default.
The caller must call DecRef() on the returned pointer.

 getDefaultRendererForType(This, TypeName)

 -spec getDefaultRendererForType(This, TypeName) -> wxGridCellRenderer:wxGridCellRenderer()
 when This :: wxGrid(), TypeName :: unicode:chardata().

Returns the default renderer for the cell containing values of the given type.
See: getDefaultEditorForType/2

 getDefaultRowLabelSize(This)

 -spec getDefaultRowLabelSize(This) -> integer() when This :: wxGrid().

Returns the default width for the row labels.

 getDefaultRowSize(This)

 -spec getDefaultRowSize(This) -> integer() when This :: wxGrid().

Returns the current default height for grid rows.

 getGridColLabelWindow(This)

 -spec getGridColLabelWindow(This) -> wxWindow:wxWindow() when This :: wxGrid().

Return the column labels window.
This window is not shown if the columns labels were hidden using HideColLabels() (not
implemented in wx).
Depending on whether UseNativeColHeader() (not implemented in wx) was called or not
this can be either a wxHeaderCtrl (not implemented in wx) or a plain wxWindow. This
function returns a valid window pointer in either case but in the former case you can also
use GetGridColHeader() (not implemented in wx) to access it if you need
wxHeaderCtrl-specific functionality.

 getGridCornerLabelWindow(This)

 -spec getGridCornerLabelWindow(This) -> wxWindow:wxWindow() when This :: wxGrid().

Return the window in the top left grid corner.
This window is shown only of both columns and row labels are shown and normally doesn't
contain anything. Clicking on it is handled by wxGrid however and can be used to
select the entire grid.

 getGridCursorCol(This)

 -spec getGridCursorCol(This) -> integer() when This :: wxGrid().

Returns the current grid cell column position.

 getGridCursorRow(This)

 -spec getGridCursorRow(This) -> integer() when This :: wxGrid().

Returns the current grid cell row position.

 getGridLineColour(This)

 -spec getGridLineColour(This) -> wx:wx_colour4() when This :: wxGrid().

Returns the colour used for grid lines.

 getGridRowLabelWindow(This)

 -spec getGridRowLabelWindow(This) -> wxWindow:wxWindow() when This :: wxGrid().

Return the row labels window.
This window is not shown if the row labels were hidden using HideRowLabels() (not
implemented in wx).

 getGridWindow(This)

 -spec getGridWindow(This) -> wxWindow:wxWindow() when This :: wxGrid().

Return the main grid window containing the grid cells.
This window is always shown.

 getLabelBackgroundColour(This)

 -spec getLabelBackgroundColour(This) -> wx:wx_colour4() when This :: wxGrid().

Returns the colour used for the background of row and column labels.

 getLabelFont(This)

 -spec getLabelFont(This) -> wxFont:wxFont() when This :: wxGrid().

Returns the font used for row and column labels.

 getLabelTextColour(This)

 -spec getLabelTextColour(This) -> wx:wx_colour4() when This :: wxGrid().

Returns the colour used for row and column label text.

 getNumberCols(This)

 -spec getNumberCols(This) -> integer() when This :: wxGrid().

Returns the total number of grid columns.
This is the same as the number of columns in the underlying grid table.

 getNumberRows(This)

 -spec getNumberRows(This) -> integer() when This :: wxGrid().

Returns the total number of grid rows.
This is the same as the number of rows in the underlying grid table.

 getOrCreateCellAttr(This, Row, Col)

 -spec getOrCreateCellAttr(This, Row, Col) -> wxGridCellAttr:wxGridCellAttr()
 when This :: wxGrid(), Row :: integer(), Col :: integer().

Returns the attribute for the given cell creating one if necessary.
If the cell already has an attribute, it is returned. Otherwise a new attribute is
created, associated with the cell and returned. In any case the caller must call DecRef()
on the returned pointer.
Prefer to use GetOrCreateCellAttrPtr() (not implemented in wx) to avoid the need to
call DecRef() on the returned pointer.
This function may only be called if CanHaveAttributes() (not implemented in wx) returns
true.

 getRowLabelAlignment(This)

 -spec getRowLabelAlignment(This) -> {Horiz :: integer(), Vert :: integer()} when This :: wxGrid().

Returns the alignment used for row labels.
Horizontal alignment will be one of wxALIGN_LEFT, wxALIGN_CENTRE or wxALIGN_RIGHT.
Vertical alignment will be one of wxALIGN_TOP, wxALIGN_CENTRE or wxALIGN_BOTTOM.

 getRowLabelSize(This)

 -spec getRowLabelSize(This) -> integer() when This :: wxGrid().

Returns the current width of the row labels.

 getRowLabelValue(This, Row)

 -spec getRowLabelValue(This, Row) -> unicode:charlist() when This :: wxGrid(), Row :: integer().

Returns the specified row label.
The default grid table class provides numeric row labels. If you are using a custom grid
table you can override wxGridTableBase::GetRowLabelValue() (not implemented in wx) to
provide your own labels.

 getRowMinimalAcceptableHeight(This)

 -spec getRowMinimalAcceptableHeight(This) -> integer() when This :: wxGrid().

Returns the minimal size to which rows can be resized.
Use setRowMinimalAcceptableHeight/2 to change this value globally or setRowMinimalHeight/3 to do it for individual cells.
See: getColMinimalAcceptableWidth/1

 getRowSize(This, Row)

 -spec getRowSize(This, Row) -> integer() when This :: wxGrid(), Row :: integer().

Returns the height of the specified row.

 getScrollLineX(This)

 -spec getScrollLineX(This) -> integer() when This :: wxGrid().

Returns the number of pixels per horizontal scroll increment.
The default is 15.
See:
	getScrollLineY/1

	setScrollLineX/2

	setScrollLineY/2

 getScrollLineY(This)

 -spec getScrollLineY(This) -> integer() when This :: wxGrid().

Returns the number of pixels per vertical scroll increment.
The default is 15.
See:
	getScrollLineX/1

	setScrollLineX/2

	setScrollLineY/2

 getSelectedCells(This)

 -spec getSelectedCells(This) -> [{R :: integer(), C :: integer()}] when This :: wxGrid().

Returns an array of individually selected cells.
Notice that this array does not contain all the selected cells in general as it doesn't
include the cells selected as part of column, row or block selection. You must use this
method, getSelectedCols/1, getSelectedRows/1 and getSelectionBlockTopLeft/1 and getSelectionBlockBottomRight/1 methods to obtain the entire selection in general.
Please notice this behaviour is by design and is needed in order to support grids of
arbitrary size (when an entire column is selected in a grid with a million of columns, we
don't want to create an array with a million of entries in this function, instead it
returns an empty array and getSelectedCols/1 returns an array containing one element).
The function can be slow for the big grids, use GetSelectedBlocks() (not implemented in
wx) in the new code.

 getSelectedCols(This)

 -spec getSelectedCols(This) -> [integer()] when This :: wxGrid().

Returns an array of selected columns.
Please notice that this method alone is not sufficient to find all the selected columns
as it contains only the columns which were individually selected but not those being part
of the block selection or being selected in virtue of all of their cells being selected
individually, please see getSelectedCells/1 for more details.
The function can be slow for the big grids, use GetSelectedBlocks() (not implemented in
wx) in the new code.

 getSelectedRows(This)

 -spec getSelectedRows(This) -> [integer()] when This :: wxGrid().

Returns an array of selected rows.
Please notice that this method alone is not sufficient to find all the selected rows as
it contains only the rows which were individually selected but not those being part of the
block selection or being selected in virtue of all of their cells being selected
individually, please see getSelectedCells/1 for more details.
The function can be slow for the big grids, use GetSelectedBlocks() (not implemented in
wx) in the new code.

 getSelectionBackground(This)

 -spec getSelectionBackground(This) -> wx:wx_colour4() when This :: wxGrid().

Returns the colour used for drawing the selection background.

 getSelectionBlockBottomRight(This)

 -spec getSelectionBlockBottomRight(This) -> [{R :: integer(), C :: integer()}] when This :: wxGrid().

Returns an array of the bottom right corners of blocks of selected cells.
Please see getSelectedCells/1 for more information about the selection representation in wxGrid.
The function can be slow for the big grids, use GetSelectedBlocks() (not implemented in
wx) in the new code.
See: getSelectionBlockTopLeft/1

 getSelectionBlockTopLeft(This)

 -spec getSelectionBlockTopLeft(This) -> [{R :: integer(), C :: integer()}] when This :: wxGrid().

Returns an array of the top left corners of blocks of selected cells.
Please see getSelectedCells/1 for more information about the selection representation in wxGrid.
The function can be slow for the big grids, use GetSelectedBlocks() (not implemented in
wx) in the new code.
See: getSelectionBlockBottomRight/1

 getSelectionForeground(This)

 -spec getSelectionForeground(This) -> wx:wx_colour4() when This :: wxGrid().

Returns the colour used for drawing the selection foreground.

 gridLinesEnabled(This)

 -spec gridLinesEnabled(This) -> boolean() when This :: wxGrid().

Returns true if drawing of grid lines is turned on, false otherwise.

 hideCellEditControl(This)

 -spec hideCellEditControl(This) -> ok when This :: wxGrid().

Hides the in-place cell edit control.

 insertCols(This)

 -spec insertCols(This) -> boolean() when This :: wxGrid().

Equivalent to insertCols(This, []).

 insertCols/2

 -spec insertCols(This, [Option]) -> boolean()
 when
 This :: wxGrid(),
 Option :: {pos, integer()} | {numCols, integer()} | {updateLabels, boolean()}.

Inserts one or more new columns into a grid with the first new column at the specified
position.
Notice that inserting the columns in the grid requires grid table cooperation: when this
method is called, grid object begins by requesting the underlying grid table to insert new
columns. If this is successful the table notifies the grid and the grid updates the
display. For a default grid (one where you have called createGrid/4) this process is automatic. If you
are using a custom grid table (specified with SetTable() (not implemented in wx) or AssignTable()
(not implemented in wx)) then you must override wxGridTableBase::InsertCols() (not
implemented in wx) in your derived table class.
Return: true if the columns were successfully inserted, false if an error occurred (most
likely the table couldn't be updated).

 insertRows(This)

 -spec insertRows(This) -> boolean() when This :: wxGrid().

Equivalent to insertRows(This, []).

 insertRows/2

 -spec insertRows(This, [Option]) -> boolean()
 when
 This :: wxGrid(),
 Option :: {pos, integer()} | {numRows, integer()} | {updateLabels, boolean()}.

Inserts one or more new rows into a grid with the first new row at the specified
position.
Notice that you must implement wxGridTableBase::InsertRows() (not implemented in wx) if
you use a grid with a custom table, please see insertCols/2 for more information.
Return: true if the rows were successfully inserted, false if an error occurred (most
likely the table couldn't be updated).

 isCellEditControlEnabled(This)

 -spec isCellEditControlEnabled(This) -> boolean() when This :: wxGrid().

Returns true if the in-place edit control is currently enabled.

 isCurrentCellReadOnly(This)

 -spec isCurrentCellReadOnly(This) -> boolean() when This :: wxGrid().

Returns true if the current cell is read-only.
See:
	setReadOnly/4

	isReadOnly/3

 isEditable(This)

 -spec isEditable(This) -> boolean() when This :: wxGrid().

Returns false if the whole grid has been set as read-only or true otherwise.
See enableEditing/2 for more information about controlling the editing status of grid cells.

 isInSelection(This, Coords)

 -spec isInSelection(This, Coords) -> boolean()
 when This :: wxGrid(), Coords :: {R :: integer(), C :: integer()}.

Returns true if the given cell is selected.

 isInSelection(This, Row, Col)

 -spec isInSelection(This, Row, Col) -> boolean()
 when This :: wxGrid(), Row :: integer(), Col :: integer().

Returns true if the given cell is selected.

 isReadOnly(This, Row, Col)

 -spec isReadOnly(This, Row, Col) -> boolean() when This :: wxGrid(), Row :: integer(), Col :: integer().

Returns true if the cell at the specified location can't be edited.
See:
	setReadOnly/4

	isCurrentCellReadOnly/1

 isSelection(This)

 -spec isSelection(This) -> boolean() when This :: wxGrid().

Returns true if there are currently any selected cells, rows, columns or blocks.

 isVisible(This, Coords)

 -spec isVisible(This, Coords) -> boolean()
 when This :: wxGrid(), Coords :: {R :: integer(), C :: integer()}.

Equivalent to isVisible(This, Coords, []).

 isVisible/3

 -spec isVisible(This, Row, Col) -> boolean() when This :: wxGrid(), Row :: integer(), Col :: integer();
 (This, Coords, [Option]) -> boolean()
 when
 This :: wxGrid(),
 Coords :: {R :: integer(), C :: integer()},
 Option :: {wholeCellVisible, boolean()}.

Returns true if a cell is either entirely or at least partially visible in the grid
window.
By default, the cell must be entirely visible for this function to return true but if wholeCellVisible
is false, the function returns true even if the cell is only partially visible.

 isVisible/4

 -spec isVisible(This, Row, Col, [Option]) -> boolean()
 when
 This :: wxGrid(),
 Row :: integer(),
 Col :: integer(),
 Option :: {wholeCellVisible, boolean()}.

Returns true if a cell is either entirely or at least partially visible in the grid
window.
By default, the cell must be entirely visible for this function to return true but if wholeCellVisible
is false, the function returns true even if the cell is only partially visible.

 makeCellVisible(This, Coords)

 -spec makeCellVisible(This, Coords) -> ok
 when This :: wxGrid(), Coords :: {R :: integer(), C :: integer()}.

Brings the specified cell into the visible grid cell area with minimal scrolling.
Does nothing if the cell is already visible.

 makeCellVisible(This, Row, Col)

 -spec makeCellVisible(This, Row, Col) -> ok when This :: wxGrid(), Row :: integer(), Col :: integer().

Brings the specified cell into the visible grid cell area with minimal scrolling.
Does nothing if the cell is already visible.

 moveCursorDown(This, ExpandSelection)

 -spec moveCursorDown(This, ExpandSelection) -> boolean()
 when This :: wxGrid(), ExpandSelection :: boolean().

Moves the grid cursor down by one row.
If a block of cells was previously selected it will expand if the argument is true or be
cleared if the argument is false.

 moveCursorDownBlock(This, ExpandSelection)

 -spec moveCursorDownBlock(This, ExpandSelection) -> boolean()
 when This :: wxGrid(), ExpandSelection :: boolean().

Moves the grid cursor down in the current column such that it skips to the beginning or
end of a block of non-empty cells.
If a block of cells was previously selected it will expand if the argument is true or be
cleared if the argument is false.

 moveCursorLeft(This, ExpandSelection)

 -spec moveCursorLeft(This, ExpandSelection) -> boolean()
 when This :: wxGrid(), ExpandSelection :: boolean().

Moves the grid cursor left by one column.
If a block of cells was previously selected it will expand if the argument is true or be
cleared if the argument is false.

 moveCursorLeftBlock(This, ExpandSelection)

 -spec moveCursorLeftBlock(This, ExpandSelection) -> boolean()
 when This :: wxGrid(), ExpandSelection :: boolean().

Moves the grid cursor left in the current row such that it skips to the beginning or end
of a block of non-empty cells.
If a block of cells was previously selected it will expand if the argument is true or be
cleared if the argument is false.

 moveCursorRight(This, ExpandSelection)

 -spec moveCursorRight(This, ExpandSelection) -> boolean()
 when This :: wxGrid(), ExpandSelection :: boolean().

Moves the grid cursor right by one column.
If a block of cells was previously selected it will expand if the argument is true or be
cleared if the argument is false.

 moveCursorRightBlock(This, ExpandSelection)

 -spec moveCursorRightBlock(This, ExpandSelection) -> boolean()
 when This :: wxGrid(), ExpandSelection :: boolean().

Moves the grid cursor right in the current row such that it skips to the beginning or end
of a block of non-empty cells.
If a block of cells was previously selected it will expand if the argument is true or be
cleared if the argument is false.

 moveCursorUp(This, ExpandSelection)

 -spec moveCursorUp(This, ExpandSelection) -> boolean()
 when This :: wxGrid(), ExpandSelection :: boolean().

Moves the grid cursor up by one row.
If a block of cells was previously selected it will expand if the argument is true or be
cleared if the argument is false.

 moveCursorUpBlock(This, ExpandSelection)

 -spec moveCursorUpBlock(This, ExpandSelection) -> boolean()
 when This :: wxGrid(), ExpandSelection :: boolean().

Moves the grid cursor up in the current column such that it skips to the beginning or end
of a block of non-empty cells.
If a block of cells was previously selected it will expand if the argument is true or be
cleared if the argument is false.

 movePageDown(This)

 -spec movePageDown(This) -> boolean() when This :: wxGrid().

Moves the grid cursor down by some number of rows so that the previous bottom visible row
becomes the top visible row.

 movePageUp(This)

 -spec movePageUp(This) -> boolean() when This :: wxGrid().

Moves the grid cursor up by some number of rows so that the previous top visible row
becomes the bottom visible row.

 new()

 -spec new() -> wxGrid().

Default constructor.
You must call Create() (not implemented in wx) to really create the grid window and
also call createGrid/4 or SetTable() (not implemented in wx) or AssignTable() (not implemented in
wx) to initialize its contents.

 new(Parent, Id)

 -spec new(Parent, Id) -> wxGrid() when Parent :: wxWindow:wxWindow(), Id :: integer().

Equivalent to new(Parent, Id, []).

 new/3

 -spec new(Parent, Id, [Option]) -> wxGrid()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Constructor creating the grid window.
You must call either createGrid/4 or SetTable() (not implemented in wx) or AssignTable() (not
implemented in wx) to initialize the grid contents before using it.

 registerDataType(This, TypeName, Renderer, Editor)

 -spec registerDataType(This, TypeName, Renderer, Editor) -> ok
 when
 This :: wxGrid(),
 TypeName :: unicode:chardata(),
 Renderer :: wxGridCellRenderer:wxGridCellRenderer(),
 Editor :: wxGridCellEditor:wxGridCellEditor().

Register a new data type.
The data types allow to naturally associate specific renderers and editors to the cells
containing values of the given type. For example, the grid automatically registers a data
type with the name wxGRID_VALUE_STRING which uses wxGridCellStringRenderer and wxGridCellTextEditor
as its renderer and editor respectively - this is the data type used by all the cells of
the default wxGridStringTable (not implemented in wx), so this renderer and editor are
used by default for all grid cells.
However if a custom table returns wxGRID_VALUE_BOOL from its wxGridTableBase::GetTypeName()
(not implemented in wx) method, then wxGridCellBoolRenderer and wxGridCellBoolEditor
are used for it because the grid also registers a boolean data type with this name.
And as this mechanism is completely generic, you may register your own data types using
your own custom renderers and editors. Just remember that the table must identify a cell
as being of the given type for them to be used for this cell.

 saveEditControlValue(This)

 -spec saveEditControlValue(This) -> ok when This :: wxGrid().

Sets the value of the current grid cell to the current in-place edit control value.
This is called automatically when the grid cursor moves from the current cell to a new
cell. It is also a good idea to call this function when closing a grid since any edits to
the final cell location will not be saved otherwise.

 selectAll(This)

 -spec selectAll(This) -> ok when This :: wxGrid().

Selects all cells in the grid.

 selectBlock(This, TopLeft, BottomRight)

 -spec selectBlock(This, TopLeft, BottomRight) -> ok
 when
 This :: wxGrid(),
 TopLeft :: {R :: integer(), C :: integer()},
 BottomRight :: {R :: integer(), C :: integer()}.

Equivalent to selectBlock(This, TopLeft, BottomRight, []).

 selectBlock/4

 -spec selectBlock(This, TopLeft, BottomRight, [Option]) -> ok
 when
 This :: wxGrid(),
 TopLeft :: {R :: integer(), C :: integer()},
 BottomRight :: {R :: integer(), C :: integer()},
 Option :: {addToSelected, boolean()}.

Selects a rectangular block of cells.
If addToSelected is false then any existing selection will be deselected; if true the
column will be added to the existing selection.

 selectBlock(This, TopRow, LeftCol, BottomRow, RightCol)

 -spec selectBlock(This, TopRow, LeftCol, BottomRow, RightCol) -> ok
 when
 This :: wxGrid(),
 TopRow :: integer(),
 LeftCol :: integer(),
 BottomRow :: integer(),
 RightCol :: integer().

Equivalent to selectBlock(This, TopRow, LeftCol, BottomRow, RightCol, []).

 selectBlock/6

 -spec selectBlock(This, TopRow, LeftCol, BottomRow, RightCol, [Option]) -> ok
 when
 This :: wxGrid(),
 TopRow :: integer(),
 LeftCol :: integer(),
 BottomRow :: integer(),
 RightCol :: integer(),
 Option :: {addToSelected, boolean()}.

Selects a rectangular block of cells.
If addToSelected is false then any existing selection will be deselected; if true the
column will be added to the existing selection.

 selectCol(This, Col)

 -spec selectCol(This, Col) -> ok when This :: wxGrid(), Col :: integer().

Equivalent to selectCol(This, Col, []).

 selectCol/3

 -spec selectCol(This, Col, [Option]) -> ok
 when This :: wxGrid(), Col :: integer(), Option :: {addToSelected, boolean()}.

Selects the specified column.
If addToSelected is false then any existing selection will be deselected; if true the
column will be added to the existing selection.
This method won't select anything if the current selection mode is wxGridSelectRows.

 selectRow(This, Row)

 -spec selectRow(This, Row) -> ok when This :: wxGrid(), Row :: integer().

Equivalent to selectRow(This, Row, []).

 selectRow/3

 -spec selectRow(This, Row, [Option]) -> ok
 when This :: wxGrid(), Row :: integer(), Option :: {addToSelected, boolean()}.

Selects the specified row.
If addToSelected is false then any existing selection will be deselected; if true the
row will be added to the existing selection.
This method won't select anything if the current selection mode is wxGridSelectColumns.

 setCellAlignment(This, Row, Col, Horiz, Vert)

 -spec setCellAlignment(This, Row, Col, Horiz, Vert) -> ok
 when
 This :: wxGrid(),
 Row :: integer(),
 Col :: integer(),
 Horiz :: integer(),
 Vert :: integer().

Sets the horizontal and vertical alignment for grid cell text at the specified location.
Horizontal alignment should be one of wxALIGN_LEFT, wxALIGN_CENTRE or wxALIGN_RIGHT.
Vertical alignment should be one of wxALIGN_TOP, wxALIGN_CENTRE or wxALIGN_BOTTOM.

 setCellBackgroundColour(This, Row, Col, Colour)

 -spec setCellBackgroundColour(This, Row, Col, Colour) -> ok
 when
 This :: wxGrid(),
 Row :: integer(),
 Col :: integer(),
 Colour :: wx:wx_colour().

Set the background colour for the given cell or all cells by default.

 setCellEditor(This, Row, Col, Editor)

 -spec setCellEditor(This, Row, Col, Editor) -> ok
 when
 This :: wxGrid(),
 Row :: integer(),
 Col :: integer(),
 Editor :: wxGridCellEditor:wxGridCellEditor().

Sets the editor for the grid cell at the specified location.
The grid will take ownership of the pointer.
See wxGridCellEditor and the overview_grid for more information about cell editors
and renderers.

 setCellFont(This, Row, Col, Font)

 -spec setCellFont(This, Row, Col, Font) -> ok
 when This :: wxGrid(), Row :: integer(), Col :: integer(), Font :: wxFont:wxFont().

Sets the font for text in the grid cell at the specified location.

 setCellRenderer(This, Row, Col, Renderer)

 -spec setCellRenderer(This, Row, Col, Renderer) -> ok
 when
 This :: wxGrid(),
 Row :: integer(),
 Col :: integer(),
 Renderer :: wxGridCellRenderer:wxGridCellRenderer().

Sets the renderer for the grid cell at the specified location.
The grid will take ownership of the pointer.
See wxGridCellRenderer and the overview_grid for more information about cell editors
and renderers.

 setCellTextColour(This, Row, Col, Colour)

 -spec setCellTextColour(This, Row, Col, Colour) -> ok
 when
 This :: wxGrid(),
 Row :: integer(),
 Col :: integer(),
 Colour :: wx:wx_colour().

Sets the text colour for the given cell.

 setCellValue(This, Coords, S)

 -spec setCellValue(This, Coords, S) -> ok
 when
 This :: wxGrid(),
 Coords :: {R :: integer(), C :: integer()},
 S :: unicode:chardata().

Sets the string value for the cell at the specified location.
For simple applications where a grid object automatically uses a default grid table of
string values you use this function together with getCellValue/3 to access cell values. For more complex
applications where you have derived your own grid table class that contains various data
types (e.g. numeric, boolean or user-defined custom types) then you only use this function
for those cells that contain string values.
See wxGridTableBase::CanSetValueAs() (not implemented in wx) and the overview_grid for
more information.

 setCellValue(This, Row, Col, S)

 -spec setCellValue(This, Row, Col, S) -> ok
 when This :: wxGrid(), Row :: integer(), Col :: integer(), S :: unicode:chardata().

Sets the string value for the cell at the specified location.
For simple applications where a grid object automatically uses a default grid table of
string values you use this function together with getCellValue/3 to access cell values. For more complex
applications where you have derived your own grid table class that contains various data
types (e.g. numeric, boolean or user-defined custom types) then you only use this function
for those cells that contain string values.
See wxGridTableBase::CanSetValueAs() (not implemented in wx) and the overview_grid for
more information.

 setColAttr(This, Col, Attr)

 -spec setColAttr(This, Col, Attr) -> ok
 when This :: wxGrid(), Col :: integer(), Attr :: wxGridCellAttr:wxGridCellAttr().

Sets the cell attributes for all cells in the specified column.
For more information about controlling grid cell attributes see the wxGridCellAttr
cell attribute class and the overview_grid.

 setColFormatBool(This, Col)

 -spec setColFormatBool(This, Col) -> ok when This :: wxGrid(), Col :: integer().

Sets the specified column to display boolean values.
See: setColFormatCustom/3

 setColFormatCustom(This, Col, TypeName)

 -spec setColFormatCustom(This, Col, TypeName) -> ok
 when This :: wxGrid(), Col :: integer(), TypeName :: unicode:chardata().

Sets the specified column to display data in a custom format.
This method provides an alternative to defining a custom grid table which would return typeName
from its GetTypeName() method for the cells in this column: while it doesn't really
change the type of the cells in this column, it does associate the renderer and editor
used for the cells of the specified type with them.
See the overview_grid for more information on working with custom data types.

 setColFormatFloat(This, Col)

 -spec setColFormatFloat(This, Col) -> ok when This :: wxGrid(), Col :: integer().

Equivalent to setColFormatFloat(This, Col, []).

 setColFormatFloat/3

 -spec setColFormatFloat(This, Col, [Option]) -> ok
 when
 This :: wxGrid(),
 Col :: integer(),
 Option :: {width, integer()} | {precision, integer()}.

Sets the specified column to display floating point values with the given width and
precision.
See: setColFormatCustom/3

 setColFormatNumber(This, Col)

 -spec setColFormatNumber(This, Col) -> ok when This :: wxGrid(), Col :: integer().

Sets the specified column to display integer values.
See: setColFormatCustom/3

 setColLabelAlignment(This, Horiz, Vert)

 -spec setColLabelAlignment(This, Horiz, Vert) -> ok
 when This :: wxGrid(), Horiz :: integer(), Vert :: integer().

Sets the horizontal and vertical alignment of column label text.
Horizontal alignment should be one of wxALIGN_LEFT, wxALIGN_CENTRE or wxALIGN_RIGHT.
Vertical alignment should be one of wxALIGN_TOP, wxALIGN_CENTRE or wxALIGN_BOTTOM.

 setColLabelSize(This, Height)

 -spec setColLabelSize(This, Height) -> ok when This :: wxGrid(), Height :: integer().

Sets the height of the column labels.
If height equals to wxGRID_AUTOSIZE then height is calculated automatically so that
no label is truncated. Note that this could be slow for a large table.

 setColLabelValue(This, Col, Value)

 -spec setColLabelValue(This, Col, Value) -> ok
 when This :: wxGrid(), Col :: integer(), Value :: unicode:chardata().

Set the value for the given column label.
If you are using a custom grid table you must override wxGridTableBase::SetColLabelValue()
(not implemented in wx) for this to have any effect.

 setColMinimalAcceptableWidth(This, Width)

 -spec setColMinimalAcceptableWidth(This, Width) -> ok when This :: wxGrid(), Width :: integer().

Sets the minimal width to which the user can resize columns.
See: getColMinimalAcceptableWidth/1

 setColMinimalWidth(This, Col, Width)

 -spec setColMinimalWidth(This, Col, Width) -> ok
 when This :: wxGrid(), Col :: integer(), Width :: integer().

Sets the minimal width for the specified column col.
It is usually best to call this method during grid creation as calling it later will not
resize the column to the given minimal width even if it is currently narrower than it.
width must be greater than the minimal acceptable column width as returned by getColMinimalAcceptableWidth/1.

 setColSize(This, Col, Width)

 -spec setColSize(This, Col, Width) -> ok when This :: wxGrid(), Col :: integer(), Width :: integer().

Sets the width of the specified column.

 setDefaultCellAlignment(This, Horiz, Vert)

 -spec setDefaultCellAlignment(This, Horiz, Vert) -> ok
 when This :: wxGrid(), Horiz :: integer(), Vert :: integer().

Sets the default horizontal and vertical alignment for grid cell text.
Horizontal alignment should be one of wxALIGN_LEFT, wxALIGN_CENTRE or wxALIGN_RIGHT.
Vertical alignment should be one of wxALIGN_TOP, wxALIGN_CENTRE or wxALIGN_BOTTOM.

 setDefaultCellBackgroundColour(This, Colour)

 -spec setDefaultCellBackgroundColour(This, Colour) -> ok when This :: wxGrid(), Colour :: wx:wx_colour().

Sets the default background colour for grid cells.

 setDefaultCellFont(This, Font)

 -spec setDefaultCellFont(This, Font) -> ok when This :: wxGrid(), Font :: wxFont:wxFont().

Sets the default font to be used for grid cell text.

 setDefaultCellTextColour(This, Colour)

 -spec setDefaultCellTextColour(This, Colour) -> ok when This :: wxGrid(), Colour :: wx:wx_colour().

Sets the current default colour for grid cell text.

 setDefaultColSize(This, Width)

 -spec setDefaultColSize(This, Width) -> ok when This :: wxGrid(), Width :: integer().

Equivalent to setDefaultColSize(This, Width, []).

 setDefaultColSize/3

 -spec setDefaultColSize(This, Width, [Option]) -> ok
 when
 This :: wxGrid(),
 Width :: integer(),
 Option :: {resizeExistingCols, boolean()}.

Sets the default width for columns in the grid.
This will only affect columns subsequently added to the grid unless resizeExistingCols
is true.
If width is less than getColMinimalAcceptableWidth/1, then the minimal acceptable width is used instead of it.

 setDefaultEditor(This, Editor)

 -spec setDefaultEditor(This, Editor) -> ok
 when This :: wxGrid(), Editor :: wxGridCellEditor:wxGridCellEditor().

Sets the default editor for grid cells.
The grid will take ownership of the pointer.
See wxGridCellEditor and the overview_grid for more information about cell editors
and renderers.

 setDefaultRenderer(This, Renderer)

 -spec setDefaultRenderer(This, Renderer) -> ok
 when This :: wxGrid(), Renderer :: wxGridCellRenderer:wxGridCellRenderer().

Sets the default renderer for grid cells.
The grid will take ownership of the pointer.
See wxGridCellRenderer and the overview_grid for more information about cell editors
and renderers.

 setDefaultRowSize(This, Height)

 -spec setDefaultRowSize(This, Height) -> ok when This :: wxGrid(), Height :: integer().

Equivalent to setDefaultRowSize(This, Height, []).

 setDefaultRowSize/3

 -spec setDefaultRowSize(This, Height, [Option]) -> ok
 when
 This :: wxGrid(),
 Height :: integer(),
 Option :: {resizeExistingRows, boolean()}.

Sets the default height for rows in the grid.
This will only affect rows subsequently added to the grid unless resizeExistingRows is true.
If height is less than getRowMinimalAcceptableHeight/1, then the minimal acceptable height is used instead of it.

 setGridCursor(This, Coords)

 -spec setGridCursor(This, Coords) -> ok
 when This :: wxGrid(), Coords :: {R :: integer(), C :: integer()}.

Set the grid cursor to the specified cell.
The grid cursor indicates the current cell and can be moved by the user using the arrow
keys or the mouse.
Calling this function generates a wxEVT_GRID_SELECT_CELL event and if the event handler
vetoes this event, the cursor is not moved.
This function doesn't make the target call visible, use GoToCell() (not implemented in
wx) to do this.

 setGridCursor(This, Row, Col)

 -spec setGridCursor(This, Row, Col) -> ok when This :: wxGrid(), Row :: integer(), Col :: integer().

Set the grid cursor to the specified cell.
The grid cursor indicates the current cell and can be moved by the user using the arrow
keys or the mouse.
Calling this function generates a wxEVT_GRID_SELECT_CELL event and if the event handler
vetoes this event, the cursor is not moved.
This function doesn't make the target call visible, use GoToCell() (not implemented in
wx) to do this.

 setGridLineColour(This, Colour)

 -spec setGridLineColour(This, Colour) -> ok when This :: wxGrid(), Colour :: wx:wx_colour().

Sets the colour used to draw grid lines.

 setLabelBackgroundColour(This, Colour)

 -spec setLabelBackgroundColour(This, Colour) -> ok when This :: wxGrid(), Colour :: wx:wx_colour().

Sets the background colour for row and column labels.

 setLabelFont(This, Font)

 -spec setLabelFont(This, Font) -> ok when This :: wxGrid(), Font :: wxFont:wxFont().

Sets the font for row and column labels.

 setLabelTextColour(This, Colour)

 -spec setLabelTextColour(This, Colour) -> ok when This :: wxGrid(), Colour :: wx:wx_colour().

Sets the colour for row and column label text.

 setMargins(This, ExtraWidth, ExtraHeight)

 -spec setMargins(This, ExtraWidth, ExtraHeight) -> ok
 when This :: wxGrid(), ExtraWidth :: integer(), ExtraHeight :: integer().

Sets the extra margins used around the grid area.
A grid may occupy more space than needed for its data display and this function allows
setting how big this extra space is

 setReadOnly(This, Row, Col)

 -spec setReadOnly(This, Row, Col) -> ok when This :: wxGrid(), Row :: integer(), Col :: integer().

Equivalent to setReadOnly(This, Row, Col, []).

 setReadOnly/4

 -spec setReadOnly(This, Row, Col, [Option]) -> ok
 when
 This :: wxGrid(),
 Row :: integer(),
 Col :: integer(),
 Option :: {isReadOnly, boolean()}.

Makes the cell at the specified location read-only or editable.
See: isReadOnly/3

 setRowAttr(This, Row, Attr)

 -spec setRowAttr(This, Row, Attr) -> ok
 when This :: wxGrid(), Row :: integer(), Attr :: wxGridCellAttr:wxGridCellAttr().

Sets the cell attributes for all cells in the specified row.
The grid takes ownership of the attribute pointer.
See the wxGridCellAttr class for more information about controlling cell attributes.

 setRowLabelAlignment(This, Horiz, Vert)

 -spec setRowLabelAlignment(This, Horiz, Vert) -> ok
 when This :: wxGrid(), Horiz :: integer(), Vert :: integer().

Sets the horizontal and vertical alignment of row label text.
Horizontal alignment should be one of wxALIGN_LEFT, wxALIGN_CENTRE or wxALIGN_RIGHT.
Vertical alignment should be one of wxALIGN_TOP, wxALIGN_CENTRE or wxALIGN_BOTTOM.

 setRowLabelSize(This, Width)

 -spec setRowLabelSize(This, Width) -> ok when This :: wxGrid(), Width :: integer().

Sets the width of the row labels.
If width equals wxGRID_AUTOSIZE then width is calculated automatically so that no
label is truncated. Note that this could be slow for a large table.

 setRowLabelValue(This, Row, Value)

 -spec setRowLabelValue(This, Row, Value) -> ok
 when This :: wxGrid(), Row :: integer(), Value :: unicode:chardata().

Sets the value for the given row label.
If you are using a derived grid table you must override wxGridTableBase::SetRowLabelValue()
(not implemented in wx) for this to have any effect.

 setRowMinimalAcceptableHeight(This, Height)

 -spec setRowMinimalAcceptableHeight(This, Height) -> ok when This :: wxGrid(), Height :: integer().

Sets the minimal row height used by default.
See setColMinimalAcceptableWidth/2 for more information.

 setRowMinimalHeight(This, Row, Height)

 -spec setRowMinimalHeight(This, Row, Height) -> ok
 when This :: wxGrid(), Row :: integer(), Height :: integer().

Sets the minimal height for the specified row.
See setColMinimalWidth/3 for more information.

 setRowSize(This, Row, Height)

 -spec setRowSize(This, Row, Height) -> ok when This :: wxGrid(), Row :: integer(), Height :: integer().

Sets the height of the specified row.
See setColSize/3 for more information.

 setScrollLineX(This, X)

 -spec setScrollLineX(This, X) -> ok when This :: wxGrid(), X :: integer().

Sets the number of pixels per horizontal scroll increment.
The default is 15.
See:
	getScrollLineX/1

	getScrollLineY/1

	setScrollLineY/2

 setScrollLineY(This, Y)

 -spec setScrollLineY(This, Y) -> ok when This :: wxGrid(), Y :: integer().

Sets the number of pixels per vertical scroll increment.
The default is 15.
See:
	getScrollLineX/1

	getScrollLineY/1

	setScrollLineX/2

 setSelectionBackground(This, C)

 -spec setSelectionBackground(This, C) -> ok when This :: wxGrid(), C :: wx:wx_colour().

Set the colour to be used for drawing the selection background.

 setSelectionForeground(This, C)

 -spec setSelectionForeground(This, C) -> ok when This :: wxGrid(), C :: wx:wx_colour().

Set the colour to be used for drawing the selection foreground.

 setSelectionMode(This, Selmode)

 -spec setSelectionMode(This, Selmode) -> ok when This :: wxGrid(), Selmode :: wx:wx_enum().

Set the selection behaviour of the grid.
The existing selection is converted to conform to the new mode if possible and discarded
otherwise (e.g. any individual selected cells are deselected if the new mode allows only
the selection of the entire rows or columns).

 showCellEditControl(This)

 -spec showCellEditControl(This) -> ok when This :: wxGrid().

Displays the active in-place cell edit control for the current cell after it was hidden.
This method should only be called after calling hideCellEditControl/1, to start editing the current grid cell
use enableCellEditControl/2 instead.

 xToCol(This, X)

 -spec xToCol(This, X) -> integer() when This :: wxGrid(), X :: integer().

Equivalent to xToCol(This, X, []).

 xToCol/3

 -spec xToCol(This, X, [Option]) -> integer()
 when This :: wxGrid(), X :: integer(), Option :: {clipToMinMax, boolean()}.

Returns the column at the given pixel position depending on the window.
Return: The column index or wxNOT_FOUND.

 xToEdgeOfCol(This, X)

 -spec xToEdgeOfCol(This, X) -> integer() when This :: wxGrid(), X :: integer().

Returns the column whose right hand edge is close to the given logical x position.
If no column edge is near to this position wxNOT_FOUND is returned.

 yToEdgeOfRow(This, Y)

 -spec yToEdgeOfRow(This, Y) -> integer() when This :: wxGrid(), Y :: integer().

Returns the row whose bottom edge is close to the given logical y position.
If no row edge is near to this position wxNOT_FOUND is returned.

 yToRow(This, Y)

 -spec yToRow(This, Y) -> integer() when This :: wxGrid(), Y :: integer().

Equivalent to yToRow(This, Y, []).

 yToRow/3

 -spec yToRow(This, Y, [Option]) -> integer()
 when This :: wxGrid(), Y :: integer(), Option :: {clipToMinMax, boolean()}.

Returns the grid row that corresponds to the logical y coordinate.
The parameter gridWindow is new since wxWidgets 3.1.3. If it is specified, i.e.
non-NULL, only the cells of this window are considered, i.e. the function returns wxNOT_FOUND
if y is out of bounds.
If gridWindow is NULL, the function returns wxNOT_FOUND only if there is no row at
all at the y position.

wxGridBagSizer

A wxSizer that can lay out items in a virtual grid like a wxFlexGridSizer but in
this case explicit positioning of the items is allowed using wxGBPosition (not
implemented in wx), and items can optionally span more than one row and/or column using wxGBSpan
(not implemented in wx).
This class is derived, and can use functions, from:
	wxFlexGridSizer

	wxGridSizer

	wxSizer

wxWidgets docs: wxGridBagSizer

 Summary

 Types

 wxGridBagSizer()

 Functions

 add(This, Item)

 add(This, Window, Pos)

 Equivalent to add(This, Window, Pos, []).

 add/4

 Adds the given item to the given position.

 add/5

 Adds a spacer to the given position.

 calcMin(This)

 Called when the managed size of the sizer is needed or when layout needs done.

 checkForIntersection(This, Item)

 Equivalent to checkForIntersection(This, Item, []).

 checkForIntersection/3

 Look at all items and see if any intersect (or would overlap) the given item.

 checkForIntersection/4

 destroy(This)

 Destroys the object

 findItem(This, Window)

 Find the sizer item for the given window or subsizer, returns NULL if not found.

 findItemAtPoint(This, Pt)

 Return the sizer item located at the point given in pt, or NULL if there is no item at
that point.

 findItemAtPosition(This, Pos)

 Return the sizer item for the given grid cell, or NULL if there is no item at that
position.

 findItemWithData(This, UserData)

 Return the sizer item that has a matching user data (it only compares pointer values) or
NULL if not found.

 getCellSize(This, Row, Col)

 Get the size of the specified cell, including hgap and vgap.

 getEmptyCellSize(This)

 Get the size used for cells in the grid with no item.

 getItemPosition/2

 getItemSpan/2

 new()

 Equivalent to new([]).

 new(Options)

 Constructor, with optional parameters to specify the gap between the rows and columns.

 setEmptyCellSize(This, Sz)

 Set the size used for cells in the grid with no item.

 setItemPosition/3

 setItemSpan/3

 Types

 wxGridBagSizer()

 -type wxGridBagSizer() :: wx:wx_object().

 Functions

 add(This, Item)

 -spec add(This, Item) -> wxSizerItem:wxSizerItem()
 when This :: wxGridBagSizer(), Item :: wxGBSizerItem:wxGBSizerItem().

 add(This, Window, Pos)

 -spec add(This, Window, Pos) -> wxSizerItem:wxSizerItem()
 when
 This :: wxGridBagSizer(),
 Window :: wxWindow:wxWindow() | wxSizer:wxSizer(),
 Pos :: {R :: integer(), C :: integer()}.

Equivalent to add(This, Window, Pos, []).

 add/4

 -spec add(This, Width, Height, Pos) -> wxSizerItem:wxSizerItem()
 when
 This :: wxGridBagSizer(),
 Width :: integer(),
 Height :: integer(),
 Pos :: {R :: integer(), C :: integer()};
 (This, Window, Pos, [Option]) -> wxSizerItem:wxSizerItem()
 when
 This :: wxGridBagSizer(),
 Window :: wxWindow:wxWindow() | wxSizer:wxSizer(),
 Pos :: {R :: integer(), C :: integer()},
 Option ::
 {span, {RS :: integer(), CS :: integer()}} |
 {flag, integer()} |
 {border, integer()} |
 {userData, wx:wx_object()}.

Adds the given item to the given position.
Return: A valid pointer if the item was successfully placed at the given position, or
NULL if something was already there.

 add/5

 -spec add(This, Width, Height, Pos, [Option]) -> wxSizerItem:wxSizerItem()
 when
 This :: wxGridBagSizer(),
 Width :: integer(),
 Height :: integer(),
 Pos :: {R :: integer(), C :: integer()},
 Option ::
 {span, {RS :: integer(), CS :: integer()}} |
 {flag, integer()} |
 {border, integer()} |
 {userData, wx:wx_object()}.

Adds a spacer to the given position.
width and height specify the dimension of the spacer to be added.
Return: A valid pointer if the spacer was successfully placed at the given position, or
NULL if something was already there.

 calcMin(This)

 -spec calcMin(This) -> {W :: integer(), H :: integer()} when This :: wxGridBagSizer().

Called when the managed size of the sizer is needed or when layout needs done.

 checkForIntersection(This, Item)

 -spec checkForIntersection(This, Item) -> boolean()
 when This :: wxGridBagSizer(), Item :: wxGBSizerItem:wxGBSizerItem().

Equivalent to checkForIntersection(This, Item, []).

 checkForIntersection/3

 -spec checkForIntersection(This, Pos, Span) -> boolean()
 when
 This :: wxGridBagSizer(),
 Pos :: {R :: integer(), C :: integer()},
 Span :: {RS :: integer(), CS :: integer()};
 (This, Item, [Option]) -> boolean()
 when
 This :: wxGridBagSizer(),
 Item :: wxGBSizerItem:wxGBSizerItem(),
 Option :: {excludeItem, wxGBSizerItem:wxGBSizerItem()}.

Look at all items and see if any intersect (or would overlap) the given item.
Returns true if so, false if there would be no overlap. If an excludeItem is given then
it will not be checked for intersection, for example it may be the item we are checking
the position of.

 checkForIntersection/4

 -spec checkForIntersection(This, Pos, Span, [Option]) -> boolean()
 when
 This :: wxGridBagSizer(),
 Pos :: {R :: integer(), C :: integer()},
 Span :: {RS :: integer(), CS :: integer()},
 Option :: {excludeItem, wxGBSizerItem:wxGBSizerItem()}.

 destroy(This)

 -spec destroy(This :: wxGridBagSizer()) -> ok.

Destroys the object

 findItem(This, Window)

 -spec findItem(This, Window) -> wxGBSizerItem:wxGBSizerItem()
 when This :: wxGridBagSizer(), Window :: wxWindow:wxWindow() | wxSizer:wxSizer().

Find the sizer item for the given window or subsizer, returns NULL if not found.
(non-recursive)

 findItemAtPoint(This, Pt)

 -spec findItemAtPoint(This, Pt) -> wxGBSizerItem:wxGBSizerItem()
 when This :: wxGridBagSizer(), Pt :: {X :: integer(), Y :: integer()}.

Return the sizer item located at the point given in pt, or NULL if there is no item at
that point.
The (x,y) coordinates in pt correspond to the client coordinates of the window using
the sizer for layout. (non-recursive)

 findItemAtPosition(This, Pos)

 -spec findItemAtPosition(This, Pos) -> wxGBSizerItem:wxGBSizerItem()
 when This :: wxGridBagSizer(), Pos :: {R :: integer(), C :: integer()}.

Return the sizer item for the given grid cell, or NULL if there is no item at that
position.
(non-recursive)

 findItemWithData(This, UserData)

 -spec findItemWithData(This, UserData) -> wxGBSizerItem:wxGBSizerItem()
 when This :: wxGridBagSizer(), UserData :: wx:wx_object().

Return the sizer item that has a matching user data (it only compares pointer values) or
NULL if not found.
(non-recursive)

 getCellSize(This, Row, Col)

 -spec getCellSize(This, Row, Col) -> {W :: integer(), H :: integer()}
 when This :: wxGridBagSizer(), Row :: integer(), Col :: integer().

Get the size of the specified cell, including hgap and vgap.
Only valid after window layout has been performed.

 getEmptyCellSize(This)

 -spec getEmptyCellSize(This) -> {W :: integer(), H :: integer()} when This :: wxGridBagSizer().

Get the size used for cells in the grid with no item.

 getItemPosition/2

 -spec getItemPosition(This, Window) -> {R :: integer(), C :: integer()}
 when
 This :: wxGridBagSizer(), Window :: wxWindow:wxWindow() | wxSizer:wxSizer();
 (This, Index) -> {R :: integer(), C :: integer()}
 when This :: wxGridBagSizer(), Index :: integer().

 getItemSpan/2

 -spec getItemSpan(This, Window) -> {RS :: integer(), CS :: integer()}
 when This :: wxGridBagSizer(), Window :: wxWindow:wxWindow() | wxSizer:wxSizer();
 (This, Index) -> {RS :: integer(), CS :: integer()}
 when This :: wxGridBagSizer(), Index :: integer().

 new()

 -spec new() -> wxGridBagSizer().

Equivalent to new([]).

 new(Options)

 -spec new([Option]) -> wxGridBagSizer() when Option :: {vgap, integer()} | {hgap, integer()}.

Constructor, with optional parameters to specify the gap between the rows and columns.

 setEmptyCellSize(This, Sz)

 -spec setEmptyCellSize(This, Sz) -> ok
 when This :: wxGridBagSizer(), Sz :: {W :: integer(), H :: integer()}.

Set the size used for cells in the grid with no item.

 setItemPosition/3

 -spec setItemPosition(This, Window, Pos) -> boolean()
 when
 This :: wxGridBagSizer(),
 Window :: wxWindow:wxWindow() | wxSizer:wxSizer(),
 Pos :: {R :: integer(), C :: integer()};
 (This, Index, Pos) -> boolean()
 when
 This :: wxGridBagSizer(),
 Index :: integer(),
 Pos :: {R :: integer(), C :: integer()}.

 setItemSpan/3

 -spec setItemSpan(This, Window, Span) -> boolean()
 when
 This :: wxGridBagSizer(),
 Window :: wxWindow:wxWindow() | wxSizer:wxSizer(),
 Span :: {RS :: integer(), CS :: integer()};
 (This, Index, Span) -> boolean()
 when
 This :: wxGridBagSizer(),
 Index :: integer(),
 Span :: {RS :: integer(), CS :: integer()}.

wxGridCellAttr

This class can be used to alter the cells' appearance in the grid by changing their
attributes from the defaults.
An object of this class may be returned by wxGridTableBase::GetAttr() (not implemented
in wx).
Note that objects of this class are reference-counted and it's recommended to use
wxGridCellAttrPtr smart pointer class when working with them to avoid memory leaks.
wxWidgets docs: wxGridCellAttr

 Summary

 Types

 wxGridCellAttr()

 Functions

 getAlignment(This)

 Get the alignment to use for the cell with the given attribute.

 getBackgroundColour(This)

 Returns the background colour.

 getEditor(This, Grid, Row, Col)

 Returns the cell editor.

 getFont(This)

 Returns the font.

 getRenderer(This, Grid, Row, Col)

 Returns the cell renderer.

 getTextColour(This)

 Returns the text colour.

 hasAlignment(This)

 Returns true if this attribute has a valid alignment set.

 hasBackgroundColour(This)

 Returns true if this attribute has a valid background colour set.

 hasEditor(This)

 Returns true if this attribute has a valid cell editor set.

 hasFont(This)

 Returns true if this attribute has a valid font set.

 hasRenderer(This)

 Returns true if this attribute has a valid cell renderer set.

 hasTextColour(This)

 Returns true if this attribute has a valid text colour set.

 isReadOnly(This)

 Returns true if this cell is set as read-only.

 setAlignment(This, HAlign, VAlign)

 Sets the alignment.

 setBackgroundColour(This, ColBack)

 Sets the background colour.

 setDefAttr(This, DefAttr)

 setEditor(This, Editor)

 Sets the editor to be used with the cells with this attribute.

 setFont(This, Font)

 Sets the font.

 setReadOnly(This)

 Equivalent to setReadOnly(This, []).

 setReadOnly/2

 Sets the cell as read-only.

 setRenderer(This, Renderer)

 Sets the renderer to be used for cells with this attribute.

 setTextColour(This, ColText)

 Sets the text colour.

 Types

 wxGridCellAttr()

 -type wxGridCellAttr() :: wx:wx_object().

 Functions

 getAlignment(This)

 -spec getAlignment(This) -> {HAlign :: integer(), VAlign :: integer()} when This :: wxGridCellAttr().

Get the alignment to use for the cell with the given attribute.
If this attribute doesn't specify any alignment, the default attribute alignment is used
(which can be changed using wxGrid:setDefaultCellAlignment/3 but is left and top by default).
Notice that hAlign and vAlign values are always overwritten by this function, use GetNonDefaultAlignment()
(not implemented in wx) if this is not desirable.

 getBackgroundColour(This)

 -spec getBackgroundColour(This) -> wx:wx_colour4() when This :: wxGridCellAttr().

Returns the background colour.

 getEditor(This, Grid, Row, Col)

 -spec getEditor(This, Grid, Row, Col) -> wxGridCellEditor:wxGridCellEditor()
 when
 This :: wxGridCellAttr(),
 Grid :: wxGrid:wxGrid(),
 Row :: integer(),
 Col :: integer().

Returns the cell editor.
The caller is responsible for calling DecRef() (not implemented in wx) on the returned
pointer, use GetEditorPtr() (not implemented in wx) to do it automatically.

 getFont(This)

 -spec getFont(This) -> wxFont:wxFont() when This :: wxGridCellAttr().

Returns the font.

 getRenderer(This, Grid, Row, Col)

 -spec getRenderer(This, Grid, Row, Col) -> wxGridCellRenderer:wxGridCellRenderer()
 when
 This :: wxGridCellAttr(),
 Grid :: wxGrid:wxGrid(),
 Row :: integer(),
 Col :: integer().

Returns the cell renderer.
The caller is responsible for calling DecRef() (not implemented in wx) on the returned
pointer, use GetRendererPtr() (not implemented in wx) to do it automatically.

 getTextColour(This)

 -spec getTextColour(This) -> wx:wx_colour4() when This :: wxGridCellAttr().

Returns the text colour.

 hasAlignment(This)

 -spec hasAlignment(This) -> boolean() when This :: wxGridCellAttr().

Returns true if this attribute has a valid alignment set.

 hasBackgroundColour(This)

 -spec hasBackgroundColour(This) -> boolean() when This :: wxGridCellAttr().

Returns true if this attribute has a valid background colour set.

 hasEditor(This)

 -spec hasEditor(This) -> boolean() when This :: wxGridCellAttr().

Returns true if this attribute has a valid cell editor set.

 hasFont(This)

 -spec hasFont(This) -> boolean() when This :: wxGridCellAttr().

Returns true if this attribute has a valid font set.

 hasRenderer(This)

 -spec hasRenderer(This) -> boolean() when This :: wxGridCellAttr().

Returns true if this attribute has a valid cell renderer set.

 hasTextColour(This)

 -spec hasTextColour(This) -> boolean() when This :: wxGridCellAttr().

Returns true if this attribute has a valid text colour set.

 isReadOnly(This)

 -spec isReadOnly(This) -> boolean() when This :: wxGridCellAttr().

Returns true if this cell is set as read-only.

 setAlignment(This, HAlign, VAlign)

 -spec setAlignment(This, HAlign, VAlign) -> ok
 when This :: wxGridCellAttr(), HAlign :: integer(), VAlign :: integer().

Sets the alignment.
hAlign can be one of wxALIGN_LEFT, wxALIGN_CENTRE or wxALIGN_RIGHT and vAlign
can be one of wxALIGN_TOP, wxALIGN_CENTRE or wxALIGN_BOTTOM.

 setBackgroundColour(This, ColBack)

 -spec setBackgroundColour(This, ColBack) -> ok when This :: wxGridCellAttr(), ColBack :: wx:wx_colour().

Sets the background colour.

 setDefAttr(This, DefAttr)

 -spec setDefAttr(This, DefAttr) -> ok when This :: wxGridCellAttr(), DefAttr :: wxGridCellAttr().

 setEditor(This, Editor)

 -spec setEditor(This, Editor) -> ok
 when This :: wxGridCellAttr(), Editor :: wxGridCellEditor:wxGridCellEditor().

Sets the editor to be used with the cells with this attribute.

 setFont(This, Font)

 -spec setFont(This, Font) -> ok when This :: wxGridCellAttr(), Font :: wxFont:wxFont().

Sets the font.

 setReadOnly(This)

 -spec setReadOnly(This) -> ok when This :: wxGridCellAttr().

Equivalent to setReadOnly(This, []).

 setReadOnly/2

 -spec setReadOnly(This, [Option]) -> ok when This :: wxGridCellAttr(), Option :: {isReadOnly, boolean()}.

Sets the cell as read-only.

 setRenderer(This, Renderer)

 -spec setRenderer(This, Renderer) -> ok
 when This :: wxGridCellAttr(), Renderer :: wxGridCellRenderer:wxGridCellRenderer().

Sets the renderer to be used for cells with this attribute.
Takes ownership of the pointer.

 setTextColour(This, ColText)

 -spec setTextColour(This, ColText) -> ok when This :: wxGridCellAttr(), ColText :: wx:wx_colour().

Sets the text colour.

wxGridCellBoolEditor

Grid cell editor for boolean data.
See:
	wxGridCellEditor

	wxGridCellChoiceEditor

	wxGridCellFloatEditor

	wxGridCellNumberEditor

	wxGridCellTextEditor

This class is derived, and can use functions, from:
	wxGridCellEditor

wxWidgets docs: wxGridCellBoolEditor

 Summary

 Types

 wxGridCellBoolEditor()

 Functions

 destroy(This)

 Destroys the object

 isTrueValue(Value)

 Returns true if the given value is equal to the string representation of the truth
value we currently use (see useStringValues/1).

 new()

 Default constructor.

 useStringValues()

 Equivalent to useStringValues([]).

 useStringValues(Options)

 This method allows you to customize the values returned by wxGridCellNumberEditor:getValue/1
for the cell using this editor.

 Types

 wxGridCellBoolEditor()

 -type wxGridCellBoolEditor() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxGridCellBoolEditor()) -> ok.

Destroys the object

 isTrueValue(Value)

 -spec isTrueValue(Value) -> boolean() when Value :: unicode:chardata().

Returns true if the given value is equal to the string representation of the truth
value we currently use (see useStringValues/1).

 new()

 -spec new() -> wxGridCellBoolEditor().

Default constructor.

 useStringValues()

 -spec useStringValues() -> ok.

Equivalent to useStringValues([]).

 useStringValues(Options)

 -spec useStringValues([Option]) -> ok
 when
 Option ::
 {valueTrue, unicode:chardata()} | {valueFalse, unicode:chardata()}.

This method allows you to customize the values returned by wxGridCellNumberEditor:getValue/1
for the cell using this editor.
By default, the default values of the arguments are used, i.e. "1" is returned if the
cell is checked and an empty string otherwise.

wxGridCellBoolRenderer

This class may be used to format boolean data in a cell.
See:
	wxGridCellRenderer

	wxGridCellFloatRenderer

	wxGridCellNumberRenderer

	wxGridCellStringRenderer

This class is derived, and can use functions, from:
	wxGridCellRenderer

wxWidgets docs: wxGridCellBoolRenderer

 Summary

 Types

 wxGridCellBoolRenderer()

 Functions

 destroy(This)

 Destroys the object

 new()

 Types

 wxGridCellBoolRenderer()

 -type wxGridCellBoolRenderer() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxGridCellBoolRenderer()) -> ok.

Destroys the object

 new()

 -spec new() -> wxGridCellBoolRenderer().

wxGridCellChoiceEditor

Grid cell editor for string data providing the user a choice from a list of strings.
See:
	wxGridCellEditor

	wxGridCellBoolEditor

	wxGridCellFloatEditor

	wxGridCellNumberEditor

	wxGridCellTextEditor

This class is derived, and can use functions, from:
	wxGridCellEditor

wxWidgets docs: wxGridCellChoiceEditor

 Summary

 Types

 wxGridCellChoiceEditor()

 Functions

 destroy(This)

 Destroys the object

 new(Choices)

 Equivalent to new(Choices, []).

 new(Choices, Options)

 Choice cell renderer ctor.

 setParameters(This, Params)

 Parameters string format is "item1[,item2[...,itemN]]".

 Types

 wxGridCellChoiceEditor()

 -type wxGridCellChoiceEditor() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxGridCellChoiceEditor()) -> ok.

Destroys the object

 new(Choices)

 -spec new(Choices) -> wxGridCellChoiceEditor() when Choices :: [unicode:chardata()].

Equivalent to new(Choices, []).

 new(Choices, Options)

 -spec new(Choices, [Option]) -> wxGridCellChoiceEditor()
 when Choices :: [unicode:chardata()], Option :: {allowOthers, boolean()}.

Choice cell renderer ctor.

 setParameters(This, Params)

 -spec setParameters(This, Params) -> ok
 when This :: wxGridCellChoiceEditor(), Params :: unicode:chardata().

Parameters string format is "item1[,item2[...,itemN]]".
This method can be called before the editor is used for the first time, or later, in
which case it replaces the previously specified strings with the new ones.

wxGridCellEditor

This class is responsible for providing and manipulating the in-place edit controls for
the grid.
Instances of wxGridCellEditor (actually, instances of derived classes since it is an
abstract class) can be associated with the cell attributes for individual cells, rows,
columns, or even for the entire grid.
Normally wxGridCellEditor shows some UI control allowing the user to edit the cell,
but starting with wxWidgets 3.1.4 it's also possible to define "activatable" cell editors,
that change the value of the cell directly when it's activated (typically by pressing
Space key or clicking on it), see TryActivate() (not implemented in wx) method. Note
that when implementing an editor which is always activatable, i.e. never shows any
in-place editor, it is more convenient to derive its class from wxGridCellActivatableEditor
(not implemented in wx) than from wxGridCellEditor itself.
See:
	wxGridCellBoolEditor

	wxGridCellChoiceEditor

	wxGridCellFloatEditor

	wxGridCellNumberEditor

	wxGridCellTextEditor

wxWidgets docs: wxGridCellEditor

 Summary

 Types

 wxGridCellEditor()

 Functions

 create(This, Parent, Id, EvtHandler)

 Creates the actual edit control.

 handleReturn(This, Event)

 Some types of controls on some platforms may need some help with the Return key.

 isCreated(This)

 Returns true if the edit control has been created.

 reset(This)

 Reset the value in the control back to its starting value.

 setSize(This, Rect)

 Size and position the edit control.

 show(This, Show)

 Equivalent to show(This, Show, []).

 show/3

 Show or hide the edit control, use the specified attributes to set colours/fonts for it.

 startingClick(This)

 If the editor is enabled by clicking on the cell, this method will be called.

 startingKey(This, Event)

 If the editor is enabled by pressing keys on the grid, this will be called to let the
editor do something about that first key if desired.

 Types

 wxGridCellEditor()

 -type wxGridCellEditor() :: wx:wx_object().

 Functions

 create(This, Parent, Id, EvtHandler)

 -spec create(This, Parent, Id, EvtHandler) -> ok
 when
 This :: wxGridCellEditor(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 EvtHandler :: wxEvtHandler:wxEvtHandler().

Creates the actual edit control.

 handleReturn(This, Event)

 -spec handleReturn(This, Event) -> ok when This :: wxGridCellEditor(), Event :: wxKeyEvent:wxKeyEvent().

Some types of controls on some platforms may need some help with the Return key.

 isCreated(This)

 -spec isCreated(This) -> boolean() when This :: wxGridCellEditor().

Returns true if the edit control has been created.

 reset(This)

 -spec reset(This) -> ok when This :: wxGridCellEditor().

Reset the value in the control back to its starting value.

 setSize(This, Rect)

 -spec setSize(This, Rect) -> ok
 when
 This :: wxGridCellEditor(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}.

Size and position the edit control.

 show(This, Show)

 -spec show(This, Show) -> ok when This :: wxGridCellEditor(), Show :: boolean().

Equivalent to show(This, Show, []).

 show/3

 -spec show(This, Show, [Option]) -> ok
 when
 This :: wxGridCellEditor(),
 Show :: boolean(),
 Option :: {attr, wxGridCellAttr:wxGridCellAttr()}.

Show or hide the edit control, use the specified attributes to set colours/fonts for it.

 startingClick(This)

 -spec startingClick(This) -> ok when This :: wxGridCellEditor().

If the editor is enabled by clicking on the cell, this method will be called.

 startingKey(This, Event)

 -spec startingKey(This, Event) -> ok when This :: wxGridCellEditor(), Event :: wxKeyEvent:wxKeyEvent().

If the editor is enabled by pressing keys on the grid, this will be called to let the
editor do something about that first key if desired.

wxGridCellFloatEditor

The editor for floating point numbers data.
See:
	wxGridCellEditor

	wxGridCellBoolEditor

	wxGridCellChoiceEditor

	wxGridCellNumberEditor

	wxGridCellTextEditor

This class is derived, and can use functions, from:
	wxGridCellEditor

wxWidgets docs: wxGridCellFloatEditor

 Summary

 Types

 wxGridCellFloatEditor()

 Functions

 destroy(This)

 Destroys the object

 new()

 Equivalent to new([]).

 new(Options)

 Float cell editor ctor.

 setParameters(This, Params)

 The parameters string format is "width[,precision[,format]]" where format should be
chosen between f|e|g|E|G (f is used by default)

 Types

 wxGridCellFloatEditor()

 -type wxGridCellFloatEditor() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxGridCellFloatEditor()) -> ok.

Destroys the object

 new()

 -spec new() -> wxGridCellFloatEditor().

Equivalent to new([]).

 new(Options)

 -spec new([Option]) -> wxGridCellFloatEditor()
 when Option :: {width, integer()} | {precision, integer()} | {format, integer()}.

Float cell editor ctor.

 setParameters(This, Params)

 -spec setParameters(This, Params) -> ok
 when This :: wxGridCellFloatEditor(), Params :: unicode:chardata().

The parameters string format is "width[,precision[,format]]" where format should be
chosen between f|e|g|E|G (f is used by default)

wxGridCellFloatRenderer

This class may be used to format floating point data in a cell.
See:
	wxGridCellRenderer

	wxGridCellBoolRenderer

	wxGridCellNumberRenderer

	wxGridCellStringRenderer

This class is derived, and can use functions, from:
	wxGridCellStringRenderer

	wxGridCellRenderer

wxWidgets docs: wxGridCellFloatRenderer

 Summary

 Types

 wxGridCellFloatRenderer()

 Functions

 destroy(This)

 Destroys the object

 getPrecision(This)

 Returns the precision.

 getWidth(This)

 Returns the width.

 new()

 Equivalent to new([]).

 new(Options)

 Float cell renderer ctor.

 setParameters(This, Params)

 The parameters string format is "width[,precision[,format]]" where format should be
chosen between f|e|g|E|G (f is used by default)

 setPrecision(This, Precision)

 Sets the precision.

 setWidth(This, Width)

 Sets the width.

 Types

 wxGridCellFloatRenderer()

 -type wxGridCellFloatRenderer() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxGridCellFloatRenderer()) -> ok.

Destroys the object

 getPrecision(This)

 -spec getPrecision(This) -> integer() when This :: wxGridCellFloatRenderer().

Returns the precision.

 getWidth(This)

 -spec getWidth(This) -> integer() when This :: wxGridCellFloatRenderer().

Returns the width.

 new()

 -spec new() -> wxGridCellFloatRenderer().

Equivalent to new([]).

 new(Options)

 -spec new([Option]) -> wxGridCellFloatRenderer()
 when Option :: {width, integer()} | {precision, integer()} | {format, integer()}.

Float cell renderer ctor.

 setParameters(This, Params)

 -spec setParameters(This, Params) -> ok
 when This :: wxGridCellFloatRenderer(), Params :: unicode:chardata().

The parameters string format is "width[,precision[,format]]" where format should be
chosen between f|e|g|E|G (f is used by default)

 setPrecision(This, Precision)

 -spec setPrecision(This, Precision) -> ok when This :: wxGridCellFloatRenderer(), Precision :: integer().

Sets the precision.

 setWidth(This, Width)

 -spec setWidth(This, Width) -> ok when This :: wxGridCellFloatRenderer(), Width :: integer().

Sets the width.

wxGridCellNumberEditor

Grid cell editor for numeric integer data.
See:
	wxGridCellEditor

	wxGridCellBoolEditor

	wxGridCellChoiceEditor

	wxGridCellFloatEditor

	wxGridCellTextEditor

This class is derived, and can use functions, from:
	wxGridCellTextEditor

	wxGridCellEditor

wxWidgets docs: wxGridCellNumberEditor

 Summary

 Types

 wxGridCellNumberEditor()

 Functions

 destroy(This)

 Destroys the object

 getValue(This)

 Returns the value currently in the editor control.

 new()

 Equivalent to new([]).

 new(Options)

 Allows you to specify the range for acceptable data.

 setParameters(This, Params)

 Parameters string format is "min,max".

 Types

 wxGridCellNumberEditor()

 -type wxGridCellNumberEditor() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxGridCellNumberEditor()) -> ok.

Destroys the object

 getValue(This)

 -spec getValue(This) -> unicode:charlist() when This :: wxGridCellNumberEditor().

Returns the value currently in the editor control.

 new()

 -spec new() -> wxGridCellNumberEditor().

Equivalent to new([]).

 new(Options)

 -spec new([Option]) -> wxGridCellNumberEditor() when Option :: {min, integer()} | {max, integer()}.

Allows you to specify the range for acceptable data.
Values equal to -1 for both min and max indicate that no range checking should be
done.

 setParameters(This, Params)

 -spec setParameters(This, Params) -> ok
 when This :: wxGridCellNumberEditor(), Params :: unicode:chardata().

Parameters string format is "min,max".

wxGridCellNumberRenderer

This class may be used to format integer data in a cell.
See:
	wxGridCellRenderer

	wxGridCellBoolRenderer

	wxGridCellFloatRenderer

	wxGridCellStringRenderer

This class is derived, and can use functions, from:
	wxGridCellStringRenderer

	wxGridCellRenderer

wxWidgets docs: wxGridCellNumberRenderer

 Summary

 Types

 wxGridCellNumberRenderer()

 Functions

 destroy(This)

 Destroys the object

 new()

 Default constructor.

 Types

 wxGridCellNumberRenderer()

 -type wxGridCellNumberRenderer() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxGridCellNumberRenderer()) -> ok.

Destroys the object

 new()

 -spec new() -> wxGridCellNumberRenderer().

Default constructor.

wxGridCellRenderer

This class is responsible for actually drawing the cell in the grid.
You may pass it to the wxGridCellAttr (below) to change the format of one given cell
or to wxGrid:setDefaultRenderer/2 to change the view of all cells. This is an abstract class, and you will normally
use one of the predefined derived classes or derive your own class from it.
See:
	wxGridCellBoolRenderer

	wxGridCellFloatRenderer

	wxGridCellNumberRenderer

	wxGridCellStringRenderer

wxWidgets docs: wxGridCellRenderer

 Summary

 Types

 wxGridCellRenderer()

 Functions

 draw(This, Grid, Attr, Dc, Rect, Row, Col, IsSelected)

 Draw the given cell on the provided DC inside the given rectangle using the style
specified by the attribute and the default or selected state corresponding to the
isSelected value.

 getBestSize(This, Grid, Attr, Dc, Row, Col)

 Get the preferred size of the cell for its contents.

 Types

 wxGridCellRenderer()

 -type wxGridCellRenderer() :: wx:wx_object().

 Functions

 draw(This, Grid, Attr, Dc, Rect, Row, Col, IsSelected)

 -spec draw(This, Grid, Attr, Dc, Rect, Row, Col, IsSelected) -> ok
 when
 This :: wxGridCellRenderer(),
 Grid :: wxGrid:wxGrid(),
 Attr :: wxGridCellAttr:wxGridCellAttr(),
 Dc :: wxDC:wxDC(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()},
 Row :: integer(),
 Col :: integer(),
 IsSelected :: boolean().

Draw the given cell on the provided DC inside the given rectangle using the style
specified by the attribute and the default or selected state corresponding to the
isSelected value.
This pure virtual function has a default implementation which will prepare the DC using
the given attribute: it will draw the rectangle with the background colour from attr and
set the text colour and font.

 getBestSize(This, Grid, Attr, Dc, Row, Col)

 -spec getBestSize(This, Grid, Attr, Dc, Row, Col) -> {W :: integer(), H :: integer()}
 when
 This :: wxGridCellRenderer(),
 Grid :: wxGrid:wxGrid(),
 Attr :: wxGridCellAttr:wxGridCellAttr(),
 Dc :: wxDC:wxDC(),
 Row :: integer(),
 Col :: integer().

Get the preferred size of the cell for its contents.
This method must be overridden in the derived classes to return the minimal fitting size
for displaying the content of the given grid cell.

wxGridCellStringRenderer

This class may be used to format string data in a cell; it is the default for string
cells.
See:
	wxGridCellRenderer

	wxGridCellBoolRenderer

	wxGridCellFloatRenderer

	wxGridCellNumberRenderer

This class is derived, and can use functions, from:
	wxGridCellRenderer

wxWidgets docs: wxGridCellStringRenderer

 Summary

 Types

 wxGridCellStringRenderer()

 Functions

 destroy(This)

 Destroys the object

 new()

 Types

 wxGridCellStringRenderer()

 -type wxGridCellStringRenderer() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxGridCellStringRenderer()) -> ok.

Destroys the object

 new()

 -spec new() -> wxGridCellStringRenderer().

wxGridCellTextEditor

Grid cell editor for string/text data.
See:
	wxGridCellEditor

	wxGridCellBoolEditor

	wxGridCellChoiceEditor

	wxGridCellFloatEditor

	wxGridCellNumberEditor

This class is derived, and can use functions, from:
	wxGridCellEditor

wxWidgets docs: wxGridCellTextEditor

 Summary

 Types

 wxGridCellTextEditor()

 Functions

 destroy(This)

 Destroys the object

 new()

 Equivalent to new([]).

 new(Options)

 Text cell editor constructor.

 setParameters(This, Params)

 The parameters string format is "n" where n is a number representing the maximum width.

 Types

 wxGridCellTextEditor()

 -type wxGridCellTextEditor() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxGridCellTextEditor()) -> ok.

Destroys the object

 new()

 -spec new() -> wxGridCellTextEditor().

Equivalent to new([]).

 new(Options)

 -spec new([Option]) -> wxGridCellTextEditor() when Option :: {maxChars, integer()}.

Text cell editor constructor.

 setParameters(This, Params)

 -spec setParameters(This, Params) -> ok
 when This :: wxGridCellTextEditor(), Params :: unicode:chardata().

The parameters string format is "n" where n is a number representing the maximum width.

wxGridEvent

This event class contains information about various grid events.
Notice that all grid event table macros are available in two versions: EVT_GRID_XXX and EVT_GRID_CMD_XXX.
The only difference between the two is that the former doesn't allow to specify the grid
window identifier and so takes a single parameter, the event handler, but is not suitable
if there is more than one grid control in the window where the event table is used (as it
would catch the events from all the grids). The version with CMD takes the id as first
argument and the event handler as the second one and so can be used with multiple grids as
well. Otherwise there are no difference between the two and only the versions without the
id are documented below for brevity.
This class is derived, and can use functions, from:
	wxNotifyEvent

	wxCommandEvent

	wxEvent

wxWidgets docs: wxGridEvent
Events
Use wxEvtHandler:connect/3 with wxGridEventType to subscribe to events of this type.

 Summary

 Types

 wxGrid()

 wxGridEvent()

 wxGridEventType()

 Functions

 altDown(This)

 Returns true if the Alt key was down at the time of the event.

 controlDown(This)

 Returns true if the Control key was down at the time of the event.

 getCol(This)

 Column at which the event occurred.

 getPosition(This)

 Position in pixels at which the event occurred.

 getRow(This)

 Row at which the event occurred.

 metaDown(This)

 Returns true if the Meta key was down at the time of the event.

 selecting(This)

 Returns true if the user is selecting grid cells, or false if deselecting.

 shiftDown(This)

 Returns true if the Shift key was down at the time of the event.

 Types

 wxGrid()

 -type wxGrid() ::
 #wxGrid{type :: wxGridEvent:wxGridEventType(),
 row :: integer(),
 col :: integer(),
 pos :: {X :: integer(), Y :: integer()},
 selecting :: boolean(),
 control :: boolean(),
 meta :: boolean(),
 shift :: boolean(),
 alt :: boolean()}.

 wxGridEvent()

 -type wxGridEvent() :: wx:wx_object().

 wxGridEventType()

 -type wxGridEventType() ::
 grid_cell_left_click | grid_cell_right_click | grid_cell_left_dclick |
 grid_cell_right_dclick | grid_label_left_click | grid_label_right_click |
 grid_label_left_dclick | grid_label_right_dclick | grid_cell_changed | grid_select_cell |
 grid_cell_begin_drag | grid_editor_shown | grid_editor_hidden | grid_col_move |
 grid_col_sort | grid_tabbing.

 Functions

 altDown(This)

 -spec altDown(This) -> boolean() when This :: wxGridEvent().

Returns true if the Alt key was down at the time of the event.

 controlDown(This)

 -spec controlDown(This) -> boolean() when This :: wxGridEvent().

Returns true if the Control key was down at the time of the event.

 getCol(This)

 -spec getCol(This) -> integer() when This :: wxGridEvent().

Column at which the event occurred.
Notice that for a wxEVT_GRID_SELECT_CELL event this column is the column of the newly
selected cell while the previously selected cell can be retrieved using wxGrid:getGridCursorCol/1.

 getPosition(This)

 -spec getPosition(This) -> {X :: integer(), Y :: integer()} when This :: wxGridEvent().

Position in pixels at which the event occurred.

 getRow(This)

 -spec getRow(This) -> integer() when This :: wxGridEvent().

Row at which the event occurred.
Notice that for a wxEVT_GRID_SELECT_CELL event this row is the row of the newly
selected cell while the previously selected cell can be retrieved using wxGrid:getGridCursorRow/1.

 metaDown(This)

 -spec metaDown(This) -> boolean() when This :: wxGridEvent().

Returns true if the Meta key was down at the time of the event.

 selecting(This)

 -spec selecting(This) -> boolean() when This :: wxGridEvent().

Returns true if the user is selecting grid cells, or false if deselecting.

 shiftDown(This)

 -spec shiftDown(This) -> boolean() when This :: wxGridEvent().

Returns true if the Shift key was down at the time of the event.

wxGridSizer

A grid sizer is a sizer which lays out its children in a two-dimensional table with all
table fields having the same size, i.e.
the width of each field is the width of the widest child, the height of each field is the
height of the tallest child.
See:
	wxSizer

	Overview sizer

This class is derived, and can use functions, from:
	wxSizer

wxWidgets docs: wxGridSizer

 Summary

 Types

 wxGridSizer()

 Functions

 destroy(This)

 Destroys the object

 getCols(This)

 Returns the number of columns that has been specified for the sizer.

 getHGap(This)

 Returns the horizontal gap (in pixels) between cells in the sizer.

 getRows(This)

 Returns the number of rows that has been specified for the sizer.

 getVGap(This)

 Returns the vertical gap (in pixels) between the cells in the sizer.

 new(Cols)

 Equivalent to new(Cols, []).

 new(Cols, Options)

 new/3

 new(Rows, Cols, Vgap, Hgap)

 setCols(This, Cols)

 Sets the number of columns in the sizer.

 setHGap(This, Gap)

 Sets the horizontal gap (in pixels) between cells in the sizer.

 setRows(This, Rows)

 Sets the number of rows in the sizer.

 setVGap(This, Gap)

 Sets the vertical gap (in pixels) between the cells in the sizer.

 Types

 wxGridSizer()

 -type wxGridSizer() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxGridSizer()) -> ok.

Destroys the object

 getCols(This)

 -spec getCols(This) -> integer() when This :: wxGridSizer().

Returns the number of columns that has been specified for the sizer.
Returns zero if the sizer is automatically adjusting the number of columns depending on
number of its children. To get the effective number of columns or rows being currently
used, see GetEffectiveColsCount() (not implemented in wx)

 getHGap(This)

 -spec getHGap(This) -> integer() when This :: wxGridSizer().

Returns the horizontal gap (in pixels) between cells in the sizer.

 getRows(This)

 -spec getRows(This) -> integer() when This :: wxGridSizer().

Returns the number of rows that has been specified for the sizer.
Returns zero if the sizer is automatically adjusting the number of rows depending on
number of its children. To get the effective number of columns or rows being currently
used, see GetEffectiveRowsCount() (not implemented in wx).

 getVGap(This)

 -spec getVGap(This) -> integer() when This :: wxGridSizer().

Returns the vertical gap (in pixels) between the cells in the sizer.

 new(Cols)

 -spec new(Cols) -> wxGridSizer() when Cols :: integer().

Equivalent to new(Cols, []).

 new(Cols, Options)

 -spec new(Cols, [Option]) -> wxGridSizer()
 when Cols :: integer(), Option :: {gap, {W :: integer(), H :: integer()}}.

 new/3

 -spec new(Cols, Vgap, Hgap) -> wxGridSizer()
 when Cols :: integer(), Vgap :: integer(), Hgap :: integer();
 (Rows, Cols, Gap) -> wxGridSizer()
 when Rows :: integer(), Cols :: integer(), Gap :: {W :: integer(), H :: integer()}.

 new(Rows, Cols, Vgap, Hgap)

 -spec new(Rows, Cols, Vgap, Hgap) -> wxGridSizer()
 when Rows :: integer(), Cols :: integer(), Vgap :: integer(), Hgap :: integer().

 setCols(This, Cols)

 -spec setCols(This, Cols) -> ok when This :: wxGridSizer(), Cols :: integer().

Sets the number of columns in the sizer.

 setHGap(This, Gap)

 -spec setHGap(This, Gap) -> ok when This :: wxGridSizer(), Gap :: integer().

Sets the horizontal gap (in pixels) between cells in the sizer.

 setRows(This, Rows)

 -spec setRows(This, Rows) -> ok when This :: wxGridSizer(), Rows :: integer().

Sets the number of rows in the sizer.

 setVGap(This, Gap)

 -spec setVGap(This, Gap) -> ok when This :: wxGridSizer(), Gap :: integer().

Sets the vertical gap (in pixels) between the cells in the sizer.

wxHelpEvent

A help event is sent when the user has requested context-sensitive help.
This can either be caused by the application requesting context-sensitive help mode via wxContextHelp
(not implemented in wx), or (on MS Windows) by the system generating a WM_HELP message
when the user pressed F1 or clicked on the query button in a dialog caption.
A help event is sent to the window that the user clicked on, and is propagated up the
window hierarchy until the event is processed or there are no more event handlers.
The application should call wxEvent:getId/1 to check the identity of the clicked-on window, and then
either show some suitable help or call wxEvent:skip/2 if the identifier is unrecognised.
Calling Skip is important because it allows wxWidgets to generate further events for
ancestors of the clicked-on window. Otherwise it would be impossible to show help for
container windows, since processing would stop after the first window found.
See:
	wxDialog

	Overview events

This class is derived, and can use functions, from:
	wxEvent

wxWidgets docs: wxHelpEvent
Events
Use wxEvtHandler:connect/3 with wxHelpEventType to subscribe to events of this type.

 Summary

 Types

 wxHelp()

 wxHelpEvent()

 wxHelpEventType()

 Functions

 getOrigin(This)

 Returns the origin of the help event which is one of the wxHelpEvent::Origin (not
implemented in wx) values.

 getPosition(This)

 Returns the left-click position of the mouse, in screen coordinates.

 setOrigin(This, Origin)

 Set the help event origin, only used internally by wxWidgets normally.

 setPosition(This, Pt)

 Sets the left-click position of the mouse, in screen coordinates.

 Types

 wxHelp()

 -type wxHelp() :: #wxHelp{type :: wxHelpEvent:wxHelpEventType()}.

 wxHelpEvent()

 -type wxHelpEvent() :: wx:wx_object().

 wxHelpEventType()

 -type wxHelpEventType() :: help | detailed_help.

 Functions

 getOrigin(This)

 -spec getOrigin(This) -> wx:wx_enum() when This :: wxHelpEvent().

Returns the origin of the help event which is one of the wxHelpEvent::Origin (not
implemented in wx) values.
The application may handle events generated using the keyboard or mouse differently, e.g.
by using wx_misc:getMousePosition/0 for the mouse events.
See: setOrigin/2

 getPosition(This)

 -spec getPosition(This) -> {X :: integer(), Y :: integer()} when This :: wxHelpEvent().

Returns the left-click position of the mouse, in screen coordinates.
This allows the application to position the help appropriately.

 setOrigin(This, Origin)

 -spec setOrigin(This, Origin) -> ok when This :: wxHelpEvent(), Origin :: wx:wx_enum().

Set the help event origin, only used internally by wxWidgets normally.
See: getOrigin/1

 setPosition(This, Pt)

 -spec setPosition(This, Pt) -> ok when This :: wxHelpEvent(), Pt :: {X :: integer(), Y :: integer()}.

Sets the left-click position of the mouse, in screen coordinates.

wxHtmlEasyPrinting

This class provides very simple interface to printing architecture.
It allows you to print HTML documents using only a few commands.
Note: Do not create this class on the stack only. You should create an instance on app
startup and use this instance for all printing operations. The reason is that this class
stores various settings in it.
wxWidgets docs: wxHtmlEasyPrinting

 Summary

 Types

 wxHtmlEasyPrinting()

 Functions

 destroy(This)

 Destroys the object

 getPageSetupData(This)

 Returns a pointer to wxPageSetupDialogData instance used by this class.

 getPrintData(This)

 Returns pointer to wxPrintData instance used by this class.

 new()

 Equivalent to new([]).

 new(Options)

 Constructor.

 pageSetup(This)

 Display page setup dialog and allows the user to modify settings.

 previewFile(This, Htmlfile)

 Preview HTML file.

 previewText(This, Htmltext)

 Equivalent to previewText(This, Htmltext, []).

 previewText/3

 Preview HTML text (not file!).

 printFile(This, Htmlfile)

 Print HTML file.

 printText(This, Htmltext)

 Equivalent to printText(This, Htmltext, []).

 printText/3

 Print HTML text (not file!).

 setFonts(This, Normal_face, Fixed_face)

 Equivalent to setFonts(This, Normal_face, Fixed_face, []).

 setFonts/4

 Sets fonts.

 setFooter(This, Footer)

 Equivalent to setFooter(This, Footer, []).

 setFooter/3

 Set page footer.

 setHeader(This, Header)

 Equivalent to setHeader(This, Header, []).

 setHeader/3

 Set page header.

 Types

 wxHtmlEasyPrinting()

 -type wxHtmlEasyPrinting() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxHtmlEasyPrinting()) -> ok.

Destroys the object

 getPageSetupData(This)

 -spec getPageSetupData(This) -> wxPageSetupDialogData:wxPageSetupDialogData()
 when This :: wxHtmlEasyPrinting().

Returns a pointer to wxPageSetupDialogData instance used by this class.
You can set its parameters (via SetXXXX methods).

 getPrintData(This)

 -spec getPrintData(This) -> wxPrintData:wxPrintData() when This :: wxHtmlEasyPrinting().

Returns pointer to wxPrintData instance used by this class.
You can set its parameters (via SetXXXX methods).

 new()

 -spec new() -> wxHtmlEasyPrinting().

Equivalent to new([]).

 new(Options)

 -spec new([Option]) -> wxHtmlEasyPrinting()
 when Option :: {name, unicode:chardata()} | {parentWindow, wxWindow:wxWindow()}.

Constructor.

 pageSetup(This)

 -spec pageSetup(This) -> ok when This :: wxHtmlEasyPrinting().

Display page setup dialog and allows the user to modify settings.

 previewFile(This, Htmlfile)

 -spec previewFile(This, Htmlfile) -> boolean()
 when This :: wxHtmlEasyPrinting(), Htmlfile :: unicode:chardata().

Preview HTML file.
Returns false in case of error - call wxPrinter:getLastError/0 to get detailed information about the kind of the
error.

 previewText(This, Htmltext)

 -spec previewText(This, Htmltext) -> boolean()
 when This :: wxHtmlEasyPrinting(), Htmltext :: unicode:chardata().

Equivalent to previewText(This, Htmltext, []).

 previewText/3

 -spec previewText(This, Htmltext, [Option]) -> boolean()
 when
 This :: wxHtmlEasyPrinting(),
 Htmltext :: unicode:chardata(),
 Option :: {basepath, unicode:chardata()}.

Preview HTML text (not file!).
Returns false in case of error - call wxPrinter:getLastError/0 to get detailed information about the kind of the error.

 printFile(This, Htmlfile)

 -spec printFile(This, Htmlfile) -> boolean()
 when This :: wxHtmlEasyPrinting(), Htmlfile :: unicode:chardata().

Print HTML file.
Returns false in case of error - call wxPrinter:getLastError/0 to get detailed information about the kind of the
error.

 printText(This, Htmltext)

 -spec printText(This, Htmltext) -> boolean()
 when This :: wxHtmlEasyPrinting(), Htmltext :: unicode:chardata().

Equivalent to printText(This, Htmltext, []).

 printText/3

 -spec printText(This, Htmltext, [Option]) -> boolean()
 when
 This :: wxHtmlEasyPrinting(),
 Htmltext :: unicode:chardata(),
 Option :: {basepath, unicode:chardata()}.

Print HTML text (not file!).
Returns false in case of error - call wxPrinter:getLastError/0 to get detailed information about the kind of the error.

 setFonts(This, Normal_face, Fixed_face)

 -spec setFonts(This, Normal_face, Fixed_face) -> ok
 when
 This :: wxHtmlEasyPrinting(),
 Normal_face :: unicode:chardata(),
 Fixed_face :: unicode:chardata().

Equivalent to setFonts(This, Normal_face, Fixed_face, []).

 setFonts/4

 -spec setFonts(This, Normal_face, Fixed_face, [Option]) -> ok
 when
 This :: wxHtmlEasyPrinting(),
 Normal_face :: unicode:chardata(),
 Fixed_face :: unicode:chardata(),
 Option :: {sizes, [integer()]}.

Sets fonts.
See wxHtmlDCRenderer::SetFonts (not implemented in wx) for detailed description.

 setFooter(This, Footer)

 -spec setFooter(This, Footer) -> ok when This :: wxHtmlEasyPrinting(), Footer :: unicode:chardata().

Equivalent to setFooter(This, Footer, []).

 setFooter/3

 -spec setFooter(This, Footer, [Option]) -> ok
 when
 This :: wxHtmlEasyPrinting(),
 Footer :: unicode:chardata(),
 Option :: {pg, integer()}.

Set page footer.
The following macros can be used inside it: @DATE@ is replaced by the current date in
default format @PAGENUM@ is replaced by page number @PAGESCNT@ is replaced by total number
of pages @TIME@ is replaced by the current time in default format @TITLE@ is replaced with
the title of the document

 setHeader(This, Header)

 -spec setHeader(This, Header) -> ok when This :: wxHtmlEasyPrinting(), Header :: unicode:chardata().

Equivalent to setHeader(This, Header, []).

 setHeader/3

 -spec setHeader(This, Header, [Option]) -> ok
 when
 This :: wxHtmlEasyPrinting(),
 Header :: unicode:chardata(),
 Option :: {pg, integer()}.

Set page header.
The following macros can be used inside it:
	@DATE@ is replaced by the current date in default format

	@PAGENUM@ is replaced by page number

	@PAGESCNT@ is replaced by total number of pages

	@TIME@ is replaced by the current time in default format

	@TITLE@ is replaced with the title of the document

wxHtmlLinkEvent

This event class is used for the events generated by wxHtmlWindow.
This class is derived, and can use functions, from:
	wxCommandEvent

	wxEvent

wxWidgets docs: wxHtmlLinkEvent
Events
Use wxEvtHandler:connect/3 with wxHtmlLinkEventType to subscribe to events of this type.

 Summary

 Types

 wxHtmlLink()

 wxHtmlLinkEvent()

 wxHtmlLinkEventType()

 Functions

 getLinkInfo(This)

 Returns the wx_wxHtmlLinkInfo() which contains info about the cell clicked and the
hyperlink it contains.

 Types

 wxHtmlLink()

 -type wxHtmlLink() ::
 #wxHtmlLink{type :: wxHtmlLinkEvent:wxHtmlLinkEventType(), linkInfo :: wx:wx_wxHtmlLinkInfo()}.

 wxHtmlLinkEvent()

 -type wxHtmlLinkEvent() :: wx:wx_object().

 wxHtmlLinkEventType()

 -type wxHtmlLinkEventType() :: command_html_link_clicked | html_cell_clicked | html_cell_hover.

 Functions

 getLinkInfo(This)

 -spec getLinkInfo(This) -> wx:wx_wxHtmlLinkInfo() when This :: wxHtmlLinkEvent().

Returns the wx_wxHtmlLinkInfo() which contains info about the cell clicked and the
hyperlink it contains.

wxHtmlWindow

wxHtmlWindow is probably the only class you will directly use unless you want to do
something special (like adding new tag handlers or MIME filters).
The purpose of this class is to display rich content pages (either local file or
downloaded via HTTP protocol) in a window based on a subset of the HTML standard. The
width of the window is constant, given in the constructor and virtual height is changed
dynamically depending on page size. Once the window is created you can set its content by
calling setPage/2 with raw HTML, loadPage/2 with a wxFileSystem (not implemented in wx) location or loadFile/2 with a filename.
Note: If you want complete HTML/CSS support as well as a Javascript engine, consider
using wxWebView instead.
wxHtmlWindow uses the wxImage class for displaying images, so you need to
initialize the handlers for any image formats you use before loading a page. See
?wxInitAllImageHandlers and wxImage::AddHandler (not implemented in wx).
Styles
This class supports the following styles:
	wxHW_SCROLLBAR_NEVER: Never display scrollbars, not even when the page is larger than the
window.

	wxHW_SCROLLBAR_AUTO: Display scrollbars only if page's size exceeds window's size.

	wxHW_NO_SELECTION: Don't allow the user to select text.

See: wxHtmlLinkEvent
This class is derived, and can use functions, from:
	wxScrolledWindow

	wxPanel

	wxWindow

	wxEvtHandler

wxWidgets docs: wxHtmlWindow
Events
Event types emitted from this class:
	html_cell_clicked

	html_cell_hover

	command_html_link_clicked

 Summary

 Types

 wxHtmlWindow()

 Functions

 appendToPage(This, Source)

 Appends HTML fragment to currently displayed text and refreshes the window.

 destroy(This)

 Destroys the object

 getOpenedAnchor(This)

 Returns anchor within currently opened page (see getOpenedPage/1).

 getOpenedPage(This)

 Returns full location of the opened page.

 getOpenedPageTitle(This)

 Returns title of the opened page or wxEmptyString if the current page does not contain
<TITLE> tag.

 getRelatedFrame(This)

 Returns the related frame.

 historyBack(This)

 Moves back to the previous page.

 historyCanBack(This)

 Returns true if it is possible to go back in the history i.e.

 historyCanForward(This)

 Returns true if it is possible to go forward in the history i.e.

 historyClear(This)

 Clears history.

 historyForward(This)

 Moves to next page in history.

 loadFile(This, Filename)

 Loads an HTML page from a file and displays it.

 loadPage(This, Location)

 Unlike setPage/2 this function first loads the HTML page from location and then
displays it.

 new()

 Default ctor.

 new(Parent)

 Equivalent to new(Parent, []).

 new/2

 Constructor.

 selectAll(This)

 Selects all text in the window.

 selectionToText(This)

 Returns the current selection as plain text.

 selectLine(This, Pos)

 Selects the line of text that pos points at.

 selectWord(This, Pos)

 Selects the word at position pos.

 setBorders(This, B)

 This function sets the space between border of window and HTML contents.

 setFonts(This, Normal_face, Fixed_face)

 Equivalent to setFonts(This, Normal_face, Fixed_face, []).

 setFonts/4

 This function sets font sizes and faces.

 setPage(This, Source)

 Sets the source of a page and displays it, for example

 setRelatedFrame(This, Frame, Format)

 Sets the frame in which page title will be displayed.

 setRelatedStatusBar/2

 After calling setRelatedFrame/3, this sets statusbar slot where messages will be
displayed.

 setRelatedStatusBar/3

 Sets the associated statusbar where messages will be displayed.

 toText(This)

 Returns content of currently displayed page as plain text.

 Types

 wxHtmlWindow()

 -type wxHtmlWindow() :: wx:wx_object().

 Functions

 appendToPage(This, Source)

 -spec appendToPage(This, Source) -> boolean() when This :: wxHtmlWindow(), Source :: unicode:chardata().

Appends HTML fragment to currently displayed text and refreshes the window.
Return: false if an error occurred, true otherwise.

 destroy(This)

 -spec destroy(This :: wxHtmlWindow()) -> ok.

Destroys the object

 getOpenedAnchor(This)

 -spec getOpenedAnchor(This) -> unicode:charlist() when This :: wxHtmlWindow().

Returns anchor within currently opened page (see getOpenedPage/1).
If no page is opened or if the displayed page wasn't produced by call to loadPage/2, empty string
is returned.

 getOpenedPage(This)

 -spec getOpenedPage(This) -> unicode:charlist() when This :: wxHtmlWindow().

Returns full location of the opened page.
If no page is opened or if the displayed page wasn't produced by call to loadPage/2, empty string
is returned.

 getOpenedPageTitle(This)

 -spec getOpenedPageTitle(This) -> unicode:charlist() when This :: wxHtmlWindow().

Returns title of the opened page or wxEmptyString if the current page does not contain
<TITLE> tag.

 getRelatedFrame(This)

 -spec getRelatedFrame(This) -> wxFrame:wxFrame() when This :: wxHtmlWindow().

Returns the related frame.

 historyBack(This)

 -spec historyBack(This) -> boolean() when This :: wxHtmlWindow().

Moves back to the previous page.
Only pages displayed using loadPage/2 are stored in history list.

 historyCanBack(This)

 -spec historyCanBack(This) -> boolean() when This :: wxHtmlWindow().

Returns true if it is possible to go back in the history i.e.
historyBack/1 won't fail.

 historyCanForward(This)

 -spec historyCanForward(This) -> boolean() when This :: wxHtmlWindow().

Returns true if it is possible to go forward in the history i.e.
historyForward/1 won't fail.

 historyClear(This)

 -spec historyClear(This) -> ok when This :: wxHtmlWindow().

Clears history.

 historyForward(This)

 -spec historyForward(This) -> boolean() when This :: wxHtmlWindow().

Moves to next page in history.
Only pages displayed using loadPage/2 are stored in history list.

 loadFile(This, Filename)

 -spec loadFile(This, Filename) -> boolean() when This :: wxHtmlWindow(), Filename :: unicode:chardata().

Loads an HTML page from a file and displays it.
Return: false if an error occurred, true otherwise
See: loadPage/2

 loadPage(This, Location)

 -spec loadPage(This, Location) -> boolean() when This :: wxHtmlWindow(), Location :: unicode:chardata().

Unlike setPage/2 this function first loads the HTML page from location and then
displays it.
Return: false if an error occurred, true otherwise
See: loadFile/2

 new()

 -spec new() -> wxHtmlWindow().

Default ctor.

 new(Parent)

 -spec new(Parent) -> wxHtmlWindow() when Parent :: wxWindow:wxWindow().

Equivalent to new(Parent, []).

 new/2

 -spec new(Parent, [Option]) -> wxHtmlWindow()
 when
 Parent :: wxWindow:wxWindow(),
 Option ::
 {id, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Constructor.
The parameters are the same as wxScrolled::wxScrolled() (not implemented in wx)
constructor.

 selectAll(This)

 -spec selectAll(This) -> ok when This :: wxHtmlWindow().

Selects all text in the window.
See:
	selectLine/2

	selectWord/2

 selectionToText(This)

 -spec selectionToText(This) -> unicode:charlist() when This :: wxHtmlWindow().

Returns the current selection as plain text.
Returns an empty string if no text is currently selected.

 selectLine(This, Pos)

 -spec selectLine(This, Pos) -> ok when This :: wxHtmlWindow(), Pos :: {X :: integer(), Y :: integer()}.

Selects the line of text that pos points at.
Note that pos is relative to the top of displayed page, not to window's origin, use wxScrolledWindow:calcUnscrolledPosition/3 to
convert physical coordinate.
See:
	selectAll/1

	selectWord/2

 selectWord(This, Pos)

 -spec selectWord(This, Pos) -> ok when This :: wxHtmlWindow(), Pos :: {X :: integer(), Y :: integer()}.

Selects the word at position pos.
Note that pos is relative to the top of displayed page, not to window's origin, use wxScrolledWindow:calcUnscrolledPosition/3 to
convert physical coordinate.
See:
	selectAll/1

	selectLine/2

 setBorders(This, B)

 -spec setBorders(This, B) -> ok when This :: wxHtmlWindow(), B :: integer().

This function sets the space between border of window and HTML contents.
See image:

 setFonts(This, Normal_face, Fixed_face)

 -spec setFonts(This, Normal_face, Fixed_face) -> ok
 when
 This :: wxHtmlWindow(),
 Normal_face :: unicode:chardata(),
 Fixed_face :: unicode:chardata().

Equivalent to setFonts(This, Normal_face, Fixed_face, []).

 setFonts/4

 -spec setFonts(This, Normal_face, Fixed_face, [Option]) -> ok
 when
 This :: wxHtmlWindow(),
 Normal_face :: unicode:chardata(),
 Fixed_face :: unicode:chardata(),
 Option :: {sizes, [integer()]}.

This function sets font sizes and faces.
See wxHtmlDCRenderer::SetFonts (not implemented in wx) for detailed description.

 setPage(This, Source)

 -spec setPage(This, Source) -> boolean() when This :: wxHtmlWindow(), Source :: unicode:chardata().

Sets the source of a page and displays it, for example:
If you want to load a document from some location use loadPage/2 instead.
Return: false if an error occurred, true otherwise.

 setRelatedFrame(This, Frame, Format)

 -spec setRelatedFrame(This, Frame, Format) -> ok
 when
 This :: wxHtmlWindow(),
 Frame :: wxFrame:wxFrame(),
 Format :: unicode:chardata().

Sets the frame in which page title will be displayed.
format is the format of the frame title, e.g. "HtmlHelp : %s". It must contain exactly
one s. This s is substituted with HTML page title.

 setRelatedStatusBar/2

 -spec setRelatedStatusBar(This, Statusbar) -> ok
 when This :: wxHtmlWindow(), Statusbar :: wxStatusBar:wxStatusBar();
 (This, Index) -> ok when This :: wxHtmlWindow(), Index :: integer().

After calling setRelatedFrame/3, this sets statusbar slot where messages will be
displayed.
(Default is -1 = no messages.)

 setRelatedStatusBar/3

 -spec setRelatedStatusBar(This, Statusbar, [Option]) -> ok
 when
 This :: wxHtmlWindow(),
 Statusbar :: wxStatusBar:wxStatusBar(),
 Option :: {index, integer()}.

Sets the associated statusbar where messages will be displayed.
Call this instead of setRelatedFrame/3 if you want statusbar updates only, no changing of the frame title.
Since: 2.9.0

 toText(This)

 -spec toText(This) -> unicode:charlist() when This :: wxHtmlWindow().

Returns content of currently displayed page as plain text.

wxIcon

An icon is a small rectangular bitmap usually used for denoting a minimized application.
It differs from a wxBitmap in always having a mask associated with it for transparent
drawing. On some platforms, icons and bitmaps are implemented identically, since there is
no real distinction between a wxBitmap with a mask and an icon; and there is no
specific icon format on some platforms (X-based applications usually standardize on XPMs
for small bitmaps and icons). However, some platforms (such as Windows) make the
distinction, so a separate class is provided.
Remark: It is usually desirable to associate a pertinent icon with a frame. Icons can
also be used for other purposes, for example with wxTreeCtrl and wxListCtrl. Icons
have different formats on different platforms therefore separate icons will usually be
created for the different environments. Platform-specific methods for creating a wxIcon
structure are catered for, and this is an occasion where conditional compilation will
probably be required. Note that a new icon must be created for every time the icon is to
be used for a new window. In Windows, the icon will not be reloaded if it has already been
used. An icon allocated to a frame will be deleted when the frame is deleted. For more
information please see overview_bitmap.
Predefined objects (include wx.hrl): ?wxNullIcon
See:
	Overview bitmap

	Overview bitmap

	wxIconBundle

	wxDC:drawIcon/3

	wxCursor

This class is derived, and can use functions, from:
	wxBitmap

wxWidgets docs: wxIcon

 Summary

 Types

 wxIcon()

 Functions

 copyFromBitmap(This, Bmp)

 Copies bmp bitmap to this icon.

 destroy(This)

 Destroys the object

 new()

 Default ctor.

 new/1

 Copy ctor.

 new(Name, Options)

 Loads an icon from a file or resource.

 Types

 wxIcon()

 -type wxIcon() :: wx:wx_object().

 Functions

 copyFromBitmap(This, Bmp)

 -spec copyFromBitmap(This, Bmp) -> ok when This :: wxIcon(), Bmp :: wxBitmap:wxBitmap().

Copies bmp bitmap to this icon.
Under MS Windows the bitmap must have mask colour set.
See: wxBitmap:loadFile/3

 destroy(This)

 -spec destroy(This :: wxIcon()) -> ok.

Destroys the object

 new()

 -spec new() -> wxIcon().

Default ctor.
Constructs an icon object with no data; an assignment or another member function such as wxBitmap:loadFile/3
must be called subsequently.

 new/1

 -spec new(Name) -> wxIcon() when Name :: unicode:chardata();
 (Icon) -> wxIcon() when Icon :: wxIcon().

Copy ctor.

 new(Name, Options)

 -spec new(Name, [Option]) -> wxIcon()
 when
 Name :: unicode:chardata(),
 Option :: {type, wx:wx_enum()} | {desiredWidth, integer()} | {desiredHeight, integer()}.

Loads an icon from a file or resource.
See: wxBitmap:loadFile/3

wxIconBundle

This class contains multiple copies of an icon in different sizes.
It is typically used in wxDialog::SetIcons (not implemented in wx) and wxTopLevelWindow:setIcons/2.
Predefined objects (include wx.hrl): ?wxNullIconBundle
wxWidgets docs: wxIconBundle

 Summary

 Types

 wxIconBundle()

 Functions

 addIcon/2

 Adds the icon to the collection; if the collection already contains an icon with the same
width and height, it is replaced by the new one.

 addIcon(This, File, Type)

 destroy(This)

 Destroys the object

 getIcon(This)

 Equivalent to getIcon(This, []).

 getIcon/2

 Same as.

 getIcon/3

 Returns the icon with the given size.

 new()

 Default ctor.

 new/1

 Initializes the bundle with the icon(s) found in the file.

 new(File, Type)

 Types

 wxIconBundle()

 -type wxIconBundle() :: wx:wx_object().

 Functions

 addIcon/2

 -spec addIcon(This, File) -> ok when This :: wxIconBundle(), File :: unicode:chardata();
 (This, Icon) -> ok when This :: wxIconBundle(), Icon :: wxIcon:wxIcon().

Adds the icon to the collection; if the collection already contains an icon with the same
width and height, it is replaced by the new one.

 addIcon(This, File, Type)

 -spec addIcon(This, File, Type) -> ok
 when This :: wxIconBundle(), File :: unicode:chardata(), Type :: wx:wx_enum().

 destroy(This)

 -spec destroy(This :: wxIconBundle()) -> ok.

Destroys the object

 getIcon(This)

 -spec getIcon(This) -> wxIcon:wxIcon() when This :: wxIconBundle().

Equivalent to getIcon(This, []).

 getIcon/2

 -spec getIcon(This, Size) -> wxIcon:wxIcon()
 when This :: wxIconBundle(), Size :: {W :: integer(), H :: integer()};
 (This, [Option]) -> wxIcon:wxIcon()
 when This :: wxIconBundle(), Option :: {size, integer()} | {flags, integer()}.

Same as.
.

 getIcon/3

 -spec getIcon(This, Size, [Option]) -> wxIcon:wxIcon()
 when
 This :: wxIconBundle(),
 Size :: {W :: integer(), H :: integer()},
 Option :: {flags, integer()}.

Returns the icon with the given size.
If size is ?wxDefaultSize, it is interpreted as the standard system icon size, i.e. the
size returned by wxSystemSettings:getMetric/2 for wxSYS_ICON_X and wxSYS_ICON_Y.
If the bundle contains an icon with exactly the requested size, it's always returned.
Otherwise, the behaviour depends on the flags. If only wxIconBundle::FALLBACK_NONE (not
implemented in wx) is given, the function returns an invalid icon. If wxIconBundle::FALLBACK_SYSTEM
(not implemented in wx) is given, it tries to find the icon of standard system size,
regardless of the size passed as parameter. Otherwise, or if the icon system size is not
found neither, but wxIconBundle::FALLBACK_NEAREST_LARGER (not implemented in wx) flag is
specified, the function returns the smallest icon of the size larger than the requested
one or, if this fails too, just the icon closest to the specified size.
The flags parameter is available only since wxWidgets 2.9.4.

 new()

 -spec new() -> wxIconBundle().

Default ctor.

 new/1

 -spec new(Ic) -> wxIconBundle() when Ic :: wxIconBundle:wxIconBundle() | wxIcon:wxIcon();
 (File) -> wxIconBundle() when File :: unicode:chardata().

Initializes the bundle with the icon(s) found in the file.

 new(File, Type)

 -spec new(File, Type) -> wxIconBundle() when File :: unicode:chardata(), Type :: wx:wx_enum().

wxIconizeEvent

An event being sent when the frame is iconized (minimized) or restored.
See:
	Overview events

	wxTopLevelWindow:iconize/2

	wxTopLevelWindow:isIconized/1

This class is derived, and can use functions, from:
	wxEvent

wxWidgets docs: wxIconizeEvent
Events
Use wxEvtHandler:connect/3 with wxIconizeEventType to subscribe to events of this type.

 Summary

 Types

 wxIconize()

 wxIconizeEvent()

 wxIconizeEventType()

 Functions

 isIconized(This)

 Returns true if the frame has been iconized, false if it has been restored.

 Types

 wxIconize()

 -type wxIconize() :: #wxIconize{type :: wxIconizeEvent:wxIconizeEventType(), iconized :: boolean()}.

 wxIconizeEvent()

 -type wxIconizeEvent() :: wx:wx_object().

 wxIconizeEventType()

 -type wxIconizeEventType() :: iconize.

 Functions

 isIconized(This)

 -spec isIconized(This) -> boolean() when This :: wxIconizeEvent().

Returns true if the frame has been iconized, false if it has been restored.

wxIdleEvent

This class is used for idle events, which are generated when the system becomes idle.
Note that, unless you do something specifically, the idle events are not sent if the
system remains idle once it has become it, e.g. only a single idle event will be generated
until something else resulting in more normal events happens and only then is the next
idle event sent again.
If you need to ensure a continuous stream of idle events, you can either use requestMore/2 method in
your handler or call ?wxWakeUpIdle() periodically (for example from a timer event
handler), but note that both of these approaches (and especially the first one) increase
the system load and so should be avoided if possible.
By default, idle events are sent to all windows, including even the hidden ones because
they may be shown if some condition is met from their wxEVT_IDLE (or related wxEVT_UPDATE_UI)
handler. The children of hidden windows do not receive idle events however as they can't
change their state in any way noticeable by the user. Finally, the global wxApp (not
implemented in wx) object also receives these events, as usual, so it can be used for any
global idle time processing.
If sending idle events to all windows is causing a significant overhead in your
application, you can call setMode/1 with the value wxIDLE_PROCESS_SPECIFIED, and set the
wxWS_EX_PROCESS_IDLE extra window style for every window which should receive idle events,
all the other ones will not receive them in this case.
Delayed Action Mechanism
wxIdleEvent can be used to perform some action "at slightly later time". This can be
necessary in several circumstances when, for whatever reason, something can't be done in
the current event handler. For example, if a mouse event handler is called with the mouse
button pressed, the mouse can be currently captured and some operations with it - notably
capturing it again - might be impossible or lead to undesirable results. If you still want
to capture it, you can do it from wxEVT_IDLE handler when it is called the next time
instead of doing it immediately.
This can be achieved in two different ways: when using static event tables, you will need
a flag indicating to the (always connected) idle event handler whether the desired action
should be performed. The originally called handler would then set it to indicate that it
should indeed be done and the idle handler itself would reset it to prevent it from doing
the same action again.
Using dynamically connected event handlers things are even simpler as the original event
handler can simply wxEvtHandler::Connect() (not implemented in wx) or wxEvtHandler::Bind()
(not implemented in wx) the idle event handler which would only be executed then and
could wxEvtHandler::Disconnect() (not implemented in wx) or wxEvtHandler::Unbind()
(not implemented in wx) itself.
See:
	Overview events

	wxUpdateUIEvent

This class is derived, and can use functions, from:
	wxEvent

wxWidgets docs: wxIdleEvent
Events
Use wxEvtHandler:connect/3 with wxIdleEventType to subscribe to events of this type.

 Summary

 Types

 wxIdle()

 wxIdleEvent()

 wxIdleEventType()

 Functions

 getMode()

 Static function returning a value specifying how wxWidgets will send idle events: to all
windows, or only to those which specify that they will process the events.

 moreRequested(This)

 Returns true if the OnIdle function processing this event requested more processing time.

 requestMore(This)

 Equivalent to requestMore(This, []).

 requestMore/2

 Tells wxWidgets that more processing is required.

 setMode(Mode)

 Static function for specifying how wxWidgets will send idle events: to all windows, or
only to those which specify that they will process the events.

 Types

 wxIdle()

 -type wxIdle() :: #wxIdle{type :: wxIdleEvent:wxIdleEventType()}.

 wxIdleEvent()

 -type wxIdleEvent() :: wx:wx_object().

 wxIdleEventType()

 -type wxIdleEventType() :: idle.

 Functions

 getMode()

 -spec getMode() -> wx:wx_enum().

Static function returning a value specifying how wxWidgets will send idle events: to all
windows, or only to those which specify that they will process the events.
See: setMode/1

 moreRequested(This)

 -spec moreRequested(This) -> boolean() when This :: wxIdleEvent().

Returns true if the OnIdle function processing this event requested more processing time.
See: requestMore/2

 requestMore(This)

 -spec requestMore(This) -> ok when This :: wxIdleEvent().

Equivalent to requestMore(This, []).

 requestMore/2

 -spec requestMore(This, [Option]) -> ok when This :: wxIdleEvent(), Option :: {needMore, boolean()}.

Tells wxWidgets that more processing is required.
This function can be called by an OnIdle handler for a window or window event handler to
indicate that wxApp::OnIdle should forward the OnIdle event once more to the application windows.
If no window calls this function during OnIdle, then the application will remain in a
passive event loop (not calling OnIdle) until a new event is posted to the application by
the windowing system.
See: moreRequested/1

 setMode(Mode)

 -spec setMode(Mode) -> ok when Mode :: wx:wx_enum().

Static function for specifying how wxWidgets will send idle events: to all windows, or
only to those which specify that they will process the events.

wxImage

This class encapsulates a platform-independent image.
An image can be created from data, or using wxBitmap:convertToImage/1. An image can be loaded from a file in a
variety of formats, and is extensible to new formats via image format handlers. Functions
are available to set and get image bits, so it can be used for basic image manipulation.
A wxImage cannot (currently) be drawn directly to a wxDC. Instead, a
platform-specific wxBitmap object must be created from it using the
wxBitmap::wxBitmap(wxImage,int depth) constructor. This bitmap can then be drawn in a
device context, using wxDC:drawBitmap/4.
More on the difference between wxImage and wxBitmap: wxImage is just a buffer
of RGB bytes with an optional buffer for the alpha bytes. It is all generic, platform
independent and image file format independent code. It includes generic code for scaling,
resizing, clipping, and other manipulations of the image data. OTOH, wxBitmap is
intended to be a wrapper of whatever is the native image format that is quickest/easiest
to draw to a DC or to be the target of the drawing operations performed on a wxMemoryDC.
By splitting the responsibilities between wxImage/wxBitmap like this then it's easier to
use generic code shared by all platforms and image types for generic operations and
platform specific code where performance or compatibility is needed.
One colour value of the image may be used as a mask colour which will lead to the
automatic creation of a wxMask object associated to the bitmap object.
Alpha channel support
Starting from wxWidgets 2.5.0 wxImage supports alpha channel data, that is in
addition to a byte for the red, green and blue colour components for each pixel it also
stores a byte representing the pixel opacity.
An alpha value of 0 corresponds to a transparent pixel (null opacity) while a value of
255 means that the pixel is 100% opaque. The constants ?wxIMAGE_ALPHA_TRANSPARENT and
?wxIMAGE_ALPHA_OPAQUE can be used to indicate those values in a more readable form.
While all images have RGB data, not all images have an alpha channel. Before using getAlpha/3 you
should check if this image contains an alpha channel with hasAlpha/1. Currently the BMP, PNG, TGA,
and TIFF format handlers have full alpha channel support for loading so if you want to use
alpha you have to use one of these formats. If you initialize the image alpha channel
yourself using setAlpha/4, you should save it in either PNG, TGA, or TIFF format to avoid losing it
as these are the only handlers that currently support saving with alpha.
Available image handlers
The following image handlers are available. wxBMPHandler is always installed by default.
To use other image formats, install the appropriate handler with wxImage::AddHandler
(not implemented in wx) or call ?wxInitAllImageHandlers().
	wxBMPHandler: For loading (including alpha support) and saving, always installed.

	wxPNGHandler (not implemented in wx): For loading and saving. Includes alpha support.

	wxJPEGHandler (not implemented in wx): For loading and saving.

	wxGIFHandler (not implemented in wx): For loading and saving (see below).

	wxPCXHandler (not implemented in wx): For loading and saving (see below).

	wxPNMHandler (not implemented in wx): For loading and saving (see below).

	wxTIFFHandler (not implemented in wx): For loading and saving. Includes alpha support.

	wxTGAHandler (not implemented in wx): For loading and saving. Includes alpha support.

	wxIFFHandler (not implemented in wx): For loading only.

	wxXPMHandler (not implemented in wx): For loading and saving.

	wxICOHandler: For loading and saving.

	wxCURHandler: For loading and saving.

	wxANIHandler: For loading only.

When saving in PCX format, wxPCXHandler (not implemented in wx) will count the number
of different colours in the image; if there are 256 or less colours, it will save as 8
bit, else it will save as 24 bit.
Loading PNMs only works for ASCII or raw RGB images. When saving in PNM format, wxPNMHandler
(not implemented in wx) will always save as raw RGB.
Saving GIFs requires images of maximum 8 bpp (see wxQuantize (not implemented in wx)),
and the alpha channel converted to a mask (see convertAlphaToMask/5). Saving an animated GIF requires images of
the same size (see wxGIFHandler::SaveAnimation (not implemented in wx))
Predefined objects (include wx.hrl): ?wxNullImage
See:
	wxBitmap

	?wxInitAllImageHandlers()

wxWidgets docs: wxImage

 Summary

 Types

 wxImage()

 Functions

 blur(This, BlurRadius)

 Blurs the image in both horizontal and vertical directions by the specified pixel blurRadius.

 blurHorizontal(This, BlurRadius)

 Blurs the image in the horizontal direction only.

 blurVertical(This, BlurRadius)

 Blurs the image in the vertical direction only.

 convertAlphaToMask(This)

 Equivalent to convertAlphaToMask(This, []).

 convertAlphaToMask/2

 If the image has alpha channel, this method converts it to mask.

 convertAlphaToMask(This, Mr, Mg, Mb)

 Equivalent to convertAlphaToMask(This, Mr, Mg, Mb, []).

 convertAlphaToMask/5

 If the image has alpha channel, this method converts it to mask using the specified
colour as the mask colour.

 convertToGreyscale(This)

 Returns a greyscale version of the image.

 convertToGreyscale(This, Weight_r, Weight_g, Weight_b)

 Returns a greyscale version of the image.

 convertToMono(This, R, G, B)

 Returns monochromatic version of the image.

 copy(This)

 Returns an identical copy of this image.

 create(This, Sz)

 Equivalent to create(This, Sz, []).

 create/3

 This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 create/4

 This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 create(This, Width, Height, Data, Alpha)

 Creates a fresh image.

 'Destroy'(This)

 Destroys the image data.

 destroy(This)

 Destroys the object

 findFirstUnusedColour(This)

 Equivalent to findFirstUnusedColour(This, []).

 findFirstUnusedColour/2

 Finds the first colour that is never used in the image.

 getAlpha(This)

 Returns pointer to the array storing the alpha values for this image.

 getAlpha(This, X, Y)

 Return alpha value at given pixel location.

 getBlue(This, X, Y)

 Returns the blue intensity at the given coordinate.

 getData(This)

 Returns the image data as an array.

 getGreen(This, X, Y)

 Returns the green intensity at the given coordinate.

 getHeight(This)

 Gets the height of the image in pixels.

 getImageCount(Filename)

 Equivalent to getImageCount(Filename, []).

 getImageCount(Filename, Options)

 If the image file contains more than one image and the image handler is capable of
retrieving these individually, this function will return the number of available images.

 getImageExtWildcard()

 Iterates all registered wxImageHandler (not implemented in wx) objects, and returns a
string containing file extension masks suitable for passing to file open/save dialog
boxes.

 getMaskBlue(This)

 Gets the blue value of the mask colour.

 getMaskGreen(This)

 Gets the green value of the mask colour.

 getMaskRed(This)

 Gets the red value of the mask colour.

 getOption(This, Name)

 Gets a user-defined string-valued option.

 getOptionInt(This, Name)

 Gets a user-defined integer-valued option.

 getOrFindMaskColour(This)

 Get the current mask colour or find a suitable unused colour that could be used as a mask
colour.

 getPalette(This)

 Returns the palette associated with the image.

 getRed(This, X, Y)

 Returns the red intensity at the given coordinate.

 getSubImage(This, Rect)

 Returns a sub image of the current one as long as the rect belongs entirely to the image.

 getWidth(This)

 Gets the width of the image in pixels.

 hasAlpha(This)

 Returns true if this image has alpha channel, false otherwise.

 hasMask(This)

 Returns true if there is a mask active, false otherwise.

 hasOption(This, Name)

 Returns true if the given option is present.

 initAlpha(This)

 Initializes the image alpha channel data.

 initStandardHandlers()

 Internal use only.

 isOk(This)

 Returns true if image data is present.

 isTransparent(This, X, Y)

 Equivalent to isTransparent(This, X, Y, []).

 isTransparent/4

 Returns true if the given pixel is transparent, i.e. either has the mask colour if this
image has a mask or if this image has alpha channel and alpha value of this pixel is
strictly less than threshold.

 loadFile(This, Name)

 Equivalent to loadFile(This, Name, []).

 loadFile/3

 Loads an image from a file.

 loadFile/4

 Loads an image from a file.

 mirror(This)

 Equivalent to mirror(This, []).

 mirror/2

 Returns a mirrored copy of the image.

 new()

 Creates an empty wxImage object without an alpha channel.

 new/1

 Equivalent to: new/2

 new/2

 This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 new/3

 This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 new(Width, Height, Data, Alpha)

 Creates an image from data in memory.

 ok(This)

 Equivalent to: isOk/1

 removeHandler(Name)

 Finds the handler with the given name, and removes it.

 replace(This, R1, G1, B1, R2, G2, B2)

 Replaces the colour specified by r1,g1,b1 by the colour r2,g2,b2.

 rescale(This, Width, Height)

 Equivalent to rescale(This, Width, Height, []).

 rescale/4

 Changes the size of the image in-place by scaling it: after a call to this function,the
image will have the given width and height.

 resize(This, Size, Pos)

 Equivalent to resize(This, Size, Pos, []).

 resize/4

 Changes the size of the image in-place without scaling it by adding either a border with
the given colour or cropping as necessary.

 rotate90(This)

 Equivalent to rotate90(This, []).

 rotate90/2

 Returns a copy of the image rotated 90 degrees in the direction indicated by clockwise.

 rotate(This, Angle, RotationCentre)

 Equivalent to rotate(This, Angle, RotationCentre, []).

 rotate/4

 Rotates the image about the given point, by angle radians.

 rotateHue(This, Angle)

 Rotates the hue of each pixel in the image by angle, which is a double in the range of
-1.0 to +1.0, where -1.0 corresponds to -360 degrees and +1.0 corresponds to +360 degrees.

 saveFile(This, Name)

 Saves an image in the named file.

 saveFile/3

 Saves an image in the named file.

 scale(This, Width, Height)

 Equivalent to scale(This, Width, Height, []).

 scale/4

 Returns a scaled version of the image.

 setAlpha(This, Alpha)

 This function is similar to setData/4 and has similar restrictions.

 setAlpha(This, X, Y, Alpha)

 Sets the alpha value for the given pixel.

 setData(This, Data)

 Sets the image data without performing checks.

 setData(This, Data, New_width, New_height)

 This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 setMask(This)

 Equivalent to setMask(This, []).

 setMask/2

 Specifies whether there is a mask or not.

 setMaskColour(This, Red, Green, Blue)

 Sets the mask colour for this image (and tells the image to use the mask).

 setMaskFromImage(This, Mask, Mr, Mg, Mb)

 Sets image's mask so that the pixels that have RGB value of mr,mg,mb in mask will be
masked in the image.

 setOption/3

 Sets a user-defined option.

 setPalette(This, Palette)

 Associates a palette with the image.

 setRGB(This, Rect, Red, Green, Blue)

 Sets the colour of the pixels within the given rectangle.

 setRGB(This, X, Y, R, G, B)

 Set the color of the pixel at the given x and y coordinate.

 size(This, Size, Pos)

 Equivalent to size(This, Size, Pos, []).

 size/4

 Returns a resized version of this image without scaling it by adding either a border with
the given colour or cropping as necessary.

 Types

 wxImage()

 -type wxImage() :: wx:wx_object().

 Functions

 blur(This, BlurRadius)

 -spec blur(This, BlurRadius) -> wxImage() when This :: wxImage(), BlurRadius :: integer().

Blurs the image in both horizontal and vertical directions by the specified pixel blurRadius.
This should not be used when using a single mask colour for transparency.
See:
	blurHorizontal/2

	blurVertical/2

 blurHorizontal(This, BlurRadius)

 -spec blurHorizontal(This, BlurRadius) -> wxImage() when This :: wxImage(), BlurRadius :: integer().

Blurs the image in the horizontal direction only.
This should not be used when using a single mask colour for transparency.
See:
	blur/2

	blurVertical/2

 blurVertical(This, BlurRadius)

 -spec blurVertical(This, BlurRadius) -> wxImage() when This :: wxImage(), BlurRadius :: integer().

Blurs the image in the vertical direction only.
This should not be used when using a single mask colour for transparency.
See:
	blur/2

	blurHorizontal/2

 convertAlphaToMask(This)

 -spec convertAlphaToMask(This) -> boolean() when This :: wxImage().

Equivalent to convertAlphaToMask(This, []).

 convertAlphaToMask/2

 -spec convertAlphaToMask(This, [Option]) -> boolean()
 when This :: wxImage(), Option :: {threshold, integer()}.

If the image has alpha channel, this method converts it to mask.
If the image has an alpha channel, all pixels with alpha value less than threshold are
replaced with the mask colour and the alpha channel is removed. Otherwise nothing is done.
The mask colour is chosen automatically using findFirstUnusedColour/2, see the overload below if this is not appropriate.
Return: Returns true on success, false on error.

 convertAlphaToMask(This, Mr, Mg, Mb)

 -spec convertAlphaToMask(This, Mr, Mg, Mb) -> boolean()
 when This :: wxImage(), Mr :: integer(), Mg :: integer(), Mb :: integer().

Equivalent to convertAlphaToMask(This, Mr, Mg, Mb, []).

 convertAlphaToMask/5

 -spec convertAlphaToMask(This, Mr, Mg, Mb, [Option]) -> boolean()
 when
 This :: wxImage(),
 Mr :: integer(),
 Mg :: integer(),
 Mb :: integer(),
 Option :: {threshold, integer()}.

If the image has alpha channel, this method converts it to mask using the specified
colour as the mask colour.
If the image has an alpha channel, all pixels with alpha value less than threshold are
replaced with the mask colour and the alpha channel is removed. Otherwise nothing is done.
Since: 2.9.0
Return: Returns true on success, false on error.

 convertToGreyscale(This)

 -spec convertToGreyscale(This) -> wxImage() when This :: wxImage().

Returns a greyscale version of the image.
Since: 2.9.0

 convertToGreyscale(This, Weight_r, Weight_g, Weight_b)

 -spec convertToGreyscale(This, Weight_r, Weight_g, Weight_b) -> wxImage()
 when
 This :: wxImage(),
 Weight_r :: number(),
 Weight_g :: number(),
 Weight_b :: number().

Returns a greyscale version of the image.
The returned image uses the luminance component of the original to calculate the
greyscale. Defaults to using the standard ITU-T BT.601 when converting to YUV, where every
pixel equals (R weight_r) + (G weight_g) + (B * weight_b).

 convertToMono(This, R, G, B)

 -spec convertToMono(This, R, G, B) -> wxImage()
 when This :: wxImage(), R :: integer(), G :: integer(), B :: integer().

Returns monochromatic version of the image.
The returned image has white colour where the original has (r,g,b) colour and black
colour everywhere else.

 copy(This)

 -spec copy(This) -> wxImage() when This :: wxImage().

Returns an identical copy of this image.

 create(This, Sz)

 -spec create(This, Sz) -> boolean() when This :: wxImage(), Sz :: {W :: integer(), H :: integer()}.

Equivalent to create(This, Sz, []).

 create/3

 -spec create(This, Width, Height) -> boolean()
 when This :: wxImage(), Width :: integer(), Height :: integer();
 (This, Sz, Data) -> boolean()
 when This :: wxImage(), Sz :: {W :: integer(), H :: integer()}, Data :: binary();
 (This, Sz, [Option]) -> boolean()
 when
 This :: wxImage(),
 Sz :: {W :: integer(), H :: integer()},
 Option :: {clear, boolean()}.

This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 create/4

 -spec create(This, Width, Height, Data) -> boolean()
 when This :: wxImage(), Width :: integer(), Height :: integer(), Data :: binary();
 (This, Width, Height, [Option]) -> boolean()
 when
 This :: wxImage(),
 Width :: integer(),
 Height :: integer(),
 Option :: {clear, boolean()};
 (This, Sz, Data, Alpha) -> boolean()
 when
 This :: wxImage(),
 Sz :: {W :: integer(), H :: integer()},
 Data :: binary(),
 Alpha :: binary().

This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 create(This, Width, Height, Data, Alpha)

 -spec create(This, Width, Height, Data, Alpha) -> boolean()
 when
 This :: wxImage(),
 Width :: integer(),
 Height :: integer(),
 Data :: binary(),
 Alpha :: binary().

Creates a fresh image.
See new/4 for more info.
Return: true if the call succeeded, false otherwise.

 'Destroy'(This)

 -spec 'Destroy'(This) -> ok when This :: wxImage().

Destroys the image data.

 destroy(This)

 -spec destroy(This :: wxImage()) -> ok.

Destroys the object

 findFirstUnusedColour(This)

 -spec findFirstUnusedColour(This) -> Result
 when
 Result ::
 {Res :: boolean(),
 R :: integer(),
 G :: integer(),
 B :: integer()},
 This :: wxImage().

Equivalent to findFirstUnusedColour(This, []).

 findFirstUnusedColour/2

 -spec findFirstUnusedColour(This, [Option]) -> Result
 when
 Result ::
 {Res :: boolean(),
 R :: integer(),
 G :: integer(),
 B :: integer()},
 This :: wxImage(),
 Option ::
 {startR, integer()} | {startG, integer()} | {startB, integer()}.

Finds the first colour that is never used in the image.
The search begins at given initial colour and continues by increasing R, G and B
components (in this order) by 1 until an unused colour is found or the colour space exhausted.
The parameters r, g, b are pointers to variables to save the colour.
The parameters startR, startG, startB define the initial values of the colour. The
returned colour will have RGB values equal to or greater than these.
Return: Returns false if there is no unused colour left, true on success.
Note: This method involves computing the histogram, which is a computationally intensive
operation.

 getAlpha(This)

 -spec getAlpha(This) -> binary() when This :: wxImage().

Returns pointer to the array storing the alpha values for this image.
This pointer is NULL for the images without the alpha channel. If the image does have it,
this pointer may be used to directly manipulate the alpha values which are stored as the
RGB ones.

 getAlpha(This, X, Y)

 -spec getAlpha(This, X, Y) -> integer() when This :: wxImage(), X :: integer(), Y :: integer().

Return alpha value at given pixel location.

 getBlue(This, X, Y)

 -spec getBlue(This, X, Y) -> integer() when This :: wxImage(), X :: integer(), Y :: integer().

Returns the blue intensity at the given coordinate.

 getData(This)

 -spec getData(This) -> binary() when This :: wxImage().

Returns the image data as an array.
This is most often used when doing direct image manipulation. The return value points to
an array of characters in RGBRGBRGB... format in the top-to-bottom, left-to-right order,
that is the first RGB triplet corresponds to the first pixel of the first row, the second
one - to the second pixel of the first row and so on until the end of the first row, with
second row following after it and so on.
You should not delete the returned pointer nor pass it to setData/4.

 getGreen(This, X, Y)

 -spec getGreen(This, X, Y) -> integer() when This :: wxImage(), X :: integer(), Y :: integer().

Returns the green intensity at the given coordinate.

 getHeight(This)

 -spec getHeight(This) -> integer() when This :: wxImage().

Gets the height of the image in pixels.
See: getWidth/1

 getImageCount(Filename)

 -spec getImageCount(Filename) -> integer() when Filename :: unicode:chardata().

Equivalent to getImageCount(Filename, []).

 getImageCount(Filename, Options)

 -spec getImageCount(Filename, [Option]) -> integer()
 when Filename :: unicode:chardata(), Option :: {type, wx:wx_enum()}.

If the image file contains more than one image and the image handler is capable of
retrieving these individually, this function will return the number of available images.
For the overload taking the parameter filename, that's the name of the file to query.
For the overload taking the parameter stream, that's the opened input stream with image data.
See wxImageHandler::GetImageCount() (not implemented in wx) for more info.
The parameter type may be one of the following values:
	wxBITMAP_TYPE_BMP: Load a Windows bitmap file.

	wxBITMAP_TYPE_GIF: Load a GIF bitmap file.

	wxBITMAP_TYPE_JPEG: Load a JPEG bitmap file.

	wxBITMAP_TYPE_PNG: Load a PNG bitmap file.

	wxBITMAP_TYPE_PCX: Load a PCX bitmap file.

	wxBITMAP_TYPE_PNM: Load a PNM bitmap file.

	wxBITMAP_TYPE_TIFF: Load a TIFF bitmap file.

	wxBITMAP_TYPE_TGA: Load a TGA bitmap file.

	wxBITMAP_TYPE_XPM: Load a XPM bitmap file.

	wxBITMAP_TYPE_ICO: Load a Windows icon file (ICO).

	wxBITMAP_TYPE_CUR: Load a Windows cursor file (CUR).

	wxBITMAP_TYPE_ANI: Load a Windows animated cursor file (ANI).

	wxBITMAP_TYPE_ANY: Will try to autodetect the format.

Return: Number of available images. For most image handlers, this is 1 (exceptions are
TIFF and ICO formats as well as animated GIFs for which this function returns the number
of frames in the animation).

 getImageExtWildcard()

 -spec getImageExtWildcard() -> unicode:charlist().

Iterates all registered wxImageHandler (not implemented in wx) objects, and returns a
string containing file extension masks suitable for passing to file open/save dialog
boxes.
Return: The format of the returned string is "(*.ext1;*.ext2)|*.ext1;*.ext2". It is
usually a good idea to prepend a description before passing the result to the dialog.
Example:

 getMaskBlue(This)

 -spec getMaskBlue(This) -> integer() when This :: wxImage().

Gets the blue value of the mask colour.

 getMaskGreen(This)

 -spec getMaskGreen(This) -> integer() when This :: wxImage().

Gets the green value of the mask colour.

 getMaskRed(This)

 -spec getMaskRed(This) -> integer() when This :: wxImage().

Gets the red value of the mask colour.

 getOption(This, Name)

 -spec getOption(This, Name) -> unicode:charlist() when This :: wxImage(), Name :: unicode:chardata().

Gets a user-defined string-valued option.
Generic options:
	wxIMAGE_OPTION_FILENAME: The name of the file from which the image was loaded.

Options specific to wxGIFHandler (not implemented in wx):
	wxIMAGE_OPTION_GIF_COMMENT: The comment text that is read from or written to the GIF
file. In an animated GIF each frame can have its own comment. If there is only a comment
in the first frame of a GIF it will not be repeated in other frames.

Return: The value of the option or an empty string if not found. Use hasOption/2 if an empty string
can be a valid option value.
See:
	setOption/3

	getOptionInt/2

	hasOption/2

 getOptionInt(This, Name)

 -spec getOptionInt(This, Name) -> integer() when This :: wxImage(), Name :: unicode:chardata().

Gets a user-defined integer-valued option.
The function is case-insensitive to name. If the given option is not present, the
function returns 0. Use hasOption/2 if 0 is a possibly valid value for the option.
Generic options:
	wxIMAGE_OPTION_MAX_WIDTH and wxIMAGE_OPTION_MAX_HEIGHT: If either of these options is
specified, the loaded image will be scaled down (preserving its aspect ratio) so that its
width is less than the max width given if it is not 0 and its height is less than the
max height given if it is not 0. This is typically used for loading thumbnails and the
advantage of using these options compared to calling rescale/4 after loading is that some handlers
(only JPEG one right now) support rescaling the image during loading which is vastly more
efficient than loading the entire huge image and rescaling it later (if these options are
not supported by the handler, this is still what happens however). These options must be
set before calling loadFile/4 to have any effect.

	wxIMAGE_OPTION_ORIGINAL_WIDTH and wxIMAGE_OPTION_ORIGINAL_HEIGHT: These options will
return the original size of the image if either wxIMAGE_OPTION_MAX_WIDTH or wxIMAGE_OPTION_MAX_HEIGHT
is specified.

Since: 2.9.3
	wxIMAGE_OPTION_QUALITY: JPEG quality used when saving. This is an integer in 0..100
range with 0 meaning very poor and 100 excellent (but very badly compressed). This option
is currently ignored for the other formats.

	wxIMAGE_OPTION_RESOLUTIONUNIT: The value of this option determines whether the
resolution of the image is specified in centimetres or inches, see wxImageResolution enum elements.

	wxIMAGE_OPTION_RESOLUTION, wxIMAGE_OPTION_RESOLUTIONX and wxIMAGE_OPTION_RESOLUTIONY:
These options define the resolution of the image in the units corresponding to wxIMAGE_OPTION_RESOLUTIONUNIT
options value. The first option can be set before saving the image to set both horizontal
and vertical resolution to the same value. The X and Y options are set by the image
handlers if they support the image resolution (currently BMP, JPEG and TIFF handlers do)
and the image provides the resolution information and can be queried after loading the image.

