ERLANG

Common Test

Copyright © 2003-2025 Ericsson AB. All Rights Reserved.
Common Test 1.26.2.4

September 10, 2025

Copyright © 2003-2025 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

September 10, 2025

1.1 Introduction

1 Common Test User's Guide

1.1 Introduction

1.1.1 Scope

Conmmon Test isaportable application for automated testing. It is suitable for:

» Black-box testing of target systems of any type (that is, not necessarily implemented in Erlang). Thisis performed
through standard O& M interfaces (such as SNMP, HTTP, CORBA, and Telnet) and, if necessary, through user-
specific interfaces (often called test ports).

e White-box testing of Erlang/OTP programs. Thisis easily done by calling the target API functions directly from
the test case functions.

Common Test aso integrates use of the OTP cover tool in application Tools for code coverage analysis of Erlang/
OTP programs.

Conmmon Test executestest suite programs automatically, without operator interaction. Test progress and results are
printedtologsin HTML format, easily browsed with astandard web browser. Conmon Test also sends notifications
about progress and results through an OTP event manager to event handlers plugged in to the system. Thisway, users
can integrate their own programs for, for example, logging, database storing, or supervision with Cormon Test .

Common Test provides libraries with useful support functions to fill various testing needs and requirements. There
is, for example, support for flexible test declarations through test specifications. There is also support for central
configuration and control of multiple independent test sessions (to different target systems) running in parallel.

1.1.2 Prerequisites

It is assumed that the reader is familiar with the Erlang programming language.

1.2 Common Test Basics
1.2.1 General

The Conmon Test framework is atool that supports implementation and automated execution of test cases to any
types of target systems. Conmon Test isthe main tool being used in al testing- and verification activities that are
part of Erlang/OTP system development and maintenance.

Test cases can be executed individually or in batches. Conmon Test also features a distributed testing mode with
central control and logging. With this feature, multiple systems can be tested independently in one common session.
Thisisuseful, for example, when running automated large-scale regression tests.

The System Under Test (SUT) can consist of one or more target nodes. Cormon Test contains ageneric test server
that, together with other test utilities, is used to perform test case execution. The tests can be started from a GUI,
from the OS shell, or from an Erlang shell. Test suites are files (Erlang modules) that contain the test cases (Erlang
functions) to be executed. Support modules provide functions that the test cases use to do the tests.

In a black-box testing scenario, Conmon Test -based test programs connect to the target system(s) through
standard O&M and CLI protocols. Common Test provides implementations of, and wrapper interfaces to, some
of these protocols (most of which exist as standalone components and applications in OTP). The wrappers simplify
configuration and add verbosity for logging purposes. Conmon Test is continuously extended with useful support

Ericsson AB. All Rights Reserved.: Common Test | 1

1.2 Common Test Basics

modules. However, notice that it is a straightforward task to use any Erlang/OTP component for testing purposes with
Conmon Test , without needing a Conmon Test wrapper for it. It is as simple as calling Erlang functions. A
number of target-independent interfaces are supported in Cormon Test , such as Generic Telnet and FTP. These can
be specialized or used directly for controlling instruments, traffic load generators, and so on.

Common Test isalsoavery useful tool for white-box testing Erlang code (for example, module testing), as the test
programs can call exported Erlang functionsdirectly. Thereisvery little overhead required for implementing basic test
suites and executing simple tests. For black-box testing Erlang software, Erlang RPC and standard O&M interfaces
can be used for example.

A test case can handle several connectionsto one or more target systems, instruments, and traffic generatorsin parallel
to perform the necessary actions for atest. The handling of many connectionsin parallel is one of the major strengths
of Cormon Test , thanks to the efficient support for concurrency in the Erlang runtime system, which Conmon
Test users can take great advantage of.

1.2.2 Test Suite Organization

Test suites are organized in test directories and each test suite can have a separate data directory. Typically, thesefiles
and directories are version-controlled similar to other forms of source code (possibly by aversion control system like
GIT or Subversion). However, Conrmon Test does not itself put any requirements on (or has any awareness of)
possible file and directory versions.

1.2.3 Support Libraries

Support libraries contain functions that are useful for all test suites, or for test suites in a specific functiona area or
subsystem. In addition to the general support libraries provided by the Cormon Test framework, and the various
libraries and applications provided by Erlang/OTP, there can also be a need for customized (user specific) support
libraries.

1.2.4 Suites and Test Cases

Testing is performed by running test suites (sets of test cases) or individual test cases. A test suiteisimplemented asan
Erlang modulenamed <sui t e_nane>_SUl TE. er | which containsanumber of test cases. A test caseisan Erlang
function that tests one or more things. The test caseisthe smallest unit that the Cormon Test test server dealswith.

Setsof test cases, called test case groups, can also be defined. A test case group can have execution properties associated
with it. Execution properties specify if the test cases in the group are to be executed in random order, in parallel, or
in sequence, and if the execution of the group is to be repeated. Test case groups can also be nested (that is, a group
can, besides test cases, contain subgroups).

Besides test cases and groups, the test suite can also contain configuration functions. These functions are meant to
be used for setting up (and verifying) environment and state in the SUT (and/or the Cormon Test host node),
required for the tests to execute correctly. Examples of operations are: Opening a connection to the SUT, initializing
a database, running an installation script, and so on. Configuration can be performed per suite, per test case group,
and per individual test case.

The test suite module must conform to a callback interface specified by the Cormon Test test server. For details,
see section Writing Test Suites.

A test case is considered successful if it returns to the caller, no matter what the returned value is. However, a few
return values have special meaning as follows:

* {ski p, Reason} indicatesthat the test case is skipped.
e {coment, Conment } printsacomment in thelog for the test case.
« {save_config, Confi g} makesthe Conmon Test test server pass Conf i g to the next test case.

2 | Ericsson AB. All Rights Reserved.: Common Test

1.2 Common Test Basics

A test case failure is specified as a runtime error (a crash), no matter what the reason for termination is. If you use
Erlang pattern matching effectively, you can take advantage of this property. The result is concise and readable test
case functions that ook much more like scripts than actual programs. A simple example:

session(Config) ->
{started,ServerId} = my server:start(),
{clients,[]} = my server:get clients(ServerId),
MyId = self(),
connected = my server:connect(Serverld, MyId),
{clients, [MyId]} = my server:get clients(ServerlId),
disconnected = my server:disconnect(ServerId, MyId),
{clients,[]} = my server:get clients(ServerId),
stopped = my server:stop(ServerId).

Asatest suiteruns, al information (including output to st dout) isrecorded in many different log files. A minimum
of information is displayed in the user console (only start and stop information, plus a note for each failed test case).

Theresult from each test caseisrecorded in adedicated HTML log file, created for the particul ar test run. An overview
page displays each test case represented by atable row showing total execution time, if the case was successful, failed,
or skipped, plus an optiona user comment. For a failed test case, the reason for termination is aso printed in the
comment field. The overview page has alink to each test caselog file, providing simple navigation with any standard
HTML browser.

In the last row where totals are presented the time shown here is a sum of rows, which are above (not accounting
for parallel testcases). On the other hand "Elapsed Time" is a clock time spent to run testcases.

1.2.5 External Interfaces

The Conmon Test test server requires that the test suite defines and exports the following mandatory or optional
callback functions:

all ()

Returns alist of all test cases and groups in the suite. (Mandatory)
suite()

Information function used to return properties for the suite. (Optional)
groups()

For declaring test case groups. (Optional)
init_per_suite(Config)

Suite level configuration function, executed before the first test case. (Optional)
end_per _suite(Config)

Suite level configuration function, executed after the last test case. (Optional)
gr oup(G oupNane)

Information function used to return properties for atest case group. (Optional)
init_per_group(G oupNanme, Config)

Configuration function for a group, executed before the first test case. (Optional)

Ericsson AB. All Rights Reserved.: Common Test | 3

1.3 Getting Started

end_per _group(G oupNane, Config)

Configuration function for a group, executed after the last test case. (Optional)
i nit_per_testcase(Test Case, Config)

Configuration function for atestcase, executed before each test case. (Optional)
end_per _testcase(Test Case, Config)

Configuration function for a testcase, executed after each test case. (Optional)
For each test case, the Cormon Test test server expects the following functions:
Testcasename()

Information function that returns alist of test case properties. (Optional)
Testcasename(Config)

The test case function.

1.3 Getting Started

1.3.1 Introduction for Newcomers

The purpose of this section is to let the newcomer get started in quickly writing and executing some first simple tests
with a"learning by example" approach. Most explanations are | eft for later sections. If you are not much into "learning
by example" and prefer more technical details, go ahead and skip to the next section.

This section demonstrates how simple it is to write a basic (yet for many module testing purposes, often sufficiently
complex) test suite and execute its test cases. This is not necessarily obvious when you read the remaining sections
in this User's Guide.

To understand what is discussed and examplified here, we recommended you to first read section Common Test
Basics.

1.3.2 Test Case Execution

Execution of test casesis handled as follows:

4 | Ericsson AB. All Rights Reserved.: Common Test

1.3 Getting Started

fest case A case A case B fesf case B faifs
refurns ok because of Reason
CT worker CT worker CT worker

crashes:
{EXIT ,Reason}

. rocess
exits normally P

« Log file ¥
@ case A ‘ "Successful”
@ case B ‘ "Failed: Reason”

Figure 3.1: Successful and Unsuccessful Test Case Execution

For each test case that Conmon Test is ordered to execute, it spawns a dedicated process on which the test case
function starts running. (In parallel to the test case process, an idle waiting timer process is started, which is linked
to the test case process. If the timer process runs out of waiting time, it sends an exit signal to terminate the test case
process. Thisis called atimetrap).

In scenario 1, the test case process terminates normally after case A has finished executing its test code without
detecting any errors. The test case function returns avalue and Conmon Test logs the test case as successful.

In scenario 2, an error is detected during test case B execution. This causesthetest case B function to generate
an exception and, as a result, the test case process exits with reason other than normal. Cormon Test logs this as
an unsuccessful (Failed) test case.

As you can understand from the illustration, Cormon Test requires a test case to generate a runtime error to
indicate failure (for example, by causing abad match error or by callingexi t / 1, preferably through the help function
ct:fail/1, 2). A successful execution isindicated by anormal return from the test case function.

1.3.3 A Simple Test Suite

Asshown in section Common Test Basics, thetest suite modul eimplements callback functions (mandatory or optional)
for various purposes, for example:

e |nit/end configuration function for the test suite

« Init/end configuration function for atest case

« Init/end configuration function for atest case group

e Testcases

Ericsson AB. All Rights Reserved.: Common Test | 5

1.3 Getting Started

The configuration functions are optional. The following example is a test suite without configuration functions,
including one simple test case, to check that module mynod exists (that is, can be successfully loaded by the code
server):

-module(mylst SUITE).
-compile(export_all).

all() ->
[mod exists].

mod exists() ->
{module,mymod} = code:load file(mymod).

If the operation fails, a bad match error occurs that terminates the test case.

1.3.4 A Test Suite with Configuration Functions

If you need to perform configuration operations to run your test, you can implement configuration functions in your
suite. The result from a configuration function is configuration data, or Conf i g. Thisis alist of key-value tuples
that get passed from the configuration function to the test cases (possibly through configuration functions on "lower
level"). The data flow looks as follows:

6 | Ericsson AB. All Rights Reserved.: Common Test

1.3 Getting Started

init per suite(InitConfig)
Ceonfig
——————» 1hit per testcocase|testocasel, Config)

Ceonfigd
@ LCestcasel (Configl)

¥
I end per testcase (testcasel,Configl)

Ceonfig
— 1N1it per testcase (testoasell, Config)

Coonfighf
——. CLEStCoasel (Confighl)

¥
end per testcase (testcasel, ConfigN)

¥

end per suite(Config)

Figure 3.2: Configuration Data Flow in a Suite

The following example shows a test suite that uses configuration functions to open and close a log file for the test
cases (an operation that is unnecessary and irrelevant to perform by each test case):

Ericsson AB. All Rights Reserved.: Common Test | 7

1.3 Getting Started

-module(check log SUITE).

-export([all/0, init per suite/1, end per suite/1]).
-export([check restart result/1l, check no errors/1]).
-define(value(Key,Config), proplists:get value(Key,Config)).

all() -> [check restart result, check no errors].

init per suite(InitConfigData) ->
[{logref,open_log()} | InitConfigData].

end per suite(ConfigData) ->
close log(?value(logref, ConfigData)).

check restart result(ConfigData) ->
TestData = read log(restart, ?value(logref, ConfigData)),
{match, Line} = search for("restart successful", TestData).
check no _errors(ConfigData) ->
TestData = read log(all, ?value(logref, ConfigData)),
case search for("error", TestData) of
{match,Line} -> ct:fail({error found in log,Line});
nomatch -> ok
end.

The test cases verify, by parsing alog file, that our SUT has performed a successful restart and that no unexpected
errors are printed.

To execute the test cases in the recent test suite, type the following on the UNIX/Linux command line (assuming that
the suite module isin the current working directory):

$ ct _run -dir

or:

$ ct run -suite check log SUITE

To use the Erlang shell to run our test, you can evaluate the following call:

1> ct:run_test([{dir, "."}]).

or.
1> ct:run_test([{suite, "check log SUITE"}]).

Theresult from running the test is printed in log filesin HTML format (stored in unique log directories on a different
level). The following illustration shows the log file structure:

8 | Ericsson AB. All Rights Reserved.: Common Test

1.3 Getting Started

.
top level log dir test run top dir test dir test case dir
TEST RUN | | |
HISTORY | | |
TEST
all runs.html SUITE
OVERVIEW
index.html
.\ index.html y.

Figure 3.3: HTML Log File Structure

1.3.5 Questions and Answers

Here follows some questions that you might have after reading this section with corresponding tips and links to the
answers:

e Question: "How and where can | specify variable datafor my tests that must not be hard-coded in the test suites
(such as hostnames, addresses, and user login data)?"

Answer: See section External Configuration Data.

* Question: "Isthere away to declare different tests and run them in one session without having to write my own
scripts? Also, can such declarations be used for regression testing?”'

Answer: See section Test Specificationsin section Running Tests and Analyzing Results.
* Question: "Can test cases and/or test runs be automatically repeated?'

Answer: Learn more about Test Case Groups and read about start flags/options in section Running Testsand in
the Reference Manual.

e Question: "Does Conmon Test execute my test casesin sequence or in parallel?"

Answer: See Test Case Groupsin section Writing Test Suites.
e Question: "What is the syntax for timetraps (mentioned earlier), and how do | set them?"

Answer: Thisisexplained in the Timetrap Time-Outs part of section Writing Test Suites.
* Question: "What functions are available for logging and printing?"'

Answer: SeeLogging in section Writing Test Suites.
* Question: "l need datafilesfor my tests. Where do | store them preferably?"

Answer: See Data and Private Directories.
e Question: "Can | start with atest suite example, please?"

Answer: Welcome!

Ericsson AB. All Rights Reserved.: Common Test | 9

1.4 Installation

Y ou probably want to get started on your own first test suites now, while at the same time digging deeper into the
Conmmon Test User's Guide and Reference Manual. There are much more to learn about the things that have been
introduced in this section. There are also many other useful featuresto learn, so please continue to the other sections
and have fun.

1.4 Installation

1.4.1 General Information

The two main interfaces for running tests with Conmmon Test are an executable program named ct _r un and the
Erlang modulect . ct _r un iscompiled for the underlying operating system (for example, Unix/Linux or Windows)
during the build of the Erlang/OTP system, and is installed automatically with other executable programs in the top
level bi n directory of Erlang/OTP. Thect interface functions can be called from the Erlang shell, or from any Erlang
function, on any supported platform.

The Common Test application isinstalled with the Erlang/OTP system. No extrainstallation step is required to start
using Cormon Test through thect _r un executable program, and/or the interface functionsin the ct module.

1.5 Writing Test Suites
1.5.1 Support for Test Suite Authors

The ct module provides the main interface for writing test cases. Thisincludes for example, the following:

* Functionsfor printing and logging

» Functionsfor reading configuration data

* Function for terminating a test case with error reason

* Function for adding commentsto the HTML overview page

For details about these functions, see modulect .

The Conmon Test application aso includes other modules named ct _<conponent >, which provide various
support, mainly simplified use of communication protocols such as RPC, SNMP, FTP, Telnet, and others.

1.5.2 Test Suites

A test suite is an ordinary Erlang module that contains test cases. It is recommended that the module has a name on
theform * _SUI TE. er | . Otherwise, the directory and auto compilation function in Conmon Test cannot locate
it (at least not by default).

It is also recommended that thect . hr | header fileisincluded in all test suite modules.

Each test suite module must export function al | / 0, which returns the list of all test case groups and test cases to
be executed in that module.

The callback functions to be implemented by the test suite are al listed in module ct_suite . They are also described
in more detail later in this User's Guide.

1.5.3 Init and End per Suite

Each test suite module can contain the optional configuration functions init_per_suite/1 and
end_per _sui t e/ 1. If theinit function is defined, so must the end function be.

Ifinit_per_suiteexists, itiscaledinitialy beforethetest cases are executed. It typically containsinitializations
common for al test casesin the suite, which are only to be performed once.i ni t _per _sui t e isrecommended for

10 | Ericsson AB. All Rights Reserved.: Common Test

1.5 Writing Test Suites

setting up and verifying state and environment on the System Under Test (SUT) or the Conmron Test host node, or
both, sothat thetest casesin the suite executes correctly. Thefollowing areexamplesof initial configuration operations:

e Opening a connection to the SUT
e Initializing a database
e Running an installation script

end_per _sui t e iscaled as the fina stage of the test suite execution (after the last test case has finished). The
function is meant to be used for cleaning up afteri nit _per _suite.

init_per_suiteandend _per_suit e execute on dedicated Erlang processes, just like the test cases do. The
result of these functionsis however not included in the test run statistics of successful, failed, and skipped cases.