Options specific to wxPNGHandler (not implemented in wx):
	wxIMAGE_OPTION_PNG_FORMAT: Format for saving a PNG file, see wxImagePNGType for the
supported values.

	wxIMAGE_OPTION_PNG_BITDEPTH: Bit depth for every channel (R/G/B/A).

	wxIMAGE_OPTION_PNG_FILTER: Filter for saving a PNG file, see libpng (http://www.libpng.org/pub/png/libpng-1.2.5-manual.html)
for possible values (e.g. PNG_FILTER_NONE, PNG_FILTER_SUB, PNG_FILTER_UP, etc).

	wxIMAGE_OPTION_PNG_COMPRESSION_LEVEL: Compression level (0..9) for saving a PNG file.
An high value creates smaller-but-slower PNG file. Note that unlike other formats (e.g.
JPEG) the PNG format is always lossless and thus this compression level doesn't tradeoff
the image quality.

	wxIMAGE_OPTION_PNG_COMPRESSION_MEM_LEVEL: Compression memory usage level (1..9) for
saving a PNG file. An high value means the saving process consumes more memory, but may
create smaller PNG file.

	wxIMAGE_OPTION_PNG_COMPRESSION_STRATEGY: Possible values are 0 for default strategy, 1
for filter, and 2 for Huffman-only. You can use OptiPNG (http://optipng.sourceforge.net/)
to get a suitable value for your application.

	wxIMAGE_OPTION_PNG_COMPRESSION_BUFFER_SIZE: Internal buffer size (in bytes) for saving
a PNG file. Ideally this should be as big as the resulting PNG file. Use this option if
your application produces images with small size variation.

Options specific to wxTIFFHandler (not implemented in wx):
	wxIMAGE_OPTION_TIFF_BITSPERSAMPLE: Number of bits per sample (channel). Currently
values of 1 and 8 are supported. A value of 1 results in a black and white image. A value
of 8 (the default) can mean greyscale or RGB, depending on the value of wxIMAGE_OPTION_TIFF_SAMPLESPERPIXEL.

	wxIMAGE_OPTION_TIFF_SAMPLESPERPIXEL: Number of samples (channels) per pixel. Currently
values of 1 and 3 are supported. A value of 1 results in either a greyscale (by default)
or black and white image, depending on the value of wxIMAGE_OPTION_TIFF_BITSPERSAMPLE. A
value of 3 (the default) will result in an RGB image.

	wxIMAGE_OPTION_TIFF_COMPRESSION: Compression type. By default it is set to 1
(COMPRESSION_NONE). Typical other values are 5 (COMPRESSION_LZW) and 7 (COMPRESSION_JPEG).
See tiff.h for more options.

	wxIMAGE_OPTION_TIFF_PHOTOMETRIC: Specifies the photometric interpretation. By default
it is set to 2 (PHOTOMETRIC_RGB) for RGB images and 0 (PHOTOMETRIC_MINISWHITE) for
greyscale or black and white images. It can also be set to 1 (PHOTOMETRIC_MINISBLACK) to
treat the lowest value as black and highest as white. If you want a greyscale image it is
also sufficient to only specify wxIMAGE_OPTION_TIFF_PHOTOMETRIC and set it to either
PHOTOMETRIC_MINISWHITE or PHOTOMETRIC_MINISBLACK. The other values are taken care of.

Options specific to wxGIFHandler (not implemented in wx):
	wxIMAGE_OPTION_GIF_TRANSPARENCY: How to deal with transparent pixels. By default, the
color of transparent pixels is changed to bright pink, so that if the image is
accidentally drawn without transparency, it will be obvious. Normally, this would not be
noticed, as these pixels will not be rendered. But in some cases it might be useful to
load a GIF without making any modifications to its colours. Use wxIMAGE_OPTION_GIF_TRANSPARENCY_UNCHANGED
to keep the colors correct. Use wxIMAGE_OPTION_GIF_TRANSPARENCY_HIGHLIGHT to convert
transparent pixels to pink (default). This option has been added in wxWidgets 3.1.1.

Note: Be careful when combining the options wxIMAGE_OPTION_TIFF_SAMPLESPERPIXEL, wxIMAGE_OPTION_TIFF_BITSPERSAMPLE,
and wxIMAGE_OPTION_TIFF_PHOTOMETRIC. While some measures are taken to prevent illegal
combinations and/or values, it is still easy to abuse them and come up with invalid
results in the form of either corrupted images or crashes.
Return: The value of the option or 0 if not found. Use hasOption/2 if 0 can be a valid option value.
See:
	setOption/3

	getOption/2

 getOrFindMaskColour(This)

 -spec getOrFindMaskColour(This) -> Result
 when
 Result ::
 {Res :: boolean(), R :: integer(), G :: integer(), B :: integer()},
 This :: wxImage().

Get the current mask colour or find a suitable unused colour that could be used as a mask
colour.
Returns true if the image currently has a mask.

 getPalette(This)

 -spec getPalette(This) -> wxPalette:wxPalette() when This :: wxImage().

Returns the palette associated with the image.
Currently the palette is only used when converting to wxBitmap under Windows.
Some of the wxImage handlers have been modified to set the palette if one exists in
the image file (usually 256 or less colour images in GIF or PNG format).

 getRed(This, X, Y)

 -spec getRed(This, X, Y) -> integer() when This :: wxImage(), X :: integer(), Y :: integer().

Returns the red intensity at the given coordinate.

 getSubImage(This, Rect)

 -spec getSubImage(This, Rect) -> wxImage()
 when
 This :: wxImage(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}.

Returns a sub image of the current one as long as the rect belongs entirely to the image.

 getWidth(This)

 -spec getWidth(This) -> integer() when This :: wxImage().

Gets the width of the image in pixels.
See: getHeight/1

 hasAlpha(This)

 -spec hasAlpha(This) -> boolean() when This :: wxImage().

Returns true if this image has alpha channel, false otherwise.
See:
	getAlpha/3

	setAlpha/4

 hasMask(This)

 -spec hasMask(This) -> boolean() when This :: wxImage().

Returns true if there is a mask active, false otherwise.

 hasOption(This, Name)

 -spec hasOption(This, Name) -> boolean() when This :: wxImage(), Name :: unicode:chardata().

Returns true if the given option is present.
The function is case-insensitive to name.
The lists of the currently supported options are in getOption/2 and getOptionInt/2 function docs.
See:
	setOption/3

	getOption/2

	getOptionInt/2

 initAlpha(This)

 -spec initAlpha(This) -> ok when This :: wxImage().

Initializes the image alpha channel data.
It is an error to call it if the image already has alpha data. If it doesn't, alpha data
will be by default initialized to all pixels being fully opaque. But if the image has a
mask colour, all mask pixels will be completely transparent.

 initStandardHandlers()

 -spec initStandardHandlers() -> ok.

Internal use only.
Adds standard image format handlers. It only install wxBMPHandler for the time being,
which is used by wxBitmap.
This function is called by wxWidgets on startup, and shouldn't be called by the user.
See: ?wxInitAllImageHandlers()

 isOk(This)

 -spec isOk(This) -> boolean() when This :: wxImage().

Returns true if image data is present.

 isTransparent(This, X, Y)

 -spec isTransparent(This, X, Y) -> boolean() when This :: wxImage(), X :: integer(), Y :: integer().

Equivalent to isTransparent(This, X, Y, []).

 isTransparent/4

 -spec isTransparent(This, X, Y, [Option]) -> boolean()
 when
 This :: wxImage(),
 X :: integer(),
 Y :: integer(),
 Option :: {threshold, integer()}.

Returns true if the given pixel is transparent, i.e. either has the mask colour if this
image has a mask or if this image has alpha channel and alpha value of this pixel is
strictly less than threshold.

 loadFile(This, Name)

 -spec loadFile(This, Name) -> boolean() when This :: wxImage(), Name :: unicode:chardata().

Equivalent to loadFile(This, Name, []).

 loadFile/3

 -spec loadFile(This, Name, [Option]) -> boolean()
 when
 This :: wxImage(),
 Name :: unicode:chardata(),
 Option :: {type, wx:wx_enum()} | {index, integer()}.

Loads an image from a file.
If no handler type is provided, the library will try to autodetect the format.

 loadFile/4

 -spec loadFile(This, Name, Mimetype, [Option]) -> boolean()
 when
 This :: wxImage(),
 Name :: unicode:chardata(),
 Mimetype :: unicode:chardata(),
 Option :: {index, integer()}.

Loads an image from a file.
If no handler type is provided, the library will try to autodetect the format.

 mirror(This)

 -spec mirror(This) -> wxImage() when This :: wxImage().

Equivalent to mirror(This, []).

 mirror/2

 -spec mirror(This, [Option]) -> wxImage() when This :: wxImage(), Option :: {horizontally, boolean()}.

Returns a mirrored copy of the image.
The parameter horizontally indicates the orientation.

 new()

 -spec new() -> wxImage().

Creates an empty wxImage object without an alpha channel.

 new/1

 -spec new(Name) -> wxImage() when Name :: unicode:chardata();
 (Sz) -> wxImage() when Sz :: {W :: integer(), H :: integer()}.

Equivalent to: new/2

 new/2

 -spec new(Width, Height) -> wxImage() when Width :: integer(), Height :: integer();
 (Name, [Option]) -> wxImage()
 when Name :: unicode:chardata(), Option :: {type, wx:wx_enum()} | {index, integer()};
 (Sz, Data) -> wxImage() when Sz :: {W :: integer(), H :: integer()}, Data :: binary();
 (Sz, [Option]) -> wxImage()
 when Sz :: {W :: integer(), H :: integer()}, Option :: {clear, boolean()}.

This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 new/3

 -spec new(Width, Height, Data) -> wxImage()
 when Width :: integer(), Height :: integer(), Data :: binary();
 (Width, Height, [Option]) -> wxImage()
 when Width :: integer(), Height :: integer(), Option :: {clear, boolean()};
 (Name, Mimetype, [Option]) -> wxImage()
 when
 Name :: unicode:chardata(),
 Mimetype :: unicode:chardata(),
 Option :: {index, integer()};
 (Sz, Data, Alpha) -> wxImage()
 when Sz :: {W :: integer(), H :: integer()}, Data :: binary(), Alpha :: binary().

This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 new(Width, Height, Data, Alpha)

 -spec new(Width, Height, Data, Alpha) -> wxImage()
 when Width :: integer(), Height :: integer(), Data :: binary(), Alpha :: binary().

Creates an image from data in memory.
If static_data is false then the wxImage will take ownership of the data and free
it afterwards. For this, it has to be allocated with malloc.

 ok(This)

 -spec ok(This) -> boolean() when This :: wxImage().

Equivalent to: isOk/1

 removeHandler(Name)

 -spec removeHandler(Name) -> boolean() when Name :: unicode:chardata().

Finds the handler with the given name, and removes it.
The handler is also deleted.
Return: true if the handler was found and removed, false otherwise.

 replace(This, R1, G1, B1, R2, G2, B2)

 -spec replace(This, R1, G1, B1, R2, G2, B2) -> ok
 when
 This :: wxImage(),
 R1 :: integer(),
 G1 :: integer(),
 B1 :: integer(),
 R2 :: integer(),
 G2 :: integer(),
 B2 :: integer().

Replaces the colour specified by r1,g1,b1 by the colour r2,g2,b2.

 rescale(This, Width, Height)

 -spec rescale(This, Width, Height) -> wxImage()
 when This :: wxImage(), Width :: integer(), Height :: integer().

Equivalent to rescale(This, Width, Height, []).

 rescale/4

 -spec rescale(This, Width, Height, [Option]) -> wxImage()
 when
 This :: wxImage(),
 Width :: integer(),
 Height :: integer(),
 Option :: {quality, wx:wx_enum()}.

Changes the size of the image in-place by scaling it: after a call to this function,the
image will have the given width and height.
For a description of the quality parameter, see the scale/4 function. Returns the (modified)
image itself.
See: scale/4

 resize(This, Size, Pos)

 -spec resize(This, Size, Pos) -> wxImage()
 when
 This :: wxImage(),
 Size :: {W :: integer(), H :: integer()},
 Pos :: {X :: integer(), Y :: integer()}.

Equivalent to resize(This, Size, Pos, []).

 resize/4

 -spec resize(This, Size, Pos, [Option]) -> wxImage()
 when
 This :: wxImage(),
 Size :: {W :: integer(), H :: integer()},
 Pos :: {X :: integer(), Y :: integer()},
 Option :: {r, integer()} | {g, integer()} | {b, integer()}.

Changes the size of the image in-place without scaling it by adding either a border with
the given colour or cropping as necessary.
The image is pasted into a new image with the given size and background colour at the
position pos relative to the upper left of the new image.
If red = green = blue = -1 then use either the current mask colour if set or find, use,
and set a suitable mask colour for any newly exposed areas.
Return: The (modified) image itself.
See: size/4

 rotate90(This)

 -spec rotate90(This) -> wxImage() when This :: wxImage().

Equivalent to rotate90(This, []).

 rotate90/2

 -spec rotate90(This, [Option]) -> wxImage() when This :: wxImage(), Option :: {clockwise, boolean()}.

Returns a copy of the image rotated 90 degrees in the direction indicated by clockwise.

 rotate(This, Angle, RotationCentre)

 -spec rotate(This, Angle, RotationCentre) -> wxImage()
 when
 This :: wxImage(),
 Angle :: number(),
 RotationCentre :: {X :: integer(), Y :: integer()}.

Equivalent to rotate(This, Angle, RotationCentre, []).

 rotate/4

 -spec rotate(This, Angle, RotationCentre, [Option]) -> wxImage()
 when
 This :: wxImage(),
 Angle :: number(),
 RotationCentre :: {X :: integer(), Y :: integer()},
 Option ::
 {interpolating, boolean()} |
 {offset_after_rotation, {X :: integer(), Y :: integer()}}.

Rotates the image about the given point, by angle radians.
Passing true to interpolating results in better image quality, but is slower.
If the image has a mask, then the mask colour is used for the uncovered pixels in the
rotated image background. Else, black (rgb 0, 0, 0) will be used.
Returns the rotated image, leaving this image intact.

 rotateHue(This, Angle)

 -spec rotateHue(This, Angle) -> ok when This :: wxImage(), Angle :: number().

Rotates the hue of each pixel in the image by angle, which is a double in the range of
-1.0 to +1.0, where -1.0 corresponds to -360 degrees and +1.0 corresponds to +360 degrees.

 saveFile(This, Name)

 -spec saveFile(This, Name) -> boolean() when This :: wxImage(), Name :: unicode:chardata().

Saves an image in the named file.
File type is determined from the extension of the file name. Note that this function may
fail if the extension is not recognized! You can use one of the forms above to save images
to files with non-standard extensions.

 saveFile/3

 -spec saveFile(This, Name, Type) -> boolean()
 when This :: wxImage(), Name :: unicode:chardata(), Type :: wx:wx_enum();
 (This, Name, Mimetype) -> boolean()
 when This :: wxImage(), Name :: unicode:chardata(), Mimetype :: unicode:chardata().

Saves an image in the named file.

 scale(This, Width, Height)

 -spec scale(This, Width, Height) -> wxImage()
 when This :: wxImage(), Width :: integer(), Height :: integer().

Equivalent to scale(This, Width, Height, []).

 scale/4

 -spec scale(This, Width, Height, [Option]) -> wxImage()
 when
 This :: wxImage(),
 Width :: integer(),
 Height :: integer(),
 Option :: {quality, wx:wx_enum()}.

Returns a scaled version of the image.
This is also useful for scaling bitmaps in general as the only other way to scale bitmaps
is to blit a wxMemoryDC into another wxMemoryDC.
The parameter quality determines what method to use for resampling the image, see
wxImageResizeQuality documentation.
It should be noted that although using wxIMAGE_QUALITY_HIGH produces much nicer looking
results it is a slower method. Downsampling will use the box averaging method which seems
to operate very fast. If you are upsampling larger images using this method you will most
likely notice that it is a bit slower and in extreme cases it will be quite substantially
slower as the bicubic algorithm has to process a lot of data.
It should also be noted that the high quality scaling may not work as expected when using
a single mask colour for transparency, as the scaling will blur the image and will
therefore remove the mask partially. Using the alpha channel will work.
Example:
See: rescale/4

 setAlpha(This, Alpha)

 -spec setAlpha(This, Alpha) -> ok when This :: wxImage(), Alpha :: binary().

This function is similar to setData/4 and has similar restrictions.
The pointer passed to it may however be NULL in which case the function will allocate the
alpha array internally - this is useful to add alpha channel data to an image which
doesn't have any.
If the pointer is not NULL, it must have one byte for each image pixel and be allocated
with malloc(). wxImage takes ownership of the pointer and will free it unless static_data
parameter is set to true - in this case the caller should do it.

 setAlpha(This, X, Y, Alpha)

 -spec setAlpha(This, X, Y, Alpha) -> ok
 when This :: wxImage(), X :: integer(), Y :: integer(), Alpha :: integer().

Sets the alpha value for the given pixel.
This function should only be called if the image has alpha channel data, use hasAlpha/1 to check
for this.

 setData(This, Data)

 -spec setData(This, Data) -> ok when This :: wxImage(), Data :: binary().

Sets the image data without performing checks.
The data given must have the size (widthheight3) or results will be unexpected. Don't
use this method if you aren't sure you know what you are doing.
The data must have been allocated with malloc(), NOT with operator new.
If static_data is false, after this call the pointer to the data is owned by the wxImage
object, that will be responsible for deleting it. Do not pass to this function a pointer
obtained through getData/1.

 setData(This, Data, New_width, New_height)

 -spec setData(This, Data, New_width, New_height) -> ok
 when
 This :: wxImage(),
 Data :: binary(),
 New_width :: integer(),
 New_height :: integer().

This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 setMask(This)

 -spec setMask(This) -> ok when This :: wxImage().

Equivalent to setMask(This, []).

 setMask/2

 -spec setMask(This, [Option]) -> ok when This :: wxImage(), Option :: {mask, boolean()}.

Specifies whether there is a mask or not.
The area of the mask is determined by the current mask colour.

 setMaskColour(This, Red, Green, Blue)

 -spec setMaskColour(This, Red, Green, Blue) -> ok
 when This :: wxImage(), Red :: integer(), Green :: integer(), Blue :: integer().

Sets the mask colour for this image (and tells the image to use the mask).

 setMaskFromImage(This, Mask, Mr, Mg, Mb)

 -spec setMaskFromImage(This, Mask, Mr, Mg, Mb) -> boolean()
 when
 This :: wxImage(),
 Mask :: wxImage(),
 Mr :: integer(),
 Mg :: integer(),
 Mb :: integer().

Sets image's mask so that the pixels that have RGB value of mr,mg,mb in mask will be
masked in the image.
This is done by first finding an unused colour in the image, setting this colour as the
mask colour and then using this colour to draw all pixels in the image who corresponding
pixel in mask has given RGB value.
The parameter mask is the mask image to extract mask shape from. It must have the same
dimensions as the image.
The parameters mr, mg, mb are the RGB values of the pixels in mask that will be
used to create the mask.
Return: Returns false if mask does not have same dimensions as the image or if there is
no unused colour left. Returns true if the mask was successfully applied.
Note: Note that this method involves computing the histogram, which is a computationally
intensive operation.

 setOption/3

 -spec setOption(This, Name, Value) -> ok
 when This :: wxImage(), Name :: unicode:chardata(), Value :: integer();
 (This, Name, Value) -> ok
 when This :: wxImage(), Name :: unicode:chardata(), Value :: unicode:chardata().

Sets a user-defined option.
The function is case-insensitive to name.
For example, when saving as a JPEG file, the option quality is used, which is a number
between 0 and 100 (0 is terrible, 100 is very good).
The lists of the currently supported options are in getOption/2 and getOptionInt/2 function docs.
See:
	getOption/2

	getOptionInt/2

	hasOption/2

 setPalette(This, Palette)

 -spec setPalette(This, Palette) -> ok when This :: wxImage(), Palette :: wxPalette:wxPalette().

Associates a palette with the image.
The palette may be used when converting wxImage to wxBitmap (MSW only at present)
or in file save operations (none as yet).

 setRGB(This, Rect, Red, Green, Blue)

 -spec setRGB(This, Rect, Red, Green, Blue) -> ok
 when
 This :: wxImage(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()},
 Red :: integer(),
 Green :: integer(),
 Blue :: integer().

Sets the colour of the pixels within the given rectangle.
This routine performs bounds-checks for the coordinate so it can be considered a safe way
to manipulate the data.

 setRGB(This, X, Y, R, G, B)

 -spec setRGB(This, X, Y, R, G, B) -> ok
 when
 This :: wxImage(),
 X :: integer(),
 Y :: integer(),
 R :: integer(),
 G :: integer(),
 B :: integer().

Set the color of the pixel at the given x and y coordinate.

 size(This, Size, Pos)

 -spec size(This, Size, Pos) -> wxImage()
 when
 This :: wxImage(),
 Size :: {W :: integer(), H :: integer()},
 Pos :: {X :: integer(), Y :: integer()}.

Equivalent to size(This, Size, Pos, []).

 size/4

 -spec size(This, Size, Pos, [Option]) -> wxImage()
 when
 This :: wxImage(),
 Size :: {W :: integer(), H :: integer()},
 Pos :: {X :: integer(), Y :: integer()},
 Option :: {r, integer()} | {g, integer()} | {b, integer()}.

Returns a resized version of this image without scaling it by adding either a border with
the given colour or cropping as necessary.
The image is pasted into a new image with the given size and background colour at the
position pos relative to the upper left of the new image.
If red = green = blue = -1 then the areas of the larger image not covered by this image
are made transparent by filling them with the image mask colour (which will be allocated
automatically if it isn't currently set).
Otherwise, the areas will be filled with the colour with the specified RGB components.
See: resize/4

wxImageList

A wxImageList contains a list of images, which are stored in an unspecified form.
Images can have masks for transparent drawing, and can be made from a variety of sources
including bitmaps and icons.
wxImageList is used principally in conjunction with wxTreeCtrl and wxListCtrl classes.
See:
	wxTreeCtrl

	wxListCtrl

wxWidgets docs: wxImageList

 Summary

 Types

 wxImageList()

 Functions

 add(This, Icon)

 Adds a new image using an icon.

 add/3

 Adds a new image or images using a bitmap and mask colour.

 create(This, Width, Height)

 Equivalent to create(This, Width, Height, []).

 create/4

 Initializes the list.

 destroy(This)

 Destroys the object

 draw(This, Index, Dc, X, Y)

 Equivalent to draw(This, Index, Dc, X, Y, []).

 draw/6

 Draws a specified image onto a device context.

 getBitmap(This, Index)

 Returns the bitmap corresponding to the given index.

 getIcon(This, Index)

 Returns the icon corresponding to the given index.

 getImageCount(This)

 Returns the number of images in the list.

 getSize(This, Index)

 Retrieves the size of the images in the list.

 new()

 Default ctor.

 new(Width, Height)

 Equivalent to new(Width, Height, []).

 new(Width, Height, Options)

 Constructor specifying the image size, whether image masks should be created, and the
initial size of the list.

 remove(This, Index)

 Removes the image at the given position.

 removeAll(This)

 Removes all the images in the list.

 replace(This, Index, Icon)

 Replaces the existing image with the new image.

 replace(This, Index, Bitmap, Mask)

 Replaces the existing image with the new image.

 Types

 wxImageList()

 -type wxImageList() :: wx:wx_object().

 Functions

 add(This, Icon)

 -spec add(This, Icon) -> integer()
 when This :: wxImageList(), Icon :: wxIcon:wxIcon() | wxBitmap:wxBitmap().

Adds a new image using an icon.
Return: The new zero-based image index.
Remark: The original bitmap or icon is not affected by the add/3 operation, and can be deleted
afterwards. If the bitmap is wider than the images in the list, then the bitmap will
automatically be split into smaller images, each matching the dimensions of the image
list. This does not apply when adding icons.
Only for:wxmsw,wxosx

 add/3

 -spec add(This, Bitmap, Mask) -> integer()
 when This :: wxImageList(), Bitmap :: wxBitmap:wxBitmap(), Mask :: wxBitmap:wxBitmap();
 (This, Bitmap, MaskColour) -> integer()
 when This :: wxImageList(), Bitmap :: wxBitmap:wxBitmap(), MaskColour :: wx:wx_colour().

Adds a new image or images using a bitmap and mask colour.
Return: The new zero-based image index.
Remark: The original bitmap or icon is not affected by the add/3 operation, and can be deleted
afterwards. If the bitmap is wider than the images in the list, then the bitmap will
automatically be split into smaller images, each matching the dimensions of the image
list. This does not apply when adding icons.

 create(This, Width, Height)

 -spec create(This, Width, Height) -> boolean()
 when This :: wxImageList(), Width :: integer(), Height :: integer().

Equivalent to create(This, Width, Height, []).

 create/4

 -spec create(This, Width, Height, [Option]) -> boolean()
 when
 This :: wxImageList(),
 Width :: integer(),
 Height :: integer(),
 Option :: {mask, boolean()} | {initialCount, integer()}.

Initializes the list.
See new/3 for details.

 destroy(This)

 -spec destroy(This :: wxImageList()) -> ok.

Destroys the object

 draw(This, Index, Dc, X, Y)

 -spec draw(This, Index, Dc, X, Y) -> boolean()
 when
 This :: wxImageList(),
 Index :: integer(),
 Dc :: wxDC:wxDC(),
 X :: integer(),
 Y :: integer().

Equivalent to draw(This, Index, Dc, X, Y, []).

 draw/6

 -spec draw(This, Index, Dc, X, Y, [Option]) -> boolean()
 when
 This :: wxImageList(),
 Index :: integer(),
 Dc :: wxDC:wxDC(),
 X :: integer(),
 Y :: integer(),
 Option :: {flags, integer()} | {solidBackground, boolean()}.

Draws a specified image onto a device context.

 getBitmap(This, Index)

 -spec getBitmap(This, Index) -> wxBitmap:wxBitmap() when This :: wxImageList(), Index :: integer().

Returns the bitmap corresponding to the given index.

 getIcon(This, Index)

 -spec getIcon(This, Index) -> wxIcon:wxIcon() when This :: wxImageList(), Index :: integer().

Returns the icon corresponding to the given index.

 getImageCount(This)

 -spec getImageCount(This) -> integer() when This :: wxImageList().

Returns the number of images in the list.

 getSize(This, Index)

 -spec getSize(This, Index) -> Result
 when
 Result :: {Res :: boolean(), Width :: integer(), Height :: integer()},
 This :: wxImageList(),
 Index :: integer().

Retrieves the size of the images in the list.
Currently, the index parameter is ignored as all images in the list have the same size.
Return: true if the function succeeded, false if it failed (for example, if the image
list was not yet initialized).

 new()

 -spec new() -> wxImageList().

Default ctor.

 new(Width, Height)

 -spec new(Width, Height) -> wxImageList() when Width :: integer(), Height :: integer().

Equivalent to new(Width, Height, []).

 new(Width, Height, Options)

 -spec new(Width, Height, [Option]) -> wxImageList()
 when
 Width :: integer(),
 Height :: integer(),
 Option :: {mask, boolean()} | {initialCount, integer()}.

Constructor specifying the image size, whether image masks should be created, and the
initial size of the list.
See: create/4

 remove(This, Index)

 -spec remove(This, Index) -> boolean() when This :: wxImageList(), Index :: integer().

Removes the image at the given position.

 removeAll(This)

 -spec removeAll(This) -> boolean() when This :: wxImageList().

Removes all the images in the list.

 replace(This, Index, Icon)

 -spec replace(This, Index, Icon) -> boolean()
 when
 This :: wxImageList(),
 Index :: integer(),
 Icon :: wxIcon:wxIcon() | wxBitmap:wxBitmap().

Replaces the existing image with the new image.
Return: true if the replacement was successful, false otherwise.
Remark: The original bitmap or icon is not affected by the replace/4 operation, and can be deleted afterwards.
Only for:wxmsw,wxosx

 replace(This, Index, Bitmap, Mask)

 -spec replace(This, Index, Bitmap, Mask) -> boolean()
 when
 This :: wxImageList(),
 Index :: integer(),
 Bitmap :: wxBitmap:wxBitmap(),
 Mask :: wxBitmap:wxBitmap().

Replaces the existing image with the new image.
Windows only.
Return: true if the replacement was successful, false otherwise.
Remark: The original bitmap or icon is not affected by the replace/4 operation, and can be deleted
afterwards.

wxInitDialogEvent

A wxInitDialogEvent is sent as a dialog or panel is being initialised.
Handlers for this event can transfer data to the window.
The default handler calls wxWindow:transferDataToWindow/1.
See: Overview events
This class is derived, and can use functions, from:
	wxEvent

wxWidgets docs: wxInitDialogEvent
Events
Use wxEvtHandler:connect/3 with wxInitDialogEventType to subscribe to events of this type.

 Summary

 Types

 wxInitDialog()

 wxInitDialogEvent()

 wxInitDialogEventType()

 Types

 wxInitDialog()

 -type wxInitDialog() :: #wxInitDialog{type :: wxInitDialogEvent:wxInitDialogEventType()}.

 wxInitDialogEvent()

 -type wxInitDialogEvent() :: wx:wx_object().

 wxInitDialogEventType()

 -type wxInitDialogEventType() :: init_dialog.

wxJoystickEvent

This event class contains information about joystick events, particularly events received
by windows.
This class is derived, and can use functions, from:
	wxEvent

wxWidgets docs: wxJoystickEvent
Events
Use wxEvtHandler:connect/3 with wxJoystickEventType to subscribe to events of this type.

 Summary

 Types

 wxJoystick()

 wxJoystickEvent()

 wxJoystickEventType()

 Functions

 buttonDown(This)

 Equivalent to buttonDown(This, []).

 buttonDown/2

 Returns true if the event was a down event from the specified button (or any button).

 buttonIsDown(This)

 Equivalent to buttonIsDown(This, []).

 buttonIsDown/2

 Returns true if the specified button (or any button) was in a down state.

 buttonUp(This)

 Equivalent to buttonUp(This, []).

 buttonUp/2

 Returns true if the event was an up event from the specified button (or any button).

 getButtonChange(This)

 Returns the identifier of the button changing state.

 getButtonState(This)

 Returns the down state of the buttons.

 getJoystick(This)

 Returns the identifier of the joystick generating the event - one of wxJOYSTICK1 and
wxJOYSTICK2.

 getPosition(This)

 Returns the x, y position of the joystick event.

 getZPosition(This)

 Returns the z position of the joystick event.

 isButton(This)

 Returns true if this was a button up or down event (not 'is any button down?').

 isMove(This)

 Returns true if this was an x, y move event.

 isZMove(This)

 Returns true if this was a z move event.

 Types

 wxJoystick()

 -type wxJoystick() ::
 #wxJoystick{type :: wxJoystickEvent:wxJoystickEventType(),
 pos :: {X :: integer(), Y :: integer()},
 zPosition :: integer(),
 buttonChange :: integer(),
 buttonState :: integer(),
 joyStick :: integer()}.

 wxJoystickEvent()

 -type wxJoystickEvent() :: wx:wx_object().

 wxJoystickEventType()

 -type wxJoystickEventType() :: joy_button_down | joy_button_up | joy_move | joy_zmove.

 Functions

 buttonDown(This)

 -spec buttonDown(This) -> boolean() when This :: wxJoystickEvent().

Equivalent to buttonDown(This, []).

 buttonDown/2

 -spec buttonDown(This, [Option]) -> boolean() when This :: wxJoystickEvent(), Option :: {but, integer()}.

Returns true if the event was a down event from the specified button (or any button).

 buttonIsDown(This)

 -spec buttonIsDown(This) -> boolean() when This :: wxJoystickEvent().

Equivalent to buttonIsDown(This, []).

 buttonIsDown/2

 -spec buttonIsDown(This, [Option]) -> boolean()
 when This :: wxJoystickEvent(), Option :: {but, integer()}.

Returns true if the specified button (or any button) was in a down state.

 buttonUp(This)

 -spec buttonUp(This) -> boolean() when This :: wxJoystickEvent().

Equivalent to buttonUp(This, []).

 buttonUp/2

 -spec buttonUp(This, [Option]) -> boolean() when This :: wxJoystickEvent(), Option :: {but, integer()}.

Returns true if the event was an up event from the specified button (or any button).

 getButtonChange(This)

 -spec getButtonChange(This) -> integer() when This :: wxJoystickEvent().

Returns the identifier of the button changing state.
The return value is where n is the index of the button changing state, which can also
be retrieved using GetButtonOrdinal() (not implemented in wx).
Note that for n equal to 1, 2, 3 or 4 there are predefined wxJOY_BUTTONn constants
which can be used for more clarity, however these constants are not defined for the
buttons beyond the first four.

 getButtonState(This)

 -spec getButtonState(This) -> integer() when This :: wxJoystickEvent().

Returns the down state of the buttons.
This is a wxJOY_BUTTONn identifier, where n is one of 1, 2, 3, 4.

 getJoystick(This)

 -spec getJoystick(This) -> integer() when This :: wxJoystickEvent().

Returns the identifier of the joystick generating the event - one of wxJOYSTICK1 and
wxJOYSTICK2.

 getPosition(This)

 -spec getPosition(This) -> {X :: integer(), Y :: integer()} when This :: wxJoystickEvent().

Returns the x, y position of the joystick event.
These coordinates are valid for all the events except wxEVT_JOY_ZMOVE.

 getZPosition(This)

 -spec getZPosition(This) -> integer() when This :: wxJoystickEvent().

Returns the z position of the joystick event.
This method can only be used for wxEVT_JOY_ZMOVE events.

 isButton(This)

 -spec isButton(This) -> boolean() when This :: wxJoystickEvent().

Returns true if this was a button up or down event (not 'is any button down?').

 isMove(This)

 -spec isMove(This) -> boolean() when This :: wxJoystickEvent().

Returns true if this was an x, y move event.

 isZMove(This)

 -spec isZMove(This) -> boolean() when This :: wxJoystickEvent().

Returns true if this was a z move event.

wxKeyEvent

This event class contains information about key press and release events.
The main information carried by this event is the key being pressed or released. It can
be accessed using either getKeyCode/1 function or getUnicodeKey/1. For the printable characters, the latter should be
used as it works for any keys, including non-Latin-1 characters that can be entered when
using national keyboard layouts. getKeyCode/1 should be used to handle special characters (such as
cursor arrows keys or HOME or INS and so on) which correspond to ?wxKeyCode enum
elements above the WXK_START constant. While getKeyCode/1 also returns the character code for
Latin-1 keys for compatibility, it doesn't work for Unicode characters in general and will
return WXK_NONE for any non-Latin-1 ones. For this reason, it's recommended to always
use getUnicodeKey/1 and only fall back to getKeyCode/1 if getUnicodeKey/1 returned WXK_NONE meaning that the event corresponds to
a non-printable special keys.
While both of these functions can be used with the events of wxEVT_KEY_DOWN, wxEVT_KEY_UP
and wxEVT_CHAR types, the values returned by them are different for the first two
events and the last one. For the latter, the key returned corresponds to the character
that would appear in e.g. a text zone if the user pressed the key in it. As such, its
value depends on the current state of the Shift key and, for the letters, on the state of
Caps Lock modifier. For example, if A key is pressed without Shift being held down, wxKeyEvent
of type wxEVT_CHAR generated for this key press will return (from either getKeyCode/1 or getUnicodeKey/1 as their
meanings coincide for ASCII characters) key code of 97 corresponding the ASCII value of a.
And if the same key is pressed but with Shift being held (or Caps Lock being active), then
the key could would be 65, i.e. ASCII value of capital A.
However for the key down and up events the returned key code will instead be A
independently of the state of the modifier keys i.e. it depends only on physical key being
pressed and is not translated to its logical representation using the current keyboard
state. Such untranslated key codes are defined as follows:
	For the letters they correspond to the upper case value of the letter.

	For the other alphanumeric keys (e.g. 7 or +), the untranslated key code corresponds to
the character produced by the key when it is pressed without Shift. E.g. in standard US
keyboard layout the untranslated key code for the key =/+ in the upper right corner of
the keyboard is 61 which is the ASCII value of =.

	For the rest of the keys (i.e. special non-printable keys) it is the same as the normal
key code as no translation is used anyhow.

Notice that the first rule applies to all Unicode letters, not just the usual Latin-1
ones. However for non-Latin-1 letters only getUnicodeKey/1 can be used to retrieve the key code as getKeyCode/1 just
returns WXK_NONE in this case.
To summarize: you should handle wxEVT_CHAR if you need the translated key and wxEVT_KEY_DOWN
if you only need the value of the key itself, independent of the current keyboard state.
Note: Not all key down events may be generated by the user. As an example, wxEVT_KEY_DOWN
with = key code can be generated using the standard US keyboard layout but not using
the German one because the = key corresponds to Shift-0 key combination in this layout
and the key code for it is 0, not =. Because of this you should avoid requiring your
users to type key events that might be impossible to enter on their keyboard.
Another difference between key and char events is that another kind of translation is
done for the latter ones when the Control key is pressed: char events for ASCII letters in
this case carry codes corresponding to the ASCII value of Ctrl-Latter, i.e. 1 for Ctrl-A,
2 for Ctrl-B and so on until 26 for Ctrl-Z. This is convenient for terminal-like
applications and can be completely ignored by all the other ones (if you need to handle
Ctrl-A it is probably a better idea to use the key event rather than the char one). Notice
that currently no translation is done for the presses of [, \,], ^ and _ keys which
might be mapped to ASCII values from 27 to 31. Since version 2.9.2, the enum values WXK_CONTROL_A
	WXK_CONTROL_Z can be used instead of the non-descriptive constant values 1-26.

Finally, modifier keys only generate key events but no char events at all. The modifiers
keys are WXK_SHIFT, WXK_CONTROL, WXK_ALT and various WXK_WINDOWS_XXX from
?wxKeyCode enum.
Modifier keys events are special in one additional aspect: usually the keyboard state
associated with a key press is well defined, e.g. shiftDown/1 returns true only if the Shift key
was held pressed when the key that generated this event itself was pressed. There is an
ambiguity for the key press events for Shift key itself however. By convention, it is
considered to be already pressed when it is pressed and already released when it is
released. In other words, wxEVT_KEY_DOWN event for the Shift key itself will have wxMOD_SHIFT
in getModifiers/1 and shiftDown/1 will return true while the wxEVT_KEY_UP event for Shift itself will not have wxMOD_SHIFT
in its modifiers and shiftDown/1 will return false.
Tip: You may discover the key codes and modifiers generated by all the keys on your
system interactively by running the page_samples_keyboard wxWidgets sample and pressing
some keys in it.
Note: If a key down (EVT_KEY_DOWN) event is caught and the event handler does not call event.Skip()
then the corresponding char event (EVT_CHAR) will not happen. This is by design and
enables the programs that handle both types of events to avoid processing the same key
twice. As a consequence, if you do not want to suppress the wxEVT_CHAR events for the
keys you handle, always call event.Skip() in your wxEVT_KEY_DOWN handler. Not doing
may also prevent accelerators defined using this key from working.
Note: If a key is maintained in a pressed state, you will typically get a lot of
(automatically generated) key down events but only one key up one at the end when the key
is released so it is wrong to assume that there is one up event corresponding to each down one.
Note: For Windows programmers: The key and char events in wxWidgets are similar to but
slightly different from Windows WM_KEYDOWN and WM_CHAR events. In particular, Alt-x
combination will generate a char event in wxWidgets (unless it is used as an accelerator)
and almost all keys, including ones without ASCII equivalents, generate char events too.
This class is derived, and can use functions, from:
	wxEvent

wxWidgets docs: wxKeyEvent
Events
Use wxEvtHandler:connect/3 with wxKeyEventType to subscribe to events of this type.

 Summary

 Types

 wxKey()

 wxKeyEvent()

 wxKeyEventType()

 Functions

 altDown(This)

 Returns true if the Alt key is pressed.

 cmdDown(This)

 Returns true if the key used for command accelerators is pressed.

 controlDown(This)

 Returns true if the Control key or Apple/Command key under macOS is pressed.

 getKeyCode(This)

 Returns the key code of the key that generated this event.

 getModifiers(This)

 Return the bit mask of all pressed modifier keys.

 getPosition(This)

 Obtains the position (in client coordinates) at which the key was pressed.

 getRawKeyCode(This)

 Returns the raw key code for this event.

 getRawKeyFlags(This)

 Returns the low level key flags for this event.

 getUnicodeKey(This)

 Returns the Unicode character corresponding to this key event.

 getX(This)

 Returns the X position (in client coordinates) of the event.

 getY(This)

 Returns the Y position (in client coordinates) of the event.

 hasModifiers(This)

 Returns true if Control or Alt are pressed.

 metaDown(This)

 Returns true if the Meta/Windows/Apple key is pressed.

 shiftDown(This)

 Returns true if the Shift key is pressed.

 Types

 wxKey()

 -type wxKey() ::
 #wxKey{type :: wxKeyEvent:wxKeyEventType(),
 x :: integer(),
 y :: integer(),
 keyCode :: integer(),
 controlDown :: boolean(),
 shiftDown :: boolean(),
 altDown :: boolean(),
 metaDown :: boolean(),
 uniChar :: integer(),
 rawCode :: integer(),
 rawFlags :: integer()}.

 wxKeyEvent()

 -type wxKeyEvent() :: wx:wx_object().

 wxKeyEventType()

 -type wxKeyEventType() :: char | char_hook | key_down | key_up.

 Functions

 altDown(This)

 -spec altDown(This) -> boolean() when This :: wxKeyEvent().

Returns true if the Alt key is pressed.
Notice that getModifiers/1 should usually be used instead of this one.

 cmdDown(This)

 -spec cmdDown(This) -> boolean() when This :: wxKeyEvent().

Returns true if the key used for command accelerators is pressed.
Same as controlDown/1. Deprecated.
Notice that getModifiers/1 should usually be used instead of this one.

 controlDown(This)

 -spec controlDown(This) -> boolean() when This :: wxKeyEvent().

Returns true if the Control key or Apple/Command key under macOS is pressed.
This function doesn't distinguish between right and left control keys.
Notice that getModifiers/1 should usually be used instead of this one.

 getKeyCode(This)

 -spec getKeyCode(This) -> integer() when This :: wxKeyEvent().

Returns the key code of the key that generated this event.
ASCII symbols return normal ASCII values, while events from special keys such as "left
cursor arrow" (WXK_LEFT) return values outside of the ASCII range. See ?wxKeyCode for a
full list of the virtual key codes.
Note that this method returns a meaningful value only for special non-alphanumeric keys
or if the user entered a Latin-1 character (this includes ASCII and the accented letters
found in Western European languages but not letters of other alphabets such as e.g.
Cyrillic). Otherwise it simply method returns WXK_NONE and getUnicodeKey/1 should be used to obtain the
corresponding Unicode character.
Using getUnicodeKey/1 is in general the right thing to do if you are interested in the characters typed
by the user, getKeyCode/1 should be only used for special keys (for which getUnicodeKey/1 returns WXK_NONE). To
handle both kinds of keys you might write:

 getModifiers(This)

 -spec getModifiers(This) -> integer() when This :: wxKeyEvent().

Return the bit mask of all pressed modifier keys.
The return value is a combination of wxMOD_ALT, wxMOD_CONTROL, wxMOD_SHIFT and wxMOD_META
bit masks. Additionally, wxMOD_NONE is defined as 0, i.e. corresponds to no modifiers
(see HasAnyModifiers() (not implemented in wx)) and wxMOD_CMD is either wxMOD_CONTROL
(MSW and Unix) or wxMOD_META (Mac), see cmdDown/1. See ?wxKeyModifier for the full list of modifiers.
Notice that this function is easier to use correctly than, for example, controlDown/1 because when
using the latter you also have to remember to test that none of the other modifiers is pressed:
and forgetting to do it can result in serious program bugs (e.g. program not working with
European keyboard layout where AltGr key which is seen by the program as combination of
CTRL and ALT is used). On the other hand, you can simply write:
with this function.

 getPosition(This)

 -spec getPosition(This) -> {X :: integer(), Y :: integer()} when This :: wxKeyEvent().

Obtains the position (in client coordinates) at which the key was pressed.
Notice that under most platforms this position is simply the current mouse pointer
position and has no special relationship to the key event itself.
x and y may be NULL if the corresponding coordinate is not needed.

 getRawKeyCode(This)

 -spec getRawKeyCode(This) -> integer() when This :: wxKeyEvent().

Returns the raw key code for this event.
The flags are platform-dependent and should only be used if the functionality provided by
other wxKeyEvent methods is insufficient.
Under MSW, the raw key code is the value of wParam parameter of the corresponding message.
Under GTK, the raw key code is the keyval field of the corresponding GDK event.
Under macOS, the raw key code is the keyCode field of the corresponding NSEvent.
Note: Currently the raw key codes are not supported by all ports, use #ifdef
wxHAS_RAW_KEY_CODES to determine if this feature is available.

 getRawKeyFlags(This)

 -spec getRawKeyFlags(This) -> integer() when This :: wxKeyEvent().

Returns the low level key flags for this event.
The flags are platform-dependent and should only be used if the functionality provided by
other wxKeyEvent methods is insufficient.
Under MSW, the raw flags are just the value of lParam parameter of the corresponding message.
Under GTK, the raw flags contain the hardware_keycode field of the corresponding GDK event.
Under macOS, the raw flags contain the modifiers state.
Note: Currently the raw key flags are not supported by all ports, use #ifdef
wxHAS_RAW_KEY_CODES to determine if this feature is available.

 getUnicodeKey(This)

 -spec getUnicodeKey(This) -> integer() when This :: wxKeyEvent().

Returns the Unicode character corresponding to this key event.
If the key pressed doesn't have any character value (e.g. a cursor key) this method will
return WXK_NONE. In this case you should use getKeyCode/1 to retrieve the value of the key.
This function is only available in Unicode build, i.e. when wxUSE_UNICODE is 1.

 getX(This)

 -spec getX(This) -> integer() when This :: wxKeyEvent().

Returns the X position (in client coordinates) of the event.
See: getPosition/1

 getY(This)

 -spec getY(This) -> integer() when This :: wxKeyEvent().

Returns the Y position (in client coordinates) of the event.
See: getPosition/1

 hasModifiers(This)

 -spec hasModifiers(This) -> boolean() when This :: wxKeyEvent().

Returns true if Control or Alt are pressed.
Checks if Control, Alt or, under macOS only, Command key are pressed (notice that the
real Control key is still taken into account under OS X too).
This method returns false if only Shift is pressed for compatibility reasons and also
because pressing Shift usually doesn't change the interpretation of key events, see HasAnyModifiers()
(not implemented in wx) if you want to take Shift into account as well.

 metaDown(This)

 -spec metaDown(This) -> boolean() when This :: wxKeyEvent().

Returns true if the Meta/Windows/Apple key is pressed.
This function tests the state of the key traditionally called Meta under Unix systems,
Windows keys under MSW Notice that getModifiers/1 should usually be used instead of this one.
See: cmdDown/1

 shiftDown(This)

 -spec shiftDown(This) -> boolean() when This :: wxKeyEvent().

Returns true if the Shift key is pressed.
This function doesn't distinguish between right and left shift keys.
Notice that getModifiers/1 should usually be used instead of this one.

wxLayoutAlgorithm

wxLayoutAlgorithm implements layout of subwindows in MDI or SDI frames.
It sends a wxCalculateLayoutEvent (not implemented in wx) event to children of the
frame, asking them for information about their size. For MDI parent frames, the algorithm
allocates the remaining space to the MDI client window (which contains the MDI child frames).
For SDI (normal) frames, a 'main' window is specified as taking up the remaining space.
Because the event system is used, this technique can be applied to any windows, which are
not necessarily 'aware' of the layout classes (no virtual functions in wxWindow refer
to wxLayoutAlgorithm or its events). However, you may wish to use wxSashLayoutWindow
for your subwindows since this class provides handlers for the required events, and
accessors to specify the desired size of the window. The sash behaviour in the base class
can be used, optionally, to make the windows user-resizable.
wxLayoutAlgorithm is typically used in IDE (integrated development environment)
applications, where there are several resizable windows in addition to the MDI client
window, or other primary editing window. Resizable windows might include toolbars, a
project window, and a window for displaying error and warning messages.
When a window receives an OnCalculateLayout event, it should call SetRect in the given
event object, to be the old supplied rectangle minus whatever space the window takes up.
It should also set its own size accordingly. wxSashLayoutWindow::OnCalculateLayout (not
implemented in wx) generates an OnQueryLayoutInfo event which it sends to itself to
determine the orientation, alignment and size of the window, which it gets from internal
member variables set by the application.
The algorithm works by starting off with a rectangle equal to the whole frame client
area. It iterates through the frame children, generating
wxLayoutAlgorithm::OnCalculateLayout events which subtract the window size and return the
remaining rectangle for the next window to process. It is assumed (by wxSashLayoutWindow::OnCalculateLayout
(not implemented in wx)) that a window stretches the full dimension of the frame client,
according to the orientation it specifies. For example, a horizontal window will stretch
the full width of the remaining portion of the frame client area. In the other
orientation, the window will be fixed to whatever size was specified by
wxLayoutAlgorithm::OnQueryLayoutInfo. An alignment setting will make the window 'stick' to
the left, top, right or bottom of the remaining client area. This scheme implies that
order of window creation is important. Say you wish to have an extra toolbar at the top of
the frame, a project window to the left of the MDI client window, and an output window
above the status bar. You should therefore create the windows in this order: toolbar,
output window, project window. This ensures that the toolbar and output window take up
space at the top and bottom, and then the remaining height in-between is used for the
project window.
wxLayoutAlgorithm is quite independent of the way in which
wxLayoutAlgorithm::OnCalculateLayout chooses to interpret a window's size and alignment.
Therefore you could implement a different window class with a new
wxLayoutAlgorithm::OnCalculateLayout event handler, that has a more sophisticated way of
laying out the windows. It might allow specification of whether stretching occurs in the
specified orientation, for example, rather than always assuming stretching. (This could,
and probably should, be added to the existing implementation).
Note: wxLayoutAlgorithm has nothing to do with wxLayoutConstraints (not implemented
in wx). It is an alternative way of specifying layouts for which the normal constraint
system is unsuitable.
See:
	wxSashEvent

	wxSashLayoutWindow

	Overview events

wxWidgets docs: wxLayoutAlgorithm

 Summary

 Types

 wxLayoutAlgorithm()

 Functions

 destroy(This)

 Destroys the object

 layoutFrame(This, Frame)

 Equivalent to layoutFrame(This, Frame, []).

 layoutFrame/3

 Lays out the children of a normal frame.

 layoutMDIFrame(This, Frame)

 Equivalent to layoutMDIFrame(This, Frame, []).

 layoutMDIFrame/3

 Lays out the children of an MDI parent frame.

 layoutWindow(This, Parent)

 Equivalent to layoutWindow(This, Parent, []).

 layoutWindow/3

 Lays out the children of a normal frame or other window.

 new()

 Default constructor.

 Types

 wxLayoutAlgorithm()

 -type wxLayoutAlgorithm() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxLayoutAlgorithm()) -> ok.

Destroys the object

 layoutFrame(This, Frame)

 -spec layoutFrame(This, Frame) -> boolean() when This :: wxLayoutAlgorithm(), Frame :: wxFrame:wxFrame().

Equivalent to layoutFrame(This, Frame, []).

 layoutFrame/3

 -spec layoutFrame(This, Frame, [Option]) -> boolean()
 when
 This :: wxLayoutAlgorithm(),
 Frame :: wxFrame:wxFrame(),
 Option :: {mainWindow, wxWindow:wxWindow()}.

Lays out the children of a normal frame.
mainWindow is set to occupy the remaining space. This function simply calls layoutWindow/3.

 layoutMDIFrame(This, Frame)

 -spec layoutMDIFrame(This, Frame) -> boolean()
 when This :: wxLayoutAlgorithm(), Frame :: wxMDIParentFrame:wxMDIParentFrame().

Equivalent to layoutMDIFrame(This, Frame, []).

 layoutMDIFrame/3

 -spec layoutMDIFrame(This, Frame, [Option]) -> boolean()
 when
 This :: wxLayoutAlgorithm(),
 Frame :: wxMDIParentFrame:wxMDIParentFrame(),
 Option ::
 {rect, {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}}.

Lays out the children of an MDI parent frame.
If rect is non-NULL, the given rectangle will be used as a starting point instead of
the frame's client area. The MDI client window is set to occupy the remaining space.

 layoutWindow(This, Parent)

 -spec layoutWindow(This, Parent) -> boolean()
 when This :: wxLayoutAlgorithm(), Parent :: wxWindow:wxWindow().

Equivalent to layoutWindow(This, Parent, []).

 layoutWindow/3

 -spec layoutWindow(This, Parent, [Option]) -> boolean()
 when
 This :: wxLayoutAlgorithm(),
 Parent :: wxWindow:wxWindow(),
 Option :: {mainWindow, wxWindow:wxWindow()}.

Lays out the children of a normal frame or other window.
mainWindow is set to occupy the remaining space. If this is not specified, then the
last window that responds to a calculate layout event in query mode will get the remaining
space (that is, a non-query OnCalculateLayout event will not be sent to this window and
the window will be set to the remaining size).

 new()

 -spec new() -> wxLayoutAlgorithm().

Default constructor.

wxListBox

A listbox is used to select one or more of a list of strings.
The strings are displayed in a scrolling box, with the selected string(s) marked in
reverse video. A listbox can be single selection (if an item is selected, the previous
selection is removed) or multiple selection (clicking an item toggles the item on or off
independently of other selections).
List box elements are numbered from zero and while the maximal number of elements is
unlimited, it is usually better to use a virtual control, not requiring to add all the
items to it at once, such as wxDataViewCtrl (not implemented in wx) or wxListCtrl
with wxLC_VIRTUAL style, once more than a few hundreds items need to be displayed
because this control is not optimized, neither from performance nor from user interface
point of view, for large number of items.
Notice that the list box doesn't support control characters other than TAB.
Styles
This class supports the following styles:
	wxLB_SINGLE: Single-selection list.

	wxLB_MULTIPLE: Multiple-selection list: the user can toggle multiple items on and off.
This is the same as wxLB_EXTENDED in wxGTK2 port.

	wxLB_EXTENDED: Extended-selection list: the user can extend the selection by using SHIFT
or CTRL keys together with the cursor movement keys or the mouse.

	wxLB_HSCROLL: Create horizontal scrollbar if contents are too wide (Windows only).

	wxLB_ALWAYS_SB: Always show a vertical scrollbar.

	wxLB_NEEDED_SB: Only create a vertical scrollbar if needed.

	wxLB_NO_SB: Don't create vertical scrollbar (wxMSW and wxGTK only).

	wxLB_SORT: The listbox contents are sorted in alphabetical order. Note that wxLB_SINGLE, wxLB_MULTIPLE
and wxLB_EXTENDED styles are mutually exclusive and you can specify at most one of them
(single selection is the default). See also overview_windowstyles.

See:
	wxChoice

	wxComboBox

	wxListCtrl

	wxCommandEvent

This class is derived, and can use functions, from:
	wxControlWithItems

	wxControl

	wxWindow

	wxEvtHandler

wxWidgets docs: wxListBox
Events
Event types emitted from this class:
	command_listbox_selected

	command_listbox_doubleclicked

 Summary

 Types

 wxListBox()

 Functions

 create(This, Parent, Id, Pos, Size, Choices)

 Equivalent to create(This, Parent, Id, Pos, Size, Choices, []).

 create/7

 deselect(This, N)

 Deselects an item in the list box.

 destroy(This)

 Destroys the object

 getSelections(This)

 Fill an array of ints with the positions of the currently selected items.

 hitTest(This, Point)

 Returns the item located at point, or wxNOT_FOUND if there is no item located at point.

 hitTest(This, X, Y)

 This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 insertItems(This, Items, Pos)

 Insert the given number of strings before the specified position.

 isSelected(This, N)

 Determines whether an item is selected.

 new()

 Default constructor.

 new(Parent, Id)

 Equivalent to new(Parent, Id, []).

 new/3

 Constructor, creating and showing a list box.

 set(This, Items)

 Replaces the current control contents with the given items.

 setFirstItem/2

 Set the specified item to be the first visible item.

 Types

 wxListBox()

 -type wxListBox() :: wx:wx_object().

 Functions

 create(This, Parent, Id, Pos, Size, Choices)

 -spec create(This, Parent, Id, Pos, Size, Choices) -> boolean()
 when
 This :: wxListBox(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Pos :: {X :: integer(), Y :: integer()},
 Size :: {W :: integer(), H :: integer()},
 Choices :: [unicode:chardata()].

Equivalent to create(This, Parent, Id, Pos, Size, Choices, []).

 create/7

 -spec create(This, Parent, Id, Pos, Size, Choices, [Option]) -> boolean()
 when
 This :: wxListBox(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Pos :: {X :: integer(), Y :: integer()},
 Size :: {W :: integer(), H :: integer()},
 Choices :: [unicode:chardata()],
 Option :: {style, integer()} | {validator, wx:wx_object()}.

 deselect(This, N)

 -spec deselect(This, N) -> ok when This :: wxListBox(), N :: integer().

Deselects an item in the list box.
Remark: This applies to multiple selection listboxes only.

 destroy(This)

 -spec destroy(This :: wxListBox()) -> ok.

Destroys the object

 getSelections(This)

 -spec getSelections(This) -> Result
 when Result :: {Res :: integer(), Selections :: [integer()]}, This :: wxListBox().

Fill an array of ints with the positions of the currently selected items.
Return: The number of selections.
Remark: Use this with a multiple selection listbox.
See:
	wxControlWithItems:getSelection/1

	wxControlWithItems:getStringSelection/1

	wxControlWithItems:setSelection/2

 hitTest(This, Point)

 -spec hitTest(This, Point) -> integer()
 when This :: wxListBox(), Point :: {X :: integer(), Y :: integer()}.

Returns the item located at point, or wxNOT_FOUND if there is no item located at point.
It is currently implemented for wxMSW, wxMac and wxGTK2 ports.
Return: Item located at point, or wxNOT_FOUND if unimplemented or the item does not exist.
Since: 2.7.0

 hitTest(This, X, Y)

 -spec hitTest(This, X, Y) -> integer() when This :: wxListBox(), X :: integer(), Y :: integer().

This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 insertItems(This, Items, Pos)

 -spec insertItems(This, Items, Pos) -> ok
 when This :: wxListBox(), Items :: [unicode:chardata()], Pos :: integer().

Insert the given number of strings before the specified position.

 isSelected(This, N)

 -spec isSelected(This, N) -> boolean() when This :: wxListBox(), N :: integer().

Determines whether an item is selected.
Return: true if the given item is selected, false otherwise.

 new()

 -spec new() -> wxListBox().

Default constructor.

 new(Parent, Id)

 -spec new(Parent, Id) -> wxListBox() when Parent :: wxWindow:wxWindow(), Id :: integer().

Equivalent to new(Parent, Id, []).

 new/3

 -spec new(Parent, Id, [Option]) -> wxListBox()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {choices, [unicode:chardata()]} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Constructor, creating and showing a list box.
See the other new/3 constructor; the only difference is that this overload takes a wxArrayString
(not implemented in wx) instead of a pointer to an array of wxString (not implemented
in wx).

 set(This, Items)

 -spec set(This, Items) -> ok when This :: wxListBox(), Items :: [unicode:chardata()].

Replaces the current control contents with the given items.
Notice that calling this method is usually much faster than appending them one by one if
you need to add a lot of items.

 setFirstItem/2

 -spec setFirstItem(This, N) -> ok when This :: wxListBox(), N :: integer();
 (This, String) -> ok when This :: wxListBox(), String :: unicode:chardata().

Set the specified item to be the first visible item.

wxListCtrl

A list control presents lists in a number of formats: list view, report view, icon view
and small icon view.
In any case, elements are numbered from zero. For all these modes, the items are stored
in the control and must be added to it using insertItem/4 method.
A special case of report view quite different from the other modes of the list control is
a virtual control in which the items data (including text, images and attributes) is
managed by the main program and is requested by the control itself only when needed which
allows having controls with millions of items without consuming much memory. To use
virtual list control you must use setItemCount/2 first and override at least wxListCtrl::OnGetItemText
(not implemented in wx) (and optionally wxListCtrl::OnGetItemImage (not implemented in
wx) or wxListCtrl::OnGetItemColumnImage (not implemented in wx) and wxListCtrl::OnGetItemAttr
(not implemented in wx)) to return the information about the items when the control
requests it.
Virtual list control can be used as a normal one except that no operations which can take
time proportional to the number of items in the control happen - this is required to allow
having a practically infinite number of items. For example, in a multiple selection
virtual list control, the selections won't be sent when many items are selected at once
because this could mean iterating over all the items.
Using many of wxListCtrl features is shown in the corresponding sample.
To intercept events from a list control, use the event table macros described in wxListEvent.
wxMac Note: Starting with wxWidgets 2.8, wxListCtrl uses a native implementation
for report mode, and uses a generic implementation for other modes. You can use the
generic implementation for report mode as well by setting the mac.listctrl.always_use_generic
system option (see wxSystemOptions) to 1.
Styles
This class supports the following styles:
	wxLC_LIST: Multicolumn list view, with optional small icons. Columns are computed
automatically, i.e. you don't set columns as in wxLC_REPORT. In other words, the list
wraps, unlike a wxListBox.

	wxLC_REPORT: Single or multicolumn report view, with optional header.

	wxLC_VIRTUAL: The application provides items text on demand. May only be used with wxLC_REPORT.

	wxLC_ICON: Large icon view, with optional labels.

	wxLC_SMALL_ICON: Small icon view, with optional labels.

	wxLC_ALIGN_TOP: Icons align to the top. Win32 default, Win32 only.

	wxLC_ALIGN_LEFT: Icons align to the left.

	wxLC_AUTOARRANGE: Icons arrange themselves. Win32 only.

	wxLC_EDIT_LABELS: Labels are editable: the application will be notified when editing
starts.

	wxLC_NO_HEADER: No header in report mode.

	wxLC_SINGLE_SEL: Single selection (default is multiple).

	wxLC_SORT_ASCENDING: Sort in ascending order. (You must still supply a comparison
callback in sortItems/2.)

	wxLC_SORT_DESCENDING: Sort in descending order. (You must still supply a comparison
callback in sortItems/2.)

	wxLC_HRULES: Draws light horizontal rules between rows in report mode.

	wxLC_VRULES: Draws light vertical rules between columns in report mode.

See:
	Overview listctrl

	wxListView

	wxListBox

	wxTreeCtrl

	wxImageList

	wxListEvent

	wxListItem

This class is derived, and can use functions, from:
	wxControl

	wxWindow

	wxEvtHandler

wxWidgets docs: wxListCtrl
Events
Event types emitted from this class:
	command_list_begin_drag

	command_list_begin_rdrag

	command_list_begin_label_edit

	command_list_end_label_edit

	command_list_delete_item

	command_list_delete_all_items

	command_list_item_selected

	command_list_item_deselected

	command_list_item_activated

	command_list_item_focused

	command_list_item_middle_click

	command_list_item_right_click

	command_list_key_down

	command_list_insert_item

	command_list_col_click

	command_list_col_right_click

	command_list_col_begin_drag

	command_list_col_dragging

	command_list_col_end_drag

	command_list_cache_hint

 Summary

 Types

 wxListCtrl()

 Functions

 arrange(This)

 Equivalent to arrange(This, []).

 arrange/2

 Arranges the items in icon or small icon view.

 assignImageList(This, ImageList, Which)

 Sets the image list associated with the control and takes ownership of it (i.e.

 clearAll(This)

 Deletes all items and all columns.

 create(This, Parent)

 create/3

 deleteAllItems(This)

 Deletes all items in the list control.

 deleteColumn(This, Col)

 Deletes a column.

 deleteItem(This, Item)

 Deletes the specified item.

 destroy(This)

 Destroys the object

 editLabel(This, Item)

 Starts editing the label of the given item.

 ensureVisible(This, Item)

 Ensures this item is visible.

 findItem(This, Start, Str)

 Equivalent to findItem(This, Start, Str, []).

 findItem/4

 Find an item nearest this position in the specified direction, starting from start or
the beginning if start is -1.

 getColumn(This, Col, Item)

 Gets information about this column.

 getColumnCount(This)

 Returns the number of columns.

 getColumnWidth(This, Col)

 Gets the column width (report view only).

 getCountPerPage(This)

 Gets the number of items that can fit vertically in the visible area of the list control
(list or report view) or the total number of items in the list control (icon or small icon
view).

 getEditControl(This)

 Returns the edit control being currently used to edit a label.

 getImageList(This, Which)

 Returns the specified image list.

 getItem(This, Info)

 Gets information about the item.

 getItemBackgroundColour(This, Item)

 Returns the colour for this item.

 getItemCount(This)

 Returns the number of items in the list control.

 getItemData(This, Item)

 Gets the application-defined data associated with this item.

 getItemFont(This, Item)

 Returns the item's font.

 getItemPosition(This, Item)

 Returns the position of the item, in icon or small icon view.

 getItemRect(This, Item)

 Equivalent to getItemRect(This, Item, []).

 getItemRect/3

 Returns the rectangle representing the item's size and position, in physical coordinates.

 getItemSpacing(This)

 Retrieves the spacing between icons in pixels: horizontal spacing is returned as x
component of the {Width,Height} object and the vertical spacing as its y component.

 getItemState(This, Item, StateMask)

 Gets the item state.

 getItemText(This, Item)

 Equivalent to getItemText(This, Item, []).

 getItemText/3

 Gets the item text for this item.

 getItemTextColour(This, Item)

 Returns the colour for this item.

 getNextItem(This, Item)

 Equivalent to getNextItem(This, Item, []).

 getNextItem/3

 Searches for an item with the given geometry or state, starting from item but excluding
the item itself.

 getSelectedItemCount(This)

 Returns the number of selected items in the list control.

 getTextColour(This)

 Gets the text colour of the list control.

 getTopItem(This)

 Gets the index of the topmost visible item when in list or report view.

 getViewRect(This)

 Returns the rectangle taken by all items in the control.

 hitTest(This, Point)

 Determines which item (if any) is at the specified point, giving details in flags.

 insertColumn/3

 For report view mode (only), inserts a column.

 insertColumn/4

 For report view mode (only), inserts a column.

 insertItem(This, Info)

 Inserts an item, returning the index of the new item if successful, -1 otherwise.

 insertItem/3

 Insert a string item.

 insertItem(This, Index, Label, ImageIndex)

 Insert an image/string item.

 new()

 new(Parent)

 new/2

 refreshItem(This, Item)

 Redraws the given item.

 refreshItems(This, ItemFrom, ItemTo)

 Redraws the items between itemFrom and itemTo.

 scrollList(This, Dx, Dy)

 Scrolls the list control.

 setBackgroundColour(This, Col)

 Sets the background colour.

 setColumn(This, Col, Item)

 Sets information about this column.

 setColumnWidth(This, Col, Width)

 Sets the column width.

 setImageList(This, ImageList, Which)

 Sets the image list associated with the control.

 setItem(This, Info)

 Sets the data of an item.

 setItem(This, Index, Column, Label)

 Equivalent to setItem(This, Index, Column, Label, []).

 setItem/5

 Sets an item string field at a particular column.

 setItemBackgroundColour(This, Item, Col)

 Sets the background colour for this item.

 setItemColumnImage(This, Item, Column, Image)

 Sets the image associated with the item.

 setItemCount(This, Count)

 This method can only be used with virtual list controls.

 setItemData(This, Item, Data)

 Associates application-defined data with this item.

 setItemFont(This, Item, Font)

 Sets the item's font.

 setItemImage(This, Item, Image)

 Equivalent to setItemImage(This, Item, Image, []).

 setItemImage/4

 Sets the unselected and selected images associated with the item.

 setItemPosition(This, Item, Pos)

 Sets the position of the item, in icon or small icon view.

 setItemState(This, Item, State, StateMask)

 Sets the item state.

 setItemText(This, Item, Text)

 Sets the item text for this item.

 setItemTextColour(This, Item, Col)

 Sets the colour for this item.

 setSingleStyle(This, Style)

 Equivalent to setSingleStyle(This, Style, []).

 setSingleStyle/3

 Adds or removes a single window style.

 setTextColour(This, Col)

 Sets the text colour of the list control.

 setWindowStyleFlag(This, Style)

 Sets the whole window style, deleting all items.

 sortItems(This, SortCallBack)

 Types

 wxListCtrl()

 -type wxListCtrl() :: wx:wx_object().

 Functions

 arrange(This)

 -spec arrange(This) -> boolean() when This :: wxListCtrl().

Equivalent to arrange(This, []).

 arrange/2

 -spec arrange(This, [Option]) -> boolean() when This :: wxListCtrl(), Option :: {flag, integer()}.

Arranges the items in icon or small icon view.
This only has effect on Win32. flag is one of:
	wxLIST_ALIGN_DEFAULT: Default alignment.

	wxLIST_ALIGN_LEFT: Align to the left side of the control.

	wxLIST_ALIGN_TOP: Align to the top side of the control.

	wxLIST_ALIGN_SNAP_TO_GRID: Snap to grid.

 assignImageList(This, ImageList, Which)

 -spec assignImageList(This, ImageList, Which) -> ok
 when
 This :: wxListCtrl(),
 ImageList :: wxImageList:wxImageList(),
 Which :: integer().

Sets the image list associated with the control and takes ownership of it (i.e.
the control will, unlike when using setImageList/3, delete the list when destroyed). which is one of wxIMAGE_LIST_NORMAL, wxIMAGE_LIST_SMALL, wxIMAGE_LIST_STATE
(the last is unimplemented).
See: setImageList/3

 clearAll(This)

 -spec clearAll(This) -> ok when This :: wxListCtrl().

Deletes all items and all columns.
Note: This sends an event of type wxEVT_LIST_DELETE_ALL_ITEMS under all platforms.

 create(This, Parent)

 -spec create(This, Parent) -> boolean() when This :: wxWindow:wxWindow(), Parent :: wxWindow:wxWindow().

 create/3

 -spec create(This, Parent, [Option]) -> boolean()
 when
 This :: wxWindow:wxWindow(),
 Parent :: wxWindow:wxWindow(),
 Option ::
 {winid, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()} |
 {onGetItemText, function()} |
 {onGetItemAttr, function()} |
 {onGetItemColumnImage, function()}.

 deleteAllItems(This)

 -spec deleteAllItems(This) -> boolean() when This :: wxListCtrl().

Deletes all items in the list control.
This function does not send the wxEVT_LIST_DELETE_ITEM event because deleting many
items from the control would be too slow then (unlike deleteItem/2) but it does send the special wxEVT_LIST_DELETE_ALL_ITEMS
event if the control was not empty. If it was already empty, nothing is done and no event
is sent.
Return: true if the items were successfully deleted or if the control was already empty,
false if an error occurred while deleting the items.

 deleteColumn(This, Col)

 -spec deleteColumn(This, Col) -> boolean() when This :: wxListCtrl(), Col :: integer().

Deletes a column.

 deleteItem(This, Item)

 -spec deleteItem(This, Item) -> boolean() when This :: wxListCtrl(), Item :: integer().

Deletes the specified item.
This function sends the wxEVT_LIST_DELETE_ITEM event for the item being deleted.
See: deleteAllItems/1

 destroy(This)

 -spec destroy(This :: wxListCtrl()) -> ok.

Destroys the object

 editLabel(This, Item)

 -spec editLabel(This, Item) -> wxTextCtrl:wxTextCtrl() when This :: wxListCtrl(), Item :: integer().

Starts editing the label of the given item.
This function generates a EVT_LIST_BEGIN_LABEL_EDIT event which can be vetoed so that
no text control will appear for in-place editing.
If the user changed the label (i.e. s/he does not press ESC or leave the text control
without changes, a EVT_LIST_END_LABEL_EDIT event will be sent which can be vetoed as
well.

 ensureVisible(This, Item)

 -spec ensureVisible(This, Item) -> boolean() when This :: wxListCtrl(), Item :: integer().

Ensures this item is visible.

 findItem(This, Start, Str)

 -spec findItem(This, Start, Str) -> integer()
 when This :: wxListCtrl(), Start :: integer(), Str :: unicode:chardata().

Equivalent to findItem(This, Start, Str, []).

 findItem/4

 -spec findItem(This, Start, Str, [Option]) -> integer()
 when
 This :: wxListCtrl(),
 Start :: integer(),
 Str :: unicode:chardata(),
 Option :: {partial, boolean()};
 (This, Start, Pt, Direction) -> integer()
 when
 This :: wxListCtrl(),
 Start :: integer(),
 Pt :: {X :: integer(), Y :: integer()},
 Direction :: integer().

Find an item nearest this position in the specified direction, starting from start or
the beginning if start is -1.
Return: The next matching item if any or -1 (wxNOT_FOUND) otherwise.

 getColumn(This, Col, Item)

 -spec getColumn(This, Col, Item) -> boolean()
 when This :: wxListCtrl(), Col :: integer(), Item :: wxListItem:wxListItem().

Gets information about this column.
See setItem/5 for more information.

 getColumnCount(This)

 -spec getColumnCount(This) -> integer() when This :: wxListCtrl().

Returns the number of columns.

 getColumnWidth(This, Col)

 -spec getColumnWidth(This, Col) -> integer() when This :: wxListCtrl(), Col :: integer().

Gets the column width (report view only).

 getCountPerPage(This)

 -spec getCountPerPage(This) -> integer() when This :: wxListCtrl().

Gets the number of items that can fit vertically in the visible area of the list control
(list or report view) or the total number of items in the list control (icon or small icon
view).

 getEditControl(This)

 -spec getEditControl(This) -> wxTextCtrl:wxTextCtrl() when This :: wxListCtrl().

Returns the edit control being currently used to edit a label.
Returns NULL if no label is being edited.
Note: It is currently only implemented for wxMSW and the generic version, not for the
native macOS version.

 getImageList(This, Which)

 -spec getImageList(This, Which) -> wxImageList:wxImageList()
 when This :: wxListCtrl(), Which :: integer().

Returns the specified image list.
which may be one of:
	wxIMAGE_LIST_NORMAL: The normal (large icon) image list.

	wxIMAGE_LIST_SMALL: The small icon image list.

	wxIMAGE_LIST_STATE: The user-defined state image list (unimplemented).

 getItem(This, Info)

 -spec getItem(This, Info) -> boolean() when This :: wxListCtrl(), Info :: wxListItem:wxListItem().

Gets information about the item.
See setItem/5 for more information.
You must call info.SetId() to set the ID of item you're interested in before calling
this method, and info.SetMask() with the flags indicating what fields you need to
retrieve from info.

 getItemBackgroundColour(This, Item)

 -spec getItemBackgroundColour(This, Item) -> wx:wx_colour4()
 when This :: wxListCtrl(), Item :: integer().

Returns the colour for this item.
If the item has no specific colour, returns an invalid colour (and not the default
background control of the control itself).
See: getItemTextColour/2

 getItemCount(This)

 -spec getItemCount(This) -> integer() when This :: wxListCtrl().

Returns the number of items in the list control.

 getItemData(This, Item)

 -spec getItemData(This, Item) -> integer() when This :: wxListCtrl(), Item :: integer().

Gets the application-defined data associated with this item.

 getItemFont(This, Item)

 -spec getItemFont(This, Item) -> wxFont:wxFont() when This :: wxListCtrl(), Item :: integer().

Returns the item's font.

 getItemPosition(This, Item)

 -spec getItemPosition(This, Item) -> Result
 when
 Result :: {Res :: boolean(), Pos :: {X :: integer(), Y :: integer()}},
 This :: wxListCtrl(),
 Item :: integer().

Returns the position of the item, in icon or small icon view.

 getItemRect(This, Item)

 -spec getItemRect(This, Item) -> Result
 when
 Result ::
 {Res :: boolean(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}},
 This :: wxListCtrl(),
 Item :: integer().

Equivalent to getItemRect(This, Item, []).

 getItemRect/3

 -spec getItemRect(This, Item, [Option]) -> Result
 when
 Result ::
 {Res :: boolean(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}},
 This :: wxListCtrl(),
 Item :: integer(),
 Option :: {code, integer()}.

Returns the rectangle representing the item's size and position, in physical coordinates.
code is one of wxLIST_RECT_BOUNDS, wxLIST_RECT_ICON, wxLIST_RECT_LABEL.

 getItemSpacing(This)

 -spec getItemSpacing(This) -> {W :: integer(), H :: integer()} when This :: wxListCtrl().

Retrieves the spacing between icons in pixels: horizontal spacing is returned as x
component of the {Width,Height} object and the vertical spacing as its y component.

 getItemState(This, Item, StateMask)

 -spec getItemState(This, Item, StateMask) -> integer()
 when This :: wxListCtrl(), Item :: integer(), StateMask :: integer().

Gets the item state.
For a list of state flags, see setItem/5. The stateMask indicates which state flags are of
interest.

 getItemText(This, Item)

 -spec getItemText(This, Item) -> unicode:charlist() when This :: wxListCtrl(), Item :: integer().

Equivalent to getItemText(This, Item, []).

 getItemText/3

 -spec getItemText(This, Item, [Option]) -> unicode:charlist()
 when This :: wxListCtrl(), Item :: integer(), Option :: {col, integer()}.

Gets the item text for this item.

 getItemTextColour(This, Item)

 -spec getItemTextColour(This, Item) -> wx:wx_colour4() when This :: wxListCtrl(), Item :: integer().

Returns the colour for this item.
If the item has no specific colour, returns an invalid colour (and not the default
foreground control of the control itself as this wouldn't allow distinguishing between
items having the same colour as the current control foreground and items with default
colour which, hence, have always the same colour as the control).

 getNextItem(This, Item)

 -spec getNextItem(This, Item) -> integer() when This :: wxListCtrl(), Item :: integer().

Equivalent to getNextItem(This, Item, []).

 getNextItem/3

 -spec getNextItem(This, Item, [Option]) -> integer()
 when
 This :: wxListCtrl(),
 Item :: integer(),
 Option :: {geometry, integer()} | {state, integer()}.

Searches for an item with the given geometry or state, starting from item but excluding
the item itself.
If item is -1, the first item that matches the specified flags will be returned.
Returns the first item with given state following item or -1 if no such item found. This
function may be used to find all selected items in the control like this:
geometry can be one of:
	wxLIST_NEXT_ABOVE: Searches for an item above the specified item.

	wxLIST_NEXT_ALL: Searches for subsequent item by index.

	wxLIST_NEXT_BELOW: Searches for an item below the specified item.

	wxLIST_NEXT_LEFT: Searches for an item to the left of the specified item.

	wxLIST_NEXT_RIGHT: Searches for an item to the right of the specified item.

Note: this parameter is only supported by wxMSW currently and ignored on other platforms.
state can be a bitlist of the following:
	wxLIST_STATE_DONTCARE: Don't care what the state is.

	wxLIST_STATE_DROPHILITED: The item indicates it is a drop target.

	wxLIST_STATE_FOCUSED: The item has the focus.

	wxLIST_STATE_SELECTED: The item is selected.

	wxLIST_STATE_CUT: The item is selected as part of a cut and paste operation.

 getSelectedItemCount(This)

 -spec getSelectedItemCount(This) -> integer() when This :: wxListCtrl().

Returns the number of selected items in the list control.

 getTextColour(This)

 -spec getTextColour(This) -> wx:wx_colour4() when This :: wxListCtrl().

Gets the text colour of the list control.

 getTopItem(This)

 -spec getTopItem(This) -> integer() when This :: wxListCtrl().

Gets the index of the topmost visible item when in list or report view.

 getViewRect(This)

 -spec getViewRect(This) -> {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}
 when This :: wxListCtrl().

Returns the rectangle taken by all items in the control.
In other words, if the controls client size were equal to the size of this rectangle, no
scrollbars would be needed and no free space would be left.
Note that this function only works in the icon and small icon views, not in list or
report views (this is a limitation of the native Win32 control).

 hitTest(This, Point)

 -spec hitTest(This, Point) -> Result
 when
 Result :: {Res :: integer(), Flags :: integer(), PtrSubItem :: integer()},
 This :: wxListCtrl(),
 Point :: {X :: integer(), Y :: integer()}.

Determines which item (if any) is at the specified point, giving details in flags.
Returns index of the item or wxNOT_FOUND if no item is at the specified point.
flags will be a combination of the following flags:
	wxLIST_HITTEST_ABOVE: Above the control's client area.

	wxLIST_HITTEST_BELOW: Below the control's client area.

	wxLIST_HITTEST_TOLEFT: To the left of the control's client area.

	wxLIST_HITTEST_TORIGHT: To the right of the control's client area.

	wxLIST_HITTEST_NOWHERE: Inside the control's client area but not over an item.

	wxLIST_HITTEST_ONITEMICON: Over an item's icon.

	wxLIST_HITTEST_ONITEMLABEL: Over an item's text.

	wxLIST_HITTEST_ONITEMSTATEICON: Over the checkbox of an item.

	wxLIST_HITTEST_ONITEM: Combination of wxLIST_HITTEST_ONITEMICON, wxLIST_HITTEST_ONITEMLABEL, wxLIST_HITTEST_ONITEMSTATEICON.

If ptrSubItem is not NULL and the wxListCtrl is in the report mode the subitem (or
column) number will also be provided. This feature is only available in version 2.7.0 or
higher and is currently only implemented under wxMSW and requires at least comctl32.dll of
version 4.70 on the host system or the value stored in ptrSubItem will be always -1. To
compile this feature into wxWidgets library you need to have access to commctrl.h of
version 4.70 that is provided by Microsoft.

 insertColumn/3

 -spec insertColumn(This, Col, Heading) -> integer()
 when This :: wxListCtrl(), Col :: integer(), Heading :: unicode:chardata();
 (This, Col, Info) -> integer()
 when This :: wxListCtrl(), Col :: integer(), Info :: wxListItem:wxListItem().

For report view mode (only), inserts a column.
For more details, see setItem/5. Also see insertColumn/4 overload for a usually more convenient alternative to
this method and the description of how the item width is interpreted by this method.

 insertColumn/4

 -spec insertColumn(This, Col, Heading, [Option]) -> integer()
 when
 This :: wxListCtrl(),
 Col :: integer(),
 Heading :: unicode:chardata(),
 Option :: {format, integer()} | {width, integer()}.

For report view mode (only), inserts a column.
Insert a new column in the list control in report view mode at the given position
specifying its most common attributes.
Notice that to set the image for the column you need to use insertColumn/4 overload and specify
?wxLIST_MASK_IMAGE in the item mask.
Return: The index of the inserted column or -1 if adding it failed.

 insertItem(This, Info)

 -spec insertItem(This, Info) -> integer() when This :: wxListCtrl(), Info :: wxListItem:wxListItem().

Inserts an item, returning the index of the new item if successful, -1 otherwise.

 insertItem/3

 -spec insertItem(This, Index, ImageIndex) -> integer()
 when This :: wxListCtrl(), Index :: integer(), ImageIndex :: integer();
 (This, Index, Label) -> integer()
 when This :: wxListCtrl(), Index :: integer(), Label :: unicode:chardata().

Insert a string item.

 insertItem(This, Index, Label, ImageIndex)

 -spec insertItem(This, Index, Label, ImageIndex) -> integer()
 when
 This :: wxListCtrl(),
 Index :: integer(),
 Label :: unicode:chardata(),
 ImageIndex :: integer().

Insert an image/string item.

 new()

 -spec new() -> wxListCtrl().

 new(Parent)

 -spec new(Parent) -> wxListCtrl() when Parent :: wxWindow:wxWindow().

 new/2

 -spec new(Parent, [Option]) -> wxListCtrl()
 when
 Parent :: wxWindow:wxWindow(),
 Option ::
 {winid, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()} |
 {onGetItemText, function()} |
 {onGetItemAttr, function()} |
 {onGetItemColumnImage, function()}.

 refreshItem(This, Item)

 -spec refreshItem(This, Item) -> ok when This :: wxListCtrl(), Item :: integer().

Redraws the given item.
This is only useful for the virtual list controls as without calling this function the
displayed value of the item doesn't change even when the underlying data does change.
See: refreshItems/3

 refreshItems(This, ItemFrom, ItemTo)

 -spec refreshItems(This, ItemFrom, ItemTo) -> ok
 when This :: wxListCtrl(), ItemFrom :: integer(), ItemTo :: integer().

Redraws the items between itemFrom and itemTo.
The starting item must be less than or equal to the ending one.
Just as refreshItem/2 this is only useful for virtual list controls.

 scrollList(This, Dx, Dy)

 -spec scrollList(This, Dx, Dy) -> boolean() when This :: wxListCtrl(), Dx :: integer(), Dy :: integer().

Scrolls the list control.
If in icon, small icon or report view mode, dx specifies the number of pixels to
scroll. If in list view mode, dx specifies the number of columns to scroll. dy always
specifies the number of pixels to scroll vertically.
Note: This method is currently only implemented in the Windows version.

 setBackgroundColour(This, Col)

 -spec setBackgroundColour(This, Col) -> boolean() when This :: wxListCtrl(), Col :: wx:wx_colour().

Sets the background colour.
Note that the wxWindow:getBackgroundColour/1 function of wxWindow base class can be used to retrieve the current
background colour.

 setColumn(This, Col, Item)

 -spec setColumn(This, Col, Item) -> boolean()
 when This :: wxListCtrl(), Col :: integer(), Item :: wxListItem:wxListItem().

Sets information about this column.
See setItem/5 for more information.

 setColumnWidth(This, Col, Width)

 -spec setColumnWidth(This, Col, Width) -> boolean()
 when This :: wxListCtrl(), Col :: integer(), Width :: integer().

Sets the column width.
width can be a width in pixels or wxLIST_AUTOSIZE (-1) or wxLIST_AUTOSIZE_USEHEADER (-2).
wxLIST_AUTOSIZE will resize the column to the length of its longest item.
wxLIST_AUTOSIZE_USEHEADER will resize the column to the length of the header (Win32) or
80 pixels (other platforms).
In small or normal icon view, col must be -1, and the column width is set for all
columns.

 setImageList(This, ImageList, Which)

 -spec setImageList(This, ImageList, Which) -> ok
 when
 This :: wxListCtrl(),
 ImageList :: wxImageList:wxImageList(),
 Which :: integer().

Sets the image list associated with the control.
which is one of wxIMAGE_LIST_NORMAL, wxIMAGE_LIST_SMALL, wxIMAGE_LIST_STATE (the
last is unimplemented).
This method does not take ownership of the image list, you have to delete it yourself.
See: assignImageList/3

 setItem(This, Info)

 -spec setItem(This, Info) -> boolean() when This :: wxListCtrl(), Info :: wxListItem:wxListItem().

Sets the data of an item.
Using the wxListItem's mask and state mask, you can change only selected attributes
of a wxListCtrl item.
Return: true if the item was successfully updated or false if the update failed for some
reason (e.g. an invalid item index).

 setItem(This, Index, Column, Label)

 -spec setItem(This, Index, Column, Label) -> boolean()
 when
 This :: wxListCtrl(),
 Index :: integer(),
 Column :: integer(),
 Label :: unicode:chardata().

Equivalent to setItem(This, Index, Column, Label, []).

 setItem/5

 -spec setItem(This, Index, Column, Label, [Option]) -> boolean()
 when
 This :: wxListCtrl(),
 Index :: integer(),
 Column :: integer(),
 Label :: unicode:chardata(),
 Option :: {imageId, integer()}.

Sets an item string field at a particular column.
Return: true if the item was successfully updated or false if the update failed for some
reason (e.g. an invalid item index).

 setItemBackgroundColour(This, Item, Col)

 -spec setItemBackgroundColour(This, Item, Col) -> ok
 when This :: wxListCtrl(), Item :: integer(), Col :: wx:wx_colour().

Sets the background colour for this item.
This function only works in report view mode. The colour can be retrieved using getItemBackgroundColour/2.

 setItemColumnImage(This, Item, Column, Image)

 -spec setItemColumnImage(This, Item, Column, Image) -> boolean()
 when
 This :: wxListCtrl(),
 Item :: integer(),
 Column :: integer(),
 Image :: integer().

Sets the image associated with the item.
In report view, you can specify the column. The image is an index into the image list
associated with the list control.

 setItemCount(This, Count)

 -spec setItemCount(This, Count) -> ok when This :: wxListCtrl(), Count :: integer().

This method can only be used with virtual list controls.
It is used to indicate to the control the number of items it contains. After calling it,
the main program should be ready to handle calls to various item callbacks (such as wxListCtrl::OnGetItemText
(not implemented in wx)) for all items in the range from 0 to count.
Notice that the control is not necessarily redrawn after this call as it may be
undesirable if an item which is not visible on the screen anyhow was added to or removed
from a control displaying many items, if you do need to refresh the display you can just
call wxWindow:refresh/2 manually.

 setItemData(This, Item, Data)

 -spec setItemData(This, Item, Data) -> boolean()
 when This :: wxListCtrl(), Item :: integer(), Data :: integer().

Associates application-defined data with this item.
Notice that this function cannot be used to associate pointers with the control items,
use SetItemPtrData() (not implemented in wx) instead.

 setItemFont(This, Item, Font)

 -spec setItemFont(This, Item, Font) -> ok
 when This :: wxListCtrl(), Item :: integer(), Font :: wxFont:wxFont().

Sets the item's font.

 setItemImage(This, Item, Image)

 -spec setItemImage(This, Item, Image) -> boolean()
 when This :: wxListCtrl(), Item :: integer(), Image :: integer().

Equivalent to setItemImage(This, Item, Image, []).

 setItemImage/4

 -spec setItemImage(This, Item, Image, [Option]) -> boolean()
 when
 This :: wxListCtrl(),
 Item :: integer(),
 Image :: integer(),
 Option :: {selImage, integer()}.

Sets the unselected and selected images associated with the item.
The images are indices into the image list associated with the list control.

 setItemPosition(This, Item, Pos)

 -spec setItemPosition(This, Item, Pos) -> boolean()
 when
 This :: wxListCtrl(),
 Item :: integer(),
 Pos :: {X :: integer(), Y :: integer()}.

Sets the position of the item, in icon or small icon view.
Windows only.

 setItemState(This, Item, State, StateMask)

 -spec setItemState(This, Item, State, StateMask) -> boolean()
 when
 This :: wxListCtrl(),
 Item :: integer(),
 State :: integer(),
 StateMask :: integer().

Sets the item state.
The stateMask is a combination of wxLIST_STATE_XXX constants described in wxListItem
documentation. For each of the bits specified in stateMask, the corresponding state is
set or cleared depending on whether state argument contains the same bit or not.
So to select an item you can use while to deselect it you should use
Consider using wxListView if possible to avoid dealing with this error-prone and
confusing method.
Also notice that contrary to the usual rule that only user actions generate events, this
method does generate wxEVT_LIST_ITEM_SELECTED event when it is used to select an item.

 setItemText(This, Item, Text)

 -spec setItemText(This, Item, Text) -> ok
 when This :: wxListCtrl(), Item :: integer(), Text :: unicode:chardata().

Sets the item text for this item.

 setItemTextColour(This, Item, Col)

 -spec setItemTextColour(This, Item, Col) -> ok
 when This :: wxListCtrl(), Item :: integer(), Col :: wx:wx_colour().

Sets the colour for this item.
This function only works in report view. The colour can be retrieved using getItemTextColour/2.

 setSingleStyle(This, Style)

 -spec setSingleStyle(This, Style) -> ok when This :: wxListCtrl(), Style :: integer().

Equivalent to setSingleStyle(This, Style, []).

 setSingleStyle/3

 -spec setSingleStyle(This, Style, [Option]) -> ok
 when This :: wxListCtrl(), Style :: integer(), Option :: {add, boolean()}.

Adds or removes a single window style.

 setTextColour(This, Col)

 -spec setTextColour(This, Col) -> ok when This :: wxListCtrl(), Col :: wx:wx_colour().

Sets the text colour of the list control.

 setWindowStyleFlag(This, Style)

 -spec setWindowStyleFlag(This, Style) -> ok when This :: wxListCtrl(), Style :: integer().

Sets the whole window style, deleting all items.

 sortItems(This, SortCallBack)

 -spec sortItems(This :: wxListCtrl(), SortCallBack) -> boolean()
 when SortCallBack :: fun((integer(), integer()) -> integer()).

wxListEvent

A list event holds information about events associated with wxListCtrl objects.
See: wxListCtrl
This class is derived, and can use functions, from:
	wxNotifyEvent

	wxCommandEvent

	wxEvent

wxWidgets docs: wxListEvent
Events
Use wxEvtHandler:connect/3 with wxListEventType to subscribe to events of this type.

 Summary

 Types

 wxList()

 wxListEvent()

 wxListEventType()

 Functions

 getCacheFrom(This)

 For EVT_LIST_CACHE_HINT event only: return the first item which the list control
advises us to cache.

 getCacheTo(This)

 For EVT_LIST_CACHE_HINT event only: return the last item (inclusive) which the list
control advises us to cache.

 getColumn(This)

 The column position: it is only used with COL events.

 getData(This)

 The data.

 getImage(This)

 The image.

 getIndex(This)

 The item index.

 getItem(This)

 An item object, used by some events.

 getKeyCode(This)

 Key code if the event is a keypress event.

 getLabel(This)

 The (new) item label for EVT_LIST_END_LABEL_EDIT event.

 getMask(This)

 The mask.

 getPoint(This)

 The position of the mouse pointer if the event is a drag event.

 getText(This)

 The text.

 isEditCancelled(This)

 This method only makes sense for EVT_LIST_END_LABEL_EDIT message and returns true
if it the label editing has been cancelled by the user (getLabel/1 returns an empty
string in this case but it doesn't allow the application to distinguish between really
cancelling the edit and the admittedly rare case when the user wants to rename it to an
empty string).

 Types

 wxList()

 -type wxList() ::
 #wxList{type :: wxListEvent:wxListEventType(),
 code :: integer(),
 oldItemIndex :: integer(),
 itemIndex :: integer(),
 col :: integer(),
 pointDrag :: {X :: integer(), Y :: integer()}}.

 wxListEvent()

 -type wxListEvent() :: wx:wx_object().

 wxListEventType()

 -type wxListEventType() ::
 command_list_begin_drag | command_list_begin_rdrag | command_list_begin_label_edit |
 command_list_end_label_edit | command_list_delete_item | command_list_delete_all_items |
 command_list_key_down | command_list_insert_item | command_list_col_click |
 command_list_col_right_click | command_list_col_begin_drag | command_list_col_dragging |
 command_list_col_end_drag | command_list_item_selected | command_list_item_deselected |
 command_list_item_right_click | command_list_item_middle_click | command_list_item_activated |
 command_list_item_focused | command_list_cache_hint.

 Functions

 getCacheFrom(This)

 -spec getCacheFrom(This) -> integer() when This :: wxListEvent().

For EVT_LIST_CACHE_HINT event only: return the first item which the list control
advises us to cache.

 getCacheTo(This)

 -spec getCacheTo(This) -> integer() when This :: wxListEvent().

For EVT_LIST_CACHE_HINT event only: return the last item (inclusive) which the list
control advises us to cache.

 getColumn(This)

 -spec getColumn(This) -> integer() when This :: wxListEvent().

The column position: it is only used with COL events.
For the column dragging events, it is the column to the left of the divider being
dragged, for the column click events it may be -1 if the user clicked in the list control
header outside any column.

 getData(This)

 -spec getData(This) -> integer() when This :: wxListEvent().

The data.

 getImage(This)

 -spec getImage(This) -> integer() when This :: wxListEvent().

The image.

 getIndex(This)

 -spec getIndex(This) -> integer() when This :: wxListEvent().

The item index.

 getItem(This)

 -spec getItem(This) -> wxListItem:wxListItem() when This :: wxListEvent().

An item object, used by some events.
See also wxListCtrl:setItem/5.

 getKeyCode(This)

 -spec getKeyCode(This) -> integer() when This :: wxListEvent().

Key code if the event is a keypress event.

 getLabel(This)

 -spec getLabel(This) -> unicode:charlist() when This :: wxListEvent().

The (new) item label for EVT_LIST_END_LABEL_EDIT event.

 getMask(This)

 -spec getMask(This) -> integer() when This :: wxListEvent().

The mask.

 getPoint(This)

 -spec getPoint(This) -> {X :: integer(), Y :: integer()} when This :: wxListEvent().

The position of the mouse pointer if the event is a drag event.

 getText(This)

 -spec getText(This) -> unicode:charlist() when This :: wxListEvent().

The text.

 isEditCancelled(This)

 -spec isEditCancelled(This) -> boolean() when This :: wxListEvent().

This method only makes sense for EVT_LIST_END_LABEL_EDIT message and returns true
if it the label editing has been cancelled by the user (getLabel/1 returns an empty
string in this case but it doesn't allow the application to distinguish between really
cancelling the edit and the admittedly rare case when the user wants to rename it to an
empty string).

wxListItem

This class stores information about a wxListCtrl item or column.
wxListItem is a class which contains information about:
	Zero based item position; see setId/2 and getId/1.

	Zero based column index; see setColumn/2 and getColumn/1.

	The label (or header for columns); see setText/2 and getText/1.

	The zero based index into an image list; see getImage/1 and setImage/2.

	Application defined data; see SetData() (not implemented in wx) and GetData() (not
implemented in wx).

	For columns only: the width of the column; see setWidth/2 and getWidth/1.

	For columns only: the format of the column; one of wxLIST_FORMAT_LEFT, wxLIST_FORMAT_RIGHT, wxLIST_FORMAT_CENTRE.
See setAlign/2 and getAlign/1.

	The state of the item; see setState/2 and getState/1. This is a bitlist of the following flags:

	wxLIST_STATE_FOCUSED: The item has the focus.

	wxLIST_STATE_SELECTED: The item is selected.

	wxLIST_STATE_DONTCARE: No special flags (the value of this constant is 0).

	wxLIST_STATE_DROPHILITED: The item is highlighted to receive a drop event. Win32 only.

	wxLIST_STATE_CUT: The item is in the cut state. Win32 only.

	A mask indicating which state flags are valid; this is a bitlist of the flags reported
above for the item state. See setStateMask/2 and GetStateMask().

	A mask indicating which fields of this class are valid; see setMask/2 and getMask/1. This is a bitlist of
the following flags:

	wxLIST_MASK_STATE: The state field is valid.

	wxLIST_MASK_TEXT: The label field is valid.

	wxLIST_MASK_IMAGE: The image field is valid.

	wxLIST_MASK_DATA: The application-defined data field is valid.

	wxLIST_MASK_WIDTH: The column width field is valid.

	wxLIST_MASK_FORMAT: The column format field is valid.

The wxListItem object can also contain item-specific colour and font information: for
this you need to call one of setTextColour/2, setBackgroundColour/2 or setFont/2 functions on it passing it the colour/font to use. If
the colour/font is not specified, the default list control colour/font is used.
See: wxListCtrl
wxWidgets docs: wxListItem

 Summary

 Types

 wxListItem()

 Functions

 clear(This)

 Resets the item state to the default.

 destroy(This)

 Destroys the object

 getAlign(This)

 Returns the alignment for this item.

 getBackgroundColour(This)

 Returns the background colour for this item.

 getColumn(This)

 Returns the zero-based column; meaningful only in report mode.

 getFont(This)

 Returns the font used to display the item.

 getId(This)

 Returns the zero-based item position.

 getImage(This)

 Returns the zero-based index of the image associated with the item into the image list.

 getMask(This)

 Returns a bit mask indicating which fields of the structure are valid.

 getState(This)

 Returns a bit field representing the state of the item.

 getText(This)

 Returns the label/header text.

 getTextColour(This)

 Returns the text colour.

 getWidth(This)

 Meaningful only for column headers in report mode.

 new()

 Constructor.

 new(Item)

 setAlign(This, Align)

 Sets the alignment for the item.

 setBackgroundColour(This, ColBack)

 Sets the background colour for the item.

 setColumn(This, Col)

 Sets the zero-based column.

 setFont(This, Font)

 Sets the font for the item.

 setId(This, Id)

 Sets the zero-based item position.

 setImage(This, Image)

 Sets the zero-based index of the image associated with the item into the image list.

 setMask(This, Mask)

 Sets the mask of valid fields.

 setState(This, State)

 Sets the item state flags (note that the valid state flags are influenced by the value of
the state mask, see setStateMask/2).

 setStateMask(This, StateMask)

 Sets the bitmask that is used to determine which of the state flags are to be set.

 setText(This, Text)

 Sets the text label for the item.

 setTextColour(This, ColText)

 Sets the text colour for the item.

 setWidth(This, Width)

 Meaningful only for column headers in report mode.

 Types

 wxListItem()

 -type wxListItem() :: wx:wx_object().

 Functions

 clear(This)

 -spec clear(This) -> ok when This :: wxListItem().

Resets the item state to the default.

 destroy(This)

 -spec destroy(This :: wxListItem()) -> ok.

Destroys the object

 getAlign(This)

 -spec getAlign(This) -> wx:wx_enum() when This :: wxListItem().

Returns the alignment for this item.
Can be one of wxLIST_FORMAT_LEFT, wxLIST_FORMAT_RIGHT or wxLIST_FORMAT_CENTRE.

 getBackgroundColour(This)

 -spec getBackgroundColour(This) -> wx:wx_colour4() when This :: wxListItem().

Returns the background colour for this item.

 getColumn(This)

 -spec getColumn(This) -> integer() when This :: wxListItem().

Returns the zero-based column; meaningful only in report mode.

 getFont(This)

 -spec getFont(This) -> wxFont:wxFont() when This :: wxListItem().

Returns the font used to display the item.

 getId(This)

 -spec getId(This) -> integer() when This :: wxListItem().

Returns the zero-based item position.

 getImage(This)

 -spec getImage(This) -> integer() when This :: wxListItem().

Returns the zero-based index of the image associated with the item into the image list.

 getMask(This)

 -spec getMask(This) -> integer() when This :: wxListItem().

Returns a bit mask indicating which fields of the structure are valid.
Can be any combination of the following values:
	wxLIST_MASK_STATE: GetState is valid.

	wxLIST_MASK_TEXT: GetText is valid.

	wxLIST_MASK_IMAGE: GetImage is valid.

	wxLIST_MASK_DATA: GetData is valid.

	wxLIST_MASK_WIDTH: GetWidth is valid.

	wxLIST_MASK_FORMAT: GetFormat is valid.

 getState(This)

 -spec getState(This) -> integer() when This :: wxListItem().

Returns a bit field representing the state of the item.
Can be any combination of:
	wxLIST_STATE_DONTCARE: No special flags (the values of this constant is 0).

	wxLIST_STATE_DROPHILITED: The item is highlighted to receive a drop event. Win32 only.

	wxLIST_STATE_FOCUSED: The item has the focus.

	wxLIST_STATE_SELECTED: The item is selected.

	wxLIST_STATE_CUT: The item is in the cut state. Win32 only.

 getText(This)

 -spec getText(This) -> unicode:charlist() when This :: wxListItem().

Returns the label/header text.

 getTextColour(This)

 -spec getTextColour(This) -> wx:wx_colour4() when This :: wxListItem().

Returns the text colour.

 getWidth(This)

 -spec getWidth(This) -> integer() when This :: wxListItem().

Meaningful only for column headers in report mode.
Returns the column width.

 new()

 -spec new() -> wxListItem().

Constructor.

 new(Item)

 -spec new(Item) -> wxListItem() when Item :: wxListItem().

 setAlign(This, Align)

 -spec setAlign(This, Align) -> ok when This :: wxListItem(), Align :: wx:wx_enum().

Sets the alignment for the item.
See also getAlign/1

 setBackgroundColour(This, ColBack)

 -spec setBackgroundColour(This, ColBack) -> ok when This :: wxListItem(), ColBack :: wx:wx_colour().

Sets the background colour for the item.

 setColumn(This, Col)

 -spec setColumn(This, Col) -> ok when This :: wxListItem(), Col :: integer().

Sets the zero-based column.
Meaningful only in report mode.

 setFont(This, Font)

 -spec setFont(This, Font) -> ok when This :: wxListItem(), Font :: wxFont:wxFont().

Sets the font for the item.

 setId(This, Id)

 -spec setId(This, Id) -> ok when This :: wxListItem(), Id :: integer().

Sets the zero-based item position.

 setImage(This, Image)

 -spec setImage(This, Image) -> ok when This :: wxListItem(), Image :: integer().

Sets the zero-based index of the image associated with the item into the image list.

 setMask(This, Mask)

 -spec setMask(This, Mask) -> ok when This :: wxListItem(), Mask :: integer().

Sets the mask of valid fields.
See getMask/1.

 setState(This, State)

 -spec setState(This, State) -> ok when This :: wxListItem(), State :: integer().

Sets the item state flags (note that the valid state flags are influenced by the value of
the state mask, see setStateMask/2).
See getState/1 for valid flag values.

 setStateMask(This, StateMask)

 -spec setStateMask(This, StateMask) -> ok when This :: wxListItem(), StateMask :: integer().

Sets the bitmask that is used to determine which of the state flags are to be set.
See also setState/2.

 setText(This, Text)

 -spec setText(This, Text) -> ok when This :: wxListItem(), Text :: unicode:chardata().

Sets the text label for the item.

 setTextColour(This, ColText)

 -spec setTextColour(This, ColText) -> ok when This :: wxListItem(), ColText :: wx:wx_colour().

Sets the text colour for the item.

 setWidth(This, Width)

 -spec setWidth(This, Width) -> ok when This :: wxListItem(), Width :: integer().

Meaningful only for column headers in report mode.
Sets the column width.

wxListItemAttr

Functions for wxListItemAttr class
wxWidgets docs: wxListItemAttr

 Summary

 Types

 wxListItemAttr()

 Functions

 destroy(This)

 Destroys the object

 getBackgroundColour(This)

 getFont(This)

 getTextColour(This)

 hasBackgroundColour(This)

 hasFont(This)

 hasTextColour(This)

 new()

 new(ColText, ColBack, Font)

 setBackgroundColour(This, ColBack)

 setFont(This, Font)

 setTextColour(This, ColText)

 Types

 wxListItemAttr()

 -type wxListItemAttr() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxListItemAttr()) -> ok.

Destroys the object

 getBackgroundColour(This)

 -spec getBackgroundColour(This) -> wx:wx_colour4() when This :: wxListItemAttr().

 getFont(This)

 -spec getFont(This) -> wxFont:wxFont() when This :: wxListItemAttr().

 getTextColour(This)

 -spec getTextColour(This) -> wx:wx_colour4() when This :: wxListItemAttr().

 hasBackgroundColour(This)

 -spec hasBackgroundColour(This) -> boolean() when This :: wxListItemAttr().

 hasFont(This)

 -spec hasFont(This) -> boolean() when This :: wxListItemAttr().

 hasTextColour(This)

 -spec hasTextColour(This) -> boolean() when This :: wxListItemAttr().

 new()

 -spec new() -> wxListItemAttr().

 new(ColText, ColBack, Font)

 -spec new(ColText, ColBack, Font) -> wxListItemAttr()
 when ColText :: wx:wx_colour(), ColBack :: wx:wx_colour(), Font :: wxFont:wxFont().

 setBackgroundColour(This, ColBack)

 -spec setBackgroundColour(This, ColBack) -> ok when This :: wxListItemAttr(), ColBack :: wx:wx_colour().

 setFont(This, Font)

 -spec setFont(This, Font) -> ok when This :: wxListItemAttr(), Font :: wxFont:wxFont().

 setTextColour(This, ColText)

 -spec setTextColour(This, ColText) -> ok when This :: wxListItemAttr(), ColText :: wx:wx_colour().

wxListView

This class currently simply presents a simpler to use interface for the wxListCtrl --
it can be thought of as a façade for that complicated class.
Using it is preferable to using wxListCtrl directly whenever possible because in the
future some ports might implement wxListView but not the full set of wxListCtrl features.
Other than different interface, this class is identical to wxListCtrl. In particular,
it uses the same events, same window styles and so on.
See: setColumnImage/3
This class is derived, and can use functions, from:
	wxControl

	wxWindow

	wxEvtHandler

wxWidgets docs: wxListView

 Summary

 Types

 wxListView()

 Functions

 clearColumnImage(This, Col)

 Resets the column image -- after calling this function, no image will be shown.

 focus(This, Index)

 Sets focus to the item with the given index.

 getFirstSelected(This)

 Returns the first selected item in a (presumably) multiple selection control.

 getFocusedItem(This)

 Returns the currently focused item or -1 if none.

 getNextSelected(This, Item)

 Used together with getFirstSelected/1 to iterate over all selected items in the
control.

 isSelected(This, Index)

 Returns true if the item with the given index is selected, false otherwise.

 select(This, N)

 Equivalent to select(This, N, []).

 select/3

 Selects or unselects the given item.

 setColumnImage(This, Col, Image)

 Sets the column image for the specified column.

 Types

 wxListView()

 -type wxListView() :: wx:wx_object().

 Functions

 clearColumnImage(This, Col)

 -spec clearColumnImage(This, Col) -> ok when This :: wxListView(), Col :: integer().

Resets the column image -- after calling this function, no image will be shown.
See: setColumnImage/3

 focus(This, Index)

 -spec focus(This, Index) -> ok when This :: wxListView(), Index :: integer().

Sets focus to the item with the given index.

 getFirstSelected(This)

 -spec getFirstSelected(This) -> integer() when This :: wxListView().

Returns the first selected item in a (presumably) multiple selection control.
Together with getNextSelected/2 it can be used to iterate over all selected items in the control.
Return: The first selected item, if any, -1 otherwise.

 getFocusedItem(This)

 -spec getFocusedItem(This) -> integer() when This :: wxListView().

Returns the currently focused item or -1 if none.
See:
	isSelected/2

	focus/2

 getNextSelected(This, Item)

 -spec getNextSelected(This, Item) -> integer() when This :: wxListView(), Item :: integer().

Used together with getFirstSelected/1 to iterate over all selected items in the
control.
Return: Returns the next selected item or -1 if there are no more of them.

 isSelected(This, Index)

 -spec isSelected(This, Index) -> boolean() when This :: wxListView(), Index :: integer().

Returns true if the item with the given index is selected, false otherwise.
See:
	getFirstSelected/1

	getNextSelected/2

 select(This, N)

 -spec select(This, N) -> ok when This :: wxListView(), N :: integer().

Equivalent to select(This, N, []).

 select/3

 -spec select(This, N, [Option]) -> ok
 when This :: wxListView(), N :: integer(), Option :: {on, boolean()}.

Selects or unselects the given item.
Notice that this method inherits the unusual behaviour of wxListCtrl:setItemState/4 which sends a
wxEVT_LIST_ITEM_SELECTED event when it is used to select an item, contrary to the usual
rule that only the user actions result in selection.

 setColumnImage(This, Col, Image)

 -spec setColumnImage(This, Col, Image) -> ok
 when This :: wxListView(), Col :: integer(), Image :: integer().

Sets the column image for the specified column.
To use the column images, the control must have a valid image list with at least one image.

wxListbook

wxListbook is a class similar to wxNotebook but which uses a wxListCtrl to
show the labels instead of the tabs.
The underlying wxListCtrl displays page labels in a one-column report view by
default. Calling wxBookCtrl::SetImageList will implicitly switch the control to use an
icon view.
For usage documentation of this class, please refer to the base abstract class
wxBookCtrl. You can also use the page_samples_notebook to see wxListbook in action.
Styles
This class supports the following styles:
	wxLB_DEFAULT: Choose the default location for the labels depending on the current
platform (left everywhere except Mac where it is top).

	wxLB_TOP: Place labels above the page area.

	wxLB_LEFT: Place labels on the left side.

	wxLB_RIGHT: Place labels on the right side.

	wxLB_BOTTOM: Place labels below the page area.

See:
	?wxBookCtrl

	wxNotebook

	Examples

This class is derived, and can use functions, from:
	wxBookCtrlBase

	wxControl

	wxWindow

	wxEvtHandler

wxWidgets docs: wxListbook
Events
Event types emitted from this class:
	listbook_page_changed

	listbook_page_changing

 Summary

 Types

 wxListbook()

 Functions

 addPage(This, Page, Text)

 Equivalent to addPage(This, Page, Text, []).

 addPage/4

 Adds a new page.

 advanceSelection(This)

 Equivalent to advanceSelection(This, []).

 advanceSelection/2

 Cycles through the tabs.

 assignImageList(This, ImageList)

 Sets the image list for the page control and takes ownership of the list.

 changeSelection(This, Page)

 Changes the selection to the given page, returning the previous selection.

 create(This, Parent, Id)

 Equivalent to create(This, Parent, Id, []).

 create/4

 Create the list book control that has already been constructed with the default
constructor.

 deleteAllPages(This)

 Deletes all pages.

 destroy(This)

 Destroys the object

 getCurrentPage(This)

 Returns the currently selected page or NULL.

 getImageList(This)

 Returns the associated image list, may be NULL.

 getPage(This, Page)

 Returns the window at the given page position.

 getPageCount(This)

 Returns the number of pages in the control.

 getPageImage(This, NPage)

 Returns the image index for the given page.

 getPageText(This, NPage)

 Returns the string for the given page.

 getSelection(This)

 Returns the currently selected page, or wxNOT_FOUND if none was selected.

 hitTest(This, Pt)

 Returns the index of the tab at the specified position or wxNOT_FOUND if none.

 insertPage(This, Index, Page, Text)

 Equivalent to insertPage(This, Index, Page, Text, []).

 insertPage/5

 Inserts a new page at the specified position.

 new()

 Default ctor.

 new(Parent, Id)

 Equivalent to new(Parent, Id, []).

 new/3

 Constructs a listbook control.

 setImageList(This, ImageList)

 Sets the image list to use.

 setPageImage(This, Page, Image)

 Sets the image index for the given page.

 setPageSize(This, Size)

 Sets the width and height of the pages.

 setPageText(This, Page, Text)

 Sets the text for the given page.

 setSelection(This, Page)

 Sets the selection to the given page, returning the previous selection.

 Types

 wxListbook()

 -type wxListbook() :: wx:wx_object().

 Functions

 addPage(This, Page, Text)

 -spec addPage(This, Page, Text) -> boolean()
 when This :: wxListbook(), Page :: wxWindow:wxWindow(), Text :: unicode:chardata().

Equivalent to addPage(This, Page, Text, []).

 addPage/4

 -spec addPage(This, Page, Text, [Option]) -> boolean()
 when
 This :: wxListbook(),
 Page :: wxWindow:wxWindow(),
 Text :: unicode:chardata(),
 Option :: {bSelect, boolean()} | {imageId, integer()}.

Adds a new page.
The page must have the book control itself as the parent and must not have been added to
this control previously.
The call to this function will generate the page changing and page changed events if select
is true, but not when inserting the very first page (as there is no previous page
selection to switch from in this case and so it wouldn't make sense to e.g. veto such event).
Return: true if successful, false otherwise.
Remark: Do not delete the page, it will be deleted by the book control.
See: insertPage/5

 advanceSelection(This)

 -spec advanceSelection(This) -> ok when This :: wxListbook().

Equivalent to advanceSelection(This, []).

 advanceSelection/2

 -spec advanceSelection(This, [Option]) -> ok when This :: wxListbook(), Option :: {forward, boolean()}.

Cycles through the tabs.
The call to this function generates the page changing events.

 assignImageList(This, ImageList)

 -spec assignImageList(This, ImageList) -> ok
 when This :: wxListbook(), ImageList :: wxImageList:wxImageList().

Sets the image list for the page control and takes ownership of the list.
See:
	wxImageList

	setImageList/2

 changeSelection(This, Page)

 -spec changeSelection(This, Page) -> integer() when This :: wxListbook(), Page :: integer().

Changes the selection to the given page, returning the previous selection.
This function behaves as setSelection/2 but does not generate the page changing events.
See overview_events_prog for more information.

 create(This, Parent, Id)

 -spec create(This, Parent, Id) -> boolean()
 when This :: wxListbook(), Parent :: wxWindow:wxWindow(), Id :: integer().

Equivalent to create(This, Parent, Id, []).

 create/4

 -spec create(This, Parent, Id, [Option]) -> boolean()
 when
 This :: wxListbook(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Create the list book control that has already been constructed with the default
constructor.

 deleteAllPages(This)

 -spec deleteAllPages(This) -> boolean() when This :: wxListbook().

Deletes all pages.

 destroy(This)

 -spec destroy(This :: wxListbook()) -> ok.

Destroys the object

 getCurrentPage(This)

 -spec getCurrentPage(This) -> wxWindow:wxWindow() when This :: wxListbook().

Returns the currently selected page or NULL.

 getImageList(This)

 -spec getImageList(This) -> wxImageList:wxImageList() when This :: wxListbook().

Returns the associated image list, may be NULL.
See:
	wxImageList

	setImageList/2

 getPage(This, Page)

 -spec getPage(This, Page) -> wxWindow:wxWindow() when This :: wxListbook(), Page :: integer().

Returns the window at the given page position.

 getPageCount(This)

 -spec getPageCount(This) -> integer() when This :: wxListbook().

Returns the number of pages in the control.

 getPageImage(This, NPage)

 -spec getPageImage(This, NPage) -> integer() when This :: wxListbook(), NPage :: integer().

Returns the image index for the given page.

 getPageText(This, NPage)

 -spec getPageText(This, NPage) -> unicode:charlist() when This :: wxListbook(), NPage :: integer().

Returns the string for the given page.

 getSelection(This)

 -spec getSelection(This) -> integer() when This :: wxListbook().

Returns the currently selected page, or wxNOT_FOUND if none was selected.
Note that this method may return either the previously or newly selected page when called
from the EVT_BOOKCTRL_PAGE_CHANGED handler depending on the platform and so wxBookCtrlEvent:getSelection/1 should be
used instead in this case.

 hitTest(This, Pt)

 -spec hitTest(This, Pt) -> Result
 when
 Result :: {Res :: integer(), Flags :: integer()},
 This :: wxListbook(),
 Pt :: {X :: integer(), Y :: integer()}.

Returns the index of the tab at the specified position or wxNOT_FOUND if none.
If flags parameter is non-NULL, the position of the point inside the tab is returned as well.
Return: Returns the zero-based tab index or wxNOT_FOUND if there is no tab at the
specified position.

 insertPage(This, Index, Page, Text)

 -spec insertPage(This, Index, Page, Text) -> boolean()
 when
 This :: wxListbook(),
 Index :: integer(),
 Page :: wxWindow:wxWindow(),
 Text :: unicode:chardata().

Equivalent to insertPage(This, Index, Page, Text, []).

 insertPage/5

 -spec insertPage(This, Index, Page, Text, [Option]) -> boolean()
 when
 This :: wxListbook(),
 Index :: integer(),
 Page :: wxWindow:wxWindow(),
 Text :: unicode:chardata(),
 Option :: {bSelect, boolean()} | {imageId, integer()}.

Inserts a new page at the specified position.
Return: true if successful, false otherwise.
Remark: Do not delete the page, it will be deleted by the book control.
See: addPage/4

 new()

 -spec new() -> wxListbook().

Default ctor.

 new(Parent, Id)

 -spec new(Parent, Id) -> wxListbook() when Parent :: wxWindow:wxWindow(), Id :: integer().

Equivalent to new(Parent, Id, []).

 new/3

 -spec new(Parent, Id, [Option]) -> wxListbook()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Constructs a listbook control.

 setImageList(This, ImageList)

 -spec setImageList(This, ImageList) -> ok
 when This :: wxListbook(), ImageList :: wxImageList:wxImageList().

Sets the image list to use.
It does not take ownership of the image list, you must delete it yourself.
See:
	wxImageList

	assignImageList/2

 setPageImage(This, Page, Image)

 -spec setPageImage(This, Page, Image) -> boolean()
 when This :: wxListbook(), Page :: integer(), Image :: integer().

Sets the image index for the given page.
image is an index into the image list which was set with setImageList/2.

 setPageSize(This, Size)

 -spec setPageSize(This, Size) -> ok when This :: wxListbook(), Size :: {W :: integer(), H :: integer()}.

Sets the width and height of the pages.
Note: This method is currently not implemented for wxGTK.

 setPageText(This, Page, Text)

 -spec setPageText(This, Page, Text) -> boolean()
 when This :: wxListbook(), Page :: integer(), Text :: unicode:chardata().

Sets the text for the given page.

 setSelection(This, Page)

 -spec setSelection(This, Page) -> integer() when This :: wxListbook(), Page :: integer().

Sets the selection to the given page, returning the previous selection.
Notice that the call to this function generates the page changing events, use the changeSelection/2
function if you don't want these events to be generated.
See: getSelection/1

wxLocale

wxLocale class encapsulates all language-dependent settings and is a generalization
of the C locale concept.
In wxWidgets this class manages current locale. It also initializes and activates wxTranslations
(not implemented in wx) object that manages message catalogs.
For a list of the supported languages, please see ?wxLanguage enum values. These
constants may be used to specify the language in init/3 and are returned by getSystemLanguage/0.
See:
	Overview i18n

	Examples

wxWidgets docs: wxLocale

 Summary

 Types

 wxLocale()

 Functions

 addCatalog(This, Domain)

 Calls wxTranslations::AddCatalog(const wxString&).

 addCatalog(This, Domain, MsgIdLanguage)

 Calls wxTranslations::AddCatalog(const wxString&, wxLanguage) (not implemented in wx).

 addCatalog(This, Domain, MsgIdLanguage, MsgIdCharset)

 Calls wxTranslations::AddCatalog(const wxString&, wxLanguage, const wxString&) (not
implemented in wx).

 addCatalogLookupPathPrefix(Prefix)

 Calls wxFileTranslationsLoader::AddCatalogLookupPathPrefix() (not implemented in wx).

 destroy(This)

 Destroys the object

 getCanonicalName(This)

 Returns the canonical form of current locale name.

 getHeaderValue(This, Header)

 Equivalent to getHeaderValue(This, Header, []).

 getHeaderValue/3

 Calls wxTranslations::GetHeaderValue() (not implemented in wx).

 getLanguage(This)

 Returns the ?wxLanguage constant of current language.

 getLanguageName(Lang)

 Returns English name of the given language or empty string if this language is unknown.

 getLocale(This)

 Returns the locale name as passed to the constructor or init/3.

 getName(This)

 Returns the current short name for the locale (as given to the constructor or the init/3
function).

 getString(This, OrigString)

 Equivalent to getString(This, OrigString, []).

 getString/3

 Calls wxGetTranslation(const wxString&, const wxString&).

 getString(This, OrigString, OrigString2, N)

 Equivalent to getString(This, OrigString, OrigString2, N, []).

 getString/5

 Calls wxGetTranslation(const wxString&, const wxString&, unsigned, const wxString&).

 getSysName(This)

 Returns current platform-specific locale name as passed to setlocale().

 getSystemEncoding()

 Tries to detect the user's default font encoding.

 getSystemEncodingName()

 Tries to detect the name of the user's default font encoding.

 getSystemLanguage()

 Tries to detect the user's default locale setting.

 init(This)

 Equivalent to init(This, []).

 init/2

 Initializes the wxLocale instance.

 init/3

 Deprecated

 isLoaded(This, Domain)

 Calls wxTranslations::IsLoaded() (not implemented in wx).

 isOk(This)

 Returns true if the locale could be set successfully.

 new()

 This is the default constructor and it does nothing to initialize the object: init/3
must be used to do that.

 new/1

 Equivalent to: new/2

 new/2

 See init/3 for parameters description.

 Types

 wxLocale()

 -type wxLocale() :: wx:wx_object().

 Functions

 addCatalog(This, Domain)

 -spec addCatalog(This, Domain) -> boolean() when This :: wxLocale(), Domain :: unicode:chardata().

Calls wxTranslations::AddCatalog(const wxString&).

 addCatalog(This, Domain, MsgIdLanguage)

 -spec addCatalog(This, Domain, MsgIdLanguage) -> boolean()
 when This :: wxLocale(), Domain :: unicode:chardata(), MsgIdLanguage :: wx:wx_enum().

Calls wxTranslations::AddCatalog(const wxString&, wxLanguage) (not implemented in wx).

 addCatalog(This, Domain, MsgIdLanguage, MsgIdCharset)

 -spec addCatalog(This, Domain, MsgIdLanguage, MsgIdCharset) -> boolean()
 when
 This :: wxLocale(),
 Domain :: unicode:chardata(),
 MsgIdLanguage :: wx:wx_enum(),
 MsgIdCharset :: unicode:chardata().

Calls wxTranslations::AddCatalog(const wxString&, wxLanguage, const wxString&) (not
implemented in wx).

 addCatalogLookupPathPrefix(Prefix)

 -spec addCatalogLookupPathPrefix(Prefix) -> ok when Prefix :: unicode:chardata().

Calls wxFileTranslationsLoader::AddCatalogLookupPathPrefix() (not implemented in wx).

 destroy(This)

 -spec destroy(This :: wxLocale()) -> ok.

Destroys the object

 getCanonicalName(This)

 -spec getCanonicalName(This) -> unicode:charlist() when This :: wxLocale().

Returns the canonical form of current locale name.
Canonical form is the one that is used on UNIX systems: it is a two- or five-letter
string in xx or xx_YY format, where xx is ISO 639 code of language and YY is ISO 3166 code
of the country. Examples are "en", "en_GB", "en_US" or "fr_FR". This form is internally
used when looking up message catalogs. Compare getSysName/1.

 getHeaderValue(This, Header)

 -spec getHeaderValue(This, Header) -> unicode:charlist()
 when This :: wxLocale(), Header :: unicode:chardata().

Equivalent to getHeaderValue(This, Header, []).

 getHeaderValue/3

 -spec getHeaderValue(This, Header, [Option]) -> unicode:charlist()
 when
 This :: wxLocale(),
 Header :: unicode:chardata(),
 Option :: {szDomain, unicode:chardata()}.

Calls wxTranslations::GetHeaderValue() (not implemented in wx).

 getLanguage(This)

 -spec getLanguage(This) -> integer() when This :: wxLocale().

Returns the ?wxLanguage constant of current language.
Note that you can call this function only if you used the form of init/3 that takes ?wxLanguage
argument.

 getLanguageName(Lang)

 -spec getLanguageName(Lang) -> unicode:charlist() when Lang :: integer().

Returns English name of the given language or empty string if this language is unknown.
See GetLanguageInfo() (not implemented in wx) for a remark about special meaning of wxLANGUAGE_DEFAULT.

 getLocale(This)

 -spec getLocale(This) -> unicode:charlist() when This :: wxLocale().

Returns the locale name as passed to the constructor or init/3.
This is a full, human-readable name, e.g. "English" or "French".

 getName(This)

 -spec getName(This) -> unicode:charlist() when This :: wxLocale().

Returns the current short name for the locale (as given to the constructor or the init/3
function).

 getString(This, OrigString)

 -spec getString(This, OrigString) -> unicode:charlist()
 when This :: wxLocale(), OrigString :: unicode:chardata().

Equivalent to getString(This, OrigString, []).

 getString/3

 -spec getString(This, OrigString, [Option]) -> unicode:charlist()
 when
 This :: wxLocale(),
 OrigString :: unicode:chardata(),
 Option :: {szDomain, unicode:chardata()}.

Calls wxGetTranslation(const wxString&, const wxString&).

 getString(This, OrigString, OrigString2, N)

 -spec getString(This, OrigString, OrigString2, N) -> unicode:charlist()
 when
 This :: wxLocale(),
 OrigString :: unicode:chardata(),
 OrigString2 :: unicode:chardata(),
 N :: integer().

Equivalent to getString(This, OrigString, OrigString2, N, []).

 getString/5

 -spec getString(This, OrigString, OrigString2, N, [Option]) -> unicode:charlist()
 when
 This :: wxLocale(),
 OrigString :: unicode:chardata(),
 OrigString2 :: unicode:chardata(),
 N :: integer(),
 Option :: {szDomain, unicode:chardata()}.

Calls wxGetTranslation(const wxString&, const wxString&, unsigned, const wxString&).

 getSysName(This)

 -spec getSysName(This) -> unicode:charlist() when This :: wxLocale().

Returns current platform-specific locale name as passed to setlocale().
Compare getCanonicalName/1.

 getSystemEncoding()

 -spec getSystemEncoding() -> wx:wx_enum().

Tries to detect the user's default font encoding.
Returns ?wxFontEncoding() value or wxFONTENCODING_SYSTEM if it couldn't be determined.

 getSystemEncodingName()

 -spec getSystemEncodingName() -> unicode:charlist().

Tries to detect the name of the user's default font encoding.
This string isn't particularly useful for the application as its form is
platform-dependent and so you should probably use getSystemEncoding/0 instead.
Returns a user-readable string value or an empty string if it couldn't be determined.

 getSystemLanguage()

 -spec getSystemLanguage() -> integer().

Tries to detect the user's default locale setting.
Returns the ?wxLanguage value or wxLANGUAGE_UNKNOWN if the language-guessing algorithm failed.
Note: This function works with locales and returns the user's default locale. This may
be, and usually is, the same as their preferred UI language, but it's not the same thing.
Use wxTranslation to obtain language information.

 init(This)

 -spec init(This) -> boolean() when This :: wxLocale().

Equivalent to init(This, []).

 init/2

 -spec init(This, [Option]) -> boolean()
 when This :: wxLocale(), Option :: {language, integer()} | {flags, integer()}.

Initializes the wxLocale instance.
The call of this function has several global side effects which you should understand:
first of all, the application locale is changed - note that this will affect many of
standard C library functions such as printf() or strftime(). Second, this wxLocale
object becomes the new current global locale for the application and so all subsequent
calls to ?wxGetTranslation() will try to translate the messages using the message catalogs
for this locale.
Return: true on success or false if the given locale couldn't be set.

 init/3

 -spec init(This, Name, [Option]) -> boolean()
 when
 This :: wxLocale(),
 Name :: unicode:chardata(),
 Option ::
 {shortName, unicode:chardata()} |
 {locale, unicode:chardata()} |
 {bLoadDefault, boolean()}.

Deprecated:
This form is deprecated, use the other one unless you know what you are doing.

 isLoaded(This, Domain)

 -spec isLoaded(This, Domain) -> boolean() when This :: wxLocale(), Domain :: unicode:chardata().

Calls wxTranslations::IsLoaded() (not implemented in wx).

 isOk(This)

 -spec isOk(This) -> boolean() when This :: wxLocale().

Returns true if the locale could be set successfully.

 new()

 -spec new() -> wxLocale().

This is the default constructor and it does nothing to initialize the object: init/3
must be used to do that.

 new/1

 -spec new(Language) -> wxLocale() when Language :: integer();
 (Name) -> wxLocale() when Name :: unicode:chardata().

Equivalent to: new/2

 new/2

 -spec new(Language, [Option]) -> wxLocale() when Language :: integer(), Option :: {flags, integer()};
 (Name, [Option]) -> wxLocale()
 when
 Name :: unicode:chardata(),
 Option ::
 {shortName, unicode:chardata()} |
 {locale, unicode:chardata()} |
 {bLoadDefault, boolean()}.

See init/3 for parameters description.
The call of this function has several global side effects which you should understand:
first of all, the application locale is changed - note that this will affect many of
standard C library functions such as printf() or strftime(). Second, this wxLocale
object becomes the new current global locale for the application and so all subsequent
calls to ?wxGetTranslation() will try to translate the messages using the message catalogs
for this locale.

wxLogNull

This class allows you to temporarily suspend logging.
All calls to the log functions during the life time of an object of this class are just ignored.
In particular, it can be used to suppress the log messages given by wxWidgets itself but
it should be noted that it is rarely the best way to cope with this problem as all log
messages are suppressed, even if they indicate a completely different error than the one
the programmer wanted to suppress.
For instance, the example of the overview:
would be better written as:
wxWidgets docs: wxLogNull

 Summary

 Types

 wxLogNull()

 Functions

 destroy(This)

 Destroys the object

 new()

 Suspends logging.

 Types

 wxLogNull()

 -type wxLogNull() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxLogNull()) -> ok.

Destroys the object

 new()

 -spec new() -> wxLogNull().

Suspends logging.

wxMDIChildFrame

An MDI child frame is a frame that can only exist inside a wxMDIClientWindow, which
is itself a child of wxMDIParentFrame.
Styles
This class supports the following styles:
All of the standard wxFrame styles can be used but most of them are ignored by
TDI-based MDI implementations.
Remark: Although internally an MDI child frame is a child of the MDI client window, in
wxWidgets you create it as a child of wxMDIParentFrame. In fact, you can usually
forget that the client window exists. MDI child frames are clipped to the area of the MDI
client window, and may be iconized on the client window. You can associate a menubar with
a child frame as usual, although an MDI child doesn't display its menubar under its own
title bar. The MDI parent frame's menubar will be changed to reflect the currently active
child frame. If there are currently no children, the parent frame's own menubar will be displayed.
See:
	wxMDIClientWindow

	wxMDIParentFrame

	wxFrame

This class is derived, and can use functions, from:
	wxFrame

	wxTopLevelWindow

	wxWindow

	wxEvtHandler

wxWidgets docs: wxMDIChildFrame

 Summary

 Types

 wxMDIChildFrame()

 Functions

 activate(This)

 Activates this MDI child frame.

 create(This, Parent, Id, Title)

 Equivalent to create(This, Parent, Id, Title, []).

 create/5

 Used in two-step frame construction.

 destroy(This)

 Destroys the object

 maximize(This)

 Equivalent to maximize(This, []).

 maximize/2

 Maximizes this MDI child frame.

 new()

 Default constructor.

 new(Parent, Id, Title)

 Equivalent to new(Parent, Id, Title, []).

 new/4

 Constructor, creating the window.

 restore(This)

 Restores this MDI child frame (unmaximizes).

 Types

 wxMDIChildFrame()

 -type wxMDIChildFrame() :: wx:wx_object().

 Functions

 activate(This)

 -spec activate(This) -> ok when This :: wxMDIChildFrame().

Activates this MDI child frame.
See:
	maximize/2

	restore/1

 create(This, Parent, Id, Title)

 -spec create(This, Parent, Id, Title) -> boolean()
 when
 This :: wxMDIChildFrame(),
 Parent :: wxMDIParentFrame:wxMDIParentFrame(),
 Id :: integer(),
 Title :: unicode:chardata().

Equivalent to create(This, Parent, Id, Title, []).

 create/5

 -spec create(This, Parent, Id, Title, [Option]) -> boolean()
 when
 This :: wxMDIChildFrame(),
 Parent :: wxMDIParentFrame:wxMDIParentFrame(),
 Id :: integer(),
 Title :: unicode:chardata(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Used in two-step frame construction.
See new/4 for further details.

 destroy(This)

 -spec destroy(This :: wxMDIChildFrame()) -> ok.

Destroys the object

 maximize(This)

 -spec maximize(This) -> ok when This :: wxMDIChildFrame().

Equivalent to maximize(This, []).

 maximize/2

 -spec maximize(This, [Option]) -> ok when This :: wxMDIChildFrame(), Option :: {maximize, boolean()}.

Maximizes this MDI child frame.
This function doesn't do anything if IsAlwaysMaximized() (not implemented in wx)
returns true.
See:
	activate/1

	restore/1

 new()

 -spec new() -> wxMDIChildFrame().

Default constructor.

 new(Parent, Id, Title)

 -spec new(Parent, Id, Title) -> wxMDIChildFrame()
 when
 Parent :: wxMDIParentFrame:wxMDIParentFrame(),
 Id :: integer(),
 Title :: unicode:chardata().

Equivalent to new(Parent, Id, Title, []).

 new/4

 -spec new(Parent, Id, Title, [Option]) -> wxMDIChildFrame()
 when
 Parent :: wxMDIParentFrame:wxMDIParentFrame(),
 Id :: integer(),
 Title :: unicode:chardata(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Constructor, creating the window.
See: create/5

 restore(This)

 -spec restore(This) -> ok when This :: wxMDIChildFrame().

Restores this MDI child frame (unmaximizes).
This function doesn't do anything if IsAlwaysMaximized() (not implemented in wx)
returns true.
See:
	activate/1

	maximize/2

wxMDIClientWindow

An MDI client window is a child of wxMDIParentFrame, and manages zero or more wxMDIChildFrame
objects.
The client window is the area where MDI child windows exist. It doesn't have to cover
the whole parent frame; other windows such as toolbars and a help window might coexist
with it. There can be scrollbars on a client window, which are controlled by the parent
window style.
The wxMDIClientWindow class is usually adequate without further derivation, and it is
created automatically when the MDI parent frame is created. If the application needs to
derive a new class, the function wxMDIParentFrame::OnCreateClient() (not implemented in
wx) must be overridden in order to give an opportunity to use a different class of client window.
Under wxMSW, the client window will automatically have a sunken border style when the
active child is not maximized, and no border style when a child is maximized.
See:
	wxMDIChildFrame

	wxMDIParentFrame

	wxFrame

This class is derived, and can use functions, from:
	wxWindow

	wxEvtHandler

wxWidgets docs: wxMDIClientWindow

 Summary

 Types

 wxMDIClientWindow()

 Functions

 createClient(This, Parent)

 Equivalent to createClient(This, Parent, []).

 createClient/3

 Called by wxMDIParentFrame immediately after creating the client window.

 destroy(This)

 Destroys the object

 new()

 Default constructor.

 Types

 wxMDIClientWindow()

 -type wxMDIClientWindow() :: wx:wx_object().

 Functions

 createClient(This, Parent)

 -spec createClient(This, Parent) -> boolean()
 when This :: wxMDIClientWindow(), Parent :: wxMDIParentFrame:wxMDIParentFrame().

Equivalent to createClient(This, Parent, []).

 createClient/3

 -spec createClient(This, Parent, [Option]) -> boolean()
 when
 This :: wxMDIClientWindow(),
 Parent :: wxMDIParentFrame:wxMDIParentFrame(),
 Option :: {style, integer()}.

Called by wxMDIParentFrame immediately after creating the client window.
This function may be overridden in the derived class but the base class version must
usually be called first to really create the window.

 destroy(This)

 -spec destroy(This :: wxMDIClientWindow()) -> ok.

Destroys the object

 new()

 -spec new() -> wxMDIClientWindow().

Default constructor.
Objects of this class are only created by wxMDIParentFrame which uses the default
constructor and calls createClient/3 immediately afterwards.

wxMDIParentFrame

An MDI (Multiple Document Interface) parent frame is a window which can contain MDI child
frames in its client area which emulates the full desktop.
MDI is a user-interface model in which all the window reside inside the single parent
window as opposed to being separate from each other. It remains popular despite dire
warnings from Microsoft itself (which popularized this model in the first model) that MDI
is obsolete.
An MDI parent frame always has a wxMDIClientWindow associated with it, which is the
parent for MDI child frames. In the simplest case, the client window takes up the entire
parent frame area but it is also possible to resize it to be smaller in order to have
other windows in the frame, a typical example is using a sidebar along one of the window edges.
The appearance of MDI applications differs between different ports. The classic MDI
model, with child windows which can be independently moved, resized etc, is only available
under MSW, which provides native support for it. In Mac ports, multiple top level windows
are used for the MDI children too and the MDI parent frame itself is invisible, to
accommodate the native look and feel requirements. In all the other ports, a tab-based MDI
implementation (sometimes called TDI) is used and so at most one MDI child is visible at
any moment (child frames are always maximized).
Although it is possible to have multiple MDI parent frames, a typical MDI application
has a single MDI parent frame window inside which multiple MDI child frames, i.e. objects
of class wxMDIChildFrame, can be created.
Styles
This class supports the following styles:
There are no special styles for this class, all wxFrame styles apply to it in the
usual way. The only exception is that wxHSCROLL and wxVSCROLL styles apply not to the
frame itself but to the client window, so that using them enables horizontal and vertical
scrollbars for this window and not the frame.
See:
	wxMDIChildFrame

	wxMDIClientWindow

	wxFrame

	wxDialog

This class is derived, and can use functions, from:
	wxFrame

	wxTopLevelWindow

	wxWindow

	wxEvtHandler

wxWidgets docs: wxMDIParentFrame

 Summary

 Types

 wxMDIParentFrame()

 Functions

 activateNext(This)

 Activates the MDI child following the currently active one.

 activatePrevious(This)

 Activates the MDI child preceding the currently active one.

 arrangeIcons(This)

 Arranges any iconized (minimized) MDI child windows.

 cascade(This)

 Arranges the MDI child windows in a cascade.

 create(This, Parent, Id, Title)

 Equivalent to create(This, Parent, Id, Title, []).

 create/5

 Used in two-step frame construction.

 destroy(This)

 Destroys the object

 getActiveChild(This)

 Returns a pointer to the active MDI child, if there is one.

 getClientWindow(This)

 Returns a pointer to the client window.

 new()

 Default constructor.

 new(Parent, Id, Title)

 Equivalent to new(Parent, Id, Title, []).

 new/4

 Constructor, creating the window.

 tile(This)

 Equivalent to tile(This, []).

 tile/2

 Tiles the MDI child windows either horizontally or vertically depending on whether orient
is wxHORIZONTAL or wxVERTICAL.