Theargument toi ni t _per _sui t e isConfi g, that is, the same key-value list of runtime configuration data that
each test case takes asinput argument. i ni t _per _sui t e can modify this parameter with information that the test
cases need. The possibly modified Conf i g list isthe return value of the function.

Ifi nit_per_suit e fails, al test casesin thetest suite are skipped automatically (so called auto skipped), including
end_per_suite.

Notice that if i nit _per _suite and end_per _sui t e do not exist in the suite, Common Test cals dummy
functions (with the same names) instead, so that output generated by hook functions can be saved to the log files for
these dummies. For details, see Common Test Hooks.

1.5.4 Init and End per Test Case

Each test suite module can contain the optional configuration functions i nit_per testcase/2 and
end_per _testcase/ 2. If theinit function is defined, so must the end function be.

Ifinit_per_testcase exists, itiscaled before each test case in the suite. It typically contains initialization that
must be done for each test case (analogtoi ni t _per _sui t e for the site).

end_per testcase/ 2 iscaled after each test case hasfinished, enabling cleanup afteri ni t _per _t est case.

If end_per _t est case crashes, however, test results are unaffected. At the same time, this occurrence is
reported in the test execution logs.

The first argument to these functions is the name of the test case. This value can be used with pattern matching in
function clauses or conditional expressions to choose different initialization and cleanup routines for different test
cases, or perform the same routine for many, or all, test cases.

The second argument is the Conf i g key-value list of runtime configuration data, which has the same value as the
listreturned by i nit _per _suite.init_per_testcase/ 2 can modify this parameter or returnit "asis'. The
returnvalueof i nit _per _t est case/ 2 ispassed as parameter Conf i g to the test case itself.

The return value of end_per _t est case/ 2 isignored by the test server, with exception of the save_confi g
andfail tuple.

end_per _t est case can check if the test case was successful. (which in turn can determine how cleanup is to
be performed). This is done by reading the value tagged with t c_st at us from Conf i g. The value is one of the
following:

e ok
« {failed, Reason}

whereReason isti netrap_ti meout , information from exi t / 1, or details of aruntime error
« {ski pped, Reason}

Ericsson AB. All Rights Reserved.: Common Test | 11

1.5 Writing Test Suites

where Reason is auser-specific term

Function end_per _testcase/2 is even caled if a test case terminates because of a cal to
ct:abort_current _testcase/ 1,orafter atimetraptime-out. However,end_per _t est case then executes
on adifferent process than the test case function. In this situation, end_per _t est case cannot change the reason
for test case termination by returning { f ai | , Reason} or save datawith{save_confi g, Dat a}.

The test case is skipped in the following two cases:

e Ifinit_per _testcase crashes(caled auto skipped).
« Ifinit_per_testcase returnsatuple{ski p, Reason} (caled user skipped).

The test case can also be marked as failed without executing it by returning a tuple {f ai | , Reason} from
i nit_per_testcase.

If init_per testcase crashes, or returns {skip, Reason} or {fail, Reason}, function
end_per _testcase isnot caled.

If it isdetermined during execution of end_per _t est case that the status of a successful test caseisto be changed
tofailed, end_per _t est case canreturnthetuple{f ai | , Reason} (where Reason describeswhy thetest case
fails).

Asinit_per_testcaseandend_per _t est case executeonthesameErlang processasthetest case, printouts
from these configuration functions are included in the test caselog file.

1.5.5 Test Cases

The smallest unit that the test server is concerned with is atest case. Each test case can test many things, for example,
make several calls to the same interface function with different parameters.

The author can choose to put many or few tests into each test case. Some things to keep in mind follows:

e Many small test cases tend to result in extra, and possibly duplicated code, aswell as slow test execution because
of large overhead for initializations and cleanups. Avoid duplicated code, for example, by using common help
functions. Otherwise, the resulting suite becomes difficult to read and understand, and expensive to maintain.

» Larger test cases make it harder to tell what went wrong if it fails. Also, large portions of test code risk being
skipped when errors occur.

» Readability and maintainability suffer when test cases become too large and extensive. It is not certain that the
resulting log files reflect very well the number of tests performed.

The test case function takes one argument, Conf i g, which contains configuration information such asdat a_di r
and pri v_di r. (For details about these, see section Data and Private Directories. The value of Conf i g at thetime
of the call, isthe same asthe return valuefromi ni t _per _t est case, mentioned earlier.

Thetest case function argument Conf i g isnot to be confused with the information that can be retrieved from the
configuration files (using ct: get _confi g/ 1/ 2). The test case argument Conf i g isto be used for runtime
configuration of the test suite and the test cases, while configuration files are to contain data related to the SUT.
These two types of configuration data are handled differently.

As parameter Confi g is a list of key-value tuples, that is, a data type caled a property list, it can be
handled by the proplists module. A value can, for example, be searched for and returned with function
proplists: get val ue/ 2. Also, or dternatively, the general |i sts module contains useful functions.

12 | Ericsson AB. All Rights Reserved.: Common Test

1.5 Writing Test Suites

Normally, the only operations performed on Confi g are insertion (adding a tuple to the head of the list) and
lookup. To look up a value in the config, propl i sts: get_val ue can be used. For example: PrivDir =
proplists:get_value(priv_dir, Config).

If the test case function crashes or exits purposely, it is considered failed. If it returns a value (no matter what value),
it is considered successful. An exception to this rule is the return value { ski p, Reason} . If thistuple is returned,
the test caseis considered skipped and is logged as such.

If the test case returns the tuple { comrent , Comment } , the caseis considered successful and Commrent is printed
in the overview log file. Thisisequal to calling ct : comment (Comrment) .

1.5.6 Test Case Information Function

For each test case function there can be an extra function with the same name but without arguments. Thisis the test
case information function. It is expected to return a list of tagged tuples that specifies various properties regarding
the test case.

The following tags have special meaning:
timetrap

Sets the maximum time the test case is allowed to execute. If thistimeis exceeded, the test case fails with reason
timetrap_tinmeout. Noticethati nit_per_testcase and end_per _t est case areincluded in the
timetrap time. For details, see section Timetrap Time-Outs.

userdat a

Specifies any data related to the test case. This data can be retrieved at any time using the ct : user dat a/ 3
utility function.

sil ent _connecti ons
For details, see section Silent Connections.
require

Specifies configuration variables required by the test case. If the required configuration variables are not found
in any of the test system configuration files, the test case is skipped.

A required variable can also be given adefault valueto be used if thevariableisnot found in any configurationfile.
To specify adefault value, add atupleontheform { def aul t _confi g, Confi gVari abl eNane, Val ue}
to the test case information list (the position in thelist isirrelevant).

Examples:

testcasel() ->
[{require, ftp},
{default config, ftp, [{ftp, "my ftp host"},
{username, "aladdin"},
{password, "sesame"}1}}].

testcase2() ->
[{require, unix_ telnet, unix},
{require, {unix, [telnet, username, password]}},
{default config, unix, [{telnet, "my telnet host"},
{username, "aladdin"},
{password, "sesame"}1}}1.

For more information about r equi r e, see section Requiring and Reading Configuration Data in section External
Configuration Data and functionct : requi re/ 1/ 2.

Ericsson AB. All Rights Reserved.: Common Test | 13

1.5 Writing Test Suites

Specifying a default value for arequired variable can result in atest case always getting executed. This might not
be a desired behavior.

Ifti metraporrequire,orboth, isnot set specifically for aparticular test case, default values specified by function
sui t e/ 0 areused.

Tags other than the earlier mentioned are ignored by the test server.
An example of atest case information function follows:

reboot node() ->

[

{timetrap, {seconds,60}},

{require,interfaces},

{userdata,
[{description, "System Upgrade: RpuAddition Normal RebootNode"},
{fts,"http://someserver.ericsson.se/test doc4711.pdf"}]}

1.

1.5.7 Test Suite Information Function

Functionsui t e/ 0 can, for example, beused in atest suite moduleto set adefaultt i net r ap valueandtor equi r e
external configuration data. If atest case, or agroup information function also specifies any of the information tags, it
overrides the default values set by sui t e/ 0. For details, see Test Case Information Function and Test Case Groups.

The following options can also be specified with the suite information list:

» styl esheet, see HTML Style Sheets
e userdat a, see Test Case Information Function
* silent_connections, see Silent Connections

An example of the suite information function follows:

suite() ->
[
{timetrap, {minutes,10}},
{require,global names},
{userdata, [{info, "This suite tests database transactions."}1},
{silent_connections, [telnet]},
{stylesheet,"db testing.css"}
1.

1.5.8 Test Case Groups

A test case group is a set of test cases sharing configuration functions and execution properties. Test case groups are
defined by function gr oups/ 0 that should return aterm having the following syntax:

14 | Ericsson AB. All Rights Reserved.: Common Test

1.5 Writing Test Suites

groups() -> GroupDefs
Types:

GroupDefs = [GroupDef]

GroupDef = {GroupName,Properties,GroupsAndTestCases}

GroupName = atom()

GroupsAndTestCases = [GroupDef | {group,GroupName} | TestCase |
{testcase,TestCase, TCRepeatProps}]

TestCase = atom()

TCRepeatProps = [{repeat,N} | {repeat until ok,N} | {repeat until fail,N}]

G oupNane is the name of the group and must be unique within the test suite module. Groups can be nested, by
including a group definition within the G- oupsAndTest Cases list of another group. Pr operti es isthelist of
execution properties for the group. The possible values are as follows:

Properties = [parallel | sequence | Shuffle | {GroupRepeatType,N}]

Shuffle = shuffle | {shuffle,Seed}

Seed = {integer(),integer(),integer()}

GroupRepeatType = repeat | repeat until all ok | repeat until all fail |
repeat until any ok | repeat until any fail

N = integer() | forever

Explanations:
paral | el

Conmon Test executesall test casesin the group in parallel.
sequence

The cases are executed in a sequence as described in section Sequences in section Dependencies Between Test
Cases and Suites.

shuffle
The casesin the group are executed in random order.
repeat, repeat_until _*

Orders Conmon Test to repeat execution of all the cases in the group a given number of times, or until any,
or al, casesfail or succeed.

Example:

groups() -> [{groupl, [parallel], [testla,testlb]},
{group2, [shuffle,sequence], [test2a,test2b,test2c]}].

To specify inwhich order groups are to be executed (al so with respect to test casesthat are not part of any group), add
tuples on theform { gr oup, G oupNane} totheal | / 0 list.

Example:

all() -> [testcasel, {group,groupl}, {testcase,testcase2,[{repeat,10}1}, {group,group2}].

Execution properties with agroup tupleinal | / 0: { gr oup, G- oupNane, Properti es} can aso be specified.
These properties override those specified in the group definition (see gr oups/ 0 earlier). This way, the same set of
tests can be run, but with different properties, without having to make copies of the group definition in question.

Ericsson AB. All Rights Reserved.: Common Test | 15

1.5 Writing Test Suites

If a group contains subgroups, the execution properties for these can aso be specified in the
group tuple: {group, G oupNane, Properties, SubG oups} Where, SubG oups is a list of tuples,
{ G oupNane, Properties} or{ G oupNare, Properties, SubG oups} representing the subgroups. Any
subgroups defined in gr oups/ 0 for a group, that are not specified in the SubGr oups list, executes with their
predefined properties.

Example:

groups() -> [{testsl, [], [{tests2, [], [t2a,t2b]},
{tests3, [], [t31,t3b]}]}].

To execute group t est s1 twice with different propertiesfor t est s2 each time:

all() ->
[{group, testsl, default, [{tests2, [parallell}l},
{group, testsl, default, [{tests2, [shuffle,{repeat,10}]1}1}1].

Thisis equivalent to the following specification:

all() ->
[{group, testsl, default, [{tests2, [parallel]},
{tests3, default}]},
{group, testsl, default, [{tests2, [shuffle,{repeat,10}1},
{tests3, default}]}].

Valuedef aul t statesthat the predefined properties are to be used.
The following example shows how to override properties in a scenario with deeply nested groups.

groups() ->
[{testsl, [], [{group, tests2}]},
{tests2, [], [{group, tests3}]},
{tests3, [{repeat,2}], [t3a,t3b,t3cl}].

all() ->
[{group, testsl, default,
[{tests2, default,
[{tests3, [parallel,{repeat,100}1}1}1}1].

For ease of readability, all syntax definitions can be replaced by a function call whose return value should match the
expected syntax case.

Example:

all() ->
[{group, testsl, default, test cases()},
{group, testsl, default, [shuffle test(),
{tests3, default}]}].

test cases() ->
[{tests2, [parallell}, {tests3, default}].

shuffle test() ->
{tests2, [shuffle,{repeat,10}1}.

The described syntax can also be used in test specifications to change group properties at the time of execution,
without having to edit the test suite. For more information, see section Test Specifications in section Running Tests

and Analyzing Results.

16 | Ericsson AB. All Rights Reserved.: Common Test

1.5 Writing Test Suites

As illustrated, properties can be combined. If, for example, shuffl e, repeat _until _any fail, and
sequence areall specified, the test casesin the group are executed repeatedly, and in random order, until atest case
fails. Then execution isimmediately stopped and the remaining cases are skipped.

Before execution of a group begins, the configuration functioni ni t _per _gr oup(G oupNane, Config) is
called. Thelist of tuplesreturned from thisfunction ispassed to thetest casesin the usual manner by argument Conf i g.
i nit_per_group/ 2ismeantto beused for initializations common for the test cases in the group. After execution
of the group isfinished, function end_per _gr oup(G oupName, Confi g) iscaled. Thisfunction is meant to
be used for cleaning up after i ni t _per _gr oup/ 2. If theinit function is defined, so must the end function be.

Whenever a group is executed, if i ni t _per _group and end_per _gr oup do not exist in the suite, Cormon
Test callsdummy functions (with the same names) instead. Output generated by hook functions are saved to the log
files for these dummies. For more information, see section Manipulating Tests in section Common Test Hooks.

init_per testcase/2 and end_per _testcase/ 2 are aways called for each individua test case, no
matter if the case belongs to a group or not.

The properties for a group are always printed in the top of the HTML log for i ni t _per _group/ 2. The total
execution time for a group isincluded at the bottom of the log for end_per _gr oup/ 2.

Test case groups can be nested so sets of groups can be configured with the same i nit _per _group/ 2 and
end_per _group/ 2 functions. Nested groups can be defined by including a group definition, or a group name
reference, in the test case list of another group.

Example:

groups() -> [{groupl, [shuffle], [testla,
{group2, [], [test2a,test2b]},
testlbl]},
{group3, [], [{group,group4},
{group,group5}1},
{group4, [parallell], [test4da,testdb]},
{group5, [sequence], [test5a,test5b,test5c]}].

In the previous example, if all/ 0O returns group name references in the order [{group, groupl},

{group, group3}], the order of the configuration functions and test cases becomes the following (notice that
init_per_ testcase/2andend_per testcase/2: areasoawayscaled, but not included in thisexample
for simplification):

init per group(groupl, Config) -> Configl (*)
testla(Configl)
init per group(group2, Configl) -> Config2
test2a(Config2), test2b(Config2)
end per group(group2, Config2)
testlb(Configl)
end per _group(groupl, Configl)
init per group(group3, Config) -> Config3
init per group(group4, Config3) -> Config4
testd4a(Config4), testdb(Config4) (**)
end per group(group4, Config4)
init per group(group5, Config3) -> Config5
test5a(Config5), test5b(Config5), test5c(Config5)
end per group(group5, Config5)
end per _group(group3, Config3)

(*) The order of test caset est 1a,t est 1b, and gr oup?2 isundefined, asgr oupl has a shuffle property.

Ericsson AB. All Rights Reserved.: Common Test | 17

1.5 Writing Test Suites

(**) These cases are not executed in order, but in parallel.

Properties are not inherited from top-level groupsto nested subgroups. For instance, in the previous example, the test
casesin gr oup?2 are not executed in random order (which is the property of gr oup1).

1.5.9 Parallel Property and Nested Groups

If a group has a parallel property, its test cases are spawned simultaneously and get executed in parallel. However,
atest caseis not allowed to execute in parallel with end_per _gr oup/ 2, which means that the time to execute a
parallel group is equal to the execution time of the slowest test case in the group. A negative side effect of running
test casesin parallel isthat the HTML summary pages are not updated with links to the individual test case logs until
function end_per _gr oup/ 2 for the group has finished.

A group nested under a parallel group starts executing in parallel with previous (parallel) test cases (no matter what
properties the nested group has). However, as test cases are never executed in parallel withi nit _per _group/ 2
orend_per _group/ 2 of the same group, it isonly after a nested group has finished that remaining parallel cases
in the previous group become spawned.

1.5.10 Parallel Test Cases and I/O

A parallel test case has a private I/O server as its group leader. (For a description of the group leader concept, see
ERTS). The central 1/O server process, which handles the output from regular test cases and configuration functions,
does not respond to 1/0 messages during execution of parallel groups. Thisisimportant to understand to avoid certain
traps, like the following:

If aprocess, P, is spawned during execution of, for example, i ni t _per _sui t e/ 1, it inherits the group leader of
thei nit _per _suit e process. This group leader is the central 1/O server process mentioned earlier. If, at alater
time, during parallel test case execution, some event triggers process P to call i o: f or mat / 1/ 2, that call never
returns (as the group leader isin anon-responsive state) and causes P to hang.