 Types

 wxMDIParentFrame()

 -type wxMDIParentFrame() :: wx:wx_object().

 Functions

 activateNext(This)

 -spec activateNext(This) -> ok when This :: wxMDIParentFrame().

Activates the MDI child following the currently active one.
The MDI children are maintained in an ordered list and this function switches to the next
element in this list, wrapping around the end of it if the currently active child is the
last one.
See: activatePrevious/1

 activatePrevious(This)

 -spec activatePrevious(This) -> ok when This :: wxMDIParentFrame().

Activates the MDI child preceding the currently active one.
See: activateNext/1

 arrangeIcons(This)

 -spec arrangeIcons(This) -> ok when This :: wxMDIParentFrame().

Arranges any iconized (minimized) MDI child windows.
This method is only implemented in MSW MDI implementation and does nothing under the
other platforms.
See:
	cascade/1

	tile/2

 cascade(This)

 -spec cascade(This) -> ok when This :: wxMDIParentFrame().

Arranges the MDI child windows in a cascade.
This method is only implemented in MSW MDI implementation and does nothing under the
other platforms.
See:
	tile/2

	arrangeIcons/1

 create(This, Parent, Id, Title)

 -spec create(This, Parent, Id, Title) -> boolean()
 when
 This :: wxMDIParentFrame(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Title :: unicode:chardata().

Equivalent to create(This, Parent, Id, Title, []).

 create/5

 -spec create(This, Parent, Id, Title, [Option]) -> boolean()
 when
 This :: wxMDIParentFrame(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Title :: unicode:chardata(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Used in two-step frame construction.
See new/4 for further details.

 destroy(This)

 -spec destroy(This :: wxMDIParentFrame()) -> ok.

Destroys the object

 getActiveChild(This)

 -spec getActiveChild(This) -> wxMDIChildFrame:wxMDIChildFrame() when This :: wxMDIParentFrame().

Returns a pointer to the active MDI child, if there is one.
If there are any children at all this function returns a non-NULL pointer.

 getClientWindow(This)

 -spec getClientWindow(This) -> wxMDIClientWindow:wxMDIClientWindow() when This :: wxMDIParentFrame().

Returns a pointer to the client window.

 new()

 -spec new() -> wxMDIParentFrame().

Default constructor.
Use create/5 for the objects created using this constructor.

 new(Parent, Id, Title)

 -spec new(Parent, Id, Title) -> wxMDIParentFrame()
 when Parent :: wxWindow:wxWindow(), Id :: integer(), Title :: unicode:chardata().

Equivalent to new(Parent, Id, Title, []).

 new/4

 -spec new(Parent, Id, Title, [Option]) -> wxMDIParentFrame()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Title :: unicode:chardata(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Constructor, creating the window.
Notice that if you override virtual OnCreateClient() (not implemented in wx) method you
shouldn't be using this constructor but the default constructor and create/5 as otherwise your
overridden method is never going to be called because of the usual C++ virtual call
resolution rules.
Under wxMSW, the client window will automatically have a sunken border style when the
active child is not maximized, and no border style when a child is maximized.
See: create/5

 tile(This)

 -spec tile(This) -> ok when This :: wxMDIParentFrame().

Equivalent to tile(This, []).

 tile/2

 -spec tile(This, [Option]) -> ok when This :: wxMDIParentFrame(), Option :: {orient, wx:wx_enum()}.

Tiles the MDI child windows either horizontally or vertically depending on whether orient
is wxHORIZONTAL or wxVERTICAL.
This method is only implemented in MSW MDI implementation and does nothing under the
other platforms.

wxMask

This class encapsulates a monochrome mask bitmap, where the masked area is black and the
unmasked area is white.
When associated with a bitmap and drawn in a device context, the unmasked area of the
bitmap will be drawn, and the masked area will not be drawn.
Note: A mask can be associated also with a bitmap with an alpha channel but drawing such
bitmaps under wxMSW may be slow so using them should be avoided if drawing performance is
an important factor.
See:
	wxBitmap

	wxDC:blit/6

	wxMemoryDC

wxWidgets docs: wxMask

 Summary

 Types

 wxMask()

 Functions

 create(This, Bitmap)

 Constructs a mask from a monochrome bitmap.

 create/3

 Constructs a mask from a bitmap and a colour that indicates the background.

 destroy(This)

 Destroys the object

 new()

 Default constructor.

 new(Bitmap)

 Constructs a mask from a monochrome bitmap.

 new/2

 Constructs a mask from a bitmap and a colour that indicates the background.

 Types

 wxMask()

 -type wxMask() :: wx:wx_object().

 Functions

 create(This, Bitmap)

 -spec create(This, Bitmap) -> boolean() when This :: wxMask(), Bitmap :: wxBitmap:wxBitmap().

Constructs a mask from a monochrome bitmap.

 create/3

 -spec create(This, Bitmap, Index) -> boolean()
 when This :: wxMask(), Bitmap :: wxBitmap:wxBitmap(), Index :: integer();
 (This, Bitmap, Colour) -> boolean()
 when This :: wxMask(), Bitmap :: wxBitmap:wxBitmap(), Colour :: wx:wx_colour().

Constructs a mask from a bitmap and a colour that indicates the background.

 destroy(This)

 -spec destroy(This :: wxMask()) -> ok.

Destroys the object

 new()

 -spec new() -> wxMask().

Default constructor.

 new(Bitmap)

 -spec new(Bitmap) -> wxMask() when Bitmap :: wxBitmap:wxBitmap().

Constructs a mask from a monochrome bitmap.

 new/2

 -spec new(Bitmap, Index) -> wxMask() when Bitmap :: wxBitmap:wxBitmap(), Index :: integer();
 (Bitmap, Colour) -> wxMask() when Bitmap :: wxBitmap:wxBitmap(), Colour :: wx:wx_colour().

Constructs a mask from a bitmap and a colour that indicates the background.

wxMaximizeEvent

An event being sent when a top level window is maximized.
Notice that it is not sent when the window is restored to its original size after it had
been maximized, only a normal wxSizeEvent is generated in this case.
Currently this event is only generated in wxMSW, wxGTK and wxOSX/Cocoa ports so portable
programs should only rely on receiving wxEVT_SIZE and not necessarily this event when
the window is maximized.
See:
	Overview events

	wxTopLevelWindow:maximize/2

	wxTopLevelWindow:isMaximized/1

This class is derived, and can use functions, from:
	wxEvent

wxWidgets docs: wxMaximizeEvent
Events
Use wxEvtHandler:connect/3 with wxMaximizeEventType to subscribe to events of this type.

 Summary

 Types

 wxMaximize()

 wxMaximizeEvent()

 wxMaximizeEventType()

 Types

 wxMaximize()

 -type wxMaximize() :: #wxMaximize{type :: wxMaximizeEvent:wxMaximizeEventType()}.

 wxMaximizeEvent()

 -type wxMaximizeEvent() :: wx:wx_object().

 wxMaximizeEventType()

 -type wxMaximizeEventType() :: maximize.

wxMemoryDC

A memory device context provides a means to draw graphics onto a bitmap.
When drawing in to a mono-bitmap, using wxWHITE, wxWHITE_PEN and wxWHITE_BRUSH will
draw the background colour (i.e. 0) whereas all other colours will draw the foreground
colour (i.e. 1).
A bitmap must be selected into the new memory DC before it may be used for anything.
Typical usage is as follows:
Note that the memory DC must be deleted (or the bitmap selected out of it) before a
bitmap can be reselected into another memory DC.
And, before performing any other operations on the bitmap data, the bitmap must be
selected out of the memory DC:
This happens automatically when wxMemoryDC object goes out of scope.
See:
	wxBitmap

	wxDC

This class is derived, and can use functions, from:
	wxDC

wxWidgets docs: wxMemoryDC

 Summary

 Types

 wxMemoryDC()

 Functions

 destroy(This)

 Destroys the object

 new()

 Constructs a new memory device context.

 new(Dc)

 Constructs a new memory device context having the same characteristics as the given
existing device context.

 selectObject(This, Bitmap)

 Works exactly like selectObjectAsSource/2 but this is the function you should use when
you select a bitmap because you want to modify it, e.g.

 selectObjectAsSource(This, Bitmap)

 Selects the given bitmap into the device context, to use as the memory bitmap.

 Types

 wxMemoryDC()

 -type wxMemoryDC() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxMemoryDC()) -> ok.

Destroys the object

 new()

 -spec new() -> wxMemoryDC().

Constructs a new memory device context.
Use the wxDC:isOk/1 member to test whether the constructor was successful in creating a usable
device context. Don't forget to select a bitmap into the DC before drawing on it.

 new(Dc)

 -spec new(Dc) -> wxMemoryDC() when Dc :: wxDC:wxDC() | wxBitmap:wxBitmap().

Constructs a new memory device context having the same characteristics as the given
existing device context.
This constructor creates a memory device context compatible with dc in wxMSW, the
argument is ignored in the other ports. If dc is NULL, a device context compatible with
the screen is created, just as with the default constructor.

 selectObject(This, Bitmap)

 -spec selectObject(This, Bitmap) -> ok when This :: wxMemoryDC(), Bitmap :: wxBitmap:wxBitmap().

Works exactly like selectObjectAsSource/2 but this is the function you should use when
you select a bitmap because you want to modify it, e.g.
drawing on this DC.
Using selectObjectAsSource/2 when modifying the bitmap may incur some problems related to wxBitmap being a
reference counted object (see overview_refcount).
Before using the updated bitmap data, make sure to select it out of context first either
by selecting ?wxNullBitmap into the device context or destroying the device context entirely.
If the bitmap is already selected in this device context, nothing is done. If it is
selected in another context, the function asserts and drawing on the bitmap won't work correctly.
See: wxDC:drawBitmap/4

 selectObjectAsSource(This, Bitmap)

 -spec selectObjectAsSource(This, Bitmap) -> ok when This :: wxMemoryDC(), Bitmap :: wxBitmap:wxBitmap().

Selects the given bitmap into the device context, to use as the memory bitmap.
Selecting the bitmap into a memory DC allows you to draw into the DC (and therefore the
bitmap) and also to use wxDC:blit/6 to copy the bitmap to a window. For this purpose, you may find wxDC:drawIcon/3
easier to use instead.
If the argument is ?wxNullBitmap (or some other uninitialised wxBitmap) the current
bitmap is selected out of the device context, and the original bitmap restored, allowing
the current bitmap to be destroyed safely.

wxMenu

A menu is a popup (or pull down) list of items, one of which may be selected before the
menu goes away (clicking elsewhere dismisses the menu).
Menus may be used to construct either menu bars or popup menus.
A menu item has an integer ID associated with it which can be used to identify the
selection, or to change the menu item in some way. A menu item with a special identifier wxID_SEPARATOR
is a separator item and doesn't have an associated command but just makes a separator
line appear in the menu.
Note: Please note that wxID_ABOUT and wxID_EXIT are predefined by wxWidgets and have
a special meaning since entries using these IDs will be taken out of the normal menus
under macOS and will be inserted into the system menu (following the appropriate macOS
interface guideline).
Menu items may be either normal items, check items or radio items. Normal items
don't have any special properties while the check items have a boolean flag associated to
them and they show a checkmark in the menu when the flag is set. wxWidgets automatically
toggles the flag value when the item is clicked and its value may be retrieved using
either isChecked/2 method of wxMenu or wxMenuBar itself or by using wxEvent::IsChecked when
you get the menu notification for the item in question.
The radio items are similar to the check items except that all the other items in the
same radio group are unchecked when a radio item is checked. The radio group is formed by
a contiguous range of radio items, i.e. it starts at the first item of this kind and ends
with the first item of a different kind (or the end of the menu). Notice that because the
radio groups are defined in terms of the item positions inserting or removing the items in
the menu containing the radio items risks to not work correctly.
Allocation strategy
All menus must be created on the heap because all menus attached to a menubar or to
another menu will be deleted by their parent when it is deleted. The only exception to
this rule are the popup menus (i.e. menus used with wxWindow:popupMenu/4) as wxWidgets does not destroy them
to allow reusing the same menu more than once. But the exception applies only to the menus
themselves and not to any submenus of popup menus which are still destroyed by wxWidgets
as usual and so must be heap-allocated.
As the frame menubar is deleted by the frame itself, it means that normally all menus
used are deleted automatically.
Event handling
Event handlers for the commands generated by the menu items can be connected directly to
the menu object itself using wxEvtHandler::Bind() (not implemented in wx). If this menu
is a submenu of another one, the events from its items can also be processed in the parent
menu and so on, recursively.
If the menu is part of a menu bar, then events can also be handled in wxMenuBar object.
Finally, menu events can also be handled in the associated window, which is either the wxFrame
associated with the menu bar this menu belongs to or the window for which wxWindow:popupMenu/4 was called for
the popup menus.
See overview_events_bind for how to bind event handlers to the various objects.
See:
	wxMenuBar

	wxWindow:popupMenu/4

	Overview events

This class is derived, and can use functions, from:
	wxEvtHandler

wxWidgets docs: wxMenu

 Summary

 Types

 wxMenu()

 Functions

 append(This, MenuItem)

 Adds a menu item object.

 append(This, Id, Item)

 Equivalent to append(This, Id, Item, []).

 append/4

 Adds a menu item.

 append/5

 Adds a submenu.

 appendCheckItem(This, Id, Item)

 Equivalent to appendCheckItem(This, Id, Item, []).

 appendCheckItem/4

 Adds a checkable item to the end of the menu.

 appendRadioItem(This, Id, Item)

 Equivalent to appendRadioItem(This, Id, Item, []).

 appendRadioItem/4

 Adds a radio item to the end of the menu.

 appendSeparator(This)

 Adds a separator to the end of the menu.

 break(This)

 Inserts a break in a menu, causing the next appended item to appear in a new column.

 check(This, Id, Check)

 Checks or unchecks the menu item.

 'Destroy'/2

 Deletes the menu item from the menu.

 delete/2

 Deletes the menu item from the menu.

 destroy(This)

 Destroys the object

 enable(This, Id, Enable)

 Enables or disables (greys out) a menu item.

 findItem/2

 Finds the menu id for a menu item string.

 findItemByPosition(This, Position)

 Returns the wxMenuItem given a position in the menu.

 getHelpString(This, Id)

 Returns the help string associated with a menu item.

 getLabel(This, Id)

 Returns a menu item label.

 getMenuItemCount(This)

 Returns the number of items in the menu.

 getMenuItems(This)

 getTitle(This)

 Returns the title of the menu.

 insert/3

 Inserts the given item before the position pos.

 insert/4

 Inserts the given item before the position pos.

 insert(This, Pos, Id, Text, Submenu)

 Equivalent to insert(This, Pos, Id, Text, Submenu, []).

 insert/6

 Inserts the given submenu before the position pos.

 insertCheckItem(This, Pos, Id, Item)

 Equivalent to insertCheckItem(This, Pos, Id, Item, []).

 insertCheckItem/5

 Inserts a checkable item at the given position.

 insertRadioItem(This, Pos, Id, Item)

 Equivalent to insertRadioItem(This, Pos, Id, Item, []).

 insertRadioItem/5

 Inserts a radio item at the given position.

 insertSeparator(This, Pos)

 Inserts a separator at the given position.

 isChecked(This, Id)

 Determines whether a menu item is checked.

 isEnabled(This, Id)

 Determines whether a menu item is enabled.

 new()

 Constructs a wxMenu object.

 new(Options)

 Constructs a wxMenu object.

 new(Title, Options)

 Constructs a wxMenu object with a title.

 prepend/2

 Inserts the given item at position 0, i.e. before all the other existing items.

 prepend/3

 Inserts the given item at position 0, i.e. before all the other existing items.

 prepend(This, Id, Text, Submenu)

 Equivalent to prepend(This, Id, Text, Submenu, []).

 prepend/5

 Inserts the given submenu at position 0.

 prependCheckItem(This, Id, Item)

 Equivalent to prependCheckItem(This, Id, Item, []).

 prependCheckItem/4

 Inserts a checkable item at position 0.

 prependRadioItem(This, Id, Item)

 Equivalent to prependRadioItem(This, Id, Item, []).

 prependRadioItem/4

 Inserts a radio item at position 0.

 prependSeparator(This)

 Inserts a separator at position 0.

 remove/2

 Removes the menu item from the menu but doesn't delete the associated C++ object.

 setHelpString(This, Id, HelpString)

 Sets an item's help string.

 setLabel(This, Id, Label)

 Sets the label of a menu item.

 setTitle(This, Title)

 Sets the title of the menu.

 Types

 wxMenu()

 -type wxMenu() :: wx:wx_object().

 Functions

 append(This, MenuItem)

 -spec append(This, MenuItem) -> wxMenuItem:wxMenuItem()
 when This :: wxMenu(), MenuItem :: wxMenuItem:wxMenuItem().

Adds a menu item object.
This is the most generic variant of append/5 method because it may be used for both items
(including separators) and submenus and because you can also specify various extra
properties of a menu item this way, such as bitmaps and fonts.
Remark: See the remarks for the other append/5 overloads.
See:
	appendSeparator/1

	appendCheckItem/4

	appendRadioItem/4

	insert/6

	setLabel/3

	getHelpString/2

	setHelpString/3

	wxMenuItem

 append(This, Id, Item)

 -spec append(This, Id, Item) -> wxMenuItem:wxMenuItem()
 when This :: wxMenu(), Id :: integer(), Item :: unicode:chardata().

Equivalent to append(This, Id, Item, []).

 append/4

 -spec append(This, Id, Item, SubMenu) -> wxMenuItem:wxMenuItem()
 when This :: wxMenu(), Id :: integer(), Item :: unicode:chardata(), SubMenu :: wxMenu();
 (This, Id, Item, [Option]) -> wxMenuItem:wxMenuItem()
 when
 This :: wxMenu(),
 Id :: integer(),
 Item :: unicode:chardata(),
 Option :: {help, unicode:chardata()} | {kind, wx:wx_enum()}.

Adds a menu item.
Example: or even better for stock menu items (see wxMenuItem:new/1):
Remark: This command can be used after the menu has been shown, as well as on initial
creation of a menu or menubar.
See:
	appendSeparator/1

	appendCheckItem/4

	appendRadioItem/4

	insert/6

	setLabel/3

	getHelpString/2

	setHelpString/3

	wxMenuItem

 append/5

 -spec append(This, Id, Item, SubMenu, [Option]) -> wxMenuItem:wxMenuItem()
 when
 This :: wxMenu(),
 Id :: integer(),
 Item :: unicode:chardata(),
 SubMenu :: wxMenu(),
 Option :: {help, unicode:chardata()}.

Adds a submenu.
Deprecated:
This function is deprecated, use AppendSubMenu() (not implemented in wx) instead.
See:
	appendSeparator/1

	appendCheckItem/4

	appendRadioItem/4

	insert/6

	setLabel/3

	getHelpString/2

	setHelpString/3

	wxMenuItem

 appendCheckItem(This, Id, Item)

 -spec appendCheckItem(This, Id, Item) -> wxMenuItem:wxMenuItem()
 when This :: wxMenu(), Id :: integer(), Item :: unicode:chardata().

Equivalent to appendCheckItem(This, Id, Item, []).

 appendCheckItem/4

 -spec appendCheckItem(This, Id, Item, [Option]) -> wxMenuItem:wxMenuItem()
 when
 This :: wxMenu(),
 Id :: integer(),
 Item :: unicode:chardata(),
 Option :: {help, unicode:chardata()}.

Adds a checkable item to the end of the menu.
See:
	append/5

	insertCheckItem/5

 appendRadioItem(This, Id, Item)

 -spec appendRadioItem(This, Id, Item) -> wxMenuItem:wxMenuItem()
 when This :: wxMenu(), Id :: integer(), Item :: unicode:chardata().

Equivalent to appendRadioItem(This, Id, Item, []).

 appendRadioItem/4

 -spec appendRadioItem(This, Id, Item, [Option]) -> wxMenuItem:wxMenuItem()
 when
 This :: wxMenu(),
 Id :: integer(),
 Item :: unicode:chardata(),
 Option :: {help, unicode:chardata()}.

Adds a radio item to the end of the menu.
All consequent radio items form a group and when an item in the group is checked, all the
others are automatically unchecked.
Note: Radio items are not supported under wxMotif.
See:
	append/5

	insertRadioItem/5

 appendSeparator(This)

 -spec appendSeparator(This) -> wxMenuItem:wxMenuItem() when This :: wxMenu().

Adds a separator to the end of the menu.
See:
	append/5

	insertSeparator/2

 break(This)

 -spec break(This) -> ok when This :: wxMenu().

Inserts a break in a menu, causing the next appended item to appear in a new column.
This function only actually inserts a break in wxMSW and does nothing under the other
platforms.

 check(This, Id, Check)

 -spec check(This, Id, Check) -> ok when This :: wxMenu(), Id :: integer(), Check :: boolean().

Checks or unchecks the menu item.
See: isChecked/2

 'Destroy'/2

 -spec 'Destroy'(This, Id) -> boolean() when This :: wxMenu(), Id :: integer();
 (This, Item) -> boolean() when This :: wxMenu(), Item :: wxMenuItem:wxMenuItem().

Deletes the menu item from the menu.
If the item is a submenu, it will be deleted. Use remove/2 if you want to keep the submenu (for
example, to reuse it later).
See:
	findItem/2

	delete/2

	remove/2

 delete/2

 -spec delete(This, Id) -> boolean() when This :: wxMenu(), Id :: integer();
 (This, Item) -> boolean() when This :: wxMenu(), Item :: wxMenuItem:wxMenuItem().

Deletes the menu item from the menu.
If the item is a submenu, it will not be deleted. Use 'Destroy'/2 if you want to delete a submenu.
See:
	findItem/2

	'Destroy'/2

	remove/2

 destroy(This)

 -spec destroy(This :: wxMenu()) -> ok.

Destroys the object

 enable(This, Id, Enable)

 -spec enable(This, Id, Enable) -> ok when This :: wxMenu(), Id :: integer(), Enable :: boolean().

Enables or disables (greys out) a menu item.
See: isEnabled/2

 findItem/2

 -spec findItem(This, Id) -> wxMenuItem:wxMenuItem() when This :: wxMenu(), Id :: integer();
 (This, ItemString) -> integer() when This :: wxMenu(), ItemString :: unicode:chardata().

Finds the menu id for a menu item string.
Return: Menu item identifier, or wxNOT_FOUND if none is found.
Remark: Any special menu codes are stripped out of source and target strings before
matching.

 findItemByPosition(This, Position)

 -spec findItemByPosition(This, Position) -> wxMenuItem:wxMenuItem()
 when This :: wxMenu(), Position :: integer().

Returns the wxMenuItem given a position in the menu.

 getHelpString(This, Id)

 -spec getHelpString(This, Id) -> unicode:charlist() when This :: wxMenu(), Id :: integer().

Returns the help string associated with a menu item.
Return: The help string, or the empty string if there is no help string or the item was
not found.
See:
	setHelpString/3

	append/5

 getLabel(This, Id)

 -spec getLabel(This, Id) -> unicode:charlist() when This :: wxMenu(), Id :: integer().

Returns a menu item label.
Return: The item label, or the empty string if the item was not found.
See: setLabel/3

 getMenuItemCount(This)

 -spec getMenuItemCount(This) -> integer() when This :: wxMenu().

Returns the number of items in the menu.

 getMenuItems(This)

 -spec getMenuItems(This) -> [wxMenuItem:wxMenuItem()] when This :: wxMenu().

 getTitle(This)

 -spec getTitle(This) -> unicode:charlist() when This :: wxMenu().

Returns the title of the menu.
See: setTitle/2

 insert/3

 -spec insert(This, Pos, Id) -> wxMenuItem:wxMenuItem()
 when This :: wxMenu(), Pos :: integer(), Id :: integer();
 (This, Pos, MenuItem) -> wxMenuItem:wxMenuItem()
 when This :: wxMenu(), Pos :: integer(), MenuItem :: wxMenuItem:wxMenuItem().

Inserts the given item before the position pos.
Inserting the item at position getMenuItemCount/1 is the same as appending it.
See:
	append/5

	prepend/5

 insert/4

 -spec insert(This, Pos, Id, [Option]) -> wxMenuItem:wxMenuItem()
 when
 This :: wxMenu(),
 Pos :: integer(),
 Id :: integer(),
 Option ::
 {text, unicode:chardata()} | {help, unicode:chardata()} | {kind, wx:wx_enum()}.

Inserts the given item before the position pos.
Inserting the item at position getMenuItemCount/1 is the same as appending it.
See:
	append/5

	prepend/5

 insert(This, Pos, Id, Text, Submenu)

 -spec insert(This, Pos, Id, Text, Submenu) -> wxMenuItem:wxMenuItem()
 when
 This :: wxMenu(),
 Pos :: integer(),
 Id :: integer(),
 Text :: unicode:chardata(),
 Submenu :: wxMenu().

Equivalent to insert(This, Pos, Id, Text, Submenu, []).

 insert/6

 -spec insert(This, Pos, Id, Text, Submenu, [Option]) -> wxMenuItem:wxMenuItem()
 when
 This :: wxMenu(),
 Pos :: integer(),
 Id :: integer(),
 Text :: unicode:chardata(),
 Submenu :: wxMenu(),
 Option :: {help, unicode:chardata()}.

Inserts the given submenu before the position pos.
text is the text shown in the menu for it and help is the help string shown in the
status bar when the submenu item is selected.
See: prepend/5

 insertCheckItem(This, Pos, Id, Item)

 -spec insertCheckItem(This, Pos, Id, Item) -> wxMenuItem:wxMenuItem()
 when
 This :: wxMenu(),
 Pos :: integer(),
 Id :: integer(),
 Item :: unicode:chardata().

Equivalent to insertCheckItem(This, Pos, Id, Item, []).

 insertCheckItem/5

 -spec insertCheckItem(This, Pos, Id, Item, [Option]) -> wxMenuItem:wxMenuItem()
 when
 This :: wxMenu(),
 Pos :: integer(),
 Id :: integer(),
 Item :: unicode:chardata(),
 Option :: {help, unicode:chardata()}.

Inserts a checkable item at the given position.
See:
	insert/6

	appendCheckItem/4

 insertRadioItem(This, Pos, Id, Item)

 -spec insertRadioItem(This, Pos, Id, Item) -> wxMenuItem:wxMenuItem()
 when
 This :: wxMenu(),
 Pos :: integer(),
 Id :: integer(),
 Item :: unicode:chardata().

Equivalent to insertRadioItem(This, Pos, Id, Item, []).

 insertRadioItem/5

 -spec insertRadioItem(This, Pos, Id, Item, [Option]) -> wxMenuItem:wxMenuItem()
 when
 This :: wxMenu(),
 Pos :: integer(),
 Id :: integer(),
 Item :: unicode:chardata(),
 Option :: {help, unicode:chardata()}.

Inserts a radio item at the given position.
See:
	insert/6

	appendRadioItem/4

 insertSeparator(This, Pos)

 -spec insertSeparator(This, Pos) -> wxMenuItem:wxMenuItem() when This :: wxMenu(), Pos :: integer().

Inserts a separator at the given position.
See:
	insert/6

	appendSeparator/1

 isChecked(This, Id)

 -spec isChecked(This, Id) -> boolean() when This :: wxMenu(), Id :: integer().

Determines whether a menu item is checked.
Return: true if the menu item is checked, false otherwise.
See: check/3

 isEnabled(This, Id)

 -spec isEnabled(This, Id) -> boolean() when This :: wxMenu(), Id :: integer().

Determines whether a menu item is enabled.
Return: true if the menu item is enabled, false otherwise.
See: enable/3

 new()

 -spec new() -> wxMenu().

Constructs a wxMenu object.

 new(Options)

 -spec new([Option]) -> wxMenu() when Option :: {style, integer()}.

Constructs a wxMenu object.

 new(Title, Options)

 -spec new(Title, [Option]) -> wxMenu() when Title :: unicode:chardata(), Option :: {style, integer()}.

Constructs a wxMenu object with a title.

 prepend/2

 -spec prepend(This, Id) -> wxMenuItem:wxMenuItem() when This :: wxMenu(), Id :: integer();
 (This, Item) -> wxMenuItem:wxMenuItem()
 when This :: wxMenu(), Item :: wxMenuItem:wxMenuItem().

Inserts the given item at position 0, i.e. before all the other existing items.
See:
	append/5

	insert/6

 prepend/3

 -spec prepend(This, Id, [Option]) -> wxMenuItem:wxMenuItem()
 when
 This :: wxMenu(),
 Id :: integer(),
 Option ::
 {text, unicode:chardata()} | {help, unicode:chardata()} | {kind, wx:wx_enum()}.

Inserts the given item at position 0, i.e. before all the other existing items.
See:
	append/5

	insert/6

 prepend(This, Id, Text, Submenu)

 -spec prepend(This, Id, Text, Submenu) -> wxMenuItem:wxMenuItem()
 when This :: wxMenu(), Id :: integer(), Text :: unicode:chardata(), Submenu :: wxMenu().

Equivalent to prepend(This, Id, Text, Submenu, []).

 prepend/5

 -spec prepend(This, Id, Text, Submenu, [Option]) -> wxMenuItem:wxMenuItem()
 when
 This :: wxMenu(),
 Id :: integer(),
 Text :: unicode:chardata(),
 Submenu :: wxMenu(),
 Option :: {help, unicode:chardata()}.

Inserts the given submenu at position 0.
See: insert/6

 prependCheckItem(This, Id, Item)

 -spec prependCheckItem(This, Id, Item) -> wxMenuItem:wxMenuItem()
 when This :: wxMenu(), Id :: integer(), Item :: unicode:chardata().

Equivalent to prependCheckItem(This, Id, Item, []).

 prependCheckItem/4

 -spec prependCheckItem(This, Id, Item, [Option]) -> wxMenuItem:wxMenuItem()
 when
 This :: wxMenu(),
 Id :: integer(),
 Item :: unicode:chardata(),
 Option :: {help, unicode:chardata()}.

Inserts a checkable item at position 0.
See:
	prepend/5

	appendCheckItem/4

 prependRadioItem(This, Id, Item)

 -spec prependRadioItem(This, Id, Item) -> wxMenuItem:wxMenuItem()
 when This :: wxMenu(), Id :: integer(), Item :: unicode:chardata().

Equivalent to prependRadioItem(This, Id, Item, []).

 prependRadioItem/4

 -spec prependRadioItem(This, Id, Item, [Option]) -> wxMenuItem:wxMenuItem()
 when
 This :: wxMenu(),
 Id :: integer(),
 Item :: unicode:chardata(),
 Option :: {help, unicode:chardata()}.

Inserts a radio item at position 0.
See:
	prepend/5

	appendRadioItem/4

 prependSeparator(This)

 -spec prependSeparator(This) -> wxMenuItem:wxMenuItem() when This :: wxMenu().

Inserts a separator at position 0.
See:
	prepend/5

	appendSeparator/1

 remove/2

 -spec remove(This, Id) -> wxMenuItem:wxMenuItem() when This :: wxMenu(), Id :: integer();
 (This, Item) -> wxMenuItem:wxMenuItem()
 when This :: wxMenu(), Item :: wxMenuItem:wxMenuItem().

Removes the menu item from the menu but doesn't delete the associated C++ object.
This allows you to reuse the same item later by adding it back to the menu (especially
useful with submenus).
Return: A pointer to the item which was detached from the menu.

 setHelpString(This, Id, HelpString)

 -spec setHelpString(This, Id, HelpString) -> ok
 when This :: wxMenu(), Id :: integer(), HelpString :: unicode:chardata().

Sets an item's help string.
See: getHelpString/2

 setLabel(This, Id, Label)

 -spec setLabel(This, Id, Label) -> ok
 when This :: wxMenu(), Id :: integer(), Label :: unicode:chardata().

Sets the label of a menu item.
See:
	append/5

	getLabel/2

 setTitle(This, Title)

 -spec setTitle(This, Title) -> ok when This :: wxMenu(), Title :: unicode:chardata().

Sets the title of the menu.
Remark: Notice that you can only call this method directly for the popup menus, to change
the title of a menu that is part of a menu bar you need to use wxMenuBar:setLabelTop/3.
See: getTitle/1

wxMenuBar

A menu bar is a series of menus accessible from the top of a frame.
Remark: To respond to a menu selection, provide a handler for EVT_MENU, in the frame that
contains the menu bar.
If you have a toolbar which uses the same identifiers as your EVT_MENU entries, events
from the toolbar will also be processed by your EVT_MENU event handlers.
Tip: under Windows, if you discover that menu shortcuts (for example, Alt-F to show the
file menu) are not working, check any EVT_CHAR events you are handling in child windows.
If you are not calling event.Skip() for events that you don't process in these event
handlers, menu shortcuts may cease to work.
See:
	wxMenu

	Overview events

This class is derived, and can use functions, from:
	wxWindow

	wxEvtHandler

wxWidgets docs: wxMenuBar

 Summary

 Types

 wxMenuBar()

 Functions

 append(This, Menu, Title)

 Adds the item to the end of the menu bar.

 check(This, Id, Check)

 Checks or unchecks a menu item.

 destroy(This)

 Destroys the object

 enable(This, Id, Enable)

 Enables or disables (greys out) a menu item.

 enableTop(This, Pos, Enable)

 Enables or disables a whole menu.

 findItem(This, Id)

 Finds the menu item object associated with the given menu item identifier.

 findMenu(This, Title)

 Returns the index of the menu with the given title or wxNOT_FOUND if no such menu
exists in this menubar.

 findMenuItem(This, MenuString, ItemString)

 Finds the menu item id for a menu name/menu item string pair.

 getAutoWindowMenu()

 getHelpString(This, Id)

 Gets the help string associated with the menu item identifier.

 getLabel(This, Id)

 Gets the label associated with a menu item.

 getLabelTop(This, Pos)

 Equivalent to: getMenuLabel/2

 getMenu(This, MenuIndex)

 Returns the menu at menuIndex (zero-based).

 getMenuCount(This)

 Returns the number of menus in this menubar.

 getMenuLabel(This, Pos)

 Returns the label of a top-level menu.

 getMenuLabelText(This, Pos)

 Returns the label of a top-level menu.

 insert(This, Pos, Menu, Title)

 Inserts the menu at the given position into the menu bar.

 isChecked(This, Id)

 Determines whether an item is checked.

 isEnabled(This, Id)

 Determines whether an item is enabled.

 macGetCommonMenuBar()

 Enables you to get the global menubar on Mac, that is, the menubar displayed when the app
is running without any frames open.

 macSetCommonMenuBar(Menubar)

 Enables you to set the global menubar on Mac, that is, the menubar displayed when the app
is running without any frames open.

 new()

 Construct an empty menu bar.

 new(Style)

 oSXGetAppleMenu(This)

 Returns the Apple menu.

 remove(This, Pos)

 Removes the menu from the menu bar and returns the menu object - the caller is
responsible for deleting it.

 replace(This, Pos, Menu, Title)

 Replaces the menu at the given position with another one.

 setAutoWindowMenu(Enable)

 setHelpString(This, Id, HelpString)

 Sets the help string associated with a menu item.

 setLabel(This, Id, Label)

 Sets the label of a menu item.

 setLabelTop(This, Pos, Label)

 Equivalent to: setMenuLabel/3

 setMenuLabel(This, Pos, Label)

 Sets the label of a top-level menu.

 Types

 wxMenuBar()

 -type wxMenuBar() :: wx:wx_object().

 Functions

 append(This, Menu, Title)

 -spec append(This, Menu, Title) -> boolean()
 when This :: wxMenuBar(), Menu :: wxMenu:wxMenu(), Title :: unicode:chardata().

Adds the item to the end of the menu bar.
Return: true on success, false if an error occurred.
See: insert/4

 check(This, Id, Check)

 -spec check(This, Id, Check) -> ok when This :: wxMenuBar(), Id :: integer(), Check :: boolean().

Checks or unchecks a menu item.
Remark: Only use this when the menu bar has been associated with a frame; otherwise, use
the wxMenu equivalent call.

 destroy(This)

 -spec destroy(This :: wxMenuBar()) -> ok.

Destroys the object

 enable(This, Id, Enable)

 -spec enable(This, Id, Enable) -> ok when This :: wxMenuBar(), Id :: integer(), Enable :: boolean().

Enables or disables (greys out) a menu item.
Remark: Only use this when the menu bar has been associated with a frame; otherwise, use
the wxMenu equivalent call.

 enableTop(This, Pos, Enable)

 -spec enableTop(This, Pos, Enable) -> ok when This :: wxMenuBar(), Pos :: integer(), Enable :: boolean().

Enables or disables a whole menu.
Remark: Only use this when the menu bar has been associated with a frame.

 findItem(This, Id)

 -spec findItem(This, Id) -> wxMenuItem:wxMenuItem() when This :: wxMenuBar(), Id :: integer().

Finds the menu item object associated with the given menu item identifier.
Return: The found menu item object, or NULL if one was not found.

 findMenu(This, Title)

 -spec findMenu(This, Title) -> integer() when This :: wxMenuBar(), Title :: unicode:chardata().

Returns the index of the menu with the given title or wxNOT_FOUND if no such menu
exists in this menubar.
The title parameter may specify either the menu title (with accelerator characters,
i.e. "&File") or just the menu label ("File") indifferently.

 findMenuItem(This, MenuString, ItemString)

 -spec findMenuItem(This, MenuString, ItemString) -> integer()
 when
 This :: wxMenuBar(),
 MenuString :: unicode:chardata(),
 ItemString :: unicode:chardata().

Finds the menu item id for a menu name/menu item string pair.
Return: The menu item identifier, or wxNOT_FOUND if none was found.
Remark: Any special menu codes are stripped out of source and target strings before
matching.

 getAutoWindowMenu()

 -spec getAutoWindowMenu() -> boolean().

 getHelpString(This, Id)

 -spec getHelpString(This, Id) -> unicode:charlist() when This :: wxMenuBar(), Id :: integer().

Gets the help string associated with the menu item identifier.
Return: The help string, or the empty string if there was no help string or the menu item
was not found.
See: setHelpString/3

 getLabel(This, Id)

 -spec getLabel(This, Id) -> unicode:charlist() when This :: wxMenuBar(), Id :: integer().

Gets the label associated with a menu item.
Return: The menu item label, or the empty string if the item was not found.
Remark: Use only after the menubar has been associated with a frame.

 getLabelTop(This, Pos)

 -spec getLabelTop(This, Pos) -> unicode:charlist() when This :: wxMenuBar(), Pos :: integer().

Equivalent to: getMenuLabel/2

 getMenu(This, MenuIndex)

 -spec getMenu(This, MenuIndex) -> wxMenu:wxMenu() when This :: wxMenuBar(), MenuIndex :: integer().

Returns the menu at menuIndex (zero-based).

 getMenuCount(This)

 -spec getMenuCount(This) -> integer() when This :: wxMenuBar().

Returns the number of menus in this menubar.

 getMenuLabel(This, Pos)

 -spec getMenuLabel(This, Pos) -> unicode:charlist() when This :: wxMenuBar(), Pos :: integer().

Returns the label of a top-level menu.
Note that the returned string includes the accelerator characters that have been
specified in the menu title string during its construction.
Return: The menu label, or the empty string if the menu was not found.
Remark: Use only after the menubar has been associated with a frame.
See:
	getMenuLabelText/2

	setMenuLabel/3

 getMenuLabelText(This, Pos)

 -spec getMenuLabelText(This, Pos) -> unicode:charlist() when This :: wxMenuBar(), Pos :: integer().

Returns the label of a top-level menu.
Note that the returned string does not include any accelerator characters that may have
been specified in the menu title string during its construction.
Return: The menu label, or the empty string if the menu was not found.
Remark: Use only after the menubar has been associated with a frame.
See:
	getMenuLabel/2

	setMenuLabel/3

 insert(This, Pos, Menu, Title)

 -spec insert(This, Pos, Menu, Title) -> boolean()
 when
 This :: wxMenuBar(),
 Pos :: integer(),
 Menu :: wxMenu:wxMenu(),
 Title :: unicode:chardata().

Inserts the menu at the given position into the menu bar.
Inserting menu at position 0 will insert it in the very beginning of it, inserting at
position getMenuCount/1 is the same as calling append/3.
Return: true on success, false if an error occurred.
See: append/3

 isChecked(This, Id)

 -spec isChecked(This, Id) -> boolean() when This :: wxMenuBar(), Id :: integer().

Determines whether an item is checked.
Return: true if the item was found and is checked, false otherwise.

 isEnabled(This, Id)

 -spec isEnabled(This, Id) -> boolean() when This :: wxMenuBar(), Id :: integer().

Determines whether an item is enabled.
Return: true if the item was found and is enabled, false otherwise.

 macGetCommonMenuBar()

 -spec macGetCommonMenuBar() -> wxMenuBar().

Enables you to get the global menubar on Mac, that is, the menubar displayed when the app
is running without any frames open.
Return: The global menubar.
Remark: Only exists on Mac, other platforms do not have this method.
Only for:wxosx

 macSetCommonMenuBar(Menubar)

 -spec macSetCommonMenuBar(Menubar) -> ok when Menubar :: wxMenuBar().

Enables you to set the global menubar on Mac, that is, the menubar displayed when the app
is running without any frames open.
Remark: Only exists on Mac, other platforms do not have this method.
Only for:wxosx

 new()

 -spec new() -> wxMenuBar().

Construct an empty menu bar.

 new(Style)

 -spec new(Style) -> wxMenuBar() when Style :: integer().

 oSXGetAppleMenu(This)

 -spec oSXGetAppleMenu(This) -> wxMenu:wxMenu() when This :: wxMenuBar().

Returns the Apple menu.
This is the leftmost menu with application's name as its title. You shouldn't remove any
items from it, but it is safe to insert extra menu items or submenus into it.
Only for:wxosx
Since: 3.0.1

 remove(This, Pos)

 -spec remove(This, Pos) -> wxMenu:wxMenu() when This :: wxMenuBar(), Pos :: integer().

Removes the menu from the menu bar and returns the menu object - the caller is
responsible for deleting it.
This function may be used together with insert/4 to change the menubar dynamically.
See: replace/4

 replace(This, Pos, Menu, Title)

 -spec replace(This, Pos, Menu, Title) -> wxMenu:wxMenu()
 when
 This :: wxMenuBar(),
 Pos :: integer(),
 Menu :: wxMenu:wxMenu(),
 Title :: unicode:chardata().

Replaces the menu at the given position with another one.
Return: The menu which was previously at position pos. The caller is responsible for
deleting it.
See:
	insert/4

	remove/2

 setAutoWindowMenu(Enable)

 -spec setAutoWindowMenu(Enable) -> ok when Enable :: boolean().

 setHelpString(This, Id, HelpString)

 -spec setHelpString(This, Id, HelpString) -> ok
 when This :: wxMenuBar(), Id :: integer(), HelpString :: unicode:chardata().

Sets the help string associated with a menu item.
See: getHelpString/2

 setLabel(This, Id, Label)

 -spec setLabel(This, Id, Label) -> ok
 when This :: wxMenuBar(), Id :: integer(), Label :: unicode:chardata().

Sets the label of a menu item.
Remark: Use only after the menubar has been associated with a frame.
See: getLabel/2

 setLabelTop(This, Pos, Label)

 -spec setLabelTop(This, Pos, Label) -> ok
 when This :: wxMenuBar(), Pos :: integer(), Label :: unicode:chardata().

Equivalent to: setMenuLabel/3

 setMenuLabel(This, Pos, Label)

 -spec setMenuLabel(This, Pos, Label) -> ok
 when This :: wxMenuBar(), Pos :: integer(), Label :: unicode:chardata().

Sets the label of a top-level menu.
Remark: Use only after the menubar has been associated with a frame.

wxMenuEvent

This class is used for a variety of menu-related events.
Note that these do not include menu command events, which are handled using wxCommandEvent
objects.
Events of this class are generated by both menus that are part of a wxMenuBar,
attached to wxFrame, and popup menus shown by wxWindow:popupMenu/4. They are sent to the following objects
until one of them handles the event: -# The menu object itself, as returned by GetMenu(), if any. -# The wxMenuBar to which this menu is attached, if any. -# The window associated with the menu, e.g. the one calling PopupMenu() for the popup menus. -# The top level parent of that window if it's different from the window itself.
This is similar to command events generated by the menu items, but, unlike them, wxMenuEvent
are only sent to the window itself and its top level parent but not any intermediate
windows in the hierarchy.
The default handler for wxEVT_MENU_HIGHLIGHT in wxFrame displays help text in the
status bar, see wxFrame:setStatusBarPane/2.
See:
	wxCommandEvent

	Overview events

This class is derived, and can use functions, from:
	wxEvent

wxWidgets docs: wxMenuEvent
Events
Use wxEvtHandler:connect/3 with wxMenuEventType to subscribe to events of this type.

 Summary

 Types

 wxMenu()

 wxMenuEvent()

 wxMenuEventType()

 Functions

 getMenu(This)

 Returns the menu which is being opened or closed, or the menu containing the highlighted
item.

 getMenuId(This)

 Returns the menu identifier associated with the event.

 isPopup(This)

 Returns true if the menu which is being opened or closed is a popup menu, false if it is
a normal one.

 Types

 wxMenu()

 -type wxMenu() ::
 #wxMenu{type :: wxMenuEvent:wxMenuEventType(), menuId :: integer(), menu :: wxMenu:wxMenu()}.

 wxMenuEvent()

 -type wxMenuEvent() :: wx:wx_object().

 wxMenuEventType()

 -type wxMenuEventType() :: menu_open | menu_close | menu_highlight.

 Functions

 getMenu(This)

 -spec getMenu(This) -> wxMenu:wxMenu() when This :: wxMenuEvent().

Returns the menu which is being opened or closed, or the menu containing the highlighted
item.
Note that the returned value can be NULL if the menu being opened doesn't have a
corresponding wxMenu, e.g. this happens when opening the system menu in wxMSW port.
Remark: Since 3.1.3 this function can be used with OPEN, CLOSE and HIGHLIGHT
events. Before 3.1.3, this method can only be used with the OPEN and CLOSE events.

 getMenuId(This)

 -spec getMenuId(This) -> integer() when This :: wxMenuEvent().

Returns the menu identifier associated with the event.
This method should be only used with the HIGHLIGHT events.

 isPopup(This)

 -spec isPopup(This) -> boolean() when This :: wxMenuEvent().

Returns true if the menu which is being opened or closed is a popup menu, false if it is
a normal one.
This method should only be used with the OPEN and CLOSE events.

wxMenuItem

A menu item represents an item in a menu.
Note that you usually don't have to deal with it directly as wxMenu methods usually
construct an object of this class for you.
Also please note that the methods related to fonts and bitmaps are currently only
implemented for Windows, Mac and GTK+.
See:
	wxMenuBar

	wxMenu

wxWidgets docs: wxMenuItem
Events
Event types emitted from this class:
	menu_open

	menu_close

	menu_highlight

 Summary

 Types

 wxMenuItem()

 Functions

 check(This)

 Equivalent to check(This, []).

 check/2

 Checks or unchecks the menu item.

 destroy(This)

 Destroys the object

 enable(This)

 Equivalent to enable(This, []).

 enable/2

 Enables or disables the menu item.

 getBitmap(This)

 Returns the checked or unchecked bitmap.

 getHelp(This)

 Returns the help string associated with the menu item.

 getId(This)

 Returns the menu item identifier.

 getItemLabel(This)

 Returns the text associated with the menu item including any accelerator characters that
were passed to the constructor or setItemLabel/2.

 getItemLabelText(This)

 Returns the text associated with the menu item, without any accelerator characters.

 getKind(This)

 Returns the item kind, one of wxITEM_SEPARATOR, wxITEM_NORMAL, wxITEM_CHECK or wxITEM_RADIO.

 getLabel(This)

 Equivalent to: getItemLabelText/1

 getLabelFromText(Text)

 Equivalent to: getLabelText/1

 getLabelText(Text)

 Strips all accelerator characters and mnemonics from the given text.

 getMenu(This)

 Returns the menu this menu item is in, or NULL if this menu item is not attached.

 getSubMenu(This)

 Returns the submenu associated with the menu item, or NULL if there isn't one.

 getText(This)

 Equivalent to: getItemLabel/1

 isCheckable(This)

 Returns true if the item is checkable.

 isChecked(This)

 Returns true if the item is checked.

 isEnabled(This)

 Returns true if the item is enabled.

 isSeparator(This)

 Returns true if the item is a separator.

 isSubMenu(This)

 Returns true if the item is a submenu.

 new()

 Equivalent to new([]).

 new(Options)

 Constructs a wxMenuItem object.

 setBitmap(This, Bmp)

 Sets the bitmap for the menu item.

 setHelp(This, HelpString)

 Sets the help string.

 setItemLabel(This, Label)

 Sets the label associated with the menu item.

 setMenu(This, Menu)

 Sets the parent menu which will contain this menu item.

 setSubMenu(This, Menu)

 Sets the submenu of this menu item.

 setText(This, Label)

 Equivalent to: setItemLabel/2

 Types

 wxMenuItem()

 -type wxMenuItem() :: wx:wx_object().

 Functions

 check(This)

 -spec check(This) -> ok when This :: wxMenuItem().

Equivalent to check(This, []).

 check/2

 -spec check(This, [Option]) -> ok when This :: wxMenuItem(), Option :: {check, boolean()}.

Checks or unchecks the menu item.
Note that this only works when the item is already appended to a menu.

 destroy(This)

 -spec destroy(This :: wxMenuItem()) -> ok.

Destroys the object

 enable(This)

 -spec enable(This) -> ok when This :: wxMenuItem().

Equivalent to enable(This, []).

 enable/2

 -spec enable(This, [Option]) -> ok when This :: wxMenuItem(), Option :: {enable, boolean()}.

Enables or disables the menu item.

 getBitmap(This)

 -spec getBitmap(This) -> wxBitmap:wxBitmap() when This :: wxMenuItem().

Returns the checked or unchecked bitmap.
Only for:wxmsw

 getHelp(This)

 -spec getHelp(This) -> unicode:charlist() when This :: wxMenuItem().

Returns the help string associated with the menu item.

 getId(This)

 -spec getId(This) -> integer() when This :: wxMenuItem().

Returns the menu item identifier.

 getItemLabel(This)

 -spec getItemLabel(This) -> unicode:charlist() when This :: wxMenuItem().

Returns the text associated with the menu item including any accelerator characters that
were passed to the constructor or setItemLabel/2.
See:
	getItemLabelText/1

	getLabelText/1

 getItemLabelText(This)

 -spec getItemLabelText(This) -> unicode:charlist() when This :: wxMenuItem().

Returns the text associated with the menu item, without any accelerator characters.
See:
	getItemLabel/1

	getLabelText/1

 getKind(This)

 -spec getKind(This) -> wx:wx_enum() when This :: wxMenuItem().

Returns the item kind, one of wxITEM_SEPARATOR, wxITEM_NORMAL, wxITEM_CHECK or wxITEM_RADIO.

 getLabel(This)

 -spec getLabel(This) -> unicode:charlist() when This :: wxMenuItem().

Equivalent to: getItemLabelText/1

 getLabelFromText(Text)

 -spec getLabelFromText(Text) -> unicode:charlist() when Text :: unicode:chardata().

Equivalent to: getLabelText/1

 getLabelText(Text)

 -spec getLabelText(Text) -> unicode:charlist() when Text :: unicode:chardata().

Strips all accelerator characters and mnemonics from the given text.
For example:
will return just "Hello".
See:
	getItemLabelText/1

	getItemLabel/1

 getMenu(This)

 -spec getMenu(This) -> wxMenu:wxMenu() when This :: wxMenuItem().

Returns the menu this menu item is in, or NULL if this menu item is not attached.

 getSubMenu(This)

 -spec getSubMenu(This) -> wxMenu:wxMenu() when This :: wxMenuItem().

Returns the submenu associated with the menu item, or NULL if there isn't one.

 getText(This)

 -spec getText(This) -> unicode:charlist() when This :: wxMenuItem().

Equivalent to: getItemLabel/1

 isCheckable(This)

 -spec isCheckable(This) -> boolean() when This :: wxMenuItem().

Returns true if the item is checkable.
Notice that the radio buttons are considered to be checkable as well, so this method
returns true for them too. Use IsCheck() (not implemented in wx) if you want to test for
the check items only.

 isChecked(This)

 -spec isChecked(This) -> boolean() when This :: wxMenuItem().

Returns true if the item is checked.

 isEnabled(This)

 -spec isEnabled(This) -> boolean() when This :: wxMenuItem().

Returns true if the item is enabled.

 isSeparator(This)

 -spec isSeparator(This) -> boolean() when This :: wxMenuItem().

Returns true if the item is a separator.

 isSubMenu(This)

 -spec isSubMenu(This) -> boolean() when This :: wxMenuItem().

Returns true if the item is a submenu.

 new()

 -spec new() -> wxMenuItem().

Equivalent to new([]).

 new(Options)

 -spec new([Option]) -> wxMenuItem()
 when
 Option ::
 {parentMenu, wxMenu:wxMenu()} |
 {id, integer()} |
 {text, unicode:chardata()} |
 {help, unicode:chardata()} |
 {kind, wx:wx_enum()} |
 {subMenu, wxMenu:wxMenu()}.

Constructs a wxMenuItem object.
Menu items can be standard, or "stock menu items", or custom. For the standard menu items
(such as commands to open a file, exit the program and so on, see page_stockitems for the
full list) it is enough to specify just the stock ID and leave text and help string
empty. Some platforms (currently wxGTK only, and see the remark in setBitmap/2 documentation) will
also show standard bitmaps for stock menu items.
Leaving at least text empty for the stock menu items is actually strongly recommended
as they will have appearance and keyboard interface (including standard accelerators)
familiar to the user.
For the custom (non-stock) menu items, text must be specified and while help string
may be left empty, it's recommended to pass the item description (which is automatically
shown by the library in the status bar when the menu item is selected) in this parameter.
Finally note that you can e.g. use a stock menu label without using its stock help string:
that is, stock properties are set independently one from the other.

 setBitmap(This, Bmp)

 -spec setBitmap(This, Bmp) -> ok when This :: wxMenuItem(), Bmp :: wxBitmap:wxBitmap().

Sets the bitmap for the menu item.
It is equivalent to wxMenuItem::SetBitmaps(bmp, wxNullBitmap) if checked is true
(default value) or SetBitmaps(wxNullBitmap, bmp) otherwise.
setBitmap/2 must be called before the item is appended to the menu, i.e. appending the item without
a bitmap and setting one later is not guaranteed to work. But the bitmap can be changed or
reset later if it had been set up initially.
Notice that GTK+ uses a global setting called gtk-menu-images to determine if the
images should be shown in the menus at all. If it is off (which is the case in e.g. Gnome
2.28 by default), no images will be shown, consistently with the native behaviour.
Only for:wxmsw,wxosx,wxgtk

 setHelp(This, HelpString)

 -spec setHelp(This, HelpString) -> ok when This :: wxMenuItem(), HelpString :: unicode:chardata().

Sets the help string.

 setItemLabel(This, Label)

 -spec setItemLabel(This, Label) -> ok when This :: wxMenuItem(), Label :: unicode:chardata().

Sets the label associated with the menu item.
Note that if the ID of this menu item corresponds to a stock ID, then it is not necessary
to specify a label: wxWidgets will automatically use the stock item label associated with
that ID. See the new/1 for more info.
The label string for the normal menu items (not separators) may include the accelerator
which can be used to activate the menu item from keyboard. An accelerator key can be
specified using the ampersand & character. In order to embed an ampersand character in
the menu item text, the ampersand must be doubled.
Optionally you can specify also an accelerator string appending a tab character \t
followed by a valid key combination (e.g. CTRL+V). Its general syntax is any combination
of "CTRL", "RAWCTRL", "ALT" and "SHIFT" strings (case doesn't matter) separated by
either '-' or '+' characters and followed by the accelerator itself. Notice that CTRL
corresponds to the "Ctrl" key on most platforms but not under macOS where it is mapped to
"Cmd" key on Mac keyboard. Usually this is exactly what you want in portable code but if
you really need to use the (rarely used for this purpose) "Ctrl" key even under Mac, you
may use RAWCTRL to prevent this mapping. Under the other platforms RAWCTRL is the same
as plain CTRL.
The accelerator may be any alphanumeric character, any function key (from F1 to F12),
any numpad digit key using KP_ prefix (i.e. from KP_0 to KP_9) or one of the special
strings listed below (again, case doesn't matter) corresponding to the specified key code:
	Del or Delete: WXK_DELETE

	Back: WXK_BACK

	Ins or Insert: WXK_INSERT

	Enter or Return: WXK_RETURN

	PgUp or PageUp: WXK_PAGEUP

	PgDn or PageDown: WXK_PAGEDOWN

	Left: WXK_LEFT

	Right: WXK_RIGHT

	Up: WXK_UP

	Down: WXK_DOWN

	Home: WXK_HOME

	End: WXK_END

	Space: WXK_SPACE

	Tab: WXK_TAB

	Esc or Escape: WXK_ESCAPE

	Cancel: WXK_CANCEL

	Clear: WXK_CLEAR

	Menu: WXK_MENU

	Pause: WXK_PAUSE

	Capital: WXK_CAPITAL

	Select: WXK_SELECT

	Print: WXK_PRINT

	Execute: WXK_EXECUTE

	Snapshot: WXK_SNAPSHOT

	Help: WXK_HELP

	Add: WXK_ADD

	Separator: WXK_SEPARATOR

	Subtract: WXK_SUBTRACT

	Decimal: WXK_DECIMAL

	Divide: WXK_DIVIDE

	Num_lock: WXK_NUMLOCK

	Scroll_lock: WXK_SCROLL

	KP_Space: WXK_NUMPAD_SPACE

	KP_Tab: WXK_NUMPAD_TAB

	KP_Enter: WXK_NUMPAD_ENTER

	KP_Home: WXK_NUMPAD_HOME

	KP_Left: WXK_NUMPAD_LEFT

	KP_Up: WXK_NUMPAD_UP

	KP_Right: WXK_NUMPAD_RIGHT

	KP_Down: WXK_NUMPAD_DOWN

	KP_PageUp: WXK_NUMPAD_PAGEUP

	KP_PageDown: WXK_NUMPAD_PAGEDOWN

	KP_Prior: WXK_NUMPAD_PAGEUP

	KP_Next: WXK_NUMPAD_PAGEDOWN

	KP_End: WXK_NUMPAD_END

	KP_Begin: WXK_NUMPAD_BEGIN

	KP_Insert: WXK_NUMPAD_INSERT

	KP_Delete: WXK_NUMPAD_DELETE

	KP_Equal: WXK_NUMPAD_EQUAL

	KP_Multiply: WXK_NUMPAD_MULTIPLY

	KP_Add: WXK_NUMPAD_ADD

	KP_Separator: WXK_NUMPAD_SEPARATOR

	KP_Subtract: WXK_NUMPAD_SUBTRACT

	KP_Decimal: WXK_NUMPAD_DECIMAL

	KP_Divide: WXK_NUMPAD_DIVIDE

	Windows_Left: WXK_WINDOWS_LEFT

	Windows_Right: WXK_WINDOWS_RIGHT

	Windows_Menu: WXK_WINDOWS_MENU

	Command: WXK_COMMAND

Examples:
Note: In wxGTK using "SHIFT" with non-alphabetic characters currently doesn't work,
even in combination with other modifiers, due to GTK+ limitation. E.g. Shift+Ctrl+A
works but Shift+Ctrl+1 or Shift+/ do not, so avoid using accelerators of this form in
portable code.
Note: In wxGTk, the left/right/up/down arrow keys do not work as accelerator keys for a
menu item unless a modifier key is used. Additionally, the following keycodes are not
supported as menu accelerator keys:
	WXK_COMMAND/WXK_CONTROL

	WXK_SHIFT

	WXK_ALT

	WXK_SCROLL

	WXK_CAPITAL

	WXK_NUMLOCK

	WXK_NUMPAD_TAB

	WXK_TAB

	WXK_WINDOWS_LEFT

	WXK_WINDOWS_RIGHT

	WXK_ADD

	WXK_SEPARATOR

	WXK_SUBTRACT

	WXK_DECIMAL

	WXK_DIVIDE

	WXK_SNAPSHOT

See:
	getItemLabel/1

	getItemLabelText/1

 setMenu(This, Menu)

 -spec setMenu(This, Menu) -> ok when This :: wxMenuItem(), Menu :: wxMenu:wxMenu().

Sets the parent menu which will contain this menu item.

 setSubMenu(This, Menu)

 -spec setSubMenu(This, Menu) -> ok when This :: wxMenuItem(), Menu :: wxMenu:wxMenu().

Sets the submenu of this menu item.

 setText(This, Label)

 -spec setText(This, Label) -> ok when This :: wxMenuItem(), Label :: unicode:chardata().

Equivalent to: setItemLabel/2

wxMessageDialog

This class represents a dialog that shows a single or multi-line message, with a choice
of OK, Yes, No and Cancel buttons.
Styles
This class supports the following styles:
	wxOK: Puts an Ok button in the message box. May be combined with wxCANCEL.

	wxCANCEL: Puts a Cancel button in the message box. Must be combined with either wxOK or wxYES_NO.

	wxYES_NO: Puts Yes and No buttons in the message box. It is recommended to always use wxCANCEL
with this style as otherwise the message box won't have a close button under wxMSW and
the user will be forced to answer it.

	wxHELP: Puts a Help button to the message box. This button can have special appearance or
be specially positioned if its label is not changed from the default one. Notice that
using this button is not supported when showing a message box from non-main thread in
wxOSX/Cocoa. Available since wxWidgets 2.9.3.

	wxNO_DEFAULT: Makes the "No" button default, can only be used with wxYES_NO.

	wxCANCEL_DEFAULT: Makes the "Cancel" button default, can only be used with wxCANCEL.
This style is currently not supported (and ignored) in wxOSX.

	wxYES_DEFAULT: Makes the "Yes" button default, this is the default behaviour and this
flag exists solely for symmetry with wxNO_DEFAULT.

	wxOK_DEFAULT: Makes the "OK" button default, this is the default behaviour and this flag
exists solely for symmetry with wxCANCEL_DEFAULT.

	wxICON_NONE: Displays no icon in the dialog if possible (an icon might still be displayed
if the current platform mandates its use). This style may be used to prevent the dialog
from using the default icon based on wxYES_NO presence as explained in wxICON_QUESTION
and wxICON_INFORMATION documentation below.

	wxICON_ERROR: Displays an error icon in the dialog.

	wxICON_WARNING: Displays a warning icon in the dialog. This style should be used for
informative warnings or, in combination with wxYES_NO or wxCANCEL, for questions that
have potentially serious consequences (caution icon is used on macOS in this case).

	wxICON_QUESTION: Displays a question mark symbol. This icon is automatically used with wxYES_NO
so it's usually unnecessary to specify it explicitly. This style is not supported for
message dialogs under wxMSW when a task dialog is used to implement them (i.e. when
running under Windows Vista or later) because Microsoft guidelines
indicate that no icon should be used for routine confirmations. If it is specified, no
icon will be displayed.

	wxICON_INFORMATION: Displays an information symbol. This icon is used by default if wxYES_NO
is not given so it is usually unnecessary to specify it explicitly.

	wxICON_EXCLAMATION: Alias for wxICON_WARNING.

	wxICON_HAND: Alias for wxICON_ERROR.

	wxICON_AUTH_NEEDED: Displays an authentication needed symbol. This style is only
supported for message dialogs under wxMSW when a task dialog is used to implement them
(i.e. when running under Windows Vista or later). In other cases the default icon
selection logic will be used. Note this can be combined with other styles to provide a
fallback. For instance, using wxICON_AUTH_NEEDED | wxICON_QUESTION will show a shield
symbol on Windows Vista or above and a question symbol on other platforms. Available since
wxWidgets 2.9.5

	wxSTAY_ON_TOP: Makes the message box stay on top of all other windows and not only just
its parent (currently implemented only under MSW and GTK).

	wxCENTRE: Centre the message box on its parent or on the screen if parent is not
specified. Setting this style under MSW makes no differences as the dialog is always
centered on the parent.

See: Overview cmndlg
This class is derived, and can use functions, from:
	wxDialog

	wxTopLevelWindow

	wxWindow

	wxEvtHandler

wxWidgets docs: wxMessageDialog

 Summary

 Types

 wxMessageDialog()

 Functions

 destroy(This)

 Destroys the object

 new(Parent, Message)

 Equivalent to new(Parent, Message, []).

 new/3

 Constructor specifying the message box properties.

 Types

 wxMessageDialog()

 -type wxMessageDialog() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxMessageDialog()) -> ok.

Destroys the object

 new(Parent, Message)

 -spec new(Parent, Message) -> wxMessageDialog()
 when Parent :: wxWindow:wxWindow(), Message :: unicode:chardata().

Equivalent to new(Parent, Message, []).

 new/3

 -spec new(Parent, Message, [Option]) -> wxMessageDialog()
 when
 Parent :: wxWindow:wxWindow(),
 Message :: unicode:chardata(),
 Option ::
 {caption, unicode:chardata()} |
 {style, integer()} |
 {pos, {X :: integer(), Y :: integer()}}.

Constructor specifying the message box properties.
Use wxDialog:showModal/1 to show the dialog.
style may be a bit list of the identifiers described above.
Notice that not all styles are compatible: only one of wxOK and wxYES_NO may be
specified (and one of them must be specified) and at most one default button style can be
used and it is only valid if the corresponding button is shown in the message box.

wxMiniFrame

A miniframe is a frame with a small title bar.
It is suitable for floating toolbars that must not take up too much screen area.
An example of mini frame can be seen in the page_samples_dialogs using the "Mini frame"
command of the "Generic dialogs" submenu.
Styles
This class supports the following styles:
	wxICONIZE: Display the frame iconized (minimized) (Windows only).

	wxCAPTION: Puts a caption on the frame.

	wxMINIMIZE: Identical to wxICONIZE.

	wxMINIMIZE_BOX: Displays a minimize box on the frame (Windows and Motif only).

	wxMAXIMIZE: Displays the frame maximized (Windows only).

	wxMAXIMIZE_BOX: Displays a maximize box on the frame (Windows and Motif only).

	wxCLOSE_BOX: Displays a close box on the frame.

	wxSTAY_ON_TOP: Stay on top of other windows (Windows only).

	wxSYSTEM_MENU: Displays a system menu (Windows and Motif only).

	wxRESIZE_BORDER: Displays a resizable border around the window.

Remark: This class has miniframe functionality under Windows and GTK, i.e. the presence
of mini frame will not be noted in the task bar and focus behaviour is different. On other
platforms, it behaves like a normal frame.
See:
	wxMDIParentFrame

	wxMDIChildFrame

	wxFrame

	wxDialog

This class is derived, and can use functions, from:
	wxFrame

	wxTopLevelWindow

	wxWindow

	wxEvtHandler

wxWidgets docs: wxMiniFrame

 Summary

 Types

 wxMiniFrame()

 Functions

 create(This, Parent, Id, Title)

 Equivalent to create(This, Parent, Id, Title, []).

 create/5

 Used in two-step frame construction.

 destroy(This)

 Destroys the object

 new()

 Default ctor.

 new(Parent, Id, Title)

 Equivalent to new(Parent, Id, Title, []).

 new/4

 Constructor, creating the window.

 Types

 wxMiniFrame()

 -type wxMiniFrame() :: wx:wx_object().

 Functions

 create(This, Parent, Id, Title)

 -spec create(This, Parent, Id, Title) -> boolean()
 when
 This :: wxMiniFrame(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Title :: unicode:chardata().

Equivalent to create(This, Parent, Id, Title, []).

 create/5

 -spec create(This, Parent, Id, Title, [Option]) -> boolean()
 when
 This :: wxMiniFrame(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Title :: unicode:chardata(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Used in two-step frame construction.
See new/4 for further details.

 destroy(This)

 -spec destroy(This :: wxMiniFrame()) -> ok.

Destroys the object

 new()

 -spec new() -> wxMiniFrame().

Default ctor.

 new(Parent, Id, Title)

 -spec new(Parent, Id, Title) -> wxMiniFrame()
 when Parent :: wxWindow:wxWindow(), Id :: integer(), Title :: unicode:chardata().

Equivalent to new(Parent, Id, Title, []).

 new/4

 -spec new(Parent, Id, Title, [Option]) -> wxMiniFrame()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Title :: unicode:chardata(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Constructor, creating the window.
Remark: The frame behaves like a normal frame on non-Windows platforms.
See: create/5

wxMirrorDC

wxMirrorDC is a simple wrapper class which is always associated with a real wxDC
object and either forwards all of its operations to it without changes (no mirroring takes
place) or exchanges x and y coordinates which makes it possible to reuse the same code
to draw a figure and its mirror -- i.e.
reflection related to the diagonal line x == y.
Since: 2.5.0
This class is derived, and can use functions, from:
	wxDC

wxWidgets docs: wxMirrorDC

 Summary

 Types

 wxMirrorDC()

 Functions

 destroy(This)

 Destroys the object

 new(Dc, Mirror)

 Creates a (maybe) mirrored DC associated with the real dc.

 Types

 wxMirrorDC()

 -type wxMirrorDC() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxMirrorDC()) -> ok.

Destroys the object

 new(Dc, Mirror)

 -spec new(Dc, Mirror) -> wxMirrorDC() when Dc :: wxDC:wxDC(), Mirror :: boolean().

Creates a (maybe) mirrored DC associated with the real dc.
Everything drawn on wxMirrorDC will appear (and maybe mirrored) on dc.
mirror specifies if we do mirror (if it is true) or not (if it is false).

wxMouseCaptureChangedEvent

An mouse capture changed event is sent to a window that loses its mouse capture.
This is called even if wxWindow:releaseMouse/1 was called by the application code. Handling this event allows an
application to cater for unexpected capture releases which might otherwise confuse mouse
handling code.
Only for:wxmsw
See:
	wxMouseCaptureLostEvent

	Overview events

	wxWindow:captureMouse/1

	wxWindow:releaseMouse/1

	wxWindow:getCapture/0

This class is derived, and can use functions, from:
	wxEvent

wxWidgets docs: wxMouseCaptureChangedEvent
Events
Use wxEvtHandler:connect/3 with wxMouseCaptureChangedEventType to subscribe to events of this type.

 Summary

 Types

 wxMouseCaptureChanged()

 wxMouseCaptureChangedEvent()

 wxMouseCaptureChangedEventType()

 Functions

 getCapturedWindow(This)

 Returns the window that gained the capture, or NULL if it was a non-wxWidgets window.

 Types

 wxMouseCaptureChanged()

 -type wxMouseCaptureChanged() ::
 #wxMouseCaptureChanged{type :: wxMouseCaptureChangedEvent:wxMouseCaptureChangedEventType()}.

 wxMouseCaptureChangedEvent()

 -type wxMouseCaptureChangedEvent() :: wx:wx_object().

 wxMouseCaptureChangedEventType()

 -type wxMouseCaptureChangedEventType() :: mouse_capture_changed.

 Functions

 getCapturedWindow(This)

 -spec getCapturedWindow(This) -> wxWindow:wxWindow() when This :: wxMouseCaptureChangedEvent().

Returns the window that gained the capture, or NULL if it was a non-wxWidgets window.

wxMouseCaptureLostEvent

A mouse capture lost event is sent to a window that had obtained mouse capture, which was
subsequently lost due to an "external" event (for example, when a dialog box is shown or
if another application captures the mouse).
If this happens, this event is sent to all windows that are on the capture stack (i.e.
called CaptureMouse, but didn't call ReleaseMouse yet). The event is not sent if the
capture changes because of a call to CaptureMouse or ReleaseMouse.
This event is currently emitted under Windows only.
See:
	wxMouseCaptureChangedEvent

	Overview events

	wxWindow:captureMouse/1

	wxWindow:releaseMouse/1

	wxWindow:getCapture/0

This class is derived, and can use functions, from:
	wxEvent

wxWidgets docs: wxMouseCaptureLostEvent
Events
Use wxEvtHandler:connect/3 with wxMouseCaptureLostEventType to subscribe to events of this type.

 Summary

 Types

 wxMouseCaptureLost()

 wxMouseCaptureLostEvent()

 wxMouseCaptureLostEventType()

 Types

 wxMouseCaptureLost()

 -type wxMouseCaptureLost() ::
 #wxMouseCaptureLost{type :: wxMouseCaptureLostEvent:wxMouseCaptureLostEventType()}.

 wxMouseCaptureLostEvent()

 -type wxMouseCaptureLostEvent() :: wx:wx_object().

 wxMouseCaptureLostEventType()

 -type wxMouseCaptureLostEventType() :: mouse_capture_lost.

wxMouseEvent

This event class contains information about the events generated by the mouse: they
include mouse buttons press and release events and mouse move events.
All mouse events involving the buttons use wxMOUSE_BTN_LEFT for the left mouse button, wxMOUSE_BTN_MIDDLE
for the middle one and wxMOUSE_BTN_RIGHT for the right one. And if the system supports
more buttons, the wxMOUSE_BTN_AUX1 and wxMOUSE_BTN_AUX2 events can also be generated.
Note that not all mice have even a middle button so a portable application should avoid
relying on the events from it (but the right button click can be emulated using the left
mouse button with the control key under Mac platforms with a single button mouse).
For the wxEVT_ENTER_WINDOW and wxEVT_LEAVE_WINDOW events purposes, the mouse is
considered to be inside the window if it is in the window client area and not inside one
of its children. In other words, the parent window receives wxEVT_LEAVE_WINDOW event not
only when the mouse leaves the window entirely but also when it enters one of its children.
The position associated with a mouse event is expressed in the window coordinates of the
window which generated the event, you can use wxWindow:clientToScreen/3 to convert it to screen coordinates and
possibly call wxWindow:screenToClient/2 next to convert it to window coordinates of another window.
Note: Note the difference between methods like leftDown/1 and the inherited leftIsDown/1: the former returns
true when the event corresponds to the left mouse button click while the latter returns
true if the left mouse button is currently being pressed. For example, when the user is
dragging the mouse you can use leftIsDown/1 to test whether the left mouse button is (still)
depressed. Also, by convention, if leftDown/1 returns true, leftIsDown/1 will also return true in wxWidgets
whatever the underlying GUI behaviour is (which is platform-dependent). The same applies,
of course, to other mouse buttons as well.
See: wxKeyEvent
This class is derived, and can use functions, from:
	wxEvent

wxWidgets docs: wxMouseEvent
Events
Use wxEvtHandler:connect/3 with wxMouseEventType to subscribe to events of this type.

 Summary

 Types

 wxMouse()

 wxMouseEvent()

 wxMouseEventType()

 Functions

 altDown(This)

 Returns true if the Alt key is pressed.

 aux1DClick(This)

 Returns true if the event was a first extra button double click.

 aux1Down(This)

 Returns true if the first extra button mouse button changed to down.

 aux1Up(This)

 Returns true if the first extra button mouse button changed to up.

 aux2DClick(This)

 Returns true if the event was a second extra button double click.

 aux2Down(This)

 Returns true if the second extra button mouse button changed to down.

 aux2Up(This)

 Returns true if the second extra button mouse button changed to up.

 button(This, But)

 Returns true if the event was generated by the specified button.

 buttonDClick(This)

 Equivalent to buttonDClick(This, []).

 buttonDClick/2

 If the argument is omitted, this returns true if the event was a mouse double click
event.

 buttonDown(This)

 Equivalent to buttonDown(This, []).

 buttonDown/2

 If the argument is omitted, this returns true if the event was a mouse button down event.

 buttonUp(This)

 Equivalent to buttonUp(This, []).

 buttonUp/2

 If the argument is omitted, this returns true if the event was a mouse button up event.

 cmdDown(This)

 Returns true if the key used for command accelerators is pressed.

 controlDown(This)

 Returns true if the Control key or Apple/Command key under macOS is pressed.

 dragging(This)

 Returns true if this was a dragging event (motion while a button is depressed).

 entering(This)

 Returns true if the mouse was entering the window.

 getButton(This)

 Returns the mouse button which generated this event or wxMOUSE_BTN_NONE if no button
is involved (for mouse move, enter or leave event, for example).

 getLinesPerAction(This)

 Returns the configured number of lines (or whatever) to be scrolled per wheel action.

 getLogicalPosition(This, Dc)

 Returns the logical mouse position in pixels (i.e. translated according to the
translation set for the DC, which usually indicates that the window has been scrolled).

 getPosition(This)

 Returns the physical mouse position.

 getWheelAxis(This)

 Gets the axis the wheel operation concerns.

 getWheelDelta(This)

 Get wheel delta, normally 120.

 getWheelRotation(This)

 Get wheel rotation, positive or negative indicates direction of rotation.

 getX(This)

 Returns X coordinate of the physical mouse event position.

 getY(This)

 Returns Y coordinate of the physical mouse event position.

 isButton(This)

 Returns true if the event was a mouse button event (not necessarily a button down event -
that may be tested using buttonDown/2).

 isPageScroll(This)

 Returns true if the system has been setup to do page scrolling with the mouse wheel
instead of line scrolling.

 leaving(This)

 Returns true if the mouse was leaving the window.

 leftDClick(This)

 Returns true if the event was a left double click.

 leftDown(This)

 Returns true if the left mouse button changed to down.

 leftIsDown(This)

 Returns true if the left mouse button is currently down.

 leftUp(This)

 Returns true if the left mouse button changed to up.

 metaDown(This)

 Returns true if the Meta key was down at the time of the event.

 middleDClick(This)

 Returns true if the event was a middle double click.

 middleDown(This)

 Returns true if the middle mouse button changed to down.

 middleIsDown(This)

 Returns true if the middle mouse button is currently down.

 middleUp(This)

 Returns true if the middle mouse button changed to up.

 moving(This)

 Returns true if this was a motion event and no mouse buttons were pressed.

 rightDClick(This)

 Returns true if the event was a right double click.

 rightDown(This)

 Returns true if the right mouse button changed to down.

 rightIsDown(This)

 Returns true if the right mouse button is currently down.

 rightUp(This)

 Returns true if the right mouse button changed to up.

 shiftDown(This)

 Returns true if the Shift key is pressed.

 Types

 wxMouse()

 -type wxMouse() ::
 #wxMouse{type :: wxMouseEvent:wxMouseEventType(),
 x :: integer(),
 y :: integer(),
 leftDown :: boolean(),
 middleDown :: boolean(),
 rightDown :: boolean(),
 controlDown :: boolean(),
 shiftDown :: boolean(),
 altDown :: boolean(),
 metaDown :: boolean(),
 wheelRotation :: integer(),
 wheelDelta :: integer(),
 linesPerAction :: integer()}.

 wxMouseEvent()

 -type wxMouseEvent() :: wx:wx_object().

 wxMouseEventType()

 -type wxMouseEventType() ::
 left_down | left_up | middle_down | middle_up | right_down | right_up | motion |
 enter_window | leave_window | left_dclick | middle_dclick | right_dclick | mousewheel |
 aux1_down | aux1_up | aux1_dclick | aux2_down | aux2_up | aux2_dclick.

 Functions

 altDown(This)

 -spec altDown(This) -> boolean() when This :: wxMouseEvent().

Returns true if the Alt key is pressed.
Notice that wxKeyEvent:getModifiers/1 should usually be used instead of this one.

 aux1DClick(This)

 -spec aux1DClick(This) -> boolean() when This :: wxMouseEvent().

Returns true if the event was a first extra button double click.

 aux1Down(This)

 -spec aux1Down(This) -> boolean() when This :: wxMouseEvent().

Returns true if the first extra button mouse button changed to down.

 aux1Up(This)

 -spec aux1Up(This) -> boolean() when This :: wxMouseEvent().

Returns true if the first extra button mouse button changed to up.

 aux2DClick(This)

 -spec aux2DClick(This) -> boolean() when This :: wxMouseEvent().

Returns true if the event was a second extra button double click.

 aux2Down(This)

 -spec aux2Down(This) -> boolean() when This :: wxMouseEvent().

Returns true if the second extra button mouse button changed to down.

 aux2Up(This)

 -spec aux2Up(This) -> boolean() when This :: wxMouseEvent().

Returns true if the second extra button mouse button changed to up.

 button(This, But)

 -spec button(This, But) -> boolean() when This :: wxMouseEvent(), But :: wx:wx_enum().

Returns true if the event was generated by the specified button.

 buttonDClick(This)

 -spec buttonDClick(This) -> boolean() when This :: wxMouseEvent().

Equivalent to buttonDClick(This, []).

 buttonDClick/2

 -spec buttonDClick(This, [Option]) -> boolean()
 when This :: wxMouseEvent(), Option :: {but, wx:wx_enum()}.

If the argument is omitted, this returns true if the event was a mouse double click
event.
Otherwise the argument specifies which double click event was generated (see button/2 for the
possible values).

 buttonDown(This)

 -spec buttonDown(This) -> boolean() when This :: wxMouseEvent().

Equivalent to buttonDown(This, []).

 buttonDown/2

 -spec buttonDown(This, [Option]) -> boolean() when This :: wxMouseEvent(), Option :: {but, wx:wx_enum()}.

If the argument is omitted, this returns true if the event was a mouse button down event.
Otherwise the argument specifies which button-down event was generated (see button/2 for the
possible values).

 buttonUp(This)

 -spec buttonUp(This) -> boolean() when This :: wxMouseEvent().

Equivalent to buttonUp(This, []).

 buttonUp/2

 -spec buttonUp(This, [Option]) -> boolean() when This :: wxMouseEvent(), Option :: {but, wx:wx_enum()}.

If the argument is omitted, this returns true if the event was a mouse button up event.
Otherwise the argument specifies which button-up event was generated (see button/2 for the
possible values).

 cmdDown(This)

 -spec cmdDown(This) -> boolean() when This :: wxMouseEvent().

Returns true if the key used for command accelerators is pressed.
Same as controlDown/1. Deprecated.
Notice that wxKeyEvent:getModifiers/1 should usually be used instead of this one.

 controlDown(This)

 -spec controlDown(This) -> boolean() when This :: wxMouseEvent().

Returns true if the Control key or Apple/Command key under macOS is pressed.
This function doesn't distinguish between right and left control keys.
Notice that wxKeyEvent:getModifiers/1 should usually be used instead of this one.

 dragging(This)

 -spec dragging(This) -> boolean() when This :: wxMouseEvent().

Returns true if this was a dragging event (motion while a button is depressed).
See: moving/1

 entering(This)

 -spec entering(This) -> boolean() when This :: wxMouseEvent().

Returns true if the mouse was entering the window.
See: leaving/1

 getButton(This)

 -spec getButton(This) -> integer() when This :: wxMouseEvent().

Returns the mouse button which generated this event or wxMOUSE_BTN_NONE if no button
is involved (for mouse move, enter or leave event, for example).
Otherwise wxMOUSE_BTN_LEFT is returned for the left button down, up and double click
events, wxMOUSE_BTN_MIDDLE and wxMOUSE_BTN_RIGHT for the same events for the middle
and the right buttons respectively.

 getLinesPerAction(This)

 -spec getLinesPerAction(This) -> integer() when This :: wxMouseEvent().

Returns the configured number of lines (or whatever) to be scrolled per wheel action.
Default value under most platforms is three.

 getLogicalPosition(This, Dc)

 -spec getLogicalPosition(This, Dc) -> {X :: integer(), Y :: integer()}
 when This :: wxMouseEvent(), Dc :: wxDC:wxDC().

Returns the logical mouse position in pixels (i.e. translated according to the
translation set for the DC, which usually indicates that the window has been scrolled).

 getPosition(This)

 -spec getPosition(This) -> {X :: integer(), Y :: integer()} when This :: wxMouseEvent().

Returns the physical mouse position.

 getWheelAxis(This)

 -spec getWheelAxis(This) -> wx:wx_enum() when This :: wxMouseEvent().

Gets the axis the wheel operation concerns.
Usually the mouse wheel is used to scroll vertically so wxMOUSE_WHEEL_VERTICAL is
returned but some mice (and most trackpads) also allow to use the wheel to scroll
horizontally in which case wxMOUSE_WHEEL_HORIZONTAL is returned.
Notice that before wxWidgets 2.9.4 this method returned int.

 getWheelDelta(This)

 -spec getWheelDelta(This) -> integer() when This :: wxMouseEvent().

Get wheel delta, normally 120.
This is the threshold for action to be taken, and one such action (for example, scrolling
one increment) should occur for each delta.

 getWheelRotation(This)

 -spec getWheelRotation(This) -> integer() when This :: wxMouseEvent().

Get wheel rotation, positive or negative indicates direction of rotation.
Current devices all send an event when rotation is at least +/-WheelDelta, but finer
resolution devices can be created in the future.
Because of this you shouldn't assume that one event is equal to 1 line, but you should be
able to either do partial line scrolling or wait until several events accumulate before
scrolling.

 getX(This)

 -spec getX(This) -> integer() when This :: wxMouseEvent().

Returns X coordinate of the physical mouse event position.

 getY(This)

 -spec getY(This) -> integer() when This :: wxMouseEvent().

Returns Y coordinate of the physical mouse event position.

 isButton(This)

 -spec isButton(This) -> boolean() when This :: wxMouseEvent().

Returns true if the event was a mouse button event (not necessarily a button down event -
that may be tested using buttonDown/2).

 isPageScroll(This)

 -spec isPageScroll(This) -> boolean() when This :: wxMouseEvent().

Returns true if the system has been setup to do page scrolling with the mouse wheel
instead of line scrolling.

 leaving(This)

 -spec leaving(This) -> boolean() when This :: wxMouseEvent().

Returns true if the mouse was leaving the window.
See: entering/1

 leftDClick(This)

 -spec leftDClick(This) -> boolean() when This :: wxMouseEvent().

Returns true if the event was a left double click.

 leftDown(This)

 -spec leftDown(This) -> boolean() when This :: wxMouseEvent().

Returns true if the left mouse button changed to down.

 leftIsDown(This)

 -spec leftIsDown(This) -> boolean() when This :: wxMouseEvent().

Returns true if the left mouse button is currently down.

 leftUp(This)

 -spec leftUp(This) -> boolean() when This :: wxMouseEvent().

Returns true if the left mouse button changed to up.

 metaDown(This)

 -spec metaDown(This) -> boolean() when This :: wxMouseEvent().

Returns true if the Meta key was down at the time of the event.

 middleDClick(This)

 -spec middleDClick(This) -> boolean() when This :: wxMouseEvent().

Returns true if the event was a middle double click.

 middleDown(This)

 -spec middleDown(This) -> boolean() when This :: wxMouseEvent().

Returns true if the middle mouse button changed to down.

 middleIsDown(This)

 -spec middleIsDown(This) -> boolean() when This :: wxMouseEvent().

Returns true if the middle mouse button is currently down.

 middleUp(This)

 -spec middleUp(This) -> boolean() when This :: wxMouseEvent().

Returns true if the middle mouse button changed to up.

 moving(This)

 -spec moving(This) -> boolean() when This :: wxMouseEvent().

Returns true if this was a motion event and no mouse buttons were pressed.
If any mouse button is held pressed, then this method returns false and dragging/1 returns true.

 rightDClick(This)

 -spec rightDClick(This) -> boolean() when This :: wxMouseEvent().

Returns true if the event was a right double click.

 rightDown(This)

 -spec rightDown(This) -> boolean() when This :: wxMouseEvent().

Returns true if the right mouse button changed to down.

 rightIsDown(This)

 -spec rightIsDown(This) -> boolean() when This :: wxMouseEvent().

Returns true if the right mouse button is currently down.

 rightUp(This)

 -spec rightUp(This) -> boolean() when This :: wxMouseEvent().

Returns true if the right mouse button changed to up.

 shiftDown(This)

 -spec shiftDown(This) -> boolean() when This :: wxMouseEvent().

Returns true if the Shift key is pressed.
This function doesn't distinguish between right and left shift keys.
Notice that wxKeyEvent:getModifiers/1 should usually be used instead of this one.

wxMoveEvent

A move event holds information about window position change.
These events are currently generated for top level (see wxTopLevelWindow) windows in
all ports, but are not generated for the child windows in wxGTK.
See:
	{X,Y}

	Overview events

This class is derived, and can use functions, from:
	wxEvent

wxWidgets docs: wxMoveEvent
Events
Use wxEvtHandler:connect/3 with wxMoveEventType to subscribe to events of this type.

 Summary

 Types

 wxMove()

 wxMoveEvent()

 wxMoveEventType()

 Functions

 getPosition(This)

 Returns the position of the window generating the move change event.

 getRect(This)

 Types

 wxMove()

 -type wxMove() ::
 #wxMove{type :: wxMoveEvent:wxMoveEventType(),
 pos :: {X :: integer(), Y :: integer()},
 rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}}.

 wxMoveEvent()

 -type wxMoveEvent() :: wx:wx_object().

 wxMoveEventType()

 -type wxMoveEventType() :: move.

 Functions

 getPosition(This)

 -spec getPosition(This) -> {X :: integer(), Y :: integer()} when This :: wxMoveEvent().

Returns the position of the window generating the move change event.

 getRect(This)

 -spec getRect(This) -> {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}
 when This :: wxMoveEvent().

wxMultiChoiceDialog

This class represents a dialog that shows a list of strings, and allows the user to
select one or more.
Styles
This class supports the following styles:
	wxOK: Show an OK button.

	wxCANCEL: Show a Cancel button.

	wxCENTRE: Centre the message.

See:
	Overview cmndlg

	wxSingleChoiceDialog

This class is derived, and can use functions, from:
	wxDialog

	wxTopLevelWindow

	wxWindow

	wxEvtHandler

wxWidgets docs: wxMultiChoiceDialog

 Summary

 Types

 wxMultiChoiceDialog()

 Functions

 destroy(This)

 Destroys the object

 getSelections(This)

 Returns array with indexes of selected items.

 new(Parent, Message, Caption, Choices)

 Equivalent to new(Parent, Message, Caption, Choices, []).

 new/5

 Constructor taking an array of wxString (not implemented in wx) choices.

 setSelections(This, Selections)

 Sets selected items from the array of selected items' indexes.

 Types

 wxMultiChoiceDialog()

 -type wxMultiChoiceDialog() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxMultiChoiceDialog()) -> ok.

Destroys the object

 getSelections(This)

 -spec getSelections(This) -> [integer()] when This :: wxMultiChoiceDialog().

Returns array with indexes of selected items.

 new(Parent, Message, Caption, Choices)

 -spec new(Parent, Message, Caption, Choices) -> wxMultiChoiceDialog()
 when
 Parent :: wxWindow:wxWindow(),
 Message :: unicode:chardata(),
 Caption :: unicode:chardata(),
 Choices :: [unicode:chardata()].

Equivalent to new(Parent, Message, Caption, Choices, []).

 new/5

 -spec new(Parent, Message, Caption, Choices, [Option]) -> wxMultiChoiceDialog()
 when
 Parent :: wxWindow:wxWindow(),
 Message :: unicode:chardata(),
 Caption :: unicode:chardata(),
 Choices :: [unicode:chardata()],
 Option :: {style, integer()} | {pos, {X :: integer(), Y :: integer()}}.

Constructor taking an array of wxString (not implemented in wx) choices.
Remark: Use wxDialog:showModal/1 to show the dialog.

 setSelections(This, Selections)

 -spec setSelections(This, Selections) -> ok
 when This :: wxMultiChoiceDialog(), Selections :: [integer()].

Sets selected items from the array of selected items' indexes.

wxNavigationKeyEvent

This event class contains information about navigation events, generated by navigation
keys such as tab and page down.
This event is mainly used by wxWidgets implementations. A wxNavigationKeyEvent
handler is automatically provided by wxWidgets when you enable keyboard navigation inside
a window by inheriting it from wxNavigationEnabled<>.
See: wxWindow:navigate/2
This class is derived, and can use functions, from:
	wxEvent

wxWidgets docs: wxNavigationKeyEvent
Events
Use wxEvtHandler:connect/3 with wxNavigationKeyEventType to subscribe to events of this type.

 Summary

 Types

 wxNavigationKey()

 wxNavigationKeyEvent()

 wxNavigationKeyEventType()

 Functions

 getCurrentFocus(This)

 Returns the child that has the focus, or NULL.

 getDirection(This)

 Returns true if the navigation was in the forward direction.

 isFromTab(This)

 Returns true if the navigation event was from a tab key.

 isWindowChange(This)

 Returns true if the navigation event represents a window change (for example, from
Ctrl-Page Down in a notebook).

 setCurrentFocus(This, CurrentFocus)

 Sets the current focus window member.

 setDirection(This, Direction)

 Sets the direction to forward if direction is true, or backward if false.

 setFromTab(This, FromTab)

 Marks the navigation event as from a tab key.

 setWindowChange(This, WindowChange)

 Marks the event as a window change event.

 Types

 wxNavigationKey()

 -type wxNavigationKey() ::
 #wxNavigationKey{type :: wxNavigationKeyEvent:wxNavigationKeyEventType(),
 dir :: boolean(),
 focus :: wxWindow:wxWindow()}.

 wxNavigationKeyEvent()

 -type wxNavigationKeyEvent() :: wx:wx_object().

 wxNavigationKeyEventType()

 -type wxNavigationKeyEventType() :: navigation_key.

 Functions

 getCurrentFocus(This)

 -spec getCurrentFocus(This) -> wxWindow:wxWindow() when This :: wxNavigationKeyEvent().

Returns the child that has the focus, or NULL.

 getDirection(This)

 -spec getDirection(This) -> boolean() when This :: wxNavigationKeyEvent().

Returns true if the navigation was in the forward direction.

 isFromTab(This)

 -spec isFromTab(This) -> boolean() when This :: wxNavigationKeyEvent().

Returns true if the navigation event was from a tab key.
This is required for proper navigation over radio buttons.

 isWindowChange(This)

 -spec isWindowChange(This) -> boolean() when This :: wxNavigationKeyEvent().

Returns true if the navigation event represents a window change (for example, from
Ctrl-Page Down in a notebook).

 setCurrentFocus(This, CurrentFocus)

 -spec setCurrentFocus(This, CurrentFocus) -> ok
 when This :: wxNavigationKeyEvent(), CurrentFocus :: wxWindow:wxWindow().

Sets the current focus window member.

 setDirection(This, Direction)

 -spec setDirection(This, Direction) -> ok when This :: wxNavigationKeyEvent(), Direction :: boolean().

Sets the direction to forward if direction is true, or backward if false.

 setFromTab(This, FromTab)

 -spec setFromTab(This, FromTab) -> ok when This :: wxNavigationKeyEvent(), FromTab :: boolean().

Marks the navigation event as from a tab key.

 setWindowChange(This, WindowChange)

 -spec setWindowChange(This, WindowChange) -> ok
 when This :: wxNavigationKeyEvent(), WindowChange :: boolean().

Marks the event as a window change event.

wxNotebook

This class represents a notebook control, which manages multiple windows with associated
tabs.
To use the class, create a wxNotebook object and call wxBookCtrlBase:addPage/4 or wxBookCtrlBase:insertPage/5, passing a window to be
used as the page. Do not explicitly delete the window for a page that is currently managed
by wxNotebook.
wxNotebookPage is a typedef for wxWindow.
Styles
This class supports the following styles:
	wxNB_TOP: Place tabs on the top side.

	wxNB_LEFT: Place tabs on the left side.

	wxNB_RIGHT: Place tabs on the right side.

	wxNB_BOTTOM: Place tabs under instead of above the notebook pages.

	wxNB_FIXEDWIDTH: (Windows only) All tabs will have same width.

	wxNB_MULTILINE: (Windows only) There can be several rows of tabs.

	wxNB_NOPAGETHEME: (Windows only) Display a solid colour on notebook pages, and not a
gradient, which can reduce performance. The styles wxNB_LEFT, RIGHT and BOTTOM are not
supported under Microsoft Windows when using visual themes.

Page backgrounds
On Windows, the default theme paints a background on the notebook's pages. If you wish to
suppress this theme, for aesthetic or performance reasons, there are three ways of doing
it. You can use wxNB_NOPAGETHEME to disable themed drawing for a particular notebook,
you can call wxSystemOptions:setOption/2 to disable it for the whole application, or you can disable it for
individual pages by using wxWindow:setBackgroundColour/2.
To disable themed pages globally:
Set the value to 1 to enable it again. To give a single page a solid background that more
or less fits in with the overall theme, use:
On platforms other than Windows, or if the application is not using Windows themes, getThemeBackgroundColour/1 will
return an uninitialised colour object, and the above code will therefore work on all platforms.
See:
	?wxBookCtrl

	wxBookCtrlEvent

	wxImageList

	Examples

This class is derived, and can use functions, from:
	wxBookCtrlBase

	wxControl

	wxWindow

	wxEvtHandler

wxWidgets docs: wxNotebook
Events
Event types emitted from this class:
	command_notebook_page_changed

	command_notebook_page_changing

 Summary

 Types

 wxNotebook()

 Functions

 assignImageList(This, ImageList)

 Sets the image list for the page control and takes ownership of the list.

 create(This, Parent, Id)

 Equivalent to create(This, Parent, Id, []).

 create/4

 Creates a notebook control.

 destroy(This)

 Destroys the object

 getImageList(This)

 Returns the associated image list, may be NULL.

 getPageImage(This, NPage)

 Returns the image index for the given page.

 getRowCount(This)

 Returns the number of rows in the notebook control.

 getThemeBackgroundColour(This)

 If running under Windows and themes are enabled for the application, this function
returns a suitable colour for painting the background of a notebook page, and can be
passed to wxWindow:setBackgroundColour/2.

 new()

 Constructs a notebook control.

 new(Parent, Id)

 Equivalent to new(Parent, Id, []).

 new/3

 Constructs a notebook control.

 setImageList(This, ImageList)

 Sets the image list to use.

 setPadding(This, Padding)

 Sets the amount of space around each page's icon and label, in pixels.

 setPageImage(This, Page, Image)

 Sets the image index for the given page.

 setPageSize(This, Size)

 Sets the width and height of the pages.

 Types

 wxNotebook()

 -type wxNotebook() :: wx:wx_object().

 Functions

 assignImageList(This, ImageList)

 -spec assignImageList(This, ImageList) -> ok
 when This :: wxNotebook(), ImageList :: wxImageList:wxImageList().

Sets the image list for the page control and takes ownership of the list.
See:
	wxImageList

	setImageList/2

 create(This, Parent, Id)

 -spec create(This, Parent, Id) -> boolean()
 when This :: wxNotebook(), Parent :: wxWindow:wxWindow(), Id :: integer().

Equivalent to create(This, Parent, Id, []).

 create/4

 -spec create(This, Parent, Id, [Option]) -> boolean()
 when
 This :: wxNotebook(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Creates a notebook control.
See new/3 for a description of the parameters.

 destroy(This)

 -spec destroy(This :: wxNotebook()) -> ok.

Destroys the object

 getImageList(This)

 -spec getImageList(This) -> wxImageList:wxImageList() when This :: wxNotebook().

Returns the associated image list, may be NULL.
See:
	wxImageList

	setImageList/2

 getPageImage(This, NPage)

 -spec getPageImage(This, NPage) -> integer() when This :: wxNotebook(), NPage :: integer().

Returns the image index for the given page.

 getRowCount(This)

 -spec getRowCount(This) -> integer() when This :: wxNotebook().

Returns the number of rows in the notebook control.

 getThemeBackgroundColour(This)

 -spec getThemeBackgroundColour(This) -> wx:wx_colour4() when This :: wxNotebook().

If running under Windows and themes are enabled for the application, this function
returns a suitable colour for painting the background of a notebook page, and can be
passed to wxWindow:setBackgroundColour/2.
Otherwise, an uninitialised colour will be returned.

 new()

 -spec new() -> wxNotebook().

Constructs a notebook control.

 new(Parent, Id)

 -spec new(Parent, Id) -> wxNotebook() when Parent :: wxWindow:wxWindow(), Id :: integer().

Equivalent to new(Parent, Id, []).

 new/3

 -spec new(Parent, Id, [Option]) -> wxNotebook()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Constructs a notebook control.
Note that sometimes you can reduce flicker by passing the wxCLIP_CHILDREN window style.

 setImageList(This, ImageList)

 -spec setImageList(This, ImageList) -> ok
 when This :: wxNotebook(), ImageList :: wxImageList:wxImageList().

Sets the image list to use.
It does not take ownership of the image list, you must delete it yourself.
See:
	wxImageList

	assignImageList/2

 setPadding(This, Padding)

 -spec setPadding(This, Padding) -> ok
 when This :: wxNotebook(), Padding :: {W :: integer(), H :: integer()}.

Sets the amount of space around each page's icon and label, in pixels.
Note: The vertical padding cannot be changed in wxGTK.

 setPageImage(This, Page, Image)

 -spec setPageImage(This, Page, Image) -> boolean()
 when This :: wxNotebook(), Page :: integer(), Image :: integer().

Sets the image index for the given page.
image is an index into the image list which was set with setImageList/2.

 setPageSize(This, Size)

 -spec setPageSize(This, Size) -> ok when This :: wxNotebook(), Size :: {W :: integer(), H :: integer()}.

Sets the width and height of the pages.
Note: This method is currently not implemented for wxGTK.

wxNotificationMessage

This class allows showing the user a message non intrusively.
Currently it is implemented natively for Windows, macOS, GTK and uses generic toast
notifications under the other platforms. It's not recommended but wxGenericNotificationMessage
can be used instead of the native ones. This might make sense if your application
requires features not available in the native implementation.
Notice that this class is not a window and so doesn't derive from wxWindow.
Platform Notes
Par:
Up to Windows 8 balloon notifications are displayed from an icon in the notification area
of the taskbar. If your application uses a wxTaskBarIcon you should call useTaskBarIcon/1 to ensure
that only one icon is shown in the notification area. Windows 10 displays all
notifications as popup toasts. To suppress the additional icon in the notification area on
Windows 10 and for toast notification support on Windows 8 it is recommended to call mSWUseToasts/1
before showing the first notification message.
Par:
The macOS implementation uses Notification Center to display native notifications. In
order to use actions your notifications must use the alert style. This can be enabled by
the user in system settings or by setting the NSUserNotificationAlertStyle value in
Info.plist to alert. Please note that the user always has the option to change the
notification style.
This class is derived, and can use functions, from:
	wxEvtHandler

wxWidgets docs: wxNotificationMessage
Events
Event types emitted from this class:
	notification_message_click

	notification_message_dismissed

	notification_message_action

 Summary

 Types

 wxNotificationMessage()

 Functions

 addAction(This, Actionid)

 Equivalent to addAction(This, Actionid, []).

 addAction/3

 Add an action to the notification.

 close(This)

 Hides the notification.

 destroy(This)

 Destroys the object

 mSWUseToasts()

 Equivalent to mSWUseToasts([]).

 mSWUseToasts(Options)

 Enables toast notifications available since Windows 8 and suppresses the additional icon
in the notification area on Windows 10.

 new()

 Default constructor, use setParent/2, setTitle/2 and setMessage/2 to initialize the
object before showing it.

 new(Title)

 Equivalent to new(Title, []).

 new(Title, Options)

 Create a notification object with the given attributes.

 setFlags(This, Flags)

 This parameter can be currently used to specify the icon to show in the notification.

 setIcon(This, Icon)

 Specify a custom icon to be displayed in the notification.

 setMessage(This, Message)

 Set the main text of the notification.

 setParent(This, Parent)

 Set the parent for this notification: the notification will be associated with the top
level parent of this window or, if this method is not called, with the main application
window by default.

 setTitle(This, Title)

 Set the title, it must be a concise string (not more than 64 characters), use setMessage/2
to give the user more details.

 show(This)

 Equivalent to show(This, []).

 show/2

 Show the notification to the user and hides it after timeout seconds are elapsed.

 useTaskBarIcon(Icon)

 If the application already uses a wxTaskBarIcon, it should be connected to
notifications by using this method.

 Types

 wxNotificationMessage()

 -type wxNotificationMessage() :: wx:wx_object().

 Functions

 addAction(This, Actionid)

 -spec addAction(This, Actionid) -> boolean() when This :: wxNotificationMessage(), Actionid :: integer().

Equivalent to addAction(This, Actionid, []).

 addAction/3

 -spec addAction(This, Actionid, [Option]) -> boolean()
 when
 This :: wxNotificationMessage(),
 Actionid :: integer(),
 Option :: {label, unicode:chardata()}.

Add an action to the notification.
If supported by the implementation this are usually buttons in the notification
selectable by the user.
Return: false if the current implementation or OS version does not support actions in notifications.
Since: 3.1.0

 close(This)

 -spec close(This) -> boolean() when This :: wxNotificationMessage().

Hides the notification.
Returns true if it was hidden or false if it couldn't be done (e.g. on some systems
automatically hidden notifications can't be hidden manually).

 destroy(This)

 -spec destroy(This :: wxNotificationMessage()) -> ok.

Destroys the object

 mSWUseToasts()

 -spec mSWUseToasts() -> boolean().

Equivalent to mSWUseToasts([]).

 mSWUseToasts(Options)

 -spec mSWUseToasts([Option]) -> boolean()
 when Option :: {shortcutPath, unicode:chardata()} | {appId, unicode:chardata()}.

Enables toast notifications available since Windows 8 and suppresses the additional icon
in the notification area on Windows 10.
Toast notifications require a shortcut to the application in the start menu. The start
menu shortcut needs to contain an Application User Model ID. It is recommended that the
applications setup creates the shortcut and the application specifies the setup created
shortcut in shortcutPath. A call to this method will verify (and if necessary modify)
the shortcut before enabling toast notifications.
Return: false if toast notifications could not be enabled.
Only for:wxmsw
Since: 3.1.0

 new()

 -spec new() -> wxNotificationMessage().

Default constructor, use setParent/2, setTitle/2 and setMessage/2 to initialize the
object before showing it.

 new(Title)

 -spec new(Title) -> wxNotificationMessage() when Title :: unicode:chardata().

Equivalent to new(Title, []).

 new(Title, Options)

 -spec new(Title, [Option]) -> wxNotificationMessage()
 when
 Title :: unicode:chardata(),
 Option ::
 {message, unicode:chardata()} | {parent, wxWindow:wxWindow()} | {flags, integer()}.

Create a notification object with the given attributes.
See setTitle/2, setMessage/2, setParent/2 and setFlags/2 for the description of the corresponding parameters.

 setFlags(This, Flags)

 -spec setFlags(This, Flags) -> ok when This :: wxNotificationMessage(), Flags :: integer().

This parameter can be currently used to specify the icon to show in the notification.
Valid values are wxICON_INFORMATION, wxICON_WARNING and wxICON_ERROR (notice that wxICON_QUESTION
is not allowed here). Some implementations of this class may not support the icons.
See: setIcon/2

 setIcon(This, Icon)

 -spec setIcon(This, Icon) -> ok when This :: wxNotificationMessage(), Icon :: wxIcon:wxIcon().

Specify a custom icon to be displayed in the notification.
Some implementations of this class may not support custom icons.
See: setFlags/2
Since: 3.1.0

 setMessage(This, Message)

 -spec setMessage(This, Message) -> ok
 when This :: wxNotificationMessage(), Message :: unicode:chardata().

Set the main text of the notification.
This should be a more detailed description than the title but still limited to reasonable
length (not more than 256 characters).

 setParent(This, Parent)

 -spec setParent(This, Parent) -> ok when This :: wxNotificationMessage(), Parent :: wxWindow:wxWindow().

Set the parent for this notification: the notification will be associated with the top
level parent of this window or, if this method is not called, with the main application
window by default.

 setTitle(This, Title)

 -spec setTitle(This, Title) -> ok when This :: wxNotificationMessage(), Title :: unicode:chardata().

Set the title, it must be a concise string (not more than 64 characters), use setMessage/2
to give the user more details.

 show(This)

 -spec show(This) -> boolean() when This :: wxNotificationMessage().

Equivalent to show(This, []).

 show/2

 -spec show(This, [Option]) -> boolean()
 when This :: wxNotificationMessage(), Option :: {timeout, integer()}.

Show the notification to the user and hides it after timeout seconds are elapsed.
Special values Timeout_Auto and Timeout_Never can be used here, notice that you
shouldn't rely on timeout being exactly respected because the current platform may only
support default timeout value and also because the user may be able to close the notification.
Note: When using native notifications in wxGTK, the timeout is ignored for the
notifications with wxICON_WARNING or wxICON_ERROR flags, they always remain shown
unless they're explicitly hidden by the user, i.e. behave as if Timeout_Auto were given.
Return: false if an error occurred.

 useTaskBarIcon(Icon)

 -spec useTaskBarIcon(Icon) -> wxTaskBarIcon:wxTaskBarIcon() when Icon :: wxTaskBarIcon:wxTaskBarIcon().

If the application already uses a wxTaskBarIcon, it should be connected to
notifications by using this method.
This has no effect if toast notifications are used.
Return: the task bar icon which was used previously (may be NULL)
Only for:wxmsw

wxNotifyEvent

This class is not used by the event handlers by itself, but is a base class for other
event classes (such as wxBookCtrlEvent).
It (or an object of a derived class) is sent when the controls state is being changed and
allows the program to veto/1 this change if it wants to prevent it from happening.
See: wxBookCtrlEvent
This class is derived, and can use functions, from:
	wxCommandEvent

	wxEvent

wxWidgets docs: wxNotifyEvent

 Summary

 Types

 wxNotifyEvent()

 Functions

 allow(This)

 This is the opposite of veto/1: it explicitly allows the event to be processed.

 isAllowed(This)

 Returns true if the change is allowed (veto/1 hasn't been called) or false otherwise
(if it was).

 veto(This)

 Prevents the change announced by this event from happening.

 Types

 wxNotifyEvent()

 -type wxNotifyEvent() :: wx:wx_object().

 Functions

 allow(This)

 -spec allow(This) -> ok when This :: wxNotifyEvent().

This is the opposite of veto/1: it explicitly allows the event to be processed.
For most events it is not necessary to call this method as the events are allowed anyhow
but some are forbidden by default (this will be mentioned in the corresponding event
description).

 isAllowed(This)

 -spec isAllowed(This) -> boolean() when This :: wxNotifyEvent().

Returns true if the change is allowed (veto/1 hasn't been called) or false otherwise
(if it was).

 veto(This)

 -spec veto(This) -> ok when This :: wxNotifyEvent().

Prevents the change announced by this event from happening.
It is in general a good idea to notify the user about the reasons for vetoing the change
because otherwise the applications behaviour (which just refuses to do what the user
wants) might be quite surprising.

wxOverlay

Creates an overlay over an existing window, allowing for manipulations like
rubberbanding, etc.
On wxOSX the overlay is implemented with native platform APIs, on the other platforms it
is simulated using wxMemoryDC.
See:
	wxDCOverlay

	wxDC

wxWidgets docs: wxOverlay

 Summary

 Types

 wxOverlay()

 Functions

 destroy(This)

 Destroys the object

 new()

 reset(This)

 Clears the overlay without restoring the former state.

 Types

 wxOverlay()

 -type wxOverlay() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxOverlay()) -> ok.

Destroys the object

 new()

 -spec new() -> wxOverlay().

 reset(This)

 -spec reset(This) -> ok when This :: wxOverlay().

Clears the overlay without restoring the former state.
To be done, for example, when the window content has been changed and repainted.

wxPageSetupDialog

This class represents the page setup common dialog.
The page setup dialog contains controls for paper size (letter, A4, A5 etc.), orientation
(landscape or portrait), and, only under Windows currently, controls for setting left,
top, right and bottom margin sizes in millimetres.
The exact appearance of this dialog varies among the platforms as a native dialog is used
when available (currently the case for all major platforms).
When the dialog has been closed, you need to query the wxPageSetupDialogData object
associated with the dialog.
Note that the OK and Cancel buttons do not destroy the dialog; this must be done by the application.
See:
	Overview printing

	wxPrintDialog

	wxPageSetupDialogData

wxWidgets docs: wxPageSetupDialog

 Summary

 Types

 wxPageSetupDialog()

 Functions

 destroy(This)

 Destroys the object

 getPageSetupData(This)

 Returns the wxPageSetupDialogData object associated with the dialog.

 new(Parent)

 Equivalent to new(Parent, []).

 new/2

 Constructor.

 showModal(This)

 Shows the dialog, returning wxID_OK if the user pressed OK, and wxID_CANCEL
otherwise.

 Types

 wxPageSetupDialog()

 -type wxPageSetupDialog() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxPageSetupDialog()) -> ok.

Destroys the object

 getPageSetupData(This)

 -spec getPageSetupData(This) -> wxPageSetupDialogData:wxPageSetupDialogData()
 when This :: wxPageSetupDialog().

Returns the wxPageSetupDialogData object associated with the dialog.

 new(Parent)

 -spec new(Parent) -> wxPageSetupDialog() when Parent :: wxWindow:wxWindow().

Equivalent to new(Parent, []).

 new/2

 -spec new(Parent, [Option]) -> wxPageSetupDialog()
 when
 Parent :: wxWindow:wxWindow(),
 Option :: {data, wxPageSetupDialogData:wxPageSetupDialogData()}.

Constructor.
Pass a parent window, and optionally a pointer to a block of page setup data, which will
be copied to the print dialog's internal data.

 showModal(This)

 -spec showModal(This) -> integer() when This :: wxPageSetupDialog().

Shows the dialog, returning wxID_OK if the user pressed OK, and wxID_CANCEL
otherwise.

wxPageSetupDialogData

This class holds a variety of information related to wxPageSetupDialog.
It contains a wxPrintData member which is used to hold basic printer configuration
data (as opposed to the user-interface configuration settings stored by wxPageSetupDialogData).
See:
	Overview printing

	wxPageSetupDialog

wxWidgets docs: wxPageSetupDialogData

 Summary

 Types

 wxPageSetupDialogData()

 Functions

 destroy(This)

 Destroys the object

 enableHelp(This, Flag)

 Enables or disables the "Help" button (Windows only).

 enableMargins(This, Flag)

 Enables or disables the margin controls (Windows only).

 enableOrientation(This, Flag)

 Enables or disables the orientation control (Windows only).

 enablePaper(This, Flag)

 Enables or disables the paper size control (Windows only).

 enablePrinter(This, Flag)

 Enables or disables the "Printer" button, which invokes a printer setup dialog.

 getDefaultInfo(This)

 Returns true if the dialog will simply return default printer information (such as
orientation) instead of showing a dialog (Windows only).

 getDefaultMinMargins(This)

 Returns true if the page setup dialog will take its minimum margin values from the
currently selected printer properties (Windows only).

 getEnableHelp(This)

 Returns true if the printer setup button is enabled.

 getEnableMargins(This)

 Returns true if the margin controls are enabled (Windows only).

 getEnableOrientation(This)

 Returns true if the orientation control is enabled (Windows only).

 getEnablePaper(This)

 Returns true if the paper size control is enabled (Windows only).

 getEnablePrinter(This)

 Returns true if the printer setup button is enabled.

 getMarginBottomRight(This)

 Returns the right (x) and bottom (y) margins in millimetres.

 getMarginTopLeft(This)

 Returns the left (x) and top (y) margins in millimetres.

 getMinMarginBottomRight(This)

 Returns the right (x) and bottom (y) minimum margins the user can enter (Windows only).

 getMinMarginTopLeft(This)

 Returns the left (x) and top (y) minimum margins the user can enter (Windows only).

 getPaperId(This)

 Returns the paper id (stored in the internal wxPrintData object).

 getPaperSize(This)

 Returns the paper size in millimetres.

 getPrintData(This)

 isOk(This)

 Returns true if the print data associated with the dialog data is valid.

 new()

 Default constructor.

 new(PrintData)

 Construct an object from a print data object.

 setDefaultInfo(This, Flag)

 Pass true if the dialog will simply return default printer information (such as
orientation) instead of showing a dialog (Windows only).

 setDefaultMinMargins(This, Flag)

 Pass true if the page setup dialog will take its minimum margin values from the currently
selected printer properties (Windows only).

 setMarginBottomRight(This, Pt)

 Sets the right (x) and bottom (y) margins in millimetres.

 setMarginTopLeft(This, Pt)

 Sets the left (x) and top (y) margins in millimetres.

 setMinMarginBottomRight(This, Pt)

 Sets the right (x) and bottom (y) minimum margins the user can enter (Windows only).

 setMinMarginTopLeft(This, Pt)

 Sets the left (x) and top (y) minimum margins the user can enter (Windows only).

 setPaperId(This, Id)

 Sets the paper size id.

 setPaperSize(This, Size)

 Sets the paper size in millimetres.

 setPrintData(This, PrintData)

 Sets the print data associated with this object.

 Types

 wxPageSetupDialogData()

 -type wxPageSetupDialogData() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxPageSetupDialogData()) -> ok.

Destroys the object

 enableHelp(This, Flag)

 -spec enableHelp(This, Flag) -> ok when This :: wxPageSetupDialogData(), Flag :: boolean().

Enables or disables the "Help" button (Windows only).

 enableMargins(This, Flag)

 -spec enableMargins(This, Flag) -> ok when This :: wxPageSetupDialogData(), Flag :: boolean().

Enables or disables the margin controls (Windows only).

 enableOrientation(This, Flag)

 -spec enableOrientation(This, Flag) -> ok when This :: wxPageSetupDialogData(), Flag :: boolean().

Enables or disables the orientation control (Windows only).

 enablePaper(This, Flag)

 -spec enablePaper(This, Flag) -> ok when This :: wxPageSetupDialogData(), Flag :: boolean().

Enables or disables the paper size control (Windows only).

 enablePrinter(This, Flag)

 -spec enablePrinter(This, Flag) -> ok when This :: wxPageSetupDialogData(), Flag :: boolean().

Enables or disables the "Printer" button, which invokes a printer setup dialog.

 getDefaultInfo(This)

 -spec getDefaultInfo(This) -> boolean() when This :: wxPageSetupDialogData().

Returns true if the dialog will simply return default printer information (such as
orientation) instead of showing a dialog (Windows only).

 getDefaultMinMargins(This)

 -spec getDefaultMinMargins(This) -> boolean() when This :: wxPageSetupDialogData().

Returns true if the page setup dialog will take its minimum margin values from the
currently selected printer properties (Windows only).

 getEnableHelp(This)

 -spec getEnableHelp(This) -> boolean() when This :: wxPageSetupDialogData().

Returns true if the printer setup button is enabled.

 getEnableMargins(This)

 -spec getEnableMargins(This) -> boolean() when This :: wxPageSetupDialogData().

Returns true if the margin controls are enabled (Windows only).

 getEnableOrientation(This)

 -spec getEnableOrientation(This) -> boolean() when This :: wxPageSetupDialogData().

Returns true if the orientation control is enabled (Windows only).

 getEnablePaper(This)

 -spec getEnablePaper(This) -> boolean() when This :: wxPageSetupDialogData().

Returns true if the paper size control is enabled (Windows only).

 getEnablePrinter(This)

 -spec getEnablePrinter(This) -> boolean() when This :: wxPageSetupDialogData().

Returns true if the printer setup button is enabled.

 getMarginBottomRight(This)

 -spec getMarginBottomRight(This) -> {X :: integer(), Y :: integer()}
 when This :: wxPageSetupDialogData().

Returns the right (x) and bottom (y) margins in millimetres.

 getMarginTopLeft(This)

 -spec getMarginTopLeft(This) -> {X :: integer(), Y :: integer()} when This :: wxPageSetupDialogData().

Returns the left (x) and top (y) margins in millimetres.

 getMinMarginBottomRight(This)

 -spec getMinMarginBottomRight(This) -> {X :: integer(), Y :: integer()}
 when This :: wxPageSetupDialogData().

Returns the right (x) and bottom (y) minimum margins the user can enter (Windows only).
Units are in millimetres.

 getMinMarginTopLeft(This)

 -spec getMinMarginTopLeft(This) -> {X :: integer(), Y :: integer()} when This :: wxPageSetupDialogData().

Returns the left (x) and top (y) minimum margins the user can enter (Windows only).
Units are in millimetres.

 getPaperId(This)

 -spec getPaperId(This) -> wx:wx_enum() when This :: wxPageSetupDialogData().

Returns the paper id (stored in the internal wxPrintData object).
See: wxPrintData:setPaperId/2

 getPaperSize(This)

 -spec getPaperSize(This) -> {W :: integer(), H :: integer()} when This :: wxPageSetupDialogData().

Returns the paper size in millimetres.

 getPrintData(This)

 -spec getPrintData(This) -> wxPrintData:wxPrintData() when This :: wxPageSetupDialogData().

 isOk(This)

 -spec isOk(This) -> boolean() when This :: wxPageSetupDialogData().

Returns true if the print data associated with the dialog data is valid.
This can return false on Windows if the current printer is not set, for example. On all
other platforms, it returns true.

 new()

 -spec new() -> wxPageSetupDialogData().

Default constructor.

 new(PrintData)

 -spec new(PrintData) -> wxPageSetupDialogData()
 when PrintData :: wxPrintData:wxPrintData() | wxPageSetupDialogData:wxPageSetupDialogData().

Construct an object from a print data object.

 setDefaultInfo(This, Flag)

 -spec setDefaultInfo(This, Flag) -> ok when This :: wxPageSetupDialogData(), Flag :: boolean().

Pass true if the dialog will simply return default printer information (such as
orientation) instead of showing a dialog (Windows only).

 setDefaultMinMargins(This, Flag)

 -spec setDefaultMinMargins(This, Flag) -> ok when This :: wxPageSetupDialogData(), Flag :: boolean().

Pass true if the page setup dialog will take its minimum margin values from the currently
selected printer properties (Windows only).
Units are in millimetres.

 setMarginBottomRight(This, Pt)

 -spec setMarginBottomRight(This, Pt) -> ok
 when
 This :: wxPageSetupDialogData(),
 Pt :: {X :: integer(), Y :: integer()}.

Sets the right (x) and bottom (y) margins in millimetres.

 setMarginTopLeft(This, Pt)

 -spec setMarginTopLeft(This, Pt) -> ok
 when This :: wxPageSetupDialogData(), Pt :: {X :: integer(), Y :: integer()}.

Sets the left (x) and top (y) margins in millimetres.

 setMinMarginBottomRight(This, Pt)

 -spec setMinMarginBottomRight(This, Pt) -> ok
 when
 This :: wxPageSetupDialogData(),
 Pt :: {X :: integer(), Y :: integer()}.

Sets the right (x) and bottom (y) minimum margins the user can enter (Windows only).
Units are in millimetres.

 setMinMarginTopLeft(This, Pt)

 -spec setMinMarginTopLeft(This, Pt) -> ok
 when
 This :: wxPageSetupDialogData(), Pt :: {X :: integer(), Y :: integer()}.

Sets the left (x) and top (y) minimum margins the user can enter (Windows only).
Units are in millimetres.

 setPaperId(This, Id)

 -spec setPaperId(This, Id) -> ok when This :: wxPageSetupDialogData(), Id :: wx:wx_enum().

Sets the paper size id.
Calling this function overrides the explicit paper dimensions passed in setPaperSize/2.
See: wxPrintData:setPaperId/2

 setPaperSize(This, Size)

 -spec setPaperSize(This, Size) -> ok
 when This :: wxPageSetupDialogData(), Size :: {W :: integer(), H :: integer()}.

Sets the paper size in millimetres.
If a corresponding paper id is found, it will be set in the internal wxPrintData
object, otherwise the paper size overrides the paper id.

 setPrintData(This, PrintData)

 -spec setPrintData(This, PrintData) -> ok
 when This :: wxPageSetupDialogData(), PrintData :: wxPrintData:wxPrintData().

Sets the print data associated with this object.

wxPaintDC

A wxPaintDC must be constructed if an application wishes to paint on the client area
of a window from within an EVT_PAINT() event handler.
This should normally be constructed as a temporary stack object; don't store a wxPaintDC
object. If you have an EVT_PAINT() handler, you must create a wxPaintDC object
within it even if you don't actually use it.
Using wxPaintDC within your EVT_PAINT() handler is important because it automatically
sets the clipping area to the damaged area of the window. Attempts to draw outside this
area do not appear.
A wxPaintDC object is initialized to use the same font and colours as the window it
is associated with.
See:
	wxDC

	wxClientDC

	wxMemoryDC

	wxWindowDC

	wxScreenDC

This class is derived, and can use functions, from:
	wxWindowDC

	wxDC

wxWidgets docs: wxPaintDC

 Summary

 Types

 wxPaintDC()

 Functions

 destroy(This)

 Destroys the object

 new(Window)

 Constructor.

 Types

 wxPaintDC()

 -type wxPaintDC() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxPaintDC()) -> ok.

Destroys the object

 new(Window)

 -spec new(Window) -> wxPaintDC() when Window :: wxWindow:wxWindow().

Constructor.
Pass a pointer to the window on which you wish to paint.

wxPaintEvent

A paint event is sent when a window's contents needs to be repainted.
The handler of this event must create a wxPaintDC object and use it for painting the
window contents. For example:
Notice that you must not create other kinds of wxDC (e.g. wxClientDC or wxWindowDC)
in EVT_PAINT handlers and also don't create wxPaintDC outside of this event handlers.
You can optimize painting by retrieving the rectangles that have been damaged and only
repainting these. The rectangles are in terms of the client area, and are unscrolled, so
you will need to do some calculations using the current view position to obtain logical,
scrolled units. Here is an example of using the wxRegionIterator (not implemented in wx)
class:
Remark: Please notice that in general it is impossible to change the drawing of a
standard control (such as wxButton) and so you shouldn't attempt to handle paint
events for them as even if it might work on some platforms, this is inherently not
portable and won't work everywhere.
See: Overview events
This class is derived, and can use functions, from:
	wxEvent

wxWidgets docs: wxPaintEvent
Events
Use wxEvtHandler:connect/3 with wxPaintEventType to subscribe to events of this type.

 Summary

 Types

 wxPaint()

 wxPaintEvent()

 wxPaintEventType()

 Types

 wxPaint()

 -type wxPaint() :: #wxPaint{type :: wxPaintEvent:wxPaintEventType()}.

 wxPaintEvent()

 -type wxPaintEvent() :: wx:wx_object().

 wxPaintEventType()

 -type wxPaintEventType() :: paint.

wxPalette

A palette is a table that maps pixel values to RGB colours.
It allows the colours of a low-depth bitmap, for example, to be mapped to the available
colours in a display. The notion of palettes is becoming more and more obsolete nowadays
and only the MSW port is still using a native palette. All other ports use generic code
which is basically just an array of colours.
It is likely that in the future the only use for palettes within wxWidgets will be for
representing colour indices from images (such as GIF or PNG). The image handlers for these
formats have been modified to create a palette if there is such information in the
original image file (usually 256 or less colour images). See wxImage for more information.
Predefined objects (include wx.hrl): ?wxNullPalette
See:
	wxDC:setPalette/2

	wxBitmap

wxWidgets docs: wxPalette

 Summary

 Types

 wxPalette()

 Functions

 create(This, Red, Green, Blue)

 Creates a palette from arrays of size n, one for each red, blue or green component.

 destroy(This)

 Destroys the object

 getColoursCount(This)

 Returns number of entries in palette.

 getPixel(This, Red, Green, Blue)

 Returns a pixel value (index into the palette) for the given RGB values.

 getRGB(This, Pixel)

 Returns RGB values for a given palette index.

 isOk(This)

 Returns true if palette data is present.

 new()

 Default constructor.

 new(Palette)

 Copy constructor, uses overview_refcount.

 new(Red, Green, Blue)

 Creates a palette from arrays of size n, one for each red, blue or green component.

 ok(This)

 Equivalent to: isOk/1

 Types

 wxPalette()

 -type wxPalette() :: wx:wx_object().

 Functions

 create(This, Red, Green, Blue)

 -spec create(This, Red, Green, Blue) -> boolean()
 when This :: wxPalette(), Red :: binary(), Green :: binary(), Blue :: binary().

Creates a palette from arrays of size n, one for each red, blue or green component.
Return: true if the creation was successful, false otherwise.
See: new/3

 destroy(This)

 -spec destroy(This :: wxPalette()) -> ok.

Destroys the object

 getColoursCount(This)

 -spec getColoursCount(This) -> integer() when This :: wxPalette().

Returns number of entries in palette.

 getPixel(This, Red, Green, Blue)

 -spec getPixel(This, Red, Green, Blue) -> integer()
 when This :: wxPalette(), Red :: integer(), Green :: integer(), Blue :: integer().

Returns a pixel value (index into the palette) for the given RGB values.
Return: The nearest palette index or wxNOT_FOUND for unexpected errors.
See: getRGB/2

 getRGB(This, Pixel)

 -spec getRGB(This, Pixel) -> Result
 when
 Result ::
 {Res :: boolean(), Red :: integer(), Green :: integer(), Blue :: integer()},
 This :: wxPalette(),
 Pixel :: integer().

Returns RGB values for a given palette index.
Return: true if the operation was successful.
See: getPixel/4

 isOk(This)

 -spec isOk(This) -> boolean() when This :: wxPalette().

Returns true if palette data is present.

 new()

 -spec new() -> wxPalette().

Default constructor.

 new(Palette)

 -spec new(Palette) -> wxPalette() when Palette :: wxPalette().

Copy constructor, uses overview_refcount.

 new(Red, Green, Blue)

 -spec new(Red, Green, Blue) -> wxPalette() when Red :: binary(), Green :: binary(), Blue :: binary().

Creates a palette from arrays of size n, one for each red, blue or green component.
See: create/4

 ok(This)

 -spec ok(This) -> boolean() when This :: wxPalette().

Equivalent to: isOk/1

wxPaletteChangedEvent

Functions for wxPaletteChangedEvent class
This class is derived, and can use functions, from:
	wxEvent

wxWidgets docs: wxPaletteChangedEvent

 Summary

 Types

 wxPaletteChanged()

 wxPaletteChangedEvent()

 wxPaletteChangedEventType()

 Functions

 getChangedWindow(This)

 setChangedWindow(This, Win)

 Types

 wxPaletteChanged()

 -type wxPaletteChanged() :: #wxPaletteChanged{type :: wxPaletteChangedEvent:wxPaletteChangedEventType()}.

 wxPaletteChangedEvent()

 -type wxPaletteChangedEvent() :: wx:wx_object().

 wxPaletteChangedEventType()

 -type wxPaletteChangedEventType() :: palette_changed.

 Functions

 getChangedWindow(This)

 -spec getChangedWindow(This) -> wxWindow:wxWindow() when This :: wxPaletteChangedEvent().

 setChangedWindow(This, Win)

 -spec setChangedWindow(This, Win) -> ok when This :: wxPaletteChangedEvent(), Win :: wxWindow:wxWindow().

wxPanel

A panel is a window on which controls are placed.
It is usually placed within a frame. Its main feature over its parent class wxWindow
is code for handling child windows and TAB traversal, which is implemented natively if
possible (e.g. in wxGTK) or by wxWidgets itself otherwise.
Note: Tab traversal is implemented through an otherwise undocumented intermediate
wxControlContainer class from which any class can derive in addition to the normal wxWindow
base class. Please see and to find out how this is achieved.
Note: if not all characters are being intercepted by your OnKeyDown or OnChar handler, it
may be because you are using the wxTAB_TRAVERSAL style, which grabs some keypresses for
use by child controls.
Remark: By default, a panel has the same colouring as a dialog.
See: wxDialog
This class is derived, and can use functions, from:
	wxWindow

	wxEvtHandler

wxWidgets docs: wxPanel
Events
Event types emitted from this class:
	navigation_key

 Summary

 Types

 wxPanel()

 Functions

 destroy(This)

 Destroys the object

 initDialog(This)

 Sends a wxInitDialogEvent, which in turn transfers data to the dialog via validators.

 new()

 Default constructor.

 new(Parent)

 Equivalent to new(Parent, []).

 new/2

 Constructor.

 setFocusIgnoringChildren(This)

 In contrast to wxWindow:setFocus/1 (see above) this will set the focus to the panel
even if there are child windows in the panel.

 Types

 wxPanel()

 -type wxPanel() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxPanel()) -> ok.

Destroys the object

 initDialog(This)

 -spec initDialog(This) -> ok when This :: wxPanel().

Sends a wxInitDialogEvent, which in turn transfers data to the dialog via validators.
See: wxInitDialogEvent

 new()

 -spec new() -> wxPanel().

Default constructor.

 new(Parent)

 -spec new(Parent) -> wxPanel() when Parent :: wxWindow:wxWindow().

Equivalent to new(Parent, []).

 new/2

 -spec new(Parent, [Option]) -> wxPanel()
 when
 Parent :: wxWindow:wxWindow(),
 Option ::
 {winid, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Constructor.

 setFocusIgnoringChildren(This)

 -spec setFocusIgnoringChildren(This) -> ok when This :: wxPanel().

In contrast to wxWindow:setFocus/1 (see above) this will set the focus to the panel
even if there are child windows in the panel.
This is only rarely needed.

wxPasswordEntryDialog

This class represents a dialog that requests a one-line password string from the user.
It is implemented as a generic wxWidgets dialog.
See: Overview cmndlg
This class is derived, and can use functions, from:
	wxTextEntryDialog

	wxDialog

	wxTopLevelWindow

	wxWindow

	wxEvtHandler

wxWidgets docs: wxPasswordEntryDialog

 Summary

 Types

 wxPasswordEntryDialog()

 Functions

 destroy(This)

 Destroys the object

 new(Parent, Message)

 Equivalent to new(Parent, Message, []).

 new/3

 Constructor.

 Types

 wxPasswordEntryDialog()

 -type wxPasswordEntryDialog() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxPasswordEntryDialog()) -> ok.

Destroys the object

 new(Parent, Message)

 -spec new(Parent, Message) -> wxPasswordEntryDialog()
 when Parent :: wxWindow:wxWindow(), Message :: unicode:chardata().

Equivalent to new(Parent, Message, []).

 new/3

 -spec new(Parent, Message, [Option]) -> wxPasswordEntryDialog()
 when
 Parent :: wxWindow:wxWindow(),
 Message :: unicode:chardata(),
 Option ::
 {caption, unicode:chardata()} |
 {value, unicode:chardata()} |
 {style, integer()} |
 {pos, {X :: integer(), Y :: integer()}}.

Constructor.
Use wxDialog:showModal/1 to show the dialog.

wxPen

A pen is a drawing tool for drawing outlines.
It is used for drawing lines and painting the outline of rectangles, ellipses, etc. It
has a colour, a width and a style.
Note: On a monochrome display, wxWidgets shows all non-white pens as black.
Do not initialize objects on the stack before the program commences, since other
required structures may not have been set up yet. Instead, define global pointers to
objects and create them in wxApp::OnInit() (not implemented in wx) or when required.
An application may wish to dynamically create pens with different characteristics, and
there is the consequent danger that a large number of duplicate pens will be created.
Therefore an application may wish to get a pointer to a pen by using the global list of
pens ?wxThePenList, and calling the member function wxPenList::FindOrCreatePen() (not
implemented in wx). See wxPenList (not implemented in wx) for more info.
This class uses reference counting and copy-on-write internally so that assignments
between two instances of this class are very cheap. You can therefore use actual objects
instead of pointers without efficiency problems. If an instance of this class is changed
it will create its own data internally so that other instances, which previously shared
the data using the reference counting, are not affected.
Predefined objects (include wx.hrl):
	?wxNullPen

	?wxBLACK_DASHED_PEN

	?wxBLACK_PEN

	?wxBLUE_PEN

	?wxCYAN_PEN

	?wxGREEN_PEN

	?wxYELLOW_PEN

	?wxGREY_PEN

	?wxLIGHT_GREY_PEN

	?wxMEDIUM_GREY_PEN

	?wxRED_PEN

	?wxTRANSPARENT_PEN

	?wxWHITE_PEN

See:
	wxDC

	wxDC:setPen/2

wxWidgets docs: wxPen

 Summary

 Types

 wxPen()

 Functions

 destroy(This)

 Destroys the object

 getCap(This)

 Returns the pen cap style, which may be one of wxCAP_ROUND, wxCAP_PROJECTING and wxCAP_BUTT.

 getColour(This)

 Returns a reference to the pen colour.

 getJoin(This)

 Returns the pen join style, which may be one of wxJOIN_BEVEL, wxJOIN_ROUND and wxJOIN_MITER.

 getStyle(This)

 Returns the pen style.

 getWidth(This)

 Returns the pen width.

 isOk(This)

 Returns true if the pen is initialised.

 new()

 Default constructor.

 new/1

 Copy constructor, uses overview_refcount.

 new(Colour, Options)

 Constructs a pen from a colour object, pen width and style.

 setCap(This, CapStyle)

 Sets the pen cap style, which may be one of wxCAP_ROUND, wxCAP_PROJECTING and wxCAP_BUTT.

 setColour(This, Colour)

 The pen's colour is changed to the given colour.

 setColour(This, Red, Green, Blue)

 setJoin(This, Join_style)

 Sets the pen join style, which may be one of wxJOIN_BEVEL, wxJOIN_ROUND and wxJOIN_MITER.

 setStyle(This, Style)

 Set the pen style.

 setWidth(This, Width)

 Sets the pen width.

 Types

 wxPen()

 -type wxPen() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxPen()) -> ok.

Destroys the object

 getCap(This)

 -spec getCap(This) -> wx:wx_enum() when This :: wxPen().

Returns the pen cap style, which may be one of wxCAP_ROUND, wxCAP_PROJECTING and wxCAP_BUTT.
The default is wxCAP_ROUND.
See: setCap/2

 getColour(This)

 -spec getColour(This) -> wx:wx_colour4() when This :: wxPen().

Returns a reference to the pen colour.
See: setColour/4

 getJoin(This)

 -spec getJoin(This) -> wx:wx_enum() when This :: wxPen().

Returns the pen join style, which may be one of wxJOIN_BEVEL, wxJOIN_ROUND and wxJOIN_MITER.
The default is wxJOIN_ROUND.
See: setJoin/2

 getStyle(This)

 -spec getStyle(This) -> wx:wx_enum() when This :: wxPen().

Returns the pen style.
See:
	new/2

	setStyle/2

 getWidth(This)

 -spec getWidth(This) -> integer() when This :: wxPen().

Returns the pen width.
See: setWidth/2

 isOk(This)

 -spec isOk(This) -> boolean() when This :: wxPen().

Returns true if the pen is initialised.
Notice that an uninitialized pen object can't be queried for any pen properties and all
calls to the accessor methods on it will result in an assert failure.

 new()

 -spec new() -> wxPen().

Default constructor.
The pen will be uninitialised, and isOk/1 will return false.

 new/1

 -spec new(Colour) -> wxPen() when Colour :: wx:wx_colour();
 (Pen) -> wxPen() when Pen :: wxPen().

Copy constructor, uses overview_refcount.

 new(Colour, Options)

 -spec new(Colour, [Option]) -> wxPen()
 when Colour :: wx:wx_colour(), Option :: {width, integer()} | {style, wx:wx_enum()}.

Constructs a pen from a colour object, pen width and style.
Remark: Different versions of Windows and different versions of other platforms support
very different subsets of the styles above so handle with care.
See:
	setStyle/2

	setColour/4

	setWidth/2

 setCap(This, CapStyle)

 -spec setCap(This, CapStyle) -> ok when This :: wxPen(), CapStyle :: wx:wx_enum().

Sets the pen cap style, which may be one of wxCAP_ROUND, wxCAP_PROJECTING and wxCAP_BUTT.
The default is wxCAP_ROUND.
See: getCap/1

 setColour(This, Colour)

 -spec setColour(This, Colour) -> ok when This :: wxPen(), Colour :: wx:wx_colour().

The pen's colour is changed to the given colour.
See: getColour/1

 setColour(This, Red, Green, Blue)

 -spec setColour(This, Red, Green, Blue) -> ok
 when This :: wxPen(), Red :: integer(), Green :: integer(), Blue :: integer().

 setJoin(This, Join_style)

 -spec setJoin(This, Join_style) -> ok when This :: wxPen(), Join_style :: wx:wx_enum().

Sets the pen join style, which may be one of wxJOIN_BEVEL, wxJOIN_ROUND and wxJOIN_MITER.
The default is wxJOIN_ROUND.
See: getJoin/1

 setStyle(This, Style)

 -spec setStyle(This, Style) -> ok when This :: wxPen(), Style :: wx:wx_enum().

Set the pen style.
See: new/2

 setWidth(This, Width)

 -spec setWidth(This, Width) -> ok when This :: wxPen(), Width :: integer().

Sets the pen width.
See: getWidth/1

wxPickerBase

Base abstract class for all pickers which support an auxiliary text control.
This class handles all positioning and sizing of the text control like a an horizontal wxBoxSizer
would do, with the text control on the left of the picker button.
The proportion (see wxSizer documentation for more info about proportion values) of
the picker control defaults to 1 when there isn't a text control associated (see wxPB_USE_TEXTCTRL
style) and to 0 otherwise.
Styles
This class supports the following styles:
	wxPB_USE_TEXTCTRL: Creates a text control to the left of the picker which is completely
managed by this wxPickerBase class.

See: wxColourPickerCtrl
This class is derived, and can use functions, from:
	wxControl

	wxWindow

	wxEvtHandler

wxWidgets docs: wxPickerBase

 Summary

 Types

 wxPickerBase()

 Functions

 getInternalMargin(This)

 Returns the margin (in pixel) between the picker and the text control.

 getPickerCtrlProportion(This)

 Returns the proportion value of the picker.

 getTextCtrl(This)

 Returns a pointer to the text control handled by this window or NULL if the wxPB_USE_TEXTCTRL
style was not specified when this control was created.

 getTextCtrlProportion(This)

 Returns the proportion value of the text control.

 hasTextCtrl(This)

 Returns true if this window has a valid text control (i.e. if the wxPB_USE_TEXTCTRL
style was given when creating this control).

 isPickerCtrlGrowable(This)

 Returns true if the picker control is growable.

 isTextCtrlGrowable(This)

 Returns true if the text control is growable.

 setInternalMargin(This, Margin)

 Sets the margin (in pixel) between the picker and the text control.

 setPickerCtrlGrowable(This)

 Equivalent to setPickerCtrlGrowable(This, []).

 setPickerCtrlGrowable/2

 Sets the picker control as growable when grow is true.

 setPickerCtrlProportion(This, Prop)

 Sets the proportion value of the picker.

 setTextCtrlGrowable(This)

 Equivalent to setTextCtrlGrowable(This, []).

 setTextCtrlGrowable/2

 Sets the text control as growable when grow is true.

 setTextCtrlProportion(This, Prop)

 Sets the proportion value of the text control.

 Types

 wxPickerBase()

 -type wxPickerBase() :: wx:wx_object().

 Functions

 getInternalMargin(This)

 -spec getInternalMargin(This) -> integer() when This :: wxPickerBase().

Returns the margin (in pixel) between the picker and the text control.
This function can be used only when hasTextCtrl/1 returns true.

 getPickerCtrlProportion(This)

 -spec getPickerCtrlProportion(This) -> integer() when This :: wxPickerBase().

Returns the proportion value of the picker.

 getTextCtrl(This)

 -spec getTextCtrl(This) -> wxTextCtrl:wxTextCtrl() when This :: wxPickerBase().

Returns a pointer to the text control handled by this window or NULL if the wxPB_USE_TEXTCTRL
style was not specified when this control was created.
Remark: The contents of the text control could be an invalid representation of the entity
which can be chosen through the picker (e.g. when the user enters an invalid colour syntax
because of a typo). Thus you should never parse the content of the textctrl to get the
user's input; rather use the derived-class getter (e.g. wxColourPickerCtrl:getColour/1, wxFilePickerCtrl:getPath/1, etc).

 getTextCtrlProportion(This)

 -spec getTextCtrlProportion(This) -> integer() when This :: wxPickerBase().

Returns the proportion value of the text control.
This function can be used only when hasTextCtrl/1 returns true.

 hasTextCtrl(This)

 -spec hasTextCtrl(This) -> boolean() when This :: wxPickerBase().

Returns true if this window has a valid text control (i.e. if the wxPB_USE_TEXTCTRL
style was given when creating this control).

 isPickerCtrlGrowable(This)

 -spec isPickerCtrlGrowable(This) -> boolean() when This :: wxPickerBase().

Returns true if the picker control is growable.

 isTextCtrlGrowable(This)

 -spec isTextCtrlGrowable(This) -> boolean() when This :: wxPickerBase().

Returns true if the text control is growable.
This function can be used only when hasTextCtrl/1 returns true.

 setInternalMargin(This, Margin)

 -spec setInternalMargin(This, Margin) -> ok when This :: wxPickerBase(), Margin :: integer().

Sets the margin (in pixel) between the picker and the text control.
This function can be used only when hasTextCtrl/1 returns true.

 setPickerCtrlGrowable(This)

 -spec setPickerCtrlGrowable(This) -> ok when This :: wxPickerBase().

Equivalent to setPickerCtrlGrowable(This, []).

 setPickerCtrlGrowable/2

 -spec setPickerCtrlGrowable(This, [Option]) -> ok
 when This :: wxPickerBase(), Option :: {grow, boolean()}.

Sets the picker control as growable when grow is true.

 setPickerCtrlProportion(This, Prop)

 -spec setPickerCtrlProportion(This, Prop) -> ok when This :: wxPickerBase(), Prop :: integer().

Sets the proportion value of the picker.
Look at the detailed description of wxPickerBase for more info.

 setTextCtrlGrowable(This)

 -spec setTextCtrlGrowable(This) -> ok when This :: wxPickerBase().

Equivalent to setTextCtrlGrowable(This, []).

 setTextCtrlGrowable/2

 -spec setTextCtrlGrowable(This, [Option]) -> ok when This :: wxPickerBase(), Option :: {grow, boolean()}.

Sets the text control as growable when grow is true.
This function can be used only when hasTextCtrl/1 returns true.

 setTextCtrlProportion(This, Prop)

 -spec setTextCtrlProportion(This, Prop) -> ok when This :: wxPickerBase(), Prop :: integer().

Sets the proportion value of the text control.
Look at the detailed description of wxPickerBase for more info.
This function can be used only when hasTextCtrl/1 returns true.

wxPopupTransientWindow

A wxPopupWindow which disappears automatically when the user clicks mouse outside it
or if it loses focus in any other way.
This window can be useful for implementing custom combobox-like controls for example.
See: wxPopupWindow
This class is derived, and can use functions, from:
	wxPopupWindow

	wxWindow

	wxEvtHandler

wxWidgets docs: wxPopupTransientWindow

 Summary

 Types

 wxPopupTransientWindow()

 Functions

 destroy(This)

 Destroys the object

 dismiss(This)

 Hide the window.

 new()

 Default constructor.

 new(Parent)

 Equivalent to new(Parent, []).

 new/2

 Constructor.

 popup(This)

 Equivalent to popup(This, []).

 popup/2

 Popup the window (this will show it too).

 Types

 wxPopupTransientWindow()

 -type wxPopupTransientWindow() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxPopupTransientWindow()) -> ok.

Destroys the object

 dismiss(This)

 -spec dismiss(This) -> ok when This :: wxPopupTransientWindow().

Hide the window.

 new()

 -spec new() -> wxPopupTransientWindow().

Default constructor.

 new(Parent)

 -spec new(Parent) -> wxPopupTransientWindow() when Parent :: wxWindow:wxWindow().

Equivalent to new(Parent, []).

 new/2

 -spec new(Parent, [Option]) -> wxPopupTransientWindow()
 when Parent :: wxWindow:wxWindow(), Option :: {style, integer()}.

Constructor.

 popup(This)

 -spec popup(This) -> ok when This :: wxPopupTransientWindow().

Equivalent to popup(This, []).

 popup/2

 -spec popup(This, [Option]) -> ok
 when This :: wxPopupTransientWindow(), Option :: {focus, wxWindow:wxWindow()}.

Popup the window (this will show it too).
If focus is non-NULL, it will be kept focused while this window is shown if supported
by the current platform, otherwise the popup itself will receive focus. In any case, the
popup will disappear automatically if it loses focus because of a user action.
See: dismiss/1

wxPopupWindow

A special kind of top level window used for popup menus, combobox popups and such.
Styles
This class supports the following styles:
	wxPU_CONTAINS_CONTROLS: By default in wxMSW, a popup window will not take focus from its
parent window. However many standard controls, including common ones such as wxTextCtrl,
need focus to function correctly and will not work when placed on a default popup. This
flag can be used to make the popup take focus and let all controls work but at the price
of not allowing the parent window to keep focus while the popup is shown, which can also
be sometimes desirable. This style is currently only implemented in MSW and simply does
nothing under the other platforms (it's new since wxWidgets 3.1.3).

See:
	wxDialog

	wxFrame

This class is derived, and can use functions, from:
	wxWindow

	wxEvtHandler

wxWidgets docs: wxPopupWindow

 Summary

 Types

 wxPopupWindow()

 Functions

 create(This, Parent)

 Equivalent to create(This, Parent, []).

 create/3

 Create method for two-step creation.

 destroy(This)

 Destroys the object

 new()

 Default constructor.

 new(Parent)

 Equivalent to new(Parent, []).

 new/2

 Constructor.

 position(This, PtOrigin, SizePopup)

 Move the popup window to the right position, i.e. such that it is entirely visible.

 Types

 wxPopupWindow()

 -type wxPopupWindow() :: wx:wx_object().

 Functions

 create(This, Parent)

 -spec create(This, Parent) -> boolean() when This :: wxPopupWindow(), Parent :: wxWindow:wxWindow().

Equivalent to create(This, Parent, []).

 create/3

 -spec create(This, Parent, [Option]) -> boolean()
 when
 This :: wxPopupWindow(), Parent :: wxWindow:wxWindow(), Option :: {flags, integer()}.

Create method for two-step creation.

 destroy(This)

 -spec destroy(This :: wxPopupWindow()) -> ok.

Destroys the object

 new()

 -spec new() -> wxPopupWindow().

Default constructor.

 new(Parent)

 -spec new(Parent) -> wxPopupWindow() when Parent :: wxWindow:wxWindow().

Equivalent to new(Parent, []).

 new/2

 -spec new(Parent, [Option]) -> wxPopupWindow()
 when Parent :: wxWindow:wxWindow(), Option :: {flags, integer()}.

Constructor.

 position(This, PtOrigin, SizePopup)

 -spec position(This, PtOrigin, SizePopup) -> ok
 when
 This :: wxPopupWindow(),
 PtOrigin :: {X :: integer(), Y :: integer()},
 SizePopup :: {W :: integer(), H :: integer()}.

Move the popup window to the right position, i.e. such that it is entirely visible.
The popup is positioned at ptOrigin + size if it opens below and to the right (default),
at ptOrigin - sizePopup if it opens above and to the left etc.

wxPostScriptDC

This defines the wxWidgets Encapsulated PostScript device context, which can write
PostScript files on any platform.
See wxDC for descriptions of the member functions.
Starting a document
Document should be started with call to wxDC:startDoc/2 prior to calling any function to execute a
drawing operation. However, some functions, like wxDC:setFont/2, may be legitimately called even before wxDC:startDoc/2.
This class is derived, and can use functions, from:
	wxDC

wxWidgets docs: wxPostScriptDC

 Summary

 Types

 wxPostScriptDC()

 Functions

 destroy(This)

 Destroys the object

 new()

 new(PrintData)

 Constructs a PostScript printer device context from a wxPrintData object.

 Types

 wxPostScriptDC()

 -type wxPostScriptDC() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxPostScriptDC()) -> ok.

Destroys the object

 new()

 -spec new() -> wxPostScriptDC().

 new(PrintData)

 -spec new(PrintData) -> wxPostScriptDC() when PrintData :: wxPrintData:wxPrintData().

Constructs a PostScript printer device context from a wxPrintData object.

wxPreviewCanvas

A preview canvas is the default canvas used by the print preview system to display the
preview.
See:
	wxPreviewFrame

	wxPreviewControlBar

	wxPrintPreview

This class is derived, and can use functions, from:
	wxScrolledWindow

	wxPanel

	wxWindow

	wxEvtHandler

wxWidgets docs: wxPreviewCanvas

 Summary

 Types

 wxPreviewCanvas()

 Types

 wxPreviewCanvas()

 -type wxPreviewCanvas() :: wx:wx_object().

wxPreviewControlBar

This is the default implementation of the preview control bar, a panel with buttons and a
zoom control.
You can derive a new class from this and override some or all member functions to change
the behaviour and appearance; or you can leave it as it is.
See:
	wxPreviewFrame

	wxPreviewCanvas

	wxPrintPreview

This class is derived, and can use functions, from:
	wxPanel

	wxWindow

	wxEvtHandler

wxWidgets docs: wxPreviewControlBar

 Summary

 Types

 wxPreviewControlBar()

 Functions

 createButtons(This)

 Creates buttons, according to value of the button style flags.

 destroy(This)

 Destroys the object

 getPrintPreview(This)

 Gets the print preview object associated with the control bar.

 getZoomControl(This)

 Gets the current zoom setting in percent.

 new(Preview, Buttons, Parent)

 Equivalent to new(Preview, Buttons, Parent, []).

 new/4

 Constructor.

 setZoomControl(This, Percent)

 Sets the zoom control.

 Types

 wxPreviewControlBar()

 -type wxPreviewControlBar() :: wx:wx_object().

 Functions

 createButtons(This)

 -spec createButtons(This) -> ok when This :: wxPreviewControlBar().

Creates buttons, according to value of the button style flags.

 destroy(This)

 -spec destroy(This :: wxPreviewControlBar()) -> ok.

Destroys the object

 getPrintPreview(This)

 -spec getPrintPreview(This) -> wxPrintPreview:wxPrintPreview() when This :: wxPreviewControlBar().

Gets the print preview object associated with the control bar.

 getZoomControl(This)

 -spec getZoomControl(This) -> integer() when This :: wxPreviewControlBar().

Gets the current zoom setting in percent.

 new(Preview, Buttons, Parent)

 -spec new(Preview, Buttons, Parent) -> wxPreviewControlBar()
 when
 Preview :: wxPrintPreview:wxPrintPreview(),
 Buttons :: integer(),
 Parent :: wxWindow:wxWindow().

Equivalent to new(Preview, Buttons, Parent, []).

 new/4

 -spec new(Preview, Buttons, Parent, [Option]) -> wxPreviewControlBar()
 when
 Preview :: wxPrintPreview:wxPrintPreview(),
 Buttons :: integer(),
 Parent :: wxWindow:wxWindow(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Constructor.
The buttons parameter may be a combination of the following, using the bitwise 'or' operator:
	wxPREVIEW_PRINT: Create a print button.

	wxPREVIEW_NEXT: Create a next page button.

	wxPREVIEW_PREVIOUS: Create a previous page button.

	wxPREVIEW_ZOOM: Create a zoom control.

	wxPREVIEW_DEFAULT: Equivalent to a combination of wxPREVIEW_PREVIOUS, wxPREVIEW_NEXT
and wxPREVIEW_ZOOM.

 setZoomControl(This, Percent)

 -spec setZoomControl(This, Percent) -> ok when This :: wxPreviewControlBar(), Percent :: integer().

Sets the zoom control.

wxPreviewFrame

This class provides the default method of managing the print preview interface.
Member functions may be overridden to replace functionality, or the class may be used
without derivation.
See:
	wxPreviewCanvas

	wxPreviewControlBar

	wxPrintPreview

This class is derived, and can use functions, from:
	wxFrame

	wxTopLevelWindow

	wxWindow

	wxEvtHandler

wxWidgets docs: wxPreviewFrame

 Summary

 Types

 wxPreviewFrame()

 Functions

 createCanvas(This)

 Creates a wxPreviewCanvas.

 createControlBar(This)

 Creates a wxPreviewControlBar.

 destroy(This)

 Destroys the object

 initialize(This)

 Initializes the frame elements and prepares for showing it.

 new(Preview, Parent)

 Equivalent to new(Preview, Parent, []).

 new/3

 Constructor.

 onCloseWindow(This, Event)

 Enables any disabled frames in the application, and deletes the print preview object,
implicitly deleting any printout objects associated with the print preview object.

 Types

 wxPreviewFrame()

 -type wxPreviewFrame() :: wx:wx_object().

 Functions

 createCanvas(This)

 -spec createCanvas(This) -> ok when This :: wxPreviewFrame().

Creates a wxPreviewCanvas.
Override this function to allow a user-defined preview canvas object to be created.

 createControlBar(This)

 -spec createControlBar(This) -> ok when This :: wxPreviewFrame().

Creates a wxPreviewControlBar.
Override this function to allow a user-defined preview control bar object to be created.

 destroy(This)

 -spec destroy(This :: wxPreviewFrame()) -> ok.

Destroys the object

 initialize(This)

 -spec initialize(This) -> ok when This :: wxPreviewFrame().

Initializes the frame elements and prepares for showing it.
Calling this method is equivalent to calling InitializeWithModality() (not implemented
in wx) with wxPreviewFrame_AppModal argument, please see its documentation for more details.
Please notice that this function is virtual mostly for backwards compatibility only,
there is no real need to override it as it's never called by wxWidgets itself.

 new(Preview, Parent)

 -spec new(Preview, Parent) -> wxPreviewFrame()
 when Preview :: wxPrintPreview:wxPrintPreview(), Parent :: wxWindow:wxWindow().

Equivalent to new(Preview, Parent, []).

 new/3

 -spec new(Preview, Parent, [Option]) -> wxPreviewFrame()
 when
 Preview :: wxPrintPreview:wxPrintPreview(),
 Parent :: wxWindow:wxWindow(),
 Option ::
 {title, unicode:chardata()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Constructor.
Pass a print preview object plus other normal frame arguments. The print preview object
will be destroyed by the frame when it closes.

 onCloseWindow(This, Event)

 -spec onCloseWindow(This, Event) -> ok
 when This :: wxPreviewFrame(), Event :: wxCloseEvent:wxCloseEvent().

Enables any disabled frames in the application, and deletes the print preview object,
implicitly deleting any printout objects associated with the print preview object.

wxPrintData

This class holds a variety of information related to printers and printer device
contexts.
This class is used to create a wxPrinterDC (not implemented in wx) and a wxPostScriptDC.
It is also used as a data member of wxPrintDialogData and wxPageSetupDialogData,
as part of the mechanism for transferring data between the print dialogs and the application.
See:
	Overview printing

	wxPrintDialog

	wxPageSetupDialog

	wxPrintDialogData

	wxPageSetupDialogData

	Overview cmndlg

	wxPostScriptDC

wxWidgets docs: wxPrintData

 Summary

 Types

 wxPrintData()

 Functions

 destroy(This)

 Destroys the object

 getBin(This)

 Returns the current bin (papersource).

 getCollate(This)

 Returns true if collation is on.

 getColour(This)

 Returns true if colour printing is on.

 getDuplex(This)

 Returns the duplex mode.

 getNoCopies(This)

 Returns the number of copies requested by the user.

 getOrientation(This)

 Gets the orientation.

 getPaperId(This)

 Returns the paper size id.

 getPrinterName(This)

 Returns the printer name.

 getQuality(This)

 Returns the current print quality.

 isOk(This)

 Returns true if the print data is valid for using in print dialogs.

 new()

 Default constructor.

 new(Data)

 Copy constructor.

 setBin(This, Flag)

 Sets the current bin.

 setCollate(This, Flag)

 Sets collation to on or off.

 setColour(This, Flag)

 Sets colour printing on or off.

 setDuplex(This, Mode)

 Returns the duplex mode.

 setNoCopies(This, N)

 Sets the default number of copies to be printed out.

 setOrientation(This, Orientation)

 Sets the orientation.

 setPaperId(This, PaperId)

 Sets the paper id.

 setPrinterName(This, PrinterName)

 Sets the printer name.

 setQuality(This, Quality)

 Sets the desired print quality.

 Types

 wxPrintData()

 -type wxPrintData() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxPrintData()) -> ok.

Destroys the object

 getBin(This)

 -spec getBin(This) -> wx:wx_enum() when This :: wxPrintData().

Returns the current bin (papersource).
By default, the system is left to select the bin (wxPRINTBIN_DEFAULT is returned).
See setBin/2 for the full list of bin values.

 getCollate(This)

 -spec getCollate(This) -> boolean() when This :: wxPrintData().

Returns true if collation is on.

 getColour(This)

 -spec getColour(This) -> boolean() when This :: wxPrintData().

Returns true if colour printing is on.

 getDuplex(This)

 -spec getDuplex(This) -> wx:wx_enum() when This :: wxPrintData().

Returns the duplex mode.
One of wxDUPLEX_SIMPLEX, wxDUPLEX_HORIZONTAL, wxDUPLEX_VERTICAL.

 getNoCopies(This)

 -spec getNoCopies(This) -> integer() when This :: wxPrintData().

Returns the number of copies requested by the user.

 getOrientation(This)

 -spec getOrientation(This) -> wx:wx_enum() when This :: wxPrintData().

Gets the orientation.
This can be wxLANDSCAPE or wxPORTRAIT.

 getPaperId(This)

 -spec getPaperId(This) -> wx:wx_enum() when This :: wxPrintData().

Returns the paper size id.
See: setPaperId/2

 getPrinterName(This)

 -spec getPrinterName(This) -> unicode:charlist() when This :: wxPrintData().

Returns the printer name.
If the printer name is the empty string, it indicates that the default printer should be
used.

 getQuality(This)

 -spec getQuality(This) -> integer() when This :: wxPrintData().

Returns the current print quality.
This can be a positive integer, denoting the number of dots per inch, or one of the
following identifiers:
	wxPRINT_QUALITY_HIGH

	wxPRINT_QUALITY_MEDIUM

	wxPRINT_QUALITY_LOW

	wxPRINT_QUALITY_DRAFT

On input you should pass one of these identifiers, but on return you may get back a
positive integer indicating the current resolution setting.

 isOk(This)

 -spec isOk(This) -> boolean() when This :: wxPrintData().

Returns true if the print data is valid for using in print dialogs.
This can return false on Windows if the current printer is not set, for example. On all
other platforms, it returns true.

 new()

 -spec new() -> wxPrintData().

Default constructor.

 new(Data)

 -spec new(Data) -> wxPrintData() when Data :: wxPrintData().

Copy constructor.

 setBin(This, Flag)

 -spec setBin(This, Flag) -> ok when This :: wxPrintData(), Flag :: wx:wx_enum().

Sets the current bin.

 setCollate(This, Flag)

 -spec setCollate(This, Flag) -> ok when This :: wxPrintData(), Flag :: boolean().

Sets collation to on or off.

 setColour(This, Flag)

 -spec setColour(This, Flag) -> ok when This :: wxPrintData(), Flag :: boolean().

Sets colour printing on or off.

 setDuplex(This, Mode)

 -spec setDuplex(This, Mode) -> ok when This :: wxPrintData(), Mode :: wx:wx_enum().

Returns the duplex mode.
One of wxDUPLEX_SIMPLEX, wxDUPLEX_HORIZONTAL, wxDUPLEX_VERTICAL.

 setNoCopies(This, N)

 -spec setNoCopies(This, N) -> ok when This :: wxPrintData(), N :: integer().

Sets the default number of copies to be printed out.

 setOrientation(This, Orientation)

 -spec setOrientation(This, Orientation) -> ok when This :: wxPrintData(), Orientation :: wx:wx_enum().

Sets the orientation.
This can be wxLANDSCAPE or wxPORTRAIT.

 setPaperId(This, PaperId)

 -spec setPaperId(This, PaperId) -> ok when This :: wxPrintData(), PaperId :: wx:wx_enum().

Sets the paper id.
This indicates the type of paper to be used. For a mapping between paper id, paper size
and string name, see wxPrintPaperDatabase in "paper.h" (not yet documented).

 setPrinterName(This, PrinterName)

 -spec setPrinterName(This, PrinterName) -> ok
 when This :: wxPrintData(), PrinterName :: unicode:chardata().

Sets the printer name.
This can be the empty string to indicate that the default printer should be used.

 setQuality(This, Quality)

 -spec setQuality(This, Quality) -> ok when This :: wxPrintData(), Quality :: integer().

Sets the desired print quality.
This can be a positive integer, denoting the number of dots per inch, or one of the
following identifiers:
	wxPRINT_QUALITY_HIGH

	wxPRINT_QUALITY_MEDIUM

	wxPRINT_QUALITY_LOW

	wxPRINT_QUALITY_DRAFT

On input you should pass one of these identifiers, but on return you may get back a
positive integer indicating the current resolution setting.

wxPrintDialog

This class represents the print and print setup common dialogs.
You may obtain a wxPrinterDC (not implemented in wx) device context from a successfully
dismissed print dialog.
See:
	Overview printing

	Overview cmndlg

This class is derived, and can use functions, from:
	wxDialog

	wxTopLevelWindow

	wxWindow

	wxEvtHandler

wxWidgets docs: wxPrintDialog

 Summary

 Types

 wxPrintDialog()

 Functions

 destroy(This)

 Destroys the object

 getPrintDC(This)

 Returns the device context created by the print dialog, if any.

 getPrintDialogData(This)

 Returns the print dialog data associated with the print dialog.

 new(Parent)

 Equivalent to new(Parent, []).

 new/2

 Types

 wxPrintDialog()

 -type wxPrintDialog() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxPrintDialog()) -> ok.

Destroys the object

 getPrintDC(This)

 -spec getPrintDC(This) -> wxDC:wxDC() when This :: wxPrintDialog().

Returns the device context created by the print dialog, if any.
When this function has been called, the ownership of the device context is transferred to
the application, so it must then be deleted explicitly.

 getPrintDialogData(This)

 -spec getPrintDialogData(This) -> wxPrintDialogData:wxPrintDialogData() when This :: wxPrintDialog().

Returns the print dialog data associated with the print dialog.

 new(Parent)

 -spec new(Parent) -> wxPrintDialog() when Parent :: wxWindow:wxWindow().

Equivalent to new(Parent, []).

 new/2

 -spec new(Parent, [Option]) -> wxPrintDialog()
 when Parent :: wxWindow:wxWindow(), Option :: {data, wxPrintDialogData:wxPrintDialogData()};
 (Parent, Data) -> wxPrintDialog()
 when Parent :: wxWindow:wxWindow(), Data :: wxPrintData:wxPrintData().

wxPrintDialogData

This class holds information related to the visual characteristics of wxPrintDialog.
It contains a wxPrintData object with underlying printing settings.
See:
	Overview printing

	wxPrintDialog

	Overview cmndlg

wxWidgets docs: wxPrintDialogData

 Summary

 Types

 wxPrintDialogData()

 Functions

 destroy(This)

 Destroys the object

 enableHelp(This, Flag)

 Enables or disables the "Help" button.

 enablePageNumbers(This, Flag)

 Enables or disables the "Page numbers" controls.

 enablePrintToFile(This, Flag)

 Enables or disables the "Print to file" checkbox.

 enableSelection(This, Flag)

 Enables or disables the "Selection" radio button.

 getAllPages(This)

 Returns true if the user requested that all pages be printed.

 getCollate(This)

 Returns true if the user requested that the document(s) be collated.

 getFromPage(This)

 Returns the from page number, as entered by the user.

 getMaxPage(This)

 Returns the maximum page number.

 getMinPage(This)

 Returns the minimum page number.

 getNoCopies(This)

 Returns the number of copies requested by the user.

 getPrintData(This)

 Returns a reference to the internal wxPrintData object.

 getPrintToFile(This)

 Returns true if the user has selected printing to a file.

 getSelection(This)

 Returns true if the user requested that the selection be printed (where "selection" is a
concept specific to the application).

 getToPage(This)

 Returns the "print to" page number, as entered by the user.

 isOk(This)

 Returns true if the print data is valid for using in print dialogs.

 new()

 Default constructor.

 new(DialogData)

 Copy constructor.

 setCollate(This, Flag)

 Sets the "Collate" checkbox to true or false.

 setFromPage(This, Page)

 Sets the from page number.

 setMaxPage(This, Page)

 Sets the maximum page number.

 setMinPage(This, Page)

 Sets the minimum page number.

 setNoCopies(This, N)

 Sets the default number of copies the user has requested to be printed out.

 setPrintData(This, PrintData)

 Sets the internal wxPrintData.

 setPrintToFile(This, Flag)

 Sets the "Print to file" checkbox to true or false.

 setSelection(This, Flag)

 Selects the "Selection" radio button.

 setToPage(This, Page)

 Sets the "print to" page number.

 Types

 wxPrintDialogData()

 -type wxPrintDialogData() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxPrintDialogData()) -> ok.

Destroys the object

 enableHelp(This, Flag)

 -spec enableHelp(This, Flag) -> ok when This :: wxPrintDialogData(), Flag :: boolean().

Enables or disables the "Help" button.

 enablePageNumbers(This, Flag)

 -spec enablePageNumbers(This, Flag) -> ok when This :: wxPrintDialogData(), Flag :: boolean().

Enables or disables the "Page numbers" controls.

 enablePrintToFile(This, Flag)

 -spec enablePrintToFile(This, Flag) -> ok when This :: wxPrintDialogData(), Flag :: boolean().

Enables or disables the "Print to file" checkbox.

 enableSelection(This, Flag)

 -spec enableSelection(This, Flag) -> ok when This :: wxPrintDialogData(), Flag :: boolean().

Enables or disables the "Selection" radio button.

 getAllPages(This)

 -spec getAllPages(This) -> boolean() when This :: wxPrintDialogData().

Returns true if the user requested that all pages be printed.

 getCollate(This)

 -spec getCollate(This) -> boolean() when This :: wxPrintDialogData().

Returns true if the user requested that the document(s) be collated.

 getFromPage(This)

 -spec getFromPage(This) -> integer() when This :: wxPrintDialogData().

Returns the from page number, as entered by the user.

 getMaxPage(This)

 -spec getMaxPage(This) -> integer() when This :: wxPrintDialogData().

Returns the maximum page number.

 getMinPage(This)

 -spec getMinPage(This) -> integer() when This :: wxPrintDialogData().

Returns the minimum page number.

 getNoCopies(This)

 -spec getNoCopies(This) -> integer() when This :: wxPrintDialogData().

Returns the number of copies requested by the user.

 getPrintData(This)

 -spec getPrintData(This) -> wxPrintData:wxPrintData() when This :: wxPrintDialogData().

Returns a reference to the internal wxPrintData object.

 getPrintToFile(This)

 -spec getPrintToFile(This) -> boolean() when This :: wxPrintDialogData().

Returns true if the user has selected printing to a file.

 getSelection(This)

 -spec getSelection(This) -> boolean() when This :: wxPrintDialogData().

Returns true if the user requested that the selection be printed (where "selection" is a
concept specific to the application).

 getToPage(This)

 -spec getToPage(This) -> integer() when This :: wxPrintDialogData().

Returns the "print to" page number, as entered by the user.

 isOk(This)

 -spec isOk(This) -> boolean() when This :: wxPrintDialogData().

Returns true if the print data is valid for using in print dialogs.
This can return false on Windows if the current printer is not set, for example. On all
other platforms, it returns true.

 new()

 -spec new() -> wxPrintDialogData().

Default constructor.

 new(DialogData)

 -spec new(DialogData) -> wxPrintDialogData()
 when DialogData :: wxPrintDialogData:wxPrintDialogData() | wxPrintData:wxPrintData().

Copy constructor.

 setCollate(This, Flag)

 -spec setCollate(This, Flag) -> ok when This :: wxPrintDialogData(), Flag :: boolean().

Sets the "Collate" checkbox to true or false.

 setFromPage(This, Page)

 -spec setFromPage(This, Page) -> ok when This :: wxPrintDialogData(), Page :: integer().

Sets the from page number.

 setMaxPage(This, Page)

 -spec setMaxPage(This, Page) -> ok when This :: wxPrintDialogData(), Page :: integer().

Sets the maximum page number.

 setMinPage(This, Page)

 -spec setMinPage(This, Page) -> ok when This :: wxPrintDialogData(), Page :: integer().

Sets the minimum page number.

 setNoCopies(This, N)

 -spec setNoCopies(This, N) -> ok when This :: wxPrintDialogData(), N :: integer().

Sets the default number of copies the user has requested to be printed out.

 setPrintData(This, PrintData)

 -spec setPrintData(This, PrintData) -> ok
 when This :: wxPrintDialogData(), PrintData :: wxPrintData:wxPrintData().

Sets the internal wxPrintData.

 setPrintToFile(This, Flag)

 -spec setPrintToFile(This, Flag) -> ok when This :: wxPrintDialogData(), Flag :: boolean().

Sets the "Print to file" checkbox to true or false.

 setSelection(This, Flag)

 -spec setSelection(This, Flag) -> ok when This :: wxPrintDialogData(), Flag :: boolean().

Selects the "Selection" radio button.
The effect of printing the selection depends on how the application implements this
command, if at all.

 setToPage(This, Page)

 -spec setToPage(This, Page) -> ok when This :: wxPrintDialogData(), Page :: integer().

Sets the "print to" page number.

wxPrintPreview

Objects of this class manage the print preview process.
The object is passed a wxPrintout object, and the wxPrintPreview object itself is
passed to a wxPreviewFrame object. Previewing is started by initializing and showing
the preview frame. Unlike wxPrinter:print/4, flow of control returns to the application immediately after
the frame is shown.
Note: The preview shown is only exact on Windows. On other platforms, the wxDC used
for preview is different from what is used for printing and the results may be
significantly different, depending on how is the output created. In particular, printing
code relying on wxDC:getTextExtent/3 heavily (for example, wxHtmlEasyPrinting and other wxHTML classes do)
is affected. It is recommended to use native preview functionality on platforms that offer
it (macOS, GTK+).
See:
	Overview printing

	wxPrintDialog

	wxPrintout

	wxPrinter

	wxPreviewCanvas

	wxPreviewControlBar

	wxPreviewFrame

wxWidgets docs: wxPrintPreview

 Summary

 Types

 wxPrintPreview()

 Functions

 destroy(This)

 Destroys the object

 getCanvas(This)

 Gets the preview window used for displaying the print preview image.

 getCurrentPage(This)

 Gets the page currently being previewed.

 getFrame(This)

 Gets the frame used for displaying the print preview canvas and control bar.

 getMaxPage(This)

 Returns the maximum page number.

 getMinPage(This)

 Returns the minimum page number.

 getPrintout(This)

 Gets the preview printout object associated with the wxPrintPreview object.

 getPrintoutForPrinting(This)

 Gets the printout object to be used for printing from within the preview interface, or
NULL if none exists.

 isOk(This)

 Returns true if the wxPrintPreview is valid, false otherwise.

 new(Printout)

 Equivalent to new(Printout, []).

 new/2

 Constructor.

 new(Printout, PrintoutForPrinting, Data)

 paintPage(This, Canvas, Dc)

 This refreshes the preview window with the preview image.

 print(This, Prompt)

 Invokes the print process using the second wxPrintout object supplied in the wxPrintPreview
constructor.

 renderPage(This, PageNum)

 Renders a page into a wxMemoryDC.

 setCanvas(This, Window)

 Sets the window to be used for displaying the print preview image.

 setCurrentPage(This, PageNum)

 Sets the current page to be previewed.

 setFrame(This, Frame)

 Sets the frame to be used for displaying the print preview canvas and control bar.

 setPrintout(This, Printout)

 Associates a printout object with the wxPrintPreview object.

 setZoom(This, Percent)

 Sets the percentage preview zoom, and refreshes the preview canvas accordingly.

 Types

 wxPrintPreview()

 -type wxPrintPreview() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxPrintPreview()) -> ok.

Destroys the object

 getCanvas(This)

 -spec getCanvas(This) -> wxPreviewCanvas:wxPreviewCanvas() when This :: wxPrintPreview().

Gets the preview window used for displaying the print preview image.

 getCurrentPage(This)

 -spec getCurrentPage(This) -> integer() when This :: wxPrintPreview().

Gets the page currently being previewed.

 getFrame(This)

 -spec getFrame(This) -> wxFrame:wxFrame() when This :: wxPrintPreview().

Gets the frame used for displaying the print preview canvas and control bar.

 getMaxPage(This)

 -spec getMaxPage(This) -> integer() when This :: wxPrintPreview().

Returns the maximum page number.

 getMinPage(This)

 -spec getMinPage(This) -> integer() when This :: wxPrintPreview().

Returns the minimum page number.

 getPrintout(This)

 -spec getPrintout(This) -> wxPrintout:wxPrintout() when This :: wxPrintPreview().

Gets the preview printout object associated with the wxPrintPreview object.

 getPrintoutForPrinting(This)

 -spec getPrintoutForPrinting(This) -> wxPrintout:wxPrintout() when This :: wxPrintPreview().

Gets the printout object to be used for printing from within the preview interface, or
NULL if none exists.

 isOk(This)

 -spec isOk(This) -> boolean() when This :: wxPrintPreview().

Returns true if the wxPrintPreview is valid, false otherwise.
It could return false if there was a problem initializing the printer device context
(current printer not set, for example).

 new(Printout)

 -spec new(Printout) -> wxPrintPreview() when Printout :: wxPrintout:wxPrintout().

Equivalent to new(Printout, []).

 new/2

 -spec new(Printout, [Option]) -> wxPrintPreview()
 when
 Printout :: wxPrintout:wxPrintout(),
 Option ::
 {printoutForPrinting, wxPrintout:wxPrintout()} |
 {data, wxPrintDialogData:wxPrintDialogData()}.

Constructor.
Pass a printout object, an optional printout object to be used for actual printing, and
the address of an optional block of printer data, which will be copied to the print
preview object's print data.
If printoutForPrinting is non-NULL, a "Print..." button will be placed on the preview
frame so that the user can print directly from the preview interface.
Remark: Do not explicitly delete the printout objects once this constructor has been
called, since they will be deleted in the wxPrintPreview destructor. The same does not
apply to the data argument.
Use isOk/1 to check whether the wxPrintPreview object was created correctly.

 new(Printout, PrintoutForPrinting, Data)

 -spec new(Printout, PrintoutForPrinting, Data) -> wxPrintPreview()
 when
 Printout :: wxPrintout:wxPrintout(),
 PrintoutForPrinting :: wxPrintout:wxPrintout(),
 Data :: wxPrintData:wxPrintData().

 paintPage(This, Canvas, Dc)

 -spec paintPage(This, Canvas, Dc) -> boolean()
 when
 This :: wxPrintPreview(),
 Canvas :: wxPreviewCanvas:wxPreviewCanvas(),
 Dc :: wxDC:wxDC().

This refreshes the preview window with the preview image.
It must be called from the preview window's OnPaint member.
The implementation simply blits the preview bitmap onto the canvas, creating a new
preview bitmap if none exists.

 print(This, Prompt)

 -spec print(This, Prompt) -> boolean() when This :: wxPrintPreview(), Prompt :: boolean().

Invokes the print process using the second wxPrintout object supplied in the wxPrintPreview
constructor.
Will normally be called by the Print... panel item on the preview frame's control bar.
Returns false in case of error - call wxPrinter:getLastError/0 to get detailed information about the kind of the
error.

 renderPage(This, PageNum)

 -spec renderPage(This, PageNum) -> boolean() when This :: wxPrintPreview(), PageNum :: integer().

Renders a page into a wxMemoryDC.
Used internally by wxPrintPreview.

 setCanvas(This, Window)

 -spec setCanvas(This, Window) -> ok
 when This :: wxPrintPreview(), Window :: wxPreviewCanvas:wxPreviewCanvas().

Sets the window to be used for displaying the print preview image.

 setCurrentPage(This, PageNum)

 -spec setCurrentPage(This, PageNum) -> boolean() when This :: wxPrintPreview(), PageNum :: integer().

Sets the current page to be previewed.

 setFrame(This, Frame)

 -spec setFrame(This, Frame) -> ok when This :: wxPrintPreview(), Frame :: wxFrame:wxFrame().

Sets the frame to be used for displaying the print preview canvas and control bar.

 setPrintout(This, Printout)

 -spec setPrintout(This, Printout) -> ok
 when This :: wxPrintPreview(), Printout :: wxPrintout:wxPrintout().

Associates a printout object with the wxPrintPreview object.

 setZoom(This, Percent)

 -spec setZoom(This, Percent) -> ok when This :: wxPrintPreview(), Percent :: integer().

Sets the percentage preview zoom, and refreshes the preview canvas accordingly.

wxPrinter

This class represents the Windows or PostScript printer, and is the vehicle through which
printing may be launched by an application.
Printing can also be achieved through using of lower functions and classes, but this and
associated classes provide a more convenient and general method of printing.
See:
	Overview printing

	wxPrintDialog

	wxPrintout

	wxPrintPreview

wxWidgets docs: wxPrinter

 Summary

 Types

 wxPrinter()

 Functions

 createAbortWindow(This, Parent, Printout)

 Creates the default printing abort window, with a cancel button.

 destroy(This)

 Destroys the object

 getAbort(This)

 Returns true if the user has aborted the print job.

 getLastError()

 Return last error.

 getPrintDialogData(This)

 Returns the print data associated with the printer object.

 new()

 Equivalent to new([]).

 new(Options)

 Constructor.

 print(This, Parent, Printout)

 Equivalent to print(This, Parent, Printout, []).

 print/4

 Starts the printing process.

 printDialog(This, Parent)

 Invokes the print dialog.

 reportError(This, Parent, Printout, Message)

 Default error-reporting function.

 setup(This, Parent)

 Invokes the print setup dialog.

 Types

 wxPrinter()

 -type wxPrinter() :: wx:wx_object().

 Functions

 createAbortWindow(This, Parent, Printout)

 -spec createAbortWindow(This, Parent, Printout) -> wxDialog:wxDialog()
 when
 This :: wxPrinter(),
 Parent :: wxWindow:wxWindow(),
 Printout :: wxPrintout:wxPrintout().

Creates the default printing abort window, with a cancel button.

 destroy(This)

 -spec destroy(This :: wxPrinter()) -> ok.

Destroys the object

 getAbort(This)

 -spec getAbort(This) -> boolean() when This :: wxPrinter().

Returns true if the user has aborted the print job.

 getLastError()

 -spec getLastError() -> wx:wx_enum().

Return last error.
Valid after calling print/4, printDialog/2 or wxPrintPreview:print/2.
These functions set last error to wxPRINTER_NO_ERROR if no error happened.
Returned value is one of the following:

 getPrintDialogData(This)

 -spec getPrintDialogData(This) -> wxPrintDialogData:wxPrintDialogData() when This :: wxPrinter().

Returns the print data associated with the printer object.

 new()

 -spec new() -> wxPrinter().

Equivalent to new([]).

 new(Options)

 -spec new([Option]) -> wxPrinter() when Option :: {data, wxPrintDialogData:wxPrintDialogData()}.

Constructor.
Pass an optional pointer to a block of print dialog data, which will be copied to the
printer object's local data.
See:
	wxPrintDialogData

	wxPrintData

 print(This, Parent, Printout)

 -spec print(This, Parent, Printout) -> boolean()
 when
 This :: wxPrinter(),
 Parent :: wxWindow:wxWindow(),
 Printout :: wxPrintout:wxPrintout().

Equivalent to print(This, Parent, Printout, []).

 print/4

 -spec print(This, Parent, Printout, [Option]) -> boolean()
 when
 This :: wxPrinter(),
 Parent :: wxWindow:wxWindow(),
 Printout :: wxPrintout:wxPrintout(),
 Option :: {prompt, boolean()}.

Starts the printing process.
Provide a parent window, a user-defined wxPrintout object which controls the printing
of a document, and whether the print dialog should be invoked first.
print/4 could return false if there was a problem initializing the printer device context
(current printer not set, for example) or the user cancelled printing. Call getLastError/0 to get
detailed information about the kind of the error.

 printDialog(This, Parent)

 -spec printDialog(This, Parent) -> wxDC:wxDC() when This :: wxPrinter(), Parent :: wxWindow:wxWindow().

Invokes the print dialog.
If successful (the user did not press Cancel and no error occurred), a suitable device
context will be returned; otherwise NULL is returned; call getLastError/0 to get detailed information
about the kind of the error.
Remark: The application must delete this device context to avoid a memory leak.

 reportError(This, Parent, Printout, Message)

 -spec reportError(This, Parent, Printout, Message) -> ok
 when
 This :: wxPrinter(),
 Parent :: wxWindow:wxWindow(),
 Printout :: wxPrintout:wxPrintout(),
 Message :: unicode:chardata().

Default error-reporting function.

 setup(This, Parent)

 -spec setup(This, Parent) -> boolean() when This :: wxPrinter(), Parent :: wxWindow:wxWindow().

Invokes the print setup dialog.
Deprecated:
The setup dialog is obsolete, though retained for backward compatibility.

wxPrintout

This class encapsulates the functionality of printing out an application document.
A new class must be derived and members overridden to respond to calls such as OnPrintPage()
(not implemented in wx) and HasPage() (not implemented in wx) and to render the print
image onto an associated wxDC. Instances of this class are passed to wxPrinter:print/4 or to a wxPrintPreview
object to initiate printing or previewing.
Your derived wxPrintout is responsible for drawing both the preview image and the
printed page. If your windows' drawing routines accept an arbitrary DC as an argument, you
can re-use those routines within your wxPrintout subclass to draw the printout image.
You may also add additional drawing elements within your wxPrintout subclass, like
headers, footers, and/or page numbers. However, the image on the printed page will often
differ from the image drawn on the screen, as will the print preview image - not just in
the presence of headers and footers, but typically in scale. A high-resolution printer
presents a much larger drawing surface (i.e., a higher-resolution DC); a zoomed-out
preview image presents a much smaller drawing surface (lower-resolution DC). By using the
routines FitThisSizeToXXX() and/or MapScreenSizeToXXX() within your wxPrintout
subclass to set the user scale and origin of the associated DC, you can easily use a
single drawing routine to draw on your application's windows, to create the print preview
image, and to create the printed paper image, and achieve a common appearance to the
preview image and the printed page.
See:
	Overview printing

	wxPrintDialog

	wxPageSetupDialog

	wxPrinter

	wxPrintPreview

wxWidgets docs: wxPrintout

 Summary

 Types

 wxPrintout()

 Functions

 destroy(This)

 Destroys the object

 fitThisSizeToPage(This, ImageSize)

 Set the user scale and device origin of the wxDC associated with this wxPrintout
so that the given image size fits entirely within the page rectangle and the origin is at
the top left corner of the page rectangle.

 fitThisSizeToPageMargins(This, ImageSize, PageSetupData)

 Set the user scale and device origin of the wxDC associated with this wxPrintout
so that the given image size fits entirely within the page margins set in the given wxPageSetupDialogData
object.

 fitThisSizeToPaper(This, ImageSize)

 Set the user scale and device origin of the wxDC associated with this wxPrintout
so that the given image size fits entirely within the paper and the origin is at the top
left corner of the paper.

 getDC(This)

 Returns the device context associated with the printout (given to the printout at start
of printing or previewing).

 getLogicalPageMarginsRect(This, PageSetupData)

 Return the rectangle corresponding to the page margins specified by the given wxPageSetupDialogData
object in the associated wxDC's logical coordinates for the current user scale and
device origin.

 getLogicalPageRect(This)

 Return the rectangle corresponding to the page in the associated wxDC 's logical
coordinates for the current user scale and device origin.

 getLogicalPaperRect(This)

 Return the rectangle corresponding to the paper in the associated wxDC 's logical
coordinates for the current user scale and device origin.

 getPageSizeMM(This)

 Returns the size of the printer page in millimetres.

 getPageSizePixels(This)

 Returns the size of the printer page in pixels, called the page rectangle.

 getPaperRectPixels(This)

 Returns the rectangle that corresponds to the entire paper in pixels, called the paper
rectangle.

 getPPIPrinter(This)

 Returns the number of pixels per logical inch of the printer device context.

 getPPIScreen(This)

 Returns the number of pixels per logical inch of the screen device context.

 getTitle(This)

 Returns the title of the printout.

 isPreview(This)

 Returns true if the printout is currently being used for previewing.

 mapScreenSizeToDevice(This)

 Set the user scale and device origin of the wxDC associated with this wxPrintout
so that one screen pixel maps to one device pixel on the DC.

 mapScreenSizeToPage(This)

 This sets the user scale of the wxDC associated with this wxPrintout to the same
scale as mapScreenSizeToPaper/1 but sets the logical origin to the top left corner of
the page rectangle.

 mapScreenSizeToPageMargins(This, PageSetupData)

 This sets the user scale of the wxDC associated with this wxPrintout to the same
scale as mapScreenSizeToPageMargins/2 but sets the logical origin to the top left corner
of the page margins specified by the given wxPageSetupDialogData object.

 mapScreenSizeToPaper(This)

 Set the user scale and device origin of the wxDC associated with this wxPrintout
so that the printed page matches the screen size as closely as possible and the logical
origin is in the top left corner of the paper rectangle.

 new(Title, OnPrintPage)

 Equivalent to new/3.

 new(Title, OnPrintPage, Opts)

 Constructor.

 offsetLogicalOrigin(This, Xoff, Yoff)

 Shift the device origin by an amount specified in logical coordinates.

 setLogicalOrigin(This, X, Y)

 Set the device origin of the associated wxDC so that the current logical point
becomes the new logical origin.

 Types

 wxPrintout()

 -type wxPrintout() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxPrintout()) -> ok.

Destroys the object

 fitThisSizeToPage(This, ImageSize)

 -spec fitThisSizeToPage(This, ImageSize) -> ok
 when This :: wxPrintout(), ImageSize :: {W :: integer(), H :: integer()}.

Set the user scale and device origin of the wxDC associated with this wxPrintout
so that the given image size fits entirely within the page rectangle and the origin is at
the top left corner of the page rectangle.
On MSW and Mac, the page rectangle is the printable area of the page. On other platforms
and PostScript printing, the page rectangle is the entire paper.
Use this if you want your printed image as large as possible, but with the caveat that on
some platforms, portions of the image might be cut off at the edges.

 fitThisSizeToPageMargins(This, ImageSize, PageSetupData)

 -spec fitThisSizeToPageMargins(This, ImageSize, PageSetupData) -> ok
 when
 This :: wxPrintout(),
 ImageSize :: {W :: integer(), H :: integer()},
 PageSetupData :: wxPageSetupDialogData:wxPageSetupDialogData().

Set the user scale and device origin of the wxDC associated with this wxPrintout
so that the given image size fits entirely within the page margins set in the given wxPageSetupDialogData
object.
This function provides the greatest consistency across all platforms because it does not
depend on having access to the printable area of the paper.
Remark: On Mac, the native wxPageSetupDialog does not let you set the page margins;
you'll have to provide your own mechanism, or you can use the Mac-only class
wxMacPageMarginsDialog.

 fitThisSizeToPaper(This, ImageSize)

 -spec fitThisSizeToPaper(This, ImageSize) -> ok
 when This :: wxPrintout(), ImageSize :: {W :: integer(), H :: integer()}.

Set the user scale and device origin of the wxDC associated with this wxPrintout
so that the given image size fits entirely within the paper and the origin is at the top
left corner of the paper.
Use this if you're managing your own page margins.
Note: With most printers, the region around the edges of the paper are not printable so
that the edges of the image could be cut off.

 getDC(This)

 -spec getDC(This) -> wxDC:wxDC() when This :: wxPrintout().

Returns the device context associated with the printout (given to the printout at start
of printing or previewing).
The application can use getDC/1 to obtain a device context to draw on.
This will be a wxPrinterDC (not implemented in wx) if printing under Windows or Mac, a wxPostScriptDC
if printing on other platforms, and a wxMemoryDC if previewing.

 getLogicalPageMarginsRect(This, PageSetupData)

 -spec getLogicalPageMarginsRect(This, PageSetupData) ->
 {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}
 when
 This :: wxPrintout(),
 PageSetupData :: wxPageSetupDialogData:wxPageSetupDialogData().

Return the rectangle corresponding to the page margins specified by the given wxPageSetupDialogData
object in the associated wxDC's logical coordinates for the current user scale and
device origin.
The page margins are specified with respect to the edges of the paper on all platforms.

 getLogicalPageRect(This)

 -spec getLogicalPageRect(This) -> {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}
 when This :: wxPrintout().

Return the rectangle corresponding to the page in the associated wxDC 's logical
coordinates for the current user scale and device origin.
On MSW and Mac, this will be the printable area of the paper. On other platforms and
PostScript printing, this will be the full paper rectangle.

 getLogicalPaperRect(This)

 -spec getLogicalPaperRect(This) -> {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}
 when This :: wxPrintout().

Return the rectangle corresponding to the paper in the associated wxDC 's logical
coordinates for the current user scale and device origin.

 getPageSizeMM(This)

 -spec getPageSizeMM(This) -> {W :: integer(), H :: integer()} when This :: wxPrintout().

Returns the size of the printer page in millimetres.

 getPageSizePixels(This)

 -spec getPageSizePixels(This) -> {W :: integer(), H :: integer()} when This :: wxPrintout().

Returns the size of the printer page in pixels, called the page rectangle.
The page rectangle has a top left corner at (0,0) and a bottom right corner at (w,h).
These values may not be the same as the values returned from wxDC:getSize/1;if the printout is being
used for previewing, a memory device context is used, which uses a bitmap size reflecting
the current preview zoom. The application must take this discrepancy into account if
previewing is to be supported.

 getPaperRectPixels(This)

 -spec getPaperRectPixels(This) -> {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}
 when This :: wxPrintout().

Returns the rectangle that corresponds to the entire paper in pixels, called the paper
rectangle.
This distinction between paper rectangle and page rectangle reflects the fact that most
printers cannot print all the way to the edge of the paper. The page rectangle is a
rectangle whose top left corner is at (0,0) and whose width and height are given by wxDC::GetPageSizePixels().
On MSW and Mac, the page rectangle gives the printable area of the paper, while the paper
rectangle represents the entire paper, including non-printable borders. Thus, the
rectangle returned by wxDC::GetPaperRectPixels() will have a top left corner whose
coordinates are small negative numbers and the bottom right corner will have values
somewhat larger than the width and height given by wxDC::GetPageSizePixels().
On other platforms and for PostScript printing, the paper is treated as if its entire
area were printable, so this function will return the same rectangle as the page
rectangle.

 getPPIPrinter(This)

 -spec getPPIPrinter(This) -> {W :: integer(), H :: integer()} when This :: wxPrintout().

Returns the number of pixels per logical inch of the printer device context.
Dividing the printer PPI by the screen PPI can give a suitable scaling factor for drawing
text onto the printer.
Remember to multiply this by a scaling factor to take the preview DC size into account.
Or you can just use the FitThisSizeToXXX() and MapScreenSizeToXXX routines below, which do
most of the scaling calculations for you.

 getPPIScreen(This)

 -spec getPPIScreen(This) -> {W :: integer(), H :: integer()} when This :: wxPrintout().

Returns the number of pixels per logical inch of the screen device context.
Dividing the printer PPI by the screen PPI can give a suitable scaling factor for drawing
text onto the printer.
If you are doing your own scaling, remember to multiply this by a scaling factor to take
the preview DC size into account.

 getTitle(This)

 -spec getTitle(This) -> unicode:charlist() when This :: wxPrintout().

Returns the title of the printout.

 isPreview(This)

 -spec isPreview(This) -> boolean() when This :: wxPrintout().

Returns true if the printout is currently being used for previewing.

 mapScreenSizeToDevice(This)

 -spec mapScreenSizeToDevice(This) -> ok when This :: wxPrintout().

Set the user scale and device origin of the wxDC associated with this wxPrintout
so that one screen pixel maps to one device pixel on the DC.
That is, the user scale is set to (1,1) and the device origin is set to (0,0).
Use this if you want to do your own scaling prior to calling wxDC drawing calls, for
example, if your underlying model is floating-point and you want to achieve maximum
drawing precision on high-resolution printers.
You can use the GetLogicalXXXRect() routines below to obtain the paper rectangle, page
rectangle, or page margins rectangle to perform your own scaling.
Note: While the underlying drawing model of macOS is floating-point, wxWidgets's drawing
model scales from integer coordinates.

 mapScreenSizeToPage(This)

 -spec mapScreenSizeToPage(This) -> ok when This :: wxPrintout().

This sets the user scale of the wxDC associated with this wxPrintout to the same
scale as mapScreenSizeToPaper/1 but sets the logical origin to the top left corner of
the page rectangle.

 mapScreenSizeToPageMargins(This, PageSetupData)

 -spec mapScreenSizeToPageMargins(This, PageSetupData) -> ok
 when
 This :: wxPrintout(),
 PageSetupData :: wxPageSetupDialogData:wxPageSetupDialogData().

This sets the user scale of the wxDC associated with this wxPrintout to the same
scale as mapScreenSizeToPageMargins/2 but sets the logical origin to the top left corner
of the page margins specified by the given wxPageSetupDialogData object.

 mapScreenSizeToPaper(This)

 -spec mapScreenSizeToPaper(This) -> ok when This :: wxPrintout().

Set the user scale and device origin of the wxDC associated with this wxPrintout
so that the printed page matches the screen size as closely as possible and the logical
origin is in the top left corner of the paper rectangle.
That is, a 100-pixel object on screen should appear at the same size on the printed page.
(It will, of course, be larger or smaller in the preview image, depending on the zoom factor.)
Use this if you want WYSIWYG behaviour, e.g., in a text editor.

 new(Title, OnPrintPage)

 -spec new(Title :: string(), OnPrintPage :: function()) -> wxPrintout:wxPrintout().

Equivalent to new/3.

 new(Title, OnPrintPage, Opts)

 -spec new(Title :: string(), OnPrintPage, [Option]) -> wxPrintout:wxPrintout()
 when
 OnPrintPage :: fun((wxPrintout(), Page :: integer()) -> boolean()),
 Option ::
 {onPreparePrinting, fun((wxPrintout()) -> ok)} |
 {onBeginPrinting, fun((wxPrintout()) -> ok)} |
 {onEndPrinting, fun((wxPrintout()) -> ok)} |
 {onBeginDocument,
 fun((wxPrintout(), StartPage :: integer(), EndPage :: integer()) -> boolean())} |
 {onEndDocument, fun((wxPrintout()) -> ok)} |
 {hasPage, fun((wxPrintout(), Page :: integer()) -> ok)} |
 {getPageInfo,
 fun((wxPrintout()) ->
 {MinPage :: integer(),
 MaxPage :: integer(),
 PageFrom :: integer(),
 PageTo :: integer()})}.

Constructor.
Creates a wxPrintout object with a callback fun and optionally other
callback funs. The This argument is the wxPrintout object reference to
this object
Notice: The callbacks may not call other processes.

 offsetLogicalOrigin(This, Xoff, Yoff)

 -spec offsetLogicalOrigin(This, Xoff, Yoff) -> ok
 when This :: wxPrintout(), Xoff :: integer(), Yoff :: integer().

Shift the device origin by an amount specified in logical coordinates.

 setLogicalOrigin(This, X, Y)

 -spec setLogicalOrigin(This, X, Y) -> ok when This :: wxPrintout(), X :: integer(), Y :: integer().

Set the device origin of the associated wxDC so that the current logical point
becomes the new logical origin.

wxProgressDialog

If supported by the platform this class will provide the platform's native progress
dialog, else it will simply be the wxGenericProgressDialog (not implemented in wx).
This class is derived, and can use functions, from:
	wxDialog

	wxTopLevelWindow

	wxWindow

	wxEvtHandler

wxWidgets docs: wxProgressDialog

 Summary

 Types

 wxProgressDialog()

 Functions

 destroy(This)

 Destroys the object

 new(Title, Message)

 Equivalent to new(Title, Message, []).

 new(Title, Message, Options)

 resume(This)

 Can be used to continue with the dialog, after the user had clicked the "Abort" button.

 update(This, Value)

 Equivalent to update(This, Value, []).

 update/3

 Updates the dialog, setting the progress bar to the new value and updating the message if
new one is specified.

 Types

 wxProgressDialog()

 -type wxProgressDialog() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxProgressDialog()) -> ok.

Destroys the object

 new(Title, Message)

 -spec new(Title, Message) -> wxProgressDialog()
 when Title :: unicode:chardata(), Message :: unicode:chardata().

Equivalent to new(Title, Message, []).

 new(Title, Message, Options)

 -spec new(Title, Message, [Option]) -> wxProgressDialog()
 when
 Title :: unicode:chardata(),
 Message :: unicode:chardata(),
 Option :: {maximum, integer()} | {parent, wxWindow:wxWindow()} | {style, integer()}.

 resume(This)

 -spec resume(This) -> ok when This :: wxProgressDialog().

Can be used to continue with the dialog, after the user had clicked the "Abort" button.

 update(This, Value)

 -spec update(This, Value) -> boolean() when This :: wxProgressDialog(), Value :: integer().

Equivalent to update(This, Value, []).

 update/3

 -spec update(This, Value, [Option]) -> boolean()
 when
 This :: wxProgressDialog(),
 Value :: integer(),
 Option :: {newmsg, unicode:chardata()}.

Updates the dialog, setting the progress bar to the new value and updating the message if
new one is specified.
Returns true unless the "Cancel" button has been pressed.
If false is returned, the application can either immediately destroy the dialog or ask
the user for the confirmation and if the abort is not confirmed the dialog may be resumed
with resume/1 function.
If value is the maximum value for the dialog, the behaviour of the function depends on
whether wxPD_AUTO_HIDE was used when the dialog was created. If it was, the dialog is
hidden and the function returns immediately. If it was not, the dialog becomes a modal
dialog and waits for the user to dismiss it, meaning that this function does not return
until this happens.
Notice that if newmsg is longer than the currently shown message, the dialog will be
automatically made wider to account for it. However if the new message is shorter than the
previous one, the dialog doesn't shrink back to avoid constant resizes if the message is
changed often. To do this and fit the dialog to its current contents you may call wxWindow:fit/1
explicitly. However the native MSW implementation of this class does make the dialog
shorter if the new text has fewer lines of text than the old one, so it is recommended to
keep the number of lines of text constant in order to avoid jarring dialog size changes.
You may also want to make the initial message, specified when creating the dialog, wide
enough to avoid having to resize the dialog later, e.g. by appending a long string of
unbreakable spaces (wxString (not implemented in wx)(L'\u00a0', 100)) to it.

wxQueryNewPaletteEvent

Functions for wxQueryNewPaletteEvent class
This class is derived, and can use functions, from:
	wxEvent

wxWidgets docs: wxQueryNewPaletteEvent

 Summary

 Types

 wxQueryNewPalette()

 wxQueryNewPaletteEvent()

 wxQueryNewPaletteEventType()

 Functions

 getPaletteRealized(This)

 setPaletteRealized(This, Realized)

 Types

 wxQueryNewPalette()

 -type wxQueryNewPalette() ::
 #wxQueryNewPalette{type :: wxQueryNewPaletteEvent:wxQueryNewPaletteEventType()}.

 wxQueryNewPaletteEvent()

 -type wxQueryNewPaletteEvent() :: wx:wx_object().

 wxQueryNewPaletteEventType()

 -type wxQueryNewPaletteEventType() :: query_new_palette.

 Functions

 getPaletteRealized(This)

 -spec getPaletteRealized(This) -> boolean() when This :: wxQueryNewPaletteEvent().

 setPaletteRealized(This, Realized)

 -spec setPaletteRealized(This, Realized) -> ok
 when This :: wxQueryNewPaletteEvent(), Realized :: boolean().

wxRadioBox

A radio box item is used to select one of number of mutually exclusive choices.
It is displayed as a vertical column or horizontal row of labelled buttons.
Styles
This class supports the following styles:
	wxRA_SPECIFY_ROWS: The major dimension parameter refers to the maximum number of rows.

	wxRA_SPECIFY_COLS: The major dimension parameter refers to the maximum number of columns.

See:
	Overview events

	wxRadioButton

	wxCheckBox

This class is derived, and can use functions, from:
	wxControl

	wxWindow

	wxEvtHandler

wxWidgets docs: wxRadioBox
Events
Event types emitted from this class:
	command_radiobox_selected

 Summary

 Types

 wxRadioBox()

 Functions

 create(This, Parent, Id, Label, Pos, Size, Choices)

 Equivalent to create(This, Parent, Id, Label, Pos, Size, Choices, []).

 create/8

 Creates the radiobox for two-step construction.

 destroy(This)

 Destroys the object

 enable(This)

 Equivalent to enable(This, []).

 enable/2

 Enables or disables the radiobox.

 enable/3

 Enables or disables an individual button in the radiobox.

 getColumnCount(This)

 Returns the number of columns in the radiobox.

 getItemFromPoint(This, Pt)

 Returns a radio box item under the point, a zero-based item index, or wxNOT_FOUND if
no item is under the point.

 getItemHelpText(This, Item)

 Returns the helptext associated with the specified item if any or wxEmptyString.

 getItemToolTip(This, Item)

 Returns the tooltip associated with the specified item if any or NULL.

 getRowCount(This)

 Returns the number of rows in the radiobox.

 getSelection(This)

 Returns the index of the selected item or wxNOT_FOUND if no item is selected.

 getString(This, N)

 Returns the label of the item with the given index.

 isItemEnabled(This, N)

 Returns true if the item is enabled or false if it was disabled using enable/3.

 isItemShown(This, N)

 Returns true if the item is currently shown or false if it was hidden using show/3.

 new(Parent, Id, Label, Pos, Size, Choices)

 Equivalent to new(Parent, Id, Label, Pos, Size, Choices, []).

 new/7

 Constructor, creating and showing a radiobox.

 setItemHelpText(This, Item, Helptext)

 Sets the helptext for an item.

 setItemToolTip(This, Item, Text)

 Sets the tooltip text for the specified item in the radio group.

 setSelection(This, N)

 Sets the selection to the given item.

 show(This, Item)

 Equivalent to show(This, Item, []).

 show/3

 Shows or hides individual buttons.

 Types

 wxRadioBox()

 -type wxRadioBox() :: wx:wx_object().

 Functions

 create(This, Parent, Id, Label, Pos, Size, Choices)

 -spec create(This, Parent, Id, Label, Pos, Size, Choices) -> boolean()
 when
 This :: wxRadioBox(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Label :: unicode:chardata(),
 Pos :: {X :: integer(), Y :: integer()},
 Size :: {W :: integer(), H :: integer()},
 Choices :: [unicode:chardata()].

Equivalent to create(This, Parent, Id, Label, Pos, Size, Choices, []).

 create/8

 -spec create(This, Parent, Id, Label, Pos, Size, Choices, [Option]) -> boolean()
 when
 This :: wxRadioBox(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Label :: unicode:chardata(),
 Pos :: {X :: integer(), Y :: integer()},
 Size :: {W :: integer(), H :: integer()},
 Choices :: [unicode:chardata()],
 Option :: {majorDim, integer()} | {style, integer()} | {val, wx:wx_object()}.

Creates the radiobox for two-step construction.
See new/7 for further details.

 destroy(This)

 -spec destroy(This :: wxRadioBox()) -> ok.

Destroys the object

 enable(This)

 -spec enable(This) -> boolean() when This :: wxRadioBox().

Equivalent to enable(This, []).

 enable/2

 -spec enable(This, N) -> boolean() when This :: wxRadioBox(), N :: integer();
 (This, [Option]) -> boolean() when This :: wxRadioBox(), Option :: {enable, boolean()}.

Enables or disables the radiobox.
See: wxWindow:enable/2

 enable/3

 -spec enable(This, N, [Option]) -> boolean()
 when This :: wxRadioBox(), N :: integer(), Option :: {enable, boolean()}.

Enables or disables an individual button in the radiobox.
See: wxWindow:enable/2

 getColumnCount(This)

 -spec getColumnCount(This) -> integer() when This :: wxRadioBox().

Returns the number of columns in the radiobox.

 getItemFromPoint(This, Pt)

 -spec getItemFromPoint(This, Pt) -> integer()
 when This :: wxRadioBox(), Pt :: {X :: integer(), Y :: integer()}.

Returns a radio box item under the point, a zero-based item index, or wxNOT_FOUND if
no item is under the point.

 getItemHelpText(This, Item)

 -spec getItemHelpText(This, Item) -> unicode:charlist() when This :: wxRadioBox(), Item :: integer().

Returns the helptext associated with the specified item if any or wxEmptyString.
See: setItemHelpText/3

 getItemToolTip(This, Item)

 -spec getItemToolTip(This, Item) -> wxToolTip:wxToolTip() when This :: wxRadioBox(), Item :: integer().

Returns the tooltip associated with the specified item if any or NULL.
See:
	setItemToolTip/3

	wxWindow:getToolTip/1

 getRowCount(This)

 -spec getRowCount(This) -> integer() when This :: wxRadioBox().

Returns the number of rows in the radiobox.

 getSelection(This)

 -spec getSelection(This) -> integer() when This :: wxRadioBox().

Returns the index of the selected item or wxNOT_FOUND if no item is selected.
Return: The position of the current selection.
Remark: This method can be used with single selection list boxes only, you should use wxListBox:getSelections/1
for the list boxes with wxLB_MULTIPLE style.
See:
	setSelection/2

	wxControlWithItems:getStringSelection/1

 getString(This, N)

 -spec getString(This, N) -> unicode:charlist() when This :: wxRadioBox(), N :: integer().

Returns the label of the item with the given index.
Return: The label of the item or an empty string if the position was invalid.

 isItemEnabled(This, N)

 -spec isItemEnabled(This, N) -> boolean() when This :: wxRadioBox(), N :: integer().

Returns true if the item is enabled or false if it was disabled using enable/3.
This function is currently only implemented in wxMSW, wxGTK, wxQT and wxUniversal and
always returns true in the other ports.

 isItemShown(This, N)

 -spec isItemShown(This, N) -> boolean() when This :: wxRadioBox(), N :: integer().

Returns true if the item is currently shown or false if it was hidden using show/3.
Note that this function returns true for an item which hadn't been hidden even if the
entire radiobox is not currently shown.
This function is currently only implemented in wxMSW, wxGTK, wxQT and wxUniversal and
always returns true in the other ports.

 new(Parent, Id, Label, Pos, Size, Choices)

 -spec new(Parent, Id, Label, Pos, Size, Choices) -> wxRadioBox()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Label :: unicode:chardata(),
 Pos :: {X :: integer(), Y :: integer()},
 Size :: {W :: integer(), H :: integer()},
 Choices :: [unicode:chardata()].

Equivalent to new(Parent, Id, Label, Pos, Size, Choices, []).

 new/7

 -spec new(Parent, Id, Label, Pos, Size, Choices, [Option]) -> wxRadioBox()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Label :: unicode:chardata(),
 Pos :: {X :: integer(), Y :: integer()},
 Size :: {W :: integer(), H :: integer()},
 Choices :: [unicode:chardata()],
 Option :: {majorDim, integer()} | {style, integer()} | {val, wx:wx_object()}.

Constructor, creating and showing a radiobox.
See: create/8

 setItemHelpText(This, Item, Helptext)

 -spec setItemHelpText(This, Item, Helptext) -> ok
 when This :: wxRadioBox(), Item :: integer(), Helptext :: unicode:chardata().

Sets the helptext for an item.
Empty string erases any existing helptext.
See: getItemHelpText/2

 setItemToolTip(This, Item, Text)

 -spec setItemToolTip(This, Item, Text) -> ok
 when This :: wxRadioBox(), Item :: integer(), Text :: unicode:chardata().

Sets the tooltip text for the specified item in the radio group.
This function is currently only implemented in wxMSW and wxGTK2 and does nothing in the
other ports.
See:
	getItemToolTip/2

	wxWindow:setToolTip/2

 setSelection(This, N)

 -spec setSelection(This, N) -> ok when This :: wxRadioBox(), N :: integer().

Sets the selection to the given item.
Notice that a radio box always has selection, so n must be valid here and passing wxNOT_FOUND
is not allowed.

 show(This, Item)

 -spec show(This, Item) -> boolean() when This :: wxRadioBox(), Item :: integer().

Equivalent to show(This, Item, []).

 show/3

 -spec show(This, Item, [Option]) -> boolean()
 when This :: wxRadioBox(), Item :: integer(), Option :: {show, boolean()}.

Shows or hides individual buttons.
Return: true if the item has been shown or hidden or false if nothing was done because it
already was in the requested state.
See: show/3

wxRadioButton

A radio button item is a button which usually denotes one of several mutually exclusive
options.
It has a text label next to a (usually) round button.
You can create a group of mutually-exclusive radio buttons by specifying wxRB_GROUP for
the first in the group. The group ends when another radio button group is created, or
there are no more radio buttons.
Styles
This class supports the following styles:
	wxRB_GROUP: Marks the beginning of a new group of radio buttons.

	wxRB_SINGLE: In some circumstances, radio buttons that are not consecutive siblings
trigger a hang bug in Windows (only). If this happens, add this style to mark the button
as not belonging to a group, and implement the mutually-exclusive group behaviour
yourself.

See:
	Overview events

	wxRadioBox

	wxCheckBox

This class is derived, and can use functions, from:
	wxControl

	wxWindow

	wxEvtHandler

wxWidgets docs: wxRadioButton
Events
Event types emitted from this class:
	command_radiobutton_selected

 Summary

 Types

 wxRadioButton()

 Functions

 create(This, Parent, Id, Label)

 Equivalent to create(This, Parent, Id, Label, []).

 create/5

 Creates the choice for two-step construction.

 destroy(This)

 Destroys the object

 getValue(This)

 Returns true if the radio button is checked, false otherwise.

 new()

 Default constructor.

 new(Parent, Id, Label)

 Equivalent to new(Parent, Id, Label, []).

 new/4

 Constructor, creating and showing a radio button.

 setValue(This, Value)

 Sets the radio button to checked or unchecked status.

 Types

 wxRadioButton()

 -type wxRadioButton() :: wx:wx_object().

 Functions

 create(This, Parent, Id, Label)

 -spec create(This, Parent, Id, Label) -> boolean()
 when
 This :: wxRadioButton(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Label :: unicode:chardata().

Equivalent to create(This, Parent, Id, Label, []).

 create/5

 -spec create(This, Parent, Id, Label, [Option]) -> boolean()
 when
 This :: wxRadioButton(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Label :: unicode:chardata(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Creates the choice for two-step construction.
See new/4 for further details.

 destroy(This)

 -spec destroy(This :: wxRadioButton()) -> ok.

Destroys the object

 getValue(This)

 -spec getValue(This) -> boolean() when This :: wxRadioButton().

Returns true if the radio button is checked, false otherwise.

 new()

 -spec new() -> wxRadioButton().

Default constructor.
See: create/5

 new(Parent, Id, Label)

 -spec new(Parent, Id, Label) -> wxRadioButton()
 when Parent :: wxWindow:wxWindow(), Id :: integer(), Label :: unicode:chardata().

Equivalent to new(Parent, Id, Label, []).

 new/4

 -spec new(Parent, Id, Label, [Option]) -> wxRadioButton()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Label :: unicode:chardata(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Constructor, creating and showing a radio button.
See: create/5

 setValue(This, Value)

 -spec setValue(This, Value) -> ok when This :: wxRadioButton(), Value :: boolean().

Sets the radio button to checked or unchecked status.
This does not cause a wxEVT_RADIOBUTTON event to get emitted.
If the radio button belongs to a radio group exactly one button in the group may be
checked and so this method can be only called with value set to true. To uncheck a radio
button in a group you must check another button in the same group.
Note: Under MSW, the focused radio button is always selected, i.e. its value is true.
And, conversely, calling SetValue(true) will also set focus to the radio button if the
focus had previously been on another radio button in the same group - as otherwise setting
it on wouldn't work.

wxRegion

A wxRegion represents a simple or complex region on a device context or window.
This class uses reference counting and copy-on-write internally so that assignments
between two instances of this class are very cheap. You can therefore use actual objects
instead of pointers without efficiency problems. If an instance of this class is changed
it will create its own data internally so that other instances, which previously shared
the data using the reference counting, are not affected.
Predefined objects (include wx.hrl):
	?wxNullRegion

wxWidgets docs: wxRegion

 Summary

 Types

 wxRegion()

 Functions

 clear(This)

 Clears the current region.

 contains/2

 Returns a value indicating whether the given rectangle is contained within the region.

 contains(This, X, Y)

 Returns a value indicating whether the given point is contained within the region.

 contains(This, X, Y, Width, Height)

 Returns a value indicating whether the given rectangle is contained within the region.

 convertToBitmap(This)

 Convert the region to a black and white bitmap with the white pixels being inside the
region.

 destroy(This)

 Destroys the object

 getBox(This)

 intersect/2

 Finds the intersection of this region and another region.

 intersect(This, X, Y, Width, Height)

 Finds the intersection of this region and another, rectangular region, specified using
position and size.

 isEmpty(This)

 Returns true if the region is empty, false otherwise.

 new()

 Default constructor.

 new/1

 Constructs a region using a bitmap.

 new(TopLeft, BottomRight)

 Constructs a rectangular region from the top left point and the bottom right point.

 new(X, Y, Width, Height)

 Constructs a rectangular region with the given position and size.

 offset(This, Pt)

 offset(This, X, Y)

 Moves the region by the specified offsets in horizontal and vertical directions.

 subtract/2

 Subtracts a region from this region.

 union/2

 Finds the union of this region and another, rectangular region.

 union(This, Bmp, TransColour)

 Equivalent to union(This, Bmp, TransColour, []).

 union/4

 Finds the union of this region and the non-transparent pixels of a bitmap.

 union(This, X, Y, Width, Height)

 Finds the union of this region and another, rectangular region, specified using position
and size.

 'Xor'/2

 Finds the Xor of this region and another region.

 'Xor'(This, X, Y, Width, Height)

 Finds the Xor of this region and another, rectangular region, specified using position
and size.

 Types

 wxRegion()

 -type wxRegion() :: wx:wx_object().

 Functions

 clear(This)

 -spec clear(This) -> ok when This :: wxRegion().

Clears the current region.
The object becomes invalid, or null, after being cleared.

 contains/2

 -spec contains(This, Pt) -> wx:wx_enum() when This :: wxRegion(), Pt :: {X :: integer(), Y :: integer()};
 (This, Rect) -> wx:wx_enum()
 when
 This :: wxRegion(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}.

Returns a value indicating whether the given rectangle is contained within the region.
This method always returns wxOutRegion for an invalid region but may, nevertheless, be
safely called in this case.
Return: One of ?wxOutRegion, ?wxPartRegion or ?wxInRegion.
Note: On Windows, only ?wxOutRegion and ?wxInRegion are returned; a value ?wxInRegion
then indicates that all or some part of the region is contained in this region.

 contains(This, X, Y)

 -spec contains(This, X, Y) -> wx:wx_enum() when This :: wxRegion(), X :: integer(), Y :: integer().

Returns a value indicating whether the given point is contained within the region.
This method always returns wxOutRegion for an invalid region but may, nevertheless, be
safely called in this case.
Return: The return value is one of wxOutRegion and wxInRegion.

 contains(This, X, Y, Width, Height)

 -spec contains(This, X, Y, Width, Height) -> wx:wx_enum()
 when
 This :: wxRegion(),
 X :: integer(),
 Y :: integer(),
 Width :: integer(),
 Height :: integer().

Returns a value indicating whether the given rectangle is contained within the region.
This method always returns wxOutRegion for an invalid region but may, nevertheless, be
safely called in this case.
Return: One of ?wxOutRegion, ?wxPartRegion or ?wxInRegion.
Note: On Windows, only ?wxOutRegion and ?wxInRegion are returned; a value ?wxInRegion
then indicates that all or some part of the region is contained in this region.

 convertToBitmap(This)

 -spec convertToBitmap(This) -> wxBitmap:wxBitmap() when This :: wxRegion().

Convert the region to a black and white bitmap with the white pixels being inside the
region.
This method can't be used for invalid region.

 destroy(This)

 -spec destroy(This :: wxRegion()) -> ok.

Destroys the object

 getBox(This)

 -spec getBox(This) -> {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}
 when This :: wxRegion().

 intersect/2

 -spec intersect(This, Rect) -> boolean()
 when
 This :: wxRegion(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()};
 (This, Region) -> boolean() when This :: wxRegion(), Region :: wxRegion().

Finds the intersection of this region and another region.
This method always fails, i.e. returns false, if this region is invalid but may
nevertheless be safely used even in this case.
Return: true if successful, false otherwise.
Remark: Creates the intersection of the two regions, that is, the parts which are in both
regions. The result is stored in this region.

 intersect(This, X, Y, Width, Height)

 -spec intersect(This, X, Y, Width, Height) -> boolean()
 when
 This :: wxRegion(),
 X :: integer(),
 Y :: integer(),
 Width :: integer(),
 Height :: integer().

Finds the intersection of this region and another, rectangular region, specified using
position and size.
This method always fails, i.e. returns false, if this region is invalid but may
nevertheless be safely used even in this case.
Return: true if successful, false otherwise.
Remark: Creates the intersection of the two regions, that is, the parts which are in both
regions. The result is stored in this region.

 isEmpty(This)

 -spec isEmpty(This) -> boolean() when This :: wxRegion().

Returns true if the region is empty, false otherwise.
Always returns true if the region is invalid.

 new()

 -spec new() -> wxRegion().

Default constructor.
This constructor creates an invalid, or null, object, i.e. calling IsOk() on it returns
false and isEmpty/1 returns true.

 new/1

 -spec new(Rect) -> wxRegion()
 when Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()};
 (Bmp) -> wxRegion() when Bmp :: wxBitmap:wxBitmap().

Constructs a region using a bitmap.
See union/5 for more details.

 new(TopLeft, BottomRight)

 -spec new(TopLeft, BottomRight) -> wxRegion()
 when
 TopLeft :: {X :: integer(), Y :: integer()},
 BottomRight :: {X :: integer(), Y :: integer()}.

Constructs a rectangular region from the top left point and the bottom right point.

 new(X, Y, Width, Height)

 -spec new(X, Y, Width, Height) -> wxRegion()
 when X :: integer(), Y :: integer(), Width :: integer(), Height :: integer().

Constructs a rectangular region with the given position and size.

 offset(This, Pt)

 -spec offset(This, Pt) -> boolean() when This :: wxRegion(), Pt :: {X :: integer(), Y :: integer()}.

 offset(This, X, Y)

 -spec offset(This, X, Y) -> boolean() when This :: wxRegion(), X :: integer(), Y :: integer().

Moves the region by the specified offsets in horizontal and vertical directions.
This method can't be called if the region is invalid as it doesn't make sense to offset
it then. Attempts to do it will result in assert failure.
Return: true if successful, false otherwise (the region is unchanged then).

 subtract/2

 -spec subtract(This, Rect) -> boolean()
 when
 This :: wxRegion(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()};
 (This, Region) -> boolean() when This :: wxRegion(), Region :: wxRegion().

Subtracts a region from this region.
This method always fails, i.e. returns false, if this region is invalid but may
nevertheless be safely used even in this case.
Return: true if successful, false otherwise.
Remark: This operation combines the parts of 'this' region that are not part of the
second region. The result is stored in this region.

 union/2

 -spec union(This, Region) -> boolean()
 when This :: wxRegion(), Region :: wxRegion:wxRegion() | wxBitmap:wxBitmap();
 (This, Rect) -> boolean()
 when
 This :: wxRegion(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}.

Finds the union of this region and another, rectangular region.
This method can be used even if this region is invalid and has the natural behaviour in
this case, i.e. makes this region equal to the given rectangle.
Return: true if successful, false otherwise.
Remark: This operation creates a region that combines all of this region and the second
region. The result is stored in this region.

 union(This, Bmp, TransColour)

 -spec union(This, Bmp, TransColour) -> boolean()
 when This :: wxRegion(), Bmp :: wxBitmap:wxBitmap(), TransColour :: wx:wx_colour().

Equivalent to union(This, Bmp, TransColour, []).

 union/4

 -spec union(This, Bmp, TransColour, [Option]) -> boolean()
 when
 This :: wxRegion(),
 Bmp :: wxBitmap:wxBitmap(),
 TransColour :: wx:wx_colour(),
 Option :: {tolerance, integer()}.

Finds the union of this region and the non-transparent pixels of a bitmap.
Colour to be treated as transparent is specified in the transColour argument, along
with an optional colour tolerance value.
Return: true if successful, false otherwise.
Remark: This operation creates a region that combines all of this region and the second
region. The result is stored in this region.

 union(This, X, Y, Width, Height)

 -spec union(This, X, Y, Width, Height) -> boolean()
 when
 This :: wxRegion(),
 X :: integer(),
 Y :: integer(),
 Width :: integer(),
 Height :: integer().

Finds the union of this region and another, rectangular region, specified using position
and size.
This method can be used even if this region is invalid and has the natural behaviour in
this case, i.e. makes this region equal to the given rectangle.
Return: true if successful, false otherwise.
Remark: This operation creates a region that combines all of this region and the second
region. The result is stored in this region.

 'Xor'/2

 -spec 'Xor'(This, Rect) -> boolean()
 when
 This :: wxRegion(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()};
 (This, Region) -> boolean() when This :: wxRegion(), Region :: wxRegion().

Finds the Xor of this region and another region.
This method can be used even if this region is invalid and has the natural behaviour in
this case, i.e. makes this region equal to the given region.
Return: true if successful, false otherwise.
Remark: This operation creates a region that combines all of this region and the second
region, except for any overlapping areas. The result is stored in this region.

 'Xor'(This, X, Y, Width, Height)

 -spec 'Xor'(This, X, Y, Width, Height) -> boolean()
 when
 This :: wxRegion(),
 X :: integer(),
 Y :: integer(),
 Width :: integer(),
 Height :: integer().

Finds the Xor of this region and another, rectangular region, specified using position
and size.
This method can be used even if this region is invalid and has the natural behaviour in
this case, i.e. makes this region equal to the given rectangle.
Return: true if successful, false otherwise.
Remark: This operation creates a region that combines all of this region and the second
region, except for any overlapping areas. The result is stored in this region.

wxSashEvent

A sash event is sent when the sash of a wxSashWindow has been dragged by the user.
Remark: When a sash belonging to a sash window is dragged by the user, and then released,
this event is sent to the window, where it may be processed by an event table entry in a
derived class, a plug-in event handler or an ancestor class. Note that the wxSashWindow
doesn't change the window's size itself. It relies on the application's event handler to
do that. This is because the application may have to handle other consequences of the
resize, or it may wish to veto it altogether. The event handler should look at the drag
rectangle: see getDragRect/1 to see what the new size of the window would be if the resize were to be
applied. It should also call getDragStatus/1 to see whether the drag was OK or out of the current allowed range.
See:
	wxSashWindow

	Overview events

This class is derived, and can use functions, from:
	wxCommandEvent

	wxEvent

wxWidgets docs: wxSashEvent
Events
Use wxEvtHandler:connect/3 with wxSashEventType to subscribe to events of this type.

 Summary

 Types

 wxSash()

 wxSashEvent()

 wxSashEventType()

 Functions

 getDragRect(This)

 Returns the rectangle representing the new size the window would be if the resize was
applied.

 getDragStatus(This)

 Returns the status of the sash: one of wxSASH_STATUS_OK,
wxSASH_STATUS_OUT_OF_RANGE.

 getEdge(This)

 Returns the dragged edge.

 Types

 wxSash()

 -type wxSash() ::
 #wxSash{type :: wxSashEvent:wxSashEventType(),
 edge :: wx:wx_enum(),
 dragRect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()},
 dragStatus :: wx:wx_enum()}.

 wxSashEvent()

 -type wxSashEvent() :: wx:wx_object().

 wxSashEventType()

 -type wxSashEventType() :: sash_dragged.

 Functions

 getDragRect(This)

 -spec getDragRect(This) -> {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}
 when This :: wxSashEvent().

Returns the rectangle representing the new size the window would be if the resize was
applied.
It is up to the application to set the window size if required.

 getDragStatus(This)

 -spec getDragStatus(This) -> wx:wx_enum() when This :: wxSashEvent().

Returns the status of the sash: one of wxSASH_STATUS_OK,
wxSASH_STATUS_OUT_OF_RANGE.
If the drag caused the notional bounding box of the window to flip over, for example, the
drag will be out of rage.

 getEdge(This)

 -spec getEdge(This) -> wx:wx_enum() when This :: wxSashEvent().

Returns the dragged edge.
The return value is one of wxSASH_TOP, wxSASH_RIGHT, wxSASH_BOTTOM, wxSASH_LEFT.

wxSashLayoutWindow

wxSashLayoutWindow responds to OnCalculateLayout events generated by wxLayoutAlgorithm.
It allows the application to use simple accessors to specify how the window should be
laid out, rather than having to respond to events.
The fact that the class derives from wxSashWindow allows sashes to be used if
required, to allow the windows to be user-resizable.
The documentation for wxLayoutAlgorithm explains the purpose of this class in more detail.
For the window styles see wxSashWindow.
This class handles the EVT_QUERY_LAYOUT_INFO and EVT_CALCULATE_LAYOUT events for you.
However, if you use sashes, see wxSashWindow for relevant event information. See also wxLayoutAlgorithm
for information about the layout events.
See:
	wxLayoutAlgorithm

	wxSashWindow

	Overview events

This class is derived, and can use functions, from:
	wxSashWindow

	wxWindow

	wxEvtHandler

wxWidgets docs: wxSashLayoutWindow

 Summary

 Types

 wxSashLayoutWindow()

 Functions

 create(This, Parent)

 Equivalent to create(This, Parent, []).

 create/3

 Initializes a sash layout window, which can be a child of a frame, dialog or any other
non-control window.

 destroy(This)

 Destroys the object

 getAlignment(This)

 Returns the alignment of the window: one of wxLAYOUT_TOP, wxLAYOUT_LEFT,
wxLAYOUT_RIGHT, wxLAYOUT_BOTTOM.

 getOrientation(This)

 Returns the orientation of the window: one of wxLAYOUT_HORIZONTAL, wxLAYOUT_VERTICAL.

 new()

 Default ctor.

 new(Parent)

 Equivalent to new(Parent, []).

 new/2

 Constructs a sash layout window, which can be a child of a frame, dialog or any other
non-control window.

 setAlignment(This, Alignment)

 Sets the alignment of the window (which edge of the available parent client area the
window is attached to).

 setDefaultSize(This, Size)

 Sets the default dimensions of the window.

 setOrientation(This, Orientation)

 Sets the orientation of the window (the direction the window will stretch in, to fill the
available parent client area).

 Types

 wxSashLayoutWindow()

 -type wxSashLayoutWindow() :: wx:wx_object().

 Functions

 create(This, Parent)

 -spec create(This, Parent) -> boolean() when This :: wxSashLayoutWindow(), Parent :: wxWindow:wxWindow().

Equivalent to create(This, Parent, []).

 create/3

 -spec create(This, Parent, [Option]) -> boolean()
 when
 This :: wxSashLayoutWindow(),
 Parent :: wxWindow:wxWindow(),
 Option ::
 {id, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Initializes a sash layout window, which can be a child of a frame, dialog or any other
non-control window.

 destroy(This)

 -spec destroy(This :: wxSashLayoutWindow()) -> ok.

Destroys the object

 getAlignment(This)

 -spec getAlignment(This) -> wx:wx_enum() when This :: wxSashLayoutWindow().

Returns the alignment of the window: one of wxLAYOUT_TOP, wxLAYOUT_LEFT,
wxLAYOUT_RIGHT, wxLAYOUT_BOTTOM.

 getOrientation(This)

 -spec getOrientation(This) -> wx:wx_enum() when This :: wxSashLayoutWindow().

Returns the orientation of the window: one of wxLAYOUT_HORIZONTAL, wxLAYOUT_VERTICAL.

 new()

 -spec new() -> wxSashLayoutWindow().

Default ctor.

 new(Parent)

 -spec new(Parent) -> wxSashLayoutWindow() when Parent :: wxWindow:wxWindow().

Equivalent to new(Parent, []).

 new/2

 -spec new(Parent, [Option]) -> wxSashLayoutWindow()
 when
 Parent :: wxWindow:wxWindow(),
 Option ::
 {id, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Constructs a sash layout window, which can be a child of a frame, dialog or any other
non-control window.

 setAlignment(This, Alignment)

 -spec setAlignment(This, Alignment) -> ok when This :: wxSashLayoutWindow(), Alignment :: wx:wx_enum().

Sets the alignment of the window (which edge of the available parent client area the
window is attached to).
alignment is one of wxLAYOUT_TOP, wxLAYOUT_LEFT, wxLAYOUT_RIGHT, wxLAYOUT_BOTTOM.

 setDefaultSize(This, Size)

 -spec setDefaultSize(This, Size) -> ok
 when This :: wxSashLayoutWindow(), Size :: {W :: integer(), H :: integer()}.

Sets the default dimensions of the window.
The dimension other than the orientation will be fixed to this value, and the orientation
dimension will be ignored and the window stretched to fit the available space.

 setOrientation(This, Orientation)

 -spec setOrientation(This, Orientation) -> ok
 when This :: wxSashLayoutWindow(), Orientation :: wx:wx_enum().

Sets the orientation of the window (the direction the window will stretch in, to fill the
available parent client area).
orientation is one of wxLAYOUT_HORIZONTAL, wxLAYOUT_VERTICAL.

wxSashWindow

wxSashWindow allows any of its edges to have a sash which can be dragged to resize
the window.
The actual content window will be created by the application as a child of wxSashWindow.
The window (or an ancestor) will be notified of a drag via a wxSashEvent notification.
Styles
This class supports the following styles:
	wxSW_3D: Draws a 3D effect sash and border.

	wxSW_3DSASH: Draws a 3D effect sash.

	wxSW_3DBORDER: Draws a 3D effect border.

	wxSW_BORDER: Draws a thin black border.

See:
	wxSashEvent

	wxSashLayoutWindow

	Overview events

This class is derived, and can use functions, from:
	wxWindow

	wxEvtHandler

wxWidgets docs: wxSashWindow
Events
Event types emitted from this class:
	sash_dragged

 Summary

 Types

 wxSashWindow()

 Functions

 destroy(This)

 Destroys the object

 getMaximumSizeX(This)

 Gets the maximum window size in the x direction.

 getMaximumSizeY(This)

 Gets the maximum window size in the y direction.

 getMinimumSizeX(This)

 Gets the minimum window size in the x direction.

 getMinimumSizeY(This)

 Gets the minimum window size in the y direction.

 getSashVisible(This, Edge)

 Returns true if a sash is visible on the given edge, false otherwise.

 new()

 Default ctor.

 new(Parent)

 Equivalent to new(Parent, []).

 new/2

 Constructs a sash window, which can be a child of a frame, dialog or any other
non-control window.

 setMaximumSizeX(This, Min)

 Sets the maximum window size in the x direction.

 setMaximumSizeY(This, Min)

 Sets the maximum window size in the y direction.

 setMinimumSizeX(This, Min)

 Sets the minimum window size in the x direction.

 setMinimumSizeY(This, Min)

 Sets the minimum window size in the y direction.

 setSashVisible(This, Edge, Visible)

 Call this function to make a sash visible or invisible on a particular edge.

 Types

 wxSashWindow()

 -type wxSashWindow() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxSashWindow()) -> ok.

Destroys the object

 getMaximumSizeX(This)

 -spec getMaximumSizeX(This) -> integer() when This :: wxSashWindow().

Gets the maximum window size in the x direction.

 getMaximumSizeY(This)

 -spec getMaximumSizeY(This) -> integer() when This :: wxSashWindow().

Gets the maximum window size in the y direction.

 getMinimumSizeX(This)

 -spec getMinimumSizeX(This) -> integer() when This :: wxSashWindow().

Gets the minimum window size in the x direction.

 getMinimumSizeY(This)

 -spec getMinimumSizeY(This) -> integer() when This :: wxSashWindow().

Gets the minimum window size in the y direction.

 getSashVisible(This, Edge)

 -spec getSashVisible(This, Edge) -> boolean() when This :: wxSashWindow(), Edge :: wx:wx_enum().

Returns true if a sash is visible on the given edge, false otherwise.
See: setSashVisible/3

 new()

 -spec new() -> wxSashWindow().

Default ctor.

 new(Parent)

 -spec new(Parent) -> wxSashWindow() when Parent :: wxWindow:wxWindow().

Equivalent to new(Parent, []).

 new/2

 -spec new(Parent, [Option]) -> wxSashWindow()
 when
 Parent :: wxWindow:wxWindow(),
 Option ::
 {id, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Constructs a sash window, which can be a child of a frame, dialog or any other
non-control window.

 setMaximumSizeX(This, Min)

 -spec setMaximumSizeX(This, Min) -> ok when This :: wxSashWindow(), Min :: integer().

Sets the maximum window size in the x direction.

 setMaximumSizeY(This, Min)

 -spec setMaximumSizeY(This, Min) -> ok when This :: wxSashWindow(), Min :: integer().

Sets the maximum window size in the y direction.

 setMinimumSizeX(This, Min)

 -spec setMinimumSizeX(This, Min) -> ok when This :: wxSashWindow(), Min :: integer().

Sets the minimum window size in the x direction.

 setMinimumSizeY(This, Min)

 -spec setMinimumSizeY(This, Min) -> ok when This :: wxSashWindow(), Min :: integer().

Sets the minimum window size in the y direction.

 setSashVisible(This, Edge, Visible)

 -spec setSashVisible(This, Edge, Visible) -> ok
 when This :: wxSashWindow(), Edge :: wx:wx_enum(), Visible :: boolean().

Call this function to make a sash visible or invisible on a particular edge.
See: getSashVisible/2

wxScreenDC

A wxScreenDC can be used to paint on the screen.
This should normally be constructed as a temporary stack object; don't store a wxScreenDC
object.
When using multiple monitors, wxScreenDC corresponds to the entire virtual screen
composed of all of them. Notice that coordinates on wxScreenDC can be negative in this
case, see wxDisplay:getGeometry/1 for more.
See:
	wxDC

	wxMemoryDC

	wxPaintDC

	wxClientDC

	wxWindowDC

This class is derived, and can use functions, from:
	wxDC

wxWidgets docs: wxScreenDC

 Summary

 Types

 wxScreenDC()

 Functions

 destroy(This)

 Destroys the object

 new()

 Constructor.

 Types

 wxScreenDC()

 -type wxScreenDC() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxScreenDC()) -> ok.

Destroys the object

 new()

 -spec new() -> wxScreenDC().

Constructor.

wxScrollBar

A wxScrollBar is a control that represents a horizontal or vertical scrollbar.
It is distinct from the two scrollbars that some windows provide automatically, but the
two types of scrollbar share the way events are received.
Remark: A scrollbar has the following main attributes: range, thumb size, page size, and
position. The range is the total number of units associated with the view represented by
the scrollbar. For a table with 15 columns, the range would be 15. The thumb size is the
number of units that are currently visible. For the table example, the window might be
sized so that only 5 columns are currently visible, in which case the application would
set the thumb size to 5. When the thumb size becomes the same as or greater than the
range, the scrollbar will be automatically hidden on most platforms. The page size is the
number of units that the scrollbar should scroll by, when 'paging' through the data. This
value is normally the same as the thumb size length, because it is natural to assume that
the visible window size defines a page. The scrollbar position is the current thumb
position. Most applications will find it convenient to provide a function called
AdjustScrollbars() which can be called initially, from an OnSize event handler, and
whenever the application data changes in size. It will adjust the view, object and page
size according to the size of the window and the size of the data.
Styles
This class supports the following styles:
	wxSB_HORIZONTAL: Specifies a horizontal scrollbar.

	wxSB_VERTICAL: Specifies a vertical scrollbar.

The difference between EVT_SCROLL_THUMBRELEASE and EVT_SCROLL_CHANGED
The EVT_SCROLL_THUMBRELEASE event is only emitted when actually dragging the thumb using
the mouse and releasing it (This EVT_SCROLL_THUMBRELEASE event is also followed by an
EVT_SCROLL_CHANGED event).
The EVT_SCROLL_CHANGED event also occurs when using the keyboard to change the thumb
position, and when clicking next to the thumb (In all these cases the
EVT_SCROLL_THUMBRELEASE event does not happen).
In short, the EVT_SCROLL_CHANGED event is triggered when scrolling/moving has finished
independently of the way it had started. Please see the page_samples_widgets ("Slider"
page) to see the difference between EVT_SCROLL_THUMBRELEASE and EVT_SCROLL_CHANGED in action.
See:
	Overview scrolling

	Overview events

This class is derived, and can use functions, from:
	wxControl

	wxWindow

	wxEvtHandler

wxWidgets docs: wxScrollBar
Events
Event types emitted from this class:
	scroll_top

	scroll_bottom

	scroll_lineup

	scroll_linedown

	scroll_pageup

	scroll_pagedown

	scroll_thumbtrack

	scroll_thumbrelease

	scroll_changed

	scroll_top

	scroll_bottom

	scroll_lineup

	scroll_linedown

	scroll_pageup

	scroll_pagedown

	scroll_thumbtrack

	scroll_thumbrelease

	scroll_changed

 Summary

 Types

 wxScrollBar()

 Functions

 create(This, Parent, Id)

 Equivalent to create(This, Parent, Id, []).

 create/4

 Scrollbar creation function called by the scrollbar constructor.

 destroy(This)

 Destroys the object

 getPageSize(This)

 Returns the page size of the scrollbar.

 getRange(This)

 Returns the length of the scrollbar.

 getThumbPosition(This)

 Returns the current position of the scrollbar thumb.

 getThumbSize(This)

 Returns the thumb or 'view' size.

 new()

 Default constructor.

 new(Parent, Id)

 Equivalent to new(Parent, Id, []).

 new/3

 Constructor, creating and showing a scrollbar.

 setScrollbar(This, Position, ThumbSize, Range, PageSize)

 Equivalent to setScrollbar(This, Position, ThumbSize, Range, PageSize, []).

 setScrollbar/6

 Sets the scrollbar properties.

 setThumbPosition(This, ViewStart)

 Sets the position of the scrollbar.

 Types

 wxScrollBar()

 -type wxScrollBar() :: wx:wx_object().

 Functions

 create(This, Parent, Id)

 -spec create(This, Parent, Id) -> boolean()
 when This :: wxScrollBar(), Parent :: wxWindow:wxWindow(), Id :: integer().

Equivalent to create(This, Parent, Id, []).

 create/4

 -spec create(This, Parent, Id, [Option]) -> boolean()
 when
 This :: wxScrollBar(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Scrollbar creation function called by the scrollbar constructor.
See new/3 for details.

 destroy(This)

 -spec destroy(This :: wxScrollBar()) -> ok.

Destroys the object

 getPageSize(This)

 -spec getPageSize(This) -> integer() when This :: wxScrollBar().

Returns the page size of the scrollbar.
This is the number of scroll units that will be scrolled when the user pages up or down.
Often it is the same as the thumb size.
See: setScrollbar/6

 getRange(This)

 -spec getRange(This) -> integer() when This :: wxScrollBar().

Returns the length of the scrollbar.
See: setScrollbar/6

 getThumbPosition(This)

 -spec getThumbPosition(This) -> integer() when This :: wxScrollBar().

Returns the current position of the scrollbar thumb.
See: setThumbPosition/2

 getThumbSize(This)

 -spec getThumbSize(This) -> integer() when This :: wxScrollBar().

Returns the thumb or 'view' size.
See: setScrollbar/6

 new()

 -spec new() -> wxScrollBar().

Default constructor.

 new(Parent, Id)

 -spec new(Parent, Id) -> wxScrollBar() when Parent :: wxWindow:wxWindow(), Id :: integer().

Equivalent to new(Parent, Id, []).

 new/3

 -spec new(Parent, Id, [Option]) -> wxScrollBar()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Constructor, creating and showing a scrollbar.
See: create/4

 setScrollbar(This, Position, ThumbSize, Range, PageSize)

 -spec setScrollbar(This, Position, ThumbSize, Range, PageSize) -> ok
 when
 This :: wxScrollBar(),
 Position :: integer(),
 ThumbSize :: integer(),
 Range :: integer(),
 PageSize :: integer().

Equivalent to setScrollbar(This, Position, ThumbSize, Range, PageSize, []).

 setScrollbar/6

 -spec setScrollbar(This, Position, ThumbSize, Range, PageSize, [Option]) -> ok
 when
 This :: wxScrollBar(),
 Position :: integer(),
 ThumbSize :: integer(),
 Range :: integer(),
 PageSize :: integer(),
 Option :: {refresh, boolean()}.

Sets the scrollbar properties.
Remark: Let's say you wish to display 50 lines of text, using the same font. The window
is sized so that you can only see 16 lines at a time. You would use: The page size is 1
less than the thumb size so that the last line of the previous page will be visible on the
next page, to help orient the user. Note that with the window at this size, the thumb
position can never go above 50 minus 16, or 34. You can determine how many lines are
currently visible by dividing the current view size by the character height in pixels.
When defining your own scrollbar behaviour, you will always need to recalculate the
scrollbar settings when the window size changes. You could therefore put your scrollbar
calculations and setScrollbar/6 call into a function named AdjustScrollbars, which can be called
initially and also from a wxSizeEvent event handler function.

 setThumbPosition(This, ViewStart)

 -spec setThumbPosition(This, ViewStart) -> ok when This :: wxScrollBar(), ViewStart :: integer().

Sets the position of the scrollbar.
See: getThumbPosition/1

wxScrollEvent

A scroll event holds information about events sent from stand-alone scrollbars (see wxScrollBar)
and sliders (see wxSlider).
Note that scrolled windows send the wxScrollWinEvent which does not derive from wxCommandEvent,
but from wxEvent directly - don't confuse these two kinds of events and use the event
table macros mentioned below only for the scrollbar-like controls.
The difference between EVT_SCROLL_THUMBRELEASE and EVT_SCROLL_CHANGED
The EVT_SCROLL_THUMBRELEASE event is only emitted when actually dragging the thumb using
the mouse and releasing it (This EVT_SCROLL_THUMBRELEASE event is also followed by an
EVT_SCROLL_CHANGED event).
The EVT_SCROLL_CHANGED event also occurs when using the keyboard to change the thumb
position, and when clicking next to the thumb (In all these cases the
EVT_SCROLL_THUMBRELEASE event does not happen).
In short, the EVT_SCROLL_CHANGED event is triggered when scrolling/ moving has finished
independently of the way it had started. Please see the page_samples_widgets ("Slider"
page) to see the difference between EVT_SCROLL_THUMBRELEASE and EVT_SCROLL_CHANGED in action.
Remark: Note that unless specifying a scroll control identifier, you will need to test
for scrollbar orientation with getOrientation/1, since horizontal and vertical scroll events are processed
using the same event handler.
See:
	wxScrollBar

	wxSlider

	wxSpinButton

	wxScrollWinEvent

	Overview events

This class is derived, and can use functions, from:
	wxCommandEvent

	wxEvent

wxWidgets docs: wxScrollEvent
Events
Use wxEvtHandler:connect/3 with wxScrollEventType to subscribe to events of this type.

 Summary

 Types

 wxScroll()

 wxScrollEvent()

 wxScrollEventType()

 Functions

 getOrientation(This)

 Returns wxHORIZONTAL or wxVERTICAL, depending on the orientation of the scrollbar.

 getPosition(This)

 Returns the position of the scrollbar.

 Types

 wxScroll()

 -type wxScroll() ::
 #wxScroll{type :: wxScrollEvent:wxScrollEventType(),
 commandInt :: integer(),
 extraLong :: integer()}.

 wxScrollEvent()

 -type wxScrollEvent() :: wx:wx_object().

 wxScrollEventType()

 -type wxScrollEventType() ::
 scroll_top | scroll_bottom | scroll_lineup | scroll_linedown | scroll_pageup |
 scroll_pagedown | scroll_thumbtrack | scroll_thumbrelease | scroll_changed.

 Functions

 getOrientation(This)

 -spec getOrientation(This) -> integer() when This :: wxScrollEvent().

Returns wxHORIZONTAL or wxVERTICAL, depending on the orientation of the scrollbar.

 getPosition(This)

 -spec getPosition(This) -> integer() when This :: wxScrollEvent().

Returns the position of the scrollbar.

wxScrollWinEvent

A scroll event holds information about events sent from scrolling windows.
Note that you can use the EVT_SCROLLWIN* macros for intercepting scroll window events
from the receiving window.
See:
	wxScrollEvent

	Overview events

This class is derived, and can use functions, from:
	wxEvent

wxWidgets docs: wxScrollWinEvent
Events
Use wxEvtHandler:connect/3 with wxScrollWinEventType to subscribe to events of this type.

 Summary

 Types

 wxScrollWin()

 wxScrollWinEvent()

 wxScrollWinEventType()

 Functions

 getOrientation(This)

 Returns wxHORIZONTAL or wxVERTICAL, depending on the orientation of the scrollbar.

 getPosition(This)

 Returns the position of the scrollbar for the thumb track and release events.

 Types

 wxScrollWin()

 -type wxScrollWin() ::
 #wxScrollWin{type :: wxScrollWinEvent:wxScrollWinEventType(),
 commandInt :: integer(),
 extraLong :: integer()}.

 wxScrollWinEvent()

 -type wxScrollWinEvent() :: wx:wx_object().

 wxScrollWinEventType()

 -type wxScrollWinEventType() ::
 scrollwin_top | scrollwin_bottom | scrollwin_lineup | scrollwin_linedown | scrollwin_pageup |
 scrollwin_pagedown | scrollwin_thumbtrack | scrollwin_thumbrelease.

 Functions

 getOrientation(This)

 -spec getOrientation(This) -> integer() when This :: wxScrollWinEvent().

Returns wxHORIZONTAL or wxVERTICAL, depending on the orientation of the scrollbar.

 getPosition(This)

 -spec getPosition(This) -> integer() when This :: wxScrollWinEvent().

Returns the position of the scrollbar for the thumb track and release events.
Note that this field can't be used for the other events, you need to query the window
itself for the current position in that case.

wxScrolledWindow

The wxScrolled (not implemented in wx) class manages scrolling for its client area,
transforming the coordinates according to the scrollbar positions, and setting the scroll
positions, thumb sizes and ranges according to the area in view.
There are two commonly used (but not the only possible!) specializations of this class:
	?wxScrolledWindow, aka wxScrolled<wxPanel>, is equivalent to ?wxScrolledWindow from
earlier versions. Derived from wxPanel, it shares wxPanel's behaviour with regard
to TAB traversal and focus handling. Use this if the scrolled window will have child controls.

	?wxScrolledCanvas, aka wxScrolled<wxWindow>, derives from wxWindow and so doesn't
handle children specially. This is suitable e.g. for implementing scrollable controls such
as tree or list controls.

Note: See wxScrolled::Create() (not implemented in wx) if you want to use wxScrolled
(not implemented in wx) with a custom class.
Starting from version 2.4 of wxWidgets, there are several ways to use a
?wxScrolledWindow (and now wxScrolled (not implemented in wx)). In particular, there are
three ways to set the size of the scrolling area:
One way is to set the scrollbars directly using a call to setScrollbars/6. This is the way it used to be
in any previous version of wxWidgets and it will be kept for backwards compatibility.
An additional method of manual control, which requires a little less computation of your
own, is to set the total size of the scrolling area by calling either wxWindow:setVirtualSize/3, or wxWindow:fitInside/1, and setting
the scrolling increments for it by calling setScrollRate/3. Scrolling in some orientation is enabled by
setting a non-zero increment for it.
The most automatic and newest way is to simply let sizers determine the scrolling area.
This is now the default when you set an interior sizer into a wxScrolled (not
implemented in wx) with wxWindow:setSizer/3. The scrolling area will be set to the size requested by the
sizer and the scrollbars will be assigned for each orientation according to the need for
them and the scrolling increment set by setScrollRate/3. As above, scrolling is only enabled in
orientations with a non-zero increment. You can influence the minimum size of the scrolled
area controlled by a sizer by calling wxWindow::SetVirtualSizeHints(). (Calling setScrollbars/6 has
analogous effects in wxWidgets 2.4 - in later versions it may not continue to override the sizer.)
Note that if maximum size hints are still supported by wxWindow::SetVirtualSizeHints(),
use them at your own dire risk. They may or may not have been removed for 2.4, but it
really only makes sense to set minimum size hints here. We should probably replace
wxWindow::SetVirtualSizeHints() with wxWindow::SetMinVirtualSize() or similar and remove
it entirely in future.
As with all windows, an application can draw onto a wxScrolled (not implemented in wx)
using a device context.
You have the option of handling the OnPaint handler or overriding the wxScrolled::OnDraw()
(not implemented in wx) function, which is passed a pre-scrolled device context (prepared
by doPrepareDC/2).
If you don't wish to calculate your own scrolling, you must call doPrepareDC/2 when not drawing from
within OnDraw() (not implemented in wx), to set the device origin for the device context
according to the current scroll position.
A wxScrolled (not implemented in wx) will normally scroll itself and therefore its
child windows as well. It might however be desired to scroll a different window than
itself: e.g. when designing a spreadsheet, you will normally only have to scroll the
(usually white) cell area, whereas the (usually grey) label area will scroll very
differently. For this special purpose, you can call setTargetWindow/2 which means that pressing the
scrollbars will scroll a different window.
Note that the underlying system knows nothing about scrolling coordinates, so that all
system functions (mouse events, expose events, refresh calls etc) as well as the position
of subwindows are relative to the "physical" origin of the scrolled window. If the user
insert a child window at position (10,10) and scrolls the window down 100 pixels (moving
the child window out of the visible area), the child window will report a position of (10,-90).
Styles
This class supports the following styles:
	wxHSCROLL: If this style is specified and ?wxVSCROLL isn't, the window will be scrollable
only in horizontal direction (by default, i.e. if neither this style nor ?wxVSCROLL is
specified, it scrolls in both directions).

	wxVSCROLL: If this style is specified and ?wxHSCROLL isn't, the window will be scrollable
only in vertical direction (by default, i.e. if neither this style nor ?wxHSCROLL is
specified, it scrolls in both directions).

	wxALWAYS_SHOW_SB: Since wxWidgets 2.9.5, specifying this style makes the window always
show its scrollbars, even if they are not used. See ShowScrollbars() (not implemented in
wx).

	wxRETAINED: Uses a backing pixmap to speed refreshes. Motif only.

See:
	wxScrollBar

	wxClientDC

	wxPaintDC

This class is derived, and can use functions, from:
	wxPanel

	wxWindow

	wxEvtHandler

wxWidgets docs: wxScrolledWindow
Events
Event types emitted from this class:
	scrollwin_top

	scrollwin_bottom

	scrollwin_lineup

	scrollwin_linedown

	scrollwin_pageup

	scrollwin_pagedown

	scrollwin_thumbtrack

	scrollwin_thumbrelease

 Summary

 Types

 wxScrolledWindow()

 Functions

 calcScrolledPosition(This, Pt)

 calcScrolledPosition(This, X, Y)

 Translates the logical coordinates to the device ones.

 calcUnscrolledPosition(This, Pt)

 calcUnscrolledPosition(This, X, Y)

 Translates the device coordinates to the logical ones.

 destroy(This)

 Destroys the object

 doPrepareDC(This, Dc)

 Call this function to prepare the device context for drawing a scrolled image.

 enableScrolling(This, XScrolling, YScrolling)

 Enable or disable use of wxWindow:scrollWindow/4 for scrolling.

 getScrollPixelsPerUnit(This)

 Get the number of pixels per scroll unit (line), in each direction, as set by setScrollbars/6.

 getViewStart(This)

 This is a simple overload of GetViewStart(int,int); see that function for more info.

 new()

 Default constructor.

 new(Parent)

 Equivalent to new(Parent, []).

 new/2

 Constructor.

 prepareDC(This, Dc)

 This function is for backwards compatibility only and simply calls doPrepareDC/2 now.

 scroll(This, Pt)

 This is an overload of scroll/3;see that function for more info.

 scroll(This, X, Y)

 Scrolls a window so the view start is at the given point.

 setScrollbars(This, PixelsPerUnitX, PixelsPerUnitY, NoUnitsX, NoUnitsY)

 Equivalent to setScrollbars(This, PixelsPerUnitX, PixelsPerUnitY, NoUnitsX, NoUnitsY, []).

 setScrollbars/6

 Sets up vertical and/or horizontal scrollbars.

 setScrollRate(This, Xstep, Ystep)

 Set the horizontal and vertical scrolling increment only.

 setTargetWindow(This, Window)

 Call this function to tell wxScrolled (not implemented in wx) to perform the actual
scrolling on a different window (and not on itself).

 Types

 wxScrolledWindow()

 -type wxScrolledWindow() :: wx:wx_object().

 Functions

 calcScrolledPosition(This, Pt)

 -spec calcScrolledPosition(This, Pt) -> {X :: integer(), Y :: integer()}
 when This :: wxScrolledWindow(), Pt :: {X :: integer(), Y :: integer()}.

 calcScrolledPosition(This, X, Y)

 -spec calcScrolledPosition(This, X, Y) -> {Xx :: integer(), Yy :: integer()}
 when This :: wxScrolledWindow(), X :: integer(), Y :: integer().

Translates the logical coordinates to the device ones.
For example, if a window is scrolled 10 pixels to the bottom, the device coordinates of
the origin are (0, 0) (as always), but the logical coordinates are (0, 10) and so the call
to CalcScrolledPosition(0, 10, xx, yy) will return 0 in yy.
See: calcUnscrolledPosition/3

 calcUnscrolledPosition(This, Pt)

 -spec calcUnscrolledPosition(This, Pt) -> {X :: integer(), Y :: integer()}
 when This :: wxScrolledWindow(), Pt :: {X :: integer(), Y :: integer()}.

 calcUnscrolledPosition(This, X, Y)

 -spec calcUnscrolledPosition(This, X, Y) -> {Xx :: integer(), Yy :: integer()}
 when This :: wxScrolledWindow(), X :: integer(), Y :: integer().

Translates the device coordinates to the logical ones.
For example, if a window is scrolled 10 pixels to the bottom, the device coordinates of
the origin are (0, 0) (as always), but the logical coordinates are (0, 10) and so the call
to CalcUnscrolledPosition(0, 0, xx, yy) will return 10 in yy.
See: calcScrolledPosition/3

 destroy(This)

 -spec destroy(This :: wxScrolledWindow()) -> ok.

Destroys the object

 doPrepareDC(This, Dc)

 -spec doPrepareDC(This, Dc) -> ok when This :: wxScrolledWindow(), Dc :: wxDC:wxDC().

Call this function to prepare the device context for drawing a scrolled image.
It sets the device origin according to the current scroll position. doPrepareDC/2 is called
automatically within the default wxEVT_PAINT event handler, so your OnDraw() (not
implemented in wx) override will be passed an already 'pre-scrolled' device context.
However, if you wish to draw from outside of OnDraw() (not implemented in wx) (e.g. from
your own wxEVT_PAINT handler), you must call this function yourself.
For example:
Notice that the function sets the origin by moving it relatively to the current origin
position, so you shouldn't change the origin before calling doPrepareDC/2 or, if you do, reset it to
(0, 0) later. If you call doPrepareDC/2 immediately after device context creation, as in the example
above, this problem doesn't arise, of course, so it is customary to do it like this.

 enableScrolling(This, XScrolling, YScrolling)

 -spec enableScrolling(This, XScrolling, YScrolling) -> ok
 when
 This :: wxScrolledWindow(),
 XScrolling :: boolean(),
 YScrolling :: boolean().

Enable or disable use of wxWindow:scrollWindow/4 for scrolling.
By default, when a scrolled window is logically scrolled, wxWindow:scrollWindow/4 is called on the underlying
window which scrolls the window contents and only invalidates the part of the window newly
brought into view. If false is passed as an argument, then this "physical scrolling" is
disabled and the window is entirely invalidated whenever it is scrolled by calling wxWindow:refresh/2.
It should be rarely necessary to disable physical scrolling, so this method shouldn't be
called in normal circumstances.

 getScrollPixelsPerUnit(This)

 -spec getScrollPixelsPerUnit(This) -> {XUnit :: integer(), YUnit :: integer()}
 when This :: wxScrolledWindow().

Get the number of pixels per scroll unit (line), in each direction, as set by setScrollbars/6.
A value of zero indicates no scrolling in that direction.
See:
	setScrollbars/6

	wxWindow:getVirtualSize/1

 getViewStart(This)

 -spec getViewStart(This) -> {X :: integer(), Y :: integer()} when This :: wxScrolledWindow().

This is a simple overload of GetViewStart(int,int); see that function for more info.

 new()

 -spec new() -> wxScrolledWindow().

Default constructor.

 new(Parent)

 -spec new(Parent) -> wxScrolledWindow() when Parent :: wxWindow:wxWindow().

Equivalent to new(Parent, []).

 new/2

 -spec new(Parent, [Option]) -> wxScrolledWindow()
 when
 Parent :: wxWindow:wxWindow(),
 Option ::
 {winid, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Constructor.
Remark: The window is initially created without visible scrollbars. Call setScrollbars/6 to specify how
big the virtual window size should be.

 prepareDC(This, Dc)

 -spec prepareDC(This, Dc) -> ok when This :: wxScrolledWindow(), Dc :: wxDC:wxDC().

This function is for backwards compatibility only and simply calls doPrepareDC/2 now.
Notice that it is not called by the default paint event handle (doPrepareDC/2 is), so overriding this
method in your derived class is useless.

 scroll(This, Pt)

 -spec scroll(This, Pt) -> ok when This :: wxScrolledWindow(), Pt :: {X :: integer(), Y :: integer()}.

This is an overload of scroll/3;see that function for more info.

 scroll(This, X, Y)

 -spec scroll(This, X, Y) -> ok when This :: wxScrolledWindow(), X :: integer(), Y :: integer().

Scrolls a window so the view start is at the given point.
Remark: The positions are in scroll units, not pixels, so to convert to pixels you will
have to multiply by the number of pixels per scroll increment. If either parameter is
?wxDefaultCoord (-1), that position will be ignored (no change in that direction).
See:
	setScrollbars/6

	getScrollPixelsPerUnit/1

 setScrollbars(This, PixelsPerUnitX, PixelsPerUnitY, NoUnitsX, NoUnitsY)

 -spec setScrollbars(This, PixelsPerUnitX, PixelsPerUnitY, NoUnitsX, NoUnitsY) -> ok
 when
 This :: wxScrolledWindow(),
 PixelsPerUnitX :: integer(),
 PixelsPerUnitY :: integer(),
 NoUnitsX :: integer(),
 NoUnitsY :: integer().

Equivalent to setScrollbars(This, PixelsPerUnitX, PixelsPerUnitY, NoUnitsX, NoUnitsY, []).

 setScrollbars/6

 -spec setScrollbars(This, PixelsPerUnitX, PixelsPerUnitY, NoUnitsX, NoUnitsY, [Option]) -> ok
 when
 This :: wxScrolledWindow(),
 PixelsPerUnitX :: integer(),
 PixelsPerUnitY :: integer(),
 NoUnitsX :: integer(),
 NoUnitsY :: integer(),
 Option :: {xPos, integer()} | {yPos, integer()} | {noRefresh, boolean()}.

Sets up vertical and/or horizontal scrollbars.
The first pair of parameters give the number of pixels per 'scroll step', i.e. amount
moved when the up or down scroll arrows are pressed. The second pair gives the length of
scrollbar in scroll steps, which sets the size of the virtual window.
xPos and yPos optionally specify a position to scroll to immediately.
For example, the following gives a window horizontal and vertical scrollbars with 20
pixels per scroll step, and a size of 50 steps (1000 pixels) in each direction:
wxScrolled (not implemented in wx) manages the page size itself, using the current
client window size as the page size.
Note that for more sophisticated scrolling applications, for example where scroll steps
may be variable according to the position in the document, it will be necessary to derive
a new class from wxWindow, overriding OnSize() and adjusting the scrollbars appropriately.
See: wxWindow:setVirtualSize/3

 setScrollRate(This, Xstep, Ystep)

 -spec setScrollRate(This, Xstep, Ystep) -> ok
 when This :: wxScrolledWindow(), Xstep :: integer(), Ystep :: integer().

Set the horizontal and vertical scrolling increment only.
See the pixelsPerUnit parameter in setScrollbars/6.

 setTargetWindow(This, Window)

 -spec setTargetWindow(This, Window) -> ok when This :: wxScrolledWindow(), Window :: wxWindow:wxWindow().

Call this function to tell wxScrolled (not implemented in wx) to perform the actual
scrolling on a different window (and not on itself).
This method is useful when only a part of the window should be scrolled. A typical
example is a control consisting of a fixed header and the scrollable contents window: the
scrollbars are attached to the main window itself, hence it, and not the contents window
must be derived from wxScrolled (not implemented in wx), but only the contents window
scrolls when the scrollbars are used. To implement such setup, you need to call this
method with the contents window as argument.
Notice that if this method is used, GetSizeAvailableForScrollTarget() (not implemented
in wx) method must be overridden.

wxSetCursorEvent

A wxSetCursorEvent is generated from wxWindow when the mouse cursor is about to
be set as a result of mouse motion.
This event gives the application the chance to perform specific mouse cursor processing
based on the current position of the mouse within the window. Use setCursor/2 to specify the cursor
you want to be displayed.
See:
	wx_misc:setCursor/1

	wxWindow:setCursor/2

This class is derived, and can use functions, from:
	wxEvent

wxWidgets docs: wxSetCursorEvent
Events
Use wxEvtHandler:connect/3 with wxSetCursorEventType to subscribe to events of this type.

 Summary

 Types

 wxSetCursor()

 wxSetCursorEvent()

 wxSetCursorEventType()

 Functions

 getCursor(This)

 Returns a reference to the cursor specified by this event.

 getX(This)

 Returns the X coordinate of the mouse in client coordinates.

 getY(This)

 Returns the Y coordinate of the mouse in client coordinates.

 hasCursor(This)

 Returns true if the cursor specified by this event is a valid cursor.

 setCursor(This, Cursor)

 Sets the cursor associated with this event.

 Types

 wxSetCursor()

 -type wxSetCursor() ::
 #wxSetCursor{type :: wxSetCursorEvent:wxSetCursorEventType(),
 x :: integer(),
 y :: integer(),
 cursor :: wxCursor:wxCursor()}.

 wxSetCursorEvent()

 -type wxSetCursorEvent() :: wx:wx_object().

 wxSetCursorEventType()

 -type wxSetCursorEventType() :: set_cursor.

 Functions

 getCursor(This)

 -spec getCursor(This) -> wxCursor:wxCursor() when This :: wxSetCursorEvent().

Returns a reference to the cursor specified by this event.

 getX(This)

 -spec getX(This) -> integer() when This :: wxSetCursorEvent().

Returns the X coordinate of the mouse in client coordinates.

 getY(This)

 -spec getY(This) -> integer() when This :: wxSetCursorEvent().

Returns the Y coordinate of the mouse in client coordinates.

 hasCursor(This)

 -spec hasCursor(This) -> boolean() when This :: wxSetCursorEvent().

Returns true if the cursor specified by this event is a valid cursor.
Remark: You cannot specify wxNullCursor with this event, as it is not considered a valid
cursor.

 setCursor(This, Cursor)

 -spec setCursor(This, Cursor) -> ok when This :: wxSetCursorEvent(), Cursor :: wxCursor:wxCursor().

Sets the cursor associated with this event.

wxShowEvent

An event being sent when the window is shown or hidden.
The event is triggered by calls to wxWindow:show/2, and any user action showing a previously hidden
window or vice versa (if allowed by the current platform and/or window manager). Notice
that the event is not triggered when the application is iconized (minimized) or restored
under wxMSW.
See:
	Overview events

	wxWindow:show/2

	wxWindow:isShown/1

This class is derived, and can use functions, from:
	wxEvent

wxWidgets docs: wxShowEvent
Events
Use wxEvtHandler:connect/3 with wxShowEventType to subscribe to events of this type.

 Summary

 Types

 wxShow()

 wxShowEvent()

 wxShowEventType()

 Functions

 isShown(This)

 Return true if the window has been shown, false if it has been hidden.

 setShow(This, Show)

 Set whether the windows was shown or hidden.

 Types

 wxShow()

 -type wxShow() :: #wxShow{type :: wxShowEvent:wxShowEventType(), show :: boolean()}.

 wxShowEvent()

 -type wxShowEvent() :: wx:wx_object().

 wxShowEventType()

 -type wxShowEventType() :: show.

 Functions

 isShown(This)

 -spec isShown(This) -> boolean() when This :: wxShowEvent().

Return true if the window has been shown, false if it has been hidden.

 setShow(This, Show)

 -spec setShow(This, Show) -> ok when This :: wxShowEvent(), Show :: boolean().

Set whether the windows was shown or hidden.

wxSingleChoiceDialog

This class represents a dialog that shows a list of strings, and allows the user to
select one.
Double-clicking on a list item is equivalent to single-clicking and then pressing OK.
Styles
This class supports the following styles:
	wxOK: Show an OK button.

	wxCANCEL: Show a Cancel button.

	wxCENTRE: Centre the message.

See:
	Overview cmndlg

	wxMultiChoiceDialog

This class is derived, and can use functions, from:
	wxDialog

	wxTopLevelWindow

	wxWindow

	wxEvtHandler

wxWidgets docs: wxSingleChoiceDialog

 Summary

 Types

 wxSingleChoiceDialog()

 Functions

 destroy(This)

 Destroys the object

 getSelection(This)

 Returns the index of selected item.

 getStringSelection(This)

 Returns the selected string.

 new(Parent, Message, Caption, Choices)

 Equivalent to new(Parent, Message, Caption, Choices, []).

 new/5

 Constructor, taking an array of wxString (not implemented in wx) choices and optional
client data.

 setSelection(This, Selection)

 Sets the index of the initially selected item.

 Types

 wxSingleChoiceDialog()

 -type wxSingleChoiceDialog() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxSingleChoiceDialog()) -> ok.

Destroys the object

 getSelection(This)

 -spec getSelection(This) -> integer() when This :: wxSingleChoiceDialog().

Returns the index of selected item.

 getStringSelection(This)

 -spec getStringSelection(This) -> unicode:charlist() when This :: wxSingleChoiceDialog().

Returns the selected string.

 new(Parent, Message, Caption, Choices)

 -spec new(Parent, Message, Caption, Choices) -> wxSingleChoiceDialog()
 when
 Parent :: wxWindow:wxWindow(),
 Message :: unicode:chardata(),
 Caption :: unicode:chardata(),
 Choices :: [unicode:chardata()].

Equivalent to new(Parent, Message, Caption, Choices, []).

 new/5

 -spec new(Parent, Message, Caption, Choices, [Option]) -> wxSingleChoiceDialog()
 when
 Parent :: wxWindow:wxWindow(),
 Message :: unicode:chardata(),
 Caption :: unicode:chardata(),
 Choices :: [unicode:chardata()],
 Option :: {style, integer()} | {pos, {X :: integer(), Y :: integer()}}.

Constructor, taking an array of wxString (not implemented in wx) choices and optional
client data.
Remark: Use wxDialog:showModal/1 to show the dialog.

 setSelection(This, Selection)

 -spec setSelection(This, Selection) -> ok when This :: wxSingleChoiceDialog(), Selection :: integer().

Sets the index of the initially selected item.

wxSizeEvent

A size event holds information about size change events of wxWindow.
The EVT_SIZE handler function will be called when the window has been resized.
You may wish to use this for frames to resize their child windows as appropriate.
Note that the size passed is of the whole window: call wxWindow:getClientSize/1 for the area which may be used by
the application.
When a window is resized, usually only a small part of the window is damaged and you may
only need to repaint that area. However, if your drawing depends on the size of the
window, you may need to clear the DC explicitly and repaint the whole window. In which
case, you may need to call wxWindow:refresh/2 to invalidate the entire window.
Important : Sizers (see overview_sizer) rely on size events to function correctly.
Therefore, in a sizer-based layout, do not forget to call Skip on all size events you
catch (and don't catch size events at all when you don't need to).
See:
	{Width,Height}

	Overview events

This class is derived, and can use functions, from:
	wxEvent

wxWidgets docs: wxSizeEvent
Events
Use wxEvtHandler:connect/3 with wxSizeEventType to subscribe to events of this type.

 Summary

 Types

 wxSize()

 wxSizeEvent()

 wxSizeEventType()

 Functions

 getRect(This)

 getSize(This)

 Returns the entire size of the window generating the size change event.

 Types

 wxSize()

 -type wxSize() ::
 #wxSize{type :: wxSizeEvent:wxSizeEventType(),
 size :: {W :: integer(), H :: integer()},
 rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}}.

 wxSizeEvent()

 -type wxSizeEvent() :: wx:wx_object().

 wxSizeEventType()

 -type wxSizeEventType() :: size.

 Functions

 getRect(This)

 -spec getRect(This) -> {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}
 when This :: wxSizeEvent().

 getSize(This)

 -spec getSize(This) -> {W :: integer(), H :: integer()} when This :: wxSizeEvent().

Returns the entire size of the window generating the size change event.
This is the new total size of the window, i.e. the same size as would be returned by wxWindow:getSize/1 if
it were called now. Use wxWindow:getClientSize/1 if you catch this event in a top level window such as wxFrame
to find the size available for the window contents.

wxSizer

wxSizer is the abstract base class used for laying out subwindows in a window.
You cannot use wxSizer directly; instead, you will have to use one of the sizer
classes derived from it. Currently there are wxBoxSizer, wxStaticBoxSizer, wxGridSizer, wxFlexGridSizer, wxWrapSizer
(not implemented in wx) and wxGridBagSizer.
The layout algorithm used by sizers in wxWidgets is closely related to layout in other
GUI toolkits, such as Java's AWT, the GTK toolkit or the Qt toolkit. It is based upon the
idea of the individual subwindows reporting their minimal required size and their ability
to get stretched if the size of the parent window has changed.
This will most often mean that the programmer does not set the original size of a dialog
in the beginning, rather the dialog will be assigned a sizer and this sizer will be
queried about the recommended size. The sizer in turn will query its children, which can
be normal windows, empty space or other sizers, so that a hierarchy of sizers can be
constructed. Note that wxSizer does not derive from wxWindow and thus does not
interfere with tab ordering and requires very little resources compared to a real window
on screen.
What makes sizers so well fitted for use in wxWidgets is the fact that every control
reports its own minimal size and the algorithm can handle differences in font sizes or
different window (dialog item) sizes on different platforms without problems. If e.g. the
standard font as well as the overall design of Motif widgets requires more space than on
Windows, the initial dialog size will automatically be bigger on Motif than on Windows.
Sizers may also be used to control the layout of custom drawn items on the window. The add/4, insert/5,
and prepend/4 functions return a pointer to the newly added wxSizerItem. Just add empty space
of the desired size and attributes, and then use the wxSizerItem:getRect/1 method to determine where the
drawing operations should take place.
Please notice that sizers, like child windows, are owned by the library and will be
deleted by it which implies that they must be allocated on the heap. However if you create
a sizer and do not add it to another sizer or window, the library wouldn't be able to
delete such an orphan sizer and in this, and only this, case it should be deleted explicitly.
wxSizer flags
The "flag" argument accepted by wxSizerItem constructors and other functions, e.g. add/4,
is an OR-combination of the following flags. Two main behaviours are defined using these
flags. One is the border around a window: the border parameter determines the border width
whereas the flags given here determine which side(s) of the item that the border will be
added. The other flags determine how the sizer item behaves when the space allotted to the
sizer changes, and is somewhat dependent on the specific kind of sizer used.
See: Overview sizer
wxWidgets docs: wxSizer

 Summary

 Types

 wxSizer()

 Functions

 add(This, Window)

 Equivalent to add(This, Window, []).

 add/3

 Appends a child to the sizer.

 add/4

 Appends a spacer child to the sizer.

 addSpacer(This, Size)

 This base function adds non-stretchable space to both the horizontal and vertical
orientation of the sizer.

 addStretchSpacer(This)

 Equivalent to addStretchSpacer(This, []).

 addStretchSpacer/2

 Adds stretchable space to the sizer.

 calcMin(This)

 This method is abstract and has to be overwritten by any derived class.

 clear(This)

 Equivalent to clear(This, []).

 clear/2

 Detaches all children from the sizer.

 detach/2

 Detach a item at position index from the sizer without destroying it.

 fit(This, Window)

 Tell the sizer to resize the window so that its client area matches the sizer's minimal
size (ComputeFittingClientSize() (not implemented in wx) is called to determine it).

 fitInside(This, Window)

 Tell the sizer to resize the virtual size of the window to match the sizer's minimal
size.

 getChildren(This)

 getItem/2

 Finds wxSizerItem which is located in the sizer at position index.

 getItem/3

 Finds wxSizerItem which holds the given window.

 getMinSize(This)

 Returns the minimal size of the sizer.

 getPosition(This)

 Returns the current position of the sizer.

 getSize(This)

 Returns the current size of the sizer.

 hide/2

 Hides the item at position index.

 hide/3

 Hides the child window.

 insert(This, Index, Item)

 insert/4

 Insert a child into the sizer before any existing item at index.

 insert/5

 Insert a child into the sizer before any existing item at index.

 insertSpacer(This, Index, Size)

 Inserts non-stretchable space to the sizer.

 insertStretchSpacer(This, Index)

 Equivalent to insertStretchSpacer(This, Index, []).

 insertStretchSpacer/3

 Inserts stretchable space to the sizer.

 isShown/2

 Returns true if the item at index is shown.

 layout(This)

 Call this to force layout of the children anew, e.g. after having added a child to or
removed a child (window, other sizer or space) from the sizer while keeping the current
dimension.

 prepend(This, Item)

 prepend/3

 Same as add/4, but prepends the items to the beginning of the list of items (windows,
subsizers or spaces) owned by this sizer.

 prepend/4

 Same as add/4, but prepends the items to the beginning of the list of items (windows,
subsizers or spaces) owned by this sizer.

 prependSpacer(This, Size)

 Prepends non-stretchable space to the sizer.

 prependStretchSpacer(This)

 Equivalent to prependStretchSpacer(This, []).

 prependStretchSpacer/2

 Prepends stretchable space to the sizer.

 recalcSizes(This)

 Equivalent to: layout/1

 remove/2

 Removes a sizer child from the sizer and destroys it.

 replace/3

 Detaches the given item at position index from the sizer and replaces it with the given wxSizerItem
newitem.

 replace/4

 Detaches the given oldwin from the sizer and replaces it with the given newwin.

 setDimension(This, Pos, Size)

 This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 setDimension(This, X, Y, Width, Height)

 Call this to force the sizer to take the given dimension and thus force the items owned
by the sizer to resize themselves according to the rules defined by the parameter in the add/4
and prepend/4 methods.

 setItemMinSize/3

 setItemMinSize/4

 setMinSize(This, Size)

 Call this to give the sizer a minimal size.

 setMinSize(This, Width, Height)

 This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 setSizeHints(This, Window)

 This method first calls fit/2 and then setSizeHints/2 on the window passed to it.

 setVirtualSizeHints(This, Window)

 Equivalent to: fitInside/2

 show/2

 show/3

 Shows the item at index.

 showItems(This, Show)

 Show or hide all items managed by the sizer.