1.5.11 Repeated Groups

A test case group can be repeated a certain number of times (specified by an integer) or indefinitely (specified
by f or ever). The repetition can also be stopped too early if any or all cases fail or succeed, that is, if any
of the properties repeat _until _any fail, repeat_until _any ok, repeat _until _all _fail, or
repeat _until _all _ok isused. If the basic r epeat property is used, status of test cases isirrelevant for the
repeat operation.

The status of asubgroup can bereturned (ok or f ai | ed), to affect the execution of the group on thelevel above. This
is accomplished by, in end_per _gr oup/ 2, looking up the value of t c_gr oup_properti es inthe Confi g
list and checking the result of the test casesin the group. If statusf ai | ed isto be returned from the group as aresult,
end_per _group/ 2 isto return the value {ret urn_group_resul t, fai | ed}. The status of a subgroup is
taken into account by Cormon Test when evaluating if execution of a group is to be repeated or not (unless the
basicr epeat property isused).

Thevalueoft c_group_properti es isalist of statustuples, each with thekey ok, ski pped, andf ai | ed. The
value of astatustupleisalist with names of test cases that have been executed with the corresponding status as resullt.

The following is an example of how to return the status from a group:

18 | Ericsson AB. All Rights Reserved.: Common Test

1.5 Writing Test Suites

end per group(Group, Config) ->
Status = proplists:get value(tc group result, Config),
case proplists:get value(failed, Status) of

[1 -> % no failed cases
{return_group result,ok};
_Failed -> % one or more failed

{return_group result, failed}
end.

Itisaso possible, in end_per _gr oup/ 2, to check the status of a subgroup (maybe to determine what status the
current group isto return). Thisisas simple asillustrated in the previous example, only the group nameis stored in a
tuple{ gr oup_resul t, G oupNane}, which can be searched for in the status lists.

Example:

end per group(groupl, Config) ->
Status = proplists:get value(tc group result, Config),
Failed = proplists:get value(failed, Status),
case lists:member({group result,group2}, Failed) of

true ->
{return_group result, failed};
false ->
{return _group result,ok}
end;
Note:

When atest case group isrepeated, the configuration functionsi ni t _per _group/ 2 andend_per _group/ 2
are also always called with each repetition.

1.5.12 Shuffled Test Case Order

The order in which test casesin a group are executed is under normal circumstances the same as the order specified
in the test case list in the group definition. With property shuf f | e set, however, Conron Test instead executes
the test casesin random order.

Y ou can provide a seed value (atuple of three integers) with the shuffle property { shuf f | e, Seed} . Thisway, the
same shuffling order can be created every time the group is executed. If no seed value is specified, Conrron Test
creates a "random" seed for the shuffling operation (using the return value of er | ang: t i mest anp/ 0). The seed
value is always printed to thei ni t _per _group/ 2 log file so that it can be used to recreate the same execution
order in a subsequent test run.

| If a shuffled test case group is repeated, the seed is not reset between turns.

If asubgroup is specified in agroup with ashuf f | e property, the execution order of this subgroup in relation to the
test cases (and other subgroups) in the group, is random. The order of the test cases in the subgroup is however not
random (unless the subgroup hasashuf f | e property).

Ericsson AB. All Rights Reserved.: Common Test | 19

1.5 Writing Test Suites

1.5.13 Group Information Function

Thetest case group information function, gr oup(G- oupNan®) , serves the same purpose as the suite- and test case
information functions previously described. However, the scope for the group information function, is all test cases
and subgroupsin the group in question (G- oupNan®).

Example:

group(connection_ tests) ->
[{require,login data},
{timetrap,1000}].

The group information properties override those set with the suite information function, and can in turn be overridden
by test case information properties. For a list of valid information properties and more general information, see the
Test Case Information Function.

1.5.14 Information Functions for Init- and End-Configuration

Information functions can also be used for functionsi ni t _per _suite,end_per _suite,init_per_group,
and end_per _gr oup, and they work the same way as with the Test Case Information Function. Thisis useful, for
example, for setting timetraps and requiring external configuration data relevant only for the configuration function
in question (without affecting properties set for groups and test cases in the suite).

The information function init/end_per_suite() is caled for init/end_per_suite(Config),
and information function i nit/end_per_group(G oupNane) is cdled for init/
end_per _group(G oupNane, Confi g). However, information functions cannot be used with init/
end_per _testcase(Test Case, Confi g), asthese configuration functions execute on the test case process
and use the same properties as the test case (that is, the properties set by the test case information function,
Test Case()). For alist of valid information properties and more general information, seethe Test Case Information
Function.

1.5.15 Data and Private Directories

In the data directory, dat a_di r, the test module has its own files needed for the testing. The name of dat a_di r
is the name of the test suite followed by " dat a". For example, " sonme_pat h/ f oo_SUI TE. beant has the
datadirectory " sonme_pat h/ f oo_SUl TE dat a/ " . Usethisdirectory for portability, that is, to avoid hardcoding
directory names in your suite. Asthe data directory is stored in the same directory as your test suite, you can rely on
its existence at runtime, even if the path to your test suite directory has changed between test suite implementation
and execution.

priv_dir istheprivatedirectory for thetest cases. Thisdirectory can be used whenever atest case (or configuration
function) needs to write something to file. The name of the private directory is generated by Conmon Test , which
also creates the directory.

By default, Cormon Test createsonecentral private directory per test run, shared by all test cases. Thisisnot aways
suitable. Especidly if the same test cases are executed multiple times during atest run (that is, if they belong to atest
case group with property r epeat) and there is arisk that filesin the private directory get overwritten. Under these
circumstances, Conmon Test can be configured to create one dedicated private directory per test case and execution
instead. This is accomplished with the flag/optioncr eat e_pri v_di r (to be used withthect _r un program, the
ct:run_test/ 1 function, or astest specification term). There are three possible values for this option as follows:

e auto_per_run
e auto_per_tc
* manual _per _tc

20 | Ericsson AB. All Rights Reserved.: Common Test

1.5 Writing Test Suites

The first value indicates the default pri v_di r behavior, that is, one private directory created per test run. The two
latter values tell Conmron Test to generate a unique test directory name per test case and execution. If the auto
version is used, all private directories are created automatically. This can become very inefficient for test runs with
many test cases or repetitions, or both. Therefore, if the manual version is used instead, the test case must tell Conmon
Test tocreatepri v_di r whenit needsit. It does this by calling the function ct : make_priv_dir/O0.

Do not depend on the current working directory for reading and writing datafiles, asthisisnot portable. All scratch
files are to be written in the pri v_di r and all data files are to be located in dat a_di r . Also, the Cormon
Test server setsthe current working directory to the test case log directory at the start of every case.

1.5.16 Execution Environment

Each test case is executed by a dedicated Erlang process. The process is spawned when the test case
starts, and terminated when the test case is finished. The configuration functions i nit _per testcase and
end_per _t est case execute on the same process as the test case.

Theconfiguration functionsi ni t _per _suit eandend_per _sui t e execute, liketest cases, on dedicated Erlang
processes.

1.5.17 Timetrap Time-Outs

The default time limit for a test case is 30 minutes, unless ati netr ap is specified either by the suite-, group-,
or test case information function. The timetrap time-out value defined by suit e/ 0 is the value that is used
for each test case in the suite (and for the configuration functionsi ni t _per_suite/ 1, end_per_suite/1,
i nit_per_group/2,andend_per _group/ 2). A timetrap value defined by gr oup(G oupNane) overrides
onedefined by sui t e() andisused for each test casein group G- oupNane, and any of its subgroups. If atimetrap
value is defined by gr oup/ 1 for a subgroup, it overrides that of its higher level groups. Timetrap values set by
individual test cases (by the test case information function) override both group- and suite- level timetraps.

A timetrap can also be set or reset dynamically during the execution of atest case, or configuration function. Thisis
doneby callingct : ti nmet rap/ 1. Thisfunction cancels the current timetrap and starts a new one (that stays active
until time-out, or end of the current function).

Timetrap values can be extended with a multiplier value specified at startup with optionmul ti ply_ti netraps.
It isalso possible to let the test server decide to scale up timetrap time-out values automatically. That is, if tools such
ascover ortrace are running during the test. This feature is disabled by default and can be enabled with start
optionscal e_ti netraps.

If atest case needs to suspend itself for atime that also gets multiplied by nul ti ply_ti net raps (and possibly
asoscadedupif scal e_ti netraps isenabled), thefunctionct : sl eep/ 1 can be used (instead of, for example,
tinmer:sleep/l).

A function (f un/ 0 or { Mod, Func, Args} (MFA) tuple) can be specified as timetrap value in the suite-, group-
and test case information function, and as argument to functionct : ti met r ap/ 1.

Examples:

{tinmetrap,{ny_test utils,tinmetrap, [?MODULE, system start]}}
ct:timetrap(fun() -> ny_tinetrap(Test CaseNane, Config) end)
The user timetrap function can be used for two things as follows:

e Toact asatimetrap. Thetime-out is triggered when the function returns.
e Toreturn atimetrap time value (other than a function).

Ericsson AB. All Rights Reserved.: Common Test | 21

1.5 Writing Test Suites

Before execution of the timetrap function (which is performed on a parallel, dedicated timetrap process), Conmron
Test cancels any previously set timer for the test case or configuration function. When the timetrap function
returns, the time-out is triggered, unless the return value is a valid timetrap time, such as an integer, or a
{SecM nOr Hour Tag, Ti ne} tuple (for details, see module ct_suite). If atime value isreturned, a new timetrap is
started to generate a time-out after the specified time.

The user timetrap function can return a time value after a delay. The effective timetrap time is then the delay time
plusthe returned time.

1.5.18 Logging - Categories and Verbosity Levels
Conmon Test provides the following three main functions for printing strings:

e ct:log(Category, Inportance, Format, FormatArgs, Opts)

e ct:print(Category, Inportance, Format, FormatArgs)

e ct:pal (Category, |nportance, Format, FormatArgs)

Thel og/ 1, 2, 3, 4, 5 function prints a string to the test case log file. The pri nt/ 1, 2, 3, 4 function prints the

stringtoscreen. Thepal / 1, 2, 3, 4 function printsthe samestring bothto file and screen. Thefunctionsare described
in module ct.

The optional Cat egor y argument can be used to categorize the log printout. Categories can be used for two things
asfollows:

* To compare the importance of the printout to a specific verbosity level.
* Toformat the printout according to a user-specific HTML Style Sheet (CSS).

Argument | mpor t ance specifies alevel of importance that, compared to a verbosity level (general and/or set per
category), determines if the printout is to be visible. | mpor t ance is any integer in the range 0..99. Predefined
constants exist in the ct . hr| header file. The default importance level, ?STD_| MPORTANCE (used if argument
| npor t ance isnot provided), is50. Thisis aso the importance used for standard 1/0O, for example, from printouts
madewithi o: format/ 2,i o: put _chars/ 1, and so on.

| mpor t ance is compared to a verbosity level set by the ver bosi ty start flag/option. The level can be set per
category or generally, or both. If ver bosi t y isnot set by theuser, alevel of 100 (?MAX_VERBOSI TY =all printouts
visible) isused as default value. Conmron Test performs the following test:

Importance >= (100-VerbositylLevel)

The constant ?STD_VERBOSI TY hasvalue 50 (seect . hr 1). At thislevel, all standard 1/O gets printed. If alower
verbosity level is set, standard /O printouts are ignored. Verbosity level O effectively turns all logging off (except
from printouts made by Conmon Test itself).

The general verbosity level isnot associated with any particular category. Thislevel setsthe threshold for the standard
I/O printouts, uncategorized ct : | og/ pri nt/ pal printouts, and printouts for categories with undefined verbosity
level.

Examples:
Some printouts during test case execution:

io:format("l. Standard IO, importance = ~w~n", [?STD IMPORTANCE]),
ct:log("2. Uncategorized, importance = ~w", [?STD IMPORTANCE]),

ct:log(info, "3. Categorized info, importance = ~w", [?STD IMPORTANCE]),

ct:log(info, ?LOW IMPORTANCE, "4. Categorized info, importance = ~w", [?LOW IMPORTANCE]),
ct:log(error, ?HI IMPORTANCE, "5. Categorized error, importance = ~w", [?HI IMPORTANCE]),
ct:log(error, ?MAX IMPORTANCE, "6. Categorized error, importance = ~w", [?MAX IMPORTANCE]),

22 | Ericsson AB. All Rights Reserved.: Common Test

1.5 Writing Test Suites

If starting the test with a general verbosity level of 50 (?STD_VERBOSI TY):

$ ct run -verbosity 50

the following is printed:

Standard I0, importance = 50

Uncategorized, importance = 50
Categorized info, importance =5
Categorized error, importance
Categorized error, importance

SOOUTWN =

0
=75
= 99

If starting the test with:

$ ct run -verbosity 1 and info 75
the following is printed:
3. Categorized info, importance

4. Categorized info, importance
6. Categorized error, importance =

= 50
= 25
99

Note that the category argument is not required in order to only specify the importance of a printout. Example:

ct:pal(?LOW_IMPORTANCE, "Info report: ~p", [Info])

Or perhaps in combination with constants:

-define(INFO, ?LOW_IMPORTANCE).
-define(ERROR, ?HI_IMPORTANCE).

ct:log(?INFO, "Info report: ~p", [Info])
ct:pal(?ERROR, "Error report: ~p", [Error])

Thefunctionsct : set _verbosity/2andct: get_verbosity/ 1 may be used to modify and read verbosity
levels during test execution.

Thearguments For nat and For mat Argsinct: | og/ pri nt/ pal areawayspassed ontothe STDLIB function
i o: fornmat/ 3 (For details, seethei o manua page).

ct:pal/4 andct: | og/5 add headers to strings being printed to the log file. The strings are also wrapped in div
tags with a CSS class attribute, so that stylesheet formatting can be applied. To disable this feature for a printout (i.e.
toget aresult similar tousingi o: f or nat/ 2), cal ct: | og/ 5 withtheno_css option.

How categories can be mapped to CSS tags is documented in section HTML Style Sheets in section Running Tests
and Analyzing Resullts.

Common Test will escape special HTML characters (<, >and &) in printoutsto thelog file madewith ct : pal / 4 and
i o: format/ 2.Inorder to print stringswith HTML tagstothelog, usethect : | og/ 3, 4, 5 function. The character
escaping feature is per default disabled for ct : | og/ 3, 4, 5 but can be enabled with theesc_char s optionin the
Opt s list, seect : 1 0g/ 3, 4, 5.

If the character escaping feature needsto be disabled (typically for backwards compatibility reasons), usethect _r un
start flag- no_esc_char s, orthect : run_t est/ 1 start option { esc_char s, Bool } (thisstart optionisalso
supported in test specifications).

Ericsson AB. All Rights Reserved.: Common Test | 23

1.6 Test Structure

For more information about log files, see section Log Files in section Running Tests and Analyzing Results.

1.5.19 lllegal Dependencies

Even though it is highly efficient to write test suites with the Common Test framework, mistakes can be made,
mainly because of illegal dependencies. Some of the more frequent mistakes from our own experience with running
the Erlang/OTP test suites follows:

Depending on current directory, and writing there:

Thisis a common error in test suites. It is assumed that the current directory is the same as the author used as
current directory when the test case was devel oped. Many test cases even try to write scratch filesto thisdirectory.
Instead dat a_di r andpri v_di r areto be used to locate data and for writing scratch files.

Depending on execution order:
During development of test suites, make no assumptions on the execution order of the test cases or suites. For

example, atest case must not assumethat aserver it dependsonisaready started by aprevioustest case. Reasons
for thisfollows:

e The user/operator can specify the order at will, and maybe a different execution order is sometimes more
relevant or efficient.

» |If the user specifies awhole directory of test suites for the test, the execution order of the suites depends on
how thefiles are listed by the operating system, which varies between systems.

« |f auser wantsto run only asubset of atest suite, there is no way one test case could successfully depend
on another.

Depending on Unix:

Running Unix commands through os: cnd arelikely not to work on non-Unix platforms.

Nested test cases:

Starting a test case from another not only tests the same thing twice, but also makes it harder to follow what is

being tested. Also, if the called test case fails for some reason, so do the caller. This way, one error gives cause
to several error reports, which isto be avoided.

Functionality common for many test case functions can be implemented in common help functions. If these
functions are useful for test cases across suites, put the help functions into common help modules.

Failure to crash or exit when things go wrong:

Making requests without checking that the return value indicates success can be OK if the test case failslater, but

it is never acceptable just to print an error message (into the log file) and return successfully. Such test cases do
harm, asthey create afalse sense of security when overviewing the test results.

Messing up for subsegquent test cases:

Test cases are to restore as much of the execution environment as possible, so that subsequent test cases do not
crash because of their execution order. The function end_per _t est case issuitablefor this.

1.6 Test Structure
1.6.1 General

A test is performed by running one or more test suites. A test suite consists of test cases, configuration functions, and
information functions. Test cases can be grouped in so called test case groups. A test suite is an Erlang module and
test cases are implemented as Erlang functions. Test suites are stored in test directories.

24 | Ericsson AB. All Rights Reserved.: Common Test

1.6 Test Structure

1.6.2 Skipping Test Cases

Certain test cases can be skipped, for example, if you know beforehand that a specific test case fails. The reason can
be functionality that is not yet implemented, a bug that is known but not yet fixed, or some functionality that does not
work or is not applicable on a specific platform.

Test cases can be skipped in the following ways:

e Usingski p_suites andski p_cases termsin test specifications.
e Returning{ ski p, Reason} fromfunctioni nit_per _testcase/2orinit_per _suite/l.

* Returning { ski p, Reason} from the execution clause of the test case. The execution clause is called, so the
author must ensure that the test case does not run.

When atest caseis skipped, it is noted as SKI PPED in the HTML log.