 Types

 wxSizer()

 -type wxSizer() :: wx:wx_object().

 Functions

 add(This, Window)

 -spec add(This, Window) -> wxSizerItem:wxSizerItem()
 when This :: wxSizer(), Window :: wxWindow:wxWindow() | wxSizer:wxSizer().

Equivalent to add(This, Window, []).

 add/3

 -spec add(This, Width, Height) -> wxSizerItem:wxSizerItem()
 when This :: wxSizer(), Width :: integer(), Height :: integer();
 (This, Window, Flags) -> wxSizerItem:wxSizerItem()
 when
 This :: wxSizer(),
 Window :: wxWindow:wxWindow() | wxSizer:wxSizer(),
 Flags :: wxSizerFlags:wxSizerFlags();
 (This, Window, [Option]) -> wxSizerItem:wxSizerItem()
 when
 This :: wxSizer(),
 Window :: wxWindow:wxWindow() | wxSizer:wxSizer(),
 Option ::
 {proportion, integer()} |
 {flag, integer()} |
 {border, integer()} |
 {userData, wx:wx_object()}.

Appends a child to the sizer.
wxSizer itself is an abstract class, but the parameters are equivalent in the derived
classes that you will instantiate to use it so they are described here:

 add/4

 -spec add(This, Width, Height, [Option]) -> wxSizerItem:wxSizerItem()
 when
 This :: wxSizer(),
 Width :: integer(),
 Height :: integer(),
 Option ::
 {proportion, integer()} |
 {flag, integer()} |
 {border, integer()} |
 {userData, wx:wx_object()};
 (This, Width, Height, Flags) -> wxSizerItem:wxSizerItem()
 when
 This :: wxSizer(),
 Width :: integer(),
 Height :: integer(),
 Flags :: wxSizerFlags:wxSizerFlags().

Appends a spacer child to the sizer.

 addSpacer(This, Size)

 -spec addSpacer(This, Size) -> wxSizerItem:wxSizerItem() when This :: wxSizer(), Size :: integer().

This base function adds non-stretchable space to both the horizontal and vertical
orientation of the sizer.
More readable way of calling:
See: addSpacer/2

 addStretchSpacer(This)

 -spec addStretchSpacer(This) -> wxSizerItem:wxSizerItem() when This :: wxSizer().

Equivalent to addStretchSpacer(This, []).

 addStretchSpacer/2

 -spec addStretchSpacer(This, [Option]) -> wxSizerItem:wxSizerItem()
 when This :: wxSizer(), Option :: {prop, integer()}.

Adds stretchable space to the sizer.
More readable way of calling:

 calcMin(This)

 -spec calcMin(This) -> {W :: integer(), H :: integer()} when This :: wxSizer().

This method is abstract and has to be overwritten by any derived class.
Here, the sizer will do the actual calculation of its children's minimal sizes.

 clear(This)

 -spec clear(This) -> ok when This :: wxSizer().

Equivalent to clear(This, []).

 clear/2

 -spec clear(This, [Option]) -> ok when This :: wxSizer(), Option :: {delete_windows, boolean()}.

Detaches all children from the sizer.
If delete_windows is true then child windows will also be deleted.
Notice that child sizers are always deleted, as a general consequence of the principle
that sizers own their sizer children, but don't own their window children (because they
are already owned by their parent windows).

 detach/2

 -spec detach(This, Window) -> boolean()
 when This :: wxSizer(), Window :: wxWindow:wxWindow() | wxSizer:wxSizer();
 (This, Index) -> boolean() when This :: wxSizer(), Index :: integer().

Detach a item at position index from the sizer without destroying it.
This method does not cause any layout or resizing to take place, call layout/1 to update the
layout "on screen" after detaching a child from the sizer. Returns true if the child item
was found and detached, false otherwise.
See: remove/2

 fit(This, Window)

 -spec fit(This, Window) -> {W :: integer(), H :: integer()}
 when This :: wxSizer(), Window :: wxWindow:wxWindow().

Tell the sizer to resize the window so that its client area matches the sizer's minimal
size (ComputeFittingClientSize() (not implemented in wx) is called to determine it).
This is commonly done in the constructor of the window itself, see sample in the
description of wxBoxSizer.
Return: The new window size.

 fitInside(This, Window)

 -spec fitInside(This, Window) -> ok when This :: wxSizer(), Window :: wxWindow:wxWindow().

Tell the sizer to resize the virtual size of the window to match the sizer's minimal
size.
This will not alter the on screen size of the window, but may cause the
addition/removal/alteration of scrollbars required to view the virtual area in windows
which manage it.
See:
	wxScrolledWindow:setScrollbars/6

	setVirtualSizeHints/2

 getChildren(This)

 -spec getChildren(This) -> [wxSizerItem:wxSizerItem()] when This :: wxSizer().

 getItem/2

 -spec getItem(This, Window) -> wxSizerItem:wxSizerItem()
 when This :: wxSizer(), Window :: wxWindow:wxWindow() | wxSizer:wxSizer();
 (This, Index) -> wxSizerItem:wxSizerItem() when This :: wxSizer(), Index :: integer().

Finds wxSizerItem which is located in the sizer at position index.
Use parameter recursive to search in subsizers too. Returns pointer to item or NULL.

 getItem/3

 -spec getItem(This, Window, [Option]) -> wxSizerItem:wxSizerItem()
 when
 This :: wxSizer(),
 Window :: wxWindow:wxWindow() | wxSizer:wxSizer(),
 Option :: {recursive, boolean()}.

Finds wxSizerItem which holds the given window.
Use parameter recursive to search in subsizers too. Returns pointer to item or NULL.

 getMinSize(This)

 -spec getMinSize(This) -> {W :: integer(), H :: integer()} when This :: wxSizer().

Returns the minimal size of the sizer.
This is either the combined minimal size of all the children and their borders or the
minimal size set by setMinSize/3, depending on which is bigger. Note that the returned value is client
size, not window size. In particular, if you use the value to set toplevel window's
minimal or actual size, use wxWindow::SetMinClientSize() (not implemented in wx) or wxWindow:setClientSize/3,
not wxWindow:setMinSize/2 or wxWindow:setSize/6.

 getPosition(This)

 -spec getPosition(This) -> {X :: integer(), Y :: integer()} when This :: wxSizer().

Returns the current position of the sizer.

 getSize(This)

 -spec getSize(This) -> {W :: integer(), H :: integer()} when This :: wxSizer().

Returns the current size of the sizer.

 hide/2

 -spec hide(This, Window) -> boolean()
 when This :: wxSizer(), Window :: wxWindow:wxWindow() | wxSizer:wxSizer();
 (This, Index) -> boolean() when This :: wxSizer(), Index :: integer().

Hides the item at position index.
To make a sizer item disappear, use hide/3 followed by layout/1.
Use parameter recursive to hide elements found in subsizers. Returns true if the child
item was found, false otherwise.
See:
	isShown/2

	show/3

 hide/3

 -spec hide(This, Window, [Option]) -> boolean()
 when
 This :: wxSizer(),
 Window :: wxWindow:wxWindow() | wxSizer:wxSizer(),
 Option :: {recursive, boolean()}.

Hides the child window.
To make a sizer item disappear, use hide/3 followed by layout/1.
Use parameter recursive to hide elements found in subsizers. Returns true if the child
item was found, false otherwise.
See:
	isShown/2

	show/3

 insert(This, Index, Item)

 -spec insert(This, Index, Item) -> wxSizerItem:wxSizerItem()
 when This :: wxSizer(), Index :: integer(), Item :: wxSizerItem:wxSizerItem().

 insert/4

 -spec insert(This, Index, Width, Height) -> wxSizerItem:wxSizerItem()
 when This :: wxSizer(), Index :: integer(), Width :: integer(), Height :: integer();
 (This, Index, Window, Flags) -> wxSizerItem:wxSizerItem()
 when
 This :: wxSizer(),
 Index :: integer(),
 Window :: wxWindow:wxWindow() | wxSizer:wxSizer(),
 Flags :: wxSizerFlags:wxSizerFlags();
 (This, Index, Window, [Option]) -> wxSizerItem:wxSizerItem()
 when
 This :: wxSizer(),
 Index :: integer(),
 Window :: wxWindow:wxWindow() | wxSizer:wxSizer(),
 Option ::
 {proportion, integer()} |
 {flag, integer()} |
 {border, integer()} |
 {userData, wx:wx_object()}.

Insert a child into the sizer before any existing item at index.
See add/4 for the meaning of the other parameters.

 insert/5

 -spec insert(This, Index, Width, Height, [Option]) -> wxSizerItem:wxSizerItem()
 when
 This :: wxSizer(),
 Index :: integer(),
 Width :: integer(),
 Height :: integer(),
 Option ::
 {proportion, integer()} |
 {flag, integer()} |
 {border, integer()} |
 {userData, wx:wx_object()};
 (This, Index, Width, Height, Flags) -> wxSizerItem:wxSizerItem()
 when
 This :: wxSizer(),
 Index :: integer(),
 Width :: integer(),
 Height :: integer(),
 Flags :: wxSizerFlags:wxSizerFlags().

Insert a child into the sizer before any existing item at index.
See add/4 for the meaning of the other parameters.

 insertSpacer(This, Index, Size)

 -spec insertSpacer(This, Index, Size) -> wxSizerItem:wxSizerItem()
 when This :: wxSizer(), Index :: integer(), Size :: integer().

Inserts non-stretchable space to the sizer.
More readable way of calling wxSizer::Insert(index, size, size).

 insertStretchSpacer(This, Index)

 -spec insertStretchSpacer(This, Index) -> wxSizerItem:wxSizerItem()
 when This :: wxSizer(), Index :: integer().

Equivalent to insertStretchSpacer(This, Index, []).

 insertStretchSpacer/3

 -spec insertStretchSpacer(This, Index, [Option]) -> wxSizerItem:wxSizerItem()
 when This :: wxSizer(), Index :: integer(), Option :: {prop, integer()}.

Inserts stretchable space to the sizer.
More readable way of calling wxSizer::Insert(0, 0, prop).

 isShown/2

 -spec isShown(This, Window) -> boolean()
 when This :: wxSizer(), Window :: wxWindow:wxWindow() | wxSizer:wxSizer();
 (This, Index) -> boolean() when This :: wxSizer(), Index :: integer().

Returns true if the item at index is shown.
See:
	hide/3

	show/3

	wxSizerItem:isShown/1

 layout(This)

 -spec layout(This) -> ok when This :: wxSizer().

Call this to force layout of the children anew, e.g. after having added a child to or
removed a child (window, other sizer or space) from the sizer while keeping the current
dimension.

 prepend(This, Item)

 -spec prepend(This, Item) -> wxSizerItem:wxSizerItem()
 when This :: wxSizer(), Item :: wxSizerItem:wxSizerItem().

 prepend/3

 -spec prepend(This, Width, Height) -> wxSizerItem:wxSizerItem()
 when This :: wxSizer(), Width :: integer(), Height :: integer();
 (This, Window, Flags) -> wxSizerItem:wxSizerItem()
 when
 This :: wxSizer(),
 Window :: wxWindow:wxWindow() | wxSizer:wxSizer(),
 Flags :: wxSizerFlags:wxSizerFlags();
 (This, Window, [Option]) -> wxSizerItem:wxSizerItem()
 when
 This :: wxSizer(),
 Window :: wxWindow:wxWindow() | wxSizer:wxSizer(),
 Option ::
 {proportion, integer()} |
 {flag, integer()} |
 {border, integer()} |
 {userData, wx:wx_object()}.

Same as add/4, but prepends the items to the beginning of the list of items (windows,
subsizers or spaces) owned by this sizer.

 prepend/4

 -spec prepend(This, Width, Height, [Option]) -> wxSizerItem:wxSizerItem()
 when
 This :: wxSizer(),
 Width :: integer(),
 Height :: integer(),
 Option ::
 {proportion, integer()} |
 {flag, integer()} |
 {border, integer()} |
 {userData, wx:wx_object()};
 (This, Width, Height, Flags) -> wxSizerItem:wxSizerItem()
 when
 This :: wxSizer(),
 Width :: integer(),
 Height :: integer(),
 Flags :: wxSizerFlags:wxSizerFlags().

Same as add/4, but prepends the items to the beginning of the list of items (windows,
subsizers or spaces) owned by this sizer.

 prependSpacer(This, Size)

 -spec prependSpacer(This, Size) -> wxSizerItem:wxSizerItem() when This :: wxSizer(), Size :: integer().

Prepends non-stretchable space to the sizer.
More readable way of calling wxSizer::Prepend(size, size, 0).

 prependStretchSpacer(This)

 -spec prependStretchSpacer(This) -> wxSizerItem:wxSizerItem() when This :: wxSizer().

Equivalent to prependStretchSpacer(This, []).

 prependStretchSpacer/2

 -spec prependStretchSpacer(This, [Option]) -> wxSizerItem:wxSizerItem()
 when This :: wxSizer(), Option :: {prop, integer()}.

Prepends stretchable space to the sizer.
More readable way of calling wxSizer::Prepend(0, 0, prop).

 recalcSizes(This)

 -spec recalcSizes(This) -> ok when This :: wxSizer().

Equivalent to: layout/1

 remove/2

 -spec remove(This, Index) -> boolean() when This :: wxSizer(), Index :: integer();
 (This, Sizer) -> boolean() when This :: wxSizer(), Sizer :: wxSizer().

Removes a sizer child from the sizer and destroys it.
Note: This method does not cause any layout or resizing to take place, call layout/1 to update
the layout "on screen" after removing a child from the sizer.
Return: true if the child item was found and removed, false otherwise.

 replace/3

 -spec replace(This, Oldwin, Newwin) -> boolean()
 when
 This :: wxSizer(),
 Oldwin :: wxWindow:wxWindow() | wxSizer:wxSizer(),
 Newwin :: wxWindow:wxWindow() | wxSizer:wxSizer();
 (This, Index, Newitem) -> boolean()
 when This :: wxSizer(), Index :: integer(), Newitem :: wxSizerItem:wxSizerItem().

Detaches the given item at position index from the sizer and replaces it with the given wxSizerItem
newitem.
The detached child is deleted only if it is a sizer or a spacer (but not if it is a wxWindow
because windows are owned by their parent window, not the sizer).
This method does not cause any layout or resizing to take place, call layout/1 to update the
layout "on screen" after replacing a child from the sizer.
Returns true if the child item was found and removed, false otherwise.

 replace/4

 -spec replace(This, Oldwin, Newwin, [Option]) -> boolean()
 when
 This :: wxSizer(),
 Oldwin :: wxWindow:wxWindow() | wxSizer:wxSizer(),
 Newwin :: wxWindow:wxWindow() | wxSizer:wxSizer(),
 Option :: {recursive, boolean()}.

Detaches the given oldwin from the sizer and replaces it with the given newwin.
The detached child window is not deleted (because windows are owned by their parent
window, not the sizer).
Use parameter recursive to search the given element recursively in subsizers.
This method does not cause any layout or resizing to take place, call layout/1 to update the
layout "on screen" after replacing a child from the sizer.
Returns true if the child item was found and removed, false otherwise.

 setDimension(This, Pos, Size)

 -spec setDimension(This, Pos, Size) -> ok
 when
 This :: wxSizer(),
 Pos :: {X :: integer(), Y :: integer()},
 Size :: {W :: integer(), H :: integer()}.

This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 setDimension(This, X, Y, Width, Height)

 -spec setDimension(This, X, Y, Width, Height) -> ok
 when
 This :: wxSizer(),
 X :: integer(),
 Y :: integer(),
 Width :: integer(),
 Height :: integer().

Call this to force the sizer to take the given dimension and thus force the items owned
by the sizer to resize themselves according to the rules defined by the parameter in the add/4
and prepend/4 methods.

 setItemMinSize/3

 -spec setItemMinSize(This, Window, Size) -> boolean()
 when
 This :: wxSizer(),
 Window :: wxWindow:wxWindow() | wxSizer:wxSizer(),
 Size :: {W :: integer(), H :: integer()};
 (This, Index, Size) -> boolean()
 when
 This :: wxSizer(),
 Index :: integer(),
 Size :: {W :: integer(), H :: integer()}.

 setItemMinSize/4

 -spec setItemMinSize(This, Window, Width, Height) -> boolean()
 when
 This :: wxSizer(),
 Window :: wxWindow:wxWindow() | wxSizer:wxSizer(),
 Width :: integer(),
 Height :: integer();
 (This, Index, Width, Height) -> boolean()
 when
 This :: wxSizer(),
 Index :: integer(),
 Width :: integer(),
 Height :: integer().

 setMinSize(This, Size)

 -spec setMinSize(This, Size) -> ok when This :: wxSizer(), Size :: {W :: integer(), H :: integer()}.

Call this to give the sizer a minimal size.
Normally, the sizer will calculate its minimal size based purely on how much space its
children need. After calling this method getMinSize/1 will return either the minimal size as requested
by its children or the minimal size set here, depending on which is bigger.

 setMinSize(This, Width, Height)

 -spec setMinSize(This, Width, Height) -> ok
 when This :: wxSizer(), Width :: integer(), Height :: integer().

This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 setSizeHints(This, Window)

 -spec setSizeHints(This, Window) -> ok when This :: wxSizer(), Window :: wxWindow:wxWindow().

This method first calls fit/2 and then setSizeHints/2 on the window passed to it.
This only makes sense when window is actually a wxTopLevelWindow such as a wxFrame
or a wxDialog, since SetSizeHints only has any effect in these classes. It does
nothing in normal windows or controls.
This method is implicitly used by wxWindow:setSizerAndFit/3 which is commonly invoked in the constructor of a
toplevel window itself (see the sample in the description of wxBoxSizer) if the
toplevel window is resizable.

 setVirtualSizeHints(This, Window)

 -spec setVirtualSizeHints(This, Window) -> ok when This :: wxSizer(), Window :: wxWindow:wxWindow().

Equivalent to: fitInside/2

 show/2

 -spec show(This, Window) -> boolean()
 when This :: wxSizer(), Window :: wxWindow:wxWindow() | wxSizer:wxSizer();
 (This, Index) -> boolean() when This :: wxSizer(), Index :: integer();
 (This, Show) -> ok when This :: wxSizer(), Show :: boolean().

 show/3

 -spec show(This, Window, [Option]) -> boolean()
 when
 This :: wxSizer(),
 Window :: wxWindow:wxWindow() | wxSizer:wxSizer(),
 Option :: {show, boolean()} | {recursive, boolean()};
 (This, Index, [Option]) -> boolean()
 when This :: wxSizer(), Index :: integer(), Option :: {show, boolean()}.

Shows the item at index.
To make a sizer item disappear or reappear, use show/3 followed by layout/1.
Returns true if the child item was found, false otherwise.
See:
	hide/3

	isShown/2

 showItems(This, Show)

 -spec showItems(This, Show) -> ok when This :: wxSizer(), Show :: boolean().

Show or hide all items managed by the sizer.

wxSizerFlags

Container for sizer items flags providing readable names for them.
Normally, when you add an item to a sizer via wxSizer:add/4, you have to specify a lot of flags and
parameters which can be unwieldy. This is where wxSizerFlags comes in: it allows you
to specify all parameters using the named methods instead. For example, instead of
you can now write
This is more readable and also allows you to create wxSizerFlags objects which can be
reused for several sizer items.
Note that by specification, all methods of wxSizerFlags return the wxSizerFlags
object itself to allowing chaining multiple methods calls like in the examples above.
See: wxSizer
wxWidgets docs: wxSizerFlags

 Summary

 Types

 wxSizerFlags()

 Functions

 align(This, Alignment)

 Sets the alignment of this wxSizerFlags to align.

 border(This)

 Equivalent to border(This, []).

 border/2

 Sets the wxSizerFlags to have a border with size as returned by GetDefaultBorder()
(not implemented in wx).

 border(This, Direction, Borderinpixels)

 Sets the wxSizerFlags to have a border of a number of pixels specified by borderinpixels
with the directions specified by direction.

 center(This)

 Sets the object of the wxSizerFlags to center itself in the area it is given.

 centre(This)

 Equivalent to: center/1

 destroy(This)

 Destroys the object

 expand(This)

 Sets the object of the wxSizerFlags to expand to fill as much area as it can.

 left(This)

 Aligns the object to the left, similar for Align(wxALIGN_LEFT).

 new()

 Equivalent to new([]).

 new(Options)

 Creates the wxSizer with the proportion specified by proportion.

 proportion(This, Proportion)

 Sets the proportion of this wxSizerFlags to proportion.

 right(This)

 Aligns the object to the right, similar for Align(wxALIGN_RIGHT).

 Types

 wxSizerFlags()

 -type wxSizerFlags() :: wx:wx_object().

 Functions

 align(This, Alignment)

 -spec align(This, Alignment) -> wxSizerFlags() when This :: wxSizerFlags(), Alignment :: integer().

Sets the alignment of this wxSizerFlags to align.
This method replaces the previously set alignment with the specified one.
See:
	left/1

	right/1

	centre/1

 border(This)

 -spec border(This) -> wxSizerFlags() when This :: wxSizerFlags().

Equivalent to border(This, []).

 border/2

 -spec border(This, [Option]) -> wxSizerFlags()
 when This :: wxSizerFlags(), Option :: {direction, integer()}.

Sets the wxSizerFlags to have a border with size as returned by GetDefaultBorder()
(not implemented in wx).

 border(This, Direction, Borderinpixels)

 -spec border(This, Direction, Borderinpixels) -> wxSizerFlags()
 when This :: wxSizerFlags(), Direction :: integer(), Borderinpixels :: integer().

Sets the wxSizerFlags to have a border of a number of pixels specified by borderinpixels
with the directions specified by direction.
Prefer to use the overload below or DoubleBorder() (not implemented in wx) or TripleBorder()
(not implemented in wx) versions instead of hard-coding the border value in pixels to
avoid too small borders on devices with high DPI displays.

 center(This)

 -spec center(This) -> wxSizerFlags() when This :: wxSizerFlags().

Sets the object of the wxSizerFlags to center itself in the area it is given.

 centre(This)

 -spec centre(This) -> wxSizerFlags() when This :: wxSizerFlags().

Equivalent to: center/1

 destroy(This)

 -spec destroy(This :: wxSizerFlags()) -> ok.

Destroys the object

 expand(This)

 -spec expand(This) -> wxSizerFlags() when This :: wxSizerFlags().

Sets the object of the wxSizerFlags to expand to fill as much area as it can.

 left(This)

 -spec left(This) -> wxSizerFlags() when This :: wxSizerFlags().

Aligns the object to the left, similar for Align(wxALIGN_LEFT).
Unlike align/2, this method doesn't change the vertical alignment of the item.

 new()

 -spec new() -> wxSizerFlags().

Equivalent to new([]).

 new(Options)

 -spec new([Option]) -> wxSizerFlags() when Option :: {proportion, integer()}.

Creates the wxSizer with the proportion specified by proportion.

 proportion(This, Proportion)

 -spec proportion(This, Proportion) -> wxSizerFlags()
 when This :: wxSizerFlags(), Proportion :: integer().

Sets the proportion of this wxSizerFlags to proportion.

 right(This)

 -spec right(This) -> wxSizerFlags() when This :: wxSizerFlags().

Aligns the object to the right, similar for Align(wxALIGN_RIGHT).
Unlike align/2, this method doesn't change the vertical alignment of the item.

wxSizerItem

The wxSizerItem class is used to track the position, size and other attributes of
each item managed by a wxSizer.
It is not usually necessary to use this class because the sizer elements can also be
identified by their positions or window or sizer pointers but sometimes it may be more
convenient to use it directly.
wxWidgets docs: wxSizerItem

 Summary

 Types

 wxSizerItem()

 Functions

 assignSizer(This, Sizer)

 Set the sizer tracked by this item.

 assignSpacer(This, Size)

 Set the size of the spacer tracked by this item.

 assignSpacer(This, W, H)

 assignWindow(This, Window)

 Set the window to be tracked by this item.

 calcMin(This)

 Calculates the minimum desired size for the item, including any space needed by borders.

 deleteWindows(This)

 Destroy the window or the windows in a subsizer, depending on the type of item.

 destroy(This)

 Destroys the object

 detachSizer(This)

 Enable deleting the SizerItem without destroying the contained sizer.

 getBorder(This)

 Return the border attribute.

 getFlag(This)

 Return the flags attribute.

 getMinSize(This)

 Get the minimum size needed for the item.

 getPosition(This)

 What is the current position of the item, as set in the last Layout.

 getProportion(This)

 Get the proportion item attribute.

 getRatio(This)

 Get the ratio item attribute.

 getRect(This)

 Get the rectangle of the item on the parent window, excluding borders.

 getSize(This)

 Get the current size of the item, as set in the last Layout.

 getSizer(This)

 If this item is tracking a sizer, return it.

 getSpacer(This)

 If this item is tracking a spacer, return its size.

 getUserData(This)

 Get the userData item attribute.

 getWindow(This)

 If this item is tracking a window then return it.

 isShown(This)

 Returns true if this item is a window or a spacer and it is shown or if this item is a
sizer and not all of its elements are hidden.

 isSizer(This)

 Is this item a sizer?

 isSpacer(This)

 Is this item a spacer?

 isWindow(This)

 Is this item a window?

 new(Window)

 Equivalent to new(Window, []).

 new/2

 new(Width, Height, Options)

 Construct a sizer item for tracking a spacer.

 setBorder(This, Border)

 Set the border item attribute.

 setDimension(This, Pos, Size)

 Set the position and size of the space allocated to the sizer, and adjust the position
and size of the item to be within that space taking alignment and borders into account.

 setFlag(This, Flag)

 Set the flag item attribute.

 setInitSize(This, X, Y)

 Sets the minimum size to be allocated for this item.

 setMinSize(This, Size)

 Sets the minimum size to be allocated for this item.

 setMinSize(This, X, Y)

 This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 setProportion(This, Proportion)

 Set the proportion item attribute.

 setRatio/2

 setRatio(This, Width, Height)

 Set the ratio item attribute.

 show(This, Show)

 Set the show item attribute, which sizers use to determine if the item is to be made part
of the layout or not.

 Types

 wxSizerItem()

 -type wxSizerItem() :: wx:wx_object().

 Functions

 assignSizer(This, Sizer)

 -spec assignSizer(This, Sizer) -> ok when This :: wxSizerItem(), Sizer :: wxSizer:wxSizer().

Set the sizer tracked by this item.
Old sizer, if any, is deleted.

 assignSpacer(This, Size)

 -spec assignSpacer(This, Size) -> ok
 when This :: wxSizerItem(), Size :: {W :: integer(), H :: integer()}.

Set the size of the spacer tracked by this item.
Old spacer, if any, is deleted.

 assignSpacer(This, W, H)

 -spec assignSpacer(This, W, H) -> ok when This :: wxSizerItem(), W :: integer(), H :: integer().

 assignWindow(This, Window)

 -spec assignWindow(This, Window) -> ok when This :: wxSizerItem(), Window :: wxWindow:wxWindow().

Set the window to be tracked by this item.
Note: This is a low-level method which is dangerous if used incorrectly, avoid using it
if possible, i.e. if higher level methods such as wxSizer:replace/4 can be used instead.
If the sizer item previously contained a window, it is dissociated from the sizer
containing this sizer item (if any), but this object doesn't have the pointer to the
containing sizer and so it's the caller's responsibility to call wxWindow:setContainingSizer/2 on window. Failure to
do this can result in memory corruption when the window is destroyed later, so it is
crucial to not forget to do it.
Also note that the previously contained window is not deleted, so it's also the callers
responsibility to do it, if necessary.

 calcMin(This)

 -spec calcMin(This) -> {W :: integer(), H :: integer()} when This :: wxSizerItem().

Calculates the minimum desired size for the item, including any space needed by borders.

 deleteWindows(This)

 -spec deleteWindows(This) -> ok when This :: wxSizerItem().

Destroy the window or the windows in a subsizer, depending on the type of item.

 destroy(This)

 -spec destroy(This :: wxSizerItem()) -> ok.

Destroys the object

 detachSizer(This)

 -spec detachSizer(This) -> ok when This :: wxSizerItem().

Enable deleting the SizerItem without destroying the contained sizer.

 getBorder(This)

 -spec getBorder(This) -> integer() when This :: wxSizerItem().

Return the border attribute.

 getFlag(This)

 -spec getFlag(This) -> integer() when This :: wxSizerItem().

Return the flags attribute.
See wxSizer flags list (not implemented in wx) for details.

 getMinSize(This)

 -spec getMinSize(This) -> {W :: integer(), H :: integer()} when This :: wxSizerItem().

Get the minimum size needed for the item.

 getPosition(This)

 -spec getPosition(This) -> {X :: integer(), Y :: integer()} when This :: wxSizerItem().

What is the current position of the item, as set in the last Layout.

 getProportion(This)

 -spec getProportion(This) -> integer() when This :: wxSizerItem().

Get the proportion item attribute.

 getRatio(This)

 -spec getRatio(This) -> number() when This :: wxSizerItem().

Get the ratio item attribute.

 getRect(This)

 -spec getRect(This) -> {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}
 when This :: wxSizerItem().

Get the rectangle of the item on the parent window, excluding borders.

 getSize(This)

 -spec getSize(This) -> {W :: integer(), H :: integer()} when This :: wxSizerItem().

Get the current size of the item, as set in the last Layout.

 getSizer(This)

 -spec getSizer(This) -> wxSizer:wxSizer() when This :: wxSizerItem().

If this item is tracking a sizer, return it.
NULL otherwise.

 getSpacer(This)

 -spec getSpacer(This) -> {W :: integer(), H :: integer()} when This :: wxSizerItem().

If this item is tracking a spacer, return its size.

 getUserData(This)

 -spec getUserData(This) -> wx:wx_object() when This :: wxSizerItem().

Get the userData item attribute.

 getWindow(This)

 -spec getWindow(This) -> wxWindow:wxWindow() when This :: wxSizerItem().

If this item is tracking a window then return it.
NULL otherwise.

 isShown(This)

 -spec isShown(This) -> boolean() when This :: wxSizerItem().

Returns true if this item is a window or a spacer and it is shown or if this item is a
sizer and not all of its elements are hidden.
In other words, for sizer items, all of the child elements must be hidden for the sizer
itself to be considered hidden.
As an exception, if the wxRESERVE_SPACE_EVEN_IF_HIDDEN flag was used for this sizer
item, then isShown/1 always returns true for it (see wxSizerFlags::ReserveSpaceEvenIfHidden()
(not implemented in wx)).

 isSizer(This)

 -spec isSizer(This) -> boolean() when This :: wxSizerItem().

Is this item a sizer?

 isSpacer(This)

 -spec isSpacer(This) -> boolean() when This :: wxSizerItem().

Is this item a spacer?

 isWindow(This)

 -spec isWindow(This) -> boolean() when This :: wxSizerItem().

Is this item a window?

 new(Window)

 -spec new(Window) -> wxSizerItem() when Window :: wxWindow:wxWindow() | wxSizer:wxSizer().

Equivalent to new(Window, []).

 new/2

 -spec new(Width, Height) -> wxSizerItem() when Width :: integer(), Height :: integer();
 (Window, Flags) -> wxSizerItem()
 when
 Window :: wxWindow:wxWindow() | wxSizer:wxSizer(), Flags :: wxSizerFlags:wxSizerFlags();
 (Window, [Option]) -> wxSizerItem()
 when
 Window :: wxWindow:wxWindow() | wxSizer:wxSizer(),
 Option ::
 {proportion, integer()} |
 {flag, integer()} |
 {border, integer()} |
 {userData, wx:wx_object()}.

 new(Width, Height, Options)

 -spec new(Width, Height, [Option]) -> wxSizerItem()
 when
 Width :: integer(),
 Height :: integer(),
 Option ::
 {proportion, integer()} |
 {flag, integer()} |
 {border, integer()} |
 {userData, wx:wx_object()}.

Construct a sizer item for tracking a spacer.

 setBorder(This, Border)

 -spec setBorder(This, Border) -> ok when This :: wxSizerItem(), Border :: integer().

Set the border item attribute.

 setDimension(This, Pos, Size)

 -spec setDimension(This, Pos, Size) -> ok
 when
 This :: wxSizerItem(),
 Pos :: {X :: integer(), Y :: integer()},
 Size :: {W :: integer(), H :: integer()}.

Set the position and size of the space allocated to the sizer, and adjust the position
and size of the item to be within that space taking alignment and borders into account.

 setFlag(This, Flag)

 -spec setFlag(This, Flag) -> ok when This :: wxSizerItem(), Flag :: integer().

Set the flag item attribute.

 setInitSize(This, X, Y)

 -spec setInitSize(This, X, Y) -> ok when This :: wxSizerItem(), X :: integer(), Y :: integer().

Sets the minimum size to be allocated for this item.
This is identical to setMinSize/3, prefer to use the other function, as its name is more clear.

 setMinSize(This, Size)

 -spec setMinSize(This, Size) -> ok when This :: wxSizerItem(), Size :: {W :: integer(), H :: integer()}.

Sets the minimum size to be allocated for this item.
If this item is a window, the size is also passed to wxWindow:setMinSize/2.

 setMinSize(This, X, Y)

 -spec setMinSize(This, X, Y) -> ok when This :: wxSizerItem(), X :: integer(), Y :: integer().

This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 setProportion(This, Proportion)

 -spec setProportion(This, Proportion) -> ok when This :: wxSizerItem(), Proportion :: integer().

Set the proportion item attribute.

 setRatio/2

 -spec setRatio(This, Ratio) -> ok when This :: wxSizerItem(), Ratio :: number();
 (This, Size) -> ok when This :: wxSizerItem(), Size :: {W :: integer(), H :: integer()}.

 setRatio(This, Width, Height)

 -spec setRatio(This, Width, Height) -> ok
 when This :: wxSizerItem(), Width :: integer(), Height :: integer().

Set the ratio item attribute.

 show(This, Show)

 -spec show(This, Show) -> ok when This :: wxSizerItem(), Show :: boolean().

Set the show item attribute, which sizers use to determine if the item is to be made part
of the layout or not.
If the item is tracking a window then it is shown or hidden as needed.

wxSlider

A slider is a control with a handle which can be pulled back and forth to change the
value.
On Windows, the track bar control is used.
On GTK+, tick marks are only available for version 2.16 and later.
Slider generates the same events as wxScrollBar but in practice the most convenient
way to process wxSlider updates is by handling the slider-specific wxEVT_SLIDER
event which carries wxCommandEvent containing just the latest slider position.
Styles
This class supports the following styles:
	wxSL_HORIZONTAL: Displays the slider horizontally (this is the default).

	wxSL_VERTICAL: Displays the slider vertically.

	wxSL_AUTOTICKS: Displays tick marks (Windows, GTK+ 2.16 and later).

	wxSL_MIN_MAX_LABELS: Displays minimum, maximum labels (new since wxWidgets 2.9.1).

	wxSL_VALUE_LABEL: Displays value label (new since wxWidgets 2.9.1).

	wxSL_LABELS: Displays minimum, maximum and value labels (same as wxSL_VALUE_LABEL and
wxSL_MIN_MAX_LABELS together).

	wxSL_LEFT: Displays ticks on the left and forces the slider to be vertical (Windows and
GTK+ 3 only).

	wxSL_RIGHT: Displays ticks on the right and forces the slider to be vertical.

	wxSL_TOP: Displays ticks on the top (Windows and GTK+ 3 only).

	wxSL_BOTTOM: Displays ticks on the bottom (this is the default).

	wxSL_BOTH: Displays ticks on both sides of the slider. Windows only.

	wxSL_SELRANGE: Displays a highlighted selection range. Windows only.

	wxSL_INVERSE: Inverses the minimum and maximum endpoints on the slider. Not compatible
with wxSL_SELRANGE. Notice that wxSL_LEFT, wxSL_TOP, wxSL_RIGHT and wxSL_BOTTOM
specify the position of the slider ticks and that the slider labels, if any, are
positioned on the opposite side. So, to have a label on the left side of a vertical
slider, wxSL_RIGHT must be used (or none of these styles at all should be specified as
left and top are default positions for the vertical and horizontal sliders respectively).

The difference between EVT_SCROLL_THUMBRELEASE and EVT_SCROLL_CHANGED
The EVT_SCROLL_THUMBRELEASE event is only emitted when actually dragging the thumb using
the mouse and releasing it (This EVT_SCROLL_THUMBRELEASE event is also followed by an
EVT_SCROLL_CHANGED event).
The EVT_SCROLL_CHANGED event also occurs when using the keyboard to change the thumb
position, and when clicking next to the thumb (In all these cases the
EVT_SCROLL_THUMBRELEASE event does not happen). In short, the EVT_SCROLL_CHANGED event is
triggered when scrolling/ moving has finished independently of the way it had started.
Please see the page_samples_widgets ("Slider" page) to see the difference between
EVT_SCROLL_THUMBRELEASE and EVT_SCROLL_CHANGED in action.
See:
	Overview events

	wxScrollBar

This class is derived, and can use functions, from:
	wxControl

	wxWindow

	wxEvtHandler

wxWidgets docs: wxSlider
Events
Event types emitted from this class:
	scroll_top

	scroll_bottom

	scroll_lineup

	scroll_linedown

	scroll_pageup

	scroll_pagedown

	scroll_thumbtrack

	scroll_thumbrelease

	scroll_changed

	scroll_top

	scroll_bottom

	scroll_lineup

	scroll_linedown

	scroll_pageup

	scroll_pagedown

	scroll_thumbtrack

	scroll_thumbrelease

	scroll_changed

	command_slider_updated

 Summary

 Types

 wxSlider()

 Functions

 create(This, Parent, Id, Value, MinValue, MaxValue)

 Equivalent to create(This, Parent, Id, Value, MinValue, MaxValue, []).

 create/7

 Used for two-step slider construction.

 destroy(This)

 Destroys the object

 getLineSize(This)

 Returns the line size.

 getMax(This)

 Gets the maximum slider value.

 getMin(This)

 Gets the minimum slider value.

 getPageSize(This)

 Returns the page size.

 getThumbLength(This)

 Returns the thumb length.

 getValue(This)

 Gets the current slider value.

 new()

 Default constructor.

 new(Parent, Id, Value, MinValue, MaxValue)

 Equivalent to new(Parent, Id, Value, MinValue, MaxValue, []).

 new/6

 Constructor, creating and showing a slider.

 setLineSize(This, LineSize)

 Sets the line size for the slider.

 setPageSize(This, PageSize)

 Sets the page size for the slider.

 setRange(This, MinValue, MaxValue)

 Sets the minimum and maximum slider values.

 setThumbLength(This, Len)

 Sets the slider thumb length.

 setValue(This, Value)

 Sets the slider position.

 Types

 wxSlider()

 -type wxSlider() :: wx:wx_object().

 Functions

 create(This, Parent, Id, Value, MinValue, MaxValue)

 -spec create(This, Parent, Id, Value, MinValue, MaxValue) -> boolean()
 when
 This :: wxSlider(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Value :: integer(),
 MinValue :: integer(),
 MaxValue :: integer().

Equivalent to create(This, Parent, Id, Value, MinValue, MaxValue, []).

 create/7

 -spec create(This, Parent, Id, Value, MinValue, MaxValue, [Option]) -> boolean()
 when
 This :: wxSlider(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Value :: integer(),
 MinValue :: integer(),
 MaxValue :: integer(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Used for two-step slider construction.
See new/6 for further details.

 destroy(This)

 -spec destroy(This :: wxSlider()) -> ok.

Destroys the object

 getLineSize(This)

 -spec getLineSize(This) -> integer() when This :: wxSlider().

Returns the line size.
See: setLineSize/2

 getMax(This)

 -spec getMax(This) -> integer() when This :: wxSlider().

Gets the maximum slider value.
See:
	getMin/1

	setRange/3

 getMin(This)

 -spec getMin(This) -> integer() when This :: wxSlider().

Gets the minimum slider value.
See:
	getMin/1

	setRange/3

 getPageSize(This)

 -spec getPageSize(This) -> integer() when This :: wxSlider().

Returns the page size.
See: setPageSize/2

 getThumbLength(This)

 -spec getThumbLength(This) -> integer() when This :: wxSlider().

Returns the thumb length.
Only for:wxmsw
See: setThumbLength/2

 getValue(This)

 -spec getValue(This) -> integer() when This :: wxSlider().

Gets the current slider value.
See:
	getMin/1

	getMax/1

	setValue/2

 new()

 -spec new() -> wxSlider().

Default constructor.

 new(Parent, Id, Value, MinValue, MaxValue)

 -spec new(Parent, Id, Value, MinValue, MaxValue) -> wxSlider()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Value :: integer(),
 MinValue :: integer(),
 MaxValue :: integer().

Equivalent to new(Parent, Id, Value, MinValue, MaxValue, []).

 new/6

 -spec new(Parent, Id, Value, MinValue, MaxValue, [Option]) -> wxSlider()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Value :: integer(),
 MinValue :: integer(),
 MaxValue :: integer(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Constructor, creating and showing a slider.
See: create/7

 setLineSize(This, LineSize)

 -spec setLineSize(This, LineSize) -> ok when This :: wxSlider(), LineSize :: integer().

Sets the line size for the slider.
See: getLineSize/1

 setPageSize(This, PageSize)

 -spec setPageSize(This, PageSize) -> ok when This :: wxSlider(), PageSize :: integer().

Sets the page size for the slider.
See: getPageSize/1

 setRange(This, MinValue, MaxValue)

 -spec setRange(This, MinValue, MaxValue) -> ok
 when This :: wxSlider(), MinValue :: integer(), MaxValue :: integer().

Sets the minimum and maximum slider values.
See:
	getMin/1

	getMax/1

 setThumbLength(This, Len)

 -spec setThumbLength(This, Len) -> ok when This :: wxSlider(), Len :: integer().

Sets the slider thumb length.
Only for:wxmsw
See: getThumbLength/1

 setValue(This, Value)

 -spec setValue(This, Value) -> ok when This :: wxSlider(), Value :: integer().

Sets the slider position.

wxSpinButton

A wxSpinButton has two small up and down (or left and right) arrow buttons.
It is often used next to a text control for increment and decrementing a value. Portable
programs should try to use wxSpinCtrl instead as wxSpinButton is not implemented
for all platforms but wxSpinCtrl is as it degenerates to a simple wxTextCtrl on
such platforms.
Note: the range supported by this control (and wxSpinCtrl) depends on the platform
but is at least -0x8000 to 0x7fff. Under GTK and Win32 with sufficiently new version
of comctrl32.dll (at least 4.71 is required, 5.80 is recommended) the full 32 bit range
is supported.
Styles
This class supports the following styles:
	wxSP_HORIZONTAL: Specifies a horizontal spin button (note that this style is not
supported in wxGTK).

	wxSP_VERTICAL: Specifies a vertical spin button.

	wxSP_ARROW_KEYS: The user can use arrow keys to change the value.

	wxSP_WRAP: The value wraps at the minimum and maximum.

See: wxSpinCtrl
This class is derived, and can use functions, from:
	wxControl

	wxWindow

	wxEvtHandler

wxWidgets docs: wxSpinButton
Events
Event types emitted from this class:
	spin

	spin_up

	spin_down

 Summary

 Types

 wxSpinButton()

 Functions

 create(This, Parent)

 Equivalent to create(This, Parent, []).

 create/3

 Scrollbar creation function called by the spin button constructor.

 destroy(This)

 Destroys the object

 getMax(This)

 Returns the maximum permissible value.

 getMin(This)

 Returns the minimum permissible value.

 getValue(This)

 Returns the current spin button value.

 new()

 Default constructor.

 new(Parent)

 Equivalent to new(Parent, []).

 new/2

 Constructor, creating and showing a spin button.

 setRange(This, Min, Max)

 Sets the range of the spin button.

 setValue(This, Value)

 Sets the value of the spin button.

 Types

 wxSpinButton()

 -type wxSpinButton() :: wx:wx_object().

 Functions

 create(This, Parent)

 -spec create(This, Parent) -> boolean() when This :: wxSpinButton(), Parent :: wxWindow:wxWindow().

Equivalent to create(This, Parent, []).

 create/3

 -spec create(This, Parent, [Option]) -> boolean()
 when
 This :: wxSpinButton(),
 Parent :: wxWindow:wxWindow(),
 Option ::
 {id, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Scrollbar creation function called by the spin button constructor.
See new/2 for details.

 destroy(This)

 -spec destroy(This :: wxSpinButton()) -> ok.

Destroys the object

 getMax(This)

 -spec getMax(This) -> integer() when This :: wxSpinButton().

Returns the maximum permissible value.
See: setRange/3

 getMin(This)

 -spec getMin(This) -> integer() when This :: wxSpinButton().

Returns the minimum permissible value.
See: setRange/3

 getValue(This)

 -spec getValue(This) -> integer() when This :: wxSpinButton().

Returns the current spin button value.
See: setValue/2

 new()

 -spec new() -> wxSpinButton().

Default constructor.

 new(Parent)

 -spec new(Parent) -> wxSpinButton() when Parent :: wxWindow:wxWindow().

Equivalent to new(Parent, []).

 new/2

 -spec new(Parent, [Option]) -> wxSpinButton()
 when
 Parent :: wxWindow:wxWindow(),
 Option ::
 {id, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Constructor, creating and showing a spin button.
See: create/3

 setRange(This, Min, Max)

 -spec setRange(This, Min, Max) -> ok when This :: wxSpinButton(), Min :: integer(), Max :: integer().

Sets the range of the spin button.
In portable code, min should be less than or equal to max. In wxMSW it is possible to
specify minimum greater than maximum and the native control supports the same range as if
they were reversed, but swaps the meaning of up and down arrows, however this dubious
feature is not supported on other platforms.
See:
	getMin/1

	getMax/1

 setValue(This, Value)

 -spec setValue(This, Value) -> ok when This :: wxSpinButton(), Value :: integer().

Sets the value of the spin button.

wxSpinCtrl

wxSpinCtrl combines wxTextCtrl and wxSpinButton in one control.
Styles
This class supports the following styles:
	wxSP_ARROW_KEYS: The user can use arrow keys to change the value.

	wxSP_WRAP: The value wraps at the minimum and maximum.

	wxTE_PROCESS_ENTER: Indicates that the control should generate wxEVT_TEXT_ENTER events.
Using this style will prevent the user from using the Enter key for dialog navigation
(e.g. activating the default button in the dialog) under MSW.

	wxALIGN_LEFT: Same as wxTE_LEFT for wxTextCtrl: the text is left aligned (this is the
default).

	wxALIGN_CENTRE_HORIZONTAL: Same as wxTE_CENTRE for wxTextCtrl: the text is centered.

	wxALIGN_RIGHT: Same as wxTE_RIGHT for wxTextCtrl: the text is right aligned.

See:
	wxSpinButton

	wxControl

This class is derived, and can use functions, from:
	wxControl

	wxWindow

	wxEvtHandler

wxWidgets docs: wxSpinCtrl
Events
Event types emitted from this class:
	command_spinctrl_updated

 Summary

 Types

 wxSpinCtrl()

 Functions

 create(This, Parent)

 Equivalent to create(This, Parent, []).

 create/3

 Creation function called by the spin control constructor.

 destroy(This)

 Destroys the object

 getMax(This)

 Gets maximal allowable value.

 getMin(This)

 Gets minimal allowable value.

 getValue(This)

 Gets the value of the spin control.

 new()

 Default constructor.

 new(Parent)

 Equivalent to new(Parent, []).

 new/2

 Constructor, creating and showing a spin control.

 setRange(This, MinVal, MaxVal)

 Sets range of allowable values.

 setSelection(This, From, To)

 Select the text in the text part of the control between positions from (inclusive) and to
(exclusive).

 setValue/2

 Sets the value of the spin control.

 Types

 wxSpinCtrl()

 -type wxSpinCtrl() :: wx:wx_object().

 Functions

 create(This, Parent)

 -spec create(This, Parent) -> boolean() when This :: wxSpinCtrl(), Parent :: wxWindow:wxWindow().

Equivalent to create(This, Parent, []).

 create/3

 -spec create(This, Parent, [Option]) -> boolean()
 when
 This :: wxSpinCtrl(),
 Parent :: wxWindow:wxWindow(),
 Option ::
 {id, integer()} |
 {value, unicode:chardata()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {min, integer()} |
 {max, integer()} |
 {initial, integer()}.

Creation function called by the spin control constructor.
See new/2 for details.

 destroy(This)

 -spec destroy(This :: wxSpinCtrl()) -> ok.

Destroys the object

 getMax(This)

 -spec getMax(This) -> integer() when This :: wxSpinCtrl().

Gets maximal allowable value.

 getMin(This)

 -spec getMin(This) -> integer() when This :: wxSpinCtrl().

Gets minimal allowable value.

 getValue(This)

 -spec getValue(This) -> integer() when This :: wxSpinCtrl().

Gets the value of the spin control.

 new()

 -spec new() -> wxSpinCtrl().

Default constructor.

 new(Parent)

 -spec new(Parent) -> wxSpinCtrl() when Parent :: wxWindow:wxWindow().

Equivalent to new(Parent, []).

 new/2

 -spec new(Parent, [Option]) -> wxSpinCtrl()
 when
 Parent :: wxWindow:wxWindow(),
 Option ::
 {id, integer()} |
 {value, unicode:chardata()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {min, integer()} |
 {max, integer()} |
 {initial, integer()}.

Constructor, creating and showing a spin control.
If value is non-empty, it will be shown in the text entry part of the control and if it
has numeric value, the initial numeric value of the control, as returned by getValue/1 will also be
determined by it instead of by initial. Hence, it only makes sense to specify initial
if value is an empty string or is not convertible to a number, otherwise initial is
simply ignored and the number specified by value is used.
See: create/3

 setRange(This, MinVal, MaxVal)

 -spec setRange(This, MinVal, MaxVal) -> ok
 when This :: wxSpinCtrl(), MinVal :: integer(), MaxVal :: integer().

Sets range of allowable values.
Notice that calling this method may change the value of the control if it's not inside
the new valid range, e.g. it will become minVal if it is less than it now. However no wxEVT_SPINCTRL
event is generated, even if it the value does change.
Note: Setting a range including negative values is silently ignored if current base is
set to 16.

 setSelection(This, From, To)

 -spec setSelection(This, From, To) -> ok when This :: wxSpinCtrl(), From :: integer(), To :: integer().

Select the text in the text part of the control between positions from (inclusive) and to
(exclusive).
This is similar to wxTextCtrl:setSelection/3.
Note: this is currently only implemented for Windows and generic versions of the control.

 setValue/2

 -spec setValue(This, Value) -> ok when This :: wxSpinCtrl(), Value :: integer();
 (This, Text) -> ok when This :: wxSpinCtrl(), Text :: unicode:chardata().

Sets the value of the spin control.
It is recommended to use the overload taking an integer value instead.
Notice that, unlike wxTextCtrl:setValue/2, but like most of the other setter methods in wxWidgets, calling
this method does not generate any events as events are only generated for the user
actions.

wxSpinEvent

This event class is used for the events generated by wxSpinButton and wxSpinCtrl.
See:
	wxSpinButton

	wxSpinCtrl

This class is derived, and can use functions, from:
	wxNotifyEvent

	wxCommandEvent

	wxEvent

wxWidgets docs: wxSpinEvent
Events
Use wxEvtHandler:connect/3 with wxSpinEventType to subscribe to events of this type.

 Summary

 Types

 wxSpin()

 wxSpinEvent()

 wxSpinEventType()

 Functions

 getPosition(This)

 Retrieve the current spin button or control value.

 setPosition(This, Pos)

 Set the value associated with the event.

 Types

 wxSpin()

 -type wxSpin() :: #wxSpin{type :: wxSpinEvent:wxSpinEventType(), commandInt :: integer()}.

 wxSpinEvent()

 -type wxSpinEvent() :: wx:wx_object().

 wxSpinEventType()

 -type wxSpinEventType() :: command_spinctrl_updated | spin_up | spin_down | spin.

 Functions

 getPosition(This)

 -spec getPosition(This) -> integer() when This :: wxSpinEvent().

Retrieve the current spin button or control value.

 setPosition(This, Pos)

 -spec setPosition(This, Pos) -> ok when This :: wxSpinEvent(), Pos :: integer().

Set the value associated with the event.

wxSplashScreen

wxSplashScreen shows a window with a thin border, displaying a bitmap describing your
application.
Show it in application initialisation, and then either explicitly destroy it or let it time-out.
Example usage:
This class is derived, and can use functions, from:
	wxFrame

	wxTopLevelWindow

	wxWindow

	wxEvtHandler

wxWidgets docs: wxSplashScreen

 Summary

 Types

 wxSplashScreen()

 Functions

 destroy(This)

 Destroys the object

 getSplashStyle(This)

 Returns the splash style (see new/6 for details).

 getTimeout(This)

 Returns the timeout in milliseconds.

 new(Bitmap, SplashStyle, Milliseconds, Parent, Id)

 Equivalent to new(Bitmap, SplashStyle, Milliseconds, Parent, Id, []).

 new/6

 Construct the splash screen passing a bitmap, a style, a timeout, a window id, optional
position and size, and a window style.

 Types

 wxSplashScreen()

 -type wxSplashScreen() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxSplashScreen()) -> ok.

Destroys the object

 getSplashStyle(This)

 -spec getSplashStyle(This) -> integer() when This :: wxSplashScreen().

Returns the splash style (see new/6 for details).

 getTimeout(This)

 -spec getTimeout(This) -> integer() when This :: wxSplashScreen().

Returns the timeout in milliseconds.

 new(Bitmap, SplashStyle, Milliseconds, Parent, Id)

 -spec new(Bitmap, SplashStyle, Milliseconds, Parent, Id) -> wxSplashScreen()
 when
 Bitmap :: wxBitmap:wxBitmap(),
 SplashStyle :: integer(),
 Milliseconds :: integer(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer().

Equivalent to new(Bitmap, SplashStyle, Milliseconds, Parent, Id, []).

 new/6

 -spec new(Bitmap, SplashStyle, Milliseconds, Parent, Id, [Option]) -> wxSplashScreen()
 when
 Bitmap :: wxBitmap:wxBitmap(),
 SplashStyle :: integer(),
 Milliseconds :: integer(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Construct the splash screen passing a bitmap, a style, a timeout, a window id, optional
position and size, and a window style.
splashStyle is a bitlist of some of the following:
	wxSPLASH_CENTRE_ON_PARENT

	wxSPLASH_CENTRE_ON_SCREEN

	wxSPLASH_NO_CENTRE

	wxSPLASH_TIMEOUT

	wxSPLASH_NO_TIMEOUT

milliseconds is the timeout in milliseconds.

wxSplitterEvent

This class represents the events generated by a splitter control.
Also there is only one event class, the data associated to the different events is not
the same and so not all accessor functions may be called for each event. The documentation
mentions the kind of event(s) for which the given accessor function makes sense: calling
it for other types of events will result in assert failure (in debug mode) and will return
meaningless results.
See:
	wxSplitterWindow

	Overview events

This class is derived, and can use functions, from:
	wxNotifyEvent

	wxCommandEvent

	wxEvent

wxWidgets docs: wxSplitterEvent
Events
Use wxEvtHandler:connect/3 with wxSplitterEventType to subscribe to events of this type.

 Summary

 Types

 wxSplitter()

 wxSplitterEvent()

 wxSplitterEventType()

 Functions

 getSashPosition(This)

 Returns the new sash position.

 getWindowBeingRemoved(This)

 Returns a pointer to the window being removed when a splitter window is unsplit.

 getX(This)

 Returns the x coordinate of the double-click point.

 getY(This)

 Returns the y coordinate of the double-click point.

 setSashPosition(This, Pos)

 In the case of wxEVT_SPLITTER_SASH_POS_CHANGED events, sets the new sash position.

 Types

 wxSplitter()

 -type wxSplitter() :: #wxSplitter{type :: wxSplitterEvent:wxSplitterEventType()}.

 wxSplitterEvent()

 -type wxSplitterEvent() :: wx:wx_object().

 wxSplitterEventType()

 -type wxSplitterEventType() ::
 command_splitter_sash_pos_changed | command_splitter_sash_pos_changing |
 command_splitter_doubleclicked | command_splitter_unsplit.

 Functions

 getSashPosition(This)

 -spec getSashPosition(This) -> integer() when This :: wxSplitterEvent().

Returns the new sash position.
May only be called while processing wxEVT_SPLITTER_SASH_POS_CHANGING and wxEVT_SPLITTER_SASH_POS_CHANGED
events.

 getWindowBeingRemoved(This)

 -spec getWindowBeingRemoved(This) -> wxWindow:wxWindow() when This :: wxSplitterEvent().

Returns a pointer to the window being removed when a splitter window is unsplit.
May only be called while processing wxEVT_SPLITTER_UNSPLIT events.

 getX(This)

 -spec getX(This) -> integer() when This :: wxSplitterEvent().

Returns the x coordinate of the double-click point.
May only be called while processing wxEVT_SPLITTER_DOUBLECLICKED events.

 getY(This)

 -spec getY(This) -> integer() when This :: wxSplitterEvent().

Returns the y coordinate of the double-click point.
May only be called while processing wxEVT_SPLITTER_DOUBLECLICKED events.

 setSashPosition(This, Pos)

 -spec setSashPosition(This, Pos) -> ok when This :: wxSplitterEvent(), Pos :: integer().

In the case of wxEVT_SPLITTER_SASH_POS_CHANGED events, sets the new sash position.
In the case of wxEVT_SPLITTER_SASH_POS_CHANGING events, sets the new tracking bar
position so visual feedback during dragging will represent that change that will actually
take place. Set to -1 from the event handler code to prevent repositioning.
May only be called while processing wxEVT_SPLITTER_SASH_POS_CHANGING and wxEVT_SPLITTER_SASH_POS_CHANGED
events.

wxSplitterWindow

This class manages up to two subwindows.
The current view can be split into two programmatically (perhaps from a menu command),
and unsplit either programmatically or via the wxSplitterWindow user interface.
Styles
This class supports the following styles:
	wxSP_3D: Draws a 3D effect border and sash.

	wxSP_THIN_SASH: Draws a thin sash.

	wxSP_3DSASH: Draws a 3D effect sash (part of default style).

	wxSP_3DBORDER: Synonym for wxSP_BORDER.

	wxSP_BORDER: Draws a standard border.

	wxSP_NOBORDER: No border (default).

	wxSP_NO_XP_THEME: Under Windows, switches off the attempt to draw the splitter using
Windows theming, so the borders and sash will take on the pre-XP look.

	wxSP_PERMIT_UNSPLIT: Always allow to unsplit, even with the minimum pane size other than
zero.

	wxSP_LIVE_UPDATE: Don't draw XOR line but resize the child windows immediately.

See:
	wxSplitterEvent

	Overview splitterwindow

This class is derived, and can use functions, from:
	wxWindow

	wxEvtHandler

wxWidgets docs: wxSplitterWindow
Events
Event types emitted from this class:
	command_splitter_sash_pos_changing

	command_splitter_sash_pos_changed

	command_splitter_unsplit

 Summary

 Types

 wxSplitterWindow()

 Functions

 create(This, Parent)

 Equivalent to create(This, Parent, []).

 create/3

 Creation function, for two-step construction.

 destroy(This)

 Destroys the object

 getMinimumPaneSize(This)

 Returns the current minimum pane size (defaults to zero).

 getSashGravity(This)

 Returns the current sash gravity.

 getSashPosition(This)

 Returns the current sash position.

 getSplitMode(This)

 Gets the split mode.

 getWindow1(This)

 Returns the left/top or only pane.

 getWindow2(This)

 Returns the right/bottom pane.

 initialize(This, Window)

 Initializes the splitter window to have one pane.

 isSplit(This)

 Returns true if the window is split, false otherwise.

 new()

 Default constructor.

 new(Parent)

 Equivalent to new(Parent, []).

 new/2

 Constructor for creating the window.

 replaceWindow(This, WinOld, WinNew)

 This function replaces one of the windows managed by the wxSplitterWindow with
another one.

 setMinimumPaneSize(This, PaneSize)

 Sets the minimum pane size.

 setSashGravity(This, Gravity)

 Sets the sash gravity.

 setSashPosition(This, Position)

 Equivalent to setSashPosition(This, Position, []).

 setSashPosition/3

 Sets the sash position.

 setSplitMode(This, Mode)

 Sets the split mode.

 splitHorizontally(This, Window1, Window2)

 Equivalent to splitHorizontally(This, Window1, Window2, []).

 splitHorizontally/4

 Initializes the top and bottom panes of the splitter window.

 splitVertically(This, Window1, Window2)

 Equivalent to splitVertically(This, Window1, Window2, []).

 splitVertically/4

 Initializes the left and right panes of the splitter window.

 unsplit(This)

 Equivalent to unsplit(This, []).

 unsplit/2

 Unsplits the window.

 updateSize(This)

 Causes any pending sizing of the sash and child panes to take place immediately.

 Types

 wxSplitterWindow()

 -type wxSplitterWindow() :: wx:wx_object().

 Functions

 create(This, Parent)

 -spec create(This, Parent) -> boolean() when This :: wxSplitterWindow(), Parent :: wxWindow:wxWindow().

Equivalent to create(This, Parent, []).

 create/3

 -spec create(This, Parent, [Option]) -> boolean()
 when
 This :: wxSplitterWindow(),
 Parent :: wxWindow:wxWindow(),
 Option ::
 {id, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Creation function, for two-step construction.
See new/2 for details.

 destroy(This)

 -spec destroy(This :: wxSplitterWindow()) -> ok.

Destroys the object

 getMinimumPaneSize(This)

 -spec getMinimumPaneSize(This) -> integer() when This :: wxSplitterWindow().

Returns the current minimum pane size (defaults to zero).
See: setMinimumPaneSize/2

 getSashGravity(This)

 -spec getSashGravity(This) -> number() when This :: wxSplitterWindow().

Returns the current sash gravity.
See: setSashGravity/2

 getSashPosition(This)

 -spec getSashPosition(This) -> integer() when This :: wxSplitterWindow().

Returns the current sash position.
See: setSashPosition/3

 getSplitMode(This)

 -spec getSplitMode(This) -> wx:wx_enum() when This :: wxSplitterWindow().

Gets the split mode.
See:
	setSplitMode/2

	splitVertically/4

	splitHorizontally/4

 getWindow1(This)

 -spec getWindow1(This) -> wxWindow:wxWindow() when This :: wxSplitterWindow().

Returns the left/top or only pane.

 getWindow2(This)

 -spec getWindow2(This) -> wxWindow:wxWindow() when This :: wxSplitterWindow().

Returns the right/bottom pane.

 initialize(This, Window)

 -spec initialize(This, Window) -> ok when This :: wxSplitterWindow(), Window :: wxWindow:wxWindow().

Initializes the splitter window to have one pane.
The child window is shown if it is currently hidden.
Remark: This should be called if you wish to initially view only a single pane in the
splitter window.
See:
	splitVertically/4

	splitHorizontally/4

 isSplit(This)

 -spec isSplit(This) -> boolean() when This :: wxSplitterWindow().

Returns true if the window is split, false otherwise.

 new()

 -spec new() -> wxSplitterWindow().

Default constructor.

 new(Parent)

 -spec new(Parent) -> wxSplitterWindow() when Parent :: wxWindow:wxWindow().

Equivalent to new(Parent, []).

 new/2

 -spec new(Parent, [Option]) -> wxSplitterWindow()
 when
 Parent :: wxWindow:wxWindow(),
 Option ::
 {id, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Constructor for creating the window.
Remark: After using this constructor, you must create either one or two subwindows with
the splitter window as parent, and then call one of initialize/2, splitVertically/4 and splitHorizontally/4 in order to set the pane(s).
You can create two windows, with one hidden when not being shown; or you can create and
delete the second pane on demand.
See:
	initialize/2

	splitVertically/4

	splitHorizontally/4

	create/3

 replaceWindow(This, WinOld, WinNew)

 -spec replaceWindow(This, WinOld, WinNew) -> boolean()
 when
 This :: wxSplitterWindow(),
 WinOld :: wxWindow:wxWindow(),
 WinNew :: wxWindow:wxWindow().

This function replaces one of the windows managed by the wxSplitterWindow with
another one.
It is in general better to use it instead of calling unsplit/2 and then resplitting the window
back because it will provoke much less flicker (if any). It is valid to call this function
whether the splitter has two windows or only one.
Both parameters should be non-NULL and winOld must specify one of the windows managed
by the splitter. If the parameters are incorrect or the window couldn't be replaced, false
is returned. Otherwise the function will return true, but please notice that it will not
delete the replaced window and you may wish to do it yourself.
See: getMinimumPaneSize/1

 setMinimumPaneSize(This, PaneSize)

 -spec setMinimumPaneSize(This, PaneSize) -> ok when This :: wxSplitterWindow(), PaneSize :: integer().

Sets the minimum pane size.
Remark: The default minimum pane size is zero, which means that either pane can be
reduced to zero by dragging the sash, thus removing one of the panes. To prevent this
behaviour (and veto out-of-range sash dragging), set a minimum size, for example 20
pixels. If the wxSP_PERMIT_UNSPLIT style is used when a splitter window is created, the
window may be unsplit even if minimum size is non-zero.
See: getMinimumPaneSize/1

 setSashGravity(This, Gravity)

 -spec setSashGravity(This, Gravity) -> ok when This :: wxSplitterWindow(), Gravity :: number().

Sets the sash gravity.
Remark: Gravity is real factor which controls position of sash while resizing wxSplitterWindow.
Gravity tells wxSplitterWindow how much will left/top window grow while resizing.
Example values:
	0.0: only the bottom/right window is automatically resized

	0.5: both windows grow by equal size

	1.0: only left/top window grows Gravity should be a real value between 0.0 and 1.0.
Default value of sash gravity is 0.0. That value is compatible with previous (before
gravity was introduced) behaviour of wxSplitterWindow.

Notice that when sash gravity for a newly created splitter window, it is often necessary
to explicitly set the splitter size using wxWindow:setSize/6 to ensure that is big enough for its initial
sash position. Otherwise, i.e. if the window is created with the default tiny size and
only resized to its correct size later, the initial sash position will be affected by the
gravity and typically result in sash being at the rightmost position for the gravity of 1.
See the example code creating wxSplitterWindow in the splitter sample for more details.
See: getSashGravity/1

 setSashPosition(This, Position)

 -spec setSashPosition(This, Position) -> ok when This :: wxSplitterWindow(), Position :: integer().

Equivalent to setSashPosition(This, Position, []).

 setSashPosition/3

 -spec setSashPosition(This, Position, [Option]) -> ok
 when
 This :: wxSplitterWindow(),
 Position :: integer(),
 Option :: {redraw, boolean()}.

Sets the sash position.
Remark: Does not currently check for an out-of-range value.
See: getSashPosition/1

 setSplitMode(This, Mode)

 -spec setSplitMode(This, Mode) -> ok when This :: wxSplitterWindow(), Mode :: integer().

Sets the split mode.
Remark: Only sets the internal variable; does not update the display.
See:
	getSplitMode/1

	splitVertically/4

	splitHorizontally/4

 splitHorizontally(This, Window1, Window2)

 -spec splitHorizontally(This, Window1, Window2) -> boolean()
 when
 This :: wxSplitterWindow(),
 Window1 :: wxWindow:wxWindow(),
 Window2 :: wxWindow:wxWindow().

Equivalent to splitHorizontally(This, Window1, Window2, []).

 splitHorizontally/4

 -spec splitHorizontally(This, Window1, Window2, [Option]) -> boolean()
 when
 This :: wxSplitterWindow(),
 Window1 :: wxWindow:wxWindow(),
 Window2 :: wxWindow:wxWindow(),
 Option :: {sashPosition, integer()}.

Initializes the top and bottom panes of the splitter window.
The child windows are shown if they are currently hidden.
Return: true if successful, false otherwise (the window was already split).
Remark: This should be called if you wish to initially view two panes. It can also be
called at any subsequent time, but the application should check that the window is not
currently split using isSplit/1.
See:
	splitVertically/4

	isSplit/1

	unsplit/2

 splitVertically(This, Window1, Window2)

 -spec splitVertically(This, Window1, Window2) -> boolean()
 when
 This :: wxSplitterWindow(),
 Window1 :: wxWindow:wxWindow(),
 Window2 :: wxWindow:wxWindow().

Equivalent to splitVertically(This, Window1, Window2, []).

 splitVertically/4

 -spec splitVertically(This, Window1, Window2, [Option]) -> boolean()
 when
 This :: wxSplitterWindow(),
 Window1 :: wxWindow:wxWindow(),
 Window2 :: wxWindow:wxWindow(),
 Option :: {sashPosition, integer()}.

Initializes the left and right panes of the splitter window.
The child windows are shown if they are currently hidden.
Return: true if successful, false otherwise (the window was already split).
Remark: This should be called if you wish to initially view two panes. It can also be
called at any subsequent time, but the application should check that the window is not
currently split using isSplit/1.
See:
	splitHorizontally/4

	isSplit/1

	unsplit/2

 unsplit(This)

 -spec unsplit(This) -> boolean() when This :: wxSplitterWindow().

Equivalent to unsplit(This, []).

 unsplit/2

 -spec unsplit(This, [Option]) -> boolean()
 when This :: wxSplitterWindow(), Option :: {toRemove, wxWindow:wxWindow()}.

Unsplits the window.
Return: true if successful, false otherwise (the window was not split).
Remark: This call will not actually delete the pane being removed; it calls OnUnsplit()
(not implemented in wx) which can be overridden for the desired behaviour. By default, the
pane being removed is hidden.
See:
	splitHorizontally/4

	splitVertically/4

	isSplit/1

 updateSize(This)

 -spec updateSize(This) -> ok when This :: wxSplitterWindow().

Causes any pending sizing of the sash and child panes to take place immediately.
Such resizing normally takes place in idle time, in order to wait for layout to be
completed. However, this can cause unacceptable flicker as the panes are resized after the
window has been shown. To work around this, you can perform window layout (for example by
sending a size event to the parent window), and then call this function, before showing
the top-level window.

wxStaticBitmap

A static bitmap control displays a bitmap.
Native implementations on some platforms are only meant for display of the small icons in
the dialog boxes.
If you want to display larger images portably, you may use generic implementation
wxGenericStaticBitmap declared in <wx/generic/statbmpg.h>.
Notice that for the best results, the size of the control should be the same as the size
of the image displayed in it, as happens by default if it's not resized explicitly.
Otherwise, behaviour depends on the platform: under MSW, the bitmap is drawn centred
inside the control, while elsewhere it is drawn at the origin of the control. You can use SetScaleMode()
(not implemented in wx) to control how the image is scaled inside the control.
See: wxBitmap
This class is derived, and can use functions, from:
	wxControl

	wxWindow

	wxEvtHandler

wxWidgets docs: wxStaticBitmap

 Summary

 Types

 wxStaticBitmap()

 Functions

 create(This, Parent, Id, Label)

 Equivalent to create(This, Parent, Id, Label, []).

 create/5

 Creation function, for two-step construction.

 destroy(This)

 Destroys the object

 getBitmap(This)

 Returns the bitmap currently used in the control.

 new()

 Default constructor.

 new(Parent, Id, Label)

 Equivalent to new(Parent, Id, Label, []).

 new/4

 Constructor, creating and showing a static bitmap control.

 setBitmap(This, Label)

 Sets the bitmap label.

 Types

 wxStaticBitmap()

 -type wxStaticBitmap() :: wx:wx_object().

 Functions

 create(This, Parent, Id, Label)

 -spec create(This, Parent, Id, Label) -> boolean()
 when
 This :: wxStaticBitmap(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Label :: wxBitmap:wxBitmap().

Equivalent to create(This, Parent, Id, Label, []).

 create/5

 -spec create(This, Parent, Id, Label, [Option]) -> boolean()
 when
 This :: wxStaticBitmap(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Label :: wxBitmap:wxBitmap(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Creation function, for two-step construction.
For details see new/4.

 destroy(This)

 -spec destroy(This :: wxStaticBitmap()) -> ok.

Destroys the object

 getBitmap(This)

 -spec getBitmap(This) -> wxBitmap:wxBitmap() when This :: wxStaticBitmap().

Returns the bitmap currently used in the control.
Notice that this method can be called even if SetIcon() (not implemented in wx) had
been used.
See: setBitmap/2

 new()

 -spec new() -> wxStaticBitmap().

Default constructor.

 new(Parent, Id, Label)

 -spec new(Parent, Id, Label) -> wxStaticBitmap()
 when Parent :: wxWindow:wxWindow(), Id :: integer(), Label :: wxBitmap:wxBitmap().

Equivalent to new(Parent, Id, Label, []).

 new/4

 -spec new(Parent, Id, Label, [Option]) -> wxStaticBitmap()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Label :: wxBitmap:wxBitmap(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Constructor, creating and showing a static bitmap control.
See: create/5

 setBitmap(This, Label)

 -spec setBitmap(This, Label) -> ok when This :: wxStaticBitmap(), Label :: wxBitmap:wxBitmap().

Sets the bitmap label.
See: getBitmap/1

wxStaticBox

A static box is a rectangle drawn around other windows to denote a logical grouping of
items.
Note that while the previous versions required that windows appearing inside a static box
be created as its siblings (i.e. use the same parent as the static box itself), since
wxWidgets 2.9.1 it is also possible to create them as children of wxStaticBox itself
and you are actually encouraged to do it like this if compatibility with the previous
versions is not important.
So the new recommended way to create static box is:
While the compatible - and now deprecated - way is
Also note that there is a specialized wxSizer class (wxStaticBoxSizer) which can
be used as an easier way to pack items into a static box.
See:
	wxStaticText

	wxStaticBoxSizer

This class is derived, and can use functions, from:
	wxControl

	wxWindow

	wxEvtHandler

wxWidgets docs: wxStaticBox

 Summary

 Types

 wxStaticBox()

 Functions

 create(This, Parent, Id, Label)

 Equivalent to create(This, Parent, Id, Label, []).

 create/5

 Creates the static box for two-step construction.

 destroy(This)

 Destroys the object

 new()

 Default constructor.

 new(Parent, Id, Label)

 Equivalent to new(Parent, Id, Label, []).

 new/4

 Constructor, creating and showing a static box.

 Types

 wxStaticBox()

 -type wxStaticBox() :: wx:wx_object().

 Functions

 create(This, Parent, Id, Label)

 -spec create(This, Parent, Id, Label) -> boolean()
 when
 This :: wxStaticBox(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Label :: unicode:chardata().

Equivalent to create(This, Parent, Id, Label, []).

 create/5

 -spec create(This, Parent, Id, Label, [Option]) -> boolean()
 when
 This :: wxStaticBox(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Label :: unicode:chardata(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Creates the static box for two-step construction.
See new/4 for further details.

 destroy(This)

 -spec destroy(This :: wxStaticBox()) -> ok.

Destroys the object

 new()

 -spec new() -> wxStaticBox().

Default constructor.

 new(Parent, Id, Label)

 -spec new(Parent, Id, Label) -> wxStaticBox()
 when Parent :: wxWindow:wxWindow(), Id :: integer(), Label :: unicode:chardata().

Equivalent to new(Parent, Id, Label, []).

 new/4

 -spec new(Parent, Id, Label, [Option]) -> wxStaticBox()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Label :: unicode:chardata(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Constructor, creating and showing a static box.
See: create/5

wxStaticBoxSizer

wxStaticBoxSizer is a sizer derived from wxBoxSizer but adds a static box around
the sizer.
The static box may be either created independently or the sizer may create it itself as a
convenience. In any case, the sizer owns the wxStaticBox control and will delete it in
the wxStaticBoxSizer destructor.
Note that since wxWidgets 2.9.1 you are encouraged to create the windows which are added
to wxStaticBoxSizer as children of wxStaticBox itself, see this class
documentation for more details.
Example of use of this class:
See:
	wxSizer

	wxStaticBox

	wxBoxSizer

	Overview sizer

This class is derived, and can use functions, from:
	wxBoxSizer

	wxSizer

wxWidgets docs: wxStaticBoxSizer

 Summary

 Types

 wxStaticBoxSizer()

 Functions

 destroy(This)

 Destroys the object

 getStaticBox(This)

 Returns the static box associated with the sizer.

 new/2

 This constructor uses an already existing static box.

 new/3

 This constructor creates a new static box with the given label and parent window.

 Types

 wxStaticBoxSizer()

 -type wxStaticBoxSizer() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxStaticBoxSizer()) -> ok.

Destroys the object

 getStaticBox(This)

 -spec getStaticBox(This) -> wxStaticBox:wxStaticBox() when This :: wxStaticBoxSizer().

Returns the static box associated with the sizer.

 new/2

 -spec new(Orient, Parent) -> wxStaticBoxSizer() when Orient :: integer(), Parent :: wxWindow:wxWindow();
 (Box, Orient) -> wxStaticBoxSizer() when Box :: wxStaticBox:wxStaticBox(), Orient :: integer().

This constructor uses an already existing static box.

 new/3

 -spec new(Orient, Parent, [Option]) -> wxStaticBoxSizer()
 when
 Orient :: integer(),
 Parent :: wxWindow:wxWindow(),
 Option :: {label, unicode:chardata()}.

This constructor creates a new static box with the given label and parent window.

wxStaticLine

A static line is just a line which may be used in a dialog to separate the groups of
controls.
The line may be only vertical or horizontal. Moreover, not all ports (notably not wxGTK)
support specifying the transversal direction of the line (e.g. height for a horizontal
line) so for maximal portability you should specify it as wxDefaultCoord.
Styles
This class supports the following styles:
	wxLI_HORIZONTAL: Creates a horizontal line.

	wxLI_VERTICAL: Creates a vertical line.

See: wxStaticBox
This class is derived, and can use functions, from:
	wxControl

	wxWindow

	wxEvtHandler

wxWidgets docs: wxStaticLine

 Summary

 Types

 wxStaticLine()

 Functions

 create(This, Parent)

 Equivalent to create(This, Parent, []).

 create/3

 Creates the static line for two-step construction.

 destroy(This)

 Destroys the object

 getDefaultSize()

 This static function returns the size which will be given to the smaller dimension of the
static line, i.e.

 isVertical(This)

 Returns true if the line is vertical, false if horizontal.

 new()

 Default constructor.

 new(Parent)

 Equivalent to new(Parent, []).

 new/2

 Constructor, creating and showing a static line.

 Types

 wxStaticLine()

 -type wxStaticLine() :: wx:wx_object().

 Functions

 create(This, Parent)

 -spec create(This, Parent) -> boolean() when This :: wxStaticLine(), Parent :: wxWindow:wxWindow().

Equivalent to create(This, Parent, []).

 create/3

 -spec create(This, Parent, [Option]) -> boolean()
 when
 This :: wxStaticLine(),
 Parent :: wxWindow:wxWindow(),
 Option ::
 {id, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Creates the static line for two-step construction.
See new/2 for further details.

 destroy(This)

 -spec destroy(This :: wxStaticLine()) -> ok.

Destroys the object

 getDefaultSize()

 -spec getDefaultSize() -> integer().

This static function returns the size which will be given to the smaller dimension of the
static line, i.e.
its height for a horizontal line or its width for a vertical one.

 isVertical(This)

 -spec isVertical(This) -> boolean() when This :: wxStaticLine().

Returns true if the line is vertical, false if horizontal.

 new()

 -spec new() -> wxStaticLine().

Default constructor.

 new(Parent)

 -spec new(Parent) -> wxStaticLine() when Parent :: wxWindow:wxWindow().

Equivalent to new(Parent, []).

 new/2

 -spec new(Parent, [Option]) -> wxStaticLine()
 when
 Parent :: wxWindow:wxWindow(),
 Option ::
 {id, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Constructor, creating and showing a static line.
See: create/3

wxStaticText

A static text control displays one or more lines of read-only text.
wxStaticText supports the three classic text alignments, label ellipsization i.e.
replacing parts of the text with the ellipsis ("...") if the label doesn't fit into the
provided space and also formatting markup with wxControl::SetLabelMarkup() (not
implemented in wx).
Styles
This class supports the following styles:
	wxALIGN_LEFT: Align the text to the left.

	wxALIGN_RIGHT: Align the text to the right.

	wxALIGN_CENTRE_HORIZONTAL: Center the text (horizontally).

	wxST_NO_AUTORESIZE: By default, the control will adjust its size to exactly fit to the
size of the text when setLabel/2 is called. If this style flag is given, the control will not change
its size (this style is especially useful with controls which also have the wxALIGN_RIGHT
or the wxALIGN_CENTRE_HORIZONTAL style because otherwise they won't make sense any
longer after a call to setLabel/2).

	wxST_ELLIPSIZE_START: If the labeltext width exceeds the control width, replace the
beginning of the label with an ellipsis; uses wxControl::Ellipsize (not implemented in
wx).

	wxST_ELLIPSIZE_MIDDLE: If the label text width exceeds the control width, replace the
middle of the label with an ellipsis; uses wxControl::Ellipsize (not implemented in wx).

	wxST_ELLIPSIZE_END: If the label text width exceeds the control width, replace the end of
the label with an ellipsis; uses wxControl::Ellipsize (not implemented in wx).

See:
	wxStaticBitmap

	wxStaticBox

This class is derived, and can use functions, from:
	wxControl

	wxWindow

	wxEvtHandler

wxWidgets docs: wxStaticText

 Summary

 Types

 wxStaticText()

 Functions

 create(This, Parent, Id, Label)

 Equivalent to create(This, Parent, Id, Label, []).

 create/5

 Creation function, for two-step construction.

 destroy(This)

 Destroys the object

 getLabel(This)

 Returns the control's label, as it was passed to wxControl:setLabel/2.

 new()

 Default constructor.

 new(Parent, Id, Label)

 Equivalent to new(Parent, Id, Label, []).

 new/4

 Constructor, creating and showing a text control.

 setLabel(This, Label)

 Change the label shown in the control.

 wrap(This, Width)

 This functions wraps the controls label so that each of its lines becomes at most width
pixels wide if possible (the lines are broken at words boundaries so it might not be the
case if words are too long).

 Types

 wxStaticText()

 -type wxStaticText() :: wx:wx_object().

 Functions

 create(This, Parent, Id, Label)

 -spec create(This, Parent, Id, Label) -> boolean()
 when
 This :: wxStaticText(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Label :: unicode:chardata().

Equivalent to create(This, Parent, Id, Label, []).

 create/5

 -spec create(This, Parent, Id, Label, [Option]) -> boolean()
 when
 This :: wxStaticText(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Label :: unicode:chardata(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Creation function, for two-step construction.
For details see new/4.

 destroy(This)

 -spec destroy(This :: wxStaticText()) -> ok.

Destroys the object

 getLabel(This)

 -spec getLabel(This) -> unicode:charlist() when This :: wxStaticText().

Returns the control's label, as it was passed to wxControl:setLabel/2.
Note that the returned string may contains mnemonics ("&" characters) if they were passed
to the wxControl:setLabel/2 function; use GetLabelText() (not implemented in wx) if they are undesired.
Also note that the returned string is always the string which was passed to wxControl:setLabel/2 but may be
different from the string passed to SetLabelText() (not implemented in wx) (since this
last one escapes mnemonic characters).

 new()

 -spec new() -> wxStaticText().

Default constructor.

 new(Parent, Id, Label)

 -spec new(Parent, Id, Label) -> wxStaticText()
 when Parent :: wxWindow:wxWindow(), Id :: integer(), Label :: unicode:chardata().

Equivalent to new(Parent, Id, Label, []).

 new/4

 -spec new(Parent, Id, Label, [Option]) -> wxStaticText()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Label :: unicode:chardata(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Constructor, creating and showing a text control.
See: create/5

 setLabel(This, Label)

 -spec setLabel(This, Label) -> ok when This :: wxStaticText(), Label :: unicode:chardata().

Change the label shown in the control.
Notice that since wxWidgets 3.1.1 this function is guaranteed not to do anything if the
label didn't really change, so there is no benefit to checking if the new label is
different from the current one in the application code.
See: wxControl:setLabel/2

 wrap(This, Width)

 -spec wrap(This, Width) -> ok when This :: wxStaticText(), Width :: integer().

This functions wraps the controls label so that each of its lines becomes at most width
pixels wide if possible (the lines are broken at words boundaries so it might not be the
case if words are too long).
If width is negative, no wrapping is done. Note that this width is not necessarily the
total width of the control, since a few pixels for the border (depending on the controls
border style) may be added.
Since: 2.6.2

wxStatusBar

A status bar is a narrow window that can be placed along the bottom of a frame to give
small amounts of status information.
It can contain one or more fields, one or more of which can be variable length according
to the size of the window.
wxStatusBar also maintains an independent stack of status texts for each field (see pushStatusText/3
and popStatusText/2).
Note that in wxStatusBar context, the terms pane and field are synonyms.
Styles
This class supports the following styles:
	wxSTB_SIZEGRIP: Displays a gripper at the right-hand side of the status bar which can be
used to resize the parent window.

	wxSTB_SHOW_TIPS: Displays tooltips for those panes whose status text has been
ellipsized/truncated because the status text doesn't fit the pane width. Note that this
style has effect only on wxGTK (with GTK+ >= 2.12) currently.

	wxSTB_ELLIPSIZE_START: Replace the beginning of the status texts with an ellipsis when
the status text widths exceed the status bar pane's widths (uses wxControl::Ellipsize
(not implemented in wx)).

	wxSTB_ELLIPSIZE_MIDDLE: Replace the middle of the status texts with an ellipsis when the
status text widths exceed the status bar pane's widths (uses wxControl::Ellipsize (not
implemented in wx)).

	wxSTB_ELLIPSIZE_END: Replace the end of the status texts with an ellipsis when the status
text widths exceed the status bar pane's widths (uses wxControl::Ellipsize (not
implemented in wx)).

	wxSTB_DEFAULT_STYLE: The default style: includes wxSTB_SIZEGRIP|wxSTB_SHOW_TIPS|wxSTB_ELLIPSIZE_END|wxFULL_REPAINT_ON_RESIZE.

Remark: It is possible to create controls and other windows on the status bar. Position
these windows from an OnSize() event handler.
Remark: Notice that only the first 127 characters of a string will be shown in status bar
fields under Windows if a proper manifest indicating that the program uses version 6 of
common controls library is not used. This is a limitation of the native control on these platforms.
See:
	wxFrame

	Examples

This class is derived, and can use functions, from:
	wxWindow

	wxEvtHandler

wxWidgets docs: wxStatusBar

 Summary

 Types

 wxStatusBar()

 Functions

 create(This, Parent)

 Equivalent to create(This, Parent, []).

 create/3

 Creates the window, for two-step construction.

 destroy(This)

 Destroys the object

 getFieldRect(This, I)

 Returns the size and position of a field's internal bounding rectangle.

 getFieldsCount(This)

 Returns the number of fields in the status bar.

 getStatusText(This)

 Equivalent to getStatusText(This, []).

 getStatusText/2

 Returns the string associated with a status bar field.

 new()

 Default ctor.

 new(Parent)

 Equivalent to new(Parent, []).

 new/2

 Constructor, creating the window.

 popStatusText(This)

 Equivalent to popStatusText(This, []).

 popStatusText/2

 Restores the text to the value it had before the last call to pushStatusText/3.

 pushStatusText(This, String)

 Equivalent to pushStatusText(This, String, []).

 pushStatusText/3

 Saves the current field text in a per-field stack, and sets the field text to the string
passed as argument.

 setFieldsCount(This, Number)

 Equivalent to setFieldsCount(This, Number, []).

 setFieldsCount/3

 Sets the number of fields, and optionally the field widths.

 setMinHeight(This, Height)

 Sets the minimal possible height for the status bar.

 setStatusStyles(This, Styles)

 Sets the styles of the fields in the status line which can make fields appear flat or
raised instead of the standard sunken 3D border.

 setStatusText(This, Text)

 Equivalent to setStatusText(This, Text, []).

 setStatusText/3

 Sets the status text for the i-th field.

 setStatusWidths(This, Widths_field)

 Sets the widths of the fields in the status line.

 Types

 wxStatusBar()

 -type wxStatusBar() :: wx:wx_object().

 Functions

 create(This, Parent)

 -spec create(This, Parent) -> boolean() when This :: wxStatusBar(), Parent :: wxWindow:wxWindow().

Equivalent to create(This, Parent, []).

 create/3

 -spec create(This, Parent, [Option]) -> boolean()
 when
 This :: wxStatusBar(),
 Parent :: wxWindow:wxWindow(),
 Option :: {winid, integer()} | {style, integer()}.

Creates the window, for two-step construction.
See new/2 for details.

 destroy(This)

 -spec destroy(This :: wxStatusBar()) -> ok.

Destroys the object

 getFieldRect(This, I)

 -spec getFieldRect(This, I) -> Result
 when
 Result ::
 {Res :: boolean(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}},
 This :: wxStatusBar(),
 I :: integer().

Returns the size and position of a field's internal bounding rectangle.
Return: true if the field index is valid, false otherwise.
See: {X,Y,W,H}

 getFieldsCount(This)

 -spec getFieldsCount(This) -> integer() when This :: wxStatusBar().

Returns the number of fields in the status bar.

 getStatusText(This)

 -spec getStatusText(This) -> unicode:charlist() when This :: wxStatusBar().

Equivalent to getStatusText(This, []).

 getStatusText/2

 -spec getStatusText(This, [Option]) -> unicode:charlist()
 when This :: wxStatusBar(), Option :: {number, integer()}.

Returns the string associated with a status bar field.
Return: The status field string if the field is valid, otherwise the empty string.
See: setStatusText/3

 new()

 -spec new() -> wxStatusBar().

Default ctor.

 new(Parent)

 -spec new(Parent) -> wxStatusBar() when Parent :: wxWindow:wxWindow().

Equivalent to new(Parent, []).

 new/2

 -spec new(Parent, [Option]) -> wxStatusBar()
 when Parent :: wxWindow:wxWindow(), Option :: {winid, integer()} | {style, integer()}.

Constructor, creating the window.
See: create/3

 popStatusText(This)

 -spec popStatusText(This) -> ok when This :: wxStatusBar().

Equivalent to popStatusText(This, []).

 popStatusText/2

 -spec popStatusText(This, [Option]) -> ok when This :: wxStatusBar(), Option :: {number, integer()}.

Restores the text to the value it had before the last call to pushStatusText/3.
Notice that if setStatusText/3 had been called in the meanwhile, popStatusText/2 will not change the text, i.e. it does
not override explicit changes to status text but only restores the saved text if it hadn't
been changed since.
See: pushStatusText/3

 pushStatusText(This, String)

 -spec pushStatusText(This, String) -> ok when This :: wxStatusBar(), String :: unicode:chardata().

Equivalent to pushStatusText(This, String, []).

 pushStatusText/3

 -spec pushStatusText(This, String, [Option]) -> ok
 when
 This :: wxStatusBar(),
 String :: unicode:chardata(),
 Option :: {number, integer()}.

Saves the current field text in a per-field stack, and sets the field text to the string
passed as argument.
See: popStatusText/2

 setFieldsCount(This, Number)

 -spec setFieldsCount(This, Number) -> ok when This :: wxStatusBar(), Number :: integer().

Equivalent to setFieldsCount(This, Number, []).

 setFieldsCount/3

 -spec setFieldsCount(This, Number, [Option]) -> ok
 when This :: wxStatusBar(), Number :: integer(), Option :: {widths, [integer()]}.

Sets the number of fields, and optionally the field widths.

 setMinHeight(This, Height)

 -spec setMinHeight(This, Height) -> ok when This :: wxStatusBar(), Height :: integer().

Sets the minimal possible height for the status bar.
The real height may be bigger than the height specified here depending on the size of the
font used by the status bar.

 setStatusStyles(This, Styles)

 -spec setStatusStyles(This, Styles) -> ok when This :: wxStatusBar(), Styles :: [integer()].

Sets the styles of the fields in the status line which can make fields appear flat or
raised instead of the standard sunken 3D border.

 setStatusText(This, Text)

 -spec setStatusText(This, Text) -> ok when This :: wxStatusBar(), Text :: unicode:chardata().

Equivalent to setStatusText(This, Text, []).

 setStatusText/3

 -spec setStatusText(This, Text, [Option]) -> ok
 when
 This :: wxStatusBar(),
 Text :: unicode:chardata(),
 Option :: {number, integer()}.

Sets the status text for the i-th field.
The given text will replace the current text. The display of the status bar is updated
immediately, so there is no need to call wxWindow:update/1 after calling this function.
Note that if pushStatusText/3 had been called before the new text will also replace the last saved value
to make sure that the next call to popStatusText/2 doesn't restore the old value, which was overwritten
by the call to this function.
See:
	getStatusText/2

	wxFrame:setStatusText/3

 setStatusWidths(This, Widths_field)

 -spec setStatusWidths(This, Widths_field) -> ok when This :: wxStatusBar(), Widths_field :: [integer()].

Sets the widths of the fields in the status line.
There are two types of fields: fixed widths and variable width fields. For the fixed
width fields you should specify their (constant) width in pixels. For the variable width
fields, specify a negative number which indicates how the field should expand: the space
left for all variable width fields is divided between them according to the absolute value
of this number. A variable width field with width of -2 gets twice as much of it as a
field with width -1 and so on.
For example, to create one fixed width field of width 100 in the right part of the status
bar and two more fields which get 66% and 33% of the remaining space correspondingly, you
should use an array containing -2, -1 and 100.
Remark: The widths of the variable fields are calculated from the total width of all
fields, minus the sum of widths of the non-variable fields, divided by the number of
variable fields.
See:
	setFieldsCount/3

	wxFrame:setStatusWidths/2

wxStdDialogButtonSizer

This class creates button layouts which conform to the standard button spacing and
ordering defined by the platform or toolkit's user interface guidelines (if such things
exist).
By using this class, you can ensure that all your standard dialogs look correct on all
major platforms. Currently it conforms to the Windows, GTK+ and macOS human interface guidelines.
When there aren't interface guidelines defined for a particular platform or toolkit, wxStdDialogButtonSizer
reverts to the Windows implementation.
To use this class, first add buttons to the sizer by calling addButton/2 (or setAffirmativeButton/2, setNegativeButton/2 or setCancelButton/2) and then call
Realize in order to create the actual button layout used. Other than these special
operations, this sizer works like any other sizer.
If you add a button with wxID_SAVE, on macOS the button will be renamed to "Save" and the
wxID_NO button will be renamed to "Don't Save" in accordance with the macOS Human
Interface Guidelines.
See:
	wxSizer

	Overview sizer

	wxDialog:createButtonSizer/2

This class is derived, and can use functions, from:
	wxBoxSizer

	wxSizer

wxWidgets docs: wxStdDialogButtonSizer

 Summary

 Types

 wxStdDialogButtonSizer()

 Functions

 addButton(This, Button)

 Adds a button to the wxStdDialogButtonSizer.

 destroy(This)

 Destroys the object

 new()

 Constructor for a wxStdDialogButtonSizer.

 realize(This)

 Rearranges the buttons and applies proper spacing between buttons to make them match the
platform or toolkit's interface guidelines.

 setAffirmativeButton(This, Button)

 Sets the affirmative button for the sizer.

 setCancelButton(This, Button)

 Sets the cancel button for the sizer.

 setNegativeButton(This, Button)

 Sets the negative button for the sizer.

 Types

 wxStdDialogButtonSizer()

 -type wxStdDialogButtonSizer() :: wx:wx_object().

 Functions

 addButton(This, Button)

 -spec addButton(This, Button) -> ok when This :: wxStdDialogButtonSizer(), Button :: wxButton:wxButton().

Adds a button to the wxStdDialogButtonSizer.
The button must have one of the following identifiers:
	wxID_OK

	wxID_YES

	wxID_SAVE

	wxID_APPLY

	wxID_CLOSE

	wxID_NO

	wxID_CANCEL

	wxID_HELP

	wxID_CONTEXT_HELP

 destroy(This)

 -spec destroy(This :: wxStdDialogButtonSizer()) -> ok.

Destroys the object

 new()

 -spec new() -> wxStdDialogButtonSizer().

Constructor for a wxStdDialogButtonSizer.

 realize(This)

 -spec realize(This) -> ok when This :: wxStdDialogButtonSizer().

Rearranges the buttons and applies proper spacing between buttons to make them match the
platform or toolkit's interface guidelines.

 setAffirmativeButton(This, Button)

 -spec setAffirmativeButton(This, Button) -> ok
 when This :: wxStdDialogButtonSizer(), Button :: wxButton:wxButton().

Sets the affirmative button for the sizer.
This allows you to use identifiers other than the standard identifiers outlined above.

 setCancelButton(This, Button)

 -spec setCancelButton(This, Button) -> ok
 when This :: wxStdDialogButtonSizer(), Button :: wxButton:wxButton().

Sets the cancel button for the sizer.
This allows you to use identifiers other than the standard identifiers outlined above.

 setNegativeButton(This, Button)

 -spec setNegativeButton(This, Button) -> ok
 when This :: wxStdDialogButtonSizer(), Button :: wxButton:wxButton().

Sets the negative button for the sizer.
This allows you to use identifiers other than the standard identifiers outlined above.

wxStyledTextCtrl

A wxWidgets implementation of the Scintilla source code editing component.
As well as features found in standard text editing components, Scintilla includes
features especially useful when editing and debugging source code. These include support
for syntax styling, error indicators, code completion and call tips.
The selection margin can contain markers like those used in debuggers to indicate
breakpoints and the current line. Styling choices are more open than with many editors,
allowing the use of proportional fonts, bold and italics, multiple foreground and
background colours and multiple fonts.
wxStyledTextCtrl is a 1 to 1 mapping of "raw" scintilla interface, whose
documentation can be found in the Scintilla website (http://www.scintilla.org/).
Please see wxStyledTextEvent for the documentation of all event types you can use
with wxStyledTextCtrl.
This class is derived, and can use functions, from:
	wxControl

	wxWindow

	wxEvtHandler

wxWidgets docs: wxStyledTextCtrl

 Summary

 Types

 wxStyledTextCtrl()

 Functions

 addText(This, Text)

 Add text to the document at current position.

 addTextRaw(This, Text)

 Equivalent to addTextRaw(This, Text, []).

 addTextRaw/3

 Add text to the document at current position.

 allocate(This, Bytes)

 Enlarge the document to a particular size of text bytes.

 appendText(This, Text)

 Append a string to the end of the document without changing the selection.

 appendTextRaw(This, Text)

 Equivalent to appendTextRaw(This, Text, []).

 appendTextRaw/3

 Append a string to the end of the document without changing the selection.

 autoCompActive(This)

 Is there an auto-completion list visible?

 autoCompCancel(This)

 Remove the auto-completion list from the screen.

 autoCompComplete(This)

 User has selected an item so remove the list and insert the selection.

 autoCompGetAutoHide(This)

 Retrieve whether or not autocompletion is hidden automatically when nothing matches.

 autoCompGetCancelAtStart(This)

 Retrieve whether auto-completion cancelled by backspacing before start.

 autoCompGetChooseSingle(This)

 Retrieve whether a single item auto-completion list automatically choose the item.

 autoCompGetCurrent(This)

 Get currently selected item position in the auto-completion list.

 autoCompGetDropRestOfWord(This)

 Retrieve whether or not autocompletion deletes any word characters after the inserted
text upon completion.

 autoCompGetIgnoreCase(This)

 Retrieve state of ignore case flag.

 autoCompGetMaxHeight(This)

 Set the maximum height, in rows, of auto-completion and user lists.

 autoCompGetMaxWidth(This)

 Get the maximum width, in characters, of auto-completion and user lists.

 autoCompGetSeparator(This)

 Retrieve the auto-completion list separator character.

 autoCompGetTypeSeparator(This)

 Retrieve the auto-completion list type-separator character.

 autoCompPosStart(This)

 Retrieve the position of the caret when the auto-completion list was displayed.

 autoCompSelect(This, Select)

 Select the item in the auto-completion list that starts with a string.

 autoCompSetAutoHide(This, AutoHide)

 Set whether or not autocompletion is hidden automatically when nothing matches.

 autoCompSetCancelAtStart(This, Cancel)

 Should the auto-completion list be cancelled if the user backspaces to a position before
where the box was created.

 autoCompSetChooseSingle(This, ChooseSingle)

 Should a single item auto-completion list automatically choose the item.

 autoCompSetDropRestOfWord(This, DropRestOfWord)

 Set whether or not autocompletion deletes any word characters after the inserted text
upon completion.

 autoCompSetFillUps(This, CharacterSet)

 Define a set of characters that when typed will cause the autocompletion to choose the
selected item.

 autoCompSetIgnoreCase(This, IgnoreCase)

 Set whether case is significant when performing auto-completion searches.

 autoCompSetMaxHeight(This, RowCount)

 Set the maximum height, in rows, of auto-completion and user lists.

 autoCompSetMaxWidth(This, CharacterCount)

 Set the maximum width, in characters, of auto-completion and user lists.

 autoCompSetSeparator(This, SeparatorCharacter)

 Change the separator character in the string setting up an auto-completion list.

 autoCompSetTypeSeparator(This, SeparatorCharacter)

 Change the type-separator character in the string setting up an auto-completion list.

 autoCompShow(This, LengthEntered, ItemList)

 Display a auto-completion list.

 autoCompStops(This, CharacterSet)

 Define a set of character that when typed cancel the auto-completion list.

 backTab(This)

 Dedent the selected lines.

 beginUndoAction(This)

 Start a sequence of actions that is undone and redone as a unit.

 braceBadLight(This, Pos)

 Highlight the character at a position indicating there is no matching brace.

 braceHighlight(This, PosA, PosB)

 Highlight the characters at two positions.

 braceMatch(This, Pos)

 Find the position of a matching brace or wxSTC_INVALID_POSITION if no match.

 callTipActive(This)

 Is there an active call tip?

 callTipCancel(This)

 Remove the call tip from the screen.

 callTipPosAtStart(This)

 Retrieve the position where the caret was before displaying the call tip.

 callTipSetBackground(This, Back)

 Set the background colour for the call tip.

 callTipSetForeground(This, Fore)

 Set the foreground colour for the call tip.

 callTipSetForegroundHighlight(This, Fore)

 Set the foreground colour for the highlighted part of the call tip.

 callTipSetHighlight(This, HighlightStart, HighlightEnd)

 Highlight a segment of the definition.

 callTipShow(This, Pos, Definition)

 Show a call tip containing a definition near position pos.

 callTipUseStyle(This, TabSize)

 Enable use of wxSTC_STYLE_CALLTIP and set call tip tab size in pixels.

 cancel(This)

 Cancel any modes such as call tip or auto-completion list display.

 canPaste(This)

 Will a paste succeed?

 canRedo(This)

 Are there any redoable actions in the undo history?

 canUndo(This)

 Are there any undoable actions in the undo history?

 charLeft(This)

 Move caret left one character.

 charLeftExtend(This)

 Move caret left one character extending selection to new caret position.

 charLeftRectExtend(This)

 Move caret left one character, extending rectangular selection to new caret position.

 charRight(This)

 Move caret right one character.

 charRightExtend(This)

 Move caret right one character extending selection to new caret position.

 charRightRectExtend(This)

 Move caret right one character, extending rectangular selection to new caret position.

 chooseCaretX(This)

 Set the last x chosen value to be the caret x position.

 clear(This)

 Clear the selection.

 clearAll(This)

 Delete all text in the document.

 clearDocumentStyle(This)

 Set all style bytes to 0, remove all folding information.

 clearRegisteredImages(This)

 Clear all the registered images.

 cmdKeyAssign(This, Key, Modifiers, Cmd)

 When key+modifier combination keyDefinition is pressed perform sciCommand.

 cmdKeyClear(This, Key, Modifiers)

 When key+modifier combination keyDefinition is pressed do nothing.

 cmdKeyClearAll(This)

 Drop all key mappings.

 cmdKeyExecute(This, Cmd)

 Perform one of the operations defined by the wxSTCCMD* constants.

 colourise(This, Start, End)

 Colourise a segment of the document using the current lexing language.

 convertEOLs(This, EolMode)

 Convert all line endings in the document to one mode.

 copy(This)

 Copy the selection to the clipboard.

 copyRange(This, Start, End)

 Copy a range of text to the clipboard.

 copyText(This, Length, Text)

 Copy argument text to the clipboard.

 create(This, Parent)

 Equivalent to create(This, Parent, []).

 create/3

 Create the UI elements for a STC that was created with the default ctor.

 cut(This)

 Cut the selection to the clipboard.

 deleteBack(This)

 Delete the selection or if no selection, the character before the caret.

 deleteBackNotLine(This)

 Delete the selection or if no selection, the character before the caret.

 delLineLeft(This)

 Delete back from the current position to the start of the line.

 delLineRight(This)

 Delete forwards from the current position to the end of the line.

 delWordLeft(This)

 Delete the word to the left of the caret.

 delWordRight(This)

 Delete the word to the right of the caret.

 destroy(This)

 Destroys the object

 docLineFromVisible(This, DisplayLine)

 Find the document line of a display line taking hidden lines into account.

 documentEnd(This)

 Move caret to last position in document.

 documentEndExtend(This)

 Move caret to last position in document extending selection to new caret position.

 documentStart(This)

 Move caret to first position in document.

 documentStartExtend(This)

 Move caret to first position in document extending selection to new caret position.

 doDragOver(This, X, Y, DefaultRes)

 Allow for simulating a DnD DragOver.

 doDropText(This, X, Y, Data)

 Allow for simulating a DnD DropText.

 editToggleOvertype(This)

 Switch from insert to overtype mode or the reverse.

 emptyUndoBuffer(This)

 Delete the undo history.

 endUndoAction(This)

 End a sequence of actions that is undone and redone as a unit.

 ensureCaretVisible(This)

 Ensure the caret is visible.

 ensureVisible(This, Line)

 Ensure a particular line is visible by expanding any header line hiding it.

 ensureVisibleEnforcePolicy(This, Line)

 Ensure a particular line is visible by expanding any header line hiding it.

 findColumn(This, Line, Column)

 Find the position of a column on a line taking into account tabs and multi-byte
characters.

 findText(This, MinPos, MaxPos, Text)

 Equivalent to findText(This, MinPos, MaxPos, Text, []).

 findText/5

 Find some text in the document. @param minPos The position (starting from zero) in the document at which to begin the search @param maxPos The last position (starting from zero) in the document to which the search will be restricted. @param text The text to search for. @param flags (Optional) The search flags. This should be a bit list containing one or more of the @link wxStyledTextCtrl::wxSTC_FIND_WHOLEWORD wxSTC_FIND_* @endlink constants.

 formatRange(This, DoDraw, StartPos, EndPos, Draw, Target, RenderRect, PageRect)

 On Windows, will draw the document into a display context such as a printer.

 formFeed(This)

 Insert a Form Feed character.

 getAnchor(This)

 Returns the position of the opposite end of the selection to the caret.

 getBackSpaceUnIndents(This)

 Does a backspace pressed when caret is within indentation unindent?

 getBufferedDraw(This)

 Is drawing done first into a buffer or direct to the screen?

 getCaretForeground(This)

 Get the foreground colour of the caret.

 getCaretLineBackAlpha(This)

 Get the background alpha of the caret line.

 getCaretLineBackground(This)

 Get the colour of the background of the line containing the caret.

 getCaretLineVisible(This)

 Is the background of the line containing the caret in a different colour?

 getCaretPeriod(This)

 Get the time in milliseconds that the caret is on and off.

 getCaretSticky(This)

 Can the caret preferred x position only be changed by explicit movement commands?

 getCaretWidth(This)

 Returns the width of the insert mode caret.

 getCharAt(This, Pos)

 Returns the character byte at the position.

 getCodePage(This)

 Get the code page used to interpret the bytes of the document as characters.

 getColumn(This, Pos)

 Retrieve the column number of a position, taking tab width into account.

 getControlCharSymbol(This)

 Get the way control characters are displayed.

 getCurLine(This)

 Retrieve the text of the line containing the caret.

 getCurLineRaw(This)

 Retrieve the text of the line containing the caret.

 getCurrentLine(This)

 Returns the line number of the line with the caret.

 getCurrentPos(This)

 Returns the position of the caret.

 getEdgeColour(This)

 Retrieve the colour used in edge indication.

 getEdgeColumn(This)

 Retrieve the column number which text should be kept within.

 getEdgeMode(This)

 Retrieve the edge highlight mode.

 getEndAtLastLine(This)

 Retrieve whether the maximum scroll position has the last line at the bottom of the view.

 getEndStyled(This)

 Retrieve the position of the last correctly styled character.

 getEOLMode(This)

 Retrieve the current end of line mode - one of wxSTC_EOL_CRLF, wxSTC_EOL_CR, or
wxSTC_EOL_LF.

 getFirstVisibleLine(This)

 Retrieve the display line at the top of the display.

 getFoldExpanded(This, Line)

 Is a header line expanded?

 getFoldLevel(This, Line)

 Retrieve the fold level of a line.

 getFoldParent(This, Line)

 Find the parent line of a child line.

 getHighlightGuide(This)

 Get the highlighted indentation guide column.

 getIndent(This)

 Retrieve indentation size.

 getIndentationGuides(This)

 Are the indentation guides visible?

 getLastChild(This, Line, Level)

 Find the last child line of a header line.

 getLastKeydownProcessed(This)

 Can be used to prevent the EVT_CHAR handler from adding the char.

 getLayoutCache(This)

 Retrieve the degree of caching of layout information.

 getLength(This)

 Returns the number of bytes in the document.

 getLexer(This)

 Retrieve the lexing language of the document.

 getLine(This, Line)

 Retrieve the contents of a line.

 getLineCount(This)

 Returns the number of lines in the document.

 getLineEndPosition(This, Line)

 Get the position after the last visible characters on a line.

 getLineIndentation(This, Line)

 Retrieve the number of columns that a line is indented.

 getLineIndentPosition(This, Line)

 Retrieve the position before the first non indentation character on a line.

 getLineRaw(This, Line)

 Retrieve the contents of a line.

 getLineState(This, Line)

 Retrieve the extra styling information for a line.

 getLineVisible(This, Line)

 Is a line visible?

 getMarginLeft(This)

 Returns the size in pixels of the left margin.

 getMarginMask(This, Margin)

 Retrieve the marker mask of a margin.

 getMarginRight(This)

 Returns the size in pixels of the right margin.

 getMarginSensitive(This, Margin)

 Retrieve the mouse click sensitivity of a margin.

 getMarginType(This, Margin)

 Retrieve the type of a margin.

 getMarginWidth(This, Margin)

 Retrieve the width of a margin in pixels.

 getMaxLineState(This)

 Retrieve the last line number that has line state.

 getModEventMask(This)

 Get which document modification events are sent to the container.

 getModify(This)

 Is the document different from when it was last saved?

 getMouseDownCaptures(This)

 Get whether mouse gets captured.

 getMouseDwellTime(This)

 Retrieve the time the mouse must sit still to generate a mouse dwell event.

 getOvertype(This)

 Returns true if overtype mode is active otherwise false is returned.

 getPasteConvertEndings(This)

 Get convert-on-paste setting.

 getPrintColourMode(This)

 Returns the print colour mode.

 getPrintMagnification(This)

 Returns the print magnification.

 getPrintWrapMode(This)

 Is printing line wrapped?

 getProperty(This, Key)

 Retrieve a "property" value previously set with SetProperty.

 getReadOnly(This)

 In read-only mode?

 getScrollWidth(This)

 Retrieve the document width assumed for scrolling.

 getSearchFlags(This)

 Get the search flags used by SearchInTarget.

 getSelAlpha(This)

 Get the alpha of the selection.

 getSelectedText(This)

 Retrieve the selected text.

 getSelectedTextRaw(This)

 Retrieve the selected text.

 getSelection(This)

 Gets the current selection span.

 getSelectionEnd(This)

 Returns the position at the end of the selection.

 getSelectionMode(This)

 Get the mode of the current selection.

 getSelectionStart(This)

 Returns the position at the start of the selection.

 getSTCCursor(This)

 Get cursor type.

 getSTCFocus(This)

 Get internal focus flag.

 getStatus(This)

 Get error status.

 getStyleAt(This, Pos)

 Returns the style byte at the position.

 getStyleBits(This)

 Retrieve number of bits in style bytes used to hold the lexical state.

 getStyleBitsNeeded(This)

 Retrieve the number of bits the current lexer needs for styling.

 getTabIndents(This)

 Does a tab pressed when caret is within indentation indent?

 getTabWidth(This)

 Retrieve the visible size of a tab.

 getTargetEnd(This)

 Get the position that ends the target.

 getTargetStart(This)

 Get the position that starts the target.

 getText(This)

 Retrieve all the text in the document.

 getTextLength(This)

 Retrieve the number of characters in the document.

 getTextRange(This, StartPos, EndPos)

 Retrieve a range of text.

 getTextRangeRaw(This, StartPos, EndPos)

 Retrieve a range of text.

 getTextRaw(This)

 Retrieve all the text in the document.

 getTwoPhaseDraw(This)

 Is drawing done in two phases with backgrounds drawn before foregrounds?

 getUndoCollection(This)

 Is undo history being collected?

 getUseAntiAliasing(This)

 Returns the current UseAntiAliasing setting.

 getUseHorizontalScrollBar(This)

 Is the horizontal scroll bar visible?

 getUseTabs(This)

 Retrieve whether tabs will be used in indentation.

 getUseVerticalScrollBar(This)

 Is the vertical scroll bar visible?

 getViewEOL(This)

 Are the end of line characters visible?

 getViewWhiteSpace(This)

 Are white space characters currently visible? Returns one of wxSTCWS* constants.

 getWrapMode(This)

 Retrieve whether text is word wrapped.

 getWrapStartIndent(This)

 Retrieve the start indent for wrapped lines.

 getWrapVisualFlags(This)

 Retrieve the display mode of visual flags for wrapped lines.

 getWrapVisualFlagsLocation(This)

 Retrieve the location of visual flags for wrapped lines.

 getXOffset(This)

 Get the xOffset (ie, horizontal scroll position).

 getZoom(This)

 Retrieve the zoom level.

 gotoLine(This, Line)

 Set caret to start of a line and ensure it is visible.

 gotoPos(This, Caret)

 Set caret to a position and ensure it is visible.

 hideLines(This, LineStart, LineEnd)

 Make a range of lines invisible.

 hideSelection(This, Hide)

 Draw the selection in normal style or with selection highlighted.

 home(This)

 Move caret to first position on line.

 homeDisplay(This)

 Move caret to first position on display line.

 homeDisplayExtend(This)

 Move caret to first position on display line extending selection to new caret position.

 homeExtend(This)

 Move caret to first position on line extending selection to new caret position.

 homeRectExtend(This)

 Move caret to first position on line, extending rectangular selection to new caret
position.

 homeWrapExtend(This)

 Like HomeExtend but when word-wrap is enabled extends first to start of display line
HomeDisplayExtend, then to start of document line HomeExtend.

 indicatorGetForeground(This, Indicator)

 Retrieve the foreground colour of an indicator.

 indicatorGetStyle(This, Indicator)

 Retrieve the style of an indicator.

 indicatorSetForeground(This, Indicator, Fore)

 Set the foreground colour of an indicator.

 indicatorSetStyle(This, Indicator, IndicatorStyle)

 Set an indicator to plain, squiggle or TT.

 insertText(This, Pos, Text)

 Insert string at a position.

 insertTextRaw(This, Pos, Text)

 Insert string at a position.

 lineCopy(This)

 Copy the line containing the caret.

 lineCut(This)

 Cut the line containing the caret.

 lineDelete(This)

 Delete the line containing the caret.

 lineDown(This)

 Move caret down one line.

 lineDownExtend(This)

 Move caret down one line extending selection to new caret position.

 lineDownRectExtend(This)

 Move caret down one line, extending rectangular selection to new caret position.

 lineDuplicate(This)

 Duplicate the current line.

 lineEnd(This)

 Move caret to last position on line.

 lineEndDisplay(This)

 Move caret to last position on display line.

 lineEndDisplayExtend(This)

 Move caret to last position on display line extending selection to new caret position.

 lineEndExtend(This)

 Move caret to last position on line extending selection to new caret position.

 lineEndRectExtend(This)

 Move caret to last position on line, extending rectangular selection to new caret
position.

 lineEndWrap(This)

 Like LineEnd but when word-wrap is enabled goes first to end of display line
LineEndDisplay, then to start of document line LineEnd.

 lineEndWrapExtend(This)

 Like LineEndExtend but when word-wrap is enabled extends first to end of display line
LineEndDisplayExtend, then to start of document line LineEndExtend.

 lineFromPosition(This, Pos)

 Retrieve the line containing a position.

 lineLength(This, Line)

 How many characters are on a line, including end of line characters?

 lineScroll(This, Columns, Lines)

 Scroll horizontally and vertically.

 lineScrollDown(This)

 Scroll the document down, keeping the caret visible.

 lineScrollUp(This)

 Scroll the document up, keeping the caret visible.

 linesJoin(This)

 Join the lines in the target.

 linesOnScreen(This)

 Retrieves the number of lines completely visible.

 linesSplit(This, PixelWidth)

 Split the lines in the target into lines that are less wide than pixelWidth where
possible.

 lineTranspose(This)

 Switch the current line with the previous.

 lineUp(This)

 Move caret up one line.

 lineUpExtend(This)

 Move caret up one line extending selection to new caret position.

 lineUpRectExtend(This)

 Move caret up one line, extending rectangular selection to new caret position.

 loadFile(This, Filename)

 Load the contents of filename into the editor.

 lowerCase(This)

 Transform the selection to lower case.

 markerAdd(This, Line, MarkerNumber)

 Add a marker to a line, returning an ID which can be used to find or delete the marker.

 markerAddSet(This, Line, MarkerSet)

 Add a set of markers to a line.

 markerDefine(This, MarkerNumber, MarkerSymbol)

 Equivalent to markerDefine(This, MarkerNumber, MarkerSymbol, []).

 markerDefine/4

 Set the symbol used for a particular marker number, and optionally the fore and
background colours.

 markerDefineBitmap(This, MarkerNumber, Bmp)

 Define a marker with a wxBitmap.

 markerDelete(This, Line, MarkerNumber)

 Delete a marker from a line.

 markerDeleteAll(This, MarkerNumber)

 Delete all markers with a particular number from all lines.

 markerDeleteHandle(This, MarkerHandle)

 Delete a marker.

 markerGet(This, Line)

 Get a bit mask of all the markers set on a line.

 markerLineFromHandle(This, MarkerHandle)

 Retrieve the line number at which a particular marker is located.

 markerNext(This, LineStart, MarkerMask)

 Find the next line at or after lineStart that includes a marker in mask.

 markerPrevious(This, LineStart, MarkerMask)

 Find the previous line before lineStart that includes a marker in mask.

 markerSetAlpha(This, MarkerNumber, Alpha)

 Set the alpha used for a marker that is drawn in the text area, not the margin.

 markerSetBackground(This, MarkerNumber, Back)

 Set the background colour used for a particular marker number.

 markerSetForeground(This, MarkerNumber, Fore)

 Set the foreground colour used for a particular marker number.

 moveCaretInsideView(This)

 Move the caret inside current view if it's not there already.

 new()

 Default ctor.

 new(Parent)

 Equivalent to new(Parent, []).

 new/2

 Ctor.

 newLine(This)

 Insert a new line, may use a CRLF, CR or LF depending on EOL mode.

 pageDown(This)

 Move caret one page down.

 pageDownExtend(This)

 Move caret one page down extending selection to new caret position.

 pageDownRectExtend(This)

 Move caret one page down, extending rectangular selection to new caret position.

 pageUp(This)

 Move caret one page up.

 pageUpExtend(This)

 Move caret one page up extending selection to new caret position.

 pageUpRectExtend(This)

 Move caret one page up, extending rectangular selection to new caret position.

 paraDownExtend(This)

 Extend selection down one paragraph (delimited by empty lines).

 paraUp(This)

 Move caret up one paragraph (delimited by empty lines).

 paraUpExtend(This)

 Extend selection up one paragraph (delimited by empty lines).

 paste(This)

 Paste the contents of the clipboard into the document replacing the selection.

 pointFromPosition(This, Pos)

 Retrieve the point in the window where a position is displayed.

 positionAfter(This, Pos)

 Given a valid document position, return the next position taking code page into account.

 positionBefore(This, Pos)

 Given a valid document position, return the previous position taking code page into
account.

 positionFromLine(This, Line)

 Retrieve the position at the start of a line.

 positionFromPoint(This, Pt)

 Find the position from a point within the window.

 positionFromPointClose(This, X, Y)

 Find the position from a point within the window but return wxSTC_INVALID_POSITION if
not close to text.

 redo(This)

 Redoes the next action on the undo history.

 registerImage(This, Type, Bmp)

 Register an image for use in autocompletion lists.

 replaceSelection(This, Text)

 Replace the selected text with the argument text.

 replaceTarget(This, Text)

 Replace the target text with the argument text.

 saveFile(This, Filename)

 Write the contents of the editor to filename.

 scrollToColumn(This, Column)

 Scroll enough to make the given column visible.

 scrollToLine(This, Line)

 Scroll enough to make the given line visible.

 searchAnchor(This)

 Sets the current caret position to be the search anchor.

 searchInTarget(This, Text)

 Search for a counted string in the target and set the target to the found range.

 searchNext(This, SearchFlags, Text)

 Find some text starting at the search anchor.

 searchPrev(This, SearchFlags, Text)

 Find some text starting at the search anchor and moving backwards.

 selectAll(This)

 Select all the text in the document.

 selectionDuplicate(This)

 Duplicate the selection.

 selectionIsRectangle(This)

 Is the selection rectangular? The alternative is the more common stream selection.

 setAnchor(This, Anchor)

 Set the selection anchor to a position.

 setBackSpaceUnIndents(This, BsUnIndents)

 Sets whether a backspace pressed when caret is within indentation unindents.

 setBufferedDraw(This, Buffered)

 If drawing is buffered then each line of text is drawn into a bitmap buffer before
drawing it to the screen to avoid flicker.

 setCaretForeground(This, Fore)

 Set the foreground colour of the caret.

 setCaretLineBackAlpha(This, Alpha)

 Set background alpha of the caret line.

 setCaretLineBackground(This, Back)

 Set the colour of the background of the line containing the caret.

 setCaretLineVisible(This, Show)

 Display the background of the line containing the caret in a different colour.

 setCaretPeriod(This, PeriodMilliseconds)

 Get the time in milliseconds that the caret is on and off.

 setCaretSticky(This, UseCaretStickyBehaviour)

 Stop the caret preferred x position changing when the user types.

 setCaretWidth(This, PixelWidth)

 Set the width of the insert mode caret.

 setCharsDefault(This)

 Reset the set of characters for whitespace and word characters to the defaults.

 setCodePage(This, CodePage)

 Set the code page used to interpret the bytes of the document as characters.

 setControlCharSymbol(This, Symbol)

 Change the way control characters are displayed: If symbol is *< 32, keep the drawn way,
else, use the given character.

 setCurrentPos(This, Caret)

 Sets the position of the caret.

 setEdgeColour(This, EdgeColour)

 Change the colour used in edge indication.

 setEdgeColumn(This, Column)

 Set the column number of the edge.

 setEdgeMode(This, EdgeMode)

 The edge may be displayed by a line (wxSTC_EDGE_LINE/wxSTC_EDGE_MULTILINE) or by
highlighting text that goes beyond it (wxSTC_EDGE_BACKGROUND) or not displayed at all
(wxSTC_EDGE_NONE).

 setEOLMode(This, EolMode)

 Set the current end of line mode.

 setFoldExpanded(This, Line, Expanded)

 Show the children of a header line.

 setFoldFlags(This, Flags)

 Set some style options for folding.

 setFoldLevel(This, Line, Level)

 Set the fold level of a line.

 setFoldMarginColour(This, UseSetting, Back)

 Set one of the colours used as a chequerboard pattern in the fold margin.

 setFoldMarginHiColour(This, UseSetting, Fore)

 Set the other colour used as a chequerboard pattern in the fold margin.

 setHighlightGuide(This, Column)

 Set the highlighted indentation guide column.

 setHotspotActiveBackground(This, UseSetting, Back)

 Set a back colour for active hotspots.

 setHotspotActiveForeground(This, UseSetting, Fore)

 Set a fore colour for active hotspots.

 setHotspotActiveUnderline(This, Underline)

 Enable / Disable underlining active hotspots.

 setHotspotSingleLine(This, SingleLine)

 Limit hotspots to single line so hotspots on two lines don't merge.

 setHScrollBar(This, Bar)

 Set the horizontal scrollbar to use instead of the one that's built-in.

 setIndent(This, IndentSize)

 Set the number of spaces used for one level of indentation.

 setIndentationGuides(This, IndentView)

 Show or hide indentation guides.

 setKeyWords(This, KeyWordSet, KeyWords)

 Set up the key words used by the lexer.

 setLastKeydownProcessed(This, Val)

 Returns the line number of the line with the caret.

 setLayoutCache(This, CacheMode)

 Sets the degree of caching of layout information.

 setLexer(This, Lexer)

 Set the lexing language of the document.

 setLexerLanguage(This, Language)

 Set the lexing language of the document based on string name.

 setLineIndentation(This, Line, Indentation)

 Change the indentation of a line to a number of columns.

 setLineState(This, Line, State)

 Used to hold extra styling information for each line.

 setMarginLeft(This, PixelWidth)

 Sets the size in pixels of the left margin.

 setMarginMask(This, Margin, Mask)

 Set a mask that determines which markers are displayed in a margin.

 setMarginRight(This, PixelWidth)

 Sets the size in pixels of the right margin.

 setMarginSensitive(This, Margin, Sensitive)

 Make a margin sensitive or insensitive to mouse clicks.

 setMargins(This, Left, Right)

 Set the left and right margin in the edit area, measured in pixels.

 setMarginType(This, Margin, MarginType)

 Set a margin to be either numeric or symbolic.

 setMarginWidth(This, Margin, PixelWidth)

 Set the width of a margin to a width expressed in pixels.

 setModEventMask(This, EventMask)

 Set which document modification events are sent to the container.

 setMouseDownCaptures(This, Captures)

 Set whether the mouse is captured when its button is pressed.

 setMouseDwellTime(This, PeriodMilliseconds)

 Sets the time the mouse must sit still to generate a mouse dwell event.

 setPasteConvertEndings(This, Convert)

 Enable/Disable convert-on-paste for line endings.

 setPrintColourMode(This, Mode)

 Modify colours when printing for clearer printed text.

 setPrintMagnification(This, Magnification)

 Sets the print magnification added to the point size of each style for printing.

 setProperty(This, Key, Value)

 Set up a value that may be used by a lexer for some optional feature.

 setReadOnly(This, ReadOnly)

 Set to read only or read write.

 setSavePoint(This)

 Remember the current position in the undo history as the position at which the document
was saved.

 setScrollWidth(This, PixelWidth)

 Sets the document width assumed for scrolling.

 setSearchFlags(This, SearchFlags)

 Set the search flags used by SearchInTarget.

 setSelAlpha(This, Alpha)

 Set the alpha of the selection.

 setSelBackground(This, UseSetting, Back)

 Set the background colour of the main and additional selections and whether to use this
setting.

 setSelection(This, From, To)

 Selects the text starting at the first position up to (but not including) the character
at the last position.

 setSelectionEnd(This, Caret)

 Sets the position that ends the selection - this becomes the caret.

 setSelectionMode(This, SelectionMode)

 Set the selection mode to stream (wxSTC_SEL_STREAM) or rectangular
(wxSTC_SEL_RECTANGLE/wxSTC_SEL_THIN) or by lines (wxSTC_SEL_LINES).

 setSelectionStart(This, Anchor)

 Sets the position that starts the selection - this becomes the anchor.

 setSelForeground(This, UseSetting, Fore)

 Set the foreground colour of the main and additional selections and whether to use this
setting.

 setSTCCursor(This, CursorType)

 Sets the cursor to one of the wxSTC_CURSOR* values.

 setSTCFocus(This, Focus)

 Change internal focus flag.

 setStatus(This, Status)

 Change error status - 0 = OK.

 setStyleBytes(This, Length)

 Set the styles for a segment of the document.

 setStyling(This, Length, Style)

 Change style from current styling position for length characters to a style and move the
current styling position to after this newly styled segment.

 setTabIndents(This, TabIndents)

 Sets whether a tab pressed when caret is within indentation indents.

 setTabWidth(This, TabWidth)

 Change the visible size of a tab to be a multiple of the width of a space character.

 setTargetEnd(This, End)

 Sets the position that ends the target which is used for updating the document without
affecting the scroll position.

 setTargetStart(This, Start)

 Sets the position that starts the target which is used for updating the document without
affecting the scroll position.

 setText(This, Text)

 Replace the contents of the document with the argument text.

 setTextRaw(This, Text)

 Replace the contents of the document with the argument text.

 setTwoPhaseDraw(This, TwoPhase)

 In twoPhaseDraw mode, drawing is performed in two phases, first the background and then
the foreground.

 setUndoCollection(This, CollectUndo)

 Choose between collecting actions into the undo history and discarding them.

 setUseHorizontalScrollBar(This, Visible)

 Show or hide the horizontal scroll bar.

 setUseTabs(This, UseTabs)

 Indentation will only use space characters if useTabs is false, otherwise it will use a
combination of tabs and spaces.

 setUseVerticalScrollBar(This, Visible)

 Show or hide the vertical scroll bar.

 setViewEOL(This, Visible)

 Make the end of line characters visible or invisible.

 setViewWhiteSpace(This, ViewWS)

 Make white space characters invisible, always visible or visible outside indentation.

 setVisiblePolicy(This, VisiblePolicy, VisibleSlop)

 Set the way the display area is determined when a particular line is to be moved to by
Find, FindNext, GotoLine, etc.

 setVScrollBar(This, Bar)

 Set the vertical scrollbar to use instead of the one that's built-in.

 setWhitespaceBackground(This, UseSetting, Back)

 Set the background colour of all whitespace and whether to use this setting.

 setWhitespaceChars(This, Characters)

 Set the set of characters making up whitespace for when moving or selecting by word.

 setWhitespaceForeground(This, UseSetting, Fore)

 Set the foreground colour of all whitespace and whether to use this setting.

 setWordChars(This, Characters)

 Set the set of characters making up words for when moving or selecting by word.

 setWrapMode(This, WrapMode)

 Sets whether text is word wrapped.

 setWrapStartIndent(This, Indent)

 Set the start indent for wrapped lines.

 setWrapVisualFlags(This, WrapVisualFlags)

 Set the display mode of visual flags for wrapped lines.

 setWrapVisualFlagsLocation(This, WrapVisualFlagsLocation)

 Set the location of visual flags for wrapped lines.

 setXCaretPolicy(This, CaretPolicy, CaretSlop)

 Set the way the caret is kept visible when going sideways.

 setYCaretPolicy(This, CaretPolicy, CaretSlop)

 Set the way the line the caret is on is kept visible.

 setZoom(This, ZoomInPoints)

 Set the zoom level.

 showLines(This, LineStart, LineEnd)

 Make a range of lines visible.

 startRecord(This)

 Start notifying the container of all key presses and commands.

 startStyling(This, Start)

 Set the current styling position to start.

 stopRecord(This)

 Stop notifying the container of all key presses and commands.

 stutteredPageDown(This)

 Move caret to bottom of page, or one page down if already at bottom of page.

 stutteredPageDownExtend(This)

 Move caret to bottom of page, or one page down if already at bottom of page, extending
selection to new caret position.

 stutteredPageUp(This)

 Move caret to top of page, or one page up if already at top of page.

 stutteredPageUpExtend(This)

 Move caret to top of page, or one page up if already at top of page, extending selection
to new caret position.

 styleClearAll(This)

 Clear all the styles and make equivalent to the global default style.

 styleResetDefault(This)

 Reset the default style to its state at startup.

 styleSetBackground(This, Style, Back)

 Set the background colour of a style.

 styleSetBold(This, Style, Bold)

 Set a style to be bold or not.

 styleSetCase(This, Style, CaseVisible)

 Set a style to be mixed case, or to force upper or lower case.

 styleSetCharacterSet(This, Style, CharacterSet)

 Set the character set of the font in a style.

 styleSetEOLFilled(This, Style, EolFilled)

 Set a style to have its end of line filled or not.

 styleSetFaceName(This, Style, FontName)

 Set the font of a style.

 styleSetFont(This, StyleNum, Font)

 Set style size, face, bold, italic, and underline attributes from a wxFont's
attributes.

 styleSetFontAttr(This, StyleNum, Size, FaceName, Bold, Italic, Underline)

 Equivalent to styleSetFontAttr(This, StyleNum, Size, FaceName, Bold, Italic, Underline, []).

 styleSetFontAttr/8

 Set all font style attributes at once.

 styleSetFontEncoding(This, Style, Encoding)

 Set the font encoding to be used by a style.

 styleSetForeground(This, Style, Fore)

 Set the foreground colour of a style.

 styleSetHotSpot(This, Style, Hotspot)

 Set a style to be a hotspot or not.

 styleSetItalic(This, Style, Italic)

 Set a style to be italic or not.

 styleSetSize(This, Style, SizePoints)

 Set the size of characters of a style.

 styleSetSpec(This, StyleNum, Spec)

 Extract style settings from a spec-string which is composed of one or more of the
following comma separated elements

 styleSetUnderline(This, Style, Underline)

 Set a style to be underlined or not.

 styleSetVisible(This, Style, Visible)

 Set a style to be visible or not.

 tab(This)

 If selection is empty or all on one line replace the selection with a tab character.

 targetFromSelection(This)

 Make the target range start and end be the same as the selection range start and end.

 textHeight(This, Line)

 Retrieve the height of a particular line of text in pixels.

 textWidth(This, Style, Text)

 Measure the pixel width of some text in a particular style.

 toggleCaretSticky(This)

 Switch between sticky and non-sticky: meant to be bound to a key.

 toggleFold(This, Line)

 Switch a header line between expanded and contracted.

 undo(This)

 Undo one action in the undo history.

 upperCase(This)

 Transform the selection to upper case.

 usePopUp(This, PopUpMode)

 Set whether a pop up menu is displayed automatically when the user presses the wrong
mouse button on certain areas.

 userListShow(This, ListType, ItemList)

 Display a list of strings and send notification when user chooses one.

 vCHome(This)

 Move caret to before first visible character on line.

 vCHomeExtend(This)

 Like VCHome but extending selection to new caret position.

 vCHomeRectExtend(This)

 Move caret to before first visible character on line.

 vCHomeWrap(This)

 Like VCHome but when word-wrap is enabled goes first to start of display line
VCHomeDisplay, then behaves like VCHome.

 vCHomeWrapExtend(This)

 Like VCHomeExtend but when word-wrap is enabled extends first to start of display line
VCHomeDisplayExtend, then behaves like VCHomeExtend.

 visibleFromDocLine(This, DocLine)

 Find the display line of a document line taking hidden lines into account.

 wordEndPosition(This, Pos, OnlyWordCharacters)

 Get position of end of word.

 wordLeft(This)

 Move caret left one word.

 wordLeftEnd(This)

 Move caret left one word, position cursor at end of word.

 wordLeftEndExtend(This)

 Move caret left one word, position cursor at end of word, extending selection to new
caret position.

 wordLeftExtend(This)

 Move caret left one word extending selection to new caret position.

 wordPartLeft(This)

 Move to the previous change in capitalisation.

 wordPartLeftExtend(This)

 Move to the previous change in capitalisation extending selection to new caret position.

 wordPartRight(This)

 Move to the change next in capitalisation.

 wordPartRightExtend(This)

 Move to the next change in capitalisation extending selection to new caret position.

 wordRight(This)

 Move caret right one word.

 wordRightEnd(This)

 Move caret right one word, position cursor at end of word.

 wordRightEndExtend(This)

 Move caret right one word, position cursor at end of word, extending selection to new
caret position.

 wordRightExtend(This)

 Move caret right one word extending selection to new caret position.

 wordStartPosition(This, Pos, OnlyWordCharacters)

 Get position of start of word.

 wrapCount(This, DocLine)

 The number of display lines needed to wrap a document line.

 zoomIn(This)

 Magnify the displayed text by increasing the sizes by 1 point.

 zoomOut(This)

 Make the displayed text smaller by decreasing the sizes by 1 point.

 Types

 wxStyledTextCtrl()

 -type wxStyledTextCtrl() :: wx:wx_object().

 Functions

 addText(This, Text)

 -spec addText(This, Text) -> ok when This :: wxStyledTextCtrl(), Text :: unicode:chardata().

Add text to the document at current position.

 addTextRaw(This, Text)

 -spec addTextRaw(This, Text) -> ok when This :: wxStyledTextCtrl(), Text :: binary().

Equivalent to addTextRaw(This, Text, []).

 addTextRaw/3

 -spec addTextRaw(This, Text, [Option]) -> ok
 when This :: wxStyledTextCtrl(), Text :: binary(), Option :: {length, integer()}.

Add text to the document at current position.

 allocate(This, Bytes)

 -spec allocate(This, Bytes) -> ok when This :: wxStyledTextCtrl(), Bytes :: integer().

Enlarge the document to a particular size of text bytes.

 appendText(This, Text)

 -spec appendText(This, Text) -> ok when This :: wxStyledTextCtrl(), Text :: unicode:chardata().

Append a string to the end of the document without changing the selection.

 appendTextRaw(This, Text)

 -spec appendTextRaw(This, Text) -> ok when This :: wxStyledTextCtrl(), Text :: binary().

Equivalent to appendTextRaw(This, Text, []).

 appendTextRaw/3

 -spec appendTextRaw(This, Text, [Option]) -> ok
 when This :: wxStyledTextCtrl(), Text :: binary(), Option :: {length, integer()}.

Append a string to the end of the document without changing the selection.

 autoCompActive(This)

 -spec autoCompActive(This) -> boolean() when This :: wxStyledTextCtrl().

Is there an auto-completion list visible?

 autoCompCancel(This)

 -spec autoCompCancel(This) -> ok when This :: wxStyledTextCtrl().

Remove the auto-completion list from the screen.

 autoCompComplete(This)

 -spec autoCompComplete(This) -> ok when This :: wxStyledTextCtrl().