1.6.3 Definition of Terms
Auto-skipped test case

When a configuration function fails (that is, terminates unexpectedly), the test cases depending on the
configuration function are skipped automatically by Commron Test . The status of the test cases is then "auto-
skipped". Test cases are also "auto-skipped" by Conmron Test if the required configuration datais unavailable
at runtime.

Configuration function

A function in a test suite that is meant to be used for setting up, cleaning up, and/or verifying the state and
environment on the System Under Test (SUT) and/or the Cormon Test host node, so that atest case (or a set
of test cases) can execute correctly.

Configuration file

A file containing datarelated to atest and/or an SUT, for example, protocol server addresses, client login details,
and hardware interface addresses. That is, any data that is to be handled as variable in the suite and not be hard-
coded.

Configuration variable
A name (an Erlang atom) associated with a data value read from a configuration file.
data dir

Data directory for atest suite. This directory contains any files used by the test suite, for example, extra Erlang
modules, binaries, or datafiles.

Information function

A function in atest suite that returns alist of properties (read by the Conmon Test server) that describes the
conditions for executing the test casesin the stite.

Major logfile
An overview and summary log file for one or more test suites.
Minor logfile
A log file for one particular test case. Also called the test case log file.
priv_dir
Private directory for atest suite. This directory isto be used when the test suite needsto write to files.

Ericsson AB. All Rights Reserved.: Common Test | 25

1.7 Examples and Templates

ct_run

The name of an executable program that can be used as an interface for specifying and running testswith Cormon
Test .

Test case
A singletest included in atest suite. A test caseisimplemented as afunction in atest suite module.
Test case group

A set of test cases sharing configuration functions and execution properties. The execution properties specify if
the test cases in the group are to be executed in random order, in parallel, or in sequence, and if the execution
of the group is be repeated. Test case groups can also be nested. That is, a group can, besides test cases, contain
subgroups.

Test suite

An Erlang module containing a collection of test cases for a specific functional area.
Test directory

A directory containing one or more test suite modules, that is, a group of test suites.
Argument Confi g

A list of key-value tuples (that is, a property list) containing runtime configuration data passed from the
configuration functions to the test cases.

User-skipped test case
The status of atest case explicitly skipped in any of the ways described in section Skipping Test Cases.

1.7 Examples and Templates

1.7.1 Test Suite Example

The following example test suite shows some tests of a database server:

26 | Ericsson AB. All Rights Reserved.: Common Test

1.7 Examples and Templates

-module(db data type SUITE).
-include lib("common test/include/ct.hrl").
%% Test server callbacks
-export([suite/0, all/o,
init per suite/1, end per suite/1,
init per testcase/2, end per testcase/2]).

%% Test cases
-export([string/1, integer/1]).

-define(CONNECT STR, "DSN=sqlserver;UID=alladin;PWD=sesame").

%% Function: suite() -> Info
%% Info = [tuple()]
%% List of key/value pairs.
%% Description: Returns list of tuples to set default properties
%% for the suite.
suite() ->

[{timetrap, {minutes,1}}].

Function: init per suite(Config@) -> Configl

% Config® = Configl = [tuple()]
% A list of key/value pairs, holding the test case configuration.

Description: Initialization before the suite.

init per suite(Config) ->
{ok, Ref} = db:connect(?CONNECT STR, []),
TableName = db lib:unique table name(),
[{con ref, Ref },{table name, TableName}| Config].

Function: end per suite(Config) -> term()

% Config = [tuple()]
% A list of key/value pairs, holding the test case configuration.

Description: Cleanup after the suite.

end per suite(Config) ->
Ref = proplists:get value(con_ref, Config),
db:disconnect(Ref),
ok.

TestCase = atom()
Name of the test case that is about to run.
ConfigO® = Configl = [tuple()]
A list of key/value pairs, holding the test case configuration.

Description: Initialization before each test case.

Ericsson AB. All Rights Reserved

. Common Test | 27

1.7 Examples and Templates

o°
o°

init per testcase(Case, Config) ->
Ref = proplists:get value(con_ref, Config),
TableName = proplists:get value(table name, Config),
ok = db:create table(Ref, TableName, table type(Case)),
Config.

Function: end per testcase(TestCase, Config) -> term()

% TestCase = atom()

% Name of the test case that is finished.

% Config = [tuple()]

% A list of key/value pairs, holding the test case configuration.
% Description: Cleanup after each test case.

end per testcase(Case, Config) ->
Ref = proplists:get value(con_ref, Config),
TableName = proplists:get value(table name, Config),
ok = db:delete table(Ref, TableName),
ok.

Function: all() -> GroupsAndTestCases

% GroupsAndTestCases = [{group,GroupName} | TestCase]
% GroupName = atom()

% Name of a test case group.

% TestCase = atom()

% Name of a test case.

Description: Returns the list of groups and test cases that
are to be executed.

all() ->
[string, integer].

string(Config) ->
insert _and lookup(dummy key, "Dummy string", Config).

integer(Config) ->
insert and lookup(dummy key, 42, Config).

insert _and lookup(Key, Value, Config) ->
Ref = proplists:get value(con_ref, Config),
TableName = proplists:get value(table name, Config),
ok = db:insert(Ref, TableName, Key, Value),
[Value] = db:lookup(Ref, TableName, Key),
ok = db:delete(Ref, TableName, Key),
[1 = db:lookup(Ref, TableName, Key),
ok.

1.7.2 Test Suite Templates

The Erlang mode for the Emacs editor includes two Common Test test suite templates, one with extensive
information in the function headers, and one with minimal information. A test suite template provides aquick start for

28 | Ericsson AB. All Rights Reserved.: Common Test

1.7 Examples and Templates

implementing a suite from scratch and gives a good overview of the available callback functions. The two templates
follows:

Large Common Test Suite

Ericsson AB. All Rights Reserved.: Common Test | 29

1.7 Examples and Templates

%% Note: This directive should only be used in test suites.
-compile(export all).

-include lib("common test/include/ct.hrl").

Function: suite() -> Info
Info = [tuple()]
List of key/value pairs.
for the suite.

Note: The suite/0 function is only meant to be used to return

% Description: Returns list of tuples to set default properties
% default data values, not perform any other operations.

suite() ->

Function: init per suite(Config0Q) ->
Configl | {skip,Reason} | {skip_and save,Reason,Configl}

% Config® = Configl = [tuple()]

% A list of key/value pairs, holding the test case configuration.

% Reason = term()

% The reason for skipping the suite.

% Description: Initialization before the suite.

% Note: This function is free to add any key/value pairs to the Config
% variable, but should NOT alter/remove any existing entries.

Config.

% Function: end per suite(Config@) -> term() | {save config,Configl}
% Config® = Configl = [tuple()]

% A list of key/value pairs, holding the test case configuration.
% Description: Cleanup after the suite.

ok.

% Function: init per group(GroupName, Config0) ->
% Configl | {skip,Reason} | {skip_and save,Reason,Configl}

30 | Ericsson AB. All Rights Reserved.: Common Test

1.7 Examples and Templates

%% GroupName = atom()

%% Name of the test case group that is about to run.

%% Config® = Configl = [tuple()]

%% A list of key/value pairs, holding configuration data for the group.
%% Reason = term()

%% The reason for skipping all test cases and subgroups in the group.

Description: Initialization before each test case group.
Config.

Function: end per group(GroupName, Config@) ->
term() | {save config,Configl}

%% GroupName = atom()

%% Name of the test case group that is finished.

%% Config® = Configl = [tuple()]

%% A list of key/value pairs, holding configuration data for the group.

Description: Cleanup after each test case group.
ok.

Function: init per testcase(TestCase, Config0Q) ->
Configl | {skip,Reason} | {skip_and save,Reason,Configl}

% TestCase = atom()

% Name of the test case that is about to run.

% Config® = Configl = [tuple()]

% A list of key/value pairs, holding the test case configuration.
% Reason = term()

% The reason for skipping the test case.

% Description: Initialization before each test case.

Note: This function is free to add any key/value pairs to the Config
variable, but should NOT alter/remove any existing entries.

Config.

Function: end per testcase(TestCase, Config0Q) ->
term() | {save config,Configl} | {fail,Reason}

%% TestCase = atom()

%% Name of the test case that is finished.

%% Config® = Configl = [tuple()]

%% A list of key/value pairs, holding the test case configuration.
%% Reason = term()

%% The reason for failing the test case.

Description: Cleanup after each test case.

ok.
%% Function: groups() -> [Group]
%% Group = {GroupName,Properties,GroupsAndTestCases}

Ericsson AB. All Rights Reserved

. Common Test | 31

1.7 Examples and Templates

%% GroupName = atom()

%% The name of the group.

%% Properties = [parallel | sequence | Shuffle | {RepeatType,N}]
%% Group properties that may be combined.
%% GroupsAndTestCases = [Group | {group,GroupName} | TestCase]
%% TestCase = atom()

%% The name of a test case.

%% Shuffle = shuffle | {shuffle,Seed}

%% To get cases executed in random order.
%% Seed = {integer(),integer(),integer()}

%% RepeatType = repeat | repeat until all ok | repeat_until all fail |
6% repeat_until _any ok | repeat until any fail

%% To get execution of cases repeated.

%% N = integer() | forever

Description: Returns a list of test case group definitions.

Function: all() -> GroupsAndTestCases | {skip,Reason}

% GroupsAndTestCases = [{group,GroupName} | TestCase]
% GroupName = atom()

% Name of a test case group.
% TestCase = atom()

% Name of a test case.
% Reason = term()

% The reason for skipping all groups and test cases.

Description: Returns the list of groups and test cases that
are to be executed.

all() ->
[my test case].

Info = [tuple()]
List of key/value pairs.

properties for the test case.

Note: This function is only meant to be used to return a list of

o
©
-2
070
o9
()
o9
()
o9
()
o9
070
%% Description: Test case info function - returns list of tuples to set
%%
o9
()
o9
()
%% values, not perform any other operations.

O/OO

Function: TestCase(Config@) ->
ok | exit() | {skip,Reason} | {comment,Comment}
{save config,Configl} | {skip_and save,Reason,Configl}

ConfigO = Configl = [tuple()]

A list of key/value pairs, holding the test case configuration.
Reason = term()

32 | Ericsson AB. All Rights Reserved.: Common Test

1.7 Examples and Templates

The reason for skipping the test case.
Comment = term()
A comment about the test case that will be printed in the html log.

Description: Test case function. (The name of it must be specified in
the all/0 list or in a test case group for the test case
to be executed).

my test case(Config) ->
ok.

Small Common Test Suite

Ericsson AB. All Rights Reserved.: Common Test | 33

1.7 Examples and Templates

-compile(export all).

-include lib("common test/include/ct.hrl").

%% Function: suite() -> Info
%% Info = [tuple()]
suite() ->
[{timetrap, {seconds,30}}].
%% Function: init per suite(Config0Q) ->
%% Configl | {skip,Reason} | {skip_and save,Reason,Configl}
%% Config0 = Configl = [tuple()]
%% Reason = term()

Config.
%% Function: end per suite(Config@) -> term() | {save config,Configl}
%% Config0 = Configl = [tuple()]

%% Function: init per group(GroupName, Config@) ->

%% Configl | {skip,Reason} | {skip_and save,Reason,Configl}
%% GroupName = atom()

%% Configd = Configl = [tuple()]

%% Reason = term()

Config.

% Function: end per group(GroupName, Config@) ->
% term() | {save config,Configl}

% GroupName = atom()

% Config® = Configl = [tuple()]

ok.

%% Function: init per testcase(TestCase, Config0) ->

%% Configl | {skip,Reason} | {skip_and save,Reason,Configl}
%% TestCase = atom()

%% Configd = Configl = [tuple()]

%% Reason = term()

init per testcase(TestCase, Config) ->
Config.

34 | Ericsson AB. All Rights Reserved.: Common Test

1.8 Running Tests and Analyzing Results

%% Function: end per testcase(TestCase, Config@) ->

%% term() | {save config,Configl} | {fail,Reason}
%% TestCase = atom()

%% Config® = Configl = [tuple()]

%% Reason = term()

ok.

% Function: groups() -> [Group]

% Group = {GroupName,Properties,GroupsAndTestCases}

% GroupName = atom()

% Properties = [parallel | sequence | Shuffle | {RepeatType,N}]

% GroupsAndTestCases = [Group | {group,GroupName} | TestCase]

% TestCase = atom()

% Shuffle = shuffle | {shuffle,{integer(),integer(),integer()}}

% RepeatType = repeat | repeat until all ok | repeat until all fail |
% repeat_until _any ok | repeat until any fail

% N = integer() | forever

%% Function: all() -> GroupsAndTestCases | {skip,Reason}
%% GroupsAndTestCases = [{group,GroupName} | TestCase]
%% GroupName = atom()

%% TestCase = atom()

%% Reason = term()

all() ->

Function: TestCase(Config@) ->
ok | exit() | {skip,Reason} | {comment,Comment}
{save config,Configl} | {skip_and save,Reason,Configl}
ConfigO® = Configl = [tuple()]
Reason = term()
Comment = term()

my test case(Config) ->
ok.

1.8 Running Tests and Analyzing Results

1.8.1 Using the Common Test Framework
TheCommon Test framework provides ahigh-level operator interface for testing, providing the following features:

e Automatic compilation of test suites (and help modules)
* Creation of extraHTML pages for improved overview.
e Single-command interface for running all available tests

Ericsson AB. All Rights Reserved.: Common Test | 35

1.8 Running Tests and Analyzing Results

» Handling of configuration files specifying data related to the System Under Test (SUT) (and any other variable
data)

e Mode for running multiple independent test sessionsin parallel with central control and configuration

1.8.2 Automatic Compilation of Test Suites and Help Modules

When Common Test starts, it automatically attemptsto compile any suitesincluded in the specified tests. If particular
suites are specified, only those suites are compiled. If a particular test object directory is specified (meaning al suites
in this directory are to be part of the test), Cormon Test runsfunction make: al | / 1 in the directory to compile
the suites.

If compilation failsfor one or more suites, the compilation errors are printed to tty and the operator is asked if the test
run isto proceed without the missing suites, or be aborted. If the operator choosesto proceed, the tests having missing
suitesare noted inthe HTML log. If Cormon Test isunable to prompt the user after compilation failure (if Conmon
Test does not control st di n), the test run proceeds automatically without the missing suites. This behavior can
however be modified with the ct _run flag - abort i f_m ssing_suites,orthect:run_test/1 option
{abort _if_missing_suites, TrueOrFal se}.Ifabort _if_missing_suitesissettotrue,thetest
run stops immediately if some suites fail to compile.

Any help module (that is, regular Erlang module with name not ending with "_SUITE") that resides in the same test
object directory as a suite, which is part of the test, is also automatically compiled. A help moduleis not mistaken for
atest suite (unlessit hasa”_SUITE" name). All help modules in a particular test object directory are compiled, no
matter if al or only particular suitesin the directory are part of the test.

If test suites or help modules include header files stored in other locations than the test directory, these include
directories can be specified by using flag - i ncl ude withct _run, or optioni ncl ude withct: run_test/ 1.
Also, an include path can be specified with an OS environment variable, CT_| NCLUDE_PATH.

Example (bash):
$ export CT_I NCLUDE_PATH=~t est user/ comon_suite_fil es/incl ude: ~t estuser/
common_Ilib files/include

Common Test passes al include directories (specified either with flag/option i ncl ude, or variable
CT_| NCLUDE_PATH, or both, to the compiler.

Include directories can also be specified in test specifications, see Test Specifications.

If the user wants to run all test suites for atest object (or an OTP application) by specifying only the top directory
(for example, with start flag/option di r), Common Test primarily looks for test suite modules in a subdirectory
named t est . If this subdirectory does not exist, the specified top directory is assumed to be the test directory, and
test suites are read from there instead.

To disable the automatic compilation feature, use flag -no_auto_conpil e with ct_run, or option
{auto_conpil e, fal se} withct:run_test/ 1. With automatic compilation disabled, the user isresponsible
for compiling the test suite modules (and any help modules) before the test run. If the modules cannot be loaded from
the local file system during startup of Conmon Test , the user must preload the modules before starting the test.
Conmon Test only verifiesthat the specified test suites exist (that is, that they are, or can be, loaded). Thisis useful,
for example, if the test suites are transferred and loaded as binaries through RPC from a remote node.

1.8.3 Running Tests from the OS Command Line
Thect _run program can be used for running tests from the OS command line, for example, as follows:

e ct_run -config <configfilenanes> -dir <dirs>
e ct_run -config <configfilenames> -suite <suitesw thfull path>

e ct_run -userconfig <cal |l backnmodul enanme> <configfil enanes> -suite
<sui teswi t hf ul | pat h>

36 | Ericsson AB. All Rights Reserved.: Common Test

1.8 Running Tests and Analyzing Results

e ct_run -config <configfilenames> -suite <suitew thfullpath> -group
<groups> -case <casenanmes>

Examples:
$ ct run -config $CFGS/sysl.cfg $CFGS/sys2.cfg -dir $SYS1 TEST $SYS2 TEST
$ ct run -userconfig ct config xml $CFGS/sysl.xml $CFGS/sys2.xml -dir $SYS1 TEST $SYS2 TEST
$ ct run -suite $SYS1 TEST/setup SUITE $SYS2 TEST/config SUITE
$ ct run -suite $SYS1 TEST/setup SUITE -case start stop
$ ct run -suite $SYS1 TEST/setup SUITE -group installation -case start stop

The flags di r, sui t e, and gr oup/ case can be combined. For example, to run x_SUl TE and y_SUl TE in
directory t est di r, asfollows:

$ ct run -dir ./testdir -suite x SUITE y SUITE

This has the same effect as the following:

$ ct run -suite ./testdir/x SUITE ./testdir/y SUITE

For details, see Test Case Group Execution.
The following flags can also be used withct _r un:
-hel p

Listsall available start flags.
-logdir <dir>

Specifieswhere the HTML log files are to be written.
-l abel <nane_of test_run>

Associates the test run with a name that gets printed in the overview HTML log files.
-refresh_| ogs

Refreshes the top-level HTML index files.
-shel |

Starts interactive shell mode (described later).
-step [step_opts]

Steps through test cases using the Erlang Debugger (described later).
-spec <testspecs>

Uses test specification asinput (described later).
-all ow _user _terns

Allows user-specific terms in a test specification (described |ater).
-silent _connections [conn_types]

,tellsCommon Test to suppress printouts for specified connections (described later).
-styl esheet <css file>

Points out auser HTML style sheet (described later).

Ericsson AB. All Rights Reserved.: Common Test | 37

1.8 Running Tests and Analyzing Results

-cover <cover_cfg_file>

To perform code coverage test (see Code Coverage Analysis).
-cover_stop <bool >

To specify if thecover tool isto be stopped after the test is completed (see Code Coverage Analysis).
-event _handl er <event handl ers>

Toingtal event handlers.
-event _handl er _init <event handl er s>

Toinstall event handlersincluding start arguments.
-ct _hooks <ct _hooks>

To install Common Test Hooks including start arguments.
-enabl e_builtin_hooks <bool >

To enable or disable Built-in Common Test Hooks. Defaultist r ue.
-include

Specifiesinclude directories (described earlier).
-no_auto_conpile

Disables the automatic test suite compilation feature (described earlier).
-abort if_mssing_suites

Aborts the test run if one or more suites fail to compile (described earlier).
-multiply_tinetraps <n>

Extends timetrap time-out values.
-scal e_tinetraps <bool >

Enables automatic timetrap time-out scaling.
-repeat <n>

TellsCommon Test to repeat the tests n times (described later).
-duration <tinme>

TellsCommon Test to repeat the tests for duration of time (described later).
-until <stop_time>

TellsCommon Test to repeat thetests until st op_t i me (described later).
-force_stop [skip_rest]

Ontime-out, thetest runisaborted when the current test job isfinished. If ski p_r est isprovided, theremaining
test cases in the current test job are skipped (described later).

-decrypt _key <key>

Provides a decryption key for encrypted configuration files.
-decrypt _file <key file>

Points out afile containing a decryption key for encrypted configuration files.
-basic_htnl

Switches off HTML enhancements that can be incompatible with older browsers.

38 | Ericsson AB. All Rights Reserved.: Common Test

1.8 Running Tests and Analyzing Results

-1 ogopt s <opt s>
Enables modification of the logging behavior, see Log options.
-verbosity <l evel s>
Sets verbosity levels for printouts.
-no_esc_chars
Disables automatic escaping of special HTML characters. See the Logging chapter.

Directories passed to Conmon Test can have either relative or absolute paths.

Any start flagsto the Erlang runtime system (application ERTS) can also be passed as parameterstoct _r un. Itis,
for example, useful to be able to pass directoriesto be added to the Erlang code server search path with flag - pa or
- pz. If you have common help- or library modules for test suites (separately compiled), stored in other directories
than the test suite directories, these hel p/ | i b directories are preferably added to the code path this way.

Example:

$ ct run -dir ./chat_server -logdir ./chat_server/testlogs -pa $PWY
chat _server/ebin

The absolute path of directory chat _ser ver/ ebi n is here passed to the code server. Thisis essential because
relative paths are stored by the code server asrelative, and Conmron Test changes the current working directory
of ERTS during the test run.

Thect _r un program sets the exit status before shutting down. The following values are defined:

e 0O indicates a successful testrun, that is, without failed or auto-skipped test cases.
» 1 indicatesthat one or more test cases have failed, or have been auto-skipped.

e 2 indicatesthat the test execution has failed because of, for example, compilation errors, or anillegal return
value from an information function.

If auto-skipped test cases do not affect the exit status. The default behavior can be changed using start flag:

-exit status ignore config

|Executing ct _run without start flagsis equal to thecommand: ct _run -dir ./ |

For more information about the ct _r un program, see modulect _r un and section Installation.

1.8.4 Running Tests from the Erlang Shell or from an Erlang Program

Conmon Test provides an Erlang API for running tests. The main (and most flexible) function for specifying and
executingtestsisct : run_t est/ 1. It takesthe same start parametersasct _r un, but the flags are instead specified
asoptionsin alist of key-value tuples. For example, atest specified withct _r un asfollows:

$ ct_run -suite ./ny_SUTE -logdir ./results
iswithct : run_t est/ 1 specified as:

Ericsson AB. All Rights Reserved.: Common Test | 39

1.8 Running Tests and Analyzing Results

1> ct:run_test([{suite,"./my_SU TE"},{logdir,"./results"}]).

The function returns the test result, represented by the tuple { Gk, Fai | ed, { User Ski pped, Aut oSki pped}},
where each element isan integer. If test execution fails, the function returnsthetuple{ er r or , Reason} , wherethe
term Reason explainsthefailure.

The default start option { di r, Cad} (to run all suitesin the current working directory) isused if thefunctioniscalled
with an empty list of options.

Releasing the Erlang Shell

During execution of tests started with ct : run_t est / 1, the Erlang shell process, controlling st di n, remains the
top-level process of the Common Test system of processes. Consequently, the Erlang shell is not available for
interaction during the test run. If thisis not desirable, for example, because the shell is needed for debugging purposes
or for interaction with the SUT during test execution, set start option r el ease_shel | totrue (in the cal to
ct:run_test/ 1 orby usingthecorresponding test specificationterm, described later). ThismakesConmron Test
release the shell immediately after the test suite compilation stage. To accomplish this, atest runner processis spawned
to take control of the test execution. The effect isthat ct : run_t est / 1 returns the pid of this process rather than
the test result, which instead is printed to tty at the end of the test run.

Tousethefunctionsct : break/ 1, 2andct: continue/ 0, 1,rel ease_shel | mustbesettot r ue.

For details, seect : run_t est/ 1 manua page.

1.8.5 Test Case Group Execution

Withthect _runflag,orct:run_t est/ 1 optiongr oup, oneor moretest case groups can be specified, optionally
in combination with specific test cases. The syntax for specifying groups on the command lineis asfollows:

$ ct _run -group <group names or paths> [-case <cases>]

The syntax in the Erlang shell is asfollows:

1> ct:run_test([{group,GroupsNamesOrPaths}, {case,Cases}]).

Parameter gr oup_nanes_or _pat hs specifies one or more group names and/or one or more group paths. At
startup, Cormon Test searches for matching groups in the group definitions tree (that is, the list returned from
Sui t e: groups/ 0; for details, see section Test Case Groups.

Given a group name, say g, Conmon Test searches for all paths leading to g. By path is meant a sequence of
nested groups, which must be followed to get from the top-level group to g. To execute the test cases in group g,
Common Test must call thei ni t _per _gr oup/ 2 function for each group in the path to g, and all corresponding
end_per _gr oup/ 2 functions afterwards. Thisisbecause the configuration of atest caseing (anditsConf i g input
data) dependsoni ni t _per _test case(Test Case, Confi g) anditsreturn value, which in turn depends on
i nit_per_group(g, Config) anditsreturn value, which in turn dependsoni nit _per _group/ 2 of the
group above g, and so on, all the way up to the top-level group.

This means that if there is more than one way to locate a group (and its test cases) in a path, the result of the group
search operation isanumber of tests, all of which areto be performed. Conmon Test interprets agroup specification
that consists of asingle name as follows:

"Search and find al paths in the group definitions tree that lead to the specified group and, for each path, create atest
that does the following, in order:

40 | Ericsson AB. All Rights Reserved.: Common Test

1.8 Running Tests and Analyzing Results

» Executes all configuration functions in the path to the specified group.

e Executesal, or all matching, test casesin this group.

« Executesall, or all matching, test casesin all subgroups of the group.”

Theuser can specify aspecific group pathwith parameter gr oup_nanes_or _pat hs. Withthistypeof specification

execution of unwanted groups (in otherwise matching paths), and/or the execution of subgroups can be avoided. The
command line syntax of the group path isalist of group namesin the path, for example:

$ ct_run -suite "./x_SU TE" -group [gl,93,94] -case tcl tch
The syntax in the Erlang shell is as follows (requires alist within the groups list):

1> ct:run_test([{suite,"./x _SU TE"}, {group,[[91,93,04]1}, {t est case,

[tcl,tc5]}]).

The last group in the specified path is the terminating group in the test, that is, no subgroups following this group are
executed. In the previous example, g4 is the terminating group. Hence, Conmron Test executes atest that calls all
i ni t configuration functionsin the path to g4, that is, g1. . g3. . g4. It then callstest casest c1 and t ¢5 in g4,
and finally all end configuration functionsin order g4. . g3. . g1.

The group path specification does not necessarily have to include all groups in the path to the terminating group.
Common Test searchesfor all matching pathsif an incomplete group path is specified.

Group names and group paths can be combined with parameter gr oup_nanes_or _pat hs. Each element is
treated as an individual specification in combination with parameter cases. The following examples illustrates
this.

Examples:

-module(x_ SUITE).
%% The group definitions:
groups() ->
[{topl,[],[tcll,tcl2,
{subl1l,[],[tcl2,tc13]},
{sub12,[],[tcl4,tcl5,
{sub121,[],[tcl2,tcl6]}1}1},

{top2, [1, [{group,sub21},{group, sub22}1},
{sub21,[],[tc21,{group,sub2X2}1},

{sub22,[], [{group,sub221},tc21,tc22,{group,sub2X2}1},
{sub221,[],[tc21,tc23]1},

{sub2X2,[1,[tc21,tc24]}].

The following executes two tests, one for all cases and all subgroups under t op1, and onefor al under t op2:

$ ct run -suite "x SUITE" -group all
1> ct:run_test([{suite,"x SUITE"}, {group,all}]).

Using-group topl top2,or{group,[topl,top2]} givesthesameresult.
The following executes one test for all cases and subgroups under t op1:

Ericsson AB. All Rights Reserved.: Common Test | 41

1.8 Running Tests and Analyzing Results

$ ct _run -suite "x SUITE" -group topl
1> ct:run_test([{suite,"x SUITE"}, {group,[topl]}]).

The following runs atest executingt c12 int opl and any subgroup under t op1 where it can be found (sub11
and sub121):

$ ct run -suite "x SUITE" -group topl -case tcl2
1> ct:run_test([{suite,"x SUITE"}, {group,[topl]l}, {testcase,[tcl2]}]).

The following executest c12 only ingroupt op1:

$ ct run -suite "x SUITE" -group [topl] -case tcl2
1> ct:run_test([{suite,"x SUITE"}, {group,[[topl]]}, {testcase,[tcl2]}]).

Thefollowing searchest op1 and al its subgroupsfort ¢ 16 resultingin that thistest case executesingroupsub121:

$ ct run -suite "x SUITE" -group topl -case tcl6
1> ct:run_test([{suite,"x SUITE"}, {group,[topl]}, {testcase,[tcl6]}]).

Using the specific path - gr oup [sub121] or{group, [[sub121]]} givesthe sameresultin thisexample.

The following executes two tests, one including all cases and subgroups under sub12, and one with only the test
casesinsub12:

$ ct run -suite "x SUITE" -group subl2 [subl2]
1> ct:run_test([{suite,"x SUITE"}, {group, [subl2,[subl2]]1}]).

In the following example, Conmon Test finds and executes two tests, one for the path from t op2 to sub2X2
through sub21, and onefromt op2 to sub2X2 through sub22:

$ ct run -suite "x SUITE" -group sub2X2
1> ct:run_test([{suite,"x SUITE"}, {group,[sub2X2]}1).

In the following example, by specifying the unique patht op2 - > sub21 -> sub2X2, only onetest is executed.
The second possible path, fromt op2 to sub2X2 (from the former example) is discarded:

$ ct run -suite "x SUITE" -group [sub2l,sub2X2]
1> ct:run_test([{suite,"x SUITE"}, {group,[[sub2l,sub2X2]]1}]).

The following executes only the test cases for sub22 and in reverse order compared to the group definition:

$ ct run -suite "x SUITE" -group [sub22] -case tc22 tc21
1> ct:run_test([{suite,"x SUITE"}, {group,[[sub22]]1}, {testcase,[tc22,tc21]}]).

If atest case belonging to a group (according to the group definition) is executed without a group specification, that
is, simply by (using the command line):

$ ct_run -suite "nmy_SU TE" -case ny_tc
or (using the Erlang shell):
1> ct:run_test([{suite,"my_SU TE"}, {testcase,ny_tc}]).

then Conmon Test ignores the group definition and executes the test case in the scope of the test suite only (no
group configuration functions are called).

42 | Ericsson AB. All Rights Reserved.: Common Test

1.8 Running Tests and Analyzing Results

The group specification feature, as presented in this section, can also be used in Test Specifications (with some extra
features added).

1.8.6 Running the Interactive Shell Mode

You canstart Conmon Test in aninteractive shell mode where no automatic testing is performed. Instead, Cormon
Test startsits utility processes, installs configuration data (if any), and waits for the user to call functions (typically
test case support functions) from the Erlang shell.

The shell modeisuseful, for example, for debugging test suites, analyzing and debugging the SUT during "simul ated”
test case execution, and trying out various operations during test suite devel opment.

Tostart theinteractive shell mode, start an Erlang shell manually andcall ct : i nst al | / 1 toinstall any configuration
data you might need (use [] as argument otherwise). Then call ct: start _interactive/ 0 to stat Conmon
Test .

If you use the ct _r un program, you can start the Erlang shell and Cormon Test in one go by using the flag -
shel | and, optionally, flag - conf i g and/or - user confi g.

Examples:

e ct_run -shell
e ct_run -shell -config cfg/db.cfg
e ct_run -shell -userconfig db_|login testuser x523qZ

If no configuration fileis specified with command ct _r un, awarning isdisplayed. If Cormbn Test hasbeen run
from the same directory earlier, the same configuration file(s) are used again. If Cormbn Test has not been run
from this directory before, no configuration files are available.

If any functions using "required configuration data” (for example, functionsct _t el net orct _ft p)aretobecalled
from the Erlang shell, first require configuration datawith ct: require/ 1, 2. Thisisequivaenttoar equi re
statement in the Test Suite Information Function or in the Test Case Information Function.

Example:

1> ct:require(unix_telnet, unix).

ok

2> ct_telnet:open(unix_telnet).
{ok,<0.105.0>}

4> ct telnet:cmd(unix_telnet, "ls .").
{ok,["ls .","filel ...",...]1}

Everything that Conmon Test normally prints in the test case logs, are in the interactive mode written to a
log named ct | og. ht m indirectory ct _run. <ti nmest anp>. A link to this file is available in the file named
| ast _i nteractive. ht m inthedirectory fromwhichyouexecutect _r un. Specifying adifferent root directory
for the logs than the current working directory is not supported.

If you wish to exit the interactive mode (for example, to start an automated test run with ct: run_test/ 1),
cal function ct:stop_interactive/0. This shuts down the running ct application. Associations
between configuration names and data created with require are consequently deleted. Function
ct:start_interactive/ 0 takesyou back into interactive mode, but the previous state is not restored.

1.8.7 Step-by-Step Execution of Test Cases with the Erlang Debugger

Usingct _run -step [opts], or by passing option { st ep, Opt s} toct:run_test/ 1, the following is
possible:

e Get the Erlang Debugger started automatically.
» Useitsgraphical interface to investigate the state of the current test case.

Ericsson AB. All Rights Reserved.: Common Test | 43

1.8 Running Tests and Analyzing Results

» Execute thetest case step-by-step and/or set execution breakpoints.

If no extra options are specified with flag/option st ep, breakpoints are set automatically on the test cases that are
to be executed by Common Test , and those functions only. If step option confi g is specified, breakpoints are
also initialy set on the configuration functions in the suite, that is, i ni t _per _suite/ 1, end_per _suite/1,
i nit_per_group/2,end_per_group/2,init_per_testcase/2andend_per _testcase/?2.

Common Test enables the Debugger auto-attach feature, which means that for every new interpreted test case
function that starts to execute, a new trace window automatically pops up (as each test case executes on a dedicated
Erlang process). Whenever a new test case starts, Conmon Test attempts to close the inactive trace window
of the previous test case. However, if you prefer Common Test to leave inactive trace windows, use option
keep_i nacti ve.

The step functionality can be used together with flag/optionsui t e andsui t e +case/ t est case, but not together
withdir.

1.8.8 Test Specifications

General Description

The most flexible way to specify what to test, is to use atest specification, which is a sequence of Erlang terms. The
terms are normally declared in one or more text files (seect : run_t est/ 1), but can also be passed to Cormon
Test ontheform of alist (seect : run_t est spec/ 1). There are two general types of terms: configuration terms
and test specification terms.

With configuration termsit is, for example, possible to do the following:

e Label thetestrun (similartoct _run -1 abel).

« Evaluate any expressions before starting the test.

e Import configuration data (ssimilartoct _run -confi g/ -user confi g).
* Specify thetop-level HTML log directory (similartoct _run -1 ogdi r).

» Enable code coverage analysis (smilartoct _run -cover).

e Ingtall Cormbn Test Hooks (similartoct _run -ch_hooks).

* Instal event _handl er plugins(similartoct _run -event _handl er).

e Specify include directories to be passed to the compiler for automatic compilation (similartoct _run -
i ncl ude).

» Disable the auto-compilation feature (similar toct _run -no_aut o_conpi |l e).
e Setverbosity levels(similartoct _run -verbosity).

Configuration terms can be combined withct _run start flagsorct : run_t est/ 1 options. Theresult is, for some
flags/options and terms, that the values are merged (for example, configuration files, include directories, verbosity
levels, and silent connections) and for others that the start flags/options override the test specification terms (for
example, log directory, label, style sheet, and auto-compilation).