User has selected an item so remove the list and insert the selection.

 autoCompGetAutoHide(This)

 -spec autoCompGetAutoHide(This) -> boolean() when This :: wxStyledTextCtrl().

Retrieve whether or not autocompletion is hidden automatically when nothing matches.

 autoCompGetCancelAtStart(This)

 -spec autoCompGetCancelAtStart(This) -> boolean() when This :: wxStyledTextCtrl().

Retrieve whether auto-completion cancelled by backspacing before start.

 autoCompGetChooseSingle(This)

 -spec autoCompGetChooseSingle(This) -> boolean() when This :: wxStyledTextCtrl().

Retrieve whether a single item auto-completion list automatically choose the item.

 autoCompGetCurrent(This)

 -spec autoCompGetCurrent(This) -> integer() when This :: wxStyledTextCtrl().

Get currently selected item position in the auto-completion list.

 autoCompGetDropRestOfWord(This)

 -spec autoCompGetDropRestOfWord(This) -> boolean() when This :: wxStyledTextCtrl().

Retrieve whether or not autocompletion deletes any word characters after the inserted
text upon completion.

 autoCompGetIgnoreCase(This)

 -spec autoCompGetIgnoreCase(This) -> boolean() when This :: wxStyledTextCtrl().

Retrieve state of ignore case flag.

 autoCompGetMaxHeight(This)

 -spec autoCompGetMaxHeight(This) -> integer() when This :: wxStyledTextCtrl().

Set the maximum height, in rows, of auto-completion and user lists.

 autoCompGetMaxWidth(This)

 -spec autoCompGetMaxWidth(This) -> integer() when This :: wxStyledTextCtrl().

Get the maximum width, in characters, of auto-completion and user lists.

 autoCompGetSeparator(This)

 -spec autoCompGetSeparator(This) -> integer() when This :: wxStyledTextCtrl().

Retrieve the auto-completion list separator character.

 autoCompGetTypeSeparator(This)

 -spec autoCompGetTypeSeparator(This) -> integer() when This :: wxStyledTextCtrl().

Retrieve the auto-completion list type-separator character.

 autoCompPosStart(This)

 -spec autoCompPosStart(This) -> integer() when This :: wxStyledTextCtrl().

Retrieve the position of the caret when the auto-completion list was displayed.

 autoCompSelect(This, Select)

 -spec autoCompSelect(This, Select) -> ok when This :: wxStyledTextCtrl(), Select :: unicode:chardata().

Select the item in the auto-completion list that starts with a string.

 autoCompSetAutoHide(This, AutoHide)

 -spec autoCompSetAutoHide(This, AutoHide) -> ok when This :: wxStyledTextCtrl(), AutoHide :: boolean().

Set whether or not autocompletion is hidden automatically when nothing matches.

 autoCompSetCancelAtStart(This, Cancel)

 -spec autoCompSetCancelAtStart(This, Cancel) -> ok when This :: wxStyledTextCtrl(), Cancel :: boolean().

Should the auto-completion list be cancelled if the user backspaces to a position before
where the box was created.

 autoCompSetChooseSingle(This, ChooseSingle)

 -spec autoCompSetChooseSingle(This, ChooseSingle) -> ok
 when This :: wxStyledTextCtrl(), ChooseSingle :: boolean().

Should a single item auto-completion list automatically choose the item.

 autoCompSetDropRestOfWord(This, DropRestOfWord)

 -spec autoCompSetDropRestOfWord(This, DropRestOfWord) -> ok
 when This :: wxStyledTextCtrl(), DropRestOfWord :: boolean().

Set whether or not autocompletion deletes any word characters after the inserted text
upon completion.

 autoCompSetFillUps(This, CharacterSet)

 -spec autoCompSetFillUps(This, CharacterSet) -> ok
 when This :: wxStyledTextCtrl(), CharacterSet :: unicode:chardata().

Define a set of characters that when typed will cause the autocompletion to choose the
selected item.

 autoCompSetIgnoreCase(This, IgnoreCase)

 -spec autoCompSetIgnoreCase(This, IgnoreCase) -> ok
 when This :: wxStyledTextCtrl(), IgnoreCase :: boolean().

Set whether case is significant when performing auto-completion searches.

 autoCompSetMaxHeight(This, RowCount)

 -spec autoCompSetMaxHeight(This, RowCount) -> ok when This :: wxStyledTextCtrl(), RowCount :: integer().

Set the maximum height, in rows, of auto-completion and user lists.
The default is 5 rows.

 autoCompSetMaxWidth(This, CharacterCount)

 -spec autoCompSetMaxWidth(This, CharacterCount) -> ok
 when This :: wxStyledTextCtrl(), CharacterCount :: integer().

Set the maximum width, in characters, of auto-completion and user lists.
Set to 0 to autosize to fit longest item, which is the default.

 autoCompSetSeparator(This, SeparatorCharacter)

 -spec autoCompSetSeparator(This, SeparatorCharacter) -> ok
 when This :: wxStyledTextCtrl(), SeparatorCharacter :: integer().

Change the separator character in the string setting up an auto-completion list.
Default is space but can be changed if items contain space.

 autoCompSetTypeSeparator(This, SeparatorCharacter)

 -spec autoCompSetTypeSeparator(This, SeparatorCharacter) -> ok
 when This :: wxStyledTextCtrl(), SeparatorCharacter :: integer().

Change the type-separator character in the string setting up an auto-completion list.
Default is '?' but can be changed if items contain '?'.

 autoCompShow(This, LengthEntered, ItemList)

 -spec autoCompShow(This, LengthEntered, ItemList) -> ok
 when
 This :: wxStyledTextCtrl(),
 LengthEntered :: integer(),
 ItemList :: unicode:chardata().

Display a auto-completion list.
The lengthEntered parameter indicates how many characters before the caret should be used
to provide context.

 autoCompStops(This, CharacterSet)

 -spec autoCompStops(This, CharacterSet) -> ok
 when This :: wxStyledTextCtrl(), CharacterSet :: unicode:chardata().

Define a set of character that when typed cancel the auto-completion list.

 backTab(This)

 -spec backTab(This) -> ok when This :: wxStyledTextCtrl().

Dedent the selected lines.

 beginUndoAction(This)

 -spec beginUndoAction(This) -> ok when This :: wxStyledTextCtrl().

Start a sequence of actions that is undone and redone as a unit.
May be nested.

 braceBadLight(This, Pos)

 -spec braceBadLight(This, Pos) -> ok when This :: wxStyledTextCtrl(), Pos :: integer().

Highlight the character at a position indicating there is no matching brace.

 braceHighlight(This, PosA, PosB)

 -spec braceHighlight(This, PosA, PosB) -> ok
 when This :: wxStyledTextCtrl(), PosA :: integer(), PosB :: integer().

Highlight the characters at two positions.

 braceMatch(This, Pos)

 -spec braceMatch(This, Pos) -> integer() when This :: wxStyledTextCtrl(), Pos :: integer().

Find the position of a matching brace or wxSTC_INVALID_POSITION if no match.

 callTipActive(This)

 -spec callTipActive(This) -> boolean() when This :: wxStyledTextCtrl().

Is there an active call tip?

 callTipCancel(This)

 -spec callTipCancel(This) -> ok when This :: wxStyledTextCtrl().

Remove the call tip from the screen.

 callTipPosAtStart(This)

 -spec callTipPosAtStart(This) -> integer() when This :: wxStyledTextCtrl().

Retrieve the position where the caret was before displaying the call tip.
Since: 3.1.0

 callTipSetBackground(This, Back)

 -spec callTipSetBackground(This, Back) -> ok when This :: wxStyledTextCtrl(), Back :: wx:wx_colour().

Set the background colour for the call tip.

 callTipSetForeground(This, Fore)

 -spec callTipSetForeground(This, Fore) -> ok when This :: wxStyledTextCtrl(), Fore :: wx:wx_colour().

Set the foreground colour for the call tip.

 callTipSetForegroundHighlight(This, Fore)

 -spec callTipSetForegroundHighlight(This, Fore) -> ok
 when This :: wxStyledTextCtrl(), Fore :: wx:wx_colour().

Set the foreground colour for the highlighted part of the call tip.

 callTipSetHighlight(This, HighlightStart, HighlightEnd)

 -spec callTipSetHighlight(This, HighlightStart, HighlightEnd) -> ok
 when
 This :: wxStyledTextCtrl(),
 HighlightStart :: integer(),
 HighlightEnd :: integer().

Highlight a segment of the definition.

 callTipShow(This, Pos, Definition)

 -spec callTipShow(This, Pos, Definition) -> ok
 when This :: wxStyledTextCtrl(), Pos :: integer(), Definition :: unicode:chardata().

Show a call tip containing a definition near position pos.

 callTipUseStyle(This, TabSize)

 -spec callTipUseStyle(This, TabSize) -> ok when This :: wxStyledTextCtrl(), TabSize :: integer().

Enable use of wxSTC_STYLE_CALLTIP and set call tip tab size in pixels.

 cancel(This)

 -spec cancel(This) -> ok when This :: wxStyledTextCtrl().

Cancel any modes such as call tip or auto-completion list display.

 canPaste(This)

 -spec canPaste(This) -> boolean() when This :: wxStyledTextCtrl().

Will a paste succeed?

 canRedo(This)

 -spec canRedo(This) -> boolean() when This :: wxStyledTextCtrl().

Are there any redoable actions in the undo history?

 canUndo(This)

 -spec canUndo(This) -> boolean() when This :: wxStyledTextCtrl().

Are there any undoable actions in the undo history?

 charLeft(This)

 -spec charLeft(This) -> ok when This :: wxStyledTextCtrl().

Move caret left one character.

 charLeftExtend(This)

 -spec charLeftExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret left one character extending selection to new caret position.

 charLeftRectExtend(This)

 -spec charLeftRectExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret left one character, extending rectangular selection to new caret position.

 charRight(This)

 -spec charRight(This) -> ok when This :: wxStyledTextCtrl().

Move caret right one character.

 charRightExtend(This)

 -spec charRightExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret right one character extending selection to new caret position.

 charRightRectExtend(This)

 -spec charRightRectExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret right one character, extending rectangular selection to new caret position.

 chooseCaretX(This)

 -spec chooseCaretX(This) -> ok when This :: wxStyledTextCtrl().

Set the last x chosen value to be the caret x position.

 clear(This)

 -spec clear(This) -> ok when This :: wxStyledTextCtrl().

Clear the selection.

 clearAll(This)

 -spec clearAll(This) -> ok when This :: wxStyledTextCtrl().

Delete all text in the document.

 clearDocumentStyle(This)

 -spec clearDocumentStyle(This) -> ok when This :: wxStyledTextCtrl().

Set all style bytes to 0, remove all folding information.

 clearRegisteredImages(This)

 -spec clearRegisteredImages(This) -> ok when This :: wxStyledTextCtrl().

Clear all the registered images.

 cmdKeyAssign(This, Key, Modifiers, Cmd)

 -spec cmdKeyAssign(This, Key, Modifiers, Cmd) -> ok
 when
 This :: wxStyledTextCtrl(),
 Key :: integer(),
 Modifiers :: integer(),
 Cmd :: integer().

When key+modifier combination keyDefinition is pressed perform sciCommand.
The second argument should be a bit list containing one or more of the ?wxSTC_KEYMOD_*
constants and the third argument should be one of the ?wxSTC_CMD_* constants.

 cmdKeyClear(This, Key, Modifiers)

 -spec cmdKeyClear(This, Key, Modifiers) -> ok
 when This :: wxStyledTextCtrl(), Key :: integer(), Modifiers :: integer().

When key+modifier combination keyDefinition is pressed do nothing.
The second argument should be a bit list containing one or more of the ?wxSTC_KEYMOD_*
constants.

 cmdKeyClearAll(This)

 -spec cmdKeyClearAll(This) -> ok when This :: wxStyledTextCtrl().

Drop all key mappings.

 cmdKeyExecute(This, Cmd)

 -spec cmdKeyExecute(This, Cmd) -> ok when This :: wxStyledTextCtrl(), Cmd :: integer().

Perform one of the operations defined by the wxSTCCMD* constants.

 colourise(This, Start, End)

 -spec colourise(This, Start, End) -> ok
 when This :: wxStyledTextCtrl(), Start :: integer(), End :: integer().

Colourise a segment of the document using the current lexing language.

 convertEOLs(This, EolMode)

 -spec convertEOLs(This, EolMode) -> ok when This :: wxStyledTextCtrl(), EolMode :: integer().

Convert all line endings in the document to one mode.

 copy(This)

 -spec copy(This) -> ok when This :: wxStyledTextCtrl().

Copy the selection to the clipboard.

 copyRange(This, Start, End)

 -spec copyRange(This, Start, End) -> ok
 when This :: wxStyledTextCtrl(), Start :: integer(), End :: integer().

Copy a range of text to the clipboard.
Positions are clipped into the document.

 copyText(This, Length, Text)

 -spec copyText(This, Length, Text) -> ok
 when This :: wxStyledTextCtrl(), Length :: integer(), Text :: unicode:chardata().

Copy argument text to the clipboard.

 create(This, Parent)

 -spec create(This, Parent) -> boolean() when This :: wxStyledTextCtrl(), Parent :: wxWindow:wxWindow().

Equivalent to create(This, Parent, []).

 create/3

 -spec create(This, Parent, [Option]) -> boolean()
 when
 This :: wxStyledTextCtrl(),
 Parent :: wxWindow:wxWindow(),
 Option ::
 {id, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Create the UI elements for a STC that was created with the default ctor.
(For 2-phase create.)

 cut(This)

 -spec cut(This) -> ok when This :: wxStyledTextCtrl().

Cut the selection to the clipboard.

 deleteBack(This)

 -spec deleteBack(This) -> ok when This :: wxStyledTextCtrl().

Delete the selection or if no selection, the character before the caret.

 deleteBackNotLine(This)

 -spec deleteBackNotLine(This) -> ok when This :: wxStyledTextCtrl().

Delete the selection or if no selection, the character before the caret.
Will not delete the character before at the start of a line.

 delLineLeft(This)

 -spec delLineLeft(This) -> ok when This :: wxStyledTextCtrl().

Delete back from the current position to the start of the line.

 delLineRight(This)

 -spec delLineRight(This) -> ok when This :: wxStyledTextCtrl().

Delete forwards from the current position to the end of the line.

 delWordLeft(This)

 -spec delWordLeft(This) -> ok when This :: wxStyledTextCtrl().

Delete the word to the left of the caret.

 delWordRight(This)

 -spec delWordRight(This) -> ok when This :: wxStyledTextCtrl().

Delete the word to the right of the caret.

 destroy(This)

 -spec destroy(This :: wxStyledTextCtrl()) -> ok.

Destroys the object

 docLineFromVisible(This, DisplayLine)

 -spec docLineFromVisible(This, DisplayLine) -> integer()
 when This :: wxStyledTextCtrl(), DisplayLine :: integer().

Find the document line of a display line taking hidden lines into account.

 documentEnd(This)

 -spec documentEnd(This) -> ok when This :: wxStyledTextCtrl().

Move caret to last position in document.

 documentEndExtend(This)

 -spec documentEndExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret to last position in document extending selection to new caret position.

 documentStart(This)

 -spec documentStart(This) -> ok when This :: wxStyledTextCtrl().

Move caret to first position in document.

 documentStartExtend(This)

 -spec documentStartExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret to first position in document extending selection to new caret position.

 doDragOver(This, X, Y, DefaultRes)

 -spec doDragOver(This, X, Y, DefaultRes) -> wx:wx_enum()
 when
 This :: wxStyledTextCtrl(),
 X :: integer(),
 Y :: integer(),
 DefaultRes :: wx:wx_enum().

Allow for simulating a DnD DragOver.

 doDropText(This, X, Y, Data)

 -spec doDropText(This, X, Y, Data) -> boolean()
 when
 This :: wxStyledTextCtrl(),
 X :: integer(),
 Y :: integer(),
 Data :: unicode:chardata().

Allow for simulating a DnD DropText.

 editToggleOvertype(This)

 -spec editToggleOvertype(This) -> ok when This :: wxStyledTextCtrl().

Switch from insert to overtype mode or the reverse.

 emptyUndoBuffer(This)

 -spec emptyUndoBuffer(This) -> ok when This :: wxStyledTextCtrl().

Delete the undo history.

 endUndoAction(This)

 -spec endUndoAction(This) -> ok when This :: wxStyledTextCtrl().

End a sequence of actions that is undone and redone as a unit.

 ensureCaretVisible(This)

 -spec ensureCaretVisible(This) -> ok when This :: wxStyledTextCtrl().

Ensure the caret is visible.

 ensureVisible(This, Line)

 -spec ensureVisible(This, Line) -> ok when This :: wxStyledTextCtrl(), Line :: integer().

Ensure a particular line is visible by expanding any header line hiding it.

 ensureVisibleEnforcePolicy(This, Line)

 -spec ensureVisibleEnforcePolicy(This, Line) -> ok when This :: wxStyledTextCtrl(), Line :: integer().

Ensure a particular line is visible by expanding any header line hiding it.
Use the currently set visibility policy to determine which range to display.

 findColumn(This, Line, Column)

 -spec findColumn(This, Line, Column) -> integer()
 when This :: wxStyledTextCtrl(), Line :: integer(), Column :: integer().

Find the position of a column on a line taking into account tabs and multi-byte
characters.
If beyond end of line, return line end position.

 findText(This, MinPos, MaxPos, Text)

 -spec findText(This, MinPos, MaxPos, Text) -> integer()
 when
 This :: wxStyledTextCtrl(),
 MinPos :: integer(),
 MaxPos :: integer(),
 Text :: unicode:chardata().

Equivalent to findText(This, MinPos, MaxPos, Text, []).

 findText/5

 -spec findText(This, MinPos, MaxPos, Text, [Option]) -> integer()
 when
 This :: wxStyledTextCtrl(),
 MinPos :: integer(),
 MaxPos :: integer(),
 Text :: unicode:chardata(),
 Option :: {flags, integer()}.

Find some text in the document. @param minPos The position (starting from zero) in the document at which to begin the search @param maxPos The last position (starting from zero) in the document to which the search will be restricted. @param text The text to search for. @param flags (Optional) The search flags. This should be a bit list containing one or more of the @link wxStyledTextCtrl::wxSTC_FIND_WHOLEWORD wxSTC_FIND_* @endlink constants.
Return: The position (starting from zero) in the document at which the text was found or
wxSTC_INVALID_POSITION if the search fails.
Remark: A backwards search can be performed by setting minPos to be greater than maxPos.

 formatRange(This, DoDraw, StartPos, EndPos, Draw, Target, RenderRect, PageRect)

 -spec formatRange(This, DoDraw, StartPos, EndPos, Draw, Target, RenderRect, PageRect) -> integer()
 when
 This :: wxStyledTextCtrl(),
 DoDraw :: boolean(),
 StartPos :: integer(),
 EndPos :: integer(),
 Draw :: wxDC:wxDC(),
 Target :: wxDC:wxDC(),
 RenderRect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()},
 PageRect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}.

On Windows, will draw the document into a display context such as a printer.

 formFeed(This)

 -spec formFeed(This) -> ok when This :: wxStyledTextCtrl().

Insert a Form Feed character.

 getAnchor(This)

 -spec getAnchor(This) -> integer() when This :: wxStyledTextCtrl().

Returns the position of the opposite end of the selection to the caret.

 getBackSpaceUnIndents(This)

 -spec getBackSpaceUnIndents(This) -> boolean() when This :: wxStyledTextCtrl().

Does a backspace pressed when caret is within indentation unindent?

 getBufferedDraw(This)

 -spec getBufferedDraw(This) -> boolean() when This :: wxStyledTextCtrl().

Is drawing done first into a buffer or direct to the screen?

 getCaretForeground(This)

 -spec getCaretForeground(This) -> wx:wx_colour4() when This :: wxStyledTextCtrl().

Get the foreground colour of the caret.

 getCaretLineBackAlpha(This)

 -spec getCaretLineBackAlpha(This) -> integer() when This :: wxStyledTextCtrl().

Get the background alpha of the caret line.

 getCaretLineBackground(This)

 -spec getCaretLineBackground(This) -> wx:wx_colour4() when This :: wxStyledTextCtrl().

Get the colour of the background of the line containing the caret.

 getCaretLineVisible(This)

 -spec getCaretLineVisible(This) -> boolean() when This :: wxStyledTextCtrl().

Is the background of the line containing the caret in a different colour?

 getCaretPeriod(This)

 -spec getCaretPeriod(This) -> integer() when This :: wxStyledTextCtrl().

Get the time in milliseconds that the caret is on and off.

 getCaretSticky(This)

 -spec getCaretSticky(This) -> integer() when This :: wxStyledTextCtrl().

Can the caret preferred x position only be changed by explicit movement commands?
The return value will be one of the ?wxSTC_CARETSTICKY_* constants.

 getCaretWidth(This)

 -spec getCaretWidth(This) -> integer() when This :: wxStyledTextCtrl().

Returns the width of the insert mode caret.

 getCharAt(This, Pos)

 -spec getCharAt(This, Pos) -> integer() when This :: wxStyledTextCtrl(), Pos :: integer().

Returns the character byte at the position.

 getCodePage(This)

 -spec getCodePage(This) -> integer() when This :: wxStyledTextCtrl().

Get the code page used to interpret the bytes of the document as characters.

 getColumn(This, Pos)

 -spec getColumn(This, Pos) -> integer() when This :: wxStyledTextCtrl(), Pos :: integer().

Retrieve the column number of a position, taking tab width into account.

 getControlCharSymbol(This)

 -spec getControlCharSymbol(This) -> integer() when This :: wxStyledTextCtrl().

Get the way control characters are displayed.

 getCurLine(This)

 -spec getCurLine(This) -> Result
 when
 Result :: {Res :: unicode:charlist(), LinePos :: integer()},
 This :: wxStyledTextCtrl().

Retrieve the text of the line containing the caret.
linePos can optionally be passed in to receive the index of the caret on the line.

 getCurLineRaw(This)

 -spec getCurLineRaw(This) -> Result
 when
 Result :: {Res :: binary(), LinePos :: integer()}, This :: wxStyledTextCtrl().

Retrieve the text of the line containing the caret.
Returns the index of the caret on the line.

 getCurrentLine(This)

 -spec getCurrentLine(This) -> integer() when This :: wxStyledTextCtrl().

Returns the line number of the line with the caret.

 getCurrentPos(This)

 -spec getCurrentPos(This) -> integer() when This :: wxStyledTextCtrl().

Returns the position of the caret.

 getEdgeColour(This)

 -spec getEdgeColour(This) -> wx:wx_colour4() when This :: wxStyledTextCtrl().

Retrieve the colour used in edge indication.

 getEdgeColumn(This)

 -spec getEdgeColumn(This) -> integer() when This :: wxStyledTextCtrl().

Retrieve the column number which text should be kept within.

 getEdgeMode(This)

 -spec getEdgeMode(This) -> integer() when This :: wxStyledTextCtrl().

Retrieve the edge highlight mode.
The return value will be one of the ?wxSTC_EDGE_* constants.

 getEndAtLastLine(This)

 -spec getEndAtLastLine(This) -> boolean() when This :: wxStyledTextCtrl().

Retrieve whether the maximum scroll position has the last line at the bottom of the view.

 getEndStyled(This)

 -spec getEndStyled(This) -> integer() when This :: wxStyledTextCtrl().

Retrieve the position of the last correctly styled character.

 getEOLMode(This)

 -spec getEOLMode(This) -> integer() when This :: wxStyledTextCtrl().

Retrieve the current end of line mode - one of wxSTC_EOL_CRLF, wxSTC_EOL_CR, or
wxSTC_EOL_LF.

 getFirstVisibleLine(This)

 -spec getFirstVisibleLine(This) -> integer() when This :: wxStyledTextCtrl().

Retrieve the display line at the top of the display.

 getFoldExpanded(This, Line)

 -spec getFoldExpanded(This, Line) -> boolean() when This :: wxStyledTextCtrl(), Line :: integer().

Is a header line expanded?

 getFoldLevel(This, Line)

 -spec getFoldLevel(This, Line) -> integer() when This :: wxStyledTextCtrl(), Line :: integer().

Retrieve the fold level of a line.

 getFoldParent(This, Line)

 -spec getFoldParent(This, Line) -> integer() when This :: wxStyledTextCtrl(), Line :: integer().

Find the parent line of a child line.

 getHighlightGuide(This)

 -spec getHighlightGuide(This) -> integer() when This :: wxStyledTextCtrl().

Get the highlighted indentation guide column.

 getIndent(This)

 -spec getIndent(This) -> integer() when This :: wxStyledTextCtrl().

Retrieve indentation size.

 getIndentationGuides(This)

 -spec getIndentationGuides(This) -> integer() when This :: wxStyledTextCtrl().

Are the indentation guides visible?
The return value will be one of the ?wxSTC_IV_* constants.

 getLastChild(This, Line, Level)

 -spec getLastChild(This, Line, Level) -> integer()
 when This :: wxStyledTextCtrl(), Line :: integer(), Level :: integer().

Find the last child line of a header line.

 getLastKeydownProcessed(This)

 -spec getLastKeydownProcessed(This) -> boolean() when This :: wxStyledTextCtrl().

Can be used to prevent the EVT_CHAR handler from adding the char.

 getLayoutCache(This)

 -spec getLayoutCache(This) -> integer() when This :: wxStyledTextCtrl().

Retrieve the degree of caching of layout information.
The return value will be one of the ?wxSTC_CACHE_* constants.

 getLength(This)

 -spec getLength(This) -> integer() when This :: wxStyledTextCtrl().

Returns the number of bytes in the document.

 getLexer(This)

 -spec getLexer(This) -> integer() when This :: wxStyledTextCtrl().

Retrieve the lexing language of the document.
The return value will be one of the ?wxSTC_LEX_* constants.

 getLine(This, Line)

 -spec getLine(This, Line) -> unicode:charlist() when This :: wxStyledTextCtrl(), Line :: integer().

Retrieve the contents of a line.

 getLineCount(This)

 -spec getLineCount(This) -> integer() when This :: wxStyledTextCtrl().

Returns the number of lines in the document.
There is always at least one.

 getLineEndPosition(This, Line)

 -spec getLineEndPosition(This, Line) -> integer() when This :: wxStyledTextCtrl(), Line :: integer().

Get the position after the last visible characters on a line.

 getLineIndentation(This, Line)

 -spec getLineIndentation(This, Line) -> integer() when This :: wxStyledTextCtrl(), Line :: integer().

Retrieve the number of columns that a line is indented.

 getLineIndentPosition(This, Line)

 -spec getLineIndentPosition(This, Line) -> integer() when This :: wxStyledTextCtrl(), Line :: integer().

Retrieve the position before the first non indentation character on a line.

 getLineRaw(This, Line)

 -spec getLineRaw(This, Line) -> binary() when This :: wxStyledTextCtrl(), Line :: integer().

Retrieve the contents of a line.

 getLineState(This, Line)

 -spec getLineState(This, Line) -> integer() when This :: wxStyledTextCtrl(), Line :: integer().

Retrieve the extra styling information for a line.

 getLineVisible(This, Line)

 -spec getLineVisible(This, Line) -> boolean() when This :: wxStyledTextCtrl(), Line :: integer().

Is a line visible?

 getMarginLeft(This)

 -spec getMarginLeft(This) -> integer() when This :: wxStyledTextCtrl().

Returns the size in pixels of the left margin.

 getMarginMask(This, Margin)

 -spec getMarginMask(This, Margin) -> integer() when This :: wxStyledTextCtrl(), Margin :: integer().

Retrieve the marker mask of a margin.

 getMarginRight(This)

 -spec getMarginRight(This) -> integer() when This :: wxStyledTextCtrl().

Returns the size in pixels of the right margin.

 getMarginSensitive(This, Margin)

 -spec getMarginSensitive(This, Margin) -> boolean() when This :: wxStyledTextCtrl(), Margin :: integer().

Retrieve the mouse click sensitivity of a margin.

 getMarginType(This, Margin)

 -spec getMarginType(This, Margin) -> integer() when This :: wxStyledTextCtrl(), Margin :: integer().

Retrieve the type of a margin.
The return value will be one of the ?wxSTC_MARGIN_* constants.

 getMarginWidth(This, Margin)

 -spec getMarginWidth(This, Margin) -> integer() when This :: wxStyledTextCtrl(), Margin :: integer().

Retrieve the width of a margin in pixels.

 getMaxLineState(This)

 -spec getMaxLineState(This) -> integer() when This :: wxStyledTextCtrl().

Retrieve the last line number that has line state.

 getModEventMask(This)

 -spec getModEventMask(This) -> integer() when This :: wxStyledTextCtrl().

Get which document modification events are sent to the container.
The return value will wxSTCMODEVENTMASKALL if all changes generate events. Otherwise it
will be a bit list containing one or more of the ?wxSTC_MOD* constants, the
?wxSTC_PERFORMED_* constants, wxSTC_STARTACTION, wxSTC_MULTILINEUNDOREDO,
wxSTC_MULTISTEPUNDOREDO, and wxSTC_LASTSTEPINUNDOREDO.

 getModify(This)

 -spec getModify(This) -> boolean() when This :: wxStyledTextCtrl().

Is the document different from when it was last saved?

 getMouseDownCaptures(This)

 -spec getMouseDownCaptures(This) -> boolean() when This :: wxStyledTextCtrl().

Get whether mouse gets captured.

 getMouseDwellTime(This)

 -spec getMouseDwellTime(This) -> integer() when This :: wxStyledTextCtrl().

Retrieve the time the mouse must sit still to generate a mouse dwell event.
The return value will be a time in milliseconds or wxSTC_TIME_FOREVER.

 getOvertype(This)

 -spec getOvertype(This) -> boolean() when This :: wxStyledTextCtrl().

Returns true if overtype mode is active otherwise false is returned.

 getPasteConvertEndings(This)

 -spec getPasteConvertEndings(This) -> boolean() when This :: wxStyledTextCtrl().

Get convert-on-paste setting.

 getPrintColourMode(This)

 -spec getPrintColourMode(This) -> integer() when This :: wxStyledTextCtrl().

Returns the print colour mode.
The return value will be one of the ?wxSTC_PRINT_* constants.

 getPrintMagnification(This)

 -spec getPrintMagnification(This) -> integer() when This :: wxStyledTextCtrl().

Returns the print magnification.

 getPrintWrapMode(This)

 -spec getPrintWrapMode(This) -> integer() when This :: wxStyledTextCtrl().

Is printing line wrapped?
The return value will be one of the ?wxSTC_WRAP_* constants.

 getProperty(This, Key)

 -spec getProperty(This, Key) -> unicode:charlist()
 when This :: wxStyledTextCtrl(), Key :: unicode:chardata().

Retrieve a "property" value previously set with SetProperty.

 getReadOnly(This)

 -spec getReadOnly(This) -> boolean() when This :: wxStyledTextCtrl().

In read-only mode?

 getScrollWidth(This)

 -spec getScrollWidth(This) -> integer() when This :: wxStyledTextCtrl().

Retrieve the document width assumed for scrolling.

 getSearchFlags(This)

 -spec getSearchFlags(This) -> integer() when This :: wxStyledTextCtrl().

Get the search flags used by SearchInTarget.
The return value will be a bit list containing one or more of the ?wxSTC_FIND_*
constants.

 getSelAlpha(This)

 -spec getSelAlpha(This) -> integer() when This :: wxStyledTextCtrl().

Get the alpha of the selection.

 getSelectedText(This)

 -spec getSelectedText(This) -> unicode:charlist() when This :: wxStyledTextCtrl().

Retrieve the selected text.

 getSelectedTextRaw(This)

 -spec getSelectedTextRaw(This) -> binary() when This :: wxStyledTextCtrl().

Retrieve the selected text.

 getSelection(This)

 -spec getSelection(This) -> {From :: integer(), To :: integer()} when This :: wxStyledTextCtrl().

Gets the current selection span.
If the returned values are equal, there was no selection. Please note that the indices
returned may be used with the other wxTextCtrl methods but don't necessarily represent
the correct indices into the string returned by wxComboBox:getValue/1 for multiline controls under Windows (at
least,) you should use wxTextCtrl:getStringSelection/1 to get the selected text.

 getSelectionEnd(This)

 -spec getSelectionEnd(This) -> integer() when This :: wxStyledTextCtrl().

Returns the position at the end of the selection.

 getSelectionMode(This)

 -spec getSelectionMode(This) -> integer() when This :: wxStyledTextCtrl().

Get the mode of the current selection.
The return value will be one of the ?wxSTC_SEL_* constants.

 getSelectionStart(This)

 -spec getSelectionStart(This) -> integer() when This :: wxStyledTextCtrl().

Returns the position at the start of the selection.

 getSTCCursor(This)

 -spec getSTCCursor(This) -> integer() when This :: wxStyledTextCtrl().

Get cursor type.
The return value will be one of the ?wxSTC_CURSOR* constants.

 getSTCFocus(This)

 -spec getSTCFocus(This) -> boolean() when This :: wxStyledTextCtrl().

Get internal focus flag.

 getStatus(This)

 -spec getStatus(This) -> integer() when This :: wxStyledTextCtrl().

Get error status.
The return value will be one of the ?wxSTC_STATUS_* constants.

 getStyleAt(This, Pos)

 -spec getStyleAt(This, Pos) -> integer() when This :: wxStyledTextCtrl(), Pos :: integer().

Returns the style byte at the position.

 getStyleBits(This)

 -spec getStyleBits(This) -> integer() when This :: wxStyledTextCtrl().

Retrieve number of bits in style bytes used to hold the lexical state.
Deprecated:

 getStyleBitsNeeded(This)

 -spec getStyleBitsNeeded(This) -> integer() when This :: wxStyledTextCtrl().

Retrieve the number of bits the current lexer needs for styling.
Deprecated:

 getTabIndents(This)

 -spec getTabIndents(This) -> boolean() when This :: wxStyledTextCtrl().

Does a tab pressed when caret is within indentation indent?

 getTabWidth(This)

 -spec getTabWidth(This) -> integer() when This :: wxStyledTextCtrl().

Retrieve the visible size of a tab.

 getTargetEnd(This)

 -spec getTargetEnd(This) -> integer() when This :: wxStyledTextCtrl().

Get the position that ends the target.

 getTargetStart(This)

 -spec getTargetStart(This) -> integer() when This :: wxStyledTextCtrl().

Get the position that starts the target.

 getText(This)

 -spec getText(This) -> unicode:charlist() when This :: wxStyledTextCtrl().

Retrieve all the text in the document.

 getTextLength(This)

 -spec getTextLength(This) -> integer() when This :: wxStyledTextCtrl().

Retrieve the number of characters in the document.

 getTextRange(This, StartPos, EndPos)

 -spec getTextRange(This, StartPos, EndPos) -> unicode:charlist()
 when This :: wxStyledTextCtrl(), StartPos :: integer(), EndPos :: integer().

Retrieve a range of text.

 getTextRangeRaw(This, StartPos, EndPos)

 -spec getTextRangeRaw(This, StartPos, EndPos) -> binary()
 when This :: wxStyledTextCtrl(), StartPos :: integer(), EndPos :: integer().

Retrieve a range of text.

 getTextRaw(This)

 -spec getTextRaw(This) -> binary() when This :: wxStyledTextCtrl().

Retrieve all the text in the document.

 getTwoPhaseDraw(This)

 -spec getTwoPhaseDraw(This) -> boolean() when This :: wxStyledTextCtrl().

Is drawing done in two phases with backgrounds drawn before foregrounds?

 getUndoCollection(This)

 -spec getUndoCollection(This) -> boolean() when This :: wxStyledTextCtrl().

Is undo history being collected?

 getUseAntiAliasing(This)

 -spec getUseAntiAliasing(This) -> boolean() when This :: wxStyledTextCtrl().

Returns the current UseAntiAliasing setting.

 getUseHorizontalScrollBar(This)

 -spec getUseHorizontalScrollBar(This) -> boolean() when This :: wxStyledTextCtrl().

Is the horizontal scroll bar visible?

 getUseTabs(This)

 -spec getUseTabs(This) -> boolean() when This :: wxStyledTextCtrl().

Retrieve whether tabs will be used in indentation.

 getUseVerticalScrollBar(This)

 -spec getUseVerticalScrollBar(This) -> boolean() when This :: wxStyledTextCtrl().

Is the vertical scroll bar visible?

 getViewEOL(This)

 -spec getViewEOL(This) -> boolean() when This :: wxStyledTextCtrl().

Are the end of line characters visible?

 getViewWhiteSpace(This)

 -spec getViewWhiteSpace(This) -> integer() when This :: wxStyledTextCtrl().

Are white space characters currently visible? Returns one of wxSTCWS* constants.

 getWrapMode(This)

 -spec getWrapMode(This) -> integer() when This :: wxStyledTextCtrl().

Retrieve whether text is word wrapped.
The return value will be one of the ?wxSTC_WRAP_* constants.

 getWrapStartIndent(This)

 -spec getWrapStartIndent(This) -> integer() when This :: wxStyledTextCtrl().

Retrieve the start indent for wrapped lines.

 getWrapVisualFlags(This)

 -spec getWrapVisualFlags(This) -> integer() when This :: wxStyledTextCtrl().

Retrieve the display mode of visual flags for wrapped lines.
The return value will be a bit list containing one or more of the
?wxSTC_WRAPVISUALFLAG_* constants.

 getWrapVisualFlagsLocation(This)

 -spec getWrapVisualFlagsLocation(This) -> integer() when This :: wxStyledTextCtrl().

Retrieve the location of visual flags for wrapped lines.
The return value will be a bit list containing one or more of the
?wxSTC_WRAPVISUALFLAGLOC_* constants.

 getXOffset(This)

 -spec getXOffset(This) -> integer() when This :: wxStyledTextCtrl().

Get the xOffset (ie, horizontal scroll position).

 getZoom(This)

 -spec getZoom(This) -> integer() when This :: wxStyledTextCtrl().

Retrieve the zoom level.

 gotoLine(This, Line)

 -spec gotoLine(This, Line) -> ok when This :: wxStyledTextCtrl(), Line :: integer().

Set caret to start of a line and ensure it is visible.

 gotoPos(This, Caret)

 -spec gotoPos(This, Caret) -> ok when This :: wxStyledTextCtrl(), Caret :: integer().

Set caret to a position and ensure it is visible.

 hideLines(This, LineStart, LineEnd)

 -spec hideLines(This, LineStart, LineEnd) -> ok
 when This :: wxStyledTextCtrl(), LineStart :: integer(), LineEnd :: integer().

Make a range of lines invisible.

 hideSelection(This, Hide)

 -spec hideSelection(This, Hide) -> ok when This :: wxStyledTextCtrl(), Hide :: boolean().

Draw the selection in normal style or with selection highlighted.

 home(This)

 -spec home(This) -> ok when This :: wxStyledTextCtrl().

Move caret to first position on line.

 homeDisplay(This)

 -spec homeDisplay(This) -> ok when This :: wxStyledTextCtrl().

Move caret to first position on display line.

 homeDisplayExtend(This)

 -spec homeDisplayExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret to first position on display line extending selection to new caret position.

 homeExtend(This)

 -spec homeExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret to first position on line extending selection to new caret position.

 homeRectExtend(This)

 -spec homeRectExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret to first position on line, extending rectangular selection to new caret
position.

 homeWrapExtend(This)

 -spec homeWrapExtend(This) -> ok when This :: wxStyledTextCtrl().

Like HomeExtend but when word-wrap is enabled extends first to start of display line
HomeDisplayExtend, then to start of document line HomeExtend.

 indicatorGetForeground(This, Indicator)

 -spec indicatorGetForeground(This, Indicator) -> wx:wx_colour4()
 when This :: wxStyledTextCtrl(), Indicator :: integer().

Retrieve the foreground colour of an indicator.

 indicatorGetStyle(This, Indicator)

 -spec indicatorGetStyle(This, Indicator) -> integer()
 when This :: wxStyledTextCtrl(), Indicator :: integer().

Retrieve the style of an indicator.
The return value will be one of the ?wxSTC_INDIC_* constants.

 indicatorSetForeground(This, Indicator, Fore)

 -spec indicatorSetForeground(This, Indicator, Fore) -> ok
 when
 This :: wxStyledTextCtrl(),
 Indicator :: integer(),
 Fore :: wx:wx_colour().

Set the foreground colour of an indicator.

 indicatorSetStyle(This, Indicator, IndicatorStyle)

 -spec indicatorSetStyle(This, Indicator, IndicatorStyle) -> ok
 when
 This :: wxStyledTextCtrl(),
 Indicator :: integer(),
 IndicatorStyle :: integer().

Set an indicator to plain, squiggle or TT.
The second argument should be one of the ?wxSTC_INDIC_* constants.

 insertText(This, Pos, Text)

 -spec insertText(This, Pos, Text) -> ok
 when This :: wxStyledTextCtrl(), Pos :: integer(), Text :: unicode:chardata().

Insert string at a position.

 insertTextRaw(This, Pos, Text)

 -spec insertTextRaw(This, Pos, Text) -> ok
 when This :: wxStyledTextCtrl(), Pos :: integer(), Text :: binary().

Insert string at a position.

 lineCopy(This)

 -spec lineCopy(This) -> ok when This :: wxStyledTextCtrl().

Copy the line containing the caret.

 lineCut(This)

 -spec lineCut(This) -> ok when This :: wxStyledTextCtrl().

Cut the line containing the caret.

 lineDelete(This)

 -spec lineDelete(This) -> ok when This :: wxStyledTextCtrl().

Delete the line containing the caret.

 lineDown(This)

 -spec lineDown(This) -> ok when This :: wxStyledTextCtrl().

Move caret down one line.

 lineDownExtend(This)

 -spec lineDownExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret down one line extending selection to new caret position.

 lineDownRectExtend(This)

 -spec lineDownRectExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret down one line, extending rectangular selection to new caret position.

 lineDuplicate(This)

 -spec lineDuplicate(This) -> ok when This :: wxStyledTextCtrl().

Duplicate the current line.

 lineEnd(This)

 -spec lineEnd(This) -> ok when This :: wxStyledTextCtrl().

Move caret to last position on line.

 lineEndDisplay(This)

 -spec lineEndDisplay(This) -> ok when This :: wxStyledTextCtrl().

Move caret to last position on display line.

 lineEndDisplayExtend(This)

 -spec lineEndDisplayExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret to last position on display line extending selection to new caret position.

 lineEndExtend(This)

 -spec lineEndExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret to last position on line extending selection to new caret position.

 lineEndRectExtend(This)

 -spec lineEndRectExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret to last position on line, extending rectangular selection to new caret
position.

 lineEndWrap(This)

 -spec lineEndWrap(This) -> ok when This :: wxStyledTextCtrl().

Like LineEnd but when word-wrap is enabled goes first to end of display line
LineEndDisplay, then to start of document line LineEnd.

 lineEndWrapExtend(This)

 -spec lineEndWrapExtend(This) -> ok when This :: wxStyledTextCtrl().

Like LineEndExtend but when word-wrap is enabled extends first to end of display line
LineEndDisplayExtend, then to start of document line LineEndExtend.

 lineFromPosition(This, Pos)

 -spec lineFromPosition(This, Pos) -> integer() when This :: wxStyledTextCtrl(), Pos :: integer().

Retrieve the line containing a position.

 lineLength(This, Line)

 -spec lineLength(This, Line) -> integer() when This :: wxStyledTextCtrl(), Line :: integer().

How many characters are on a line, including end of line characters?

 lineScroll(This, Columns, Lines)

 -spec lineScroll(This, Columns, Lines) -> ok
 when This :: wxStyledTextCtrl(), Columns :: integer(), Lines :: integer().

Scroll horizontally and vertically.

 lineScrollDown(This)

 -spec lineScrollDown(This) -> ok when This :: wxStyledTextCtrl().

Scroll the document down, keeping the caret visible.

 lineScrollUp(This)

 -spec lineScrollUp(This) -> ok when This :: wxStyledTextCtrl().

Scroll the document up, keeping the caret visible.

 linesJoin(This)

 -spec linesJoin(This) -> ok when This :: wxStyledTextCtrl().

Join the lines in the target.

 linesOnScreen(This)

 -spec linesOnScreen(This) -> integer() when This :: wxStyledTextCtrl().

Retrieves the number of lines completely visible.

 linesSplit(This, PixelWidth)

 -spec linesSplit(This, PixelWidth) -> ok when This :: wxStyledTextCtrl(), PixelWidth :: integer().

Split the lines in the target into lines that are less wide than pixelWidth where
possible.

 lineTranspose(This)

 -spec lineTranspose(This) -> ok when This :: wxStyledTextCtrl().

Switch the current line with the previous.

 lineUp(This)

 -spec lineUp(This) -> ok when This :: wxStyledTextCtrl().

Move caret up one line.

 lineUpExtend(This)

 -spec lineUpExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret up one line extending selection to new caret position.

 lineUpRectExtend(This)

 -spec lineUpRectExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret up one line, extending rectangular selection to new caret position.

 loadFile(This, Filename)

 -spec loadFile(This, Filename) -> boolean()
 when This :: wxStyledTextCtrl(), Filename :: unicode:chardata().

Load the contents of filename into the editor.

 lowerCase(This)

 -spec lowerCase(This) -> ok when This :: wxStyledTextCtrl().

Transform the selection to lower case.

 markerAdd(This, Line, MarkerNumber)

 -spec markerAdd(This, Line, MarkerNumber) -> integer()
 when This :: wxStyledTextCtrl(), Line :: integer(), MarkerNumber :: integer().

Add a marker to a line, returning an ID which can be used to find or delete the marker.

 markerAddSet(This, Line, MarkerSet)

 -spec markerAddSet(This, Line, MarkerSet) -> ok
 when This :: wxStyledTextCtrl(), Line :: integer(), MarkerSet :: integer().

Add a set of markers to a line.

 markerDefine(This, MarkerNumber, MarkerSymbol)

 -spec markerDefine(This, MarkerNumber, MarkerSymbol) -> ok
 when
 This :: wxStyledTextCtrl(),
 MarkerNumber :: integer(),
 MarkerSymbol :: integer().

Equivalent to markerDefine(This, MarkerNumber, MarkerSymbol, []).

 markerDefine/4

 -spec markerDefine(This, MarkerNumber, MarkerSymbol, [Option]) -> ok
 when
 This :: wxStyledTextCtrl(),
 MarkerNumber :: integer(),
 MarkerSymbol :: integer(),
 Option :: {foreground, wx:wx_colour()} | {background, wx:wx_colour()}.

Set the symbol used for a particular marker number, and optionally the fore and
background colours.
The second argument should be one of the ?wxSTC_MARK_* constants.

 markerDefineBitmap(This, MarkerNumber, Bmp)

 -spec markerDefineBitmap(This, MarkerNumber, Bmp) -> ok
 when
 This :: wxStyledTextCtrl(),
 MarkerNumber :: integer(),
 Bmp :: wxBitmap:wxBitmap().

Define a marker with a wxBitmap.

 markerDelete(This, Line, MarkerNumber)

 -spec markerDelete(This, Line, MarkerNumber) -> ok
 when This :: wxStyledTextCtrl(), Line :: integer(), MarkerNumber :: integer().

Delete a marker from a line.

 markerDeleteAll(This, MarkerNumber)

 -spec markerDeleteAll(This, MarkerNumber) -> ok
 when This :: wxStyledTextCtrl(), MarkerNumber :: integer().

Delete all markers with a particular number from all lines.

 markerDeleteHandle(This, MarkerHandle)

 -spec markerDeleteHandle(This, MarkerHandle) -> ok
 when This :: wxStyledTextCtrl(), MarkerHandle :: integer().

Delete a marker.

 markerGet(This, Line)

 -spec markerGet(This, Line) -> integer() when This :: wxStyledTextCtrl(), Line :: integer().

Get a bit mask of all the markers set on a line.

 markerLineFromHandle(This, MarkerHandle)

 -spec markerLineFromHandle(This, MarkerHandle) -> integer()
 when This :: wxStyledTextCtrl(), MarkerHandle :: integer().

Retrieve the line number at which a particular marker is located.

 markerNext(This, LineStart, MarkerMask)

 -spec markerNext(This, LineStart, MarkerMask) -> integer()
 when This :: wxStyledTextCtrl(), LineStart :: integer(), MarkerMask :: integer().

Find the next line at or after lineStart that includes a marker in mask.
Return -1 when no more lines.

 markerPrevious(This, LineStart, MarkerMask)

 -spec markerPrevious(This, LineStart, MarkerMask) -> integer()
 when This :: wxStyledTextCtrl(), LineStart :: integer(), MarkerMask :: integer().

Find the previous line before lineStart that includes a marker in mask.

 markerSetAlpha(This, MarkerNumber, Alpha)

 -spec markerSetAlpha(This, MarkerNumber, Alpha) -> ok
 when This :: wxStyledTextCtrl(), MarkerNumber :: integer(), Alpha :: integer().

Set the alpha used for a marker that is drawn in the text area, not the margin.

 markerSetBackground(This, MarkerNumber, Back)

 -spec markerSetBackground(This, MarkerNumber, Back) -> ok
 when
 This :: wxStyledTextCtrl(),
 MarkerNumber :: integer(),
 Back :: wx:wx_colour().

Set the background colour used for a particular marker number.

 markerSetForeground(This, MarkerNumber, Fore)

 -spec markerSetForeground(This, MarkerNumber, Fore) -> ok
 when
 This :: wxStyledTextCtrl(),
 MarkerNumber :: integer(),
 Fore :: wx:wx_colour().

Set the foreground colour used for a particular marker number.

 moveCaretInsideView(This)

 -spec moveCaretInsideView(This) -> ok when This :: wxStyledTextCtrl().

Move the caret inside current view if it's not there already.

 new()

 -spec new() -> wxStyledTextCtrl().

Default ctor.

 new(Parent)

 -spec new(Parent) -> wxStyledTextCtrl() when Parent :: wxWindow:wxWindow().

Equivalent to new(Parent, []).

 new/2

 -spec new(Parent, [Option]) -> wxStyledTextCtrl()
 when
 Parent :: wxWindow:wxWindow(),
 Option ::
 {id, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Ctor.

 newLine(This)

 -spec newLine(This) -> ok when This :: wxStyledTextCtrl().

Insert a new line, may use a CRLF, CR or LF depending on EOL mode.

 pageDown(This)

 -spec pageDown(This) -> ok when This :: wxStyledTextCtrl().

Move caret one page down.

 pageDownExtend(This)

 -spec pageDownExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret one page down extending selection to new caret position.

 pageDownRectExtend(This)

 -spec pageDownRectExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret one page down, extending rectangular selection to new caret position.

 pageUp(This)

 -spec pageUp(This) -> ok when This :: wxStyledTextCtrl().

Move caret one page up.

 pageUpExtend(This)

 -spec pageUpExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret one page up extending selection to new caret position.

 pageUpRectExtend(This)

 -spec pageUpRectExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret one page up, extending rectangular selection to new caret position.

 paraDownExtend(This)

 -spec paraDownExtend(This) -> ok when This :: wxStyledTextCtrl().

Extend selection down one paragraph (delimited by empty lines).

 paraUp(This)

 -spec paraUp(This) -> ok when This :: wxStyledTextCtrl().

Move caret up one paragraph (delimited by empty lines).

 paraUpExtend(This)

 -spec paraUpExtend(This) -> ok when This :: wxStyledTextCtrl().

Extend selection up one paragraph (delimited by empty lines).

 paste(This)

 -spec paste(This) -> ok when This :: wxStyledTextCtrl().

Paste the contents of the clipboard into the document replacing the selection.

 pointFromPosition(This, Pos)

 -spec pointFromPosition(This, Pos) -> {X :: integer(), Y :: integer()}
 when This :: wxStyledTextCtrl(), Pos :: integer().

Retrieve the point in the window where a position is displayed.

 positionAfter(This, Pos)

 -spec positionAfter(This, Pos) -> integer() when This :: wxStyledTextCtrl(), Pos :: integer().

Given a valid document position, return the next position taking code page into account.
Maximum value returned is the last position in the document.

 positionBefore(This, Pos)

 -spec positionBefore(This, Pos) -> integer() when This :: wxStyledTextCtrl(), Pos :: integer().

Given a valid document position, return the previous position taking code page into
account.
Returns 0 if passed 0.

 positionFromLine(This, Line)

 -spec positionFromLine(This, Line) -> integer() when This :: wxStyledTextCtrl(), Line :: integer().

Retrieve the position at the start of a line.

 positionFromPoint(This, Pt)

 -spec positionFromPoint(This, Pt) -> integer()
 when This :: wxStyledTextCtrl(), Pt :: {X :: integer(), Y :: integer()}.

Find the position from a point within the window.

 positionFromPointClose(This, X, Y)

 -spec positionFromPointClose(This, X, Y) -> integer()
 when This :: wxStyledTextCtrl(), X :: integer(), Y :: integer().

Find the position from a point within the window but return wxSTC_INVALID_POSITION if
not close to text.

 redo(This)

 -spec redo(This) -> ok when This :: wxStyledTextCtrl().

Redoes the next action on the undo history.

 registerImage(This, Type, Bmp)

 -spec registerImage(This, Type, Bmp) -> ok
 when This :: wxStyledTextCtrl(), Type :: integer(), Bmp :: wxBitmap:wxBitmap().

Register an image for use in autocompletion lists.

 replaceSelection(This, Text)

 -spec replaceSelection(This, Text) -> ok when This :: wxStyledTextCtrl(), Text :: unicode:chardata().

Replace the selected text with the argument text.

 replaceTarget(This, Text)

 -spec replaceTarget(This, Text) -> integer() when This :: wxStyledTextCtrl(), Text :: unicode:chardata().

Replace the target text with the argument text.
Text is counted so it can contain NULs. Returns the length of the replacement text.

 saveFile(This, Filename)

 -spec saveFile(This, Filename) -> boolean()
 when This :: wxStyledTextCtrl(), Filename :: unicode:chardata().

Write the contents of the editor to filename.

 scrollToColumn(This, Column)

 -spec scrollToColumn(This, Column) -> ok when This :: wxStyledTextCtrl(), Column :: integer().

Scroll enough to make the given column visible.

 scrollToLine(This, Line)

 -spec scrollToLine(This, Line) -> ok when This :: wxStyledTextCtrl(), Line :: integer().

Scroll enough to make the given line visible.

 searchAnchor(This)

 -spec searchAnchor(This) -> ok when This :: wxStyledTextCtrl().

Sets the current caret position to be the search anchor.

 searchInTarget(This, Text)

 -spec searchInTarget(This, Text) -> integer()
 when This :: wxStyledTextCtrl(), Text :: unicode:chardata().

Search for a counted string in the target and set the target to the found range.
Text is counted so it can contain NULs. Returns length of range or -1 for failure in
which case target is not moved.

 searchNext(This, SearchFlags, Text)

 -spec searchNext(This, SearchFlags, Text) -> integer()
 when
 This :: wxStyledTextCtrl(), SearchFlags :: integer(), Text :: unicode:chardata().

Find some text starting at the search anchor.
Does not ensure the selection is visible.

 searchPrev(This, SearchFlags, Text)

 -spec searchPrev(This, SearchFlags, Text) -> integer()
 when
 This :: wxStyledTextCtrl(), SearchFlags :: integer(), Text :: unicode:chardata().

Find some text starting at the search anchor and moving backwards.
Does not ensure the selection is visible.

 selectAll(This)

 -spec selectAll(This) -> ok when This :: wxStyledTextCtrl().

Select all the text in the document.

 selectionDuplicate(This)

 -spec selectionDuplicate(This) -> ok when This :: wxStyledTextCtrl().

Duplicate the selection.
If selection empty duplicate the line containing the caret.

 selectionIsRectangle(This)

 -spec selectionIsRectangle(This) -> boolean() when This :: wxStyledTextCtrl().

Is the selection rectangular? The alternative is the more common stream selection.

 setAnchor(This, Anchor)

 -spec setAnchor(This, Anchor) -> ok when This :: wxStyledTextCtrl(), Anchor :: integer().

Set the selection anchor to a position.
The anchor is the opposite end of the selection from the caret.

 setBackSpaceUnIndents(This, BsUnIndents)

 -spec setBackSpaceUnIndents(This, BsUnIndents) -> ok
 when This :: wxStyledTextCtrl(), BsUnIndents :: boolean().

Sets whether a backspace pressed when caret is within indentation unindents.

 setBufferedDraw(This, Buffered)

 -spec setBufferedDraw(This, Buffered) -> ok when This :: wxStyledTextCtrl(), Buffered :: boolean().

If drawing is buffered then each line of text is drawn into a bitmap buffer before
drawing it to the screen to avoid flicker.

 setCaretForeground(This, Fore)

 -spec setCaretForeground(This, Fore) -> ok when This :: wxStyledTextCtrl(), Fore :: wx:wx_colour().

Set the foreground colour of the caret.

 setCaretLineBackAlpha(This, Alpha)

 -spec setCaretLineBackAlpha(This, Alpha) -> ok when This :: wxStyledTextCtrl(), Alpha :: integer().

Set background alpha of the caret line.

 setCaretLineBackground(This, Back)

 -spec setCaretLineBackground(This, Back) -> ok when This :: wxStyledTextCtrl(), Back :: wx:wx_colour().

Set the colour of the background of the line containing the caret.

 setCaretLineVisible(This, Show)

 -spec setCaretLineVisible(This, Show) -> ok when This :: wxStyledTextCtrl(), Show :: boolean().

Display the background of the line containing the caret in a different colour.

 setCaretPeriod(This, PeriodMilliseconds)

 -spec setCaretPeriod(This, PeriodMilliseconds) -> ok
 when This :: wxStyledTextCtrl(), PeriodMilliseconds :: integer().

Get the time in milliseconds that the caret is on and off.
0 = steady on.

 setCaretSticky(This, UseCaretStickyBehaviour)

 -spec setCaretSticky(This, UseCaretStickyBehaviour) -> ok
 when This :: wxStyledTextCtrl(), UseCaretStickyBehaviour :: integer().

Stop the caret preferred x position changing when the user types.
The input should be one of the ?wxSTC_CARETSTICKY_* constants.

 setCaretWidth(This, PixelWidth)

 -spec setCaretWidth(This, PixelWidth) -> ok when This :: wxStyledTextCtrl(), PixelWidth :: integer().

Set the width of the insert mode caret.

 setCharsDefault(This)

 -spec setCharsDefault(This) -> ok when This :: wxStyledTextCtrl().

Reset the set of characters for whitespace and word characters to the defaults.

 setCodePage(This, CodePage)

 -spec setCodePage(This, CodePage) -> ok when This :: wxStyledTextCtrl(), CodePage :: integer().

Set the code page used to interpret the bytes of the document as characters.

 setControlCharSymbol(This, Symbol)

 -spec setControlCharSymbol(This, Symbol) -> ok when This :: wxStyledTextCtrl(), Symbol :: integer().

Change the way control characters are displayed: If symbol is *< 32, keep the drawn way,
else, use the given character.

 setCurrentPos(This, Caret)

 -spec setCurrentPos(This, Caret) -> ok when This :: wxStyledTextCtrl(), Caret :: integer().

Sets the position of the caret.

 setEdgeColour(This, EdgeColour)

 -spec setEdgeColour(This, EdgeColour) -> ok
 when This :: wxStyledTextCtrl(), EdgeColour :: wx:wx_colour().

Change the colour used in edge indication.

 setEdgeColumn(This, Column)

 -spec setEdgeColumn(This, Column) -> ok when This :: wxStyledTextCtrl(), Column :: integer().

Set the column number of the edge.
If text goes past the edge then it is highlighted.

 setEdgeMode(This, EdgeMode)

 -spec setEdgeMode(This, EdgeMode) -> ok when This :: wxStyledTextCtrl(), EdgeMode :: integer().

The edge may be displayed by a line (wxSTC_EDGE_LINE/wxSTC_EDGE_MULTILINE) or by
highlighting text that goes beyond it (wxSTC_EDGE_BACKGROUND) or not displayed at all
(wxSTC_EDGE_NONE).
The input should be one of the ?wxSTC_EDGE_* constants.

 setEOLMode(This, EolMode)

 -spec setEOLMode(This, EolMode) -> ok when This :: wxStyledTextCtrl(), EolMode :: integer().

Set the current end of line mode.
The input should be one of the ?wxSTC_EOL_* constants.

 setFoldExpanded(This, Line, Expanded)

 -spec setFoldExpanded(This, Line, Expanded) -> ok
 when This :: wxStyledTextCtrl(), Line :: integer(), Expanded :: boolean().

Show the children of a header line.

 setFoldFlags(This, Flags)

 -spec setFoldFlags(This, Flags) -> ok when This :: wxStyledTextCtrl(), Flags :: integer().

Set some style options for folding.
The second argument should be a bit list containing one or more of the
?wxSTC_FOLDFLAG_* constants.

 setFoldLevel(This, Line, Level)

 -spec setFoldLevel(This, Line, Level) -> ok
 when This :: wxStyledTextCtrl(), Line :: integer(), Level :: integer().

Set the fold level of a line.
This encodes an integer level along with flags indicating whether the line is a header
and whether it is effectively white space.

 setFoldMarginColour(This, UseSetting, Back)

 -spec setFoldMarginColour(This, UseSetting, Back) -> ok
 when
 This :: wxStyledTextCtrl(),
 UseSetting :: boolean(),
 Back :: wx:wx_colour().

Set one of the colours used as a chequerboard pattern in the fold margin.

 setFoldMarginHiColour(This, UseSetting, Fore)

 -spec setFoldMarginHiColour(This, UseSetting, Fore) -> ok
 when
 This :: wxStyledTextCtrl(),
 UseSetting :: boolean(),
 Fore :: wx:wx_colour().

Set the other colour used as a chequerboard pattern in the fold margin.

 setHighlightGuide(This, Column)

 -spec setHighlightGuide(This, Column) -> ok when This :: wxStyledTextCtrl(), Column :: integer().

Set the highlighted indentation guide column.
0 = no highlighted guide.

 setHotspotActiveBackground(This, UseSetting, Back)

 -spec setHotspotActiveBackground(This, UseSetting, Back) -> ok
 when
 This :: wxStyledTextCtrl(),
 UseSetting :: boolean(),
 Back :: wx:wx_colour().

Set a back colour for active hotspots.

 setHotspotActiveForeground(This, UseSetting, Fore)

 -spec setHotspotActiveForeground(This, UseSetting, Fore) -> ok
 when
 This :: wxStyledTextCtrl(),
 UseSetting :: boolean(),
 Fore :: wx:wx_colour().

Set a fore colour for active hotspots.

 setHotspotActiveUnderline(This, Underline)

 -spec setHotspotActiveUnderline(This, Underline) -> ok
 when This :: wxStyledTextCtrl(), Underline :: boolean().

Enable / Disable underlining active hotspots.

 setHotspotSingleLine(This, SingleLine)

 -spec setHotspotSingleLine(This, SingleLine) -> ok
 when This :: wxStyledTextCtrl(), SingleLine :: boolean().

Limit hotspots to single line so hotspots on two lines don't merge.

 setHScrollBar(This, Bar)

 -spec setHScrollBar(This, Bar) -> ok when This :: wxStyledTextCtrl(), Bar :: wxScrollBar:wxScrollBar().

Set the horizontal scrollbar to use instead of the one that's built-in.

 setIndent(This, IndentSize)

 -spec setIndent(This, IndentSize) -> ok when This :: wxStyledTextCtrl(), IndentSize :: integer().

Set the number of spaces used for one level of indentation.

 setIndentationGuides(This, IndentView)

 -spec setIndentationGuides(This, IndentView) -> ok
 when This :: wxStyledTextCtrl(), IndentView :: integer().

Show or hide indentation guides.
The input should be one of the ?wxSTC_IV_* constants.

 setKeyWords(This, KeyWordSet, KeyWords)

 -spec setKeyWords(This, KeyWordSet, KeyWords) -> ok
 when
 This :: wxStyledTextCtrl(),
 KeyWordSet :: integer(),
 KeyWords :: unicode:chardata().

Set up the key words used by the lexer.

 setLastKeydownProcessed(This, Val)

 -spec setLastKeydownProcessed(This, Val) -> ok when This :: wxStyledTextCtrl(), Val :: boolean().

Returns the line number of the line with the caret.

 setLayoutCache(This, CacheMode)

 -spec setLayoutCache(This, CacheMode) -> ok when This :: wxStyledTextCtrl(), CacheMode :: integer().

Sets the degree of caching of layout information.
The input should be one of the ?wxSTC_CACHE_* constants.

 setLexer(This, Lexer)

 -spec setLexer(This, Lexer) -> ok when This :: wxStyledTextCtrl(), Lexer :: integer().

Set the lexing language of the document.
The input should be one of the ?wxSTC_LEX_* constants.

 setLexerLanguage(This, Language)

 -spec setLexerLanguage(This, Language) -> ok
 when This :: wxStyledTextCtrl(), Language :: unicode:chardata().

Set the lexing language of the document based on string name.

 setLineIndentation(This, Line, Indentation)

 -spec setLineIndentation(This, Line, Indentation) -> ok
 when This :: wxStyledTextCtrl(), Line :: integer(), Indentation :: integer().

Change the indentation of a line to a number of columns.

 setLineState(This, Line, State)

 -spec setLineState(This, Line, State) -> ok
 when This :: wxStyledTextCtrl(), Line :: integer(), State :: integer().

Used to hold extra styling information for each line.

 setMarginLeft(This, PixelWidth)

 -spec setMarginLeft(This, PixelWidth) -> ok when This :: wxStyledTextCtrl(), PixelWidth :: integer().

Sets the size in pixels of the left margin.

 setMarginMask(This, Margin, Mask)

 -spec setMarginMask(This, Margin, Mask) -> ok
 when This :: wxStyledTextCtrl(), Margin :: integer(), Mask :: integer().

Set a mask that determines which markers are displayed in a margin.

 setMarginRight(This, PixelWidth)

 -spec setMarginRight(This, PixelWidth) -> ok when This :: wxStyledTextCtrl(), PixelWidth :: integer().

Sets the size in pixels of the right margin.

 setMarginSensitive(This, Margin, Sensitive)

 -spec setMarginSensitive(This, Margin, Sensitive) -> ok
 when This :: wxStyledTextCtrl(), Margin :: integer(), Sensitive :: boolean().

Make a margin sensitive or insensitive to mouse clicks.

 setMargins(This, Left, Right)

 -spec setMargins(This, Left, Right) -> ok
 when This :: wxStyledTextCtrl(), Left :: integer(), Right :: integer().

Set the left and right margin in the edit area, measured in pixels.

 setMarginType(This, Margin, MarginType)

 -spec setMarginType(This, Margin, MarginType) -> ok
 when This :: wxStyledTextCtrl(), Margin :: integer(), MarginType :: integer().

Set a margin to be either numeric or symbolic.
The second argument should be one of the ?wxSTC_MARGIN_* constants.

 setMarginWidth(This, Margin, PixelWidth)

 -spec setMarginWidth(This, Margin, PixelWidth) -> ok
 when This :: wxStyledTextCtrl(), Margin :: integer(), PixelWidth :: integer().

Set the width of a margin to a width expressed in pixels.

 setModEventMask(This, EventMask)

 -spec setModEventMask(This, EventMask) -> ok when This :: wxStyledTextCtrl(), EventMask :: integer().

Set which document modification events are sent to the container.
The input should be a bit list containing one or more of the ?wxSTC_MOD_* constants,
the ?wxSTC_PERFORMED_* constants, wxSTC_STARTACTION, wxSTC_MULTILINEUNDOREDO,
wxSTC_MULTISTEPUNDOREDO, and wxSTC_LASTSTEPINUNDOREDO. The input can also be
wxSTC_MODEVENTMASKALL to indicate that all changes should generate events.

 setMouseDownCaptures(This, Captures)

 -spec setMouseDownCaptures(This, Captures) -> ok when This :: wxStyledTextCtrl(), Captures :: boolean().

Set whether the mouse is captured when its button is pressed.

 setMouseDwellTime(This, PeriodMilliseconds)

 -spec setMouseDwellTime(This, PeriodMilliseconds) -> ok
 when This :: wxStyledTextCtrl(), PeriodMilliseconds :: integer().

Sets the time the mouse must sit still to generate a mouse dwell event.
The input should be a time in milliseconds or wxSTC_TIME_FOREVER.

 setPasteConvertEndings(This, Convert)

 -spec setPasteConvertEndings(This, Convert) -> ok when This :: wxStyledTextCtrl(), Convert :: boolean().

Enable/Disable convert-on-paste for line endings.

 setPrintColourMode(This, Mode)

 -spec setPrintColourMode(This, Mode) -> ok when This :: wxStyledTextCtrl(), Mode :: integer().

Modify colours when printing for clearer printed text.
The input should be one of the ?wxSTC_PRINT_* constants.

 setPrintMagnification(This, Magnification)

 -spec setPrintMagnification(This, Magnification) -> ok
 when This :: wxStyledTextCtrl(), Magnification :: integer().

Sets the print magnification added to the point size of each style for printing.

 setProperty(This, Key, Value)

 -spec setProperty(This, Key, Value) -> ok
 when
 This :: wxStyledTextCtrl(),
 Key :: unicode:chardata(),
 Value :: unicode:chardata().

Set up a value that may be used by a lexer for some optional feature.

 setReadOnly(This, ReadOnly)

 -spec setReadOnly(This, ReadOnly) -> ok when This :: wxStyledTextCtrl(), ReadOnly :: boolean().

Set to read only or read write.

 setSavePoint(This)

 -spec setSavePoint(This) -> ok when This :: wxStyledTextCtrl().

Remember the current position in the undo history as the position at which the document
was saved.

 setScrollWidth(This, PixelWidth)

 -spec setScrollWidth(This, PixelWidth) -> ok when This :: wxStyledTextCtrl(), PixelWidth :: integer().

Sets the document width assumed for scrolling.

 setSearchFlags(This, SearchFlags)

 -spec setSearchFlags(This, SearchFlags) -> ok when This :: wxStyledTextCtrl(), SearchFlags :: integer().

Set the search flags used by SearchInTarget.
The input should be a bit list containing one or more of the ?wxSTC_FIND_* constants.

 setSelAlpha(This, Alpha)

 -spec setSelAlpha(This, Alpha) -> ok when This :: wxStyledTextCtrl(), Alpha :: integer().

Set the alpha of the selection.

 setSelBackground(This, UseSetting, Back)

 -spec setSelBackground(This, UseSetting, Back) -> ok
 when
 This :: wxStyledTextCtrl(),
 UseSetting :: boolean(),
 Back :: wx:wx_colour().

Set the background colour of the main and additional selections and whether to use this
setting.

 setSelection(This, From, To)

 -spec setSelection(This, From, To) -> ok
 when This :: wxStyledTextCtrl(), From :: integer(), To :: integer().

Selects the text starting at the first position up to (but not including) the character
at the last position.
If both parameters are equal to -1 all text in the control is selected.
Notice that the insertion point will be moved to from by this function.
See: selectAll/1

 setSelectionEnd(This, Caret)

 -spec setSelectionEnd(This, Caret) -> ok when This :: wxStyledTextCtrl(), Caret :: integer().

Sets the position that ends the selection - this becomes the caret.

 setSelectionMode(This, SelectionMode)

 -spec setSelectionMode(This, SelectionMode) -> ok
 when This :: wxStyledTextCtrl(), SelectionMode :: integer().

Set the selection mode to stream (wxSTC_SEL_STREAM) or rectangular
(wxSTC_SEL_RECTANGLE/wxSTC_SEL_THIN) or by lines (wxSTC_SEL_LINES).

 setSelectionStart(This, Anchor)

 -spec setSelectionStart(This, Anchor) -> ok when This :: wxStyledTextCtrl(), Anchor :: integer().

Sets the position that starts the selection - this becomes the anchor.

 setSelForeground(This, UseSetting, Fore)

 -spec setSelForeground(This, UseSetting, Fore) -> ok
 when
 This :: wxStyledTextCtrl(),
 UseSetting :: boolean(),
 Fore :: wx:wx_colour().

Set the foreground colour of the main and additional selections and whether to use this
setting.

 setSTCCursor(This, CursorType)

 -spec setSTCCursor(This, CursorType) -> ok when This :: wxStyledTextCtrl(), CursorType :: integer().

Sets the cursor to one of the wxSTC_CURSOR* values.

 setSTCFocus(This, Focus)

 -spec setSTCFocus(This, Focus) -> ok when This :: wxStyledTextCtrl(), Focus :: boolean().

Change internal focus flag.

 setStatus(This, Status)

 -spec setStatus(This, Status) -> ok when This :: wxStyledTextCtrl(), Status :: integer().

Change error status - 0 = OK.
The input should be one of the ?wxSTC_STATUS_* constants.

 setStyleBytes(This, Length)

 -spec setStyleBytes(This, Length) -> integer() when This :: wxStyledTextCtrl(), Length :: integer().

Set the styles for a segment of the document.

 setStyling(This, Length, Style)

 -spec setStyling(This, Length, Style) -> ok
 when This :: wxStyledTextCtrl(), Length :: integer(), Style :: integer().

Change style from current styling position for length characters to a style and move the
current styling position to after this newly styled segment.

 setTabIndents(This, TabIndents)

 -spec setTabIndents(This, TabIndents) -> ok when This :: wxStyledTextCtrl(), TabIndents :: boolean().

Sets whether a tab pressed when caret is within indentation indents.

 setTabWidth(This, TabWidth)

 -spec setTabWidth(This, TabWidth) -> ok when This :: wxStyledTextCtrl(), TabWidth :: integer().

Change the visible size of a tab to be a multiple of the width of a space character.

 setTargetEnd(This, End)

 -spec setTargetEnd(This, End) -> ok when This :: wxStyledTextCtrl(), End :: integer().

Sets the position that ends the target which is used for updating the document without
affecting the scroll position.

 setTargetStart(This, Start)

 -spec setTargetStart(This, Start) -> ok when This :: wxStyledTextCtrl(), Start :: integer().

Sets the position that starts the target which is used for updating the document without
affecting the scroll position.

 setText(This, Text)

 -spec setText(This, Text) -> ok when This :: wxStyledTextCtrl(), Text :: unicode:chardata().

Replace the contents of the document with the argument text.

 setTextRaw(This, Text)

 -spec setTextRaw(This, Text) -> ok when This :: wxStyledTextCtrl(), Text :: binary().

Replace the contents of the document with the argument text.

 setTwoPhaseDraw(This, TwoPhase)

 -spec setTwoPhaseDraw(This, TwoPhase) -> ok when This :: wxStyledTextCtrl(), TwoPhase :: boolean().

In twoPhaseDraw mode, drawing is performed in two phases, first the background and then
the foreground.
This avoids chopping off characters that overlap the next run.

 setUndoCollection(This, CollectUndo)

 -spec setUndoCollection(This, CollectUndo) -> ok
 when This :: wxStyledTextCtrl(), CollectUndo :: boolean().

Choose between collecting actions into the undo history and discarding them.

 setUseHorizontalScrollBar(This, Visible)

 -spec setUseHorizontalScrollBar(This, Visible) -> ok
 when This :: wxStyledTextCtrl(), Visible :: boolean().

Show or hide the horizontal scroll bar.

 setUseTabs(This, UseTabs)

 -spec setUseTabs(This, UseTabs) -> ok when This :: wxStyledTextCtrl(), UseTabs :: boolean().

Indentation will only use space characters if useTabs is false, otherwise it will use a
combination of tabs and spaces.

 setUseVerticalScrollBar(This, Visible)

 -spec setUseVerticalScrollBar(This, Visible) -> ok when This :: wxStyledTextCtrl(), Visible :: boolean().

Show or hide the vertical scroll bar.

 setViewEOL(This, Visible)

 -spec setViewEOL(This, Visible) -> ok when This :: wxStyledTextCtrl(), Visible :: boolean().

Make the end of line characters visible or invisible.

 setViewWhiteSpace(This, ViewWS)

 -spec setViewWhiteSpace(This, ViewWS) -> ok when This :: wxStyledTextCtrl(), ViewWS :: integer().

Make white space characters invisible, always visible or visible outside indentation.
The input should be one of the ?wxSTC_WS_* constants.

 setVisiblePolicy(This, VisiblePolicy, VisibleSlop)

 -spec setVisiblePolicy(This, VisiblePolicy, VisibleSlop) -> ok
 when
 This :: wxStyledTextCtrl(),
 VisiblePolicy :: integer(),
 VisibleSlop :: integer().

Set the way the display area is determined when a particular line is to be moved to by
Find, FindNext, GotoLine, etc.
The first argument should be a bit list containing one or more of the ?wxSTC_VISIBLE_*
constants.

 setVScrollBar(This, Bar)

 -spec setVScrollBar(This, Bar) -> ok when This :: wxStyledTextCtrl(), Bar :: wxScrollBar:wxScrollBar().

Set the vertical scrollbar to use instead of the one that's built-in.

 setWhitespaceBackground(This, UseSetting, Back)

 -spec setWhitespaceBackground(This, UseSetting, Back) -> ok
 when
 This :: wxStyledTextCtrl(),
 UseSetting :: boolean(),
 Back :: wx:wx_colour().

Set the background colour of all whitespace and whether to use this setting.

 setWhitespaceChars(This, Characters)

 -spec setWhitespaceChars(This, Characters) -> ok
 when This :: wxStyledTextCtrl(), Characters :: unicode:chardata().

Set the set of characters making up whitespace for when moving or selecting by word.
Should be called after SetWordChars.

 setWhitespaceForeground(This, UseSetting, Fore)

 -spec setWhitespaceForeground(This, UseSetting, Fore) -> ok
 when
 This :: wxStyledTextCtrl(),
 UseSetting :: boolean(),
 Fore :: wx:wx_colour().

Set the foreground colour of all whitespace and whether to use this setting.

 setWordChars(This, Characters)

 -spec setWordChars(This, Characters) -> ok
 when This :: wxStyledTextCtrl(), Characters :: unicode:chardata().

Set the set of characters making up words for when moving or selecting by word.
First sets defaults like SetCharsDefault.

 setWrapMode(This, WrapMode)

 -spec setWrapMode(This, WrapMode) -> ok when This :: wxStyledTextCtrl(), WrapMode :: integer().

Sets whether text is word wrapped.
The input should be one of the ?wxSTC_WRAP_* constants.

 setWrapStartIndent(This, Indent)

 -spec setWrapStartIndent(This, Indent) -> ok when This :: wxStyledTextCtrl(), Indent :: integer().

Set the start indent for wrapped lines.

 setWrapVisualFlags(This, WrapVisualFlags)

 -spec setWrapVisualFlags(This, WrapVisualFlags) -> ok
 when This :: wxStyledTextCtrl(), WrapVisualFlags :: integer().

Set the display mode of visual flags for wrapped lines.
The input should be a bit list containing one or more of the ?wxSTC_WRAPVISUALFLAG_*
constants.

 setWrapVisualFlagsLocation(This, WrapVisualFlagsLocation)

 -spec setWrapVisualFlagsLocation(This, WrapVisualFlagsLocation) -> ok
 when
 This :: wxStyledTextCtrl(), WrapVisualFlagsLocation :: integer().

Set the location of visual flags for wrapped lines.
The input should be a bit list containing one or more of the
?wxSTC_WRAPVISUALFLAGLOC_* constants.

 setXCaretPolicy(This, CaretPolicy, CaretSlop)

 -spec setXCaretPolicy(This, CaretPolicy, CaretSlop) -> ok
 when
 This :: wxStyledTextCtrl(),
 CaretPolicy :: integer(),
 CaretSlop :: integer().

Set the way the caret is kept visible when going sideways.
The exclusion zone is given in pixels.
The first argument should be a bit list containing one or more of the ?wxSTC_CARET_*
constants.

 setYCaretPolicy(This, CaretPolicy, CaretSlop)

 -spec setYCaretPolicy(This, CaretPolicy, CaretSlop) -> ok
 when
 This :: wxStyledTextCtrl(),
 CaretPolicy :: integer(),
 CaretSlop :: integer().

Set the way the line the caret is on is kept visible.
The exclusion zone is given in lines.
The first argument should be a bit list containing one or more of the ?wxSTC_CARET_*
constants.

 setZoom(This, ZoomInPoints)

 -spec setZoom(This, ZoomInPoints) -> ok when This :: wxStyledTextCtrl(), ZoomInPoints :: integer().

Set the zoom level.
This number of points is added to the size of all fonts. It may be positive to magnify or
negative to reduce.

 showLines(This, LineStart, LineEnd)

 -spec showLines(This, LineStart, LineEnd) -> ok
 when This :: wxStyledTextCtrl(), LineStart :: integer(), LineEnd :: integer().

Make a range of lines visible.

 startRecord(This)

 -spec startRecord(This) -> ok when This :: wxStyledTextCtrl().

Start notifying the container of all key presses and commands.

 startStyling(This, Start)

 -spec startStyling(This, Start) -> ok when This :: wxStyledTextCtrl(), Start :: integer().

Set the current styling position to start.

 stopRecord(This)

 -spec stopRecord(This) -> ok when This :: wxStyledTextCtrl().

Stop notifying the container of all key presses and commands.

 stutteredPageDown(This)

 -spec stutteredPageDown(This) -> ok when This :: wxStyledTextCtrl().

Move caret to bottom of page, or one page down if already at bottom of page.

 stutteredPageDownExtend(This)

 -spec stutteredPageDownExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret to bottom of page, or one page down if already at bottom of page, extending
selection to new caret position.

 stutteredPageUp(This)

 -spec stutteredPageUp(This) -> ok when This :: wxStyledTextCtrl().

Move caret to top of page, or one page up if already at top of page.

 stutteredPageUpExtend(This)

 -spec stutteredPageUpExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret to top of page, or one page up if already at top of page, extending selection
to new caret position.

 styleClearAll(This)

 -spec styleClearAll(This) -> ok when This :: wxStyledTextCtrl().

Clear all the styles and make equivalent to the global default style.

 styleResetDefault(This)

 -spec styleResetDefault(This) -> ok when This :: wxStyledTextCtrl().

Reset the default style to its state at startup.

 styleSetBackground(This, Style, Back)

 -spec styleSetBackground(This, Style, Back) -> ok
 when This :: wxStyledTextCtrl(), Style :: integer(), Back :: wx:wx_colour().

Set the background colour of a style.

 styleSetBold(This, Style, Bold)

 -spec styleSetBold(This, Style, Bold) -> ok
 when This :: wxStyledTextCtrl(), Style :: integer(), Bold :: boolean().

Set a style to be bold or not.

 styleSetCase(This, Style, CaseVisible)

 -spec styleSetCase(This, Style, CaseVisible) -> ok
 when This :: wxStyledTextCtrl(), Style :: integer(), CaseVisible :: integer().

Set a style to be mixed case, or to force upper or lower case.
The second argument should be one of the ?wxSTC_CASE_* constants.

 styleSetCharacterSet(This, Style, CharacterSet)

 -spec styleSetCharacterSet(This, Style, CharacterSet) -> ok
 when
 This :: wxStyledTextCtrl(),
 Style :: integer(),
 CharacterSet :: integer().

Set the character set of the font in a style.
Converts the Scintilla character set values to a wxFontEncoding.

 styleSetEOLFilled(This, Style, EolFilled)

 -spec styleSetEOLFilled(This, Style, EolFilled) -> ok
 when This :: wxStyledTextCtrl(), Style :: integer(), EolFilled :: boolean().

Set a style to have its end of line filled or not.

 styleSetFaceName(This, Style, FontName)

 -spec styleSetFaceName(This, Style, FontName) -> ok
 when
 This :: wxStyledTextCtrl(),
 Style :: integer(),
 FontName :: unicode:chardata().

Set the font of a style.

 styleSetFont(This, StyleNum, Font)

 -spec styleSetFont(This, StyleNum, Font) -> ok
 when This :: wxStyledTextCtrl(), StyleNum :: integer(), Font :: wxFont:wxFont().

Set style size, face, bold, italic, and underline attributes from a wxFont's
attributes.

 styleSetFontAttr(This, StyleNum, Size, FaceName, Bold, Italic, Underline)

 -spec styleSetFontAttr(This, StyleNum, Size, FaceName, Bold, Italic, Underline) -> ok
 when
 This :: wxStyledTextCtrl(),
 StyleNum :: integer(),
 Size :: integer(),
 FaceName :: unicode:chardata(),
 Bold :: boolean(),
 Italic :: boolean(),
 Underline :: boolean().

Equivalent to styleSetFontAttr(This, StyleNum, Size, FaceName, Bold, Italic, Underline, []).

 styleSetFontAttr/8

 -spec styleSetFontAttr(This, StyleNum, Size, FaceName, Bold, Italic, Underline, [Option]) -> ok
 when
 This :: wxStyledTextCtrl(),
 StyleNum :: integer(),
 Size :: integer(),
 FaceName :: unicode:chardata(),
 Bold :: boolean(),
 Italic :: boolean(),
 Underline :: boolean(),
 Option :: {encoding, wx:wx_enum()}.

Set all font style attributes at once.

 styleSetFontEncoding(This, Style, Encoding)

 -spec styleSetFontEncoding(This, Style, Encoding) -> ok
 when
 This :: wxStyledTextCtrl(),
 Style :: integer(),
 Encoding :: wx:wx_enum().

Set the font encoding to be used by a style.

 styleSetForeground(This, Style, Fore)

 -spec styleSetForeground(This, Style, Fore) -> ok
 when This :: wxStyledTextCtrl(), Style :: integer(), Fore :: wx:wx_colour().

Set the foreground colour of a style.

 styleSetHotSpot(This, Style, Hotspot)

 -spec styleSetHotSpot(This, Style, Hotspot) -> ok
 when This :: wxStyledTextCtrl(), Style :: integer(), Hotspot :: boolean().

Set a style to be a hotspot or not.

 styleSetItalic(This, Style, Italic)

 -spec styleSetItalic(This, Style, Italic) -> ok
 when This :: wxStyledTextCtrl(), Style :: integer(), Italic :: boolean().

Set a style to be italic or not.

 styleSetSize(This, Style, SizePoints)

 -spec styleSetSize(This, Style, SizePoints) -> ok
 when This :: wxStyledTextCtrl(), Style :: integer(), SizePoints :: integer().

Set the size of characters of a style.

 styleSetSpec(This, StyleNum, Spec)

 -spec styleSetSpec(This, StyleNum, Spec) -> ok
 when This :: wxStyledTextCtrl(), StyleNum :: integer(), Spec :: unicode:chardata().

Extract style settings from a spec-string which is composed of one or more of the
following comma separated elements:
bold turns on bold italic turns on italics fore:[name or #RRGGBB] sets the foreground
colour back:[name or #RRGGBB] sets the background colour face:[facename] sets the font
face name to use size:[num] sets the font size in points eol turns on eol filling
underline turns on underlining

 styleSetUnderline(This, Style, Underline)

 -spec styleSetUnderline(This, Style, Underline) -> ok
 when This :: wxStyledTextCtrl(), Style :: integer(), Underline :: boolean().

Set a style to be underlined or not.

 styleSetVisible(This, Style, Visible)

 -spec styleSetVisible(This, Style, Visible) -> ok
 when This :: wxStyledTextCtrl(), Style :: integer(), Visible :: boolean().

Set a style to be visible or not.

 tab(This)

 -spec tab(This) -> ok when This :: wxStyledTextCtrl().

If selection is empty or all on one line replace the selection with a tab character.
If more than one line selected, indent the lines.

 targetFromSelection(This)

 -spec targetFromSelection(This) -> ok when This :: wxStyledTextCtrl().

Make the target range start and end be the same as the selection range start and end.

 textHeight(This, Line)

 -spec textHeight(This, Line) -> integer() when This :: wxStyledTextCtrl(), Line :: integer().

Retrieve the height of a particular line of text in pixels.

 textWidth(This, Style, Text)

 -spec textWidth(This, Style, Text) -> integer()
 when This :: wxStyledTextCtrl(), Style :: integer(), Text :: unicode:chardata().

Measure the pixel width of some text in a particular style.
Does not handle tab or control characters.

 toggleCaretSticky(This)

 -spec toggleCaretSticky(This) -> ok when This :: wxStyledTextCtrl().

Switch between sticky and non-sticky: meant to be bound to a key.

 toggleFold(This, Line)

 -spec toggleFold(This, Line) -> ok when This :: wxStyledTextCtrl(), Line :: integer().

Switch a header line between expanded and contracted.

 undo(This)

 -spec undo(This) -> ok when This :: wxStyledTextCtrl().

Undo one action in the undo history.

 upperCase(This)

 -spec upperCase(This) -> ok when This :: wxStyledTextCtrl().

Transform the selection to upper case.

 usePopUp(This, PopUpMode)

 -spec usePopUp(This, PopUpMode) -> ok when This :: wxStyledTextCtrl(), PopUpMode :: integer().

Set whether a pop up menu is displayed automatically when the user presses the wrong
mouse button on certain areas.
The input should be one of the ?wxSTC_POPUP_* constants.
Remark: When wxContextMenuEvent is used to create a custom popup menu, this function
should be called with wxSTC_POPUP_NEVER. Otherwise the default menu will be shown instead
of the custom one.

 userListShow(This, ListType, ItemList)

 -spec userListShow(This, ListType, ItemList) -> ok
 when
 This :: wxStyledTextCtrl(),
 ListType :: integer(),
 ItemList :: unicode:chardata().

Display a list of strings and send notification when user chooses one.

 vCHome(This)

 -spec vCHome(This) -> ok when This :: wxStyledTextCtrl().

Move caret to before first visible character on line.
If already there move to first character on line.

 vCHomeExtend(This)

 -spec vCHomeExtend(This) -> ok when This :: wxStyledTextCtrl().

Like VCHome but extending selection to new caret position.

 vCHomeRectExtend(This)

 -spec vCHomeRectExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret to before first visible character on line.
If already there move to first character on line. In either case, extend rectangular
selection to new caret position.

 vCHomeWrap(This)

 -spec vCHomeWrap(This) -> ok when This :: wxStyledTextCtrl().

Like VCHome but when word-wrap is enabled goes first to start of display line
VCHomeDisplay, then behaves like VCHome.

 vCHomeWrapExtend(This)

 -spec vCHomeWrapExtend(This) -> ok when This :: wxStyledTextCtrl().

Like VCHomeExtend but when word-wrap is enabled extends first to start of display line
VCHomeDisplayExtend, then behaves like VCHomeExtend.

 visibleFromDocLine(This, DocLine)

 -spec visibleFromDocLine(This, DocLine) -> integer()
 when This :: wxStyledTextCtrl(), DocLine :: integer().

Find the display line of a document line taking hidden lines into account.

 wordEndPosition(This, Pos, OnlyWordCharacters)

 -spec wordEndPosition(This, Pos, OnlyWordCharacters) -> integer()
 when
 This :: wxStyledTextCtrl(),
 Pos :: integer(),
 OnlyWordCharacters :: boolean().

Get position of end of word.

 wordLeft(This)

 -spec wordLeft(This) -> ok when This :: wxStyledTextCtrl().

Move caret left one word.

 wordLeftEnd(This)

 -spec wordLeftEnd(This) -> ok when This :: wxStyledTextCtrl().

Move caret left one word, position cursor at end of word.

 wordLeftEndExtend(This)

 -spec wordLeftEndExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret left one word, position cursor at end of word, extending selection to new
caret position.

 wordLeftExtend(This)

 -spec wordLeftExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret left one word extending selection to new caret position.

 wordPartLeft(This)

 -spec wordPartLeft(This) -> ok when This :: wxStyledTextCtrl().

Move to the previous change in capitalisation.

 wordPartLeftExtend(This)

 -spec wordPartLeftExtend(This) -> ok when This :: wxStyledTextCtrl().

Move to the previous change in capitalisation extending selection to new caret position.

 wordPartRight(This)

 -spec wordPartRight(This) -> ok when This :: wxStyledTextCtrl().

Move to the change next in capitalisation.

 wordPartRightExtend(This)

 -spec wordPartRightExtend(This) -> ok when This :: wxStyledTextCtrl().

Move to the next change in capitalisation extending selection to new caret position.

 wordRight(This)

 -spec wordRight(This) -> ok when This :: wxStyledTextCtrl().

Move caret right one word.

 wordRightEnd(This)

 -spec wordRightEnd(This) -> ok when This :: wxStyledTextCtrl().

Move caret right one word, position cursor at end of word.

 wordRightEndExtend(This)

 -spec wordRightEndExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret right one word, position cursor at end of word, extending selection to new
caret position.

 wordRightExtend(This)

 -spec wordRightExtend(This) -> ok when This :: wxStyledTextCtrl().

Move caret right one word extending selection to new caret position.

 wordStartPosition(This, Pos, OnlyWordCharacters)

 -spec wordStartPosition(This, Pos, OnlyWordCharacters) -> integer()
 when
 This :: wxStyledTextCtrl(),
 Pos :: integer(),
 OnlyWordCharacters :: boolean().

Get position of start of word.

 wrapCount(This, DocLine)

 -spec wrapCount(This, DocLine) -> integer() when This :: wxStyledTextCtrl(), DocLine :: integer().

The number of display lines needed to wrap a document line.

 zoomIn(This)

 -spec zoomIn(This) -> ok when This :: wxStyledTextCtrl().

Magnify the displayed text by increasing the sizes by 1 point.

 zoomOut(This)

 -spec zoomOut(This) -> ok when This :: wxStyledTextCtrl().

Make the displayed text smaller by decreasing the sizes by 1 point.

wxStyledTextEvent

The type of events sent from wxStyledTextCtrl.
This class is derived, and can use functions, from:
	wxCommandEvent

	wxEvent

wxWidgets docs: wxStyledTextEvent
Events
Use wxEvtHandler:connect/3 with wxStyledTextEventType to subscribe to events of this type.

 Summary

 Types

 wxStyledText()

 wxStyledTextEvent()

 wxStyledTextEventType()

 Functions

 getAlt(This)

 Returns true if the Alt key is pressed.

 getControl(This)

 Returns true if the Control key is pressed.

 getDragAllowMove(This)

 getDragResult(This)

 Returns drag result for this event.

 getDragText(This)

 Deprecated

 getFoldLevelNow(This)

 Returns the current fold level for the line.

 getFoldLevelPrev(This)

 Returns previous fold level for the line.

 getKey(This)

 Returns the key code of the key that generated this event.

 getLength(This)

 Returns the length (number of characters) of this event.

 getLine(This)

 Returns zero-based line number for this event.

 getLinesAdded(This)

 Returns the number of lines added or deleted with this event.

 getListType(This)

 Returns the list type for this event.

 getLParam(This)

 Returns the value of the LParam field for this event.

 getMargin(This)

 Returns the zero-based index of the margin that generated this event.

 getMessage(This)

 Returns a message number while a macro is being recorded.

 getModificationType(This)

 Returns the modification type for this event.

 getModifiers(This)

 Returns the modifiers of the key press or mouse click for this event.

 getPosition(This)

 Returns the zero-based text position associated this event.

 getShift(This)

 Returns true if the Shift key is pressed.

 getText(This)

 Deprecated

 getWParam(This)

 Returns value of the WParam field for this event.

 getX(This)

 Returns the X coordinate of the mouse for this event.

 getY(This)

 Returns the Y coordinate of the mouse for this event.

 Types

 wxStyledText()

 -type wxStyledText() ::
 #wxStyledText{type :: wxStyledTextEvent:wxStyledTextEventType(),
 position :: integer(),
 key :: integer(),
 modifiers :: integer(),
 modificationType :: integer(),
 text :: unicode:chardata(),
 length :: integer(),
 linesAdded :: integer(),
 line :: integer(),
 foldLevelNow :: integer(),
 foldLevelPrev :: integer(),
 margin :: integer(),
 message :: integer(),
 wParam :: integer(),
 lParam :: integer(),
 listType :: integer(),
 x :: integer(),
 y :: integer(),
 dragText :: unicode:chardata(),
 dragAllowMove :: boolean(),
 dragResult :: wx:wx_enum()}.

 wxStyledTextEvent()

 -type wxStyledTextEvent() :: wx:wx_object().

 wxStyledTextEventType()

 -type wxStyledTextEventType() ::
 stc_autocomp_cancelled | stc_autocomp_char_deleted | stc_autocomp_selection |
 stc_calltip_click | stc_change | stc_charadded | stc_do_drop | stc_doubleclick |
 stc_drag_over | stc_dwellend | stc_dwellstart | stc_hotspot_click | stc_hotspot_dclick |
 stc_hotspot_release_click | stc_indicator_click | stc_indicator_release | stc_macrorecord |
 stc_marginclick | stc_modified | stc_needshown | stc_painted | stc_romodifyattempt |
 stc_savepointleft | stc_savepointreached | stc_start_drag | stc_styleneeded | stc_updateui |
 stc_userlistselection | stc_zoom.

 Functions

 getAlt(This)

 -spec getAlt(This) -> boolean() when This :: wxStyledTextEvent().

Returns true if the Alt key is pressed.
This method is valid for the following event types:
	wxEVT_STC_DOUBLECLICK

	wxEVT_STC_MARGINCLICK

	wxEVT_STC_HOTSPOT_CLICK

	wxEVT_STC_HOTSPOT_DCLICK

	wxEVT_STC_HOTSPOT_RELEASE_CLICK

	wxEVT_STC_INDICATOR_CLICK

	wxEVT_STC_INDICATOR_RELEASE

	wxEVT_STC_MARGIN_RIGHT_CLICK

 getControl(This)

 -spec getControl(This) -> boolean() when This :: wxStyledTextEvent().

Returns true if the Control key is pressed.
This method is valid for the following event types:
	wxEVT_STC_DOUBLECLICK

	wxEVT_STC_MARGINCLICK

	wxEVT_STC_HOTSPOT_CLICK

	wxEVT_STC_HOTSPOT_DCLICK

	wxEVT_STC_HOTSPOT_RELEASE_CLICK

	wxEVT_STC_INDICATOR_CLICK

	wxEVT_STC_INDICATOR_RELEASE

	wxEVT_STC_MARGIN_RIGHT_CLICK

 getDragAllowMove(This)

 -spec getDragAllowMove(This) -> boolean() when This :: wxStyledTextEvent().

 getDragResult(This)

 -spec getDragResult(This) -> wx:wx_enum() when This :: wxStyledTextEvent().

Returns drag result for this event.
This method is valid for wxEVT_STC_DRAG_OVER and wxEVT_STC_DO_DROP events.

 getDragText(This)

 -spec getDragText(This) -> unicode:charlist() when This :: wxStyledTextEvent().

Deprecated:
Use wxCommandEvent:getString/1 instead.

 getFoldLevelNow(This)

 -spec getFoldLevelNow(This) -> integer() when This :: wxStyledTextEvent().

Returns the current fold level for the line.
This method is valid for wxEVT_STC_MODIFIED events when the result of getModificationType/1 includes
?wxSTC_MOD_CHANGEFOLD.

 getFoldLevelPrev(This)

 -spec getFoldLevelPrev(This) -> integer() when This :: wxStyledTextEvent().

Returns previous fold level for the line.
This method is valid for wxEVT_STC_MODIFIED events when the result of getModificationType/1 includes
?wxSTC_MOD_CHANGEFOLD.

 getKey(This)

 -spec getKey(This) -> integer() when This :: wxStyledTextEvent().

Returns the key code of the key that generated this event.
This method is valid for the following event types:
	wxEVT_STC_CHARADDED

	wxEVT_STC_USERLISTSELECTION

	wxEVT_STC_AUTOCOMP_SELECTION

	wxEVT_STC_AUTOCOMP_COMPLETED

 getLength(This)

 -spec getLength(This) -> integer() when This :: wxStyledTextEvent().

Returns the length (number of characters) of this event.
This method is valid for wxEVT_STC_MODIFIED and wxEVT_STC_NEEDSHOWN events.

 getLine(This)

 -spec getLine(This) -> integer() when This :: wxStyledTextEvent().

Returns zero-based line number for this event.
This method is valid for wxEVT_STC_DOUBLECLICK and wxEVT_STC_MODIFIED events.

 getLinesAdded(This)

 -spec getLinesAdded(This) -> integer() when This :: wxStyledTextEvent().

Returns the number of lines added or deleted with this event.
This method is valid for wxEVT_STC_MODIFIED events when the result of getModificationType/1 includes
?wxSTC_MOD_INSERTTEXT or ?wxSTC_MOD_DELETETEXT.

 getListType(This)

 -spec getListType(This) -> integer() when This :: wxStyledTextEvent().

Returns the list type for this event.
The list type is an integer passed to a list when it is created with the wxStyledTextCtrl:userListShow/3 method and can
be used to distinguish lists if more than one is used.
This method is valid for wxEVT_STC_AUTOCOMP_SELECTION_CHANGE and wxEVT_STC_USERLISTSELECTION
events.

 getLParam(This)

 -spec getLParam(This) -> integer() when This :: wxStyledTextEvent().

Returns the value of the LParam field for this event.
This method is valid for wxEVT_STC_MACRORECORD events.

 getMargin(This)

 -spec getMargin(This) -> integer() when This :: wxStyledTextEvent().

Returns the zero-based index of the margin that generated this event.
This method is valid for wxEVT_STC_MARGINCLICK and wxEVT_STC_MARGIN_RIGHT_CLICK
events.

 getMessage(This)

 -spec getMessage(This) -> integer() when This :: wxStyledTextEvent().

Returns a message number while a macro is being recorded.
Many of the wxStyledTextCtrl methods such as wxStyledTextCtrl:insertText/3 and wxStyledTextCtrl:paste/1 have an event number associated
with them. This method returns that number while a macro is being recorded so that the
macro can be played back later.
This method is valid for wxEVT_STC_MACRORECORD events.

 getModificationType(This)

 -spec getModificationType(This) -> integer() when This :: wxStyledTextEvent().

Returns the modification type for this event.
The modification type is a bit list that describes the change that generated this event.
It may contain one or more of the following values:
	?wxSTC_MOD_INSERTTEXT

	?wxSTC_MOD_DELETETEXT

	?wxSTC_MOD_CHANGESTYLE

	?wxSTC_MOD_CHANGEFOLD

	?wxSTC_PERFORMED_USER

	?wxSTC_PERFORMED_UNDO

	?wxSTC_PERFORMED_REDO

	?wxSTC_MULTISTEPUNDOREDO

	?wxSTC_LASTSTEPINUNDOREDO

	?wxSTC_MOD_CHANGEMARKER

	?wxSTC_MOD_BEFOREINSERT

	?wxSTC_MOD_BEFOREDELETE

	?wxSTC_MULTILINEUNDOREDO

	?wxSTC_STARTACTION

	?wxSTC_MOD_CHANGEINDICATOR

	?wxSTC_MOD_CHANGELINESTATE

	?wxSTC_MOD_CHANGEMARGIN

	?wxSTC_MOD_CHANGEANNOTATION

	?wxSTC_MOD_CONTAINER

	?wxSTC_MOD_LEXERSTATE

	?wxSTC_MOD_INSERTCHECK

	?wxSTC_MOD_CHANGETABSTOPS

This method is valid for wxEVT_STC_MODIFIED events.

 getModifiers(This)

 -spec getModifiers(This) -> integer() when This :: wxStyledTextEvent().

Returns the modifiers of the key press or mouse click for this event.
The returned value is a bit list that may contain one or more of the following values:
	?wxSTC_KEYMOD_SHIFT

	?wxSTC_KEYMOD_CTRL

	?wxSTC_KEYMOD_ALT

	?wxSTC_KEYMOD_SUPER

	?wxSTC_KEYMOD_META

In addition, the value can be checked for equality with ?wxSTC_KEYMOD_NORM to test if
no modifiers are present.
This method is valid for the following event types:
	wxEVT_STC_DOUBLECLICK

	wxEVT_STC_MARGINCLICK

	wxEVT_STC_HOTSPOT_CLICK

	wxEVT_STC_HOTSPOT_DCLICK

	wxEVT_STC_HOTSPOT_RELEASE_CLICK

	wxEVT_STC_INDICATOR_CLICK

	wxEVT_STC_INDICATOR_RELEASE

	wxEVT_STC_MARGIN_RIGHT_CLICK

 getPosition(This)

 -spec getPosition(This) -> integer() when This :: wxStyledTextEvent().

Returns the zero-based text position associated this event.
This method is valid for the following event types:
	wxEVT_STC_STYLENEEDED

	wxEVT_STC_DOUBLECLICK

	wxEVT_STC_MODIFIED

	wxEVT_STC_MARGINCLICK

	wxEVT_STC_NEEDSHOWN

	wxEVT_STC_USERLISTSELECTION

	wxEVT_STC_DWELLSTART

	wxEVT_STC_DWELLEND

	wxEVT_STC_HOTSPOT_CLICK

	wxEVT_STC_HOTSPOT_DCLICK

	wxEVT_STC_HOTSPOT_RELEASE_CLICK

	wxEVT_STC_INDICATOR_CLICK

	wxEVT_STC_INDICATOR_RELEASE

	wxEVT_STC_CALLTIP_CLICK

	wxEVT_STC_AUTOCOMP_SELECTION

	wxEVT_STC_AUTOCOMP_SELECTION_CHANGE

	wxEVT_STC_AUTOCOMP_COMPLETED

	wxEVT_STC_MARGIN_RIGHT_CLICK

 getShift(This)

 -spec getShift(This) -> boolean() when This :: wxStyledTextEvent().

Returns true if the Shift key is pressed.
This method is valid for the following event types:
	wxEVT_STC_DOUBLECLICK

	wxEVT_STC_MARGINCLICK

	wxEVT_STC_HOTSPOT_CLICK

	wxEVT_STC_HOTSPOT_DCLICK

	wxEVT_STC_HOTSPOT_RELEASE_CLICK

	wxEVT_STC_INDICATOR_CLICK

	wxEVT_STC_INDICATOR_RELEASE

	wxEVT_STC_MARGIN_RIGHT_CLICK

 getText(This)

 -spec getText(This) -> unicode:charlist() when This :: wxStyledTextEvent().

Deprecated:
Use wxCommandEvent:getString/1 instead.

 getWParam(This)

 -spec getWParam(This) -> integer() when This :: wxStyledTextEvent().

Returns value of the WParam field for this event.
This method is valid for wxEVT_STC_MACRORECORD events.

 getX(This)

 -spec getX(This) -> integer() when This :: wxStyledTextEvent().

Returns the X coordinate of the mouse for this event.
This method is valid for the following event types:
	wxEVT_STC_DWELLSTART

	wxEVT_STC_DWELLEND

	wxEVT_STC_START_DRAG

	wxEVT_STC_DRAG_OVER

	wxEVT_STC_DO_DROP

 getY(This)

 -spec getY(This) -> integer() when This :: wxStyledTextEvent().

Returns the Y coordinate of the mouse for this event.
This method is valid for the following event types:
	wxEVT_STC_DWELLSTART

	wxEVT_STC_DWELLEND

	wxEVT_STC_START_DRAG

	wxEVT_STC_DRAG_OVER

	wxEVT_STC_DO_DROP

wxSysColourChangedEvent

This class is used for system colour change events, which are generated when the user
changes the colour settings using the control panel.
This is only appropriate under Windows.
Remark: The default event handler for this event propagates the event to child windows,
since Windows only sends the events to top-level windows. If intercepting this event for a
top-level window, remember to call the base class handler, or to pass the event on to the
window's children explicitly.
See: Overview events
This class is derived, and can use functions, from:
	wxEvent

wxWidgets docs: wxSysColourChangedEvent
Events
Use wxEvtHandler:connect/3 with wxSysColourChangedEventType to subscribe to events of this type.

 Summary

 Types

 wxSysColourChanged()

 wxSysColourChangedEvent()

 wxSysColourChangedEventType()

 Types

 wxSysColourChanged()

 -type wxSysColourChanged() ::
 #wxSysColourChanged{type :: wxSysColourChangedEvent:wxSysColourChangedEventType()}.

 wxSysColourChangedEvent()

 -type wxSysColourChangedEvent() :: wx:wx_object().

 wxSysColourChangedEventType()

 -type wxSysColourChangedEventType() :: sys_colour_changed.

wxSystemOptions

wxSystemOptions stores option/value pairs that wxWidgets itself or applications can
use to alter behaviour at run-time.
It can be used to optimize behaviour that doesn't deserve a distinct API, but is still
important to be able to configure.
System options can be set by the program itself using setOption/2 method and they also can be set
from the program environment by defining an environment variable wx_option to set the
given option for all wxWidgets applications or wx_appname_option to set it just for the
application with the given name (as returned by wxApp::GetAppName() (not implemented in
wx)). Notice that any characters not allowed in the environment variables names, such as
periods and dashes, should be replaced with underscores. E.g. to define a system option
"foo-bar" you need to define the environment variable "wx_foo_bar".
The program may use system options for its own needs but they are mostly used to control
the behaviour of wxWidgets library itself.
These options are currently recognised by wxWidgets:
All platforms
	exit-on-assert: If set to non-zero value, abort the program if an assertion fails. The
default behaviour in case of assertion failure depends on the build mode and can be
changed by overriding wxApp::OnAssertFailure() (not implemented in wx) but setting this
option allows changing it without modifying the program code and also applies to asserts
which may happen before the wxApp (not implemented in wx) object creation or after its
destruction.

Windows
	no-maskblt: 1 to never use WIN32's MaskBlt function, 0 to allow it to be used where
possible. Default: 0. In some circumstances the MaskBlt function can be slower than using
the fallback code, especially if using DC caching. By default, MaskBlt will be used where
it is implemented by the operating system and driver.

	msw.remap: If 1 (the default), wxToolBar bitmap colours will be remapped to the
current theme's values. Set this to 0 to disable this functionality, for example if you're
using more than 16 colours in your tool bitmaps.

	msw.window.no-clip-children: If 1, windows will not automatically get the WS_CLIPCHILDREN
style. This restores the way windows are refreshed back to the method used in versions of
wxWidgets earlier than 2.5.4, and for some complex window hierarchies it can reduce
apparent refresh delays. You may still specify wxCLIP_CHILDREN for individual windows.

	msw.notebook.themed-background: If set to 0, globally disables themed backgrounds on
notebook pages. Note that this won't disable the theme on the actual notebook background
(noticeable only if there are no pages).

	msw.staticbox.optimized-paint: If set to 0, switches off optimized wxStaticBox
painting. Setting this to 0 causes more flicker, but allows applications to paint graphics
on the parent of a static box (the optimized refresh causes any such drawing to
disappear).

	msw.font.no-proof-quality: If set to 1, use default fonts quality instead of proof
quality when creating fonts. With proof quality the fonts have slightly better appearance
but not all fonts are available in this quality, e.g. the Terminal font in small sizes is
not and this option may be used if wider fonts selection is more important than higher
quality.

GTK+
	gtk.tlw.can-set-transparent: wxTopLevelWindow::CanSetTransparent() (not implemented in
wx) method normally tries to detect automatically whether transparency for top level
windows is currently supported, however this may sometimes fail and this option allows
overriding the automatic detection. Setting it to 1 makes the transparency be always
available (setting it can still fail, of course) and setting it to 0 makes it always
unavailable.

	gtk.desktop: This option can be set to override the default desktop environment
determination. Supported values are GNOME and KDE.

	gtk.window.force-background-colour: If 1, the backgrounds of windows with the
wxBG_STYLE_COLOUR background style are cleared forcibly instead of relying on the
underlying GTK+ window colour. This works around a display problem when running
applications under KDE with the gtk-qt theme installed (0.6 and below).

Mac
	mac.window-plain-transition: If 1, uses a plainer transition when showing a window. You
can also use the symbol wxMAC_WINDOW_PLAIN_TRANSITION.

	window-default-variant: The default variant used by windows (cast to integer from the
wxWindowVariant enum). Also known as wxWINDOW_DEFAULT_VARIANT.

	mac.listctrl.always_use_generic: Tells wxListCtrl to use the generic control even
when it is capable of using the native control instead. Also known as
wxMAC_ALWAYS_USE_GENERIC_LISTCTRL.

	mac.textcontrol-use-spell-checker: If 1 activates the spell checking in wxTextCtrl.

	osx.openfiledialog.always-show-types: Per default a wxFileDialog with wxFD_OPEN does
not show a types-popup on macOS but allows the selection of files from any of the
supported types. Setting this to 1 shows a wxChoice for selection (if there is more
than one supported filetype).

Motif
	motif.largebuttons: If 1, uses a bigger default size for wxButtons.

The compile-time option to include or exclude this functionality is wxUSE_SYSTEM_OPTIONS.
See: wxSystemSettings
wxWidgets docs: wxSystemOptions

 Summary

 Types

 wxSystemOptions()

 Functions

 getOption(Name)

 Gets an option.

 getOptionInt(Name)

 Gets an option as an integer.

 hasOption(Name)

 Returns true if the given option is present.

 isFalse(Name)

 Returns true if the option with the given name had been set to 0 value.

 setOption/2

 Sets an option.

 Types

 wxSystemOptions()

 -type wxSystemOptions() :: wx:wx_object().

 Functions

 getOption(Name)

 -spec getOption(Name) -> unicode:charlist() when Name :: unicode:chardata().

Gets an option.
The function is case-insensitive to name. Returns empty string if the option hasn't
been set.
See:
	setOption/2

	getOptionInt/1

	hasOption/1

 getOptionInt(Name)

 -spec getOptionInt(Name) -> integer() when Name :: unicode:chardata().

Gets an option as an integer.
The function is case-insensitive to name. If the option hasn't been set, this function
returns 0.
See:
	setOption/2

	getOption/1

	hasOption/1

 hasOption(Name)

 -spec hasOption(Name) -> boolean() when Name :: unicode:chardata().

Returns true if the given option is present.
The function is case-insensitive to name.
See:
	setOption/2

	getOption/1

	getOptionInt/1

 isFalse(Name)

 -spec isFalse(Name) -> boolean() when Name :: unicode:chardata().

Returns true if the option with the given name had been set to 0 value.
This is mostly useful for boolean options for which you can't use GetOptionInt(name) ==
0 as this would also be true if the option hadn't been set at all.

 setOption/2

 -spec setOption(Name, Value) -> ok when Name :: unicode:chardata(), Value :: integer();
 (Name, Value) -> ok when Name :: unicode:chardata(), Value :: unicode:chardata().

Sets an option.
The function is case-insensitive to name.

wxSystemSettings

wxSystemSettings allows the application to ask for details about the system.
This can include settings such as standard colours, fonts, and user interface element sizes.
See:
	wxFont

	wx_color()

	wxSystemOptions

wxWidgets docs: wxSystemSettings

 Summary

 Types

 wxSystemSettings()

 Functions

 getColour(Index)

 Returns a system colour.

 getFont(Index)

 Returns a system font.

 getMetric(Index)

 Equivalent to getMetric(Index, []).

 getMetric(Index, Options)

 Returns the value of a system metric, or -1 if the metric is not supported on the current
system.

 getScreenType()

 Returns the screen type.

 Types

 wxSystemSettings()

 -type wxSystemSettings() :: wx:wx_object().

 Functions

 getColour(Index)

 -spec getColour(Index) -> wx:wx_colour4() when Index :: wx:wx_enum().

Returns a system colour.
Return: The returned colour is always valid.

 getFont(Index)

 -spec getFont(Index) -> wxFont:wxFont() when Index :: wx:wx_enum().

Returns a system font.
Return: The returned font is always valid.

 getMetric(Index)

 -spec getMetric(Index) -> integer() when Index :: wx:wx_enum().

Equivalent to getMetric(Index, []).

 getMetric(Index, Options)

 -spec getMetric(Index, [Option]) -> integer()
 when Index :: wx:wx_enum(), Option :: {win, wxWindow:wxWindow()}.

Returns the value of a system metric, or -1 if the metric is not supported on the current
system.
The value of win determines if the metric returned is a global value or a wxWindow
based value, in which case it might determine the widget, the display the window is on, or
something similar. The window given should be as close to the metric as possible (e.g. a wxTopLevelWindow
in case of the wxSYS_CAPTION_Y metric).
index can be one of the ?wxSystemMetric enum values.
win is a pointer to the window for which the metric is requested. Specifying the win
parameter is encouraged, because some metrics on some ports are not supported without
one,or they might be capable of reporting better values if given one. If a window does not
make sense for a metric, one should still be given, as for example it might determine
which displays cursor width is requested with wxSYS_CURSOR_X.

 getScreenType()

 -spec getScreenType() -> wx:wx_enum().

Returns the screen type.
The return value is one of the ?wxSystemScreenType enum values.

wxTaskBarIcon

This class represents a taskbar icon.
A taskbar icon is an icon that appears in the 'system tray' and responds to mouse clicks,
optionally with a tooltip above it to help provide information.
X Window System Note
Under X Window System, the window manager must support either the "System Tray Protocol"
(see http://freedesktop.org/wiki/Specifications/systemtray-spec)
by freedesktop.org (WMs used by modern desktop environments such as GNOME >= 2, KDE >= 3
and XFCE >= 4 all do) or the older methods used in GNOME 1.2 and KDE 1 and 2.
If it doesn't, the icon will appear as a toplevel window on user's desktop. Because not
all window managers have system tray, there's no guarantee that wxTaskBarIcon will
work correctly under X Window System and so the applications should use it only as an
optional component of their user interface. The user should be required to explicitly
enable the taskbar icon on Unix, it shouldn't be on by default.
This class is derived, and can use functions, from:
	wxEvtHandler

wxWidgets docs: wxTaskBarIcon
Events
Event types emitted from this class:
	taskbar_move

	taskbar_left_down

	taskbar_left_up

	taskbar_right_down

	taskbar_right_up

	taskbar_left_dclick

	taskbar_right_dclick

 Summary

 Types

 wxTaskBarIcon()

 Functions

 destroy(This)

 Destroys the object

 new()

 new(Options)

 popupMenu(This, Menu)

 Pops up a menu at the current mouse position.

 removeIcon(This)

 Removes the icon previously set with setIcon/3.

 setIcon(This, Icon)

 Equivalent to setIcon(This, Icon, []).

 setIcon/3

 Sets the icon, and optional tooltip text.

 Types

 wxTaskBarIcon()

 -type wxTaskBarIcon() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxTaskBarIcon()) -> ok.

Destroys the object

 new()

 -spec new() -> wxTaskBarIcon().

 new(Options)

 -spec new([Option]) -> wxTaskBarIcon()
 when Option :: {iconType, wx:wx_enum()} | {createPopupMenu, fun(() -> wxMenu:wxMenu())}.

 popupMenu(This, Menu)

 -spec popupMenu(This, Menu) -> boolean() when This :: wxTaskBarIcon(), Menu :: wxMenu:wxMenu().

Pops up a menu at the current mouse position.
The events can be handled by a class derived from wxTaskBarIcon.
Note: It is recommended to override CreatePopupMenu() (not implemented in wx) callback
instead of calling this method from event handler, because some ports (e.g. wxCocoa) may
not implement popupMenu/2 and mouse click events at all.

 removeIcon(This)

 -spec removeIcon(This) -> boolean() when This :: wxTaskBarIcon().

Removes the icon previously set with setIcon/3.

 setIcon(This, Icon)

 -spec setIcon(This, Icon) -> boolean() when This :: wxTaskBarIcon(), Icon :: wxIcon:wxIcon().

Equivalent to setIcon(This, Icon, []).

 setIcon/3

 -spec setIcon(This, Icon, [Option]) -> boolean()
 when
 This :: wxTaskBarIcon(),
 Icon :: wxIcon:wxIcon(),
 Option :: {tooltip, unicode:chardata()}.

Sets the icon, and optional tooltip text.

wxTaskBarIconEvent

The event class used by wxTaskBarIcon.
For a list of the event macros meant to be used with wxTaskBarIconEvent, please look
at wxTaskBarIcon description.
This class is derived, and can use functions, from:
	wxEvent

wxWidgets docs: wxTaskBarIconEvent

 Summary

 Types

 wxTaskBarIcon()

 wxTaskBarIconEvent()

 wxTaskBarIconEventType()

 Types

 wxTaskBarIcon()

 -type wxTaskBarIcon() :: #wxTaskBarIcon{type :: wxTaskBarIconEvent:wxTaskBarIconEventType()}.

 wxTaskBarIconEvent()

 -type wxTaskBarIconEvent() :: wx:wx_object().

 wxTaskBarIconEventType()

 -type wxTaskBarIconEventType() ::
 taskbar_move | taskbar_left_down | taskbar_left_up | taskbar_right_down | taskbar_right_up |
 taskbar_left_dclick | taskbar_right_dclick.

wxTextAttr

wxTextAttr represents the character and paragraph attributes, or style, for a range
of text in a wxTextCtrl or wxRichTextCtrl (not implemented in wx).
When setting up a wxTextAttr object, pass a bitlist mask to setFlags/2 to indicate which style
elements should be changed. As a convenience, when you call a setter such as SetFont, the
relevant bit will be set.
See: wxTextCtrl
wxWidgets docs: wxTextAttr

 Summary

 Types

 wxTextAttr()

 Functions

 destroy(This)

 Destroys the object

 getAlignment(This)

 Returns the alignment flags.

 getBackgroundColour(This)

 Returns the background colour.

 getFlags(This)

 Returns flags indicating which attributes are applicable.

 getFont(This)

 Creates and returns a font specified by the font attributes in the wxTextAttr object.

 getFontEncoding(This)

 Returns the font encoding.

 getFontFaceName(This)

 Returns the font face name.

 getFontSize(This)

 Returns the font size in points.

 getFontStyle(This)

 Returns the font style.

 getFontUnderlined(This)

 Returns true if the font is underlined.

 getFontWeight(This)

 Returns the font weight.

 getLeftIndent(This)

 Returns the left indent in tenths of a millimetre.

 getLeftSubIndent(This)

 Returns the left sub-indent in tenths of a millimetre.

 getRightIndent(This)

 Returns the right indent in tenths of a millimeter.

 getTabs(This)

 Returns an array of tab stops, each expressed in tenths of a millimeter.

 getTextColour(This)

 Returns the text foreground colour.

 hasBackgroundColour(This)

 Returns true if the attribute object specifies a background colour.

 hasFont(This)

 Returns true if the attribute object specifies any font attributes.

 hasTextColour(This)

 Returns true if the attribute object specifies a text foreground colour.

 isDefault(This)

 Returns false if we have any attributes set, true otherwise.

 new()

 Constructors.

 new/1

 new(ColText, Options)

 setAlignment(This, Alignment)

 Sets the paragraph alignment.

 setBackgroundColour(This, ColBack)

 Sets the background colour.

 setFlags(This, Flags)

 Sets the flags determining which styles are being specified.

 setFont(This, Font)

 Equivalent to setFont(This, Font, []).

 setFont/3

 Sets the attributes for the given font.

 setFontEncoding(This, Encoding)

 Sets the font encoding.

 setFontFaceName(This, FaceName)

 Sets the font face name.

 setFontFamily(This, Family)

 Sets the font family.

 setFontPixelSize(This, PixelSize)

 Sets the font size in pixels.

 setFontPointSize(This, PointSize)

 Sets the font size in points.

 setFontSize(This, PointSize)

 Sets the font size in points.

 setFontStyle(This, FontStyle)

 Sets the font style (normal, italic or slanted).

 setFontUnderlined(This, Underlined)

 Sets the font underlining (solid line, text colour).

 setFontWeight(This, FontWeight)

 Sets the font weight.

 setLeftIndent(This, Indent)

 Equivalent to setLeftIndent(This, Indent, []).

 setLeftIndent/3

 Sets the left indent and left subindent in tenths of a millimetre.

 setRightIndent(This, Indent)

 Sets the right indent in tenths of a millimetre.

 setTabs(This, Tabs)

 Sets the tab stops, expressed in tenths of a millimetre.

 setTextColour(This, ColText)

 Sets the text foreground colour.

 Types

 wxTextAttr()

 -type wxTextAttr() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxTextAttr()) -> ok.

Destroys the object

 getAlignment(This)

 -spec getAlignment(This) -> wx:wx_enum() when This :: wxTextAttr().

Returns the alignment flags.
See ?wxTextAttrAlignment for a list of available styles.

 getBackgroundColour(This)

 -spec getBackgroundColour(This) -> wx:wx_colour4() when This :: wxTextAttr().

Returns the background colour.

 getFlags(This)

 -spec getFlags(This) -> integer() when This :: wxTextAttr().

Returns flags indicating which attributes are applicable.
See setFlags/2 for a list of available flags.

 getFont(This)

 -spec getFont(This) -> wxFont:wxFont() when This :: wxTextAttr().

Creates and returns a font specified by the font attributes in the wxTextAttr object.
Note that wxTextAttr does not store a wxFont object, so this is only a temporary font.
For greater efficiency, access the font attributes directly.

 getFontEncoding(This)

 -spec getFontEncoding(This) -> wx:wx_enum() when This :: wxTextAttr().

Returns the font encoding.

 getFontFaceName(This)

 -spec getFontFaceName(This) -> unicode:charlist() when This :: wxTextAttr().

Returns the font face name.

 getFontSize(This)

 -spec getFontSize(This) -> integer() when This :: wxTextAttr().

Returns the font size in points.

 getFontStyle(This)

 -spec getFontStyle(This) -> wx:wx_enum() when This :: wxTextAttr().

Returns the font style.

 getFontUnderlined(This)

 -spec getFontUnderlined(This) -> boolean() when This :: wxTextAttr().

Returns true if the font is underlined.

 getFontWeight(This)

 -spec getFontWeight(This) -> wx:wx_enum() when This :: wxTextAttr().

Returns the font weight.

 getLeftIndent(This)

 -spec getLeftIndent(This) -> integer() when This :: wxTextAttr().

Returns the left indent in tenths of a millimetre.

 getLeftSubIndent(This)

 -spec getLeftSubIndent(This) -> integer() when This :: wxTextAttr().

Returns the left sub-indent in tenths of a millimetre.

 getRightIndent(This)

 -spec getRightIndent(This) -> integer() when This :: wxTextAttr().

Returns the right indent in tenths of a millimeter.

 getTabs(This)

 -spec getTabs(This) -> [integer()] when This :: wxTextAttr().

Returns an array of tab stops, each expressed in tenths of a millimeter.
Each stop is measured from the left margin and therefore each value must be larger than
the last.

 getTextColour(This)

 -spec getTextColour(This) -> wx:wx_colour4() when This :: wxTextAttr().

Returns the text foreground colour.

 hasBackgroundColour(This)

 -spec hasBackgroundColour(This) -> boolean() when This :: wxTextAttr().

Returns true if the attribute object specifies a background colour.

 hasFont(This)

 -spec hasFont(This) -> boolean() when This :: wxTextAttr().

Returns true if the attribute object specifies any font attributes.

 hasTextColour(This)

 -spec hasTextColour(This) -> boolean() when This :: wxTextAttr().

Returns true if the attribute object specifies a text foreground colour.

 isDefault(This)

 -spec isDefault(This) -> boolean() when This :: wxTextAttr().

Returns false if we have any attributes set, true otherwise.

 new()

 -spec new() -> wxTextAttr().

Constructors.

 new/1

 -spec new(ColText) -> wxTextAttr() when ColText :: wx:wx_colour();
 (Attr) -> wxTextAttr() when Attr :: wxTextAttr().

 new(ColText, Options)

 -spec new(ColText, [Option]) -> wxTextAttr()
 when
 ColText :: wx:wx_colour(),
 Option ::
 {colBack, wx:wx_colour()} | {font, wxFont:wxFont()} | {alignment, wx:wx_enum()}.

 setAlignment(This, Alignment)

 -spec setAlignment(This, Alignment) -> ok when This :: wxTextAttr(), Alignment :: wx:wx_enum().

Sets the paragraph alignment.
See ?wxTextAttrAlignment enumeration values.
Of these, wxTEXT_ALIGNMENT_JUSTIFIED is unimplemented. In future justification may be
supported when printing or previewing, only.

 setBackgroundColour(This, ColBack)

 -spec setBackgroundColour(This, ColBack) -> ok when This :: wxTextAttr(), ColBack :: wx:wx_colour().

Sets the background colour.

 setFlags(This, Flags)

 -spec setFlags(This, Flags) -> ok when This :: wxTextAttr(), Flags :: integer().

Sets the flags determining which styles are being specified.
The ?wxTextAttrFlags values can be passed in a bitlist.

 setFont(This, Font)

 -spec setFont(This, Font) -> ok when This :: wxTextAttr(), Font :: wxFont:wxFont().

Equivalent to setFont(This, Font, []).

 setFont/3

 -spec setFont(This, Font, [Option]) -> ok
 when This :: wxTextAttr(), Font :: wxFont:wxFont(), Option :: {flags, integer()}.

Sets the attributes for the given font.
Note that wxTextAttr does not store an actual wxFont object.

 setFontEncoding(This, Encoding)

 -spec setFontEncoding(This, Encoding) -> ok when This :: wxTextAttr(), Encoding :: wx:wx_enum().

Sets the font encoding.

 setFontFaceName(This, FaceName)

 -spec setFontFaceName(This, FaceName) -> ok when This :: wxTextAttr(), FaceName :: unicode:chardata().

Sets the font face name.

 setFontFamily(This, Family)

 -spec setFontFamily(This, Family) -> ok when This :: wxTextAttr(), Family :: wx:wx_enum().

Sets the font family.

 setFontPixelSize(This, PixelSize)

 -spec setFontPixelSize(This, PixelSize) -> ok when This :: wxTextAttr(), PixelSize :: integer().

Sets the font size in pixels.

 setFontPointSize(This, PointSize)

 -spec setFontPointSize(This, PointSize) -> ok when This :: wxTextAttr(), PointSize :: integer().

Sets the font size in points.

 setFontSize(This, PointSize)

 -spec setFontSize(This, PointSize) -> ok when This :: wxTextAttr(), PointSize :: integer().

Sets the font size in points.

 setFontStyle(This, FontStyle)

 -spec setFontStyle(This, FontStyle) -> ok when This :: wxTextAttr(), FontStyle :: wx:wx_enum().

Sets the font style (normal, italic or slanted).

 setFontUnderlined(This, Underlined)

 -spec setFontUnderlined(This, Underlined) -> ok when This :: wxTextAttr(), Underlined :: boolean().

Sets the font underlining (solid line, text colour).

 setFontWeight(This, FontWeight)

 -spec setFontWeight(This, FontWeight) -> ok when This :: wxTextAttr(), FontWeight :: wx:wx_enum().

Sets the font weight.

 setLeftIndent(This, Indent)

 -spec setLeftIndent(This, Indent) -> ok when This :: wxTextAttr(), Indent :: integer().

Equivalent to setLeftIndent(This, Indent, []).

 setLeftIndent/3

 -spec setLeftIndent(This, Indent, [Option]) -> ok
 when This :: wxTextAttr(), Indent :: integer(), Option :: {subIndent, integer()}.

Sets the left indent and left subindent in tenths of a millimetre.
The sub-indent is an offset from the left of the paragraph, and is used for all but the
first line in a paragraph.
A positive value will cause the first line to appear to the left of the subsequent lines,
and a negative value will cause the first line to be indented relative to the subsequent lines.
wxRichTextBuffer (not implemented in wx) uses indentation to render a bulleted item.
The left indent is the distance between the margin and the bullet. The content of the
paragraph, including the first line, starts at leftMargin + leftSubIndent. So the distance
between the left edge of the bullet and the left of the actual paragraph is leftSubIndent.

 setRightIndent(This, Indent)

 -spec setRightIndent(This, Indent) -> ok when This :: wxTextAttr(), Indent :: integer().

Sets the right indent in tenths of a millimetre.

 setTabs(This, Tabs)

 -spec setTabs(This, Tabs) -> ok when This :: wxTextAttr(), Tabs :: [integer()].

Sets the tab stops, expressed in tenths of a millimetre.
Each stop is measured from the left margin and therefore each value must be larger than
the last.

 setTextColour(This, ColText)

 -spec setTextColour(This, ColText) -> ok when This :: wxTextAttr(), ColText :: wx:wx_colour().

Sets the text foreground colour.

wxTextCtrl

A text control allows text to be displayed and edited.
It may be single line or multi-line. Notice that a lot of methods of the text controls
are found in the base wxTextEntry (not implemented in wx) class which is a common base
class for wxTextCtrl and other controls using a single line text entry field (e.g. wxComboBox).
Styles
This class supports the following styles:
	wxTE_PROCESS_ENTER: The control will generate the event wxEVT_TEXT_ENTER that can be
handled by the program. Otherwise, i.e. either if this style not specified at all, or it
is used, but there is no event handler for this event or the event handler called wxEvent:skip/2 to
avoid overriding the default handling, pressing Enter key is either processed internally
by the control or used to activate the default button of the dialog, if any.

	wxTE_PROCESS_TAB: Normally, TAB key is used for keyboard navigation and pressing it in a
control switches focus to the next one. With this style, this won't happen and if the TAB
is not otherwise processed (e.g. by wxEVT_CHAR event handler), a literal TAB character
is inserted into the control. Notice that this style has no effect for single-line text
controls when using wxGTK.

	wxTE_MULTILINE: The text control allows multiple lines. If this style is not specified,
line break characters should not be used in the controls value.

	wxTE_PASSWORD: The text will be echoed as asterisks.

	wxTE_READONLY: The text will not be user-editable.

	wxTE_RICH: Use rich text control under MSW, this allows having more than 64KB of text in
the control. This style is ignored under other platforms.

	wxTE_RICH2: Use rich text control version 2.0 or higher under MSW, this style is ignored
under other platforms

	wxTE_AUTO_URL: Highlight the URLs and generate the wxTextUrlEvents when mouse events
occur over them.

	wxTE_NOHIDESEL: By default, the Windows text control doesn't show the selection when it
doesn't have focus - use this style to force it to always show it. It doesn't do anything
under other platforms.

	wxHSCROLL: A horizontal scrollbar will be created and used, so that text won't be
wrapped. No effect under wxGTK1.

	wxTE_NO_VSCROLL: For multiline controls only: vertical scrollbar will never be created.
This limits the amount of text which can be entered into the control to what can be
displayed in it under wxMSW but not under wxGTK or wxOSX. Currently not implemented for
the other platforms.

	wxTE_LEFT: The text in the control will be left-justified (default).

	wxTE_CENTRE: The text in the control will be centered (wxMSW, wxGTK, wxOSX).

	wxTE_RIGHT: The text in the control will be right-justified (wxMSW, wxGTK, wxOSX).

	wxTE_DONTWRAP: Same as wxHSCROLL style: don't wrap at all, show horizontal scrollbar
instead.

	wxTE_CHARWRAP: For multiline controls only: wrap the lines too long to be shown entirely
at any position (wxUniv, wxGTK, wxOSX).

	wxTE_WORDWRAP: For multiline controls only: wrap the lines too long to be shown entirely
at word boundaries (wxUniv, wxMSW, wxGTK, wxOSX).

	wxTE_BESTWRAP: For multiline controls only: wrap the lines at word boundaries or at any
other character if there are words longer than the window width (this is the default).

	wxTE_CAPITALIZE: On PocketPC and Smartphone, causes the first letter to be capitalized.
Note that alignment styles (wxTE_LEFT, wxTE_CENTRE and wxTE_RIGHT) can be changed
dynamically after control creation on wxMSW, wxGTK and wxOSX. wxTE_READONLY, wxTE_PASSWORD
and wrapping styles can be dynamically changed under wxGTK but not wxMSW. The other styles
can be only set during control creation.

wxTextCtrl Text Format
The multiline text controls always store the text as a sequence of lines separated by '\n'
characters, i.e. in the Unix text format even on non-Unix platforms. This allows the user
code to ignore the differences between the platforms but at a price: the indices in the
control such as those returned by getInsertionPoint/1 or getSelection/1 can not be used as indices into the string
returned by getValue/1 as they're going to be slightly off for platforms using "\\r\\n" as
separator (as Windows does).
Instead, if you need to obtain a substring between the 2 indices obtained from the
control with the help of the functions mentioned above, you should use getRange/3. And the indices
themselves can only be passed to other methods, for example setInsertionPoint/2 or setSelection/3.
To summarize: never use the indices returned by (multiline) wxTextCtrl as indices
into the string it contains, but only as arguments to be passed back to the other wxTextCtrl
methods. This problem doesn't arise for single-line platforms however where the indices
in the control do correspond to the positions in the value string.
wxTextCtrl Positions and Coordinates
It is possible to use either linear positions, i.e. roughly (but not always exactly, as
explained in the previous section) the index of the character in the text contained in the
control or X-Y coordinates, i.e. column and line of the character when working with this
class and it provides the functions positionToXY/2 and xYToPosition/3 to convert between the two.
Additionally, a position in the control can be converted to its coordinates in pixels
using PositionToCoords() (not implemented in wx) which can be useful to e.g. show a
popup menu near the given character. And, in the other direction, HitTest() (not
implemented in wx) can be used to find the character under, or near, the given pixel coordinates.
To be more precise, positions actually refer to the gaps between characters and not the
characters themselves. Thus, position 0 is the one before the very first character in the
control and so is a valid position even when the control is empty. And if the control
contains a single character, it has two valid positions: 0 before this character and 1 -
after it. This, when the documentation of various functions mentions "invalid position",
it doesn't consider the position just after the last character of the line to be invalid,
only the positions beyond that one (e.g. 2 and greater in the single character example)
are actually invalid.
wxTextCtrl Styles.
Multi-line text controls support styling, i.e. provide a possibility to set colours and
font for individual characters in it (note that under Windows wxTE_RICH style is
required for style support). To use the styles you can either call setDefaultStyle/2 before inserting the
text or call setStyle/4 later to change the style of the text already in the control (the first
solution is much more efficient).
In either case, if the style doesn't specify some of the attributes (for example you only
want to set the text colour but without changing the font nor the text background), the
values of the default style will be used for them. If there is no default style, the
attributes of the text control itself are used.
So the following code correctly describes what it does: the second call to setDefaultStyle/2 doesn't
change the text foreground colour (which stays red) while the last one doesn't change the
background colour (which stays grey):
wxTextCtrl and C++ Streams
This class multiply-inherits from std::streambuf (except for some really old compilers
using non-standard iostream library), allowing code such as the following:
Note that even if your build of wxWidgets doesn't support this (the symbol wxHAS_TEXT_WINDOW_STREAM
has value of 0 then) you can still use wxTextCtrl itself in a stream-like manner:
However the possibility to create a std::ostream associated with wxTextCtrl may be
useful if you need to redirect the output of a function taking a std::ostream as
parameter to a text control.
Another commonly requested need is to redirect std::cout to the text control. This may
be done in the following way:
But wxWidgets provides a convenient class to make it even simpler so instead you may just do
See wxStreamToTextRedirector (not implemented in wx) for more details.
Event Handling.
The following commands are processed by default event handlers in wxTextCtrl: wxID_CUT, wxID_COPY, wxID_PASTE, wxID_UNDO, wxID_REDO.
The associated UI update events are also processed automatically, when the control has the focus.
See: create/4
This class is derived, and can use functions, from:
	wxControl

	wxWindow

	wxEvtHandler

wxWidgets docs: wxTextCtrl
Events
Event types emitted from this class:
	command_text_updated

	command_text_enter

	text_maxlen

 Summary

 Types

 wxTextCtrl()

 Functions

 appendText(This, Text)

 Appends the text to the end of the text control.

 canCopy(This)

 Returns true if the selection can be copied to the clipboard.

 canCut(This)

 Returns true if the selection can be cut to the clipboard.

 canPaste(This)

 Returns true if the contents of the clipboard can be pasted into the text control.

 canRedo(This)

 Returns true if there is a redo facility available and the last operation can be redone.

 canUndo(This)

 Returns true if there is an undo facility available and the last operation can be undone.

 changeValue(This, Value)

 Sets the new text control value.

 clear(This)

 Clears the text in the control.

 copy(This)

 Copies the selected text to the clipboard.

 create(This, Parent, Id)

 Equivalent to create(This, Parent, Id, []).

 create/4

 Creates the text control for two-step construction.

 cut(This)

 Copies the selected text to the clipboard and removes it from the control.

 destroy(This)

 Destroys the object

 discardEdits(This)

 Resets the internal modified flag as if the current changes had been saved.

 emulateKeyPress(This, Event)

 This function inserts into the control the character which would have been inserted if
the given key event had occurred in the text control.

 getDefaultStyle(This)

 Returns the style currently used for the new text.

 getInsertionPoint(This)

 Returns the insertion point, or cursor, position.

 getLastPosition(This)

 Returns the zero based index of the last position in the text control, which is equal to
the number of characters in the control.

 getLineLength(This, LineNo)

 Gets the length of the specified line, not including any trailing newline character(s).

 getLineText(This, LineNo)

 Returns the contents of a given line in the text control, not including any trailing
newline character(s).

 getNumberOfLines(This)

 Returns the number of lines in the text control buffer.

 getRange(This, From, To)

 Returns the string containing the text starting in the positions from and up to to in
the control.

 getSelection(This)

 Gets the current selection span.

 getStringSelection(This)

 Gets the text currently selected in the control.

 getStyle(This, Position, Style)

 Returns the style at this position in the text control.

 getValue(This)

 Gets the contents of the control.

 isEditable(This)

 Returns true if the controls contents may be edited by user (note that it always can be
changed by the program).

 isModified(This)

 Returns true if the text has been modified by user.

 isMultiLine(This)

 Returns true if this is a multi line edit control and false otherwise.

 isSingleLine(This)

 Returns true if this is a single line edit control and false otherwise.

 loadFile(This, Filename)

 Equivalent to loadFile(This, Filename, []).

 loadFile/3

 Loads and displays the named file, if it exists.

 markDirty(This)

 Mark text as modified (dirty).

 new()

 Default ctor.

 new(Parent, Id)

 Equivalent to new(Parent, Id, []).

 new/3

 Constructor, creating and showing a text control.

 paste(This)

 Pastes text from the clipboard to the text item.

 positionToXY(This, Pos)

 Converts given position to a zero-based column, line number pair.

 redo(This)

 If there is a redo facility and the last operation can be redone, redoes the last
operation.

 remove(This, From, To)

 Removes the text starting at the first given position up to (but not including) the
character at the last position.

 replace(This, From, To, Value)

 Replaces the text starting at the first position up to (but not including) the character
at the last position with the given text.

 saveFile(This)

 Equivalent to saveFile(This, []).

 saveFile/2

 Saves the contents of the control in a text file.

 setDefaultStyle(This, Style)

 Changes the default style to use for the new text which is going to be added to the
control.

 setEditable(This, Editable)

 Makes the text item editable or read-only, overriding the wxTE_READONLY flag.

 setInsertionPoint(This, Pos)

 Sets the insertion point at the given position.

 setInsertionPointEnd(This)

 Sets the insertion point at the end of the text control.

 setMaxLength(This, Len)

 This function sets the maximum number of characters the user can enter into the control.

 setSelection(This, From, To)

 Selects the text starting at the first position up to (but not including) the character
at the last position.

 setStyle(This, Start, End, Style)

 Changes the style of the given range.

 setValue(This, Value)

 Sets the new text control value.

 showPosition(This, Pos)

 Makes the line containing the given position visible.

 undo(This)

 If there is an undo facility and the last operation can be undone, undoes the last
operation.

 writeText(This, Text)

 Writes the text into the text control at the current insertion position.

 xYToPosition(This, X, Y)

 Converts the given zero based column and line number to a position.