With test specification terms, it is possible to state exactly which teststo run and in which order. A test term specifies
either one or more suites, one or more test case groups (possibly nested), or one or more test casesin a group (or in
multiple groups) or in asuite.

Any number of test terms can be declared in sequence. Common Test compiles by default the terms into one or
more tests to be performed in one resulting test run. A term that specifies a set of test cases "swallows" one that only
specifies a subset of these cases. For example, the result of merging one term specifying that all casesin suite S are
to be executed, with another term specifying only test case X and Y in S, isatest of all casesin S. However, if a
term specifying test case X and Y in Sis merged with a term specifying case Z in S, the result isatest of X, Y, and
Zin S. To disable this behavior, that is, to instead perform each test sequentially in a "script-like" manner, set term
nmer ge_t est s tof al se inthetest specification.

44 | Ericsson AB. All Rights Reserved.: Common Test

1.8 Running Tests and Analyzing Results

A test term can also specify one or more test suites, groups, or test cases to be skipped. Skipped suites, groups, and
cases are not executed and show up in the HTML log files as SKI PPED.

Using Multiple Test Specification Files

When multiple test specification files are specified at startup (either withct _run -spec filel file2 ...
orct:run_test([{spec, [Filel,File2,...]}])), Commpbn Test either executes one test run per
specification file, or joins the files and performs all tests within one single test run. The first behavior is the default
one. The latter requires that start flag/option j oi n_specs is provided, for example, run_test -spec ./
my_testsl.ts ./ny_tests2.ts -join_specs.

Joining a number of specifications, or running them separately, can also be accomplished with (and can be combined
with) test specification file inclusion.

Test Specification File Inclusion

With the term specs, atest specification can include other specifications. An included specification can either be
joined with the source specification or used to produce a separate test run (as with start flag/option j oi n_specs
above).

Example:

%% In specification file "a.spec"
{specs, join, ["b.spec", "c.spec"l}.
{specs, separate, ["d.spec", "e.spec"]}.
%% Config and test terms follow

In this example, the test terms defined in files "b.spec” and "c.spec" are joined with the terms in source specification
"a.gpec" (if any). Theinclusion of specifications "d.spec" and "e.spec” results in two separate, and independent, test
runs (one for each included specification).

Optionj oi n does not imply that the test terms are merged, only that all tests are executed in one single test run.

Joined specifications share common configuration settings, such asthelist of conf i g filesor i ncl ude directories.
For configurations that cannot be combined, such as settings for | ogdi r or ver bosi ty, it is up to the user to
ensure there are no clashes when the test specifications are joined. Specifications included with option separ at e
do not share configuration settings with the source specification. This is useful, for example, if there are clashing
configuration settings in included specifications, making it them impossible to join.

If {merge_tests,true} is set in the source specification (which is the default setting), terms in joined
specifications are merged with terms in the source specification (according to the description of nerge_tests
earlier).

Notice that it is aways the merge_tests setting in the source specification that is used when joined
with other specifications. Say, for example, that a source specification A, with tests TAL1 and TA2, has
{merge_tests, fal se} set, and that it includes another specification, B, with tests TB1 and TB2, that has
{merge_tests,true} set. The result is that the test series TA1, TA2, ner ge(TB1, TB2) is executed. The
opposite mer ge_t est s settings would result in the test series mer ge(ner ge(TAL, TA2), TB1, TB2) .

Theterm specs can be used to nest specifications, that is, have one specification include other specifications, which
in turn include others, and so no

Test Case Groups

When atest case group is specified, theresulting test executesfunctioni ni t _per _gr oup, followed by all test cases
and subgroups (including their configuration functions), and finally function end_per _gr oup. Also, if particular
test casesin agroup are specified, i ni t _per _group andend_per _gr oup, for the group in question, are called.
If agroup defined (in Sui t e: gr oups/ 0) as asubgroup of another group, is specified (or if particular test cases of

Ericsson AB. All Rights Reserved.: Common Test | 45

1.8 Running Tests and Analyzing Results

a subgroup are), Cormon Test calls the configuration functions for the top-level groups and for the subgroup in
question (making it possible to pass configuration data al the way fromi ni t _per _sui t e down to the test cases
in the subgroup).

The test specification uses the same mechanism for specifying test case groups through names and paths, as explained
in section Test Case Group Execution, with the addition of element Gr oupSpec.

Element G- oupSpec makes it possible to specify group execution properties that overrides those in the group
definition (that is, ingr oups/ 0). Execution propertiesfor subgroups might be overridden aswell. Thisfeature makes
it possibleto change properties of groups at thetime of execution, without having to edit the test suite. The samefeature
isavailablefor gr oup elementsinthe Sui t e: al | / O list. For details and examples, see section Test Case Groups.

Test Specification Syntax

Test specifications can be used to run tests both in asingle test host environment and in adistributed Connon Test
environment (Large Scale Testing). The node parametersintermi ni t areonly relevant in the latter (see section Test
Specificationsin Large Scale Testing). For details about the various terms, see the corresponding sectionsin the User's
Guide, for example, the following:

e Thect _run program for an overview of available start flags (as most flags have a corresponding
configuration term)

e Logging (for termsver bosi ty, styl esheet ,basi ¢c_htm andesc_chars)

» External Configuration Data (for te'rmsconf i g and user confi g)

e Event Handling (for theevent _handl er term)

e Common Test Hooks (for term ct _hooks)

Configuration terms:

46 | Ericsson AB. All Rights Reserved.: Common Test

1.8 Running Tests and Analyzing Results

{merge tests, Bool}.

{define, Constant, Value}.

{specs, InclSpecsOption, TestSpecs}.
{node, NodeAlias, Node}.

{init, InitOptions}.
{init, [NodeAlias], InitOptions}.

{label, Label}.
{label, NodeRefs, Label}.

{verbosity, VerbositylLevels}.
{verbosity, NodeRefs, VerbositylLevels}.

{stylesheet, CSSFile}.
{stylesheet, NodeRefs, CSSFile}.

{silent connections, ConnTypes}.
{silent connections, NodeRefs, ConnTypes}.

{multiply timetraps, N}.
{multiply timetraps, NodeRefs, N}.

{scale timetraps, Bool}.
{scale timetraps, NodeRefs, Bool}.

{cover, CoverSpecFile}.
{cover, NodeRefs, CoverSpecFile}.

{cover _stop, Bool}.
{cover stop, NodeRefs, Bool}.

{include, IncludeDirs}.
{include, NodeRefs, IncludeDirs}.

{auto compile, Bool},
{auto compile, NodeRefs, Bool},

{abort if missing suites, Bool},
{abort if missing suites, NodeRefs, Bool},

{config, ConfigFiles}.

{config, ConfigDir, ConfigBaseNames}.

{config, NodeRefs, ConfigFiles}.

{config, NodeRefs, ConfigDir, ConfigBaseNames}.

{userconfig, {CallbackModule, ConfigStrings}}.

{userconfig, NodeRefs, {CallbackModule, ConfigStrings}}.

{logdir, LogDir}.
{logdir, NodeRefs, LogDir}.

{logopts, LogOpts}.
{logopts, NodeRefs, LogOpts}.

{create priv dir, PrivDirOption}.
{create priv dir, NodeRefs, PrivDirOption}.

{event handler, EventHandlers}.
{event handler, NodeRefs, EventHandlers}.
{event handler, EventHandlers, InitArgs}.

Ericsson AB. All Rights Reserved.: Common Test | 47

1.8 Running Tests and Analyzing Results

{event handler, NodeRefs, EventHandlers, InitArgs}.

{ct_hooks, CTHModules}.
{ct_hooks, NodeRefs, CTHModules}.

{enable builtin hooks, Bool}.

{basic_html, Bool}.
{basic_html, NodeRefs, Bool}.

{esc_chars, Bool}.
{esc_chars, NodeRefs, Bool}.

{release shell, Bool}.
Test terms:
{suites, Dir, Suites}.
{suites, NodeRefs, Dir, Suites}.

{groups, Dir, Suite, Groups}.
{groups, NodeRefs, Dir, Suite, Groups}.

{groups, Dir, Suite, Groups, {cases,Cases}}.
{groups, NodeRefs, Dir, Suite, Groups, {cases,Cases}}.

{cases, Dir, Suite, Cases}.
{cases, NodeRefs, Dir, Suite, Cases}.

{skip suites, Dir, Suites, Comment}.
{skip suites, NodeRefs, Dir, Suites, Comment}.

{skip groups, Dir, Suite, GroupNames, Comment}.
{skip _groups, NodeRefs, Dir, Suite, GroupNames, Comment}.

{skip cases, Dir, Suite, Cases, Comment}.
{skip cases, NodeRefs, Dir, Suite, Cases, Comment}.

Types.

48 | Ericsson AB. All Rights Reserved.: Common Test

1.8 Running Tests and Analyzing Results

Bool = true | false

Constant = atom()

Value = term()

InclSpecsOption = join | separate

TestSpecs = string() | [string()]

NodeAlias = atom()

Node = node()

NodeRef = NodeAlias | Node | master
NodeRefs = all nodes | [NodeRef] | NodeRef
InitOptions = term()

Label = atom() | string()
VerbositylLevels = integer() | [{Category,integer()}]
Category = atom()

CSSFile = string()

ConnTypes = all | [atom()]

N = integer()

CoverSpecFile = string()

IncludeDirs = string() | [string()]
ConfigFiles = string() | [string()]

ConfigDir = string()

ConfigBaseNames = string() | [string()]
CallbackModule = atom()

ConfigStrings = string() | [string()]

LogDir = string()

LogOpts = [term()]

PrivDirOption = auto per run | auto per tc | manual per tc
EventHandlers = atom() | [atom()]

InitArgs = [term()]

CTHModules = [CTHModule |

{CTHModule, CTHInitArgs} |
{CTHModule, CTHInitArgs, CTHPriority}]

CTHModule = atom()

CTHInitArgs = term()

Dir = string()

Suites = atom() | [atom()] | all

Suite = atom()

Groups = GroupPath | GroupSpec | [GroupSpec] | all
GroupPath = [[GroupSpec]]

GroupSpec = GroupName | {GroupName,Properties} | {GroupName,Properties, [GroupSpec]}
GroupName = atom()

GroupNames = GroupName | [GroupName]

Cases = atom() | [atom()] | all

Comment = string() | ""

The difference between the conf i g terms above is that with Conf i gDi r, Conf i gBaseNanes isalist of base
names, that is, without directory paths. Confi gFi | es must be full names, including paths. For example, the
following two terms have the same meaning:

{config, ["/home/testuser/tests/config/nodeA.cfg",
"/home/testuser/tests/config/nodeB.cfg"1}.

{config, "/home/testuser/tests/config", ["nodeA.cfg","nodeB.cfg"l}.

Ericsson AB. All Rights Reserved.: Common Test | 49

1.8 Running Tests and Analyzing Results

Any relative paths, specified inthetest specification, arerelativeto thedirectory containing thetest specificationfile
ifct_run -spec TestSpecFile ... orct:run:test([{spec, TestSpecFile},...]) executes
the test.

The path is relative to the top-level log directory if ct : run: t est spec(Test Spec) executes the test.

Constants

Thetermdef i ne introducesaconstant that isused to replacethe name Const ant with Val ue, wherever itisfound
in the test specification. This replacement occurs during an initial iteration through the test specification. Constants
can be used anywhere in the test specification, for example, in any lists and tuples, and even in strings and inside the
value part of other constant definitions. A constant can also be part of a node name, but that is the only place where
aconstant can be part of an atom.

For the sake of readability, the name of the constant must always begin with an uppercase letter, or a$, ?, or _.
This means that it must always be single quoted (as the constant name is an atom, not text).

The main benefit of constants is that they can be used to reduce the size (and avoid repetition) of long strings, such
asfile paths.

Examples:

%% la. no constant
{config, "/home/testuser/tests/config", ["nodeA.cfg","nodeB.cfg"l]1}.
{suites, "/home/testuser/tests/suites", all}.

%% lb. with constant

{define, 'TESTDIR', "/home/testuser/tests"}.

{config, "'TESTDIR'/config", ["nodeA.cfg","nodeB.cfg"]}.
{suites, "'TESTDIR'/suites", all}.

%% 2a. no constants
{config, [testnode@hostl, testnode@host2], "../config", ["nodeA.cfg","nodeB.cfg"]}.
{suites, [testnode@hostl, testnode@host2], "../suites", [x SUITE, y SUITE]}.

%% 2b. with constants

{define, 'NODE', testnode}.

{define, 'NODES', ['NODE'@hostl, 'NODE'@host2]}.

{config, 'NODES', "../config", ["nodeA.cfg","nodeB.cfg"]}.
{suites, 'NODES', "../suites", [x SUITE, y SUITE]}.

Constants make the test specification term al i as, in previous versions of Common Test , redundant. Thisterm is
deprecated but remains supported in upcoming Conmron Test releases. Replacing al i as termswith def i ne is
strongly recommended though. An example of such replacement follows:

50 | Ericsson AB. All Rights Reserved.: Common Test

1.8 Running Tests and Analyzing Results

%% using the old alias term

{config, "/home/testuser/tests/config/nodeA.cfg"}.
{alias, suite dir, "/home/testuser/tests/suites"}.
{groups, suite dir, x SUITE, groupl}.

%% replacing with constants

{define, 'TestDir', "/home/testuser/tests"}.
{define, 'CfgDir', "'TestDir'/config"}.
{define, 'SuiteDir', "'TestDir'/suites"}.
{config, 'CfgDir', "nodeA.cfg"}.

{groups, 'SuiteDir', x SUITE, groupl}.

Constants can well replace term node also, but this still has a declarative value, mainly when used in combination
with NodeRef s == al | _nodes (see Types).

Example

Here follows a simple test specification example:

{define, 'Top', "/home/test"}.
{define, 'T1', "'Top'/tl"}.
{define, 'T2', "'Top'/t2"}.
{define, 'T3', "'Top'/t3"}.
{define, 'CfgFile', "config.cfg"}.

{logdir, "'Top'/logs"}.
{config, ["'T1'/'CfgFile'", "'T2'/'CfgFile'", "'T3'/'CfgFile'"]}.

{suites, 'T1', all}.

{skip suites, 'T1', [t1B SUITE,tl1D SUITE], "Not implemented"}.
{skip_cases, 'T1l', t1A SUITE, [test3,test4], "Irrelevant"}.
{skip_cases, 'T1l', t1C SUITE, [testl], "Ignore"}.

{suites, 'T2', [t2B SUITE,t2C SUITE]}.
{cases, 'T2', t2A SUITE, [test4,testl,test7]}.

{skip suites, 'T3', all, "Not implemented"}.

The example specifies the following:

* Thespecified | ogdi r directory isused for storing the HTML log files (in subdirectories tagged with node
name, date, and time).

e Thevariablesin the specified test system configuration files are imported for the test.

e Thefirst test to runincludes all suitesfor systemt 1. Suitest 1B and t 1D are excluded from the test. Test cases
test3andtest4int 1Aandt est 1 caseint 1Care also excluded from the test.

e Thesecondtesttorunisfor systemt 2. Theincluded suitesaret 2Bandt 2C. Test casest est 4,t est 1, and
t est 7 insuitet 2A are also included. The test cases are executed in the specified order.

 Thelasttest torunisfor systemt 3. Here, all suites are skipped and thisis explicitly noted in the log files.
The init Term

With term i ni t it is possible to specify initialization options for nodes defined in the test specification. There are
options to start the node and to evaluate any function on the node. For details, see section Automatic Startup of Test
Target Nodes in section Using Common Test for Large Scale Testing.

Ericsson AB. All Rights Reserved.: Common Test | 51

1.8 Running Tests and Analyzing Results

User-Specific Terms

The user can provide atest specification including (for Cormbn Test) unrecognizable terms. If thisis desired, use
flag- al | ow_user _t er ns when startingtestswithct _r un. ThisforcesCommon Test toignoreunrecognizable
terms. In this mode, Common Test is not able to check the specification for errors as efficiently as if the scanner
runsin default mode. If ct : run_t est/ 1 isused for starting the tests, the relaxed scanner mode is enabled by tuple
{al |l ow_user _terns,true}.

Reading Test Specification Terms

Terms in the current test specification (that is, the specification that has been used to configure and run the current
test) can be looked up. The function get _t est spec_t er ns() returnsalist of all test specification terms (both
configuration terms and test terms), and get _t est spec_t er ns(Tags) returns the term (or a list of terms)
matching the tag (or tags) in Tags.

For example, in the test specification:

{label, my server smoke test}.
{config, "../../my server setup.cfg"}.
{config, "../../my server interface.cfg"}.

Andin, for example, atest suiteor aConmon Test Hook function:

[{label, [{ Node,TestType}1}, {config,CfgFiles}] =
ct:get testspec terms([label,configl),

[verify my server cfg(TestType, CfgFile) || {Node,CfgFile} <- CfgFiles,
Node == node()];

1.8.9 Log Files

Asthe execution of the test suites proceed, events are logged in the following four different ways:

e Text to the operator console.

e Suite-related information is sent to the major log file.

e Caserelated information is sent to the minor log file.

* TheHTML overview log fileis updated with test results.

« Alinkto al runs executed from acertain directory iswritteninthelognamed al I _runs. ht m and direct
links to all tests (the latest results) are written to the top-level i ndex. ht i .

Typically the operator, possibly running hundreds or thousands of test cases, does not want to fill the console with
details about, or printouts from, specific test cases. By default, the operator only sees the following:

» A confirmation that the test has started and information about how many test cases are executed in total.

* A small note about each failed test case.

e A summary of al the run test cases.

e A confirmation when the test run is complete.

* Some special information, such as error reports, progress reports, and printouts written with
erl ang: di spl ay/ 1, ori o: f or mat / 3 specifically addressed to areceiver other than st andar d_i o (for
example, the default group leader processuser).

52 | Ericsson AB. All Rights Reserved.: Common Test

1.8 Running Tests and Analyzing Results

To dig deeper into the general results, or the result of a specific test case, the operator can do so by following the links
inthe HTML presentation and read the major or minor log files. The "al_runs.html" page is a good starting point. It
islocatedin| ogdi r and containsalink to each test run, including a quick overview (with date and time, node name,
number of tests, test names, and test result totals).

An "index.html" page is written for each test run (that is, stored in the ct _r un directory tagged with node name,
date, and time). This file provides an overview of all individual tests performed in the same test run. The test names
follow the following convention:

e TopLevel Dir. Test Di r (al suitesin Test Di r executed)

e TopLevel Dir. Test Di r: sui t es (specific suites executed)

e TopLevel Dir. TestDir. Suite (al casesin Sui t e executed)

* TopLevel Dir. TestDir. Suite: cases (specific test cases executed)

e TopLevel Dir. TestDir. Suite. Case (only Case executed)

The "test run index" page includes a link to the Common Test Framework Log file in which information about

imported configuration data and general test progress is written. This log file is useful to get snapshot information
about the test run during execution. It can also be helpful when analyzing test results or debugging test suites.

The "test run index" page indicates if atest has missing suites (that is, suitesthat Cormon Test failed to compile).
Names of the missing suites can be found in the Common Test Framework Log file.

The major log file shows a detailed report of the test run. It includes test suite and test case names, execution time,
the exact reason for failures, and so on. The information is available in both a file with textual and with HTML
representation. The HTML file shows a summary that gives a good overview of the test run. It also has links to each
individual test case log file for quick viewing with an HTML browser.

The minor log files contain full details of every single test case, each in aseparatefile. Thisway, it is straightforward
to compare the latest results to that of previoustest runs, even if the set of test cases changes. If application SASL is
running, itslogs are also printed to the current minor log file by the cth_log_redirect built-in hook.

The full name of the minor log file (that is, the name of the file including the absolute directory path) can be read
during execution of the test case. It comesasvalueintuple{tc_| ogfil e, LogFi | eNane} inthe Confi g list
(which means it can also be read by a pre- or post Conmon Test Hook function). Also, at the start of atest case,
this datais sent with an event to any installed event handler. For details, see section Event Handling.

Thelog filesare written continuously during atest run and links are always created initially when atest starts. Thevtest
progress can therefore be followed simply by refreshing pagesinthe HTML browser. Statisticstotals are not presented
until atest is complete however.

Log Options

With start flag | ogopt s options that modify some aspects of the logging behavior can be specified. The following
options are available:

no_src

The HTML version of the test suite source code is not generated during the test run (and is consequently not
available in thelog file system).

no_nl

Conmon Test doesnot add anewline character (\ n) tothe end of an output string that it receives from acall
to, for example, i o: f or mat / 2, and which it prints to the test case log.

For example, if atest is started with:
$ ct_run -suite nmy_SU TE -1 ogopts no_nl
then printouts during the test made by successive callstoi o: f or mat (" x") , appearsin the test case log as:

Ericsson AB. All Rights Reserved.: Common Test | 53

1.8 Running Tests and Analyzing Results

XXX

instead of each x printed on anew line, which isthe default behavior.

Sorting HTML Table Columns

By clicking the name in the column header of any table (for example, "Ok", "Case", "Time", and so on), the table
rows are sorted in whatever order makes sense for the type of value (for example, numerical for "Ok" or "Time", and
alphabetical for "Case"). The sorting is performed through JavaScript code, automatically inserted into the HTML
log files. Conmon Test usesthejQuery library and the tablesorter plugin, with customized sorting functions, for
this implementation.

The Unexpected 1/0 Log

The test suites overview page includes alink to the Unexpected 1/0 Log. Inthislog, Common Test saves printouts
madewithct : | og/ 1, 2, 3,4, 5andct : pal / 1, 2, 3, 4, 5, aswell ascaptured system error- and progressreports,
which cannot be associated with particular test cases and therefore cannot be written to individual test case log files.
This occurs, for example, if alog printout is made from an external process (not atest case process), or if an error- or
progress report comes in, during a short interval while Conmon Test is not executing a test case or configuration
function, or while Common Test iscurrently executing a parallel test case group.

The Pre- and Post Test I/O Log

The Cormon Test Framework Log page includes links to the Pre- and Post Test 1/0 Log. In this log, Cormbn
Test saves printouts made with ct: 1 og/ 1, 2, 3,4,5and ct: pal /1, 2, 3, 4, 5, as well as captured system
error- and progress reports, which take place before, and after, the test run. Examples of this are printouts from aCT
hook init- or terminate function, or progress reports generated when an OTP application is started from aCT hook init
function. Another example is an error report generated because of a failure when an external application is stopped
from a CT hook terminate function. All information in these examples ends up in the Pre- and Post Test I/0O Log.
For more information on how to synchronize test runs with external user applications, see section Synchronizing in
section Common Test Hooks.

Logging to filewith ct: 1 og/ 1, 2, 3,4,5 or ct: pal /1, 2, 3, 4,5 only works when Cormpn Test is
running. Printoutswith ct : pal / 1, 2, 3, 4, 5 are however aways displayed on screen.

Delete Old Logs

Common Test can automatically delete old log. Thisis specified with the keep_| ogs option. The default value
for thisoptionisal | , which meansthat no logs are deleted. If the valueis set to aninteger, N, Conmon Test deletes
al ct _run. <ti mest anp> directories, except the N newest.

1.8.10 HTML Style Sheets

Conmon Test usesan HTML Style Sheet (CSSfile) to control the look of the HTML log files generated during test
runs. If the log files are not displayed correctly in the browser of your choice, or you prefer a more primitive ("pre
Conmmon Test v1.6") look of the logs, use the start flag/option:

basic_html

This disables the use of style sheets and JavaScripts (see Sorting HTML Table Columns).

Conmon Test includesan optional featureto allow user HTML style sheetsfor customizing printouts. Thefunctions
inct that print to atest case HTML log file (I og/ 3, 4, 5 and pal / 3, 4, 5) accept Cat egor y asfirst argument.
With this argument a category can be specified that can be mapped to anamed di v selector inaCSSrule-set. Thisis

54 | Ericsson AB. All Rights Reserved.: Common Test

href
href

1.8 Running Tests and Analyzing Results

useful, especially for coloring text differently depending on the type of (or reason for) the printout. Say you want one
particular background color for test system configuration information, adifferent onefor test system stateinformation,
and finally one for errors detected by the test case functions. The corresponding style sheet can ook as follows:

div.sys config { background:blue }
div.sys state { background:yellow }
div.error { background:red }

Common Test prints the text from ct: | og/ 3, 4,5 or ct: pal /3, 4, 5 inside a pr e element nested under the
named di v element. Since the pr e selector has a predefined CSSrule(infilect _def aul t . css) for the attributes
color,font-fam |y andfont-size,if auser wantsto change any of the predefined attribute settings, a new
rule for pr e must be added to the user stylesheet. Example:

div.error pre { color:white }

Here, white text is used instead of the default black for di v. err or printouts (and no other attribute settings for
pr e are affected).

Toinstall the CSSfile (Cormbn Test inlinesthe definition inthe HTML code), the file name can be provided when
executingct _run.

Example:

$ ct run -dir $TEST/prog -stylesheet $TEST/styles/test categories.css

Categories in a CSS file installed with flag - st yl esheet are on a global test level in the sense that they can be
used in any suitethat is part of the test run.
Style sheets can also be installed on a per suite and per test case basis.

Example:

-module(my SUITE).
suite() -> [..., {stylesheet,"suite categories.css"}, ...].

my testcase() ->

ct:log(sys config, "Test node version: ~p", [VersionInfo]),

ct:log(sys state, "Connections: ~p", [ConnectionInfo]),

ct:pal(error, "Error ~p detected! Info: ~p", [SomeFault,ErrorInfol),
ct:fail(SomeFault).

If the style sheet isinstalled as in this example, the categories are private to the suite in question. They can be used by
all test casesin the suite, but cannot be used by other suites. A suite private style sheet, if specified, isused in favor of
aglobal style sheet (one specified withflag - st yl esheet). A stylesheet tuple (asreturned by sui t e/ 0 above) can
also be returned from atest case information function. In this case the categories specified in the style sheet can only
be used in that particular test case. A test case private style sheet isused in favor of a suite or global level style sheet.

In atuple {styl esheet, CSSFi | e}, if CSSFi | e is specified with a path, for example, " $TEST/ st yl es/
cat egori es. css", thisfull nameisusedtolocatethefile. However, if only thefile nameis specified, for example,
cat egori es. css, the CSSfileis assumed to be located in the data directory, dat a_di r, of the suite. The latter
use is recommended, asit is portable compared to hard coding path names in the suite.

Ericsson AB. All Rights Reserved.: Common Test | 55

1.8 Running Tests and Analyzing Results

Argument Cat egory in the previous example can have the value (atom) sys_confi g (blue background),
sys_st at e (yellow background), or er r or (white text on red background).

1.8.11 Repeating Tests

You can order Cormon Test to repeat the tests you specify. You can choose to repeat tests a number of times,
repeat testsfor a specific period of time, or repeat tests until aparticular stop timeisreached. If repetition is controlled
by time, an action for Conmon Test to take upon time-out can be specified. Either Conrron Test performs all
tests in the current run before stopping, or it stops when the current test job is finished. Repetition can be activated
by ct _run start flags, or tuplesinthect : run: t est/ 1 option list argument. The flags (options in parentheses)
arethe following:

e -repeat N ({repeat, N}),whereNisapositiveinteger

e -duration DurTine ({duration, DurTi ne}),whereDur Ti me isthe duration
e -until StopTinme ({until, StopTi ne}),whereStopTi ne isfinishtime

e -force_stop ({force_stop,true})

e -force_stop skip rest ({force_stop,skip rest})

Dur Ti me

The duration time is specified as HHWVSS, for example, - dur at i on 012030 or{dur ati on, "012030"}

, which means that the tests are executed and (if time allows) repeated until time-out occurs after 1 hour, 20
minutes, and 30 seconds.
St opTi e

The finish time can be specified as HHVMMSS and is then interpreted as a time today (or possibly
tomorrow), but can also be specified as YYMo Mo DDHHMVES, for example, -until 071001120000 or
{until,"071001120000"} . This means that the tests are executed and (if time allows) repeated, until 12
o'clock on the 1st of October 2007.

When time-out occurs, Conmon Test never aborts the ongoing test case, asthis can leave the SUT in an undefined,
and possibly bad, state. Instead Conmon Test , by default, finishes the current test run before stopping. If flag
force_stop is specified, Conmon Test stops when the current test job is finished. If flag f or ce_st op is
specified with ski p_r est, Cormon Test only completes the current test case and skips the remaining tests in
the test job.

AsCommon Test always finishes at least the current test case, the time specified with dur ati on or unti |
is never definitive.

Log filesfrom every repeated test run is saved in normal Cormon Test fashion (described earlier).

Conmmon Test might later support an optional feature to only store the last (and possibly the first) set of logs of
repeated test runs, but for now the user must be careful not to run out of disk space if tests are repeated during long
periods of time.

For each test run that is part of a repeated session, information about the particular test run is printed in the Conmron
Test Framework Log. The information includes the repetition number, remaining time, and so on.

Example 1:
$ ct run -dir $TEST ROOT/tol $TEST ROOT/to2 -duration 001000 -force stop

Here, the suitesin test directory t 01, followed by the suitesint 02, are executed in one test run. A time-out event
occurs after 10 minutes. Aslong as thereistime left, Cormon Test repeats the test run (that is, starting over with

56 | Ericsson AB. All Rights Reserved.: Common Test

1.8 Running Tests and Analyzing Results

testt 01). After time-out, Cormon Test stopswhen the current job isfinished (because of flag f or ce_st op). As
aresult, the specified test run can be aborted after test t 01 and beforetest t 02.

Example 2:

$ ct_run -dir $TEST ROOT/tol $TEST ROOT/to2 -duration 001000 -forces stop skip rest

Here, the sametestsasin Example 1 arerun, but withflagf or ce_st op settoski p_r est . If time-out occurswhile
executing testsin directory t 01, the remaining test casesint 01 are skipped and the test is aborted without running
thetestsint 02 another time. If time-out occurs while executing tests in directory t 02, the remaining test casesin
t 02 are skipped and the test is aborted.

Example 3:
$ date
Fri Sep 28 15:00:00 MEST 2007
$ ct _run -dir $TEST ROOT/tol $TEST ROOT/to2 -until 160000

Here, the same test run as in the previous examples are executed (and possibly repeated). However, when the time-
out occurs, after 1 hour, Conmon Test finishes the entire test run before stopping (that is, botht 01 and t 02 are
always executed in the same test run).

Example 4:

$ ct _run -dir $TEST ROOT/tol $TEST ROOT/to2 -repeat 5

Here, the test run, including both thet 01 and thet 02 test, is repeated five times.

Do not confuse this feature with the r epeat property of atest case group. The options described here are used
to repeat execution of entire test runs, whilether epeat property of atest case group makes it possible to repeat
execution of sets of test cases within a suite. For more information about the latter, see section Test Case Groups
in section Writing Test Suites.

1.8.12 Silent Connections

The protocol handling processesin Cormon Test , implemented by ct _t el net,ct _ssh,ct _ft p, and soon,
do verbose printing to the test case logs. This can be switched off with flag - si | ent _connecti ons:

ct run -silent connections [conn_types]

Here, conn_t ypes specifies SSH, Telnet, FTP, RPC, and/or SNMP.
Example 1:

ct_run ... -silent_connections ssh telnet

This switches off logging for SSH and Telnet connections.
Example 2:

ct_run ... -silent_connections

Ericsson AB. All Rights Reserved.: Common Test | 57

1.9 External Configuration Data

This switches off logging for al connection types.

Fatal communication error and reconnection attempts are always printed, even if logging has been suppressed for the
connection type in question. However, operations such as sending and receiving data are performed silently.

sil ent _connecti ons can aso be specified in a test suite. This is accomplished by returning a tuple,
{sil ent _connections, ConnTypes},inthesui t e/ O ortest caseinformation list. If ConnTypes isalist of
atoms (SSH, Telnet, FTP, RPC and/or SNMP), output for any corresponding connections are suppressed. Full logging
is by default enabled for any connection of type not specified in ConnTypes. Hence, if ConnTypes is the empty
list, logging is enabled for all connections.

Example 3:

-module(my SUITE).

suite() -> [..., {silent connections, [telnet,ssh]}, ...].

my testcasel() ->
[{silent connections,[ssh]}].

my testcasel() ->
my testcase2() ->

Inthisexample, sui t e/ 0 tellsCommon Test to suppress printouts from Telnet and SSH connections. Thisisvalid
for al test cases. However, ny_t est casel/ 0 specifiesthat for thistest case, only SSH isto besilent. Theresult is
that my _t est casel gets Telnet information (if any) printed in the log, but not SSH information. my_t est case?2
gets no information from either connection printed.

si |l ent _connecti ons can also be specified with aterm in atest specification (see section Test Specificationsin
section Running Testsand Analyzing Results). Connections provided with start flag/optionsi | ent _connecti ons
are merged with any connections listed in the test specification.

Start flag/option si | ent _connecti ons and the test specification term override any settings made by the
information functions inside the test suite.

In the current Cormon Test version, the si | ent _connect i ons feature only works for Telnet and SSH
connections. Support for other connection types can be added in future Common Test versions.

1.9 External Configuration Data

1.9.1 General

To avoid hard-coding data values related to the test and/or System Under Test (SUT) in the test suites, the data can
instead be specified through configuration files or strings that Conmon Test reads before the start of a test run.
External configuration data makesit possible to change test properties without modifying the test suites using the data.
Examples of configuration data follows:

» Addressesto the test plant or other instruments

e User logininformation

58 | Ericsson AB. All Rights Reserved.: Common Test

1.9 External Configuration Data

* Names of files needed by the test
« Names of programs to be executed during the test
* Any other variable needed by the test

1.9.2 Syntax

A configuration file can contain any number of elements of the type:

{CfgVarName,Value}.

where

CfgVarName = atom()
Value = term() | [{CfgVarName,Value}]

1.9.3 Requiring and Reading Configuration Data

In atest suite, one must requir e that a configuration variable (Cf gVar Narmre in the previous definition) exists before
attempting to read the associated value in atest case or configuration function.

requi r e is an assert statement, which can be part of the Test Suite Information Function or Test Case Information
Function. If the required variable is unavailable, the test is skipped (unless a default value has been specified, see
section Test Case Information Function for details). Also, function ct : requi r e/ 1/ 2 can be called from a test
case to check if a specific variable is available. The return value from this function must be checked explicitly and
appropriate action be taken depending on the result (for example, to skip the test case if the variable in question does
not exist).

A require statement in the test suite information case or test case information-list is to look like
{require, CfgVvVar Nane} or {require, Al i asNane, Cf gVar Nane}. The arguments Al i asNane and
Cf gVar Nane are the same as the arguments to ct: require/ 1, 2. Al i asNanme becomes an alias for the
configuration variable, and can be used as reference to the configuration data value. The configuration variable can be
associated with any number of alias names, but each name must be unique within the same test suite. The two main
uses for alias names follows:

e Toidentify connections (described later).

* To help adapt configuration datato atest suite (or test case) and improve readability.
To read the value of a configuration variable, use functionget _confi g/ 1, 2, 3.