 Types

 wxTextCtrl()

 -type wxTextCtrl() :: wx:wx_object().

 Functions

 appendText(This, Text)

 -spec appendText(This, Text) -> ok when This :: wxTextCtrl(), Text :: unicode:chardata().

Appends the text to the end of the text control.
Remark: After the text is appended, the insertion point will be at the end of the text
control. If this behaviour is not desired, the programmer should use getInsertionPoint/1 and setInsertionPoint/2.
See: writeText/2

 canCopy(This)

 -spec canCopy(This) -> boolean() when This :: wxTextCtrl().

Returns true if the selection can be copied to the clipboard.

 canCut(This)

 -spec canCut(This) -> boolean() when This :: wxTextCtrl().

Returns true if the selection can be cut to the clipboard.

 canPaste(This)

 -spec canPaste(This) -> boolean() when This :: wxTextCtrl().

Returns true if the contents of the clipboard can be pasted into the text control.
On some platforms (Motif, GTK) this is an approximation and returns true if the control
is editable, false otherwise.

 canRedo(This)

 -spec canRedo(This) -> boolean() when This :: wxTextCtrl().

Returns true if there is a redo facility available and the last operation can be redone.

 canUndo(This)

 -spec canUndo(This) -> boolean() when This :: wxTextCtrl().

Returns true if there is an undo facility available and the last operation can be undone.

 changeValue(This, Value)

 -spec changeValue(This, Value) -> ok when This :: wxTextCtrl(), Value :: unicode:chardata().

Sets the new text control value.
It also marks the control as not-modified which means that IsModified() would return
false immediately after the call to changeValue/2.
The insertion point is set to the start of the control (i.e. position 0) by this function.
This functions does not generate the wxEVT_TEXT event but otherwise is identical to setValue/2.
See overview_events_prog for more information.
Since: 2.7.1

 clear(This)

 -spec clear(This) -> ok when This :: wxTextCtrl().

Clears the text in the control.
Note that this function will generate a wxEVT_TEXT event, i.e. its effect is identical
to calling SetValue("").

 copy(This)

 -spec copy(This) -> ok when This :: wxTextCtrl().

Copies the selected text to the clipboard.

 create(This, Parent, Id)

 -spec create(This, Parent, Id) -> boolean()
 when This :: wxTextCtrl(), Parent :: wxWindow:wxWindow(), Id :: integer().

Equivalent to create(This, Parent, Id, []).

 create/4

 -spec create(This, Parent, Id, [Option]) -> boolean()
 when
 This :: wxTextCtrl(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {value, unicode:chardata()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Creates the text control for two-step construction.
This method should be called if the default constructor was used for the control
creation. Its parameters have the same meaning as for the non-default constructor.

 cut(This)

 -spec cut(This) -> ok when This :: wxTextCtrl().

Copies the selected text to the clipboard and removes it from the control.

 destroy(This)

 -spec destroy(This :: wxTextCtrl()) -> ok.

Destroys the object

 discardEdits(This)

 -spec discardEdits(This) -> ok when This :: wxTextCtrl().

Resets the internal modified flag as if the current changes had been saved.

 emulateKeyPress(This, Event)

 -spec emulateKeyPress(This, Event) -> boolean()
 when This :: wxTextCtrl(), Event :: wxKeyEvent:wxKeyEvent().

This function inserts into the control the character which would have been inserted if
the given key event had occurred in the text control.
The event object should be the same as the one passed to EVT_KEY_DOWN handler
previously by wxWidgets. Please note that this function doesn't currently work correctly
for all keys under any platform but MSW.
Return: true if the event resulted in a change to the control, false otherwise.

 getDefaultStyle(This)

 -spec getDefaultStyle(This) -> wxTextAttr:wxTextAttr() when This :: wxTextCtrl().

Returns the style currently used for the new text.
See: setDefaultStyle/2

 getInsertionPoint(This)

 -spec getInsertionPoint(This) -> integer() when This :: wxTextCtrl().

Returns the insertion point, or cursor, position.
This is defined as the zero based index of the character position to the right of the
insertion point. For example, if the insertion point is at the end of the single-line text
control, it is equal to getLastPosition/1.
Notice that insertion position is, in general, different from the index of the character
the cursor position at in the string returned by getValue/1. While this is always the case for the
single line controls, multi-line controls can use two characters "\\r\\n" as line
separator (this is notably the case under MSW) meaning that indices in the control and its
string value are offset by 1 for every line.
Hence to correctly get the character at the current cursor position, taking into account
that there can be none if the cursor is at the end of the string, you could do the following:

 getLastPosition(This)

 -spec getLastPosition(This) -> integer() when This :: wxTextCtrl().

Returns the zero based index of the last position in the text control, which is equal to
the number of characters in the control.

 getLineLength(This, LineNo)

 -spec getLineLength(This, LineNo) -> integer() when This :: wxTextCtrl(), LineNo :: integer().

Gets the length of the specified line, not including any trailing newline character(s).
Return: The length of the line, or -1 if lineNo was invalid.

 getLineText(This, LineNo)

 -spec getLineText(This, LineNo) -> unicode:charlist() when This :: wxTextCtrl(), LineNo :: integer().

Returns the contents of a given line in the text control, not including any trailing
newline character(s).
Return: The contents of the line.

 getNumberOfLines(This)

 -spec getNumberOfLines(This) -> integer() when This :: wxTextCtrl().

Returns the number of lines in the text control buffer.
The returned number is the number of logical lines, i.e. just the count of the number of
newline characters in the control + 1, for wxGTK and wxOSX/Cocoa ports while it is the
number of physical lines, i.e. the count of lines actually shown in the control, in wxMSW.
Because of this discrepancy, it is not recommended to use this function.
Remark: Note that even empty text controls have one line (where the insertion point is),
so getNumberOfLines/1 never returns 0.

 getRange(This, From, To)

 -spec getRange(This, From, To) -> unicode:charlist()
 when This :: wxTextCtrl(), From :: integer(), To :: integer().

Returns the string containing the text starting in the positions from and up to to in
the control.
The positions must have been returned by another wxTextCtrl method. Please note that
the positions in a multiline wxTextCtrl do not correspond to the indices in the
string returned by getValue/1 because of the different new line representations (CR or CR LF)
and so this method should be used to obtain the correct results instead of extracting
parts of the entire value. It may also be more efficient, especially if the control
contains a lot of data.

 getSelection(This)

 -spec getSelection(This) -> {From :: integer(), To :: integer()} when This :: wxTextCtrl().

Gets the current selection span.
If the returned values are equal, there was no selection. Please note that the indices
returned may be used with the other wxTextCtrl methods but don't necessarily represent
the correct indices into the string returned by getValue/1 for multiline controls under Windows (at
least,) you should use getStringSelection/1 to get the selected text.

 getStringSelection(This)

 -spec getStringSelection(This) -> unicode:charlist() when This :: wxTextCtrl().

Gets the text currently selected in the control.
If there is no selection, the returned string is empty.

 getStyle(This, Position, Style)

 -spec getStyle(This, Position, Style) -> boolean()
 when This :: wxTextCtrl(), Position :: integer(), Style :: wxTextAttr:wxTextAttr().

Returns the style at this position in the text control.
Not all platforms support this function.
Return: true on success, false if an error occurred (this may also mean that the styles
are not supported under this platform).
See:
	setStyle/4

	wxTextAttr

 getValue(This)

 -spec getValue(This) -> unicode:charlist() when This :: wxTextCtrl().

Gets the contents of the control.
Notice that for a multiline text control, the lines will be separated by (Unix-style) \n
characters, even under Windows where they are separated by a \r\n sequence in the
native control.

 isEditable(This)

 -spec isEditable(This) -> boolean() when This :: wxTextCtrl().

Returns true if the controls contents may be edited by user (note that it always can be
changed by the program).
In other words, this functions returns true if the control hasn't been put in read-only
mode by a previous call to setEditable/2.

 isModified(This)

 -spec isModified(This) -> boolean() when This :: wxTextCtrl().

Returns true if the text has been modified by user.
Note that calling setValue/2 doesn't make the control modified.
See: markDirty/1

 isMultiLine(This)

 -spec isMultiLine(This) -> boolean() when This :: wxTextCtrl().

Returns true if this is a multi line edit control and false otherwise.
See: isSingleLine/1

 isSingleLine(This)

 -spec isSingleLine(This) -> boolean() when This :: wxTextCtrl().

Returns true if this is a single line edit control and false otherwise.
See:
	isSingleLine/1

	isMultiLine/1

 loadFile(This, Filename)

 -spec loadFile(This, Filename) -> boolean() when This :: wxTextCtrl(), Filename :: unicode:chardata().

Equivalent to loadFile(This, Filename, []).

 loadFile/3

 -spec loadFile(This, Filename, [Option]) -> boolean()
 when
 This :: wxTextCtrl(),
 Filename :: unicode:chardata(),
 Option :: {fileType, integer()}.

Loads and displays the named file, if it exists.
Return: true if successful, false otherwise.

 markDirty(This)

 -spec markDirty(This) -> ok when This :: wxTextCtrl().

Mark text as modified (dirty).
See: isModified/1

 new()

 -spec new() -> wxTextCtrl().

Default ctor.

 new(Parent, Id)

 -spec new(Parent, Id) -> wxTextCtrl() when Parent :: wxWindow:wxWindow(), Id :: integer().

Equivalent to new(Parent, Id, []).

 new/3

 -spec new(Parent, Id, [Option]) -> wxTextCtrl()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {value, unicode:chardata()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Constructor, creating and showing a text control.
Remark: The horizontal scrollbar (wxHSCROLL style flag) will only be created for
multi-line text controls. Without a horizontal scrollbar, text lines that don't fit in the
control's size will be wrapped (but no newline character is inserted). Single line
controls don't have a horizontal scrollbar, the text is automatically scrolled so that the
insertion point is always visible.
See: create/4

 paste(This)

 -spec paste(This) -> ok when This :: wxTextCtrl().

Pastes text from the clipboard to the text item.

 positionToXY(This, Pos)

 -spec positionToXY(This, Pos) -> Result
 when
 Result :: {Res :: boolean(), X :: integer(), Y :: integer()},
 This :: wxTextCtrl(),
 Pos :: integer().

Converts given position to a zero-based column, line number pair.
Return: true on success, false on failure (most likely due to a too large position parameter).
See: xYToPosition/3

 redo(This)

 -spec redo(This) -> ok when This :: wxTextCtrl().

If there is a redo facility and the last operation can be redone, redoes the last
operation.
Does nothing if there is no redo facility.

 remove(This, From, To)

 -spec remove(This, From, To) -> ok when This :: wxTextCtrl(), From :: integer(), To :: integer().

Removes the text starting at the first given position up to (but not including) the
character at the last position.
This function puts the current insertion point position at to as a side effect.

 replace(This, From, To, Value)

 -spec replace(This, From, To, Value) -> ok
 when
 This :: wxTextCtrl(),
 From :: integer(),
 To :: integer(),
 Value :: unicode:chardata().

Replaces the text starting at the first position up to (but not including) the character
at the last position with the given text.
This function puts the current insertion point position at to as a side effect.

 saveFile(This)

 -spec saveFile(This) -> boolean() when This :: wxTextCtrl().

Equivalent to saveFile(This, []).

 saveFile/2

 -spec saveFile(This, [Option]) -> boolean()
 when
 This :: wxTextCtrl(), Option :: {file, unicode:chardata()} | {fileType, integer()}.

Saves the contents of the control in a text file.
Return: true if the operation was successful, false otherwise.

 setDefaultStyle(This, Style)

 -spec setDefaultStyle(This, Style) -> boolean()
 when This :: wxTextCtrl(), Style :: wxTextAttr:wxTextAttr().

Changes the default style to use for the new text which is going to be added to the
control.
This applies both to the text added programmatically using writeText/2 or appendText/2 and to the text entered
by the user interactively.
If either of the font, foreground, or background colour is not set in style, the values
of the previous default style are used for them. If the previous default style didn't set
them neither, the global font or colours of the text control itself are used as fall back.
However if the style parameter is the default wxTextAttr, then the default style is
just reset (instead of being combined with the new style which wouldn't change it at all).
Return: true on success, false if an error occurred (this may also mean that the styles
are not supported under this platform).
See: getDefaultStyle/1

 setEditable(This, Editable)

 -spec setEditable(This, Editable) -> ok when This :: wxTextCtrl(), Editable :: boolean().

Makes the text item editable or read-only, overriding the wxTE_READONLY flag.
See: isEditable/1

 setInsertionPoint(This, Pos)

 -spec setInsertionPoint(This, Pos) -> ok when This :: wxTextCtrl(), Pos :: integer().

Sets the insertion point at the given position.

 setInsertionPointEnd(This)

 -spec setInsertionPointEnd(This) -> ok when This :: wxTextCtrl().

Sets the insertion point at the end of the text control.
This is equivalent to calling setInsertionPoint/2 with getLastPosition/1 argument.

 setMaxLength(This, Len)

 -spec setMaxLength(This, Len) -> ok when This :: wxTextCtrl(), Len :: integer().

This function sets the maximum number of characters the user can enter into the control.
In other words, it allows limiting the text value length to len not counting the
terminating NUL character.
If len is 0, the previously set max length limit, if any, is discarded and the user may
enter as much text as the underlying native text control widget supports (typically at
least 32Kb). If the user tries to enter more characters into the text control when it
already is filled up to the maximal length, a wxEVT_TEXT_MAXLEN event is sent to notify
the program about it (giving it the possibility to show an explanatory message, for
example) and the extra input is discarded.
Note that in wxGTK this function may only be used with single line text controls.

 setSelection(This, From, To)

 -spec setSelection(This, From, To) -> ok when This :: wxTextCtrl(), From :: integer(), To :: integer().

Selects the text starting at the first position up to (but not including) the character
at the last position.
If both parameters are equal to -1 all text in the control is selected.
Notice that the insertion point will be moved to from by this function.

 setStyle(This, Start, End, Style)

 -spec setStyle(This, Start, End, Style) -> boolean()
 when
 This :: wxTextCtrl(),
 Start :: integer(),
 End :: integer(),
 Style :: wxTextAttr:wxTextAttr().

Changes the style of the given range.
If any attribute within style is not set, the corresponding attribute from getDefaultStyle/1 is used.
Return: true on success, false if an error occurred (this may also mean that the styles
are not supported under this platform).
See:
	getStyle/3

	wxTextAttr

 setValue(This, Value)

 -spec setValue(This, Value) -> ok when This :: wxTextCtrl(), Value :: unicode:chardata().

Sets the new text control value.
It also marks the control as not-modified which means that IsModified() would return
false immediately after the call to setValue/2.
The insertion point is set to the start of the control (i.e. position 0) by this function
unless the control value doesn't change at all, in which case the insertion point is left
at its original position.
Note that, unlike most other functions changing the controls values, this function
generates a wxEVT_TEXT event. To avoid this you can use changeValue/2 instead.

 showPosition(This, Pos)

 -spec showPosition(This, Pos) -> ok when This :: wxTextCtrl(), Pos :: integer().

Makes the line containing the given position visible.

 undo(This)

 -spec undo(This) -> ok when This :: wxTextCtrl().

If there is an undo facility and the last operation can be undone, undoes the last
operation.
Does nothing if there is no undo facility.

 writeText(This, Text)

 -spec writeText(This, Text) -> ok when This :: wxTextCtrl(), Text :: unicode:chardata().

Writes the text into the text control at the current insertion position.
Remark: Newlines in the text string are the only control characters allowed, and they
will cause appropriate line breaks. See operator<<() and appendText/2 for more convenient ways of
writing to the window. After the write operation, the insertion point will be at the end
of the inserted text, so subsequent write operations will be appended. To append text
after the user may have interacted with the control, call setInsertionPointEnd/1 before writing.

 xYToPosition(This, X, Y)

 -spec xYToPosition(This, X, Y) -> integer() when This :: wxTextCtrl(), X :: integer(), Y :: integer().

Converts the given zero based column and line number to a position.
Return: The position value, or -1 if x or y was invalid.

wxTextDataObject

wxTextDataObject is a specialization of wxDataObjectSimple (not implemented in wx)
for text data.
It can be used without change to paste data into the wxClipboard or a wxDropSource
(not implemented in wx). A user may wish to derive a new class from this class for
providing text on-demand in order to minimize memory consumption when offering data in
several formats, such as plain text and RTF because by default the text is stored in a
string in this class, but it might as well be generated when requested. For this, getTextLength/1 and getText/1
will have to be overridden.
Note that if you already have the text inside a string, you will not achieve any
efficiency gain by overriding these functions because copying wxStrings is already a very
efficient operation (data is not actually copied because wxStrings are reference counted).
See:
	Overview dnd

	wxDataObject

	wxFileDataObject

	wxBitmapDataObject

This class is derived, and can use functions, from:
	wxDataObject

wxWidgets docs: wxTextDataObject

 Summary

 Types

 wxTextDataObject()

 Functions

 destroy(This)

 Destroys the object

 getText(This)

 Returns the text associated with the data object.

 getTextLength(This)

 Returns the data size.

 new()

 Equivalent to new([]).

 new(Options)

 Constructor, may be used to initialise the text (otherwise setText/2 should be used
later).

 setText(This, StrText)

 Sets the text associated with the data object.

 Types

 wxTextDataObject()

 -type wxTextDataObject() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxTextDataObject()) -> ok.

Destroys the object

 getText(This)

 -spec getText(This) -> unicode:charlist() when This :: wxTextDataObject().

Returns the text associated with the data object.
You may wish to override this method when offering data on-demand, but this is not
required by wxWidgets' internals. Use this method to get data in text form from the wxClipboard.

 getTextLength(This)

 -spec getTextLength(This) -> integer() when This :: wxTextDataObject().

Returns the data size.
By default, returns the size of the text data set in the constructor or using setText/2. This can
be overridden to provide text size data on-demand. It is recommended to return the text
length plus 1 for a trailing zero, but this is not strictly required.

 new()

 -spec new() -> wxTextDataObject().

Equivalent to new([]).

 new(Options)

 -spec new([Option]) -> wxTextDataObject() when Option :: {text, unicode:chardata()}.

Constructor, may be used to initialise the text (otherwise setText/2 should be used
later).

 setText(This, StrText)

 -spec setText(This, StrText) -> ok when This :: wxTextDataObject(), StrText :: unicode:chardata().

Sets the text associated with the data object.
This method is called when the data object receives the data and, by default, copies the
text into the member variable. If you want to process the text on the fly you may wish to
override this function.

wxTextEntryDialog

This class represents a dialog that requests a one-line text string from the user.
It is implemented as a generic wxWidgets dialog.
See: Overview cmndlg
This class is derived, and can use functions, from:
	wxDialog

	wxTopLevelWindow

	wxWindow

	wxEvtHandler

wxWidgets docs: wxTextEntryDialog

 Summary

 Types

 wxTextEntryDialog()

 Functions

 destroy(This)

 Destroys the object

 getValue(This)

 Returns the text that the user has entered if the user has pressed OK, or the original
value if the user has pressed Cancel.

 new()

 Default constructor.

 new(Parent, Message)

 Equivalent to new(Parent, Message, []).

 new/3

 Constructor.

 setValue(This, Value)

 Sets the default text value.

 Types

 wxTextEntryDialog()

 -type wxTextEntryDialog() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxTextEntryDialog()) -> ok.

Destroys the object

 getValue(This)

 -spec getValue(This) -> unicode:charlist() when This :: wxTextEntryDialog().

Returns the text that the user has entered if the user has pressed OK, or the original
value if the user has pressed Cancel.

 new()

 -spec new() -> wxTextEntryDialog().

Default constructor.
Call Create() (not implemented in wx) to really create the dialog later.
Since: 2.9.5

 new(Parent, Message)

 -spec new(Parent, Message) -> wxTextEntryDialog()
 when Parent :: wxWindow:wxWindow(), Message :: unicode:chardata().

Equivalent to new(Parent, Message, []).

 new/3

 -spec new(Parent, Message, [Option]) -> wxTextEntryDialog()
 when
 Parent :: wxWindow:wxWindow(),
 Message :: unicode:chardata(),
 Option ::
 {caption, unicode:chardata()} |
 {value, unicode:chardata()} |
 {style, integer()} |
 {pos, {X :: integer(), Y :: integer()}}.

Constructor.
Use wxDialog:showModal/1 to show the dialog.
See Create() (not implemented in wx) method for parameter description.

 setValue(This, Value)

 -spec setValue(This, Value) -> ok when This :: wxTextEntryDialog(), Value :: unicode:chardata().

Sets the default text value.

wxToggleButton

wxToggleButton is a button that stays pressed when clicked by the user.
In other words, it is similar to wxCheckBox in functionality but looks like a wxButton.
Since wxWidgets version 2.9.0 this control emits an update UI event.
You can see wxToggleButton in action in page_samples_widgets.
See:
	wxCheckBox

	wxButton

This class is derived, and can use functions, from:
	wxControl

	wxWindow

	wxEvtHandler

wxWidgets docs: wxToggleButton
Events
Event types emitted from this class:
	command_togglebutton_clicked

 Summary

 Types

 wxToggleButton()

 Functions

 create(This, Parent, Id, Label)

 Equivalent to create(This, Parent, Id, Label, []).

 create/5

 Creates the toggle button for two-step construction.

 destroy(This)

 Destroys the object

 getValue(This)

 Gets the state of the toggle button.

 new()

 Default constructor.

 new(Parent, Id, Label)

 Equivalent to new(Parent, Id, Label, []).

 new/4

 Constructor, creating and showing a toggle button.

 setValue(This, State)

 Sets the toggle button to the given state.

 Types

 wxToggleButton()

 -type wxToggleButton() :: wx:wx_object().

 Functions

 create(This, Parent, Id, Label)

 -spec create(This, Parent, Id, Label) -> boolean()
 when
 This :: wxToggleButton(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Label :: unicode:chardata().

Equivalent to create(This, Parent, Id, Label, []).

 create/5

 -spec create(This, Parent, Id, Label, [Option]) -> boolean()
 when
 This :: wxToggleButton(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Label :: unicode:chardata(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Creates the toggle button for two-step construction.
See new/4 for details.

 destroy(This)

 -spec destroy(This :: wxToggleButton()) -> ok.

Destroys the object

 getValue(This)

 -spec getValue(This) -> boolean() when This :: wxToggleButton().

Gets the state of the toggle button.
Return: Returns true if it is pressed, false otherwise.

 new()

 -spec new() -> wxToggleButton().

Default constructor.

 new(Parent, Id, Label)

 -spec new(Parent, Id, Label) -> wxToggleButton()
 when Parent :: wxWindow:wxWindow(), Id :: integer(), Label :: unicode:chardata().

Equivalent to new(Parent, Id, Label, []).

 new/4

 -spec new(Parent, Id, Label, [Option]) -> wxToggleButton()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Label :: unicode:chardata(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Constructor, creating and showing a toggle button.
See: create/5

 setValue(This, State)

 -spec setValue(This, State) -> ok when This :: wxToggleButton(), State :: boolean().

Sets the toggle button to the given state.
This does not cause a EVT_TOGGLEBUTTON event to be emitted.

wxToolBar

A toolbar is a bar of buttons and/or other controls usually placed below the menu bar in
a wxFrame.
You may create a toolbar that is managed by a frame calling wxFrame:createToolBar/2. Under Pocket PC, you should
always use this function for creating the toolbar to be managed by the frame, so that
wxWidgets can use a combined menubar and toolbar. Where you manage your own toolbars,
create wxToolBar as usual.
There are several different types of tools you can add to a toolbar. These types are
controlled by the ?wxItemKind enumeration.
Note that many methods in wxToolBar such as addTool/6 return a wxToolBarToolBase* object.
This should be regarded as an opaque handle representing the newly added toolbar item,
providing access to its id and position within the toolbar. Changes to the item's state
should be made through calls to wxToolBar methods, for example enableTool/3. Calls to wxToolBarToolBase
(not implemented in wx) methods (undocumented by purpose) will not change the visible
state of the item within the tool bar.
After you have added all the tools you need, you must call realize/1 to effectively construct and
display the toolbar.
wxMSW note: Note that under wxMSW toolbar paints tools to reflect system-wide colours.
If you use more than 16 colours in your tool bitmaps, you may wish to suppress this
behaviour, otherwise system colours in your bitmaps will inadvertently be mapped to system
colours. To do this, set the msw.remap system option before creating the toolbar: If you
wish to use 32-bit images (which include an alpha channel for transparency) use: Then
colour remapping is switched off, and a transparent background used. But only use this
option under Windows XP with true colour:
Styles
This class supports the following styles:
	wxTB_FLAT: Gives the toolbar a flat look (Windows and GTK only).

	wxTB_DOCKABLE: Makes the toolbar floatable and dockable (GTK only).

	wxTB_HORIZONTAL: Specifies horizontal layout (default).

	wxTB_VERTICAL: Specifies vertical layout.

	wxTB_TEXT: Shows the text in the toolbar buttons; by default only icons are shown.

	wxTB_NOICONS: Specifies no icons in the toolbar buttons; by default they are shown.

	wxTB_NODIVIDER: Specifies no divider (border) above the toolbar (Windows only)

	wxTB_NOALIGN: Specifies no alignment with the parent window (Windows only, not very
useful).

	wxTB_HORZ_LAYOUT: Shows the text and the icons alongside, not vertically stacked (Windows
and GTK 2 only). This style must be used with wxTB_TEXT.

	wxTB_HORZ_TEXT: Combination of wxTB_HORZ_LAYOUT and wxTB_TEXT.

	wxTB_NO_TOOLTIPS: Don't show the short help tooltips for the tools when the mouse hovers
over them.

	wxTB_BOTTOM: Align the toolbar at the bottom of parent window.

	wxTB_RIGHT: Align the toolbar at the right side of parent window.

	wxTB_DEFAULT_STYLE: Combination of wxTB_HORIZONTAL and wxTB_FLAT. This style is new
since wxWidgets 2.9.5. See also overview_windowstyles. Note that the wxMSW native toolbar
ignores wxTB_NOICONS style. Also, toggling the wxTB_TEXT works only if the style was
initially on.

See: Overview toolbar
This class is derived, and can use functions, from:
	wxControl

	wxWindow

	wxEvtHandler

wxWidgets docs: wxToolBar
Events
Event types emitted from this class:
	command_tool_rclicked

	command_tool_enter

	tool_dropdown

 Summary

 Types

 wxToolBar()

 Functions

 addCheckTool(This, ToolId, Label, Bitmap1)

 Equivalent to addCheckTool(This, ToolId, Label, Bitmap1, []).

 addCheckTool/5

 Adds a new check (or toggle) tool to the toolbar.

 addControl(This, Control)

 Equivalent to addControl(This, Control, []).

 addControl/3

 Adds any control to the toolbar, typically e.g. a wxComboBox.

 addRadioTool(This, ToolId, Label, Bitmap1)

 Equivalent to addRadioTool(This, ToolId, Label, Bitmap1, []).

 addRadioTool/5

 Adds a new radio tool to the toolbar.

 addSeparator(This)

 Adds a separator for spacing groups of tools.

 addStretchableSpace(This)

 Adds a stretchable space to the toolbar.

 addTool(This, Tool)

 Adds a tool to the toolbar.

 addTool(This, ToolId, Label, Bitmap)

 Equivalent to addTool(This, ToolId, Label, Bitmap, []).

 addTool/5

 Adds a tool to the toolbar.

 addTool/6

 Adds a tool to the toolbar.

 deleteTool(This, ToolId)

 Removes the specified tool from the toolbar and deletes it.

 deleteToolByPos(This, Pos)

 This function behaves like deleteTool/2 but it deletes the tool at the specified
position and not the one with the given id.

 enableTool(This, ToolId, Enable)

 Enables or disables the tool.

 findById(This, Id)

 Returns a pointer to the tool identified by id or NULL if no corresponding tool is
found.

 findControl(This, Id)

 Returns a pointer to the control identified by id or NULL if no corresponding control
is found.

 findToolForPosition(This, X, Y)

 Finds a tool for the given mouse position.

 getMargins(This)

 Returns the left/right and top/bottom margins, which are also used for inter-toolspacing.

 getToolBitmapSize(This)

 Returns the size of bitmap that the toolbar expects to have.

 getToolEnabled(This, ToolId)

 Called to determine whether a tool is enabled (responds to user input).

 getToolLongHelp(This, ToolId)

 Returns the long help for the given tool.

 getToolPacking(This)

 Returns the value used for packing tools.

 getToolPos(This, ToolId)

 Returns the tool position in the toolbar, or wxNOT_FOUND if the tool is not found.

 getToolSeparation(This)

 Returns the default separator size.

 getToolShortHelp(This, ToolId)

 Returns the short help for the given tool.

 getToolSize(This)

 Returns the size of a whole button, which is usually larger than a tool bitmap because of
added 3D effects.

 getToolState(This, ToolId)

 Gets the on/off state of a toggle tool.

 insertControl(This, Pos, Control)

 Equivalent to insertControl(This, Pos, Control, []).

 insertControl/4

 Inserts the control into the toolbar at the given position.

 insertSeparator(This, Pos)

 Inserts the separator into the toolbar at the given position.

 insertStretchableSpace(This, Pos)

 Inserts a stretchable space at the given position.

 insertTool(This, Pos, Tool)

 insertTool(This, Pos, ToolId, Label, Bitmap)

 Equivalent to insertTool(This, Pos, ToolId, Label, Bitmap, []).

 insertTool/6

 Inserts the tool with the specified attributes into the toolbar at the given position.

 realize(This)

 This function should be called after you have added tools.

 removeTool(This, Id)

 Removes the given tool from the toolbar but doesn't delete it.

 setMargins(This, X, Y)

 Set the values to be used as margins for the toolbar.

 setToolBitmapSize(This, Size)

 Sets the default size of each tool bitmap.

 setToolLongHelp(This, ToolId, HelpString)

 Sets the long help for the given tool.

 setToolPacking(This, Packing)

 Sets the value used for spacing tools.

 setToolSeparation(This, Separation)

 Sets the default separator size.

 setToolShortHelp(This, ToolId, HelpString)

 Sets the short help for the given tool.

 toggleTool(This, ToolId, Toggle)

 Toggles a tool on or off.

 Types

 wxToolBar()

 -type wxToolBar() :: wx:wx_object().

 Functions

 addCheckTool(This, ToolId, Label, Bitmap1)

 -spec addCheckTool(This, ToolId, Label, Bitmap1) -> wx:wx_object()
 when
 This :: wxToolBar(),
 ToolId :: integer(),
 Label :: unicode:chardata(),
 Bitmap1 :: wxBitmap:wxBitmap().

Equivalent to addCheckTool(This, ToolId, Label, Bitmap1, []).

 addCheckTool/5

 -spec addCheckTool(This, ToolId, Label, Bitmap1, [Option]) -> wx:wx_object()
 when
 This :: wxToolBar(),
 ToolId :: integer(),
 Label :: unicode:chardata(),
 Bitmap1 :: wxBitmap:wxBitmap(),
 Option ::
 {bmpDisabled, wxBitmap:wxBitmap()} |
 {shortHelp, unicode:chardata()} |
 {longHelp, unicode:chardata()} |
 {data, wx:wx_object()}.

Adds a new check (or toggle) tool to the toolbar.
The parameters are the same as in addTool/6.
See: addTool/6

 addControl(This, Control)

 -spec addControl(This, Control) -> wx:wx_object()
 when This :: wxToolBar(), Control :: wxControl:wxControl().

Equivalent to addControl(This, Control, []).

 addControl/3

 -spec addControl(This, Control, [Option]) -> wx:wx_object()
 when
 This :: wxToolBar(),
 Control :: wxControl:wxControl(),
 Option :: {label, unicode:chardata()}.

Adds any control to the toolbar, typically e.g. a wxComboBox.
Remark: wxMac: labels are only displayed if wxWidgets is built with wxMAC_USE_NATIVE_TOOLBAR
set to 1

 addRadioTool(This, ToolId, Label, Bitmap1)

 -spec addRadioTool(This, ToolId, Label, Bitmap1) -> wx:wx_object()
 when
 This :: wxToolBar(),
 ToolId :: integer(),
 Label :: unicode:chardata(),
 Bitmap1 :: wxBitmap:wxBitmap().

Equivalent to addRadioTool(This, ToolId, Label, Bitmap1, []).

 addRadioTool/5

 -spec addRadioTool(This, ToolId, Label, Bitmap1, [Option]) -> wx:wx_object()
 when
 This :: wxToolBar(),
 ToolId :: integer(),
 Label :: unicode:chardata(),
 Bitmap1 :: wxBitmap:wxBitmap(),
 Option ::
 {bmpDisabled, wxBitmap:wxBitmap()} |
 {shortHelp, unicode:chardata()} |
 {longHelp, unicode:chardata()} |
 {data, wx:wx_object()}.

Adds a new radio tool to the toolbar.
Consecutive radio tools form a radio group such that exactly one button in the group is
pressed at any moment, in other words whenever a button in the group is pressed the
previously pressed button is automatically released. You should avoid having the radio
groups of only one element as it would be impossible for the user to use such button.
By default, the first button in the radio group is initially pressed, the others are not.
See: addTool/6

 addSeparator(This)

 -spec addSeparator(This) -> wx:wx_object() when This :: wxToolBar().

Adds a separator for spacing groups of tools.
Notice that the separator uses the look appropriate for the current platform so it can be
a vertical line (MSW, some versions of GTK) or just an empty space or something else.
See:
	addTool/6

	setToolSeparation/2

	addStretchableSpace/1

 addStretchableSpace(This)

 -spec addStretchableSpace(This) -> wx:wx_object() when This :: wxToolBar().

Adds a stretchable space to the toolbar.
Any space not taken up by the fixed items (all items except for stretchable spaces) is
distributed in equal measure between the stretchable spaces in the toolbar. The most
common use for this method is to add a single stretchable space before the items which
should be right-aligned in the toolbar, but more exotic possibilities are possible, e.g. a
stretchable space may be added in the beginning and the end of the toolbar to centre all
toolbar items.
See:
	addTool/6

	addSeparator/1

	insertStretchableSpace/2

Since: 2.9.1

 addTool(This, Tool)

 -spec addTool(This, Tool) -> wx:wx_object() when This :: wxToolBar(), Tool :: wx:wx_object().

Adds a tool to the toolbar.
Remark: After you have added tools to a toolbar, you must call realize/1 in order to have the
tools appear.
See:
	addSeparator/1

	addCheckTool/5

	addRadioTool/5

	insertTool/6

	deleteTool/2

	realize/1

 addTool(This, ToolId, Label, Bitmap)

 -spec addTool(This, ToolId, Label, Bitmap) -> wx:wx_object()
 when
 This :: wxToolBar(),
 ToolId :: integer(),
 Label :: unicode:chardata(),
 Bitmap :: wxBitmap:wxBitmap().

Equivalent to addTool(This, ToolId, Label, Bitmap, []).

 addTool/5

 -spec addTool(This, ToolId, Label, Bitmap, BmpDisabled) -> wx:wx_object()
 when
 This :: wxToolBar(),
 ToolId :: integer(),
 Label :: unicode:chardata(),
 Bitmap :: wxBitmap:wxBitmap(),
 BmpDisabled :: wxBitmap:wxBitmap();
 (This, ToolId, Label, Bitmap, [Option]) -> wx:wx_object()
 when
 This :: wxToolBar(),
 ToolId :: integer(),
 Label :: unicode:chardata(),
 Bitmap :: wxBitmap:wxBitmap(),
 Option :: {shortHelp, unicode:chardata()} | {kind, wx:wx_enum()}.

Adds a tool to the toolbar.
This most commonly used version has fewer parameters than the full version below which
specifies the more rarely used button features.
Remark: After you have added tools to a toolbar, you must call realize/1 in order to have the
tools appear.
See:
	addSeparator/1

	addCheckTool/5

	addRadioTool/5

	insertTool/6

	deleteTool/2

	realize/1

 addTool/6

 -spec addTool(This, ToolId, Label, Bitmap, BmpDisabled, [Option]) -> wx:wx_object()
 when
 This :: wxToolBar(),
 ToolId :: integer(),
 Label :: unicode:chardata(),
 Bitmap :: wxBitmap:wxBitmap(),
 BmpDisabled :: wxBitmap:wxBitmap(),
 Option ::
 {kind, wx:wx_enum()} |
 {shortHelp, unicode:chardata()} |
 {longHelp, unicode:chardata()} |
 {data, wx:wx_object()}.

Adds a tool to the toolbar.
Remark: After you have added tools to a toolbar, you must call realize/1 in order to have the
tools appear.
See:
	addSeparator/1

	addCheckTool/5

	addRadioTool/5

	insertTool/6

	deleteTool/2

	realize/1

 deleteTool(This, ToolId)

 -spec deleteTool(This, ToolId) -> boolean() when This :: wxToolBar(), ToolId :: integer().

Removes the specified tool from the toolbar and deletes it.
If you don't want to delete the tool, but just to remove it from the toolbar (to possibly
add it back later), you may use removeTool/2 instead.
Note: It is unnecessary to call realize/1 for the change to take place, it will happen immediately.
Return: true if the tool was deleted, false otherwise.
See: deleteToolByPos/2

 deleteToolByPos(This, Pos)

 -spec deleteToolByPos(This, Pos) -> boolean() when This :: wxToolBar(), Pos :: integer().

This function behaves like deleteTool/2 but it deletes the tool at the specified
position and not the one with the given id.

 enableTool(This, ToolId, Enable)

 -spec enableTool(This, ToolId, Enable) -> ok
 when This :: wxToolBar(), ToolId :: integer(), Enable :: boolean().

Enables or disables the tool.
Remark: Some implementations will change the visible state of the tool to indicate that
it is disabled.
See:
	getToolEnabled/2

	toggleTool/3

 findById(This, Id)

 -spec findById(This, Id) -> wx:wx_object() when This :: wxToolBar(), Id :: integer().

Returns a pointer to the tool identified by id or NULL if no corresponding tool is
found.

 findControl(This, Id)

 -spec findControl(This, Id) -> wxControl:wxControl() when This :: wxToolBar(), Id :: integer().

Returns a pointer to the control identified by id or NULL if no corresponding control
is found.

 findToolForPosition(This, X, Y)

 -spec findToolForPosition(This, X, Y) -> wx:wx_object()
 when This :: wxToolBar(), X :: integer(), Y :: integer().

Finds a tool for the given mouse position.
Return: A pointer to a tool if a tool is found, or NULL otherwise.
Remark: Currently not implemented in wxGTK (always returns NULL there).

 getMargins(This)

 -spec getMargins(This) -> {W :: integer(), H :: integer()} when This :: wxToolBar().

Returns the left/right and top/bottom margins, which are also used for inter-toolspacing.
See: setMargins/3

 getToolBitmapSize(This)

 -spec getToolBitmapSize(This) -> {W :: integer(), H :: integer()} when This :: wxToolBar().

Returns the size of bitmap that the toolbar expects to have.
The default bitmap size is platform-dependent: for example, it is 1615 for MSW and 2424
for GTK. This size does not necessarily indicate the best size to use for the toolbars
on the given platform, for this you should use wxArtProvider::GetNativeSizeHint(wxART_TOOLBAR)
but in any case, as the bitmap size is deduced automatically from the size of the bitmaps
associated with the tools added to the toolbar, it is usually unnecessary to call setToolBitmapSize/2 explicitly.
Remark: Note that this is the size of the bitmap you pass to addTool/6, and not the eventual size
of the tool button.
See:
	setToolBitmapSize/2

	getToolSize/1

 getToolEnabled(This, ToolId)

 -spec getToolEnabled(This, ToolId) -> boolean() when This :: wxToolBar(), ToolId :: integer().

Called to determine whether a tool is enabled (responds to user input).
Return: true if the tool is enabled, false otherwise.
See: enableTool/3

 getToolLongHelp(This, ToolId)

 -spec getToolLongHelp(This, ToolId) -> unicode:charlist() when This :: wxToolBar(), ToolId :: integer().

Returns the long help for the given tool.
See:
	setToolLongHelp/3

	setToolShortHelp/3

 getToolPacking(This)

 -spec getToolPacking(This) -> integer() when This :: wxToolBar().

Returns the value used for packing tools.
See: setToolPacking/2

 getToolPos(This, ToolId)

 -spec getToolPos(This, ToolId) -> integer() when This :: wxToolBar(), ToolId :: integer().

Returns the tool position in the toolbar, or wxNOT_FOUND if the tool is not found.

 getToolSeparation(This)

 -spec getToolSeparation(This) -> integer() when This :: wxToolBar().

Returns the default separator size.
See: setToolSeparation/2

 getToolShortHelp(This, ToolId)

 -spec getToolShortHelp(This, ToolId) -> unicode:charlist() when This :: wxToolBar(), ToolId :: integer().

Returns the short help for the given tool.
See:
	getToolLongHelp/2

	setToolShortHelp/3

 getToolSize(This)

 -spec getToolSize(This) -> {W :: integer(), H :: integer()} when This :: wxToolBar().

Returns the size of a whole button, which is usually larger than a tool bitmap because of
added 3D effects.
See:
	setToolBitmapSize/2

	getToolBitmapSize/1

 getToolState(This, ToolId)

 -spec getToolState(This, ToolId) -> boolean() when This :: wxToolBar(), ToolId :: integer().

Gets the on/off state of a toggle tool.
Return: true if the tool is toggled on, false otherwise.
See: toggleTool/3

 insertControl(This, Pos, Control)

 -spec insertControl(This, Pos, Control) -> wx:wx_object()
 when This :: wxToolBar(), Pos :: integer(), Control :: wxControl:wxControl().

Equivalent to insertControl(This, Pos, Control, []).

 insertControl/4

 -spec insertControl(This, Pos, Control, [Option]) -> wx:wx_object()
 when
 This :: wxToolBar(),
 Pos :: integer(),
 Control :: wxControl:wxControl(),
 Option :: {label, unicode:chardata()}.

Inserts the control into the toolbar at the given position.
You must call realize/1 for the change to take place.
See:
	addControl/3

	insertTool/6

 insertSeparator(This, Pos)

 -spec insertSeparator(This, Pos) -> wx:wx_object() when This :: wxToolBar(), Pos :: integer().

Inserts the separator into the toolbar at the given position.
You must call realize/1 for the change to take place.
See:
	addSeparator/1

	insertTool/6

 insertStretchableSpace(This, Pos)

 -spec insertStretchableSpace(This, Pos) -> wx:wx_object() when This :: wxToolBar(), Pos :: integer().

Inserts a stretchable space at the given position.
See addStretchableSpace/1 for details about stretchable spaces.
See:
	insertTool/6

	insertSeparator/2

Since: 2.9.1

 insertTool(This, Pos, Tool)

 -spec insertTool(This, Pos, Tool) -> wx:wx_object()
 when This :: wxToolBar(), Pos :: integer(), Tool :: wx:wx_object().

 insertTool(This, Pos, ToolId, Label, Bitmap)

 -spec insertTool(This, Pos, ToolId, Label, Bitmap) -> wx:wx_object()
 when
 This :: wxToolBar(),
 Pos :: integer(),
 ToolId :: integer(),
 Label :: unicode:chardata(),
 Bitmap :: wxBitmap:wxBitmap().

Equivalent to insertTool(This, Pos, ToolId, Label, Bitmap, []).

 insertTool/6

 -spec insertTool(This, Pos, ToolId, Label, Bitmap, [Option]) -> wx:wx_object()
 when
 This :: wxToolBar(),
 Pos :: integer(),
 ToolId :: integer(),
 Label :: unicode:chardata(),
 Bitmap :: wxBitmap:wxBitmap(),
 Option ::
 {bmpDisabled, wxBitmap:wxBitmap()} |
 {kind, wx:wx_enum()} |
 {shortHelp, unicode:chardata()} |
 {longHelp, unicode:chardata()} |
 {clientData, wx:wx_object()}.

Inserts the tool with the specified attributes into the toolbar at the given position.
You must call realize/1 for the change to take place.
See:
	addTool/6

	insertControl/4

	insertSeparator/2

Return: The newly inserted tool or NULL on failure. Notice that with the overload taking tool
parameter the caller is responsible for deleting the tool in the latter case.

 realize(This)

 -spec realize(This) -> boolean() when This :: wxToolBar().

This function should be called after you have added tools.

 removeTool(This, Id)

 -spec removeTool(This, Id) -> wx:wx_object() when This :: wxToolBar(), Id :: integer().

Removes the given tool from the toolbar but doesn't delete it.
This allows inserting/adding this tool back to this (or another) toolbar later.
Note: It is unnecessary to call realize/1 for the change to take place, it will happen immediately.
See: deleteTool/2

 setMargins(This, X, Y)

 -spec setMargins(This, X, Y) -> ok when This :: wxToolBar(), X :: integer(), Y :: integer().

Set the values to be used as margins for the toolbar.
Remark: This must be called before the tools are added if absolute positioning is to be
used, and the default (zero-size) margins are to be overridden.
See: getMargins/1

 setToolBitmapSize(This, Size)

 -spec setToolBitmapSize(This, Size) -> ok
 when This :: wxToolBar(), Size :: {W :: integer(), H :: integer()}.

Sets the default size of each tool bitmap.
The default bitmap size is 16 by 15 pixels.
Remark: This should be called to tell the toolbar what the tool bitmap size is. Call it
before you add tools.
See:
	getToolBitmapSize/1

	getToolSize/1

 setToolLongHelp(This, ToolId, HelpString)

 -spec setToolLongHelp(This, ToolId, HelpString) -> ok
 when This :: wxToolBar(), ToolId :: integer(), HelpString :: unicode:chardata().

Sets the long help for the given tool.
Remark: You might use the long help for displaying the tool purpose on the status line.
See:
	getToolLongHelp/2

	setToolShortHelp/3

 setToolPacking(This, Packing)

 -spec setToolPacking(This, Packing) -> ok when This :: wxToolBar(), Packing :: integer().

Sets the value used for spacing tools.
The default value is 1.
Remark: The packing is used for spacing in the vertical direction if the toolbar is
horizontal, and for spacing in the horizontal direction if the toolbar is vertical.
See: getToolPacking/1

 setToolSeparation(This, Separation)

 -spec setToolSeparation(This, Separation) -> ok when This :: wxToolBar(), Separation :: integer().

Sets the default separator size.
The default value is 5.
See: addSeparator/1

 setToolShortHelp(This, ToolId, HelpString)

 -spec setToolShortHelp(This, ToolId, HelpString) -> ok
 when
 This :: wxToolBar(), ToolId :: integer(), HelpString :: unicode:chardata().

Sets the short help for the given tool.
Remark: An application might use short help for identifying the tool purpose in a tooltip.
See:
	getToolShortHelp/2

	setToolLongHelp/3

 toggleTool(This, ToolId, Toggle)

 -spec toggleTool(This, ToolId, Toggle) -> ok
 when This :: wxToolBar(), ToolId :: integer(), Toggle :: boolean().

Toggles a tool on or off.
This does not cause any event to get emitted.
Remark: Only applies to a tool that has been specified as a toggle tool.

wxToolTip

This class holds information about a tooltip associated with a window (see wxWindow:setToolTip/2).
The four static methods, enable/1, setDelay/1 wxToolTip::SetAutoPop() (not implemented in wx) and wxToolTip::SetReshow()
(not implemented in wx) can be used to globally alter tooltips behaviour.
wxWidgets docs: wxToolTip

 Summary

 Types

 wxToolTip()

 Functions

 destroy(This)

 Destroys the object

 enable(Flag)

 Enable or disable tooltips globally.

 getTip(This)

 Get the tooltip text.

 getWindow(This)

 Get the associated window.

 new(Tip)

 Constructor.

 setDelay(Msecs)

 Set the delay after which the tooltip appears.

 setTip(This, Tip)

 Set the tooltip text.

 Types

 wxToolTip()

 -type wxToolTip() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxToolTip()) -> ok.

Destroys the object

 enable(Flag)

 -spec enable(Flag) -> ok when Flag :: boolean().

Enable or disable tooltips globally.
Note: May not be supported on all platforms (eg. wxCocoa).

 getTip(This)

 -spec getTip(This) -> unicode:charlist() when This :: wxToolTip().

Get the tooltip text.

 getWindow(This)

 -spec getWindow(This) -> wxWindow:wxWindow() when This :: wxToolTip().

Get the associated window.

 new(Tip)

 -spec new(Tip) -> wxToolTip() when Tip :: unicode:chardata().

Constructor.

 setDelay(Msecs)

 -spec setDelay(Msecs) -> ok when Msecs :: integer().

Set the delay after which the tooltip appears.
Note: May not be supported on all platforms.

 setTip(This, Tip)

 -spec setTip(This, Tip) -> ok when This :: wxToolTip(), Tip :: unicode:chardata().

Set the tooltip text.

wxToolbook

wxToolbook is a class similar to wxNotebook but which uses a wxToolBar to
show the labels instead of the tabs.
There is no documentation for this class yet but its usage is identical to wxNotebook
(except for the features clearly related to tabs only), so please refer to that class
documentation for now. You can also use the page_samples_notebook to see wxToolbook in action.
One feature of this class not supported by wxBookCtrlBase is the support for
disabling some of the pages, see EnablePage() (not implemented in wx).
Styles
This class supports the following styles:
	wxTBK_BUTTONBAR: Use wxButtonToolBar-based implementation under macOS (ignored under
other platforms).

	wxTBK_HORZ_LAYOUT: Shows the text and the icons alongside, not vertically stacked (only
implement under Windows and GTK 2 platforms as it relies on wxTB_HORZ_LAYOUT flag
support). The common wxBookCtrl styles described in the overview_bookctrl are also supported.

See:
	Overview bookctrl

	wxBookCtrlBase

	wxNotebook

	Examples

This class is derived, and can use functions, from:
	wxBookCtrlBase

	wxControl

	wxWindow

	wxEvtHandler

wxWidgets docs: wxToolbook
Events
Event types emitted from this class:
	toolbook_page_changed

	toolbook_page_changing

 Summary

 Types

 wxToolbook()

 Functions

 addPage(This, Page, Text)

 Equivalent to addPage(This, Page, Text, []).

 addPage/4

 Adds a new page.

 advanceSelection(This)

 Equivalent to advanceSelection(This, []).

 advanceSelection/2

 Cycles through the tabs.

 assignImageList(This, ImageList)

 Sets the image list for the page control and takes ownership of the list.

 changeSelection(This, Page)

 Changes the selection to the given page, returning the previous selection.

 create(This, Parent, Id)

 Equivalent to create(This, Parent, Id, []).

 create/4

 Create the tool book control that has already been constructed with the default
constructor.

 deleteAllPages(This)

 Deletes all pages.

 destroy(This)

 Destroys the object

 getCurrentPage(This)

 Returns the currently selected page or NULL.

 getImageList(This)

 Returns the associated image list, may be NULL.

 getPage(This, Page)

 Returns the window at the given page position.

 getPageCount(This)

 Returns the number of pages in the control.

 getPageImage(This, NPage)

 Returns the image index for the given page.

 getPageText(This, NPage)

 Returns the string for the given page.

 getSelection(This)

 Returns the currently selected page, or wxNOT_FOUND if none was selected.

 hitTest(This, Pt)

 Returns the index of the tab at the specified position or wxNOT_FOUND if none.

 insertPage(This, Index, Page, Text)

 Equivalent to insertPage(This, Index, Page, Text, []).

 insertPage/5

 Inserts a new page at the specified position.

 new()

 Constructs a choicebook control.

 new(Parent, Id)

 Equivalent to new(Parent, Id, []).

 new/3

 setImageList(This, ImageList)

 Sets the image list to use.

 setPageImage(This, Page, Image)

 Sets the image index for the given page.

 setPageSize(This, Size)

 Sets the width and height of the pages.

 setPageText(This, Page, Text)

 Sets the text for the given page.

 setSelection(This, Page)

 Sets the selection to the given page, returning the previous selection.

 Types

 wxToolbook()

 -type wxToolbook() :: wx:wx_object().

 Functions

 addPage(This, Page, Text)

 -spec addPage(This, Page, Text) -> boolean()
 when This :: wxToolbook(), Page :: wxWindow:wxWindow(), Text :: unicode:chardata().

Equivalent to addPage(This, Page, Text, []).

 addPage/4

 -spec addPage(This, Page, Text, [Option]) -> boolean()
 when
 This :: wxToolbook(),
 Page :: wxWindow:wxWindow(),
 Text :: unicode:chardata(),
 Option :: {bSelect, boolean()} | {imageId, integer()}.

Adds a new page.
The page must have the book control itself as the parent and must not have been added to
this control previously.
The call to this function will generate the page changing and page changed events if select
is true, but not when inserting the very first page (as there is no previous page
selection to switch from in this case and so it wouldn't make sense to e.g. veto such event).
Return: true if successful, false otherwise.
Remark: Do not delete the page, it will be deleted by the book control.
See: insertPage/5

 advanceSelection(This)

 -spec advanceSelection(This) -> ok when This :: wxToolbook().

Equivalent to advanceSelection(This, []).

 advanceSelection/2

 -spec advanceSelection(This, [Option]) -> ok when This :: wxToolbook(), Option :: {forward, boolean()}.

Cycles through the tabs.
The call to this function generates the page changing events.

 assignImageList(This, ImageList)

 -spec assignImageList(This, ImageList) -> ok
 when This :: wxToolbook(), ImageList :: wxImageList:wxImageList().

Sets the image list for the page control and takes ownership of the list.
See:
	wxImageList

	setImageList/2

 changeSelection(This, Page)

 -spec changeSelection(This, Page) -> integer() when This :: wxToolbook(), Page :: integer().

Changes the selection to the given page, returning the previous selection.
This function behaves as setSelection/2 but does not generate the page changing events.
See overview_events_prog for more information.

 create(This, Parent, Id)

 -spec create(This, Parent, Id) -> boolean()
 when This :: wxToolbook(), Parent :: wxWindow:wxWindow(), Id :: integer().

Equivalent to create(This, Parent, Id, []).

 create/4

 -spec create(This, Parent, Id, [Option]) -> boolean()
 when
 This :: wxToolbook(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Create the tool book control that has already been constructed with the default
constructor.

 deleteAllPages(This)

 -spec deleteAllPages(This) -> boolean() when This :: wxToolbook().

Deletes all pages.

 destroy(This)

 -spec destroy(This :: wxToolbook()) -> ok.

Destroys the object

 getCurrentPage(This)

 -spec getCurrentPage(This) -> wxWindow:wxWindow() when This :: wxToolbook().

Returns the currently selected page or NULL.

 getImageList(This)

 -spec getImageList(This) -> wxImageList:wxImageList() when This :: wxToolbook().

Returns the associated image list, may be NULL.
See:
	wxImageList

	setImageList/2

 getPage(This, Page)

 -spec getPage(This, Page) -> wxWindow:wxWindow() when This :: wxToolbook(), Page :: integer().

Returns the window at the given page position.

 getPageCount(This)

 -spec getPageCount(This) -> integer() when This :: wxToolbook().

Returns the number of pages in the control.

 getPageImage(This, NPage)

 -spec getPageImage(This, NPage) -> integer() when This :: wxToolbook(), NPage :: integer().

Returns the image index for the given page.

 getPageText(This, NPage)

 -spec getPageText(This, NPage) -> unicode:charlist() when This :: wxToolbook(), NPage :: integer().

Returns the string for the given page.

 getSelection(This)

 -spec getSelection(This) -> integer() when This :: wxToolbook().

Returns the currently selected page, or wxNOT_FOUND if none was selected.
Note that this method may return either the previously or newly selected page when called
from the EVT_BOOKCTRL_PAGE_CHANGED handler depending on the platform and so wxBookCtrlEvent:getSelection/1 should be
used instead in this case.

 hitTest(This, Pt)

 -spec hitTest(This, Pt) -> Result
 when
 Result :: {Res :: integer(), Flags :: integer()},
 This :: wxToolbook(),
 Pt :: {X :: integer(), Y :: integer()}.

Returns the index of the tab at the specified position or wxNOT_FOUND if none.
If flags parameter is non-NULL, the position of the point inside the tab is returned as well.
Return: Returns the zero-based tab index or wxNOT_FOUND if there is no tab at the
specified position.

 insertPage(This, Index, Page, Text)

 -spec insertPage(This, Index, Page, Text) -> boolean()
 when
 This :: wxToolbook(),
 Index :: integer(),
 Page :: wxWindow:wxWindow(),
 Text :: unicode:chardata().

Equivalent to insertPage(This, Index, Page, Text, []).

 insertPage/5

 -spec insertPage(This, Index, Page, Text, [Option]) -> boolean()
 when
 This :: wxToolbook(),
 Index :: integer(),
 Page :: wxWindow:wxWindow(),
 Text :: unicode:chardata(),
 Option :: {bSelect, boolean()} | {imageId, integer()}.

Inserts a new page at the specified position.
Return: true if successful, false otherwise.
Remark: Do not delete the page, it will be deleted by the book control.
See: addPage/4

 new()

 -spec new() -> wxToolbook().

Constructs a choicebook control.

 new(Parent, Id)

 -spec new(Parent, Id) -> wxToolbook() when Parent :: wxWindow:wxWindow(), Id :: integer().

Equivalent to new(Parent, Id, []).

 new/3

 -spec new(Parent, Id, [Option]) -> wxToolbook()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

 setImageList(This, ImageList)

 -spec setImageList(This, ImageList) -> ok
 when This :: wxToolbook(), ImageList :: wxImageList:wxImageList().

Sets the image list to use.
It does not take ownership of the image list, you must delete it yourself.
See:
	wxImageList

	assignImageList/2

 setPageImage(This, Page, Image)

 -spec setPageImage(This, Page, Image) -> boolean()
 when This :: wxToolbook(), Page :: integer(), Image :: integer().

Sets the image index for the given page.
image is an index into the image list which was set with setImageList/2.

 setPageSize(This, Size)

 -spec setPageSize(This, Size) -> ok when This :: wxToolbook(), Size :: {W :: integer(), H :: integer()}.

Sets the width and height of the pages.
Note: This method is currently not implemented for wxGTK.

 setPageText(This, Page, Text)

 -spec setPageText(This, Page, Text) -> boolean()
 when This :: wxToolbook(), Page :: integer(), Text :: unicode:chardata().

Sets the text for the given page.

 setSelection(This, Page)

 -spec setSelection(This, Page) -> integer() when This :: wxToolbook(), Page :: integer().

Sets the selection to the given page, returning the previous selection.
Notice that the call to this function generates the page changing events, use the changeSelection/2
function if you don't want these events to be generated.
See: getSelection/1

wxTopLevelWindow

wxTopLevelWindow is a common base class for wxDialog and wxFrame.
It is an abstract base class meaning that you never work with objects of this class
directly, but all of its methods are also applicable for the two classes above.
Note that the instances of wxTopLevelWindow are managed by wxWidgets in the internal
top level window list.
See:
	wxDialog

	wxFrame

This class is derived, and can use functions, from:
	wxWindow

	wxEvtHandler

wxWidgets docs: wxTopLevelWindow
Events
Event types emitted from this class:
	maximize

	move

	show

 Summary

 Types

 wxTopLevelWindow()

 Functions

 centerOnScreen(This)

 Equivalent to centerOnScreen(This, []).

 centerOnScreen(This, Options)

 Equivalent to: centreOnScreen/2

 centreOnScreen(This)

 Equivalent to centreOnScreen(This, []).

 centreOnScreen/2

 Centres the window on screen.

 getIcon(This)

 Returns the standard icon of the window.

 getIcons(This)

 Returns all icons associated with the window, there will be none of them if neither setIcon/2
nor setIcons/2 had been called before.

 getTitle(This)

 Gets a string containing the window title.

 iconize(This)

 Equivalent to iconize(This, []).

 iconize/2

 Iconizes or restores the window.

 isActive(This)

 Returns true if this window is currently active, i.e. if the user is currently working
with it.

 isFullScreen(This)

 Returns true if the window is in fullscreen mode.

 isIconized(This)

 Returns true if the window is iconized.

 isMaximized(This)

 Returns true if the window is maximized.

 maximize(This)

 Equivalent to maximize(This, []).

 maximize/2

 Maximizes or restores the window.

 requestUserAttention(This)

 Equivalent to requestUserAttention(This, []).

 requestUserAttention/2

 Use a system-dependent way to attract users attention to the window when it is in
background.

 setIcon(This, Icon)

 Sets the icon for this window.

 setIcons(This, Icons)

 Sets several icons of different sizes for this window: this allows using different icons
for different situations (e.g.

 setShape(This, Region)

 If the platform supports it, sets the shape of the window to that depicted by region.

 setTitle(This, Title)

 Sets the window title.

 showFullScreen(This, Show)

 Equivalent to showFullScreen(This, Show, []).

 showFullScreen/3

 Depending on the value of show parameter the window is either shown full screen or
restored to its normal state.

 Types

 wxTopLevelWindow()

 -type wxTopLevelWindow() :: wx:wx_object().

 Functions

 centerOnScreen(This)

 -spec centerOnScreen(This) -> ok when This :: wxTopLevelWindow().

Equivalent to centerOnScreen(This, []).

 centerOnScreen(This, Options)

 -spec centerOnScreen(This, [Option]) -> ok when This :: wxTopLevelWindow(), Option :: {dir, integer()}.

Equivalent to: centreOnScreen/2

 centreOnScreen(This)

 -spec centreOnScreen(This) -> ok when This :: wxTopLevelWindow().

Equivalent to centreOnScreen(This, []).

 centreOnScreen/2

 -spec centreOnScreen(This, [Option]) -> ok when This :: wxTopLevelWindow(), Option :: {dir, integer()}.

Centres the window on screen.
See: wxWindow:centreOnParent/2

 getIcon(This)

 -spec getIcon(This) -> wxIcon:wxIcon() when This :: wxTopLevelWindow().

Returns the standard icon of the window.
The icon will be invalid if it hadn't been previously set by setIcon/2.
See: getIcons/1

 getIcons(This)

 -spec getIcons(This) -> wxIconBundle:wxIconBundle() when This :: wxTopLevelWindow().

Returns all icons associated with the window, there will be none of them if neither setIcon/2
nor setIcons/2 had been called before.
Use getIcon/1 to get the main icon of the window.
See: wxIconBundle

 getTitle(This)

 -spec getTitle(This) -> unicode:charlist() when This :: wxTopLevelWindow().

Gets a string containing the window title.
See: setTitle/2

 iconize(This)

 -spec iconize(This) -> ok when This :: wxTopLevelWindow().

Equivalent to iconize(This, []).

 iconize/2

 -spec iconize(This, [Option]) -> ok when This :: wxTopLevelWindow(), Option :: {iconize, boolean()}.

Iconizes or restores the window.
Note that in wxGTK the change to the window state is not immediate, i.e. isIconized/1 will typically
return false right after a call to iconize/2 and its return value will only change after the
control flow returns to the event loop and the notification about the window being really
iconized is received.
See:
	isIconized/1

	wxIconizeEvent

 isActive(This)

 -spec isActive(This) -> boolean() when This :: wxTopLevelWindow().

Returns true if this window is currently active, i.e. if the user is currently working
with it.

 isFullScreen(This)

 -spec isFullScreen(This) -> boolean() when This :: wxTopLevelWindow().

Returns true if the window is in fullscreen mode.
See: showFullScreen/3

 isIconized(This)

 -spec isIconized(This) -> boolean() when This :: wxTopLevelWindow().

Returns true if the window is iconized.

 isMaximized(This)

 -spec isMaximized(This) -> boolean() when This :: wxTopLevelWindow().

Returns true if the window is maximized.

 maximize(This)

 -spec maximize(This) -> ok when This :: wxTopLevelWindow().

Equivalent to maximize(This, []).

 maximize/2

 -spec maximize(This, [Option]) -> ok when This :: wxTopLevelWindow(), Option :: {maximize, boolean()}.

Maximizes or restores the window.
Note that, just as with iconize/2, the change to the window state is not immediate in at least
wxGTK port.
See: iconize/2

 requestUserAttention(This)

 -spec requestUserAttention(This) -> ok when This :: wxTopLevelWindow().

Equivalent to requestUserAttention(This, []).

 requestUserAttention/2

 -spec requestUserAttention(This, [Option]) -> ok
 when This :: wxTopLevelWindow(), Option :: {flags, integer()}.

Use a system-dependent way to attract users attention to the window when it is in
background.
flags may have the value of either ?wxUSER_ATTENTION_INFO (default) or ?wxUSER_ATTENTION_ERROR
which results in a more drastic action. When in doubt, use the default value.
Note: This function should normally be only used when the application is not already in foreground.
This function is currently implemented for Win32 where it flashes the window icon in the
taskbar, and for wxGTK with task bars supporting it.

 setIcon(This, Icon)

 -spec setIcon(This, Icon) -> ok when This :: wxTopLevelWindow(), Icon :: wxIcon:wxIcon().

Sets the icon for this window.
Remark: The window takes a 'copy' of icon, but since it uses reference counting, the
copy is very quick. It is safe to delete icon after calling this function.
Note: In wxMSW, icon must be either 16x16 or 32x32 icon.
See:
	wxIcon

	setIcons/2

 setIcons(This, Icons)

 -spec setIcons(This, Icons) -> ok when This :: wxTopLevelWindow(), Icons :: wxIconBundle:wxIconBundle().

Sets several icons of different sizes for this window: this allows using different icons
for different situations (e.g.
task switching bar, taskbar, window title bar) instead of scaling, with possibly bad
looking results, the only icon set by setIcon/2.
Note: In wxMSW, icons must contain a 16x16 or 32x32 icon, preferably both.
See: wxIconBundle

 setShape(This, Region)

 -spec setShape(This, Region) -> boolean()
 when
 This :: wxTopLevelWindow(),
 Region :: wxRegion:wxRegion() | wxGraphicsPath:wxGraphicsPath().

If the platform supports it, sets the shape of the window to that depicted by region.
The system will not display or respond to any mouse event for the pixels that lie outside
of the region. To reset the window to the normal rectangular shape simply call setShape/2 again with
an empty wxRegion. Returns true if the operation is successful.
This method is available in this class only since wxWidgets 2.9.3, previous versions only
provided it in wxTopLevelWindow.
Note that windows with non default shape have a fixed size and can't be resized using wxWindow:setSize/6.

 setTitle(This, Title)

 -spec setTitle(This, Title) -> ok when This :: wxTopLevelWindow(), Title :: unicode:chardata().

Sets the window title.
See: getTitle/1

 showFullScreen(This, Show)

 -spec showFullScreen(This, Show) -> boolean() when This :: wxTopLevelWindow(), Show :: boolean().

Equivalent to showFullScreen(This, Show, []).

 showFullScreen/3

 -spec showFullScreen(This, Show, [Option]) -> boolean()
 when This :: wxTopLevelWindow(), Show :: boolean(), Option :: {style, integer()}.

Depending on the value of show parameter the window is either shown full screen or
restored to its normal state.
style is a bit list containing some or all of the following values, which indicate what
elements of the window to hide in full-screen mode:
	?wxFULLSCREEN_NOMENUBAR

	?wxFULLSCREEN_NOTOOLBAR

	?wxFULLSCREEN_NOSTATUSBAR

	?wxFULLSCREEN_NOBORDER

	?wxFULLSCREEN_NOCAPTION

	?wxFULLSCREEN_ALL (all of the above)

This function has not been tested with MDI frames.
Note: Showing a window full screen also actually wxWindow:show/2s the window if it isn't shown.
See: isFullScreen/1

wxTreeCtrl

A tree control presents information as a hierarchy, with items that may be expanded to
show further items.
Items in a tree control are referenced by wxTreeItemId (not implemented in wx) handles,
which may be tested for validity by calling wxTreeItemId::IsOk() (not implemented in wx).
A similar control with a fully native implementation for GTK+ and macOS as well is wxDataViewTreeCtrl
(not implemented in wx).
To intercept events from a tree control, use the event table macros described in wxTreeEvent.
Styles
This class supports the following styles:
	wxTR_EDIT_LABELS: Use this style if you wish the user to be able to edit labels in the
tree control.

	wxTR_NO_BUTTONS: For convenience to document that no buttons are to be drawn.

	wxTR_HAS_BUTTONS: Use this style to show + and - buttons to the left of parent items.

	wxTR_TWIST_BUTTONS: Selects alternative style of +/- buttons and shows rotating
("twisting") arrows instead. Currently this style is only implemented under Microsoft
Windows Vista and later Windows versions and is ignored under the other platforms as
enabling it is equivalent to using wxSystemThemedControl::EnableSystemTheme() (not
implemented in wx).

	wxTR_NO_LINES: Use this style to hide vertical level connectors.

	wxTR_FULL_ROW_HIGHLIGHT: Use this style to have the background colour and the selection
highlight extend over the entire horizontal row of the tree control window. (This flag is
ignored under Windows unless you specify wxTR_NO_LINES as well.)

	wxTR_LINES_AT_ROOT: Use this style to show lines leading to the root nodes (unless no wxTR_NO_LINES
is also used, in which case no lines are shown). Note that in the MSW version, if this
style is omitted, not only the lines, but also the button used for expanding the root item
is not shown, which can be unexpected, so it is recommended to always use it.

	wxTR_HIDE_ROOT: Use this style to suppress the display of the root node, effectively
causing the first-level nodes to appear as a series of root nodes.

	wxTR_ROW_LINES: Use this style to draw a contrasting border between displayed rows.

	wxTR_HAS_VARIABLE_ROW_HEIGHT: Use this style to cause row heights to be just big enough
to fit the content. If not set, all rows use the largest row height. The default is that
this flag is unset. Generic only.

	wxTR_SINGLE: For convenience to document that only one item may be selected at a time.
Selecting another item causes the current selection, if any, to be deselected. This is the
default.

	wxTR_MULTIPLE: Use this style to allow a range of items to be selected. If a second range
is selected, the current range, if any, is deselected.

	wxTR_DEFAULT_STYLE: The set of flags that are closest to the defaults for the native
control for a particular toolkit.

See also overview_windowstyles.
Win32 notes:
wxTreeCtrl class uses the standard common treeview control under Win32 implemented in
the system library comctl32.dll. Some versions of this library are known to have bugs with
handling the tree control colours: the usual symptom is that the expanded items leave
black (or otherwise incorrectly coloured) background behind them, especially for the
controls using non-default background colour. The recommended solution is to upgrade the
comctl32.dll to a newer version: see http://www.microsoft.com/downloads/details.aspx?familyid=cb2cf3a2-8025-4e8f-8511-9b476a8d35d2
See:
	wxTreeEvent

	Overview treectrl

	wxListBox

	wxListCtrl

	wxImageList

This class is derived, and can use functions, from:
	wxControl

	wxWindow

	wxEvtHandler

wxWidgets docs: wxTreeCtrl
Events
Event types emitted from this class:
	command_tree_begin_drag

	command_tree_begin_rdrag

	command_tree_end_drag

	command_tree_begin_label_edit

	command_tree_end_label_edit

	command_tree_delete_item

	command_tree_get_info

	command_tree_set_info

	command_tree_item_activated

	command_tree_item_collapsed

	command_tree_item_collapsing

	command_tree_item_expanded

	command_tree_item_expanding

	command_tree_item_right_click

	command_tree_item_middle_click

	command_tree_sel_changed

	command_tree_sel_changing

	command_tree_key_down

	command_tree_item_gettooltip

	command_tree_item_menu

	command_tree_state_image_click

 Summary

 Types

 wxTreeCtrl()

 Functions

 addRoot(This, Text)

 Equivalent to addRoot(This, Text, []).

 addRoot/3

 Adds the root node to the tree, returning the new item.

 appendItem(This, Parent, Text)

 Equivalent to appendItem(This, Parent, Text, []).

 appendItem/4

 Appends an item to the end of the branch identified by parent, return a new item id.

 assignImageList(This, ImageList)

 Sets the normal image list.

 assignStateImageList(This, ImageList)

 Sets the state image list.

 collapse(This, Item)

 Collapses the given item.

 collapseAndReset(This, Item)

 Collapses the given item and removes all children.

 create(This, Parent)

 Equivalent to create(This, Parent, []).

 create/3

 Creates the tree control.

 delete(This, Item)

 Deletes the specified item.

 deleteAllItems(This)

 Deletes all items in the control.

 deleteChildren(This, Item)

 Deletes all children of the given item (but not the item itself).

 destroy(This)

 Destroys the object

 editLabel(This, Item)

 Starts editing the label of the given item.

 ensureVisible(This, Item)

 Scrolls and/or expands items to ensure that the given item is visible.

 expand(This, Item)

 Expands the given item.

 getBoundingRect(This, Item)

 Equivalent to getBoundingRect(This, Item, []).

 getBoundingRect/3

 Retrieves the rectangle bounding the item.

 getChildrenCount(This, Item)

 Equivalent to getChildrenCount(This, Item, []).

 getChildrenCount/3

 Returns the number of items in the branch.

 getCount(This)

 Returns the number of items in the control.

 getEditControl(This)

 Returns the edit control being currently used to edit a label.

 getFirstChild(This, Item)

 Returns the first child; call getNextChild/3 for the next child.

 getFirstVisibleItem(This)

 Returns the first visible item.

 getImageList(This)

 Returns the normal image list.

 getIndent(This)

 Returns the current tree control indentation.

 getItemBackgroundColour(This, Item)

 Returns the background colour of the item.

 getItemData(This, Item)

 Returns the tree item data associated with the item.

 getItemFont(This, Item)

 Returns the font of the item label.

 getItemImage(This, Item)

 Equivalent to getItemImage(This, Item, []).

 getItemImage/3

 Gets the specified item image.

 getItemParent(This, Item)

 Returns the item's parent.

 getItemText(This, Item)

 Returns the item label.

 getItemTextColour(This, Item)

 Returns the colour of the item label.

 getLastChild(This, Item)

 Returns the last child of the item (or an invalid tree item if this item has no
children).

 getNextChild(This, Item, Cookie)

 Returns the next child; call getFirstChild/2 for the first child.

 getNextSibling(This, Item)

 Returns the next sibling of the specified item; call getPrevSibling/2 for the previous
sibling.

 getNextVisible(This, Item)

 Returns the next visible item or an invalid item if this item is the last visible one.

 getPrevSibling(This, Item)

 Returns the previous sibling of the specified item; call getNextSibling/2 for the next
sibling.

 getPrevVisible(This, Item)

 Returns the previous visible item or an invalid item if this item is the first visible
one.

 getRootItem(This)

 Returns the root item for the tree control.

 getSelection(This)

 Returns the selection, or an invalid item if there is no selection.

 getSelections(This)

 Fills the array of tree items passed in with the currently selected items.

 getStateImageList(This)

 Returns the state image list (from which application-defined state images are taken).

 hitTest(This, Point)

 Calculates which (if any) item is under the given point, returning the tree item id at
this point plus extra information flags.

 insertItem(This, Parent, Previous, Text)

 Equivalent to insertItem(This, Parent, Previous, Text, []).

 insertItem/5

 Inserts an item after a given one (previous).

 isBold(This, Item)

 Returns true if the given item is in bold state.

 isExpanded(This, Item)

 Returns true if the item is expanded (only makes sense if it has children).

 isSelected(This, Item)

 Returns true if the item is selected.

 isTreeItemIdOk(Item)

 Returns true if the item is valid.

 isVisible(This, Item)

 Returns true if the item is visible on the screen.

 itemHasChildren(This, Item)

 Returns true if the item has children.

 new()

 Default Constructor.

 new(Parent)

 Equivalent to new(Parent, []).

 new/2

 Constructor, creating and showing a tree control.

 prependItem(This, Parent, Text)

 Equivalent to prependItem(This, Parent, Text, []).

 prependItem/4

 Appends an item as the first child of parent, return a new item id.

 scrollTo(This, Item)

 Scrolls the specified item into view.

 selectItem(This, Item)

 Equivalent to selectItem(This, Item, []).

 selectItem/3

 Selects the given item.

 setImageList(This, ImageList)

 Sets the normal image list.

 setIndent(This, Indent)

 Sets the indentation for the tree control.

 setItemBackgroundColour(This, Item, Col)

 Sets the colour of the item's background.

 setItemBold(This, Item)

 Equivalent to setItemBold(This, Item, []).

 setItemBold/3

 Makes item appear in bold font if bold parameter is true or resets it to the normal
state.

 setItemData(This, Item, Data)

 Sets the item client data.

 setItemDropHighlight(This, Item)

 Equivalent to setItemDropHighlight(This, Item, []).

 setItemDropHighlight/3

 Gives the item the visual feedback for Drag'n'Drop actions, which is useful if something
is dragged from the outside onto the tree control (as opposed to a DnD operation within
the tree control, which already is implemented internally).

 setItemFont(This, Item, Font)

 Sets the item's font.

 setItemHasChildren(This, Item)

 Equivalent to setItemHasChildren(This, Item, []).

 setItemHasChildren/3

 Force appearance of the button next to the item.

 setItemImage(This, Item, Image)

 Equivalent to setItemImage(This, Item, Image, []).

 setItemImage/4

 Sets the specified item's image.

 setItemText(This, Item, Text)

 Sets the item label.

 setItemTextColour(This, Item, Col)

 Sets the colour of the item's text.

 setStateImageList(This, ImageList)

 Sets the state image list (from which application-defined state images are taken).

 setWindowStyle(This, Styles)

 Sets the mode flags associated with the display of the tree control.

 sortChildren(This, Item)

 Sorts the children of the given item using OnCompareItems() (not implemented in wx).

 toggle(This, Item)

 Toggles the given item between collapsed and expanded states.

 toggleItemSelection(This, Item)

 Toggles the given item between selected and unselected states.

 unselect(This)

 Removes the selection from the currently selected item (if any).

 unselectAll(This)

 This function either behaves the same as unselect/1 if the control doesn't have wxTR_MULTIPLE
style, or removes the selection from all items if it does have this style.

 unselectItem(This, Item)

 Unselects the given item.

 Types

 wxTreeCtrl()

 -type wxTreeCtrl() :: wx:wx_object().

 Functions

 addRoot(This, Text)

 -spec addRoot(This, Text) -> integer() when This :: wxTreeCtrl(), Text :: unicode:chardata().

Equivalent to addRoot(This, Text, []).

 addRoot/3

 -spec addRoot(This, Text, [Option]) -> integer()
 when
 This :: wxTreeCtrl(),
 Text :: unicode:chardata(),
 Option :: {image, integer()} | {selectedImage, integer()} | {data, term()}.

Adds the root node to the tree, returning the new item.
The image and selImage parameters are an index within the normal image list
specifying the image to use for unselected and selected items, respectively. If image >
-1 and selImage is -1, the same image is used for both selected and unselected items.

 appendItem(This, Parent, Text)

 -spec appendItem(This, Parent, Text) -> integer()
 when This :: wxTreeCtrl(), Parent :: integer(), Text :: unicode:chardata().

Equivalent to appendItem(This, Parent, Text, []).

 appendItem/4

 -spec appendItem(This, Parent, Text, [Option]) -> integer()
 when
 This :: wxTreeCtrl(),
 Parent :: integer(),
 Text :: unicode:chardata(),
 Option :: {image, integer()} | {selectedImage, integer()} | {data, term()}.

Appends an item to the end of the branch identified by parent, return a new item id.
The image and selImage parameters are an index within the normal image list
specifying the image to use for unselected and selected items, respectively. If image >
-1 and selImage is -1, the same image is used for both selected and unselected items.

 assignImageList(This, ImageList)

 -spec assignImageList(This, ImageList) -> ok
 when This :: wxTreeCtrl(), ImageList :: wxImageList:wxImageList().

Sets the normal image list.
The image list assigned with this method will be automatically deleted by wxTreeCtrl
as appropriate (i.e. it takes ownership of the list).
See: setImageList/2

 assignStateImageList(This, ImageList)

 -spec assignStateImageList(This, ImageList) -> ok
 when This :: wxTreeCtrl(), ImageList :: wxImageList:wxImageList().

Sets the state image list.
Image list assigned with this method will be automatically deleted by wxTreeCtrl as
appropriate (i.e. it takes ownership of the list).
See: setStateImageList/2

 collapse(This, Item)

 -spec collapse(This, Item) -> ok when This :: wxTreeCtrl(), Item :: integer().

Collapses the given item.

 collapseAndReset(This, Item)

 -spec collapseAndReset(This, Item) -> ok when This :: wxTreeCtrl(), Item :: integer().

Collapses the given item and removes all children.

 create(This, Parent)

 -spec create(This, Parent) -> boolean() when This :: wxTreeCtrl(), Parent :: wxWindow:wxWindow().

Equivalent to create(This, Parent, []).

 create/3

 -spec create(This, Parent, [Option]) -> boolean()
 when
 This :: wxTreeCtrl(),
 Parent :: wxWindow:wxWindow(),
 Option ::
 {id, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Creates the tree control.
See new/2 for further details.

 delete(This, Item)

 -spec delete(This, Item) -> ok when This :: wxTreeCtrl(), Item :: integer().

Deletes the specified item.
A EVT_TREE_DELETE_ITEM event will be generated.
This function may cause a subsequent call to getNextChild/3 to fail.

 deleteAllItems(This)

 -spec deleteAllItems(This) -> ok when This :: wxTreeCtrl().

Deletes all items in the control.
This function generates wxEVT_TREE_DELETE_ITEM events for each item being deleted,
including the root one if it is shown, i.e. unless wxTR_HIDE_ROOT style is used.

 deleteChildren(This, Item)

 -spec deleteChildren(This, Item) -> ok when This :: wxTreeCtrl(), Item :: integer().

Deletes all children of the given item (but not the item itself).
A wxEVT_TREE_DELETE_ITEM event will be generated for every item being deleted.
If you have called setItemHasChildren/3, you may need to call it again since deleteChildren/2 does not automatically clear
the setting.

 destroy(This)

 -spec destroy(This :: wxTreeCtrl()) -> ok.

Destroys the object

 editLabel(This, Item)

 -spec editLabel(This, Item) -> wxTextCtrl:wxTextCtrl() when This :: wxTreeCtrl(), Item :: integer().

Starts editing the label of the given item.
This function generates a EVT_TREE_BEGIN_LABEL_EDIT event which can be vetoed so that
no text control will appear for in-place editing.
If the user changed the label (i.e. s/he does not press ESC or leave the text control
without changes, a EVT_TREE_END_LABEL_EDIT event will be sent which can be vetoed as well.
See: wxTreeEvent

 ensureVisible(This, Item)

 -spec ensureVisible(This, Item) -> ok when This :: wxTreeCtrl(), Item :: integer().

Scrolls and/or expands items to ensure that the given item is visible.
This method can be used, and will work, even while the window is frozen (see wxWindow:freeze/1).

 expand(This, Item)

 -spec expand(This, Item) -> ok when This :: wxTreeCtrl(), Item :: integer().

Expands the given item.

 getBoundingRect(This, Item)

 -spec getBoundingRect(This, Item) -> Result
 when
 Result ::
 {Res :: boolean(),
 Rect ::
 {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}},
 This :: wxTreeCtrl(),
 Item :: integer().

Equivalent to getBoundingRect(This, Item, []).

 getBoundingRect/3

 -spec getBoundingRect(This, Item, [Option]) -> Result
 when
 Result ::
 {Res :: boolean(),
 Rect ::
 {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}},
 This :: wxTreeCtrl(),
 Item :: integer(),
 Option :: {textOnly, boolean()}.

Retrieves the rectangle bounding the item.
If textOnly is true, only the rectangle around the item's label will be returned,
otherwise the item's image is also taken into account.
The return value is true if the rectangle was successfully retrieved or false if it was
not (in this case rect is not changed) - for example, if the item is currently invisible.
Notice that the rectangle coordinates are logical, not physical ones. So, for example,
the x coordinate may be negative if the tree has a horizontal scrollbar and its position
is not 0.

 getChildrenCount(This, Item)

 -spec getChildrenCount(This, Item) -> integer() when This :: wxTreeCtrl(), Item :: integer().

Equivalent to getChildrenCount(This, Item, []).

 getChildrenCount/3

 -spec getChildrenCount(This, Item, [Option]) -> integer()
 when
 This :: wxTreeCtrl(),
 Item :: integer(),
 Option :: {recursively, boolean()}.

Returns the number of items in the branch.
If recursively is true, returns the total number of descendants, otherwise only one
level of children is counted.

 getCount(This)

 -spec getCount(This) -> integer() when This :: wxTreeCtrl().

Returns the number of items in the control.

 getEditControl(This)

 -spec getEditControl(This) -> wxTextCtrl:wxTextCtrl() when This :: wxTreeCtrl().

Returns the edit control being currently used to edit a label.
Returns NULL if no label is being edited.
Note: This is currently only implemented for wxMSW.

 getFirstChild(This, Item)

 -spec getFirstChild(This, Item) -> Result
 when
 Result :: {Res :: integer(), Cookie :: integer()},
 This :: wxTreeCtrl(),
 Item :: integer().

Returns the first child; call getNextChild/3 for the next child.
For this enumeration function you must pass in a 'cookie' parameter which is opaque for
the application but is necessary for the library to make these functions reentrant (i.e.
allow more than one enumeration on one and the same object simultaneously). The cookie
passed to getFirstChild/2 and getNextChild/3 should be the same variable.
Returns an invalid tree item (i.e. wxTreeItemId::IsOk() (not implemented in wx) returns
false) if there are no further children.
See:
	getNextChild/3

	getNextSibling/2

 getFirstVisibleItem(This)

 -spec getFirstVisibleItem(This) -> integer() when This :: wxTreeCtrl().

Returns the first visible item.

 getImageList(This)

 -spec getImageList(This) -> wxImageList:wxImageList() when This :: wxTreeCtrl().

Returns the normal image list.

 getIndent(This)

 -spec getIndent(This) -> integer() when This :: wxTreeCtrl().

Returns the current tree control indentation.

 getItemBackgroundColour(This, Item)

 -spec getItemBackgroundColour(This, Item) -> wx:wx_colour4()
 when This :: wxTreeCtrl(), Item :: integer().

Returns the background colour of the item.

 getItemData(This, Item)

 -spec getItemData(This, Item) -> term() when This :: wxTreeCtrl(), Item :: integer().

Returns the tree item data associated with the item.

 getItemFont(This, Item)

 -spec getItemFont(This, Item) -> wxFont:wxFont() when This :: wxTreeCtrl(), Item :: integer().

Returns the font of the item label.
If the font hadn't been explicitly set for the specified item with setItemFont/3, returns an invalid
?wxNullFont font. wxWindow:getFont/1 can be used to retrieve the global tree control font used for the items
without any specific font.

 getItemImage(This, Item)

 -spec getItemImage(This, Item) -> integer() when This :: wxTreeCtrl(), Item :: integer().

Equivalent to getItemImage(This, Item, []).

 getItemImage/3

 -spec getItemImage(This, Item, [Option]) -> integer()
 when This :: wxTreeCtrl(), Item :: integer(), Option :: {which, wx:wx_enum()}.

Gets the specified item image.
The value of which may be:
	?wxTreeItemIcon_Normal: to get the normal item image.

	?wxTreeItemIcon_Selected: to get the selected item image (i.e. the image which is shown
when the item is currently selected).

	?wxTreeItemIcon_Expanded: to get the expanded image (this only makes sense for items
which have children - then this image is shown when the item is expanded and the normal
image is shown when it is collapsed).

	?wxTreeItemIcon_SelectedExpanded: to get the selected expanded image (which is shown
when an expanded item is currently selected).

 getItemParent(This, Item)

 -spec getItemParent(This, Item) -> integer() when This :: wxTreeCtrl(), Item :: integer().

Returns the item's parent.

 getItemText(This, Item)

 -spec getItemText(This, Item) -> unicode:charlist() when This :: wxTreeCtrl(), Item :: integer().

Returns the item label.

 getItemTextColour(This, Item)

 -spec getItemTextColour(This, Item) -> wx:wx_colour4() when This :: wxTreeCtrl(), Item :: integer().

Returns the colour of the item label.

 getLastChild(This, Item)

 -spec getLastChild(This, Item) -> integer() when This :: wxTreeCtrl(), Item :: integer().

Returns the last child of the item (or an invalid tree item if this item has no
children).
See:
	getFirstChild/2

	getNextSibling/2

	getLastChild/2

 getNextChild(This, Item, Cookie)

 -spec getNextChild(This, Item, Cookie) -> Result
 when
 Result :: {Res :: integer(), Cookie :: integer()},
 This :: wxTreeCtrl(),
 Item :: integer(),
 Cookie :: integer().

Returns the next child; call getFirstChild/2 for the first child.
For this enumeration function you must pass in a 'cookie' parameter which is opaque for
the application but is necessary for the library to make these functions reentrant (i.e.
allow more than one enumeration on one and the same object simultaneously). The cookie
passed to getFirstChild/2 and getNextChild/3 should be the same.
Returns an invalid tree item if there are no further children.
See: getFirstChild/2

 getNextSibling(This, Item)

 -spec getNextSibling(This, Item) -> integer() when This :: wxTreeCtrl(), Item :: integer().

Returns the next sibling of the specified item; call getPrevSibling/2 for the previous
sibling.
Returns an invalid tree item if there are no further siblings.
See: getPrevSibling/2

 getNextVisible(This, Item)

 -spec getNextVisible(This, Item) -> integer() when This :: wxTreeCtrl(), Item :: integer().

Returns the next visible item or an invalid item if this item is the last visible one.
Note: The item itself must be visible.

 getPrevSibling(This, Item)

 -spec getPrevSibling(This, Item) -> integer() when This :: wxTreeCtrl(), Item :: integer().

Returns the previous sibling of the specified item; call getNextSibling/2 for the next
sibling.
Returns an invalid tree item if there are no further children.
See: getNextSibling/2

 getPrevVisible(This, Item)

 -spec getPrevVisible(This, Item) -> integer() when This :: wxTreeCtrl(), Item :: integer().

Returns the previous visible item or an invalid item if this item is the first visible
one.
Note: The item itself must be visible.

 getRootItem(This)

 -spec getRootItem(This) -> integer() when This :: wxTreeCtrl().

Returns the root item for the tree control.

 getSelection(This)

 -spec getSelection(This) -> integer() when This :: wxTreeCtrl().

Returns the selection, or an invalid item if there is no selection.
This function only works with the controls without wxTR_MULTIPLE style, use getSelections/1 for the
controls which do have this style or, if a single item is wanted, use GetFocusedItem()
(not implemented in wx).

 getSelections(This)

 -spec getSelections(This) -> Result
 when Result :: {Res :: integer(), Selection :: [integer()]}, This :: wxTreeCtrl().

Fills the array of tree items passed in with the currently selected items.
This function can be called only if the control has the wxTR_MULTIPLE style.
Returns the number of selected items.

 getStateImageList(This)

 -spec getStateImageList(This) -> wxImageList:wxImageList() when This :: wxTreeCtrl().

Returns the state image list (from which application-defined state images are taken).

 hitTest(This, Point)

 -spec hitTest(This, Point) -> Result
 when
 Result :: {Res :: integer(), Flags :: integer()},
 This :: wxTreeCtrl(),
 Point :: {X :: integer(), Y :: integer()}.

Calculates which (if any) item is under the given point, returning the tree item id at
this point plus extra information flags.
flags is a bitlist of the following:
	wxTREE_HITTEST_ABOVE: Above the client area.

	wxTREE_HITTEST_BELOW: Below the client area.

	wxTREE_HITTEST_NOWHERE: In the client area but below the last item.

	wxTREE_HITTEST_ONITEMBUTTON: On the button associated with an item.

	wxTREE_HITTEST_ONITEMICON: On the bitmap associated with an item.

	wxTREE_HITTEST_ONITEMINDENT: In the indentation associated with an item.

	wxTREE_HITTEST_ONITEMLABEL: On the label (string) associated with an item.

	wxTREE_HITTEST_ONITEMRIGHT: In the area to the right of an item.

	wxTREE_HITTEST_ONITEMSTATEICON: On the state icon for a tree view item that is in a
user-defined state.

	wxTREE_HITTEST_TOLEFT: To the right of the client area.

	wxTREE_HITTEST_TORIGHT: To the left of the client area.

 insertItem(This, Parent, Previous, Text)

 -spec insertItem(This, Parent, Previous, Text) -> integer()
 when
 This :: wxTreeCtrl(),
 Parent :: integer(),
 Previous :: integer(),
 Text :: unicode:chardata().

Equivalent to insertItem(This, Parent, Previous, Text, []).

 insertItem/5

 -spec insertItem(This, Parent, Previous, Text, [Option]) -> integer()
 when
 This :: wxTreeCtrl(),
 Parent :: integer(),
 Previous :: integer(),
 Text :: unicode:chardata(),
 Option :: {image, integer()} | {selImage, integer()} | {data, term()}.

Inserts an item after a given one (previous).
The image and selImage parameters are an index within the normal image list
specifying the image to use for unselected and selected items, respectively. If image >
-1 and selImage is -1, the same image is used for both selected and unselected items.

 isBold(This, Item)

 -spec isBold(This, Item) -> boolean() when This :: wxTreeCtrl(), Item :: integer().

Returns true if the given item is in bold state.
See: setItemBold/3

 isExpanded(This, Item)

 -spec isExpanded(This, Item) -> boolean() when This :: wxTreeCtrl(), Item :: integer().

Returns true if the item is expanded (only makes sense if it has children).

 isSelected(This, Item)

 -spec isSelected(This, Item) -> boolean() when This :: wxTreeCtrl(), Item :: integer().

Returns true if the item is selected.

 isTreeItemIdOk(Item)

 -spec isTreeItemIdOk(Item) -> boolean() when Item :: integer().

Returns true if the item is valid.

 isVisible(This, Item)

 -spec isVisible(This, Item) -> boolean() when This :: wxTreeCtrl(), Item :: integer().

Returns true if the item is visible on the screen.

 itemHasChildren(This, Item)

 -spec itemHasChildren(This, Item) -> boolean() when This :: wxTreeCtrl(), Item :: integer().

Returns true if the item has children.

 new()

 -spec new() -> wxTreeCtrl().

Default Constructor.

 new(Parent)

 -spec new(Parent) -> wxTreeCtrl() when Parent :: wxWindow:wxWindow().

Equivalent to new(Parent, []).

 new/2

 -spec new(Parent, [Option]) -> wxTreeCtrl()
 when
 Parent :: wxWindow:wxWindow(),
 Option ::
 {id, integer()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()} |
 {validator, wx:wx_object()}.

Constructor, creating and showing a tree control.
See: create/3

 prependItem(This, Parent, Text)

 -spec prependItem(This, Parent, Text) -> integer()
 when This :: wxTreeCtrl(), Parent :: integer(), Text :: unicode:chardata().

Equivalent to prependItem(This, Parent, Text, []).

 prependItem/4

 -spec prependItem(This, Parent, Text, [Option]) -> integer()
 when
 This :: wxTreeCtrl(),
 Parent :: integer(),
 Text :: unicode:chardata(),
 Option :: {image, integer()} | {selectedImage, integer()} | {data, term()}.

Appends an item as the first child of parent, return a new item id.
The image and selImage parameters are an index within the normal image list
specifying the image to use for unselected and selected items, respectively. If image >
-1 and selImage is -1, the same image is used for both selected and unselected items.

 scrollTo(This, Item)

 -spec scrollTo(This, Item) -> ok when This :: wxTreeCtrl(), Item :: integer().

Scrolls the specified item into view.
Note that this method doesn't work while the window is frozen (See wxWindow:freeze/1), at least under MSW.
See: ensureVisible/2

 selectItem(This, Item)

 -spec selectItem(This, Item) -> ok when This :: wxTreeCtrl(), Item :: integer().

Equivalent to selectItem(This, Item, []).

 selectItem/3

 -spec selectItem(This, Item, [Option]) -> ok
 when This :: wxTreeCtrl(), Item :: integer(), Option :: {select, boolean()}.

Selects the given item.
In multiple selection controls, can be also used to deselect a currently selected item if
the value of select is false.
Notice that calling this method will generate wxEVT_TREE_SEL_CHANGING and wxEVT_TREE_SEL_CHANGED
events and that the change could be vetoed by the former event handler.

 setImageList(This, ImageList)

 -spec setImageList(This, ImageList) -> ok
 when This :: wxTreeCtrl(), ImageList :: wxImageList:wxImageList().

Sets the normal image list.
The image list assigned with this method will not be deleted by wxTreeCtrl's
destructor, you must delete it yourself.
See: assignImageList/2

 setIndent(This, Indent)

 -spec setIndent(This, Indent) -> ok when This :: wxTreeCtrl(), Indent :: integer().

Sets the indentation for the tree control.

 setItemBackgroundColour(This, Item, Col)

 -spec setItemBackgroundColour(This, Item, Col) -> ok
 when This :: wxTreeCtrl(), Item :: integer(), Col :: wx:wx_colour().

Sets the colour of the item's background.

 setItemBold(This, Item)

 -spec setItemBold(This, Item) -> ok when This :: wxTreeCtrl(), Item :: integer().

Equivalent to setItemBold(This, Item, []).

 setItemBold/3

 -spec setItemBold(This, Item, [Option]) -> ok
 when This :: wxTreeCtrl(), Item :: integer(), Option :: {bold, boolean()}.

Makes item appear in bold font if bold parameter is true or resets it to the normal
state.
See: isBold/2

 setItemData(This, Item, Data)

 -spec setItemData(This, Item, Data) -> ok when This :: wxTreeCtrl(), Item :: integer(), Data :: term().

Sets the item client data.
Notice that the client data previously associated with the item (if any) is not freed
by this function and so calling this function multiple times for the same item will result
in memory leaks unless you delete the old item data pointer yourself.

 setItemDropHighlight(This, Item)

 -spec setItemDropHighlight(This, Item) -> ok when This :: wxTreeCtrl(), Item :: integer().

Equivalent to setItemDropHighlight(This, Item, []).

 setItemDropHighlight/3

 -spec setItemDropHighlight(This, Item, [Option]) -> ok
 when
 This :: wxTreeCtrl(),
 Item :: integer(),
 Option :: {highlight, boolean()}.

Gives the item the visual feedback for Drag'n'Drop actions, which is useful if something
is dragged from the outside onto the tree control (as opposed to a DnD operation within
the tree control, which already is implemented internally).

 setItemFont(This, Item, Font)

 -spec setItemFont(This, Item, Font) -> ok
 when This :: wxTreeCtrl(), Item :: integer(), Font :: wxFont:wxFont().

Sets the item's font.
All items in the tree should have the same height to avoid text clipping, so the fonts
height should be the same for all of them, although font attributes may vary.
See: setItemBold/3

 setItemHasChildren(This, Item)

 -spec setItemHasChildren(This, Item) -> ok when This :: wxTreeCtrl(), Item :: integer().

Equivalent to setItemHasChildren(This, Item, []).

 setItemHasChildren/3

 -spec setItemHasChildren(This, Item, [Option]) -> ok
 when This :: wxTreeCtrl(), Item :: integer(), Option :: {has, boolean()}.

Force appearance of the button next to the item.
This is useful to allow the user to expand the items which don't have any children now,
but instead adding them only when needed, thus minimizing memory usage and loading time.

 setItemImage(This, Item, Image)

 -spec setItemImage(This, Item, Image) -> ok
 when This :: wxTreeCtrl(), Item :: integer(), Image :: integer().

Equivalent to setItemImage(This, Item, Image, []).

 setItemImage/4

 -spec setItemImage(This, Item, Image, [Option]) -> ok
 when
 This :: wxTreeCtrl(),
 Item :: integer(),
 Image :: integer(),
 Option :: {which, wx:wx_enum()}.

Sets the specified item's image.
See getItemImage/3 for the description of the which parameter.

 setItemText(This, Item, Text)

 -spec setItemText(This, Item, Text) -> ok
 when This :: wxTreeCtrl(), Item :: integer(), Text :: unicode:chardata().

Sets the item label.

 setItemTextColour(This, Item, Col)

 -spec setItemTextColour(This, Item, Col) -> ok
 when This :: wxTreeCtrl(), Item :: integer(), Col :: wx:wx_colour().

Sets the colour of the item's text.

 setStateImageList(This, ImageList)

 -spec setStateImageList(This, ImageList) -> ok
 when This :: wxTreeCtrl(), ImageList :: wxImageList:wxImageList().

Sets the state image list (from which application-defined state images are taken).
Image list assigned with this method will not be deleted by wxTreeCtrl's
destructor, you must delete it yourself.
See: assignStateImageList/2

 setWindowStyle(This, Styles)

 -spec setWindowStyle(This, Styles) -> ok when This :: wxTreeCtrl(), Styles :: integer().

Sets the mode flags associated with the display of the tree control.
The new mode takes effect immediately.
Note: Generic only; MSW ignores changes.

 sortChildren(This, Item)

 -spec sortChildren(This, Item) -> ok when This :: wxTreeCtrl(), Item :: integer().

Sorts the children of the given item using OnCompareItems() (not implemented in wx).
You should override that method to change the sort order (the default is ascending
case-sensitive alphabetical order).

 toggle(This, Item)

 -spec toggle(This, Item) -> ok when This :: wxTreeCtrl(), Item :: integer().

Toggles the given item between collapsed and expanded states.

 toggleItemSelection(This, Item)

 -spec toggleItemSelection(This, Item) -> ok when This :: wxTreeCtrl(), Item :: integer().

Toggles the given item between selected and unselected states.
For multiselection controls only.

 unselect(This)

 -spec unselect(This) -> ok when This :: wxTreeCtrl().

Removes the selection from the currently selected item (if any).

 unselectAll(This)

 -spec unselectAll(This) -> ok when This :: wxTreeCtrl().

This function either behaves the same as unselect/1 if the control doesn't have wxTR_MULTIPLE
style, or removes the selection from all items if it does have this style.

 unselectItem(This, Item)

 -spec unselectItem(This, Item) -> ok when This :: wxTreeCtrl(), Item :: integer().

Unselects the given item.
This works in multiselection controls only.

wxTreeEvent

A tree event holds information about events associated with wxTreeCtrl objects.
To process input from a tree control, use these event handler macros to direct input to
member functions that take a wxTreeEvent argument.
See: wxTreeCtrl
This class is derived, and can use functions, from:
	wxNotifyEvent

	wxCommandEvent

	wxEvent

wxWidgets docs: wxTreeEvent
Events
Use wxEvtHandler:connect/3 with wxTreeEventType to subscribe to events of this type.

 Summary

 Types

 wxTree()

 wxTreeEvent()

 wxTreeEventType()

 Functions

 getItem(This)

 Returns the item (valid for all events).

 getKeyCode(This)

 Returns the key code if the event is a key event.

 getKeyEvent(This)

 Returns the key event for EVT_TREE_KEY_DOWN events.

 getLabel(This)

 Returns the label if the event is a begin or end edit label event.

 getOldItem(This)

 Returns the old item index (valid for EVT_TREE_SEL_CHANGING and EVT_TREE_SEL_CHANGED
events).

 getPoint(This)

 Returns the position of the mouse pointer if the event is a drag or menu-context event.

 isEditCancelled(This)

 Returns true if the label edit was cancelled.

 setToolTip(This, Tooltip)

 Set the tooltip for the item (valid for EVT_TREE_ITEM_GETTOOLTIP events).

 Types

 wxTree()

 -type wxTree() ::
 #wxTree{type :: wxTreeEvent:wxTreeEventType(),
 item :: integer(),
 itemOld :: integer(),
 pointDrag :: {X :: integer(), Y :: integer()}}.

 wxTreeEvent()

 -type wxTreeEvent() :: wx:wx_object().

 wxTreeEventType()

 -type wxTreeEventType() ::
 command_tree_begin_drag | command_tree_begin_rdrag | command_tree_begin_label_edit |
 command_tree_end_label_edit | command_tree_delete_item | command_tree_get_info |
 command_tree_set_info | command_tree_item_expanded | command_tree_item_expanding |
 command_tree_item_collapsed | command_tree_item_collapsing | command_tree_sel_changed |
 command_tree_sel_changing | command_tree_key_down | command_tree_item_activated |
 command_tree_item_right_click | command_tree_item_middle_click | command_tree_end_drag |
 command_tree_state_image_click | command_tree_item_gettooltip | command_tree_item_menu |
 dirctrl_selectionchanged | dirctrl_fileactivated.

 Functions

 getItem(This)

 -spec getItem(This) -> integer() when This :: wxTreeEvent().

Returns the item (valid for all events).

 getKeyCode(This)

 -spec getKeyCode(This) -> integer() when This :: wxTreeEvent().

Returns the key code if the event is a key event.
Use getKeyEvent/1 to get the values of the modifier keys for this event (i.e. Shift or Ctrl).

 getKeyEvent(This)

 -spec getKeyEvent(This) -> wxKeyEvent:wxKeyEvent() when This :: wxTreeEvent().

Returns the key event for EVT_TREE_KEY_DOWN events.

 getLabel(This)

 -spec getLabel(This) -> unicode:charlist() when This :: wxTreeEvent().

Returns the label if the event is a begin or end edit label event.

 getOldItem(This)

 -spec getOldItem(This) -> integer() when This :: wxTreeEvent().

Returns the old item index (valid for EVT_TREE_SEL_CHANGING and EVT_TREE_SEL_CHANGED
events).

 getPoint(This)

 -spec getPoint(This) -> {X :: integer(), Y :: integer()} when This :: wxTreeEvent().

Returns the position of the mouse pointer if the event is a drag or menu-context event.
In both cases the position is in client coordinates - i.e. relative to the wxTreeCtrl
window (so that you can pass it directly to e.g. wxWindow:popupMenu/4).

 isEditCancelled(This)

 -spec isEditCancelled(This) -> boolean() when This :: wxTreeEvent().

Returns true if the label edit was cancelled.
This should be called from within an EVT_TREE_END_LABEL_EDIT handler.

 setToolTip(This, Tooltip)

 -spec setToolTip(This, Tooltip) -> ok when This :: wxTreeEvent(), Tooltip :: unicode:chardata().

Set the tooltip for the item (valid for EVT_TREE_ITEM_GETTOOLTIP events).
Windows only.

wxTreebook

This class is an extension of the wxNotebook class that allows a tree structured set
of pages to be shown in a control.
A classic example is a netscape preferences dialog that shows a tree of preference
sections on the left and select section page on the right.
To use the class simply create it and populate with pages using insertPage/5, insertSubPage/5, addPage/4, AddSubPage() (not
implemented in wx).
If your tree is no more than 1 level in depth then you could simply use addPage/4 and AddSubPage()
(not implemented in wx) to sequentially populate your tree by adding at every step a page
or a subpage to the end of the tree.
See:
	?wxBookCtrl

	wxBookCtrlEvent

	wxNotebook

	wxTreeCtrl

	wxImageList

	Overview bookctrl

	Examples

This class is derived, and can use functions, from:
	wxBookCtrlBase

	wxControl

	wxWindow

	wxEvtHandler

wxWidgets docs: wxTreebook
Events
Event types emitted from this class:
	treebook_page_changed

	treebook_page_changing

 Summary

 Types

 wxTreebook()

 Functions

 addPage(This, Page, Text)

 Equivalent to addPage(This, Page, Text, []).

 addPage/4

 Adds a new page.

 advanceSelection(This)

 Equivalent to advanceSelection(This, []).

 advanceSelection/2

 Cycles through the tabs.

 assignImageList(This, ImageList)

 Sets the image list for the page control and takes ownership of the list.

 changeSelection(This, Page)

 Changes the selection to the given page, returning the previous selection.

 create(This, Parent, Id)

 Equivalent to create(This, Parent, Id, []).

 create/4

 Creates a treebook control.

 deleteAllPages(This)

 Deletes all pages.

 destroy(This)

 Destroys the object

 expandNode(This, PageId)

 Equivalent to expandNode(This, PageId, []).

 expandNode/3

 Expands (collapses) the pageId node.

 getCurrentPage(This)

 Returns the currently selected page or NULL.

 getImageList(This)

 Returns the associated image list, may be NULL.

 getPage(This, Page)

 Returns the window at the given page position.

 getPageCount(This)

 Returns the number of pages in the control.

 getPageImage(This, NPage)

 Returns the image index for the given page.

 getPageText(This, NPage)

 Returns the string for the given page.

 getSelection(This)

 Returns the currently selected page, or wxNOT_FOUND if none was selected.

 hitTest(This, Pt)

 Returns the index of the tab at the specified position or wxNOT_FOUND if none.

 insertPage(This, PagePos, Page, Text)

 Equivalent to insertPage(This, PagePos, Page, Text, []).

 insertPage/5

 Inserts a new page just before the page indicated by pagePos.

 insertSubPage(This, PagePos, Page, Text)

 Equivalent to insertSubPage(This, PagePos, Page, Text, []).

 insertSubPage/5

 Inserts a sub page under the specified page.

 isNodeExpanded(This, PageId)

 Returns true if the page represented by pageId is expanded.

 new()

 Default constructor.

 new(Parent, Id)

 Equivalent to new(Parent, Id, []).

 new/3

 Creates an empty wxTreebook.

 setImageList(This, ImageList)

 Sets the image list to use.

 setPageImage(This, Page, Image)

 Sets the image index for the given page.

 setPageSize(This, Size)

 Sets the width and height of the pages.

 setPageText(This, Page, Text)

 Sets the text for the given page.

 setSelection(This, Page)

 Sets the selection to the given page, returning the previous selection.

 Types

 wxTreebook()

 -type wxTreebook() :: wx:wx_object().

 Functions

 addPage(This, Page, Text)

 -spec addPage(This, Page, Text) -> boolean()
 when This :: wxTreebook(), Page :: wxWindow:wxWindow(), Text :: unicode:chardata().

Equivalent to addPage(This, Page, Text, []).

 addPage/4

 -spec addPage(This, Page, Text, [Option]) -> boolean()
 when
 This :: wxTreebook(),
 Page :: wxWindow:wxWindow(),
 Text :: unicode:chardata(),
 Option :: {bSelect, boolean()} | {imageId, integer()}.

Adds a new page.
The page is placed at the topmost level after all other pages. NULL could be specified
for page to create an empty page.

 advanceSelection(This)

 -spec advanceSelection(This) -> ok when This :: wxTreebook().

Equivalent to advanceSelection(This, []).

 advanceSelection/2

 -spec advanceSelection(This, [Option]) -> ok when This :: wxTreebook(), Option :: {forward, boolean()}.

Cycles through the tabs.
The call to this function generates the page changing events.

 assignImageList(This, ImageList)

 -spec assignImageList(This, ImageList) -> ok
 when This :: wxTreebook(), ImageList :: wxImageList:wxImageList().

Sets the image list for the page control and takes ownership of the list.
See:
	wxImageList

	setImageList/2

 changeSelection(This, Page)

 -spec changeSelection(This, Page) -> integer() when This :: wxTreebook(), Page :: integer().

Changes the selection to the given page, returning the previous selection.
This function behaves as setSelection/2 but does not generate the page changing events.
See overview_events_prog for more information.

 create(This, Parent, Id)

 -spec create(This, Parent, Id) -> boolean()
 when This :: wxTreebook(), Parent :: wxWindow:wxWindow(), Id :: integer().

Equivalent to create(This, Parent, Id, []).

 create/4

 -spec create(This, Parent, Id, [Option]) -> boolean()
 when
 This :: wxTreebook(),
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Creates a treebook control.
See new/3 for the description of the parameters.

 deleteAllPages(This)

 -spec deleteAllPages(This) -> boolean() when This :: wxTreebook().

Deletes all pages.

 destroy(This)

 -spec destroy(This :: wxTreebook()) -> ok.

Destroys the object

 expandNode(This, PageId)

 -spec expandNode(This, PageId) -> boolean() when This :: wxTreebook(), PageId :: integer().

Equivalent to expandNode(This, PageId, []).

 expandNode/3

 -spec expandNode(This, PageId, [Option]) -> boolean()
 when This :: wxTreebook(), PageId :: integer(), Option :: {expand, boolean()}.

Expands (collapses) the pageId node.
Returns the previous state. May generate page changing events (if selected page is under
the collapsed branch, then its parent is autoselected).

 getCurrentPage(This)

 -spec getCurrentPage(This) -> wxWindow:wxWindow() when This :: wxTreebook().

Returns the currently selected page or NULL.

 getImageList(This)

 -spec getImageList(This) -> wxImageList:wxImageList() when This :: wxTreebook().

Returns the associated image list, may be NULL.
See:
	wxImageList

	setImageList/2

 getPage(This, Page)

 -spec getPage(This, Page) -> wxWindow:wxWindow() when This :: wxTreebook(), Page :: integer().

Returns the window at the given page position.

 getPageCount(This)

 -spec getPageCount(This) -> integer() when This :: wxTreebook().

Returns the number of pages in the control.

 getPageImage(This, NPage)

 -spec getPageImage(This, NPage) -> integer() when This :: wxTreebook(), NPage :: integer().

Returns the image index for the given page.

 getPageText(This, NPage)

 -spec getPageText(This, NPage) -> unicode:charlist() when This :: wxTreebook(), NPage :: integer().

Returns the string for the given page.

 getSelection(This)

 -spec getSelection(This) -> integer() when This :: wxTreebook().

Returns the currently selected page, or wxNOT_FOUND if none was selected.
Note: This method may return either the previously or newly selected page when called
from the EVT_TREEBOOK_PAGE_CHANGED() handler depending on the platform and so wxBookCtrlEvent:getSelection/1 should be
used instead in this case.

 hitTest(This, Pt)

 -spec hitTest(This, Pt) -> Result
 when
 Result :: {Res :: integer(), Flags :: integer()},
 This :: wxTreebook(),
 Pt :: {X :: integer(), Y :: integer()}.

Returns the index of the tab at the specified position or wxNOT_FOUND if none.
If flags parameter is non-NULL, the position of the point inside the tab is returned as well.
Return: Returns the zero-based tab index or wxNOT_FOUND if there is no tab at the
specified position.

 insertPage(This, PagePos, Page, Text)

 -spec insertPage(This, PagePos, Page, Text) -> boolean()
 when
 This :: wxTreebook(),
 PagePos :: integer(),
 Page :: wxWindow:wxWindow(),
 Text :: unicode:chardata().

Equivalent to insertPage(This, PagePos, Page, Text, []).

 insertPage/5

 -spec insertPage(This, PagePos, Page, Text, [Option]) -> boolean()
 when
 This :: wxTreebook(),
 PagePos :: integer(),
 Page :: wxWindow:wxWindow(),
 Text :: unicode:chardata(),
 Option :: {bSelect, boolean()} | {imageId, integer()}.

Inserts a new page just before the page indicated by pagePos.
The new page is placed before pagePos page and on the same level. NULL could be
specified for page to create an empty page.

 insertSubPage(This, PagePos, Page, Text)

 -spec insertSubPage(This, PagePos, Page, Text) -> boolean()
 when
 This :: wxTreebook(),
 PagePos :: integer(),
 Page :: wxWindow:wxWindow(),
 Text :: unicode:chardata().

Equivalent to insertSubPage(This, PagePos, Page, Text, []).

 insertSubPage/5

 -spec insertSubPage(This, PagePos, Page, Text, [Option]) -> boolean()
 when
 This :: wxTreebook(),
 PagePos :: integer(),
 Page :: wxWindow:wxWindow(),
 Text :: unicode:chardata(),
 Option :: {bSelect, boolean()} | {imageId, integer()}.

Inserts a sub page under the specified page.
NULL could be specified for page to create an empty page.

 isNodeExpanded(This, PageId)

 -spec isNodeExpanded(This, PageId) -> boolean() when This :: wxTreebook(), PageId :: integer().

Returns true if the page represented by pageId is expanded.

 new()

 -spec new() -> wxTreebook().

Default constructor.

 new(Parent, Id)

 -spec new(Parent, Id) -> wxTreebook() when Parent :: wxWindow:wxWindow(), Id :: integer().

Equivalent to new(Parent, Id, []).

 new/3

 -spec new(Parent, Id, [Option]) -> wxTreebook()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Creates an empty wxTreebook.

 setImageList(This, ImageList)

 -spec setImageList(This, ImageList) -> ok
 when This :: wxTreebook(), ImageList :: wxImageList:wxImageList().

Sets the image list to use.
It does not take ownership of the image list, you must delete it yourself.
See:
	wxImageList

	assignImageList/2

 setPageImage(This, Page, Image)

 -spec setPageImage(This, Page, Image) -> boolean()
 when This :: wxTreebook(), Page :: integer(), Image :: integer().

Sets the image index for the given page.
image is an index into the image list which was set with setImageList/2.

 setPageSize(This, Size)

 -spec setPageSize(This, Size) -> ok when This :: wxTreebook(), Size :: {W :: integer(), H :: integer()}.

Sets the width and height of the pages.
Note: This method is currently not implemented for wxGTK.

 setPageText(This, Page, Text)

 -spec setPageText(This, Page, Text) -> boolean()
 when This :: wxTreebook(), Page :: integer(), Text :: unicode:chardata().

Sets the text for the given page.

 setSelection(This, Page)

 -spec setSelection(This, Page) -> integer() when This :: wxTreebook(), Page :: integer().

Sets the selection to the given page, returning the previous selection.
Notice that the call to this function generates the page changing events, use the changeSelection/2
function if you don't want these events to be generated.
See: wxBookCtrlBase:getSelection/1

wxUpdateUIEvent

This class is used for pseudo-events which are called by wxWidgets to give an application
the chance to update various user interface elements.
Without update UI events, an application has to work hard to check/uncheck,
enable/disable, show/hide, and set the text for elements such as menu items and toolbar
buttons. The code for doing this has to be mixed up with the code that is invoked when an
action is invoked for a menu item or button.
With update UI events, you define an event handler to look at the state of the
application and change UI elements accordingly. wxWidgets will call your member functions
in idle time, so you don't have to worry where to call this code.
In addition to being a clearer and more declarative method, it also means you don't have
to worry whether you're updating a toolbar or menubar identifier. The same handler can
update a menu item and toolbar button, if the identifier is the same. Instead of directly
manipulating the menu or button, you call functions in the event object, such as check/2.
wxWidgets will determine whether such a call has been made, and which UI element to update.
These events will work for popup menus as well as menubars. Just before a menu is popped
up, wxMenu::UpdateUI (not implemented in wx) is called to process any UI events for the
window that owns the menu.
If you find that the overhead of UI update processing is affecting your application, you
can do one or both of the following:
	Call setMode/1 with a value of wxUPDATE_UI_PROCESS_SPECIFIED, and set the extra style
wxWS_EX_PROCESS_UI_UPDATES for every window that should receive update events. No other
windows will receive update events.

	Call setUpdateInterval/1 with a millisecond value to set the delay between updates. You may need to call wxWindow:updateWindowUI/2 at
critical points, for example when a dialog is about to be shown, in case the user sees a
slight delay before windows are updated.

Note that although events are sent in idle time, defining a wxIdleEvent handler for
a window does not affect this because the events are sent from wxWindow::OnInternalIdle
(not implemented in wx) which is always called in idle time.
wxWidgets tries to optimize update events on some platforms. On Windows and GTK+, events
for menubar items are only sent when the menu is about to be shown, and not in idle time.
See: Overview events
This class is derived, and can use functions, from:
	wxCommandEvent

	wxEvent

wxWidgets docs: wxUpdateUIEvent
Events
Use wxEvtHandler:connect/3 with wxUpdateUIEventType to subscribe to events of this type.

 Summary

 Types

 wxUpdateUI()

 wxUpdateUIEvent()

 wxUpdateUIEventType()

 Functions

 canUpdate(Window)

 Returns true if it is appropriate to update (send UI update events to) this window.

 check(This, Check)

 Check or uncheck the UI element.

 enable(This, Enable)

 Enable or disable the UI element.

 getChecked(This)

 Returns true if the UI element should be checked.

 getEnabled(This)

 Returns true if the UI element should be enabled.

 getMode()

 Static function returning a value specifying how wxWidgets will send update events: to
all windows, or only to those which specify that they will process the events.

 getSetChecked(This)

 Returns true if the application has called check/2.

 getSetEnabled(This)

 Returns true if the application has called enable/2.

 getSetShown(This)

 Returns true if the application has called show/2.

 getSetText(This)

 Returns true if the application has called setText/2.

 getShown(This)

 Returns true if the UI element should be shown.

 getText(This)

 Returns the text that should be set for the UI element.

 getUpdateInterval()

 Returns the current interval between updates in milliseconds.

 resetUpdateTime()

 Used internally to reset the last-updated time to the current time.

 setMode(Mode)

 Specify how wxWidgets will send update events: to all windows, or only to those which
specify that they will process the events.

 setText(This, Text)

 Sets the text for this UI element.

 setUpdateInterval(UpdateInterval)

 Sets the interval between updates in milliseconds.

 show(This, Show)

 Show or hide the UI element.

 Types

 wxUpdateUI()

 -type wxUpdateUI() :: #wxUpdateUI{type :: wxUpdateUIEvent:wxUpdateUIEventType()}.

 wxUpdateUIEvent()

 -type wxUpdateUIEvent() :: wx:wx_object().

 wxUpdateUIEventType()

 -type wxUpdateUIEventType() :: update_ui.

 Functions

 canUpdate(Window)

 -spec canUpdate(Window) -> boolean() when Window :: wxWindow:wxWindow().

Returns true if it is appropriate to update (send UI update events to) this window.
This function looks at the mode used (see setMode/1), the wxWS_EX_PROCESS_UI_UPDATES flag in window,
the time update events were last sent in idle time, and the update interval, to determine
whether events should be sent to this window now. By default this will always return true
because the update mode is initially wxUPDATE_UI_PROCESS_ALL and the interval is set to 0;
so update events will be sent as often as possible. You can reduce the frequency that
events are sent by changing the mode and/or setting an update interval.
See:
	resetUpdateTime/0

	setUpdateInterval/1

	setMode/1

 check(This, Check)

 -spec check(This, Check) -> ok when This :: wxUpdateUIEvent(), Check :: boolean().

Check or uncheck the UI element.

 enable(This, Enable)

 -spec enable(This, Enable) -> ok when This :: wxUpdateUIEvent(), Enable :: boolean().

Enable or disable the UI element.

 getChecked(This)

 -spec getChecked(This) -> boolean() when This :: wxUpdateUIEvent().

Returns true if the UI element should be checked.

 getEnabled(This)

 -spec getEnabled(This) -> boolean() when This :: wxUpdateUIEvent().

Returns true if the UI element should be enabled.

 getMode()

 -spec getMode() -> wx:wx_enum().

Static function returning a value specifying how wxWidgets will send update events: to
all windows, or only to those which specify that they will process the events.
See: setMode/1

 getSetChecked(This)

 -spec getSetChecked(This) -> boolean() when This :: wxUpdateUIEvent().

Returns true if the application has called check/2.
For wxWidgets internal use only.

 getSetEnabled(This)

 -spec getSetEnabled(This) -> boolean() when This :: wxUpdateUIEvent().

Returns true if the application has called enable/2.
For wxWidgets internal use only.

 getSetShown(This)

 -spec getSetShown(This) -> boolean() when This :: wxUpdateUIEvent().

Returns true if the application has called show/2.
For wxWidgets internal use only.

 getSetText(This)

 -spec getSetText(This) -> boolean() when This :: wxUpdateUIEvent().

Returns true if the application has called setText/2.
For wxWidgets internal use only.

 getShown(This)

 -spec getShown(This) -> boolean() when This :: wxUpdateUIEvent().

Returns true if the UI element should be shown.

 getText(This)

 -spec getText(This) -> unicode:charlist() when This :: wxUpdateUIEvent().

Returns the text that should be set for the UI element.

 getUpdateInterval()

 -spec getUpdateInterval() -> integer().

Returns the current interval between updates in milliseconds.
The value -1 disables updates, 0 updates as frequently as possible.
See: setUpdateInterval/1

 resetUpdateTime()

 -spec resetUpdateTime() -> ok.

Used internally to reset the last-updated time to the current time.
It is assumed that update events are normally sent in idle time, so this is called at the
end of idle processing.
See:
	canUpdate/1

	setUpdateInterval/1

	setMode/1

 setMode(Mode)

 -spec setMode(Mode) -> ok when Mode :: wx:wx_enum().

Specify how wxWidgets will send update events: to all windows, or only to those which
specify that they will process the events.

 setText(This, Text)

 -spec setText(This, Text) -> ok when This :: wxUpdateUIEvent(), Text :: unicode:chardata().

Sets the text for this UI element.

 setUpdateInterval(UpdateInterval)

 -spec setUpdateInterval(UpdateInterval) -> ok when UpdateInterval :: integer().

Sets the interval between updates in milliseconds.
Set to -1 to disable updates, or to 0 to update as frequently as possible. The default is 0.
Use this to reduce the overhead of UI update events if your application has a lot of
windows. If you set the value to -1 or greater than 0, you may also need to call wxWindow:updateWindowUI/2 at
appropriate points in your application, such as when a dialog is about to be shown.

 show(This, Show)

 -spec show(This, Show) -> ok when This :: wxUpdateUIEvent(), Show :: boolean().

Show or hide the UI element.

wxWebView

This control may be used to render web (HTML / CSS / javascript) documents.
It is designed to allow the creation of multiple backends for each port, although
currently just one is available. It differs from wxHtmlWindow in that each backend is
actually a full rendering engine, Trident on MSW and Webkit on macOS and GTK. This allows
the correct viewing of complex pages with javascript and css.
Backend Descriptions
Par:
The IE backend uses Microsoft's Trident rendering engine, specifically the version used
by the locally installed copy of Internet Explorer. As such it is only available for the
MSW port. By default recent versions of the WebBrowser
control, which this backend uses, emulate Internet Explorer 7. This can be changed with a
registry setting by wxWebView::MSWSetEmulationLevel() see this
article for more information. This backend has full support for custom schemes and
virtual file systems.
Par:
The Edge (Chromium) backend uses Microsoft's Edge WebView2.
It is available for Windows 7 and newer. The following features are currently unsupported
with this backend: virtual filesystems, custom urls, find.
This backend is not enabled by default, to build it follow these steps:
	Visual Studio 2015, or newer, is required

	Download the WebView2 SDK nuget package (Version 0.9.488
or newer)

	Extract the package (it's a zip archive) to wxWidgets/3rdparty/webview2 (you should
have 3rdparty/webview2/build/native/include/WebView2.h file after unpacking it)

	Enable wxUSE_WEBVIEW_EDGE in CMake or setup.h

	Build wxWidgets webview library

	Copy WebView2Loader.dll from the subdirectory corresponding to the architecture used
(x86 or x64) of wxWidgets/3rdparty/webview2/build/ to your applications executable

	At runtime you can use isBackendAvailable/1 to check if the backend can be used (it will be available if WebView2Loader.dll
can be loaded and Edge (Chromium) is installed)

	Make sure to add a note about using the WebView2 SDK to your application documentation,
as required by its licence

Par:
Under GTK the WebKit backend uses WebKitGTK+. The current
minimum version required is 1.3.1 which ships by default with Ubuntu Natty and Debian
Wheezy and has the package name libwebkitgtk-dev. Custom schemes and virtual files systems
are supported under this backend, however embedded resources such as images and
stylesheets are currently loaded using the data:// scheme.
Par:
Under GTK3 the WebKit2 version of WebKitGTK+ is used. In Ubuntu
the required package name is libwebkit2gtk-4.0-dev and under Fedora it is
webkitgtk4-devel. All wxWEBVIEW_WEBKIT features are supported except for clearing and
enabling / disabling the history.
Par:
The macOS WebKit backend uses Apple's WebView
class. This backend has full support for custom schemes and virtual file systems.
Asynchronous Notifications
Many of the methods in wxWebView are asynchronous, i.e. they return immediately and
perform their work in the background. This includes functions such as loadURL/2 and reload/2. To receive
notification of the progress and completion of these functions you need to handle the
events that are provided. Specifically wxEVT_WEBVIEW_LOADED notifies when the page or a
sub-frame has finished loading and wxEVT_WEBVIEW_ERROR notifies that an error has occurred.
Virtual File Systems and Custom Schemes
wxWebView supports the registering of custom scheme handlers, for example file or http.
To do this create a new class which inherits from wxWebViewHandler (not implemented in
wx), where wxWebHandler::GetFile() returns a pointer to a wxFSFile (not implemented in
wx) which represents the given url. You can then register your handler with RegisterHandler()
(not implemented in wx) it will be called for all pages and resources.
wxWebViewFSHandler (not implemented in wx) is provided to access the virtual file
system encapsulated by wxFileSystem (not implemented in wx). The wxMemoryFSHandler
(not implemented in wx) documentation gives an example of how this may be used.
wxWebViewArchiveHandler (not implemented in wx) is provided to allow the navigation of
pages inside a zip archive. It supports paths of the form: scheme:///C:/example/docs.zip;protocol=zip/main.htm
This class is derived, and can use functions, from:
	wxControl

	wxWindow

	wxEvtHandler

wxWidgets docs: wxWebView
Events
Event types emitted from this class:
	webview_navigating

	webview_navigated

	webview_loaded

	webview_error

	webview_newwindow

	webview_title_changed

 Summary

 Types

 wxWebView()

 Functions

 canCopy(This)

 Returns true if the current selection can be copied.

 canCut(This)

 Returns true if the current selection can be cut.

 canGoBack(This)

 Returns true if it is possible to navigate backward in the history of visited pages.

 canGoForward(This)

 Returns true if it is possible to navigate forward in the history of visited pages.

 canPaste(This)

 Returns true if data can be pasted.

 canRedo(This)

 Returns true if there is an action to redo.

 canSetZoomType(This, Type)

 Retrieve whether the current HTML engine supports a zoom type.

 canUndo(This)

 Returns true if there is an action to undo.

 clearHistory(This)

 Clear the history, this will also remove the visible page.

 clearSelection(This)

 Clears the current selection.

 copy(This)

 Copies the current selection.

 cut(This)

 Cuts the current selection.

 deleteSelection(This)

 Deletes the current selection.

 enableContextMenu(This)

 Equivalent to enableContextMenu(This, []).

 enableContextMenu/2

 Enable or disable the right click context menu.

 enableHistory(This)

 Equivalent to enableHistory(This, []).

 enableHistory/2

 Enable or disable the history.

 find(This, Text)

 Equivalent to find(This, Text, []).

 find/3

 Finds a phrase on the current page and if found, the control will scroll the phrase into
view and select it.

 getCurrentTitle(This)

 Get the title of the current web page, or its URL/path if title is not available.

 getCurrentURL(This)

 Get the URL of the currently displayed document.

 getPageSource(This)

 Get the HTML source code of the currently displayed document.

 getPageText(This)

 Get the text of the current page.

 getSelectedSource(This)

 Returns the currently selected source, if any.

 getSelectedText(This)

 Returns the currently selected text, if any.

 getZoom(This)

 Get the zoom level of the page.

 getZoomFactor(This)

 Get the zoom factor of the page.

 getZoomType(This)

 Get how the zoom factor is currently interpreted.

 goBack(This)

 Navigate back in the history of visited pages.

 goForward(This)

 Navigate forward in the history of visited pages.

 hasSelection(This)

 Returns true if there is a current selection.

 isBackendAvailable(Backend)

 Allows to check if a specific backend is currently available.

 isBusy(This)

 Returns whether the web control is currently busy (e.g. loading a page).

 isContextMenuEnabled(This)

 Returns true if a context menu will be shown on right click.

 isEditable(This)

 Returns whether the web control is currently editable.

 loadURL(This, Url)

 Load a web page from a URL.

 new(Parent, Id)

 Equivalent to new(Parent, Id, []).

 new/3

 Factory function to create a new wxWebView using a wxWebViewFactory (not
implemented in wx).

 paste(This)

 Pastes the current data.

 print(This)

 Opens a print dialog so that the user may print the currently displayed page.

 redo(This)

 Redos the last action.

 reload(This)

 Equivalent to reload(This, []).

 reload/2

 Reload the currently displayed URL.

 runScript(This, Javascript)

 Runs the given JavaScript code.

 selectAll(This)

 Selects the entire page.

 setEditable(This)

 Equivalent to setEditable(This, []).

 setEditable/2

 Set the editable property of the web control.

 setPage(This, Html, BaseUrl)

 Set the displayed page source to the contents of the given string.

 setZoom(This, Zoom)

 Set the zoom level of the page.

 setZoomFactor(This, Zoom)

 Set the zoom factor of the page.

 setZoomType(This, ZoomType)

 Set how to interpret the zoom factor.

 stop(This)

 Stop the current page loading process, if any.

 undo(This)

 Undos the last action.

 Types

 wxWebView()

 -type wxWebView() :: wx:wx_object().

 Functions

 canCopy(This)

 -spec canCopy(This) -> boolean() when This :: wxWebView().

Returns true if the current selection can be copied.
Note: This always returns true on the macOS WebKit backend.

 canCut(This)

 -spec canCut(This) -> boolean() when This :: wxWebView().

Returns true if the current selection can be cut.
Note: This always returns true on the macOS WebKit backend.

 canGoBack(This)

 -spec canGoBack(This) -> boolean() when This :: wxWebView().

Returns true if it is possible to navigate backward in the history of visited pages.

 canGoForward(This)

 -spec canGoForward(This) -> boolean() when This :: wxWebView().

Returns true if it is possible to navigate forward in the history of visited pages.

 canPaste(This)

 -spec canPaste(This) -> boolean() when This :: wxWebView().

Returns true if data can be pasted.
Note: This always returns true on the macOS WebKit backend.

 canRedo(This)

 -spec canRedo(This) -> boolean() when This :: wxWebView().

Returns true if there is an action to redo.

 canSetZoomType(This, Type)

 -spec canSetZoomType(This, Type) -> boolean() when This :: wxWebView(), Type :: wx:wx_enum().

Retrieve whether the current HTML engine supports a zoom type.
Return: Whether this type of zoom is supported by this HTML engine (and thus can be set
through setZoomType/2).

 canUndo(This)

 -spec canUndo(This) -> boolean() when This :: wxWebView().

Returns true if there is an action to undo.

 clearHistory(This)

 -spec clearHistory(This) -> ok when This :: wxWebView().

Clear the history, this will also remove the visible page.
Note: This is not implemented on the WebKit2GTK+ backend.

 clearSelection(This)

 -spec clearSelection(This) -> ok when This :: wxWebView().

Clears the current selection.

 copy(This)

 -spec copy(This) -> ok when This :: wxWebView().

Copies the current selection.

 cut(This)

 -spec cut(This) -> ok when This :: wxWebView().

Cuts the current selection.

 deleteSelection(This)

 -spec deleteSelection(This) -> ok when This :: wxWebView().

Deletes the current selection.
Note that for wxWEBVIEW_BACKEND_WEBKIT the selection must be editable, either through
SetEditable or the correct HTML attribute.

 enableContextMenu(This)

 -spec enableContextMenu(This) -> ok when This :: wxWebView().

Equivalent to enableContextMenu(This, []).

 enableContextMenu/2

 -spec enableContextMenu(This, [Option]) -> ok when This :: wxWebView(), Option :: {enable, boolean()}.

Enable or disable the right click context menu.
By default the standard context menu is enabled, this method can be used to disable it or
re-enable it later.
Since: 2.9.5

 enableHistory(This)

 -spec enableHistory(This) -> ok when This :: wxWebView().

Equivalent to enableHistory(This, []).

 enableHistory/2

 -spec enableHistory(This, [Option]) -> ok when This :: wxWebView(), Option :: {enable, boolean()}.

Enable or disable the history.
This will also clear the history.
Note: This is not implemented on the WebKit2GTK+ backend.

 find(This, Text)

 -spec find(This, Text) -> integer() when This :: wxWebView(), Text :: unicode:chardata().

Equivalent to find(This, Text, []).

 find/3

 -spec find(This, Text, [Option]) -> integer()
 when This :: wxWebView(), Text :: unicode:chardata(), Option :: {flags, wx:wx_enum()}.

Finds a phrase on the current page and if found, the control will scroll the phrase into
view and select it.
Return: If search phrase was not found in combination with the flags then wxNOT_FOUND
is returned. If called for the first time with search phrase then the total number of
results will be returned. Then for every time its called with the same search phrase it
will return the number of the current match.
Note: This function will restart the search if the flags wxWEBVIEW_FIND_ENTIRE_WORD or wxWEBVIEW_FIND_MATCH_CASE
are changed, since this will require a new search. To reset the search, for example
resetting the highlights call the function with an empty search phrase. This always
returns wxNOT_FOUND on the macOS WebKit backend.
Since: 2.9.5

 getCurrentTitle(This)

 -spec getCurrentTitle(This) -> unicode:charlist() when This :: wxWebView().

Get the title of the current web page, or its URL/path if title is not available.

 getCurrentURL(This)

 -spec getCurrentURL(This) -> unicode:charlist() when This :: wxWebView().

Get the URL of the currently displayed document.

 getPageSource(This)

 -spec getPageSource(This) -> unicode:charlist() when This :: wxWebView().

Get the HTML source code of the currently displayed document.
Return: The HTML source code, or an empty string if no page is currently shown.

 getPageText(This)

 -spec getPageText(This) -> unicode:charlist() when This :: wxWebView().

Get the text of the current page.

 getSelectedSource(This)

 -spec getSelectedSource(This) -> unicode:charlist() when This :: wxWebView().

Returns the currently selected source, if any.

 getSelectedText(This)

 -spec getSelectedText(This) -> unicode:charlist() when This :: wxWebView().

Returns the currently selected text, if any.

 getZoom(This)

 -spec getZoom(This) -> wx:wx_enum() when This :: wxWebView().

Get the zoom level of the page.
See getZoomFactor/1 to get more precise zoom scale value other than as provided by wxWebViewZoom.
Return: The current level of zoom.

 getZoomFactor(This)

 -spec getZoomFactor(This) -> number() when This :: wxWebView().

Get the zoom factor of the page.
Return: The current factor of zoom.
Since: 3.1.4

 getZoomType(This)

 -spec getZoomType(This) -> wx:wx_enum() when This :: wxWebView().

Get how the zoom factor is currently interpreted.
Return: How the zoom factor is currently interpreted by the HTML engine.

 goBack(This)

 -spec goBack(This) -> ok when This :: wxWebView().

Navigate back in the history of visited pages.
Only valid if canGoBack/1 returns true.

 goForward(This)

 -spec goForward(This) -> ok when This :: wxWebView().

Navigate forward in the history of visited pages.
Only valid if canGoForward/1 returns true.

 hasSelection(This)

 -spec hasSelection(This) -> boolean() when This :: wxWebView().

Returns true if there is a current selection.

 isBackendAvailable(Backend)

 -spec isBackendAvailable(Backend) -> boolean() when Backend :: unicode:chardata().

Allows to check if a specific backend is currently available.
Since: 3.1.4

 isBusy(This)

 -spec isBusy(This) -> boolean() when This :: wxWebView().

Returns whether the web control is currently busy (e.g. loading a page).

 isContextMenuEnabled(This)

 -spec isContextMenuEnabled(This) -> boolean() when This :: wxWebView().

Returns true if a context menu will be shown on right click.
Since: 2.9.5

 isEditable(This)

 -spec isEditable(This) -> boolean() when This :: wxWebView().

Returns whether the web control is currently editable.

 loadURL(This, Url)

 -spec loadURL(This, Url) -> ok when This :: wxWebView(), Url :: unicode:chardata().

Load a web page from a URL.
Note: Web engines generally report errors asynchronously, so if you wish to know whether
loading the URL was successful, register to receive navigation error events.

 new(Parent, Id)

 -spec new(Parent, Id) -> wxWebView() when Parent :: wxWindow:wxWindow(), Id :: integer().

Equivalent to new(Parent, Id, []).

 new/3

 -spec new(Parent, Id, [Option]) -> wxWebView()
 when
 Parent :: wxWindow:wxWindow(),
 Id :: integer(),
 Option ::
 {url, unicode:chardata()} |
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {backend, unicode:chardata()} |
 {style, integer()}.

Factory function to create a new wxWebView using a wxWebViewFactory (not
implemented in wx).
Return: The created wxWebView, or NULL if the requested backend is not available
Since: 2.9.5

 paste(This)

 -spec paste(This) -> ok when This :: wxWebView().

Pastes the current data.

 print(This)

 -spec print(This) -> ok when This :: wxWebView().

Opens a print dialog so that the user may print the currently displayed page.

 redo(This)

 -spec redo(This) -> ok when This :: wxWebView().

Redos the last action.

 reload(This)

 -spec reload(This) -> ok when This :: wxWebView().

Equivalent to reload(This, []).

 reload/2

 -spec reload(This, [Option]) -> ok when This :: wxWebView(), Option :: {flags, wx:wx_enum()}.

Reload the currently displayed URL.
Note: The flags are ignored by the edge backend.

 runScript(This, Javascript)

 -spec runScript(This, Javascript) -> Result
 when
 Result :: {Res :: boolean(), Output :: unicode:charlist()},
 This :: wxWebView(),
 Javascript :: unicode:chardata().

Runs the given JavaScript code.
JavaScript code is executed inside the browser control and has full access to DOM and
other browser-provided functionality. For example, this code will replace the current
page contents with the provided string.
If output is non-null, it is filled with the result of executing this code on success,
e.g. a JavaScript value such as a string, a number (integer or floating point), a boolean
or JSON representation for non-primitive types such as arrays and objects. For example:
This function has a few platform-specific limitations:
	When using WebKit v1 in wxGTK2, retrieving the result of JavaScript execution is
unsupported and this function will always return false if output is non-null to indicate
this. This functionality is fully supported when using WebKit v2 or later in wxGTK3.

	When using WebKit under macOS, code execution is limited to at most 10MiB of memory and
10 seconds of execution time.

	When using IE backend under MSW, scripts can only be executed when the current page is
fully loaded (i.e. wxEVT_WEBVIEW_LOADED event was received). A script tag inside the
page HTML is required in order to run JavaScript.

Also notice that under MSW converting JavaScript objects to JSON is not supported in the
default emulation mode. wxWebView implements its own object-to-JSON conversion as a
fallback for this case, however it is not as full-featured, well-tested or performing as
the implementation of this functionality in the browser control itself, so it is
recommended to use MSWSetEmulationLevel() to change emulation level to a more modern one
in which JSON conversion is done by the control itself.
Return: true if there is a result, false if there is an error.

 selectAll(This)

 -spec selectAll(This) -> ok when This :: wxWebView().

Selects the entire page.

 setEditable(This)

 -spec setEditable(This) -> ok when This :: wxWebView().

Equivalent to setEditable(This, []).

 setEditable/2

 -spec setEditable(This, [Option]) -> ok when This :: wxWebView(), Option :: {enable, boolean()}.

Set the editable property of the web control.
Enabling allows the user to edit the page even if the contenteditable attribute is not
set. The exact capabilities vary with the backend being used.

 setPage(This, Html, BaseUrl)

 -spec setPage(This, Html, BaseUrl) -> ok
 when This :: wxWebView(), Html :: unicode:chardata(), BaseUrl :: unicode:chardata().

Set the displayed page source to the contents of the given string.
Note: When using wxWEBVIEW_BACKEND_IE you must wait for the current page to finish
loading before calling setPage/3. The baseURL parameter is not used in this backend and the edge
backend.

 setZoom(This, Zoom)

 -spec setZoom(This, Zoom) -> ok when This :: wxWebView(), Zoom :: wx:wx_enum().

Set the zoom level of the page.
See setZoomFactor/2 for more precise scaling other than the measured steps provided by wxWebViewZoom.

 setZoomFactor(This, Zoom)

 -spec setZoomFactor(This, Zoom) -> ok when This :: wxWebView(), Zoom :: number().

Set the zoom factor of the page.
Note: zoom scale in IE will be converted into wxWebViewZoom levels for wxWebViewZoomType
of wxWEBVIEW_ZOOM_TYPE_TEXT.
Since: 3.1.4

 setZoomType(This, ZoomType)

 -spec setZoomType(This, ZoomType) -> ok when This :: wxWebView(), ZoomType :: wx:wx_enum().

Set how to interpret the zoom factor.
Note: invoke canSetZoomType/2 first, some HTML renderers may not support all zoom types.

 stop(This)

 -spec stop(This) -> ok when This :: wxWebView().

Stop the current page loading process, if any.
May trigger an error event of type wxWEBVIEW_NAV_ERR_USER_CANCELLED. TODO: make wxWEBVIEW_NAV_ERR_USER_CANCELLED
errors uniform across ports.

 undo(This)

 -spec undo(This) -> ok when This :: wxWebView().

Undos the last action.

wxWebViewEvent

A navigation event holds information about events associated with wxWebView objects.
This class is derived, and can use functions, from:
	wxNotifyEvent

	wxCommandEvent

	wxEvent

wxWidgets docs: wxWebViewEvent
Events
Use wxEvtHandler:connect/3 with wxWebViewEventType to subscribe to events of this type.

 Summary

 Types

 wxWebView()

 wxWebViewEvent()

 wxWebViewEventType()

 Functions

 getInt(This)

 Returns the integer identifier corresponding to a listbox, choice or radiobox selection
(only if the event was a selection, not a deselection), or a boolean value representing
the value of a checkbox.

 getString(This)

 Returns item string for a listbox or choice selection event.

 getTarget(This)

 Get the name of the target frame which the url of this event has been or will be loaded
into.

 getURL(This)

 Get the URL being visited.

 Types

 wxWebView()

 -type wxWebView() ::
 #wxWebView{type :: wxWebViewEvent:wxWebViewEventType(),
 string :: unicode:chardata(),
 int :: integer(),
 target :: unicode:chardata(),
 url :: unicode:chardata()}.

 wxWebViewEvent()

 -type wxWebViewEvent() :: wx:wx_object().

 wxWebViewEventType()

 -type wxWebViewEventType() ::
 webview_navigating | webview_navigated | webview_loaded | webview_error | webview_newwindow |
 webview_title_changed.

 Functions

 getInt(This)

 -spec getInt(This) -> integer() when This :: wxWebViewEvent().

Returns the integer identifier corresponding to a listbox, choice or radiobox selection
(only if the event was a selection, not a deselection), or a boolean value representing
the value of a checkbox.
For a menu item, this method returns -1 if the item is not checkable or a boolean value
(true or false) for checkable items indicating the new state of the item.

 getString(This)

 -spec getString(This) -> unicode:charlist() when This :: wxWebViewEvent().

Returns item string for a listbox or choice selection event.
If one or several items have been deselected, returns the index of the first deselected
item. If some items have been selected and others deselected at the same time, it will
return the index of the first selected item.

 getTarget(This)

 -spec getTarget(This) -> unicode:charlist() when This :: wxWebViewEvent().

Get the name of the target frame which the url of this event has been or will be loaded
into.
This may return an empty string if the frame is not available.

 getURL(This)

 -spec getURL(This) -> unicode:charlist() when This :: wxWebViewEvent().

Get the URL being visited.

wxWindow

wxWindow is the base class for all windows and represents any visible object on
screen.
All controls, top level windows and so on are windows. Sizers and device contexts are
not, however, as they don't appear on screen themselves.
Please note that all children of the window will be deleted automatically by the
destructor before the window itself is deleted which means that you don't have to worry
about deleting them manually. Please see the window deletion overview for more information.
Also note that in this, and many others, wxWidgets classes some GetXXX() methods may be
overloaded (as, for example, getSize/1 or getClientSize/1). In this case, the overloads are non-virtual because
having multiple virtual functions with the same name results in a virtual function name
hiding at the derived class level (in English, this means that the derived class has to
override all overloaded variants if it overrides any of them). To allow overriding them in
the derived class, wxWidgets uses a unique protected virtual DoGetXXX() method and all GetXXX()
ones are forwarded to it, so overriding the former changes the behaviour of the latter.
Styles
This class supports the following styles:
	wxBORDER_DEFAULT: The window class will decide the kind of border to show, if any.

	wxBORDER_SIMPLE: Displays a thin border around the window. wxSIMPLE_BORDER is the old
name for this style.

	wxBORDER_SUNKEN: Displays a sunken border. wxSUNKEN_BORDER is the old name for this
style.

	wxBORDER_RAISED: Displays a raised border. wxRAISED_BORDER is the old name for this
style.

	wxBORDER_STATIC: Displays a border suitable for a static control. wxSTATIC_BORDER is the
old name for this style. Windows only.

	wxBORDER_THEME: Displays a native border suitable for a control, on the current platform.
On Windows, this will be a themed border; on most other platforms a sunken border will be
used. For more information for themed borders on Windows, please see Themed borders on
Windows.

	wxBORDER_NONE: Displays no border, overriding the default border style for the window.
wxNO_BORDER is the old name for this style.

	wxBORDER_DOUBLE: This style is obsolete and should not be used.

	wxTRANSPARENT_WINDOW: The window is transparent, that is, it will not receive paint
events. Windows only.

	wxTAB_TRAVERSAL: This style is used by wxWidgets for the windows supporting TAB
navigation among their children, such as wxDialog and wxPanel. It should almost
never be used in the application code.

	wxWANTS_CHARS: Use this to indicate that the window wants to get all char/key events for
all keys - even for keys like TAB or ENTER which are usually used for dialog navigation
and which wouldn't be generated without this style. If you need to use this style in order
to get the arrows or etc., but would still like to have normal keyboard navigation take
place, you should call Navigate in response to the key events for Tab and Shift-Tab.

	wxNO_FULL_REPAINT_ON_RESIZE: On Windows, this style used to disable repainting the window
completely when its size is changed. Since this behaviour is now the default, the style is
now obsolete and no longer has an effect.

	wxVSCROLL: Use this style to enable a vertical scrollbar. Notice that this style cannot
be used with native controls which don't support scrollbars nor with top-level windows in
most ports.

	wxHSCROLL: Use this style to enable a horizontal scrollbar. The same limitations as for
wxVSCROLL apply to this style.

	wxALWAYS_SHOW_SB: If a window has scrollbars, disable them instead of hiding them when
they are not needed (i.e. when the size of the window is big enough to not require the
scrollbars to navigate it). This style is currently implemented for wxMSW, wxGTK and
wxUniversal and does nothing on the other platforms.

	wxCLIP_CHILDREN: Use this style to eliminate flicker caused by the background being
repainted, then children being painted over them. Windows only.

	wxFULL_REPAINT_ON_RESIZE: Use this style to force a complete redraw of the window
whenever it is resized instead of redrawing just the part of the window affected by
resizing. Note that this was the behaviour by default before 2.5.1 release and that if you
experience redraw problems with code which previously used to work you may want to try
this. Currently this style applies on GTK+ 2 and Windows only, and full repainting is
always done on other platforms.

Extra Styles
This class supports the following extra styles:
	wxWS_EX_BLOCK_EVENTS: wxCommandEvents and the objects of the derived classes are
forwarded to the parent window and so on recursively by default. Using this flag for the
given window allows blocking this propagation at this window, i.e. prevent the events from
being propagated further upwards. Dialogs have this flag on by default for the reasons
explained in the overview_events.

	wxWS_EX_TRANSIENT: Don't use this window as an implicit parent for the other windows:
this must be used with transient windows as otherwise there is the risk of creating a
dialog/frame with this window as a parent, which would lead to a crash if the parent were
destroyed before the child.

	wxWS_EX_CONTEXTHELP: Under Windows, puts a query button on the caption. When pressed,
Windows will go into a context-sensitive help mode and wxWidgets will send a wxEVT_HELP
event if the user clicked on an application window. This style cannot be used (because of
the underlying native behaviour) together with wxMAXIMIZE_BOX or wxMINIMIZE_BOX, so
these two styles are automatically turned off if this one is used.

	wxWS_EX_PROCESS_IDLE: This window should always process idle events, even if the mode set
by wxIdleEvent:setMode/1 is wxIDLE_PROCESS_SPECIFIED.

	wxWS_EX_PROCESS_UI_UPDATES: This window should always process UI update events, even if
the mode set by wxUpdateUIEvent:setMode/1 is wxUPDATE_UI_PROCESS_SPECIFIED.

See:
	Overview events

	Overview windowsizing

This class is derived, and can use functions, from:
	wxEvtHandler

wxWidgets docs: wxWindow
Events
Event types emitted from this class:
	activate

	child_focus

	context_menu

	help

	drop_files

	erase_background

	set_focus

	kill_focus

	idle

	joy_button_down

	joy_button_up

	joy_move

	joy_zmove

	key_down

	key_up

	char

	char_hook

	mouse_capture_lost

	mouse_capture_changed

	left_down

	left_up

	middle_down

	middle_up

	right_down

	right_up

	motion

	enter_window

	leave_window

	left_dclick

	middle_dclick

	right_dclick

	mousewheel

	aux1_down

	aux1_up

	aux1_dclick

	aux2_down

	aux2_up

	aux2_dclick

	paint

	scrollwin_top

	scrollwin_bottom

	scrollwin_lineup

	scrollwin_linedown

	scrollwin_pageup

	scrollwin_pagedown

	scrollwin_thumbtrack

	scrollwin_thumbrelease

	set_cursor

	size

	sys_colour_changed

 Summary

 Types

 wxWindow()

 Functions

 cacheBestSize(This, Size)

 Sets the cached best size value.

 canSetTransparent(This)

 Returns true if the system supports transparent windows and calling setTransparent/2
may succeed.

 captureMouse(This)

 Directs all mouse input to this window.

 center(This)

 Equivalent to center(This, []).

 center(This, Options)

 Equivalent to: centre/2

 centerOnParent(This)

 Equivalent to centerOnParent(This, []).

 centerOnParent(This, Options)

 Equivalent to: centreOnParent/2

 centre(This)

 Equivalent to centre(This, []).

 centre/2

 Centres the window.

 centreOnParent(This)

 Equivalent to centreOnParent(This, []).

 centreOnParent/2

 Centres the window on its parent.

 clearBackground(This)

 Clears the window by filling it with the current background colour.

 clientToScreen(This, Pt)

 Converts to screen coordinates from coordinates relative to this window.

 clientToScreen(This, X, Y)

 Converts to screen coordinates from coordinates relative to this window.

 close(This)

 Equivalent to close(This, []).

 close/2

 This function simply generates a wxCloseEvent whose handler usually tries to close
the window.

 convertDialogToPixels(This, Sz)

 This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 convertPixelsToDialog(This, Sz)

 This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 create(This, Parent, Id)

 Equivalent to create(This, Parent, Id, []).

 create/4

 Construct the actual window object after creating the C++ object.

 'Destroy'(This)

 Destroys the window safely.

 destroy(This)

 Destroys the object

 destroyChildren(This)

 Destroys all children of a window.

 disable(This)

 Disables the window.

 dragAcceptFiles(This, Accept)

 Enables or disables eligibility for drop file events (OnDropFiles).

 enable(This)

 Equivalent to enable(This, []).

 enable/2

 Enable or disable the window for user input.

 findFocus()

 Finds the window or control which currently has the keyboard focus.

 findWindow/2

 Find a child of this window, by name.

 findWindowById(Id)

 Equivalent to findWindowById(Id, []).

 findWindowById(Id, Options)

 Find the first window with the given id.

 findWindowByLabel(Label)

 Equivalent to findWindowByLabel(Label, []).

 findWindowByLabel(Label, Options)

 Find a window by its label.

 findWindowByName(Name)

 Equivalent to findWindowByName(Name, []).

 findWindowByName(Name, Options)

 Find a window by its name (as given in a window constructor or create/4 function call).

 fit(This)

 Sizes the window to fit its best size.

 fitInside(This)

 Similar to fit/1, but sizes the interior (virtual) size of a window.

 freeze(This)

 Freezes the window or, in other words, prevents any updates from taking place on screen,
the window is not redrawn at all.

 fromDIP/2

 Convert DPI-independent pixel values to the value in pixels appropriate for the current
toolkit.

 getAcceleratorTable(This)

 Gets the accelerator table for this window.

 getBackgroundColour(This)

 Returns the background colour of the window.

 getBackgroundStyle(This)

 Returns the background style of the window.

 getBestSize(This)

 This functions returns the best acceptable minimal size for the window.

 getCapture()

 Returns the currently captured window.

 getCaret(This)

 Returns the caret() associated with the window.

 getCharHeight(This)

 Returns the character height for this window.

 getCharWidth(This)

 Returns the average character width for this window.

 getChildren(This)

 Returns a const reference to the list of the window's children.

 getClientSize(This)

 This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 getContainingSizer(This)

 Returns the sizer of which this window is a member, if any, otherwise NULL.

 getContentScaleFactor(This)

 Returns the factor mapping logical pixels of this window to physical pixels.

 getCursor(This)

 Return the cursor associated with this window.

 getDPI(This)

 Return the DPI of the display used by this window.

 getDPIScaleFactor(This)

 Returns the ratio of the DPI used by this window to the standard DPI.

 getDropTarget(This)

 Returns the associated drop target, which may be NULL.

 getExtraStyle(This)

 Returns the extra style bits for the window.

 getFont(This)

 Returns the font for this window.

 getForegroundColour(This)

 Returns the foreground colour of the window.

 getGrandParent(This)

 Returns the grandparent of a window, or NULL if there isn't one.

 getHandle(This)

 Returns the platform-specific handle of the physical window.

 getHelpText(This)

 Gets the help text to be used as context-sensitive help for this window.

 getId(This)

 Returns the identifier of the window.

 getLabel(This)

 Generic way of getting a label from any window, for identification purposes.

 getMaxSize(This)

 Returns the maximum size of the window.

 getMinSize(This)

 Returns the minimum size of the window, an indication to the sizer layout mechanism that
this is the minimum required size.

 getName(This)

 Returns the window's name.

 getParent(This)

 Returns the parent of the window, or NULL if there is no parent.

 getPosition(This)

 This gets the position of the window in pixels, relative to the parent window for the
child windows or relative to the display origin for the top level windows.

 getRect(This)

 Returns the position and size of the window as a {X,Y,W,H} object.

 getScreenPosition(This)

 Returns the window position in screen coordinates, whether the window is a child window
or a top level one.

 getScreenRect(This)

 Returns the position and size of the window on the screen as a {X,Y,W,H} object.

 getScrollPos(This, Orientation)

 Returns the built-in scrollbar position.

 getScrollRange(This, Orientation)

 Returns the built-in scrollbar range.

 getScrollThumb(This, Orientation)

 Returns the built-in scrollbar thumb size.

 getSize(This)

 See the GetSize(int,int) overload for more info.

 getSizer(This)

 Returns the sizer associated with the window by a previous call to setSizer/3, or NULL.

 getTextExtent(This, String)

 Equivalent to getTextExtent(This, String, []).

 getTextExtent/3

 Gets the dimensions of the string as it would be drawn on the window with the currently
selected font.

 getThemeEnabled(This)

 Returns true if the window uses the system theme for drawing its background.

 getToolTip(This)

 Get the associated tooltip or NULL if none.

 getUpdateRegion(This)

 Gets the dimensions of the string as it would be drawn on the window with the currently
selected font.

 getVirtualSize(This)

 This gets the virtual size of the window in pixels.

 getWindowStyleFlag(This)

 Gets the window style that was passed to the constructor or create/4 method.

 getWindowVariant(This)

 Returns the value previously passed to setWindowVariant/2.

 hasCapture(This)

 Returns true if this window has the current mouse capture.

 hasScrollbar(This, Orient)

 Returns true if this window currently has a scroll bar for this orientation.

 hasTransparentBackground(This)

 Returns true if this window background is transparent (as, for example, for wxStaticText)
and should show the parent window background.

 hide(This)

 Equivalent to calling show/2(false).

 inheritAttributes(This)

 This function is (or should be, in case of custom controls) called during window creation
to intelligently set up the window visual attributes, that is the font and the foreground
and background colours.

 initDialog(This)

 Sends an wxEVT_INIT_DIALOG event, whose handler usually transfers data to the dialog
via validators.

 invalidateBestSize(This)

 Resets the cached best size value so it will be recalculated the next time it is needed.

 isDoubleBuffered(This)

 Returns true if the window contents is double-buffered by the system, i.e. if any drawing
done on the window is really done on a temporary backing surface and transferred to the
screen all at once later.

 isEnabled(This)

 Returns true if the window is enabled, i.e. if it accepts user input, false otherwise.

 isExposed/2

 This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 isExposed(This, X, Y)

 Returns true if the given point or rectangle area has been exposed since the last
repaint.

 isExposed(This, X, Y, W, H)

 This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 isFrozen(This)

 Returns true if the window is currently frozen by a call to freeze/1.

 isRetained(This)

 Returns true if the window is retained, false otherwise.

 isShown(This)

 Returns true if the window is shown, false if it has been hidden.

 isShownOnScreen(This)

 Returns true if the window is physically visible on the screen, i.e. it is shown and all
its parents up to the toplevel window are shown as well.

 isTopLevel(This)

 Returns true if the given window is a top-level one.

 layout(This)

 Lays out the children of this window using the associated sizer.

 lineDown(This)

 Same as scrollLines/2 (1).

 lineUp(This)

 Same as scrollLines/2 (-1).

 lower(This)

 Lowers the window to the bottom of the window hierarchy (Z-order).

 move(This, Pt)

 Equivalent to move(This, Pt, []).

 move/3

 Moves the window to the given position.

 move/4

 Moves the window to the given position.

 moveAfterInTabOrder(This, Win)

 Moves this window in the tab navigation order after the specified win.

 moveBeforeInTabOrder(This, Win)

 Same as moveAfterInTabOrder/2 except that it inserts this window just before win
instead of putting it right after it.

 navigate(This)

 Equivalent to navigate(This, []).

 navigate/2

 Performs a keyboard navigation action starting from this window.

 new()

 Default constructor.

 new(Parent, Id)

 Equivalent to new(Parent, Id, []).

 new/3

 Constructs a window, which can be a child of a frame, dialog or any other non-control
window.

 pageDown(This)

 Same as scrollPages/2 (1).

 pageUp(This)

 Same as scrollPages/2 (-1).

 popupMenu(This, Menu)

 Equivalent to popupMenu(This, Menu, []).

 popupMenu/3

 Pops up the given menu at the specified coordinates, relative to this window, and returns
control when the user has dismissed the menu.

 popupMenu(This, Menu, X, Y)

 This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 raise(This)

 Raises the window to the top of the window hierarchy (Z-order).

 refresh(This)

 Equivalent to refresh(This, []).

 refresh/2

 Causes this window, and all of its children recursively (except under wxGTK1 where this
is not implemented), to be repainted.

 refreshRect(This, Rect)

 Equivalent to refreshRect(This, Rect, []).

 refreshRect/3

 Redraws the contents of the given rectangle: only the area inside it will be repainted.

 releaseMouse(This)

 Releases mouse input captured with captureMouse/1.

 removeChild(This, Child)

 Removes a child window.

 reparent(This, NewParent)

 Reparents the window, i.e. the window will be removed from its current parent window
(e.g.

 screenToClient(This)

 Converts from screen to client window coordinates.

 screenToClient(This, Pt)

 Converts from screen to client window coordinates.

 scrollLines(This, Lines)

 Scrolls the window by the given number of lines down (if lines is positive) or up.

 scrollPages(This, Pages)

 Scrolls the window by the given number of pages down (if pages is positive) or up.

 scrollWindow(This, Dx, Dy)

 Equivalent to scrollWindow(This, Dx, Dy, []).

 scrollWindow/4

 Physically scrolls the pixels in the window and move child windows accordingly.

 setAcceleratorTable(This, Accel)

 Sets the accelerator table for this window.

 setAutoLayout(This, AutoLayout)

 Determines whether the layout/1 function will be called automatically when the window
is resized.

 setBackgroundColour(This, Colour)

 Sets the background colour of the window.

 setBackgroundStyle(This, Style)

 Sets the background style of the window.

 setCaret(This, Caret)

 Sets the caret() associated with the window.

 setClientSize/2

 This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 setClientSize(This, Width, Height)

 This sets the size of the window client area in pixels.

 setContainingSizer(This, Sizer)

 Used by wxSizer internally to notify the window about being managed by the given
sizer.

 setCursor(This, Cursor)

 Sets the window's cursor.

 setDoubleBuffered(This, On)

 Turn on or off double buffering of the window if the system supports it.

 setDropTarget(This, Target)

 Associates a drop target with this window.

 setExtraStyle(This, ExStyle)

 Sets the extra style bits for the window.

 setFocus(This)

 This sets the window to receive keyboard input.

 setFocusFromKbd(This)

 This function is called by wxWidgets keyboard navigation code when the user gives the
focus to this window from keyboard (e.g. using TAB key).

 setFont(This, Font)

 Sets the font for this window.

 setForegroundColour(This, Colour)

 Sets the foreground colour of the window.

 setHelpText(This, HelpText)

 Sets the help text to be used as context-sensitive help for this window.

 setId(This, Winid)

 Sets the identifier of the window.

 setLabel(This, Label)

 Sets the window's label.

 setMaxSize(This, Size)

 Sets the maximum size of the window, to indicate to the sizer layout mechanism that this
is the maximum possible size.

 setMinSize(This, Size)

 Sets the minimum size of the window, to indicate to the sizer layout mechanism that this
is the minimum required size.

 setName(This, Name)

 Sets the window's name.

 setOwnBackgroundColour(This, Colour)

 Sets the background colour of the window but prevents it from being inherited by the
children of this window.

 setOwnFont(This, Font)

 Sets the font of the window but prevents it from being inherited by the children of this
window.

 setOwnForegroundColour(This, Colour)

 Sets the foreground colour of the window but prevents it from being inherited by the
children of this window.

 setPalette(This, Pal)

 Deprecated

 setScrollbar(This, Orientation, Position, ThumbSize, Range)

 Equivalent to setScrollbar(This, Orientation, Position, ThumbSize, Range, []).

 setScrollbar/6

 Sets the scrollbar properties of a built-in scrollbar.

 setScrollPos(This, Orientation, Pos)

 Equivalent to setScrollPos(This, Orientation, Pos, []).

 setScrollPos/4

 Sets the position of one of the built-in scrollbars.

 setSize/2

 This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 setSize/3

 Sets the size of the window in pixels.

 setSize(This, X, Y, Width, Height)

 Equivalent to setSize(This, X, Y, Width, Height, []).

 setSize/6

 Sets the size of the window in pixels.

 setSizeHints(This, MinSize)

 Equivalent to setSizeHints(This, MinSize, []).

 setSizeHints/3

 Use of this function for windows which are not toplevel windows (such as wxDialog or wxFrame)
is discouraged.

 setSizeHints/4

 This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 setSizer(This, Sizer)

 Equivalent to setSizer(This, Sizer, []).

 setSizer/3

 Sets the window to have the given layout sizer.

 setSizerAndFit(This, Sizer)

 Equivalent to setSizerAndFit(This, Sizer, []).

 setSizerAndFit/3

 Associate the sizer with the window and set the window size and minimal size accordingly.

 setThemeEnabled(This, Enable)

 This function tells a window if it should use the system's "theme" code to draw the
windows' background instead of its own background drawing code.

 setToolTip/2

 This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 setTransparent(This, Alpha)

 Set the transparency of the window.

 setVirtualSize(This, Size)

 This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 setVirtualSize(This, Width, Height)

 Sets the virtual size of the window in pixels.

 setWindowStyle(This, Style)

 See setWindowStyleFlag/2 for more info.

 setWindowStyleFlag(This, Style)

 Sets the style of the window.

 setWindowVariant(This, Variant)

 Chooses a different variant of the window display to use.

 shouldInheritColours(This)

 Return true from here to allow the colours of this window to be changed by inheritAttributes/1.

 show(This)

 Equivalent to show(This, []).

 show/2

 Shows or hides the window.

 thaw(This)

 Re-enables window updating after a previous call to freeze/1.

 toDIP/2

 Convert pixel values of the current toolkit to DPI-independent pixel values.

 transferDataFromWindow(This)

 Transfers values from child controls to data areas specified by their validators.

 transferDataToWindow(This)

 Transfers values to child controls from data areas specified by their validators.

 update(This)

 Calling this method immediately repaints the invalidated area of the window and all of
its children recursively (this normally only happens when the flow of control returns to
the event loop).

 updateWindowUI(This)

 Equivalent to updateWindowUI(This, []).

 updateWindowUI/2

 This function sends one or more wxUpdateUIEvent to the window.

 validate(This)

 Validates the current values of the child controls using their validators.

 warpPointer(This, X, Y)

 Moves the pointer to the given position on the window.

 Types

 wxWindow()

 -type wxWindow() :: wx:wx_object().

 Functions

 cacheBestSize(This, Size)

 -spec cacheBestSize(This, Size) -> ok when This :: wxWindow(), Size :: {W :: integer(), H :: integer()}.

Sets the cached best size value.
See: getBestSize/1

 canSetTransparent(This)

 -spec canSetTransparent(This) -> boolean() when This :: wxWindow().

Returns true if the system supports transparent windows and calling setTransparent/2
may succeed.
If this function returns false, transparent windows are definitely not supported by the
current system.

 captureMouse(This)

 -spec captureMouse(This) -> ok when This :: wxWindow().

Directs all mouse input to this window.
Call releaseMouse/1 to release the capture.
Note that wxWidgets maintains the stack of windows having captured the mouse and when the
mouse is released the capture returns to the window which had had captured it previously
and it is only really released if there were no previous window. In particular, this means
that you must release the mouse as many times as you capture it, unless the window
receives the wxMouseCaptureLostEvent event.
Any application which captures the mouse in the beginning of some operation must handle wxMouseCaptureLostEvent
and cancel this operation when it receives the event. The event handler must not
recapture mouse.
See:
	releaseMouse/1

	wxMouseCaptureLostEvent

 center(This)

 -spec center(This) -> ok when This :: wxWindow().

Equivalent to center(This, []).

 center(This, Options)

 -spec center(This, [Option]) -> ok when This :: wxWindow(), Option :: {dir, integer()}.

Equivalent to: centre/2

 centerOnParent(This)

 -spec centerOnParent(This) -> ok when This :: wxWindow().

Equivalent to centerOnParent(This, []).

 centerOnParent(This, Options)

 -spec centerOnParent(This, [Option]) -> ok when This :: wxWindow(), Option :: {dir, integer()}.

Equivalent to: centreOnParent/2

 centre(This)

 -spec centre(This) -> ok when This :: wxWindow().

Equivalent to centre(This, []).

 centre/2

 -spec centre(This, [Option]) -> ok when This :: wxWindow(), Option :: {dir, integer()}.

Centres the window.
Remark: If the window is a top level one (i.e. doesn't have a parent), it will be centred
relative to the screen anyhow.
See: center/2

 centreOnParent(This)

 -spec centreOnParent(This) -> ok when This :: wxWindow().

Equivalent to centreOnParent(This, []).

 centreOnParent/2

 -spec centreOnParent(This, [Option]) -> ok when This :: wxWindow(), Option :: {dir, integer()}.

Centres the window on its parent.
This is a more readable synonym for centre/2.
Remark: This methods provides for a way to centre top level windows over their parents
instead of the entire screen. If there is no parent or if the window is not a top level
window, then behaviour is the same as centre/2.
See: wxTopLevelWindow:centreOnScreen/2

 clearBackground(This)

 -spec clearBackground(This) -> ok when This :: wxWindow().

Clears the window by filling it with the current background colour.
Does not cause an erase background event to be generated.
Notice that this uses wxClientDC to draw on the window and the results of doing it
while also drawing on wxPaintDC for this window are undefined. Hence this method
shouldn't be used from EVT_PAINT handlers, just use wxDC:clear/1 on the wxPaintDC you already use
there instead.

 clientToScreen(This, Pt)

 -spec clientToScreen(This, Pt) -> {X :: integer(), Y :: integer()}
 when This :: wxWindow(), Pt :: {X :: integer(), Y :: integer()}.

Converts to screen coordinates from coordinates relative to this window.

 clientToScreen(This, X, Y)

 -spec clientToScreen(This, X, Y) -> {X :: integer(), Y :: integer()}
 when This :: wxWindow(), X :: integer(), Y :: integer().

Converts to screen coordinates from coordinates relative to this window.

 close(This)

 -spec close(This) -> boolean() when This :: wxWindow().

Equivalent to close(This, []).

 close/2

 -spec close(This, [Option]) -> boolean() when This :: wxWindow(), Option :: {force, boolean()}.

This function simply generates a wxCloseEvent whose handler usually tries to close
the window.
It doesn't close the window itself, however.
Return: true if the event was handled and not vetoed, false otherwise.
Remark: Close calls the close handler for the window, providing an opportunity for the
window to choose whether to destroy the window. Usually it is only used with the top level
windows (wxFrame and wxDialog classes) as the others are not supposed to have any
special OnClose() logic. The close handler should check whether the window is being
deleted forcibly, using wxCloseEvent:canVeto/1, in which case it should destroy the window using 'Destroy'/1. Note that
calling Close does not guarantee that the window will be destroyed; but it provides a way
to simulate a manual close of a window, which may or may not be implemented by destroying
the window. The default implementation of wxDialog::OnCloseWindow does not necessarily
delete the dialog, since it will simply simulate an wxID_CANCEL event which is handled by
the appropriate button event handler and may do anything at all. To guarantee that the
window will be destroyed, call 'Destroy'/1 instead
See:
	'Destroy'/1

	wxCloseEvent

 convertDialogToPixels(This, Sz)

 -spec convertDialogToPixels(This, Sz) -> {W :: integer(), H :: integer()}
 when This :: wxWindow(), Sz :: {W :: integer(), H :: integer()}.

This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 convertPixelsToDialog(This, Sz)

 -spec convertPixelsToDialog(This, Sz) -> {W :: integer(), H :: integer()}
 when This :: wxWindow(), Sz :: {W :: integer(), H :: integer()}.

This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 create(This, Parent, Id)

 -spec create(This, Parent, Id) -> boolean()
 when This :: wxWindow(), Parent :: wxWindow(), Id :: integer().

Equivalent to create(This, Parent, Id, []).

 create/4

 -spec create(This, Parent, Id, [Option]) -> boolean()
 when
 This :: wxWindow(),
 Parent :: wxWindow(),
 Id :: integer(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Construct the actual window object after creating the C++ object.
The non-default constructor of wxWindow class does two things: it initializes the C++
object and it also creates the window object in the underlying graphical toolkit. The create/4
method can be used to perform the second part later, while the default constructor can be
used to perform the first part only.
Please note that the underlying window must be created exactly once, i.e. if you use the
default constructor, which doesn't do this, you must call create/4 before using the window and
if you use the non-default constructor, you can not call create/4, as the underlying window is
already created.
Note that it is possible and, in fact, useful, to call some methods on the object between
creating the C++ object itself and calling create/4 on it, e.g. a common pattern to avoid showing
the contents of a window before it is fully initialized is:
Also note that it is possible to create an object of a derived type and then call create/4 on it:
This is notably used by overview_xrc.
The parameters of this method have exactly the same meaning as the non-default
constructor parameters, please refer to them for their description.
Return: true if window creation succeeded or false if it failed

 'Destroy'(This)

 -spec 'Destroy'(This) -> boolean() when This :: wxWindow().

Destroys the window safely.
Use this function instead of the delete operator, since different window classes can be
destroyed differently. Frames and dialogs are not destroyed immediately when this function
is called - they are added to a list of windows to be deleted on idle time, when all the
window's events have been processed. This prevents problems with events being sent to
non-existent windows.
Return: true if the window has either been successfully deleted, or it has been added to
the list of windows pending real deletion.

 destroy(This)

 -spec destroy(This :: wxWindow()) -> ok.

Destroys the object

 destroyChildren(This)

 -spec destroyChildren(This) -> boolean() when This :: wxWindow().

Destroys all children of a window.
Called automatically by the destructor.

 disable(This)

 -spec disable(This) -> boolean() when This :: wxWindow().

Disables the window.
Same as enable/2 Enable(false).
Return: Returns true if the window has been disabled, false if it had been already
disabled before the call to this function.

 dragAcceptFiles(This, Accept)

 -spec dragAcceptFiles(This, Accept) -> ok when This :: wxWindow(), Accept :: boolean().

Enables or disables eligibility for drop file events (OnDropFiles).
Remark: Windows only until version 2.8.9, available on all platforms since 2.8.10. Cannot
be used together with setDropTarget/2 on non-Windows platforms.
See: setDropTarget/2

 enable(This)

 -spec enable(This) -> boolean() when This :: wxWindow().

Equivalent to enable(This, []).

 enable/2

 -spec enable(This, [Option]) -> boolean() when This :: wxWindow(), Option :: {enable, boolean()}.

Enable or disable the window for user input.
Note that when a parent window is disabled, all of its children are disabled as well and
they are re-enabled again when the parent is.
A window can be created initially disabled by calling this method on it before calling create/4
to create the actual underlying window, e.g.
Return: Returns true if the window has been enabled or disabled, false if nothing was
done, i.e. if the window had already been in the specified state.
See:
	isEnabled/1

	disable/1

	wxRadioBox:enable/3

 findFocus()

 -spec findFocus() -> wxWindow().

Finds the window or control which currently has the keyboard focus.
Remark: Note that this is a static function, so it can be called without needing a wxWindow
pointer.
See: setFocus/1

 findWindow/2

 -spec findWindow(This, Id) -> wxWindow() when This :: wxWindow(), Id :: integer();
 (This, Name) -> wxWindow() when This :: wxWindow(), Name :: unicode:chardata().

Find a child of this window, by name.
May return this if it matches itself.
Notice that only real children, not top level windows using this window as parent, are
searched by this function.

 findWindowById(Id)

 -spec findWindowById(Id) -> wxWindow() when Id :: integer().

Equivalent to findWindowById(Id, []).

 findWindowById(Id, Options)

 -spec findWindowById(Id, [Option]) -> wxWindow() when Id :: integer(), Option :: {parent, wxWindow()}.

Find the first window with the given id.
If parent is NULL, the search will start from all top-level frames and dialog boxes; if
non-NULL, the search will be limited to the given window hierarchy. The search is
recursive in both cases.
See: findWindow/2
Return: Window with the given id or NULL if not found.

 findWindowByLabel(Label)

 -spec findWindowByLabel(Label) -> wxWindow() when Label :: unicode:chardata().

Equivalent to findWindowByLabel(Label, []).

 findWindowByLabel(Label, Options)

 -spec findWindowByLabel(Label, [Option]) -> wxWindow()
 when Label :: unicode:chardata(), Option :: {parent, wxWindow()}.

Find a window by its label.
Depending on the type of window, the label may be a window title or panel item label. If parent
is NULL, the search will start from all top-level frames and dialog boxes; if non-NULL,
the search will be limited to the given window hierarchy.
The search is recursive in both cases and, unlike with findWindow/2, recurses into top level child
windows too.
See: findWindow/2
Return: Window with the given label or NULL if not found.

 findWindowByName(Name)

 -spec findWindowByName(Name) -> wxWindow() when Name :: unicode:chardata().

Equivalent to findWindowByName(Name, []).

 findWindowByName(Name, Options)

 -spec findWindowByName(Name, [Option]) -> wxWindow()
 when Name :: unicode:chardata(), Option :: {parent, wxWindow()}.

Find a window by its name (as given in a window constructor or create/4 function call).
If parent is NULL, the search will start from all top-level frames and dialog boxes; if
non-NULL, the search will be limited to the given window hierarchy.
The search is recursive in both cases and, unlike findWindow/2, recurses into top level child windows too.
If no window with such name is found, findWindowByLabel/2 is called, i.e. the name is interpreted as
(internal) name first but if this fails, it's internal as (user-visible) label. As this
behaviour may be confusing, it is usually better to use either the findWindow/2 overload taking the
name or findWindowByLabel/2 directly.
Return: Window with the given name or NULL if not found.

 fit(This)

 -spec fit(This) -> ok when This :: wxWindow().

Sizes the window to fit its best size.
Using this function is equivalent to setting window size to the return value of getBestSize/1.
Note that, unlike setSizerAndFit/3, this function only changes the current window size and doesn't change
its minimal size.
See: Overview windowsizing

 fitInside(This)

 -spec fitInside(This) -> ok when This :: wxWindow().

Similar to fit/1, but sizes the interior (virtual) size of a window.
Mainly useful with scrolled windows to reset scrollbars after sizing changes that do not
trigger a size event, and/or scrolled windows without an interior sizer. This function
similarly won't do anything if there are no subwindows.

 freeze(This)

 -spec freeze(This) -> ok when This :: wxWindow().

Freezes the window or, in other words, prevents any updates from taking place on screen,
the window is not redrawn at all.
thaw/1 must be called to re-enable window redrawing. Calls to these two functions may be nested
but to ensure that the window is properly repainted again, you must thaw it exactly as
many times as you froze it.
If the window has any children, they are recursively frozen too.
This method is useful for visual appearance optimization (for example, it is a good idea
to use it before doing many large text insertions in a row into a wxTextCtrl under
wxGTK) but is not implemented on all platforms nor for all controls so it is mostly just a
hint to wxWidgets and not a mandatory directive.
See:
	thaw/1

	isFrozen/1

 fromDIP/2

 -spec fromDIP(D, W) -> integer() when D :: integer(), W :: wxWindow();
 (Sz, W) -> {W :: integer(), H :: integer()}
 when Sz :: {W :: integer(), H :: integer()}, W :: wxWindow();
 (This, D) -> integer() when This :: wxWindow(), D :: integer();
 (This, Sz) -> {W :: integer(), H :: integer()}
 when This :: wxWindow(), Sz :: {W :: integer(), H :: integer()}.

Convert DPI-independent pixel values to the value in pixels appropriate for the current
toolkit.
A DPI-independent pixel is just a pixel at the standard 96 DPI resolution. To keep the
same physical size at higher resolution, the physical pixel value must be scaled by getDPIScaleFactor/1 but
this scaling may be already done by the underlying toolkit (GTK+, Cocoa, ...)
automatically. This method performs the conversion only if it is not already done by the
lower level toolkit and so by using it with pixel values you can guarantee that the
physical size of the corresponding elements will remain the same in all resolutions under
all platforms. For example, instead of creating a bitmap of the hard coded size of 32
pixels you should use to avoid using tiny bitmaps on high DPI screens.
Notice that this function is only needed when using hard coded pixel values. It is not
necessary if the sizes are already based on the DPI-independent units such as dialog units
or if you are relying on the controls automatic best size determination and using sizers
to lay out them.
Also note that if either component of sz has the special value of -1, it is returned
unchanged independently of the current DPI, to preserve the special value of -1 in
wxWidgets API (it is often used to mean "unspecified").
Since: 3.1.0

 getAcceleratorTable(This)

 -spec getAcceleratorTable(This) -> wxAcceleratorTable:wxAcceleratorTable() when This :: wxWindow().

Gets the accelerator table for this window.
See wxAcceleratorTable.

 getBackgroundColour(This)

 -spec getBackgroundColour(This) -> wx:wx_colour4() when This :: wxWindow().

Returns the background colour of the window.
See:
	setBackgroundColour/2

	setForegroundColour/2

	getForegroundColour/1

 getBackgroundStyle(This)

 -spec getBackgroundStyle(This) -> wx:wx_enum() when This :: wxWindow().

Returns the background style of the window.
See:
	setBackgroundColour/2

	getForegroundColour/1

	setBackgroundStyle/2

	setTransparent/2

 getBestSize(This)

 -spec getBestSize(This) -> {W :: integer(), H :: integer()} when This :: wxWindow().

This functions returns the best acceptable minimal size for the window.
For example, for a static control, it will be the minimal size such that the control
label is not truncated. For windows containing subwindows (typically wxPanel), the size
returned by this function will be the same as the size the window would have had after
calling fit/1.
Override virtual DoGetBestSize() (not implemented in wx) or, better, because it's
usually more convenient, DoGetBestClientSize() (not implemented in wx) when writing your
own custom window class to change the value returned by this public non-virtual method.
Notice that the best size respects the minimal and maximal size explicitly set for the
window, if any. So even if some window believes that it needs 200 pixels horizontally,
calling setMaxSize/2 with a width of 100 would ensure that getBestSize/1 returns the width of at most 100 pixels.
See:
	cacheBestSize/2

	Overview windowsizing

 getCapture()

 -spec getCapture() -> wxWindow().

Returns the currently captured window.
See:
	hasCapture/1

	captureMouse/1

	releaseMouse/1

	wxMouseCaptureLostEvent

	wxMouseCaptureChangedEvent

 getCaret(This)

 -spec getCaret(This) -> wxCaret:wxCaret() when This :: wxWindow().

Returns the caret() associated with the window.

 getCharHeight(This)

 -spec getCharHeight(This) -> integer() when This :: wxWindow().

Returns the character height for this window.

 getCharWidth(This)

 -spec getCharWidth(This) -> integer() when This :: wxWindow().

Returns the average character width for this window.

 getChildren(This)

 -spec getChildren(This) -> [wxWindow()] when This :: wxWindow().

Returns a const reference to the list of the window's children.
wxWindowList is a type-safe wxList-like class whose elements are of type wxWindow*.

 getClientSize(This)

 -spec getClientSize(This) -> {W :: integer(), H :: integer()} when This :: wxWindow().

This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 getContainingSizer(This)

 -spec getContainingSizer(This) -> wxSizer:wxSizer() when This :: wxWindow().

Returns the sizer of which this window is a member, if any, otherwise NULL.

 getContentScaleFactor(This)

 -spec getContentScaleFactor(This) -> number() when This :: wxWindow().

Returns the factor mapping logical pixels of this window to physical pixels.
This function can be used to portably determine the number of physical pixels in a window
of the given size, by multiplying the window size by the value returned from it. I.e. it
returns the factor converting window coordinates to "content view" coordinates, where the
view can be just a simple window displaying a wxBitmap or wxGLCanvas or any other
kind of window rendering arbitrary "content" on screen.
For the platforms not doing any pixel mapping, i.e. where logical and physical pixels are
one and the same, this function always returns 1.0 and so using it is, in principle,
unnecessary and could be avoided by using preprocessor check for wxHAVE_DPI_INDEPENDENT_PIXELS
not being defined, however using this function unconditionally under all platforms is
usually simpler and so preferable.
Note: Current behaviour of this function is compatible with wxWidgets 3.0, but different
from its behaviour in versions 3.1.0 to 3.1.3, where it returned the same value as getDPIScaleFactor/1.
Please use the other function if you need to use a scaling factor greater than 1.0 even
for the platforms without wxHAVE_DPI_INDEPENDENT_PIXELS, such as wxMSW.
Since: 2.9.5

 getCursor(This)

 -spec getCursor(This) -> wxCursor:wxCursor() when This :: wxWindow().

Return the cursor associated with this window.
See: setCursor/2

 getDPI(This)

 -spec getDPI(This) -> {W :: integer(), H :: integer()} when This :: wxWindow().

Return the DPI of the display used by this window.
The returned value can be different for different windows on systems with support for
per-monitor DPI values, such as Microsoft Windows 10.
If the DPI is not available, returns {Width,Height} object.
See: wxDisplay:getPPI/1
Since: 3.1.3

 getDPIScaleFactor(This)

 -spec getDPIScaleFactor(This) -> number() when This :: wxWindow().

Returns the ratio of the DPI used by this window to the standard DPI.
The returned value is 1 for standard DPI screens or 2 for "200% scaling" and, unlike for getContentScaleFactor/1,
is the same under all platforms.
This factor should be used to increase the size of icons and similar windows whose best
size is not based on text metrics when using DPI scaling.
E.g. the program may load a 32px bitmap if the content scale factor is 1.0 or 64px
version of the same bitmap if it is 2.0 or bigger.
Notice that this method should not be used for window sizes expressed in pixels, as
they are already scaled by this factor by the underlying toolkit under some platforms. Use fromDIP/2
for anything window-related instead.
Since: 3.1.4

 getDropTarget(This)

 -spec getDropTarget(This) -> wx:wx_object() when This :: wxWindow().

Returns the associated drop target, which may be NULL.
See:
	setDropTarget/2

	Overview dnd

 getExtraStyle(This)

 -spec getExtraStyle(This) -> integer() when This :: wxWindow().

Returns the extra style bits for the window.

 getFont(This)

 -spec getFont(This) -> wxFont:wxFont() when This :: wxWindow().

Returns the font for this window.
See: setFont/2

 getForegroundColour(This)

 -spec getForegroundColour(This) -> wx:wx_colour4() when This :: wxWindow().

Returns the foreground colour of the window.
Remark: The meaning of foreground colour varies according to the window class; it may be
the text colour or other colour, or it may not be used at all.
See:
	setForegroundColour/2

	setBackgroundColour/2

	getBackgroundColour/1

 getGrandParent(This)

 -spec getGrandParent(This) -> wxWindow() when This :: wxWindow().

Returns the grandparent of a window, or NULL if there isn't one.

 getHandle(This)

 -spec getHandle(This) -> integer() when This :: wxWindow().

Returns the platform-specific handle of the physical window.
Cast it to an appropriate handle, such as HWND for Windows, Widget for Motif or GtkWidget
for GTK.

 getHelpText(This)

 -spec getHelpText(This) -> unicode:charlist() when This :: wxWindow().

Gets the help text to be used as context-sensitive help for this window.
Note that the text is actually stored by the current wxHelpProvider (not implemented in
wx) implementation, and not in the window object itself.
See: setHelpText/2

 getId(This)

 -spec getId(This) -> integer() when This :: wxWindow().

Returns the identifier of the window.
Remark: Each window has an integer identifier. If the application has not provided one
(or the default wxID_ANY) a unique identifier with a negative value will be generated.
See:
	setId/2

	Overview windowids

 getLabel(This)

 -spec getLabel(This) -> unicode:charlist() when This :: wxWindow().

Generic way of getting a label from any window, for identification purposes.
Remark: The interpretation of this function differs from class to class. For frames and
dialogs, the value returned is the title. For buttons or static text controls, it is the
button text. This function can be useful for meta-programs (such as testing tools or
special-needs access programs) which need to identify windows by name.

 getMaxSize(This)

 -spec getMaxSize(This) -> {W :: integer(), H :: integer()} when This :: wxWindow().

Returns the maximum size of the window.
This is an indication to the sizer layout mechanism that this is the maximum possible
size as well as the upper bound on window's size settable using setSize/6.
See: Overview windowsizing

 getMinSize(This)

 -spec getMinSize(This) -> {W :: integer(), H :: integer()} when This :: wxWindow().

Returns the minimum size of the window, an indication to the sizer layout mechanism that
this is the minimum required size.
This method normally just returns the value set by setMinSize/2, but it can be overridden to do the
calculation on demand.
See: Overview windowsizing

 getName(This)

 -spec getName(This) -> unicode:charlist() when This :: wxWindow().

Returns the window's name.
Remark: This name is not guaranteed to be unique; it is up to the programmer to supply an
appropriate name in the window constructor or via setName/2.
See: setName/2

 getParent(This)

 -spec getParent(This) -> wxWindow() when This :: wxWindow().

Returns the parent of the window, or NULL if there is no parent.

 getPosition(This)

 -spec getPosition(This) -> {X :: integer(), Y :: integer()} when This :: wxWindow().

This gets the position of the window in pixels, relative to the parent window for the
child windows or relative to the display origin for the top level windows.
See: getScreenPosition/1

 getRect(This)

 -spec getRect(This) -> {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}
 when This :: wxWindow().

Returns the position and size of the window as a {X,Y,W,H} object.
See: getScreenRect/1

 getScreenPosition(This)

 -spec getScreenPosition(This) -> {X :: integer(), Y :: integer()} when This :: wxWindow().

Returns the window position in screen coordinates, whether the window is a child window
or a top level one.
See: getPosition/1

 getScreenRect(This)

 -spec getScreenRect(This) -> {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}
 when This :: wxWindow().

Returns the position and size of the window on the screen as a {X,Y,W,H} object.
See: getRect/1

 getScrollPos(This, Orientation)

 -spec getScrollPos(This, Orientation) -> integer() when This :: wxWindow(), Orientation :: integer().

Returns the built-in scrollbar position.
See: setScrollbar/6

 getScrollRange(This, Orientation)

 -spec getScrollRange(This, Orientation) -> integer() when This :: wxWindow(), Orientation :: integer().

Returns the built-in scrollbar range.
See: setScrollbar/6

 getScrollThumb(This, Orientation)

 -spec getScrollThumb(This, Orientation) -> integer() when This :: wxWindow(), Orientation :: integer().

Returns the built-in scrollbar thumb size.
See: setScrollbar/6

 getSize(This)

 -spec getSize(This) -> {W :: integer(), H :: integer()} when This :: wxWindow().

See the GetSize(int,int) overload for more info.

 getSizer(This)

 -spec getSizer(This) -> wxSizer:wxSizer() when This :: wxWindow().

Returns the sizer associated with the window by a previous call to setSizer/3, or NULL.

 getTextExtent(This, String)

 -spec getTextExtent(This, String) -> Result
 when
 Result ::
 {W :: integer(),
 H :: integer(),
 Descent :: integer(),
 ExternalLeading :: integer()},
 This :: wxWindow(),
 String :: unicode:chardata().

Equivalent to getTextExtent(This, String, []).

 getTextExtent/3

 -spec getTextExtent(This, String, [Option]) -> Result
 when
 Result ::
 {W :: integer(),
 H :: integer(),
 Descent :: integer(),
 ExternalLeading :: integer()},
 This :: wxWindow(),
 String :: unicode:chardata(),
 Option :: {theFont, wxFont:wxFont()}.

Gets the dimensions of the string as it would be drawn on the window with the currently
selected font.
The text extent is returned in the w and h pointers.

 getThemeEnabled(This)

 -spec getThemeEnabled(This) -> boolean() when This :: wxWindow().

Returns true if the window uses the system theme for drawing its background.
See: setThemeEnabled/2

 getToolTip(This)

 -spec getToolTip(This) -> wxToolTip:wxToolTip() when This :: wxWindow().

Get the associated tooltip or NULL if none.

 getUpdateRegion(This)

 -spec getUpdateRegion(This) -> wxRegion:wxRegion() when This :: wxWindow().

Gets the dimensions of the string as it would be drawn on the window with the currently
selected font.
Returns the region specifying which parts of the window have been damaged. Should only be
called within an wxPaintEvent handler.
See: wxRegion

 getVirtualSize(This)

 -spec getVirtualSize(This) -> {W :: integer(), H :: integer()} when This :: wxWindow().

This gets the virtual size of the window in pixels.
By default it returns the client size of the window, but after a call to setVirtualSize/3 it will return
the size set with that method.
See: Overview windowsizing

 getWindowStyleFlag(This)

 -spec getWindowStyleFlag(This) -> integer() when This :: wxWindow().

Gets the window style that was passed to the constructor or create/4 method.
GetWindowStyle() (not implemented in wx) is another name for the same function.

 getWindowVariant(This)

 -spec getWindowVariant(This) -> wx:wx_enum() when This :: wxWindow().

Returns the value previously passed to setWindowVariant/2.

 hasCapture(This)

 -spec hasCapture(This) -> boolean() when This :: wxWindow().

Returns true if this window has the current mouse capture.
See:
	captureMouse/1

	releaseMouse/1

	wxMouseCaptureLostEvent

	wxMouseCaptureChangedEvent

 hasScrollbar(This, Orient)

 -spec hasScrollbar(This, Orient) -> boolean() when This :: wxWindow(), Orient :: integer().

Returns true if this window currently has a scroll bar for this orientation.
This method may return false even when CanScroll() (not implemented in wx) for the same
orientation returns true, but if CanScroll() (not implemented in wx) returns false, i.e.
scrolling in this direction is not enabled at all, hasScrollbar/2 always returns false as well.

 hasTransparentBackground(This)

 -spec hasTransparentBackground(This) -> boolean() when This :: wxWindow().

Returns true if this window background is transparent (as, for example, for wxStaticText)
and should show the parent window background.
This method is mostly used internally by the library itself and you normally shouldn't
have to call it. You may, however, have to override it in your wxWindow-derived class to
ensure that background is painted correctly.

 hide(This)

 -spec hide(This) -> boolean() when This :: wxWindow().

Equivalent to calling show/2(false).

 inheritAttributes(This)

 -spec inheritAttributes(This) -> ok when This :: wxWindow().

This function is (or should be, in case of custom controls) called during window creation
to intelligently set up the window visual attributes, that is the font and the foreground
and background colours.
By "intelligently" the following is meant: by default, all windows use their own GetClassDefaultAttributes()
(not implemented in wx) default attributes. However if some of the parents attributes are
explicitly (that is, using setFont/2 and not setOwnFont/2) changed and if the corresponding attribute hadn't
been explicitly set for this window itself, then this window takes the same value as used
by the parent. In addition, if the window overrides shouldInheritColours/1 to return false, the colours will not
be changed no matter what and only the font might.
This rather complicated logic is necessary in order to accommodate the different usage
scenarios. The most common one is when all default attributes are used and in this case,
nothing should be inherited as in modern GUIs different controls use different fonts (and
colours) than their siblings so they can't inherit the same value from the parent. However
it was also deemed desirable to allow to simply change the attributes of all children at
once by just changing the font or colour of their common parent, hence in this case we do
inherit the parents attributes.

 initDialog(This)

 -spec initDialog(This) -> ok when This :: wxWindow().

Sends an wxEVT_INIT_DIALOG event, whose handler usually transfers data to the dialog
via validators.

 invalidateBestSize(This)

 -spec invalidateBestSize(This) -> ok when This :: wxWindow().

Resets the cached best size value so it will be recalculated the next time it is needed.
See: cacheBestSize/2

 isDoubleBuffered(This)

 -spec isDoubleBuffered(This) -> boolean() when This :: wxWindow().

Returns true if the window contents is double-buffered by the system, i.e. if any drawing
done on the window is really done on a temporary backing surface and transferred to the
screen all at once later.
See: wxBufferedDC

 isEnabled(This)

 -spec isEnabled(This) -> boolean() when This :: wxWindow().

Returns true if the window is enabled, i.e. if it accepts user input, false otherwise.
Notice that this method can return false even if this window itself hadn't been
explicitly disabled when one of its parent windows is disabled. To get the intrinsic
status of this window, use IsThisEnabled() (not implemented in wx)
See: enable/2

 isExposed/2

 -spec isExposed(This, Pt) -> boolean() when This :: wxWindow(), Pt :: {X :: integer(), Y :: integer()};
 (This, Rect) -> boolean()
 when
 This :: wxWindow(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}.

This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 isExposed(This, X, Y)

 -spec isExposed(This, X, Y) -> boolean() when This :: wxWindow(), X :: integer(), Y :: integer().

Returns true if the given point or rectangle area has been exposed since the last
repaint.
Call this in an paint event handler to optimize redrawing by only redrawing those areas,
which have been exposed.

 isExposed(This, X, Y, W, H)

 -spec isExposed(This, X, Y, W, H) -> boolean()
 when
 This :: wxWindow(),
 X :: integer(),
 Y :: integer(),
 W :: integer(),
 H :: integer().

This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 isFrozen(This)

 -spec isFrozen(This) -> boolean() when This :: wxWindow().

Returns true if the window is currently frozen by a call to freeze/1.
See:
	freeze/1

	thaw/1

 isRetained(This)

 -spec isRetained(This) -> boolean() when This :: wxWindow().

Returns true if the window is retained, false otherwise.
Remark: Retained windows are only available on X platforms.

 isShown(This)

 -spec isShown(This) -> boolean() when This :: wxWindow().

Returns true if the window is shown, false if it has been hidden.
See: isShownOnScreen/1

 isShownOnScreen(This)

 -spec isShownOnScreen(This) -> boolean() when This :: wxWindow().

Returns true if the window is physically visible on the screen, i.e. it is shown and all
its parents up to the toplevel window are shown as well.
See: isShown/1

 isTopLevel(This)

 -spec isTopLevel(This) -> boolean() when This :: wxWindow().

Returns true if the given window is a top-level one.
Currently all frames and dialogs are considered to be top-level windows (even if they
have a parent window).

 layout(This)

 -spec layout(This) -> boolean() when This :: wxWindow().

Lays out the children of this window using the associated sizer.
If a sizer hadn't been associated with this window (see setSizer/3), this function doesn't do
anything, unless this is a top level window (see layout/1).
Note that this method is called automatically when the window size changes if it has the
associated sizer (or if setAutoLayout/2 with true argument had been explicitly called), ensuring that it
is always laid out correctly.
See: Overview windowsizing
Return: Always returns true, the return value is not useful.

 lineDown(This)

 -spec lineDown(This) -> boolean() when This :: wxWindow().

Same as scrollLines/2 (1).

 lineUp(This)

 -spec lineUp(This) -> boolean() when This :: wxWindow().

Same as scrollLines/2 (-1).

 lower(This)

 -spec lower(This) -> ok when This :: wxWindow().

Lowers the window to the bottom of the window hierarchy (Z-order).
Remark: This function only works for wxTopLevelWindow-derived classes.
See: raise/1

 move(This, Pt)

 -spec move(This, Pt) -> ok when This :: wxWindow(), Pt :: {X :: integer(), Y :: integer()}.

Equivalent to move(This, Pt, []).

 move/3

 -spec move(This, X, Y) -> ok when This :: wxWindow(), X :: integer(), Y :: integer();
 (This, Pt, [Option]) -> ok
 when
 This :: wxWindow(),
 Pt :: {X :: integer(), Y :: integer()},
 Option :: {flags, integer()}.

Moves the window to the given position.
Remark: Implementations of setSize/6 can also implicitly implement the move/4 function, which is defined
in the base wxWindow class as the call:
See: setSize/6

 move/4

 -spec move(This, X, Y, [Option]) -> ok
 when This :: wxWindow(), X :: integer(), Y :: integer(), Option :: {flags, integer()}.

Moves the window to the given position.
Remark: Implementations of SetSize can also implicitly implement the move/4 function, which is
defined in the base wxWindow class as the call:
See: setSize/6

 moveAfterInTabOrder(This, Win)

 -spec moveAfterInTabOrder(This, Win) -> ok when This :: wxWindow(), Win :: wxWindow().

Moves this window in the tab navigation order after the specified win.
This means that when the user presses TAB key on that other window, the focus switches
to this window.
Default tab order is the same as creation order, this function and moveBeforeInTabOrder/2 allow to change it
after creating all the windows.

 moveBeforeInTabOrder(This, Win)

 -spec moveBeforeInTabOrder(This, Win) -> ok when This :: wxWindow(), Win :: wxWindow().

Same as moveAfterInTabOrder/2 except that it inserts this window just before win
instead of putting it right after it.

 navigate(This)

 -spec navigate(This) -> boolean() when This :: wxWindow().

Equivalent to navigate(This, []).

 navigate/2

 -spec navigate(This, [Option]) -> boolean() when This :: wxWindow(), Option :: {flags, integer()}.

Performs a keyboard navigation action starting from this window.
This method is equivalent to calling NavigateIn() (not implemented in wx) method on the
parent window.
Return: Returns true if the focus was moved to another window or false if nothing changed.
Remark: You may wish to call this from a text control custom keypress handler to do the
default navigation behaviour for the tab key, since the standard default behaviour for a
multiline text control with the wxTE_PROCESS_TAB style is to insert a tab and not navigate
to the next control. See also wxNavigationKeyEvent and HandleAsNavigationKey.

 new()

 -spec new() -> wxWindow().

Default constructor.

 new(Parent, Id)

 -spec new(Parent, Id) -> wxWindow() when Parent :: wxWindow(), Id :: integer().

Equivalent to new(Parent, Id, []).

 new/3

 -spec new(Parent, Id, [Option]) -> wxWindow()
 when
 Parent :: wxWindow(),
 Id :: integer(),
 Option ::
 {pos, {X :: integer(), Y :: integer()}} |
 {size, {W :: integer(), H :: integer()}} |
 {style, integer()}.

Constructs a window, which can be a child of a frame, dialog or any other non-control
window.

 pageDown(This)

 -spec pageDown(This) -> boolean() when This :: wxWindow().

Same as scrollPages/2 (1).

 pageUp(This)

 -spec pageUp(This) -> boolean() when This :: wxWindow().

Same as scrollPages/2 (-1).

 popupMenu(This, Menu)

 -spec popupMenu(This, Menu) -> boolean() when This :: wxWindow(), Menu :: wxMenu:wxMenu().

Equivalent to popupMenu(This, Menu, []).

 popupMenu/3

 -spec popupMenu(This, Menu, [Option]) -> boolean()
 when
 This :: wxWindow(),
 Menu :: wxMenu:wxMenu(),
 Option :: {pos, {X :: integer(), Y :: integer()}}.

Pops up the given menu at the specified coordinates, relative to this window, and returns
control when the user has dismissed the menu.
If a menu item is selected, the corresponding menu event is generated and will be
processed as usual. If coordinates are not specified, the current mouse cursor position is used.
menu is the menu to pop up.
The position where the menu will appear can be specified either as a {X,Y} pos or by
two integers (x and y).
Note that this function switches focus to this window before showing the menu.
Remark: Just before the menu is popped up, wxMenu::UpdateUI (not implemented in wx) is
called to ensure that the menu items are in the correct state. The menu does not get
deleted by the window. It is recommended to not explicitly specify coordinates when
calling PopupMenu in response to mouse click, because some of the ports (namely, wxGTK)
can do a better job of positioning the menu in that case.
See: wxMenu

 popupMenu(This, Menu, X, Y)

 -spec popupMenu(This, Menu, X, Y) -> boolean()
 when This :: wxWindow(), Menu :: wxMenu:wxMenu(), X :: integer(), Y :: integer().

This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 raise(This)

 -spec raise(This) -> ok when This :: wxWindow().

Raises the window to the top of the window hierarchy (Z-order).
Notice that this function only requests the window manager to raise this window to the
top of Z-order. Depending on its configuration, the window manager may raise the window,
not do it at all or indicate that a window requested to be raised in some other way, e.g.
by flashing its icon if it is minimized.
Remark: This function only works for wxTopLevelWindow-derived classes.
See: lower/1

 refresh(This)

 -spec refresh(This) -> ok when This :: wxWindow().

Equivalent to refresh(This, []).

 refresh/2

 -spec refresh(This, [Option]) -> ok
 when
 This :: wxWindow(),
 Option ::
 {eraseBackground, boolean()} |
 {rect, {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}}.

Causes this window, and all of its children recursively (except under wxGTK1 where this
is not implemented), to be repainted.
Note that repainting doesn't happen immediately but only during the next event loop
iteration, if you need to update the window immediately you should use update/1 instead.
See: refreshRect/3

 refreshRect(This, Rect)

 -spec refreshRect(This, Rect) -> ok
 when
 This :: wxWindow(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}.

Equivalent to refreshRect(This, Rect, []).

 refreshRect/3

 -spec refreshRect(This, Rect, [Option]) -> ok
 when
 This :: wxWindow(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()},
 Option :: {eraseBackground, boolean()}.

Redraws the contents of the given rectangle: only the area inside it will be repainted.
This is the same as refresh/2 but has a nicer syntax as it can be called with a temporary
{X,Y,W,H} object as argument like this RefreshRect(wxRect(x, y, w, h)).

 releaseMouse(This)

 -spec releaseMouse(This) -> ok when This :: wxWindow().

Releases mouse input captured with captureMouse/1.
See:
	captureMouse/1

	hasCapture/1

	releaseMouse/1

	wxMouseCaptureLostEvent

	wxMouseCaptureChangedEvent

 removeChild(This, Child)

 -spec removeChild(This, Child) -> ok when This :: wxWindow(), Child :: wxWindow().

Removes a child window.
This is called automatically by window deletion functions so should not be required by
the application programmer. Notice that this function is mostly internal to wxWidgets and
shouldn't be called by the user code.

 reparent(This, NewParent)

 -spec reparent(This, NewParent) -> boolean() when This :: wxWindow(), NewParent :: wxWindow().

Reparents the window, i.e. the window will be removed from its current parent window
(e.g.
a non-standard toolbar in a wxFrame) and then re-inserted into another.
Notice that currently you need to explicitly call wxBookCtrlBase:removePage/2 before reparenting a notebook page.

 screenToClient(This)

 -spec screenToClient(This) -> {X :: integer(), Y :: integer()} when This :: wxWindow().

Converts from screen to client window coordinates.

 screenToClient(This, Pt)

 -spec screenToClient(This, Pt) -> {X :: integer(), Y :: integer()}
 when This :: wxWindow(), Pt :: {X :: integer(), Y :: integer()}.

Converts from screen to client window coordinates.

 scrollLines(This, Lines)

 -spec scrollLines(This, Lines) -> boolean() when This :: wxWindow(), Lines :: integer().

Scrolls the window by the given number of lines down (if lines is positive) or up.
Return: Returns true if the window was scrolled, false if it was already on top/bottom
and nothing was done.
Remark: This function is currently only implemented under MSW and wxTextCtrl under
wxGTK (it also works for wxScrolled (not implemented in wx) classes under all platforms).
See: scrollPages/2

 scrollPages(This, Pages)

 -spec scrollPages(This, Pages) -> boolean() when This :: wxWindow(), Pages :: integer().

Scrolls the window by the given number of pages down (if pages is positive) or up.
Return: Returns true if the window was scrolled, false if it was already on top/bottom
and nothing was done.
Remark: This function is currently only implemented under MSW and wxGTK.
See: scrollLines/2

 scrollWindow(This, Dx, Dy)

 -spec scrollWindow(This, Dx, Dy) -> ok when This :: wxWindow(), Dx :: integer(), Dy :: integer().

Equivalent to scrollWindow(This, Dx, Dy, []).

 scrollWindow/4

 -spec scrollWindow(This, Dx, Dy, [Option]) -> ok
 when
 This :: wxWindow(),
 Dx :: integer(),
 Dy :: integer(),
 Option ::
 {rect, {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}}.

Physically scrolls the pixels in the window and move child windows accordingly.
Remark: Note that you can often use wxScrolled (not implemented in wx) instead of using
this function directly.

 setAcceleratorTable(This, Accel)

 -spec setAcceleratorTable(This, Accel) -> ok
 when This :: wxWindow(), Accel :: wxAcceleratorTable:wxAcceleratorTable().

Sets the accelerator table for this window.
See wxAcceleratorTable.

 setAutoLayout(This, AutoLayout)

 -spec setAutoLayout(This, AutoLayout) -> ok when This :: wxWindow(), AutoLayout :: boolean().

Determines whether the layout/1 function will be called automatically when the window
is resized.
This method is called implicitly by setSizer/3 but if you use SetConstraints() (not implemented
in wx) you should call it manually or otherwise the window layout won't be correctly
updated when its size changes.
See: setSizer/3

 setBackgroundColour(This, Colour)

 -spec setBackgroundColour(This, Colour) -> boolean() when This :: wxWindow(), Colour :: wx:wx_colour().

Sets the background colour of the window.
Notice that as with setForegroundColour/2, setting the background colour of a native control may not affect
the entire control and could be not supported at all depending on the control and platform.
Please see inheritAttributes/1 for explanation of the difference between this method and setOwnBackgroundColour/2.
Remark: The background colour is usually painted by the default wxEraseEvent event
handler function under Windows and automatically under GTK. Note that setting the
background colour does not cause an immediate refresh, so you may wish to call clearBackground/1 or refresh/2 after
calling this function. Using this function will disable attempts to use themes for this
window, if the system supports them. Use with care since usually the themes represent the
appearance chosen by the user to be used for all applications on the system.
Return: true if the colour was really changed, false if it was already set to this colour
and nothing was done.
See:
	getBackgroundColour/1

	setForegroundColour/2

	getForegroundColour/1

	clearBackground/1

	refresh/2

	wxEraseEvent

	wxSystemSettings

 setBackgroundStyle(This, Style)

 -spec setBackgroundStyle(This, Style) -> boolean() when This :: wxWindow(), Style :: wx:wx_enum().

Sets the background style of the window.
The default background style is wxBG_STYLE_ERASE which indicates that the window
background may be erased in EVT_ERASE_BACKGROUND handler. This is a safe, compatibility
default; however you may want to change it to wxBG_STYLE_SYSTEM if you don't define any
erase background event handlers at all, to avoid unnecessary generation of erase
background events and always let system erase the background. And you should change the
background style to wxBG_STYLE_PAINT if you define an EVT_PAINT handler which
completely overwrites the window background as in this case erasing it previously, either
in EVT_ERASE_BACKGROUND handler or in the system default handler, would result in
flicker as the background pixels will be repainted twice every time the window is redrawn.
Do ensure that the background is entirely erased by your EVT_PAINT handler in this case
however as otherwise garbage may be left on screen.
Notice that in previous versions of wxWidgets a common way to work around the above
mentioned flickering problem was to define an empty EVT_ERASE_BACKGROUND handler.
Setting background style to wxBG_STYLE_PAINT is a simpler and more efficient solution to
the same problem.
Under wxGTK and wxOSX, you can use ?wxBG_STYLE_TRANSPARENT to obtain full transparency
of the window background. Note that wxGTK supports this only since GTK 2.12 with a
compositing manager enabled, call IsTransparentBackgroundSupported() (not implemented in
wx) to check whether this is the case.
Also, in order for SetBackgroundStyle(wxBG_STYLE_TRANSPARENT) to work, it must be
called before create/4. If you're using your own wxWindow-derived class you should write your code
in the following way:
See:
	setBackgroundColour/2

	getForegroundColour/1

	setTransparent/2

 setCaret(This, Caret)

 -spec setCaret(This, Caret) -> ok when This :: wxWindow(), Caret :: wxCaret:wxCaret().

Sets the caret() associated with the window.

 setClientSize/2

 -spec setClientSize(This, Size) -> ok when This :: wxWindow(), Size :: {W :: integer(), H :: integer()};
 (This, Rect) -> ok
 when
 This :: wxWindow(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()}.

This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 setClientSize(This, Width, Height)

 -spec setClientSize(This, Width, Height) -> ok
 when This :: wxWindow(), Width :: integer(), Height :: integer().

This sets the size of the window client area in pixels.
Using this function to size a window tends to be more device-independent than setSize/6, since the
application need not worry about what dimensions the border or title bar have when trying
to fit the window around panel items, for example.
See: Overview windowsizing

 setContainingSizer(This, Sizer)

 -spec setContainingSizer(This, Sizer) -> ok when This :: wxWindow(), Sizer :: wxSizer:wxSizer().

Used by wxSizer internally to notify the window about being managed by the given
sizer.
This method should not be called from outside the library, unless you're implementing a
custom sizer class - and in the latter case you must call this method with the pointer to
the sizer itself whenever a window is added to it and with NULL argument when the window
is removed from it.

 setCursor(This, Cursor)

 -spec setCursor(This, Cursor) -> boolean() when This :: wxWindow(), Cursor :: wxCursor:wxCursor().

Sets the window's cursor.
Notice that the window cursor also sets it for the children of the window implicitly.
The cursor may be wxNullCursor in which case the window cursor will be reset back to default.
See:
	wx_misc:setCursor/1

	wxCursor

 setDoubleBuffered(This, On)

 -spec setDoubleBuffered(This, On) -> ok when This :: wxWindow(), On :: boolean().

Turn on or off double buffering of the window if the system supports it.

 setDropTarget(This, Target)

 -spec setDropTarget(This, Target) -> ok when This :: wxWindow(), Target :: wx:wx_object().

Associates a drop target with this window.
If the window already has a drop target, it is deleted.
See:
	getDropTarget/1

	Overview dnd

 setExtraStyle(This, ExStyle)

 -spec setExtraStyle(This, ExStyle) -> ok when This :: wxWindow(), ExStyle :: integer().

Sets the extra style bits for the window.
The currently defined extra style bits are reported in the class description.

 setFocus(This)

 -spec setFocus(This) -> ok when This :: wxWindow().

This sets the window to receive keyboard input.
See:
	wxFocusEvent

	setFocus/1

	wxPanel:setFocusIgnoringChildren/1

 setFocusFromKbd(This)

 -spec setFocusFromKbd(This) -> ok when This :: wxWindow().

This function is called by wxWidgets keyboard navigation code when the user gives the
focus to this window from keyboard (e.g. using TAB key).
By default this method simply calls setFocus/1 but can be overridden to do something in addition to
this in the derived classes.

 setFont(This, Font)

 -spec setFont(This, Font) -> boolean() when This :: wxWindow(), Font :: wxFont:wxFont().

Sets the font for this window.
This function should not be called for the parent window if you don't want its font to be
inherited by its children, use setOwnFont/2 instead in this case and see inheritAttributes/1 for more explanations.
Please notice that the given font is not automatically used for wxPaintDC objects
associated with this window, you need to call wxDC:setFont/2 too. However this font is used by any
standard controls for drawing their text as well as by getTextExtent/3.
Return: true if the font was really changed, false if it was already set to this font and
nothing was done.
See:
	getFont/1

	inheritAttributes/1

 setForegroundColour(This, Colour)

 -spec setForegroundColour(This, Colour) -> boolean() when This :: wxWindow(), Colour :: wx:wx_colour().

Sets the foreground colour of the window.
The meaning of foreground colour varies according to the window class; it may be the text
colour or other colour, or it may not be used at all. Additionally, not all native
controls support changing their foreground colour so this method may change their colour
only partially or even not at all.
Please see inheritAttributes/1 for explanation of the difference between this method and setOwnForegroundColour/2.
Return: true if the colour was really changed, false if it was already set to this colour
and nothing was done.
See:
	getForegroundColour/1

	setBackgroundColour/2

	getBackgroundColour/1

	shouldInheritColours/1

 setHelpText(This, HelpText)

 -spec setHelpText(This, HelpText) -> ok when This :: wxWindow(), HelpText :: unicode:chardata().

Sets the help text to be used as context-sensitive help for this window.
Note that the text is actually stored by the current wxHelpProvider (not implemented in
wx) implementation, and not in the window object itself.
See: getHelpText/1

 setId(This, Winid)

 -spec setId(This, Winid) -> ok when This :: wxWindow(), Winid :: integer().

Sets the identifier of the window.
Remark: Each window has an integer identifier. If the application has not provided one,
an identifier will be generated. Normally, the identifier should be provided on creation
and should not be modified subsequently.
See:
	getId/1

	Overview windowids

 setLabel(This, Label)

 -spec setLabel(This, Label) -> ok when This :: wxWindow(), Label :: unicode:chardata().

Sets the window's label.
See: getLabel/1

 setMaxSize(This, Size)

 -spec setMaxSize(This, Size) -> ok when This :: wxWindow(), Size :: {W :: integer(), H :: integer()}.

Sets the maximum size of the window, to indicate to the sizer layout mechanism that this
is the maximum possible size.
See: Overview windowsizing

 setMinSize(This, Size)

 -spec setMinSize(This, Size) -> ok when This :: wxWindow(), Size :: {W :: integer(), H :: integer()}.

Sets the minimum size of the window, to indicate to the sizer layout mechanism that this
is the minimum required size.
You may need to call this if you change the window size after construction and before
adding to its parent sizer.
Notice that calling this method doesn't prevent the program from making the window
explicitly smaller than the specified size by calling setSize/6, it just ensures that it won't
become smaller than this size during the automatic layout.
See: Overview windowsizing

 setName(This, Name)

 -spec setName(This, Name) -> ok when This :: wxWindow(), Name :: unicode:chardata().

Sets the window's name.
See: getName/1

 setOwnBackgroundColour(This, Colour)

 -spec setOwnBackgroundColour(This, Colour) -> ok when This :: wxWindow(), Colour :: wx:wx_colour().

Sets the background colour of the window but prevents it from being inherited by the
children of this window.
See:
	setBackgroundColour/2

	inheritAttributes/1

 setOwnFont(This, Font)

 -spec setOwnFont(This, Font) -> ok when This :: wxWindow(), Font :: wxFont:wxFont().

Sets the font of the window but prevents it from being inherited by the children of this
window.
See:
	setFont/2

	inheritAttributes/1

 setOwnForegroundColour(This, Colour)

 -spec setOwnForegroundColour(This, Colour) -> ok when This :: wxWindow(), Colour :: wx:wx_colour().

Sets the foreground colour of the window but prevents it from being inherited by the
children of this window.
See:
	setForegroundColour/2

	inheritAttributes/1

 setPalette(This, Pal)

 -spec setPalette(This, Pal) -> ok when This :: wxWindow(), Pal :: wxPalette:wxPalette().

Deprecated:
use wxDC:setPalette/2 instead.

 setScrollbar(This, Orientation, Position, ThumbSize, Range)

 -spec setScrollbar(This, Orientation, Position, ThumbSize, Range) -> ok
 when
 This :: wxWindow(),
 Orientation :: integer(),
 Position :: integer(),
 ThumbSize :: integer(),
 Range :: integer().

Equivalent to setScrollbar(This, Orientation, Position, ThumbSize, Range, []).

 setScrollbar/6

 -spec setScrollbar(This, Orientation, Position, ThumbSize, Range, [Option]) -> ok
 when
 This :: wxWindow(),
 Orientation :: integer(),
 Position :: integer(),
 ThumbSize :: integer(),
 Range :: integer(),
 Option :: {refresh, boolean()}.

Sets the scrollbar properties of a built-in scrollbar.
Remark: Let's say you wish to display 50 lines of text, using the same font. The window
is sized so that you can only see 16 lines at a time. You would use: Note that with the
window at this size, the thumb position can never go above 50 minus 16, or 34. You can
determine how many lines are currently visible by dividing the current view size by the
character height in pixels. When defining your own scrollbar behaviour, you will always
need to recalculate the scrollbar settings when the window size changes. You could
therefore put your scrollbar calculations and SetScrollbar call into a function named
AdjustScrollbars, which can be called initially and also from your wxSizeEvent handler function.
See:
	Overview scrolling

	wxScrollBar

	wxScrollWinEvent

 setScrollPos(This, Orientation, Pos)

 -spec setScrollPos(This, Orientation, Pos) -> ok
 when This :: wxWindow(), Orientation :: integer(), Pos :: integer().

Equivalent to setScrollPos(This, Orientation, Pos, []).

 setScrollPos/4

 -spec setScrollPos(This, Orientation, Pos, [Option]) -> ok
 when
 This :: wxWindow(),
 Orientation :: integer(),
 Pos :: integer(),
 Option :: {refresh, boolean()}.

Sets the position of one of the built-in scrollbars.
Remark: This function does not directly affect the contents of the window: it is up to
the application to take note of scrollbar attributes and redraw contents accordingly.
See:
	setScrollbar/6

	getScrollPos/2

	getScrollThumb/2

	wxScrollBar

 setSize/2

 -spec setSize(This, Rect) -> ok
 when
 This :: wxWindow(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()};
 (This, Size) -> ok when This :: wxWindow(), Size :: {W :: integer(), H :: integer()}.

This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 setSize/3

 -spec setSize(This, Width, Height) -> ok
 when This :: wxWindow(), Width :: integer(), Height :: integer();
 (This, Rect, [Option]) -> ok
 when
 This :: wxWindow(),
 Rect :: {X :: integer(), Y :: integer(), W :: integer(), H :: integer()},
 Option :: {sizeFlags, integer()}.

Sets the size of the window in pixels.
The size is specified using a {X,Y,W,H}, {Width,Height} or by a couple of int objects.
Remark: This form must be used with non-default width and height values.
See:
	move/4

	Overview windowsizing

 setSize(This, X, Y, Width, Height)

 -spec setSize(This, X, Y, Width, Height) -> ok
 when
 This :: wxWindow(),
 X :: integer(),
 Y :: integer(),
 Width :: integer(),
 Height :: integer().

Equivalent to setSize(This, X, Y, Width, Height, []).

 setSize/6

 -spec setSize(This, X, Y, Width, Height, [Option]) -> ok
 when
 This :: wxWindow(),
 X :: integer(),
 Y :: integer(),
 Width :: integer(),
 Height :: integer(),
 Option :: {sizeFlags, integer()}.

Sets the size of the window in pixels.
Remark: This overload sets the position and optionally size, of the window. Parameters
may be wxDefaultCoord to indicate either that a default should be supplied by wxWidgets,
or that the current value of the dimension should be used.
See:
	move/4

	Overview windowsizing

 setSizeHints(This, MinSize)

 -spec setSizeHints(This, MinSize) -> ok
 when This :: wxWindow(), MinSize :: {W :: integer(), H :: integer()}.

Equivalent to setSizeHints(This, MinSize, []).

 setSizeHints/3

 -spec setSizeHints(This, MinW, MinH) -> ok when This :: wxWindow(), MinW :: integer(), MinH :: integer();
 (This, MinSize, [Option]) -> ok
 when
 This :: wxWindow(),
 MinSize :: {W :: integer(), H :: integer()},
 Option ::
 {maxSize, {W :: integer(), H :: integer()}} |
 {incSize, {W :: integer(), H :: integer()}}.

Use of this function for windows which are not toplevel windows (such as wxDialog or wxFrame)
is discouraged.
Please use setMinSize/2 and setMaxSize/2 instead.
See:
	setSizeHints/4

	Overview windowsizing

 setSizeHints/4

 -spec setSizeHints(This, MinW, MinH, [Option]) -> ok
 when
 This :: wxWindow(),
 MinW :: integer(),
 MinH :: integer(),
 Option ::
 {maxW, integer()} |
 {maxH, integer()} |
 {incW, integer()} |
 {incH, integer()}.

This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 setSizer(This, Sizer)

 -spec setSizer(This, Sizer) -> ok when This :: wxWindow(), Sizer :: wxSizer:wxSizer().

Equivalent to setSizer(This, Sizer, []).

 setSizer/3

 -spec setSizer(This, Sizer, [Option]) -> ok
 when This :: wxWindow(), Sizer :: wxSizer:wxSizer(), Option :: {deleteOld, boolean()}.

Sets the window to have the given layout sizer.
The window will then own the object, and will take care of its deletion. If an existing
layout constraints object is already owned by the window, it will be deleted if the deleteOld
parameter is true.
Note that this function will also call setAutoLayout/2 implicitly with true parameter if the sizer is
non-NULL and false otherwise so that the sizer will be effectively used to layout the
window children whenever it is resized.
Remark: SetSizer enables and disables Layout automatically.

 setSizerAndFit(This, Sizer)

 -spec setSizerAndFit(This, Sizer) -> ok when This :: wxWindow(), Sizer :: wxSizer:wxSizer().

Equivalent to setSizerAndFit(This, Sizer, []).

 setSizerAndFit/3

 -spec setSizerAndFit(This, Sizer, [Option]) -> ok
 when
 This :: wxWindow(),
 Sizer :: wxSizer:wxSizer(),
 Option :: {deleteOld, boolean()}.

Associate the sizer with the window and set the window size and minimal size accordingly.
This method calls setSizer/3 and then wxSizer:setSizeHints/2 which sets the initial window size to the size needed to
accommodate all sizer elements and sets the minimal size to the same size, this preventing
the user from resizing this window to be less than this minimal size (if it's a top-level
window which can be directly resized by the user).

 setThemeEnabled(This, Enable)

 -spec setThemeEnabled(This, Enable) -> ok when This :: wxWindow(), Enable :: boolean().

This function tells a window if it should use the system's "theme" code to draw the
windows' background instead of its own background drawing code.
This does not always have any effect since the underlying platform obviously needs to
support the notion of themes in user defined windows. One such platform is GTK+ where
windows can have (very colourful) backgrounds defined by a user's selected theme.
Dialogs, notebook pages and the status bar have this flag set to true by default so that
the default look and feel is simulated best.
See: getThemeEnabled/1

 setToolTip/2

 -spec setToolTip(This, TipString) -> ok when This :: wxWindow(), TipString :: unicode:chardata();
 (This, Tip) -> ok when This :: wxWindow(), Tip :: wxToolTip:wxToolTip().

This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 setTransparent(This, Alpha)

 -spec setTransparent(This, Alpha) -> boolean() when This :: wxWindow(), Alpha :: integer().

Set the transparency of the window.
If the system supports transparent windows, returns true, otherwise returns false and the
window remains fully opaque. See also canSetTransparent/1.
The parameter alpha is in the range 0..255 where 0 corresponds to a fully transparent
window and 255 to the fully opaque one. The constants wxIMAGE_ALPHA_TRANSPARENT and wxIMAGE_ALPHA_OPAQUE
can be used.

 setVirtualSize(This, Size)

 -spec setVirtualSize(This, Size) -> ok when This :: wxWindow(), Size :: {W :: integer(), H :: integer()}.

This is an overloaded member function, provided for convenience. It differs from the
above function only in what argument(s) it accepts.

 setVirtualSize(This, Width, Height)

 -spec setVirtualSize(This, Width, Height) -> ok
 when This :: wxWindow(), Width :: integer(), Height :: integer().

Sets the virtual size of the window in pixels.
See: Overview windowsizing

 setWindowStyle(This, Style)

 -spec setWindowStyle(This, Style) -> ok when This :: wxWindow(), Style :: integer().

See setWindowStyleFlag/2 for more info.

 setWindowStyleFlag(This, Style)

 -spec setWindowStyleFlag(This, Style) -> ok when This :: wxWindow(), Style :: integer().

Sets the style of the window.
Please note that some styles cannot be changed after the window creation and that refresh/2 might
need to be called after changing the others for the change to take place immediately.
See Window styles for more information about flags.
See: getWindowStyleFlag/1

 setWindowVariant(This, Variant)

 -spec setWindowVariant(This, Variant) -> ok when This :: wxWindow(), Variant :: wx:wx_enum().

Chooses a different variant of the window display to use.
Window variants currently just differ in size, as can be seen from ?wxWindowVariant
documentation. Under all platforms but macOS, this function does nothing more than change
the font used by the window. However under macOS it is implemented natively and selects
the appropriate variant of the native widget, which has better appearance than just scaled
down or up version of the normal variant, so it should be preferred to directly tweaking
the font size.
By default the controls naturally use the normal variant.

 shouldInheritColours(This)

 -spec shouldInheritColours(This) -> boolean() when This :: wxWindow().

Return true from here to allow the colours of this window to be changed by inheritAttributes/1.
Returning false forbids inheriting them from the parent window.
The base class version returns false, but this method is overridden in wxControl
where it returns true.

 show(This)

 -spec show(This) -> boolean() when This :: wxWindow().

Equivalent to show(This, []).

 show/2

 -spec show(This, [Option]) -> boolean() when This :: wxWindow(), Option :: {show, boolean()}.

Shows or hides the window.
You may need to call raise/1 for a top level window if you want to bring it to top, although
this is not needed if show/2 is called immediately after the frame creation.
Notice that the default state of newly created top level windows is hidden (to allow you
to create their contents without flicker) unlike for all the other, not derived from wxTopLevelWindow,
windows that are by default created in the shown state.
Return: true if the window has been shown or hidden or false if nothing was done because
it already was in the requested state.
See:
	isShown/1

	hide/1

	wxRadioBox:show/3

	wxShowEvent

 thaw(This)

 -spec thaw(This) -> ok when This :: wxWindow().

Re-enables window updating after a previous call to freeze/1.
To really thaw the control, it must be called exactly the same number of times as freeze/1.
If the window has any children, they are recursively thawed too.
See:
	freeze/1

	isFrozen/1

 toDIP/2

 -spec toDIP(D, W) -> integer() when D :: integer(), W :: wxWindow();
 (Sz, W) -> {W :: integer(), H :: integer()}
 when Sz :: {W :: integer(), H :: integer()}, W :: wxWindow();
 (This, D) -> integer() when This :: wxWindow(), D :: integer();
 (This, Sz) -> {W :: integer(), H :: integer()}
 when This :: wxWindow(), Sz :: {W :: integer(), H :: integer()}.

Convert pixel values of the current toolkit to DPI-independent pixel values.
A DPI-independent pixel is just a pixel at the standard 96 DPI resolution. To keep the
same physical size at higher resolution, the physical pixel value must be scaled by getDPIScaleFactor/1 but
this scaling may be already done by the underlying toolkit (GTK+, Cocoa, ...)
automatically. This method performs the conversion only if it is not already done by the
lower level toolkit, For example, you may want to use this to store window sizes and
positions so that they can be re-used regardless of the display DPI:
Also note that if either component of sz has the special value of -1, it is returned
unchanged independently of the current DPI, to preserve the special value of -1 in
wxWidgets API (it is often used to mean "unspecified").
Since: 3.1.0

 transferDataFromWindow(This)

 -spec transferDataFromWindow(This) -> boolean() when This :: wxWindow().

Transfers values from child controls to data areas specified by their validators.
Returns false if a transfer failed.
Notice that this also calls transferDataFromWindow/1 for all children recursively.
See:
	transferDataToWindow/1

	validate/1

 transferDataToWindow(This)

 -spec transferDataToWindow(This) -> boolean() when This :: wxWindow().

Transfers values to child controls from data areas specified by their validators.
Notice that this also calls transferDataToWindow/1 for all children recursively.
Return: Returns false if a transfer failed.
See:
	transferDataFromWindow/1

	validate/1

 update(This)

 -spec update(This) -> ok when This :: wxWindow().

Calling this method immediately repaints the invalidated area of the window and all of
its children recursively (this normally only happens when the flow of control returns to
the event loop).
Notice that this function doesn't invalidate any area of the window so nothing happens if
nothing has been invalidated (i.e. marked as requiring a redraw). Use refresh/2 first if you want
to immediately redraw the window unconditionally.

 updateWindowUI(This)

 -spec updateWindowUI(This) -> ok when This :: wxWindow().

Equivalent to updateWindowUI(This, []).

 updateWindowUI/2

 -spec updateWindowUI(This, [Option]) -> ok when This :: wxWindow(), Option :: {flags, integer()}.

This function sends one or more wxUpdateUIEvent to the window.
The particular implementation depends on the window; for example a wxToolBar will
send an update UI event for each toolbar button, and a wxFrame will send an update UI
event for each menubar menu item.
You can call this function from your application to ensure that your UI is up-to-date at
this point (as far as your wxUpdateUIEvent handlers are concerned). This may be
necessary if you have called wxUpdateUIEvent:setMode/1 or wxUpdateUIEvent:setUpdateInterval/1 to limit the overhead that wxWidgets incurs by sending
update UI events in idle time. flags should be a bitlist of one or more of the
?wxUpdateUI enumeration.
If you are calling this function from an OnInternalIdle or OnIdle function, make sure you
pass the wxUPDATE_UI_FROMIDLE flag, since this tells the window to only update the UI
elements that need to be updated in idle time. Some windows update their elements only
when necessary, for example when a menu is about to be shown. The following is an example
of how to call UpdateWindowUI from an idle function.
See: wxUpdateUIEvent

 validate(This)

 -spec validate(This) -> boolean() when This :: wxWindow().

Validates the current values of the child controls using their validators.
Notice that this also calls validate/1 for all children recursively.
Return: Returns false if any of the validations failed.
See:
	transferDataFromWindow/1

	transferDataToWindow/1

 warpPointer(This, X, Y)

 -spec warpPointer(This, X, Y) -> ok when This :: wxWindow(), X :: integer(), Y :: integer().

Moves the pointer to the given position on the window.
Note: Apple Human Interface Guidelines forbid moving the mouse cursor programmatically so
you should avoid using this function in Mac applications (and probably avoid using it
under the other platforms without good reason as well).

wxWindowCreateEvent

This event is sent just after the actual window associated with a wxWindow object has
been created.
Since it is derived from wxCommandEvent, the event propagates up the window hierarchy.
See:
	Overview events

	wxWindowDestroyEvent

This class is derived, and can use functions, from:
	wxCommandEvent

	wxEvent

wxWidgets docs: wxWindowCreateEvent
Events
Use wxEvtHandler:connect/3 with wxWindowCreateEventType to subscribe to events of this type.

 Summary

 Types

 wxWindowCreate()

 wxWindowCreateEvent()

 wxWindowCreateEventType()

 Types

 wxWindowCreate()

 -type wxWindowCreate() :: #wxWindowCreate{type :: wxWindowCreateEvent:wxWindowCreateEventType()}.

 wxWindowCreateEvent()

 -type wxWindowCreateEvent() :: wx:wx_object().

 wxWindowCreateEventType()

 -type wxWindowCreateEventType() :: create.

wxWindowDC

A wxWindowDC must be constructed if an application wishes to paint on the whole area
of a window (client and decorations).
This should normally be constructed as a temporary stack object; don't store a wxWindowDC
object.
To draw on a window from inside an EVT_PAINT() handler, construct a wxPaintDC object instead.
To draw on the client area of a window from outside an EVT_PAINT() handler, construct a wxClientDC
object.
A wxWindowDC object is initialized to use the same font and colours as the window it
is associated with.
See:
	wxDC

	wxMemoryDC

	wxPaintDC

	wxClientDC

	wxScreenDC

This class is derived, and can use functions, from:
	wxDC

wxWidgets docs: wxWindowDC

 Summary

 Types

 wxWindowDC()

 Functions

 destroy(This)

 Destroys the object

 new(Window)

 Constructor.

 Types

 wxWindowDC()

 -type wxWindowDC() :: wx:wx_object().

 Functions

 destroy(This)

 -spec destroy(This :: wxWindowDC()) -> ok.

Destroys the object

 new(Window)

 -spec new(Window) -> wxWindowDC() when Window :: wxWindow:wxWindow().

Constructor.
Pass a pointer to the window on which you wish to paint.

wxWindowDestroyEvent

This event is sent as early as possible during the window destruction process.
For the top level windows, as early as possible means that this is done by wxFrame or wxDialog
destructor, i.e. after the destructor of the derived class was executed and so any
methods specific to the derived class can't be called any more from this event handler. If
you need to do this, you must call wxWindow::SendDestroyEvent() (not implemented in wx)
from your derived class destructor.
For the child windows, this event is generated just before deleting the window from wxWindow:'Destroy'/1
(which is also called when the parent window is deleted) or from the window destructor if
operator delete was used directly (which is not recommended for this very reason).
It is usually pointless to handle this event in the window itself but it ca be very
useful to receive notifications about the window destruction in the parent window or in
any other object interested in this window.
See:
	Overview events

	wxWindowCreateEvent

This class is derived, and can use functions, from:
	wxCommandEvent

	wxEvent

wxWidgets docs: wxWindowDestroyEvent

 Summary

 Types

 wxWindowDestroy()

 wxWindowDestroyEvent()

 wxWindowDestroyEventType()

 Types

 wxWindowDestroy()

 -type wxWindowDestroy() :: #wxWindowDestroy{type :: wxWindowDestroyEvent:wxWindowDestroyEventType()}.

 wxWindowDestroyEvent()

 -type wxWindowDestroyEvent() :: wx:wx_object().

 wxWindowDestroyEventType()

 -type wxWindowDestroyEventType() :: destroy.

wxXmlResource

This is the main class for interacting with the XML-based resource system.
The class holds XML resources from one or more .xml files, binary files or zip archive files.
Note that this is a singleton class and you'll never allocate/deallocate it. Just use the
static get/0 getter.
See:
	Overview xrc

	Overview xrcformat

wxWidgets docs: wxXmlResource

 Summary

 Types

 wxXmlResource()

 Functions

 attachUnknownControl(This, Name, Control)

 Equivalent to attachUnknownControl(This, Name, Control, []).

 attachUnknownControl/4

 Attaches an unknown control to the given panel/window/dialog.

 clearHandlers(This)

 Removes all handlers and deletes them (this means that any handlers added using AddHandler()
(not implemented in wx) must be allocated on the heap).

 compareVersion(This, Major, Minor, Release, Revision)

 Compares the XRC version to the argument.

 destroy(This)

 Destroys the object

 get()

 Gets the global resources object or creates one if none exists.

 getFlags(This)

 Returns flags, which may be a bitlist of ?wxXmlResourceFlags enumeration values.

 getVersion(This)

 Returns version information (a.b.c.d = d + 256c + 2562b + 2563*a).

 getXRCID(Str_id)

 Equivalent to getXRCID(Str_id, []).

 getXRCID(Str_id, Options)

 Returns a numeric ID that is equivalent to the string ID used in an XML resource.

 initAllHandlers(This)

 Initializes handlers for all supported controls/windows.

 load(This, Filemask)

 Loads resources from XML files that match given filemask.

 loadBitmap(This, Name)

 Loads a bitmap resource from a file.

 loadDialog(This, Parent, Name)

 Loads a dialog.

 loadDialog(This, Dlg, Parent, Name)

 Loads a dialog.

 loadFrame(This, Parent, Name)

 Loads a frame from the resource.

 loadFrame(This, Frame, Parent, Name)

 Loads the contents of a frame onto an existing wxFrame.

 loadIcon(This, Name)

 Loads an icon resource from a file.

 loadMenu(This, Name)

 Loads menu from resource.

 loadMenuBar(This, Name)

 loadMenuBar(This, Parent, Name)

 Loads a menubar from resource.

 loadPanel(This, Parent, Name)

 Loads a panel.

 loadPanel(This, Panel, Parent, Name)

 Loads a panel.

 loadToolBar(This, Parent, Name)

 Loads a toolbar.

 new()

 Equivalent to new([]).

 new(Options)

 Constructor.

 new(Filemask, Options)

 Constructor.

 set(Res)

 Sets the global resources object and returns a pointer to the previous one (may be NULL).

 setFlags(This, Flags)

 Sets flags (bitlist of ?wxXmlResourceFlags enumeration values).

 unload(This, Filename)

 This function unloads a resource previously loaded by load/2.

 xrcctrl(Window, Name, Type)

 Types

 wxXmlResource()

 -type wxXmlResource() :: wx:wx_object().

 Functions

 attachUnknownControl(This, Name, Control)

 -spec attachUnknownControl(This, Name, Control) -> boolean()
 when
 This :: wxXmlResource(),
 Name :: unicode:chardata(),
 Control :: wxWindow:wxWindow().

Equivalent to attachUnknownControl(This, Name, Control, []).

 attachUnknownControl/4

 -spec attachUnknownControl(This, Name, Control, [Option]) -> boolean()
 when
 This :: wxXmlResource(),
 Name :: unicode:chardata(),
 Control :: wxWindow:wxWindow(),
 Option :: {parent, wxWindow:wxWindow()}.

Attaches an unknown control to the given panel/window/dialog.
Unknown controls are used in conjunction with <object class="unknown">.

 clearHandlers(This)

 -spec clearHandlers(This) -> ok when This :: wxXmlResource().

Removes all handlers and deletes them (this means that any handlers added using AddHandler()
(not implemented in wx) must be allocated on the heap).

 compareVersion(This, Major, Minor, Release, Revision)

 -spec compareVersion(This, Major, Minor, Release, Revision) -> integer()
 when
 This :: wxXmlResource(),
 Major :: integer(),
 Minor :: integer(),
 Release :: integer(),
 Revision :: integer().

Compares the XRC version to the argument.
Returns -1 if the XRC version is less than the argument, +1 if greater, and 0 if they are
equal.

 destroy(This)

 -spec destroy(This :: wxXmlResource()) -> ok.

Destroys the object

 get()

 -spec get() -> wxXmlResource().

Gets the global resources object or creates one if none exists.

 getFlags(This)

 -spec getFlags(This) -> integer() when This :: wxXmlResource().

Returns flags, which may be a bitlist of ?wxXmlResourceFlags enumeration values.

 getVersion(This)

 -spec getVersion(This) -> integer() when This :: wxXmlResource().

Returns version information (a.b.c.d = d + 256c + 2562b + 2563*a).

 getXRCID(Str_id)

 -spec getXRCID(Str_id) -> integer() when Str_id :: unicode:chardata().

Equivalent to getXRCID(Str_id, []).

 getXRCID(Str_id, Options)

 -spec getXRCID(Str_id, [Option]) -> integer()
 when Str_id :: unicode:chardata(), Option :: {value_if_not_found, integer()}.

Returns a numeric ID that is equivalent to the string ID used in an XML resource.
If an unknown str_id is requested (i.e. other than wxID_XXX or integer), a new record
is created which associates the given string with a number.
If value_if_not_found is wxID_NONE, the number is obtained via wx_misc:newId/0. Otherwise value_if_not_found
is used.
Macro XRCID(name) is provided for convenient use in event tables.
Note: IDs returned by XRCID() cannot be used with the EVT_*_RANGE macros, because the
order in which they are assigned to symbolic name values is not guaranteed.

 initAllHandlers(This)

 -spec initAllHandlers(This) -> ok when This :: wxXmlResource().

Initializes handlers for all supported controls/windows.
This will make the executable quite big because it forces linking against most of the
wxWidgets library.

 load(This, Filemask)

 -spec load(This, Filemask) -> boolean() when This :: wxXmlResource(), Filemask :: unicode:chardata().

Loads resources from XML files that match given filemask.
Example:
Note: If wxUSE_FILESYS is enabled, this method understands wxFileSystem (not
implemented in wx) URLs (see wxFileSystem::FindFirst() (not implemented in wx)).
Note: If you are sure that the argument is name of single XRC file (rather than an URL or
a wildcard), use LoadFile() (not implemented in wx) instead.

 loadBitmap(This, Name)

 -spec loadBitmap(This, Name) -> wxBitmap:wxBitmap()
 when This :: wxXmlResource(), Name :: unicode:chardata().

Loads a bitmap resource from a file.

 loadDialog(This, Parent, Name)

 -spec loadDialog(This, Parent, Name) -> wxDialog:wxDialog()
 when
 This :: wxXmlResource(),
 Parent :: wxWindow:wxWindow(),
 Name :: unicode:chardata().

Loads a dialog.
parent points to parent window (if any).

 loadDialog(This, Dlg, Parent, Name)

 -spec loadDialog(This, Dlg, Parent, Name) -> boolean()
 when
 This :: wxXmlResource(),
 Dlg :: wxDialog:wxDialog(),
 Parent :: wxWindow:wxWindow(),
 Name :: unicode:chardata().

Loads a dialog.
parent points to parent window (if any).
This form is used to finish creation of an already existing instance (the main reason for
this is that you may want to use derived class with a new event table). Example:

 loadFrame(This, Parent, Name)

 -spec loadFrame(This, Parent, Name) -> wxFrame:wxFrame()
 when
 This :: wxXmlResource(),
 Parent :: wxWindow:wxWindow(),
 Name :: unicode:chardata().

Loads a frame from the resource.
parent points to parent window (if any).

 loadFrame(This, Frame, Parent, Name)

 -spec loadFrame(This, Frame, Parent, Name) -> boolean()
 when
 This :: wxXmlResource(),
 Frame :: wxFrame:wxFrame(),
 Parent :: wxWindow:wxWindow(),
 Name :: unicode:chardata().

Loads the contents of a frame onto an existing wxFrame.
This form is used to finish creation of an already existing instance (the main reason for
this is that you may want to use derived class with a new event table).

 loadIcon(This, Name)

 -spec loadIcon(This, Name) -> wxIcon:wxIcon() when This :: wxXmlResource(), Name :: unicode:chardata().

Loads an icon resource from a file.

 loadMenu(This, Name)

 -spec loadMenu(This, Name) -> wxMenu:wxMenu() when This :: wxXmlResource(), Name :: unicode:chardata().

Loads menu from resource.
Returns NULL on failure.

 loadMenuBar(This, Name)

 -spec loadMenuBar(This, Name) -> wxMenuBar:wxMenuBar()
 when This :: wxXmlResource(), Name :: unicode:chardata().

 loadMenuBar(This, Parent, Name)

 -spec loadMenuBar(This, Parent, Name) -> wxMenuBar:wxMenuBar()
 when
 This :: wxXmlResource(),
 Parent :: wxWindow:wxWindow(),
 Name :: unicode:chardata().

Loads a menubar from resource.
Returns NULL on failure.

 loadPanel(This, Parent, Name)

 -spec loadPanel(This, Parent, Name) -> wxPanel:wxPanel()
 when
 This :: wxXmlResource(),
 Parent :: wxWindow:wxWindow(),
 Name :: unicode:chardata().

Loads a panel.
parent points to the parent window.

 loadPanel(This, Panel, Parent, Name)

 -spec loadPanel(This, Panel, Parent, Name) -> boolean()
 when
 This :: wxXmlResource(),
 Panel :: wxPanel:wxPanel(),
 Parent :: wxWindow:wxWindow(),
 Name :: unicode:chardata().

Loads a panel.
parent points to the parent window. This form is used to finish creation of an already
existing instance.

 loadToolBar(This, Parent, Name)

 -spec loadToolBar(This, Parent, Name) -> wxToolBar:wxToolBar()
 when
 This :: wxXmlResource(),
 Parent :: wxWindow:wxWindow(),
 Name :: unicode:chardata().

Loads a toolbar.

 new()

 -spec new() -> wxXmlResource().

Equivalent to new([]).

 new(Options)

 -spec new([Option]) -> wxXmlResource() when Option :: {flags, integer()} | {domain, unicode:chardata()}.

Constructor.

 new(Filemask, Options)

 -spec new(Filemask, [Option]) -> wxXmlResource()
 when
 Filemask :: unicode:chardata(),
 Option :: {flags, integer()} | {domain, unicode:chardata()}.

Constructor.

 set(Res)

 -spec set(Res) -> wxXmlResource() when Res :: wxXmlResource().

Sets the global resources object and returns a pointer to the previous one (may be NULL).

 setFlags(This, Flags)

 -spec setFlags(This, Flags) -> ok when This :: wxXmlResource(), Flags :: integer().

Sets flags (bitlist of ?wxXmlResourceFlags enumeration values).

 unload(This, Filename)

 -spec unload(This, Filename) -> boolean() when This :: wxXmlResource(), Filename :: unicode:chardata().

This function unloads a resource previously loaded by load/2.
Returns true if the resource was successfully unloaded and false if it hasn't been found
in the list of loaded resources.

 xrcctrl(Window, Name, Type)

 -spec xrcctrl(Window, Name, Type) -> wx:wx_object()
 when Window :: wxWindow:wxWindow(), Name :: string(), Type :: atom().

wx_misc

Miscellaneous functions.

 Summary

 Functions

 beginBusyCursor()

 Equivalent to beginBusyCursor([]).

 beginBusyCursor(Options)

 Changes the cursor to the given cursor for all windows in the application.

 bell()

 Ring the system bell.

 displaySize()

 Returns the display size in pixels.

 endBusyCursor()

 Changes the cursor back to the original cursor, for all windows in the application.

 findMenuItemId(Frame, MenuString, ItemString)

 Find a menu item identifier associated with the given frame's menu bar.

 findWindowAtPoint(Pt)

 Find the deepest window at the given mouse position in screen coordinates, returning the
window if found, or NULL if not.

 getCurrentId()

 Returns the current id.

 getEmailAddress()

 Copies the user's email address into the supplied buffer, by concatenating the values
returned by wxGetFullHostName() (not implemented in wx) and wx_misc:getUserId/0.

 getHomeDir()

 Return the (current) user's home directory.

 getKeyState(Key)

 For normal keys, returns true if the specified key is currently down.

 getMousePosition()

 Returns the mouse position in screen coordinates.

 getMouseState()

 Returns the current state of the mouse.

 getOsDescription()

 Returns the string containing the description of the current platform in a user-readable
form.

 getUserId()

 This function returns the "user id" also known as "login name" under Unix (i.e.

 isBusy()

 Returns true if between two wx_misc:beginBusyCursor/1 and wx_misc:endBusyCursor/0
calls.

 isPlatform64Bit()

 Returns true if the operating system the program is running under is 64 bit.

 isPlatformLittleEndian()

 Returns true if the current platform is little endian (instead of big endian).

 launchDefaultBrowser(Url)

 Equivalent to launchDefaultBrowser(Url, []).

 launchDefaultBrowser(Url, Options)

 Opens the url in user's default browser.

 mSWSetEmulationLevel(Level)

 mSWSetEmulationLevel(Level, Executable)

 newId()

 Deprecated

 registerId(Id)

 Ensures that Ids subsequently generated by wx_misc:newId/0 do not clash with the given id.

 setCursor(Cursor)

 Globally sets the cursor; only has an effect on Windows, Mac and GTK+.

 setDetectableAutoRepeat(Flag)

 Don't synthesize KeyUp events holding down a key and producing KeyDown events with
autorepeat.

 shell()

 Equivalent to shell([]).

 shell(Options)

 Executes a command in an interactive shell window.

 shutdown()

 Equivalent to shutdown([]).

 shutdown(Options)

 This function shuts down or reboots the computer depending on the value of the flags.

 Functions

 beginBusyCursor()

 -spec beginBusyCursor() -> ok.

Equivalent to beginBusyCursor([]).

 beginBusyCursor(Options)

 -spec beginBusyCursor([Option]) -> ok when Option :: {cursor, wxCursor:wxCursor()}.

Changes the cursor to the given cursor for all windows in the application.
Use wx_misc:endBusyCursor/0 to revert the cursor back to its previous state. These two calls can be nested, and
a counter ensures that only the outer calls take effect.
See: wx_misc:isBusy/0

 bell()

 -spec bell() -> ok.

Ring the system bell.
Note: This function is categorized as a GUI one and so is not thread-safe.

 displaySize()

 -spec displaySize() -> {Width :: integer(), Height :: integer()}.

Returns the display size in pixels.
Note: Use of this function is not recommended in the new code as it only works for the
primary display. Use wxDisplay:getGeometry/1 to retrieve the size of the appropriate display instead.
Either of output pointers can be NULL if the caller is not interested in the
corresponding value.
See: wxDisplay

 endBusyCursor()

 -spec endBusyCursor() -> ok.

Changes the cursor back to the original cursor, for all windows in the application.
Use with wx_misc:beginBusyCursor/1.
See: wx_misc:isBusy/0

 findMenuItemId(Frame, MenuString, ItemString)

 -spec findMenuItemId(Frame, MenuString, ItemString) -> integer()
 when
 Frame :: wxFrame:wxFrame(),
 MenuString :: unicode:chardata(),
 ItemString :: unicode:chardata().

Find a menu item identifier associated with the given frame's menu bar.

 findWindowAtPoint(Pt)

 -spec findWindowAtPoint(Pt) -> wxWindow:wxWindow() when Pt :: {X :: integer(), Y :: integer()}.

Find the deepest window at the given mouse position in screen coordinates, returning the
window if found, or NULL if not.
This function takes child windows at the given position into account even if they are
disabled. The hidden children are however skipped by it.

 getCurrentId()

 -spec getCurrentId() -> integer().

Returns the current id.

 getEmailAddress()

 -spec getEmailAddress() -> unicode:charlist().

Copies the user's email address into the supplied buffer, by concatenating the values
returned by wxGetFullHostName() (not implemented in wx) and wx_misc:getUserId/0.
Return: true if successful, false otherwise.

 getHomeDir()

 -spec getHomeDir() -> unicode:charlist().

Return the (current) user's home directory.

 getKeyState(Key)

 -spec getKeyState(Key) -> boolean() when Key :: wx:wx_enum().

For normal keys, returns true if the specified key is currently down.
For togglable keys (Caps Lock, Num Lock and Scroll Lock), returns true if the key is
toggled such that its LED indicator is lit. There is currently no way to test whether
togglable keys are up or down.
Even though there are virtual key codes defined for mouse buttons, they cannot be used
with this function currently.
In wxGTK, this function can be only used with modifier keys (WXK_ALT, WXK_CONTROL and WXK_SHIFT)
when not using X11 backend currently.

 getMousePosition()

 -spec getMousePosition() -> {X :: integer(), Y :: integer()}.

Returns the mouse position in screen coordinates.

 getMouseState()

 -spec getMouseState() -> wx:wx_wxMouseState().

Returns the current state of the mouse.
Returns a wx_wxMouseState() instance that contains the current position of the mouse pointer in screen
coordinates, as well as boolean values indicating the up/down status of the mouse buttons
and the modifier keys.

 getOsDescription()

 -spec getOsDescription() -> unicode:charlist().

Returns the string containing the description of the current platform in a user-readable
form.
For example, this function may return strings like "Windows 10 (build 10240), 64-bit
edition" or "Linux 4.1.4 i386".

 getUserId()

 -spec getUserId() -> unicode:charlist().

This function returns the "user id" also known as "login name" under Unix (i.e.
something like "jsmith"). It uniquely identifies the current user (on this system). Under
Windows or NT, this function first looks in the environment variables USER and LOGNAME; if
neither of these is found, the entry UserId in the wxWidgets section of the WIN.INI
file is tried.
Return: The login name if successful or an empty string otherwise.

 isBusy()

 -spec isBusy() -> boolean().

Returns true if between two wx_misc:beginBusyCursor/1 and wx_misc:endBusyCursor/0
calls.

 isPlatform64Bit()

 -spec isPlatform64Bit() -> boolean().

Returns true if the operating system the program is running under is 64 bit.
The check is performed at run-time and may differ from the value available at
compile-time (at compile-time you can just check if sizeof(void*) == 8) since the
program could be running in emulation mode or in a mixed 32/64 bit system (bi-architecture
operating system).
Note: This function is not 100% reliable on some systems given the fact that there isn't
always a standard way to do a reliable check on the OS architecture.

 isPlatformLittleEndian()

 -spec isPlatformLittleEndian() -> boolean().

Returns true if the current platform is little endian (instead of big endian).
The check is performed at run-time.

 launchDefaultBrowser(Url)

 -spec launchDefaultBrowser(Url) -> boolean() when Url :: unicode:chardata().

Equivalent to launchDefaultBrowser(Url, []).

 launchDefaultBrowser(Url, Options)

 -spec launchDefaultBrowser(Url, [Option]) -> boolean()
 when Url :: unicode:chardata(), Option :: {flags, integer()}.

Opens the url in user's default browser.
If the flags parameter contains wxBROWSER_NEW_WINDOW flag, a new window is opened for
the URL (currently this is only supported under Windows).
And unless the flags parameter contains wxBROWSER_NOBUSYCURSOR flag, a busy cursor is
shown while the browser is being launched (using wxBusyCursor (not implemented in wx)).
The parameter url is interpreted as follows:
	if it has a valid scheme (e.g. "file:", "http:" or "mailto:") it is passed to the
appropriate browser configured in the user system.

	if it has no valid scheme (e.g. it's a local file path without the "file:" prefix),
then ?wxFileExists and ?wxDirExists are used to test if it's a local file/directory; if it
is, then the browser is called with the url parameter eventually prefixed by "file:".

	if it has no valid scheme and it's not a local file/directory, then "http:" is
prepended and the browser is called.

Returns true if the application was successfully launched.
Note: For some configurations of the running user, the application which is launched to
open the given URL may be URL-dependent (e.g. a browser may be used for local URLs while
another one may be used for remote URLs).

 mSWSetEmulationLevel(Level)

 -spec mSWSetEmulationLevel(Level) -> boolean() when Level :: wx:wx_enum().

 mSWSetEmulationLevel(Level, Executable)

 -spec mSWSetEmulationLevel(Level, Executable) -> boolean()
 when Level :: wx:wx_enum(), Executable :: string().

 newId()

 -spec newId() -> integer().

Deprecated:
Ids generated by it can conflict with the Ids defined by the user code, use wxID_ANY to
assign ids which are guaranteed to not conflict with the user-defined ids for the controls
and menu items you create instead of using this function.
Generates an integer identifier unique to this run of the program.

 registerId(Id)

 -spec registerId(Id) -> ok when Id :: integer().

Ensures that Ids subsequently generated by wx_misc:newId/0 do not clash with the given id.

 setCursor(Cursor)

 -spec setCursor(Cursor) -> ok when Cursor :: wxCursor:wxCursor().

Globally sets the cursor; only has an effect on Windows, Mac and GTK+.
You should call this function with wxNullCursor to restore the system cursor.
See:
	wxCursor

	wxWindow:setCursor/2

 setDetectableAutoRepeat(Flag)

 -spec setDetectableAutoRepeat(Flag) -> boolean() when Flag :: boolean().

Don't synthesize KeyUp events holding down a key and producing KeyDown events with
autorepeat.
On by default and always on in wxMSW.

 shell()

 -spec shell() -> boolean().

Equivalent to shell([]).

 shell(Options)

 -spec shell([Option]) -> boolean() when Option :: {command, unicode:chardata()}.

Executes a command in an interactive shell window.
If no command is specified, then just the shell is spawned.
See: Examples

 shutdown()

 -spec shutdown() -> boolean().

Equivalent to shutdown([]).

 shutdown(Options)

 -spec shutdown([Option]) -> boolean() when Option :: {flags, integer()}.

This function shuts down or reboots the computer depending on the value of the flags.
Note: Note that performing the shutdown requires the corresponding access rights
(superuser under Unix, SE_SHUTDOWN privilege under Windows) and that this function is only
implemented under Unix and MSW.
Return: true on success, false if an error occurred.

wx_object behaviour

wx_object - Generic wx object behaviour
This is a behaviour module that can be used for "sub classing" wx objects. It
works like a regular gen_server module and creates a server per object.
NOTE: Currently no form of inheritance is implemented.
The user module should export:
init(Args) should return
{wxWindow, State} | {wxWindow, State, Timeout} | ignore | {stop, Reason}
Asynchronous window event handling:
handle_event(#wx{}, State) should return
{noreply, State} | {noreply, State, Timeout} | {stop, Reason, State}
The user module can export the following callback functions:
handle_call(Msg, {From, Tag}, State) should return
{reply, Reply, State} | {reply, Reply, State, Timeout} | {noreply, State}
| {noreply, State, Timeout} | {stop, Reason, Reply, State}
handle_cast(Msg, State) should return
{noreply, State} | {noreply, State, Timeout} | {stop, Reason, State}
If the above are not exported but called, the wx_object process will crash. The
user module can also export:
Info is message e.g. {'EXIT', P, R}, {nodedown, N}, ...
handle_info(Info, State) should return , ...
{noreply, State} | {noreply, State, Timeout} | {stop, Reason, State}
If a message is sent to the wx_object process when handle_info is not exported,
the message will be dropped and ignored.
When stop is returned in one of the functions above with Reason = normal |
shutdown | Term, terminate(State) is called. It lets the user module clean up,
it is always called when server terminates or when wx_object() in the driver is
deleted. If the Parent process terminates the Module:terminate/2 function is
called.
terminate(Reason, State)
Example:
 -module(myDialog).
 -export([new/2, show/1, destroy/1]). %% API
 -export([init/1, handle_call/3, handle_event/2,
 handle_info/2, code_change/3, terminate/2]).
 new/2, showModal/1, destroy/1]). %% Callbacks

 %% Client API
 new(Parent, Msg) ->
 wx_object:start(?MODULE, [Parent,Id], []).

 show(Dialog) ->
 wx_object:call(Dialog, show_modal).

 destroy(Dialog) ->
 wx_object:call(Dialog, destroy).

 %% Server Implementation ala gen_server
 init([Parent, Str]) ->
 Dialog = wxDialog:new(Parent, 42, "Testing", []),
 ...
 wxDialog:connect(Dialog, command_button_clicked),
 {Dialog, MyState}.

 handle_call(show, _From, State) ->
 wxDialog:show(State#state.win),
 {reply, ok, State};
 ...
 handle_event(#wx{}, State) ->
 io:format("Users clicked button~n",[]),
 {noreply, State};
 ...
DATA TYPES
	 request_id() = term()

	 server_ref() =
wx:wx_object() | atom() | pid()

 Summary

 Types

 event()

 request_id()

 server_ref()

 Callbacks

 code_change(OldVsn, State, Extra)

 handle_call(Request, From, State)

 handle_cast(Request, State)

 handle_event(Request, State)

 handle_info(Info, State)

 handle_sync_event(Request, Ref, State)

 init(Args)

 terminate(Reason, State)

 Functions

 call(Obj, Request)

 Make a call to a wx_object server. The call waits until it gets a result.
Invokes handle_call(Request, From, State) in the server

 call(Obj, Request, Timeout)

 Make a call to a wx_object server with a timeout. Invokes handle_call(Request,
From, State) in server

 cast(Obj, Request)

 Make a cast to a wx_object server. Invokes handle_cast(Request, State) in the
server

 check_response(Msg, Key)

 Check if a received message was a reply to a RequestId

 get_pid(Obj)

 Get the pid of the object handle.

 reply(PidTag, Reply)

 Get the pid of the object handle.

 send_request(Obj, Request)

 Make an send_request to a generic server. and return a RequestId which
can/should be used with wait_response/[1|2]. Invokes handle_call(Request, From,
State) in server.

 set_pid(Obj, Pid)

 Sets the controlling process of the object handle.

 start(Name, Mod, Args, Options)

 Starts a generic wx_object server and invokes Mod:init(Args) in the new process.

 start_link(Mod, Args, Options)

 Starts a generic wx_object server and invokes Mod:init(Args) in the new process.

 start_link(Name, Mod, Args, Options)

 Starts a generic wx_object server and invokes Mod:init(Args) in the new process.

 stop(Obj)

 Stops a generic wx_object server with reason 'normal'. Invokes
terminate(Reason,State) in the server. The call waits until the process is
terminated. If the process does not exist, an exception is raised.

 stop(Obj, Reason, Timeout)

 Stops a generic wx_object server with the given Reason. Invokes
terminate(Reason,State) in the server. The call waits until the process is
terminated. If the call times out, or if the process does not exist, an
exception is raised.

 wait_response(RequestId)

 Wait infinitely for a reply from a generic server.

 wait_response(Key, Timeout)

 Wait 'timeout' for a reply from a generic server.

 Types

 event()

 (not exported)

 -type event() ::
 wxActivateEvent:wxActivate() |
 wxAuiManagerEvent:wxAuiManager() |
 wxAuiNotebookEvent:wxAuiNotebook() |
 wxBookCtrlEvent:wxBookCtrl() |
 wxCalendarEvent:wxCalendar() |
 wxChildFocusEvent:wxChildFocus() |
 wxClipboardTextEvent:wxClipboardText() |
 wxCloseEvent:wxClose() |
 wxColourPickerEvent:wxColourPicker() |
 wxCommandEvent:wxCommand() |
 wxContextMenuEvent:wxContextMenu() |
 wxDateEvent:wxDate() |
 wxDisplayChangedEvent:wxDisplayChanged() |
 wxDropFilesEvent:wxDropFiles() |
 wxEraseEvent:wxErase() |
 wxFileDirPickerEvent:wxFileDirPicker() |
 wxFocusEvent:wxFocus() |
 wxFontPickerEvent:wxFontPicker() |
 wxGridEvent:wxGrid() |
 wxHelpEvent:wxHelp() |
 wxHtmlLinkEvent:wxHtmlLink() |
 wxIconizeEvent:wxIconize() |
 wxIdleEvent:wxIdle() |
 wxInitDialogEvent:wxInitDialog() |
 wxJoystickEvent:wxJoystick() |
 wxKeyEvent:wxKey() |
 wxListEvent:wxList() |
 wxMaximizeEvent:wxMaximize() |
 wxMenuEvent:wxMenu() |
 wxMouseCaptureChangedEvent:wxMouseCaptureChanged() |
 wxMouseCaptureLostEvent:wxMouseCaptureLost() |
 wxMouseEvent:wxMouse() |
 wxMoveEvent:wxMove() |
 wxNavigationKeyEvent:wxNavigationKey() |
 wxPaintEvent:wxPaint() |
 wxPaletteChangedEvent:wxPaletteChanged() |
 wxQueryNewPaletteEvent:wxQueryNewPalette() |
 wxSashEvent:wxSash() |
 wxScrollEvent:wxScroll() |
 wxScrollWinEvent:wxScrollWin() |
 wxSetCursorEvent:wxSetCursor() |
 wxShowEvent:wxShow() |
 wxSizeEvent:wxSize() |
 wxSpinEvent:wxSpin() |
 wxSplitterEvent:wxSplitter() |
 wxStyledTextEvent:wxStyledText() |
 wxSysColourChangedEvent:wxSysColourChanged() |
 wxTaskBarIconEvent:wxTaskBarIcon() |
 wxTreeEvent:wxTree() |
 wxUpdateUIEvent:wxUpdateUI() |
 wxWebViewEvent:wxWebView() |
 wxWindowCreateEvent:wxWindowCreate() |
 wxWindowDestroyEvent:wxWindowDestroy().

 request_id()

 (not exported)

 -type request_id() :: term().

 server_ref()

 (not exported)

 -type server_ref() :: Obj :: wx:wx_object() | atom() | pid().

 Callbacks

 code_change(OldVsn, State, Extra)

 (optional)

 -callback code_change(OldVsn :: term() | {down, term()}, State :: term(), Extra :: term()) ->
 {ok, NewState :: term()} | {error, Reason :: term()}.

 handle_call(Request, From, State)

 (optional)

 -callback handle_call(Request :: term(), From :: {pid(), Tag :: term()}, State :: term()) ->
 {reply, Reply :: term(), NewState :: term()} |
 {reply, Reply :: term(), NewState :: term(), timeout() | hibernate} |
 {noreply, NewState :: term()} |
 {noreply, NewState :: term(), timeout() | hibernate} |
 {stop, Reason :: term(), Reply :: term(), NewState :: term()} |
 {stop, Reason :: term(), NewState :: term()}.

 handle_cast(Request, State)

 (optional)

 -callback handle_cast(Request :: term(), State :: term()) ->
 {noreply, NewState :: term()} |
 {noreply, NewState :: term(), timeout() | hibernate} |
 {stop, Reason :: term(), NewState :: term()}.

 handle_event(Request, State)

 -callback handle_event(Request ::
 #wx{id :: integer(), obj :: wx:wx_object(), userData :: term(), event :: event()},
 State :: term()) ->
 {noreply, NewState :: term()} |
 {noreply, NewState :: term(), timeout() | hibernate} |
 {stop, Reason :: term(), NewState :: term()}.

 handle_info(Info, State)

 (optional)

 -callback handle_info(Info :: timeout() | term(), State :: term()) ->
 {noreply, NewState :: term()} |
 {noreply, NewState :: term(), timeout() | hibernate} |
 {stop, Reason :: term(), NewState :: term()}.

 handle_sync_event(Request, Ref, State)

 (optional)

 -callback handle_sync_event(Request ::
 #wx{id :: integer(),
 obj :: wx:wx_object(),
 userData :: term(),
 event :: event()},
 Ref :: #wx_ref{ref :: term(), type :: term(), state :: term()},
 State :: term()) ->
 ok.

 init(Args)

 -callback init(Args :: term()) ->
 {#wx_ref{ref :: term(), type :: term(), state :: term()}, State :: term()} |
 {#wx_ref{ref :: term(), type :: term(), state :: term()},
 State :: term(),
 timeout() | hibernate} |
 {stop, Reason :: term()} |
 ignore.

 terminate(Reason, State)

 (optional)

 -callback terminate(Reason :: normal | shutdown | {shutdown, term()} | term(), State :: term()) -> term().

 Functions

 call(Obj, Request)

 -spec call(Obj, Request) -> term() when Obj :: wx:wx_object() | atom() | pid(), Request :: term().

Make a call to a wx_object server. The call waits until it gets a result.
Invokes handle_call(Request, From, State) in the server

 call(Obj, Request, Timeout)

 -spec call(Obj, Request, Timeout) -> term()
 when Obj :: wx:wx_object() | atom() | pid(), Request :: term(), Timeout :: integer().

Make a call to a wx_object server with a timeout. Invokes handle_call(Request,
From, State) in server

 cast(Obj, Request)

 -spec cast(Obj, Request) -> ok when Obj :: wx:wx_object() | atom() | pid(), Request :: term().

Make a cast to a wx_object server. Invokes handle_cast(Request, State) in the
server

 check_response(Msg, Key)

 -spec check_response(Msg :: term(), Key :: request_id()) ->
 {reply, Reply :: term()} | false | {error, {term(), server_ref()}}.

Check if a received message was a reply to a RequestId

 get_pid(Obj)

 -spec get_pid(Obj) -> pid() when Obj :: wx:wx_object() | atom() | pid().

Get the pid of the object handle.

 reply(PidTag, Reply)

 -spec reply({pid(), Tag :: term()}, Reply :: term()) -> pid().

Get the pid of the object handle.

 send_request(Obj, Request)

 -spec send_request(Obj, Request :: term()) -> request_id() when Obj :: wx:wx_object() | atom() | pid().

Make an send_request to a generic server. and return a RequestId which
can/should be used with wait_response/[1|2]. Invokes handle_call(Request, From,
State) in server.

 set_pid(Obj, Pid)

 -spec set_pid(Obj, Pid :: pid()) -> wx:wx_object() when Obj :: wx:wx_object() | atom() | pid().

Sets the controlling process of the object handle.

 start(Name, Mod, Args, Options)

 -spec start(Name, Mod, Args, Options) -> wxWindow:wxWindow() | {error, term()}
 when
 Name :: {local, atom()},
 Mod :: atom(),
 Args :: term(),
 Flag :: trace | log | {logfile, string()} | statistics | debug,
 Options :: [{timeout, timeout()} | {debug, [Flag]}].

Starts a generic wx_object server and invokes Mod:init(Args) in the new process.

 start_link(Mod, Args, Options)

 -spec start_link(Mod, Args, Options) -> wxWindow:wxWindow() | {error, term()}
 when
 Mod :: atom(),
 Args :: term(),
 Flag :: trace | log | {logfile, string()} | statistics | debug,
 Options :: [{timeout, timeout()} | {debug, [Flag]}].

Starts a generic wx_object server and invokes Mod:init(Args) in the new process.

 start_link(Name, Mod, Args, Options)

 -spec start_link(Name, Mod, Args, Options) -> wxWindow:wxWindow() | {error, term()}
 when
 Name :: {local, atom()},
 Mod :: atom(),
 Args :: term(),
 Flag :: trace | log | {logfile, string()} | statistics | debug,
 Options :: [{timeout, timeout()} | {debug, [Flag]}].

Starts a generic wx_object server and invokes Mod:init(Args) in the new process.

 stop(Obj)

 -spec stop(Obj) -> ok when Obj :: wx:wx_object() | atom() | pid().

Stops a generic wx_object server with reason 'normal'. Invokes
terminate(Reason,State) in the server. The call waits until the process is
terminated. If the process does not exist, an exception is raised.

 stop(Obj, Reason, Timeout)

 -spec stop(Obj, Reason, Timeout) -> ok
 when Obj :: wx:wx_object() | atom() | pid(), Reason :: term(), Timeout :: timeout().

Stops a generic wx_object server with the given Reason. Invokes
terminate(Reason,State) in the server. The call waits until the process is
terminated. If the call times out, or if the process does not exist, an
exception is raised.

 wait_response(RequestId)

 -spec wait_response(RequestId :: request_id()) ->
 {reply, Reply :: term()} | {error, {term(), server_ref()}}.

Wait infinitely for a reply from a generic server.

 wait_response(Key, Timeout)

 -spec wait_response(Key :: request_id(), Timeout :: timeout()) ->
 {reply, Reply :: term()} | timeout | {error, {term(), server_ref()}}.

Wait 'timeout' for a reply from a generic server.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

OEBPS/assets/logo.png
EEEEEE