Example:

suite() ->
[{require, domain, 'CONN_SPEC DNS SUFFIX'}].

testcase(Config) ->
Domain = ct:get config(domain),

1.9.4 Using Configuration Variables Defined in Multiple Files

If a configuration variable is defined in multiple files and you want to access all possible values, use function
ct:get_confi g/ 3 and specify al | inthe options list. The values are then returned in alist and the order of the
elements corresponds to the order that the configuration files were specified at startup.

Ericsson AB. All Rights Reserved.: Common Test | 59

1.9 External Configuration Data

1.9.5 Encrypted Configuration Files
Configuration files containing sensitive data can be encrypted if they must be stored in open and shared directories.

To have Common Test encrypt a specified file using function DES3 in application Crypto, call
ct:encrypt _config_filel/2, 3 The encrypted file can then be used as a regular configuration file in
combination with other encrypted files or normal text files. However, the key for decrypting the configuration file
must be provided when running the test. This can be done with flag/option decr ypt _key ordecrypt _fil e, or
akey filein apredefined location.

Conmmon Test asoprovidesdecryptionfunctions, ct : decrypt _config_fil e/ 2, 3, forrecreatingtheoriginal
text files.

1.9.6 Opening Connections Using Configuration Data

Two different methods for opening a connection using the support functionsin, for example, ct _ssh,ct _ft p, and
ct _tel net follows:

e Using aconfiguration target name (an alias) as reference.
» Using the configuration variable as reference.

When a target name is used for referencing the configuration data (that specifies the connection to be opened), the
same name can be used as connection identity in all subsequent calls related to the connection (also for closing it).
Only one open connection per target nameis possible. If you attempt to open a new connection using a name already
associated with an open connection, Conmon Test returns the already existing handle so the previously opened
connection is used. This feature makes it possible to call the function for opening a particular connection whenever
useful. An action like this does not necessarily open any new connections unless it is required (which could be the
case if, for example, the previous connection has been closed unexpectedly by the server). Using named connections
also removes the need to pass handle references around in the suite for these connections.

When aconfiguration variable nameis used as reference to the data specifying the connection, the handle returned asa
result of opening the connection must be used in all subsequent calls (also for closing the connection). Repeated calls
to the open function with the same variable name as reference results in multiple connections being opened. This can
be useful, for example, if atest case needs to open multiple connections to the same server on the target node (using
the same configuration data for each connection).

1.9.7 User-Specific Configuration Data Formats

The user can specify configuration data on a different format than key-value tuplesin atext file, as described so far.
The data can, for example, be read from any files, fetched from the web over HTTP, or requested from a user-specific
process. To support this, Cormon Test providesacallback module plugin mechanism to handle configuration data.

Default Callback Modules for Handling Configuration Data

Conmmon Test includes default callback modulesfor handling configuration data specified in standard configuration
files (described earlier) and in XML files as follows:

e ct_config_pl ai n-forreading configuration files with key-value tuples (standard format). This handler is
used to parse configuration files if no user callback is specified.

« ct_config_xm -forreading configuration datafrom XML files.
Using XML Configuration Files

An example of an XML configuration file follows:

60 | Ericsson AB. All Rights Reserved.: Common Test

1.9 External Configuration Data

<config>
<ftp host>
<ftp>"targethost"</ftp>
<username>"tester"</username>
<password>"letmein"</password>
</ftp_host>
<lm _directory>"/test/loadmodules"</lm directory>
</config>

Once read, this file produces the same configuration variables as the following text file:

{ftp_host, [{ftp,"targethost"},
{username, "tester"},
{password, "letmein"}1}.

{lm_directory, "/test/loadmodules"}.

Implement a User-Specific Handler

The user-specific handler can be written to handle special configuration file formats. The parameter can be either file
names or configuration strings (the empty list isvalid).

The callback module implementing the handler is responsible for checking the correctness of configuration strings.

To validate the configuration strings, the callback module is to have function Cal | back: check_paraneter/1
exported.

The input argument is passed from Cormon Test , as defined in the test specification, or specified as an option to
ct_runorct:run_test.

Thereturn value is to be any of the following values, indicating if the specified configuration parameter isvalid:

« {ok, {file, FileNane}} -theparameterisafile name and thefile exists.

« {ok, {config, ConfigString}} -theparameterisaconfiguration string and it is correct.

e {error, {nofile, FileNane}} -thereisno filewiththe specified namein the current directory.
e {error, {wong_config, ConfigString}} -theconfiguration stringiswrong.

Thefunction Cal | back: read_confi g/ 1 isto be exported from the callback module to read configuration data,
initially before the tests start, or as a result of data being reloaded during test execution. The input argument is the
same asfor function check_par ameter/ 1.

Thereturn value is to be either of the following:

« {ok, Config} -if theconfiguration variables are read successfully.

e {error, {Error, ErrorDetails}} -if thecalback modulefailsto proceed with the specified
configuration parameters.

Conf i g isthe proper Erlang key-value list, with possible key-value sublists as values, like the earlier configuration
file example:

[{ftp host, [{ftp, "targethost"}, {username, "tester"}, {password, "letmein"}]},
{lm_directory, "/test/loadmodules"}]

1.9.8 Examples of Configuration Data Handling

A configuration file for using the FTP client to access files on aremote host can look as follows:

Ericsson AB. All Rights Reserved.: Common Test | 61

1.9 External Configuration Data

{ftp_host, [{ftp,"targethost"},
{username, "tester"},
{password, "letmein"}1}.

{lm directory, "/test/loadmodules"}.

The XML version shown earlier can also beused, butitistobe explicitly specifiedthat thect _confi g xnl callback
moduleisto beused by Cormon Test .

Thefollowing isan example of how to assert that the configuration dataisavailable and can be used for an FTP session:

init per testcase(ftptest, Config) ->
{ok, } = ct ftp:open(ftp),
Config.

end per testcase(ftptest, Config) ->
ct ftp:close(ftp).

ftptest() ->
[{require, ftp,ftp_host},
{require,lm directory}].

ftptest(Config) ->
Remote = filename:join(ct:get config(lm directory), "loadmodX"),
Local = filename:join(proplists:get value(priv_dir,Config), "loadmodule"),
ok = ct ftp:recv(ftp, Remote, Local),

The following is an example of how the functions in the previous example can be rewritten if it is necessary to open
multiple connections to the FTP server:

init per testcase(ftptest, Config) ->
{ok,Handlel} = ct ftp:open(ftp host),
{ok,Handle2} = ct ftp:open(ftp host),
[{ftp_handles, [Handlel,Handle2]} | Config].

end per testcase(ftptest, Config) ->
lists:foreach(fun(Handle) -> ct ftp:close(Handle) end,
proplists:get value(ftp handles,Config)).

ftptest() ->
[{require, ftp host},
{require,lm directory}].

ftptest(Config) ->
Remote = filename:join(ct:get config(lm directory), "loadmodX"),
Local = filename:join(proplists:get value(priv_dir,Config), "loadmodule"),
[Handle | MoreHandles] = proplists:get value(ftp handles,Config),
ok = ct ftp:recv(Handle, Remote, Local),

1.9.9 Example of User-Specific Configuration Handler

A simple configuration handling driver, asking an external server for configuration data, can be implemented as
follows:

62 | Ericsson AB. All Rights Reserved.: Common Test

1.9 External Configuration Data

-module(config driver).
-export([read config/1l, check parameter/1]).

read config(ServerName) ->
ServerModule = list to atom(ServerName),
ServerModule:start(),
ServerModule:get config().

check parameter(ServerName) ->
ServerModule = list to atom(ServerName),
case code:is loaded(ServerModule) of

{file, }->
{ok, {config, ServerName}};
false->

case code:load file(ServerModule) of
{module, ServerModule}->
{ok, {config, ServerName}};
{error, nofile}->

{error, {wrong config, "File not found:

end
end.

++ ServerName ++ ".beam"}}

Theconfiguration string for thisdriver canbeconfi g_server ,iftheconfi g _server. erl modulethat follows

is compiled and exists in the code path during test execution:

Ericsson AB. All Rights Reserved.: Common Test | 63

1.9 External Configuration Data

-module(config server).
-export([start/0, stop/0, init/1, get config/0, loop/0]).

-define(REGISTERED NAME, ct test config server).

start()->
case whereis(?REGISTERED NAME) of
undefined->
spawn(?MODULE, init, [?REGISTERED NAME]),
wait();
_Pid->
ok
end,
?REGISTERED NAME.

init(Name)->
register(Name, self()),
loop().

get config()->
call(self(), get config).

stop()->
call(self(), stop).

call(Client, Request)->
case whereis(?REGISTERED NAME) of
undefined->
{error, {not started, Request}};

Pid->
Pid ! {Client, Request},
receive
Reply->
{ok, Reply}

after 4000->
{error, {timeout, Request}}

end
end.
loop()->
receive
{Pid, stop}->
Pid ! ok;
{Pid, get config}->
{D,T} = erlang:localtime(),
Pid !
[{localtime, [{date, D}, {time, T}1},
{node, erlang:node()},
{now, erlang:now()},
{config server pid, self()},
{config server vsn, ?vsn}],
?MODULE: Loop ()
end.
wait()->

case whereis(?REGISTERED NAME) of
undefined->
wait();
_Pid->
ok
end.

64 | Ericsson AB. All Rights Reserved.: Common Test

1.10 Code Coverage Analysis

Here, the handler aso provides for dynamically reloading of configuration variables. If
ct:reload_config(localtinme) is caled from the test case function, al variables loaded with
config_driver:read_config/1l ae updated with their latest values, and the new value for variable
| ocal ti ne isreturned.

1.10 Code Coverage Analysis
1.10.1 General

Although Conmon Test was created primarily for black-box testing, nothing prevents it from working perfectly as
awhite-box testing tool aswell. Thisis especially true when the application to test is written in Erlang. Then the test
ports are easily realized with Erlang function calls.

When white-box testing an Erlang application, it is useful to be able to measure the code coverage of the test.
Conmon Test providessimple accessto the OTP Cover tool for this purpose. Conmron Test handlesall necessary
communication with the Cover tool (starting, compiling, analysing, and so on). The Cormon Test user only needs
to specify the extent of the code coverage analysis.

1.10.2 Use

To specify the modules to be included in the code coverage test, provide a cover specification file. With thisfile you
can point out specific modules or specify directories containing modules to be included in the analysis. Y ou can also
specify modules to be excluded from the analysis.

If you aretesting adistributed Erlang application, it islikely that code you want included in the code coverage analysis
gets executed on another Erlang node than the one Conmon Test isrunning on. If so, you must specify these other
nodes in the cover specification file or add them dynamically to the code coverage set of nodes. For details on the
latter, seemodulect _cover.

In the cover specification file you can also specify your required level of the code coverage analysis; detai | s or
over vi ew. Indetailed mode, you get acoverage overview page, showing per module and total coverage percentages.
You aso get an HTML file printed for each module included in the analysis showing exactly what parts of the code
have been executed during the test. In overview mode, only the code coverage overview pageis printed.

Y ou can choose to export and import code coverage data between tests. If you specify the name of an export file in
the cover specification file, Conmmon Test exports collected coverage datato thisfile at the end of thetest. You can
similarly specify previously exported datato be imported and included in the analysis for atest (multiple import files
can be specified). Thisway, the total code coverage can be analyzed without necessarily running al tests at once.

To activate the code coverage support, specify the name of the cover specification file as you start Cormon Test .
Do thisby using flag - cover withct _r un, for example:

$ ct run -dir $TESTOBJS/db -cover $TESTOBJS/db/config/db.coverspec

You can adso pass the cover specification file name in a cal to ct:run_test/1, by adding a
{cover, Cover Spec} tupletoargument Opt s.

Y ou can also enable code coveragein your test specifications (see section Test Specificationsin section Running Tests
and Analyzing Results).

1.10.3 Stopping the Cover Tool When Tests Are Completed

By default, the Cover tool isautomatically stopped when the tests are completed. This causes the original (non-cover
compiled) modulesto beloaded back into thetest node. If aprocessat thispoint still runsold code of any of the modules
that are cover compiled, meaning that it has not done any fully qualified function call after the cover compilation, the
process is killed. To avoid this, set the value of option cover _st op to f al se. This means that the modules stay

Ericsson AB. All Rights Reserved.: Common Test | 65

1.10 Code Coverage Analysis

cover compiled. Therefore, this is only recommended if the Erlang nodes under test are terminated after the test is
completed, or if cover can be manually stopped.

The option can be set by using flag - cover _st op with ct _run, by adding { cover _st op, true|fal se} to
argument Opt s toct : run_t est/ 1, or by adding acover _st op term in the test specification (see section Test
Specifications in section Running Tests and Analyzing Results).

1.10.4 The Cover Specification File

General Config

Here follows the general configuration termsthat are allowed in a cover specification file:

% List of Nodes on which cover will be active during test.
% Nodes = [atom()]
{nodes, Nodes}.

[
“©
[

“©

% Files with previously exported cover data to include in analysis.
% CoverDataFiles = [string()]
import, CoverDataFiles}.

~ o o

%% Cover data file to export from this session.
%% CoverDataFile = string()
{export, CoverDataFile}.

% Cover analysis level.
% Level = details | overview
level, Level}.

~ o o

% Directories to include in cover.
% Dirs = [string()]
incl dirs, Dirs}.

~ o o

%% Directories, including subdirectories, to include.
{incl dirs r, Dirs}.

% Specific modules to include in cover.
% Mods = [atom()]
{incl mods, Mods}.

@ of

%% Directories to exclude in cover.
{excl dirs, Dirs}.

%% Directories, including subdirectories, to exclude.
{excl dirs r, Dirs}.

%% Specific modules to exclude in cover.
{excl mods, Mods}.

Cross cover compilation

Tag = atom(), an identifier for a test run

Mod = [atom()], modules to compile for accumulated analysis
cross, [{Tag,Mods}]1}.

o o° o°

s o o

Thetermsi ncl _dirs_r andexcl _dirs_r tell Common Test to search the specified directories recursively
and include or exclude any modul e found during the search. Thetermsi ncl _di r s andexcl _di r s resultinanon-
recursive search for modules (that is, only modules found in the specified directories are included or excluded).

66 | Ericsson AB. All Rights Reserved.: Common Test

1.10 Code Coverage Analysis

Directories containing Erlang modules to be included in a code coverage test must exist in the code server path.
Otherwise, the Cover tool failsto recompilethe modules. It isnot sufficient to specify these directoriesin the cover
specification file for Conmon Test .

OTP application Config

When using a cover specification in the testing of an OTP application itself, there is a special incl_app directive that
includes the applications modules for the cover compilation.

{incl app, AppName, Cover:: overview | details}.

If you desire to also use some other general cover configuration together with this option you should insert the
AppName in between the option and its value creating a three tuple.

1.10.5 Cross Cover Analysis

The cross cover mechanism allows cover analysis of modules across multiple tests. It is useful if some code, for
example, alibrary module, is used by many different tests and the accumulated cover result is desirable.

This can aso be achieved in a more customized way by using parameter export in the cover specification and
analysing the result off line. However, the cross cover mechanism is a built-in solution that also provides logging.

The mechanism is easiest explained by an example:
Assume that there are two systems, s1 and s2, that are tested in separate test runs. System s1 contains a library
module ml tested by test run s1 and isincluded in the cover specification of s1 asfollows:

sl.cover:
{incl mods, [m1]}.

When analysing code coverage, the result for ml can be seenin the cover loginthe s1 test result.

Now, imagine that as mlL is a library module, it is also often used by system s2. Test run s2 does not specifically
test mL, but it can still be interesting to see which parts of ml that are covered by the s2 tests. To do this, ml can be
included also in the cover specification of s2 asfollows:

s2.cover:
{incl mods, [m1]}.

This gives an entry for mL also in the cover log for test run s2. The problem is that this only reflects the coverage by
S 2 tests, not the accumulated result over s1 and s2. Thisiswhere the cross cover mechanism comes in handy.

If instead the cover specification for s2 islike the following:

s2.cover:
{cross, [{s1l,[m1]}]}.

Then nml is cover compiled in test run s2, but not shown in the coverage log. Instead, if
ct _cover: cross_cover_anal yse/ 2 iscaled after both s1 and s2 test runs are completed, the accumulated
result for ml is available in the cross cover log for test runs1.

The call to the analyze function must be as follows:

Ericsson AB. All Rights Reserved.: Common Test | 67

1.11 Using Common Test for Large-Scale Testing

ct _cover:cross cover analyse(Level, [{sl,SlLogDir},{s2,S2LogDir}]).

Here, S1LogDi r and S2LogDi r arethe directoriesnamed <Test Nane>. | ogs for each test respectively.

Notice the tags s1 and s2, which are used in the cover specification file and in the cal to
ct _cover: cross_cover _anal yse/ 2. The purpose of these is only to map the modul es specified in the cover
specification to thelog directory specified in the call to the analyze function. The tag name has no meaning beyond this.

1.10.6 Logging

To view the result of a code coverage test, click the button labeled "COVER LOG" in the top-level index page for
the test run.

Before Erlang/OTP 17.1, if your test run consisted of multiple tests, cover would be started and stopped for each test
within the test run. Separate logs would be available through the "Coverage log" link on the test suite result pages.
These links are still available, but now they all point to the same page as the button on the top-level index page. The
log contains the accumul ated results for the complete test run. For details about this change, see the release notes.

The button takes you to the code coverage overview page. If you have successfully performed a detailed coverage
analysis, links to each individual module coverage page are found here.

If cross cover analysisis performed, and there are accumul ated coverage resultsfor the current test, the link " Coverdata
collected over al tests' takes you to these results.

1.11 Using Common Test for Large-Scale Testing
1.11.1 General

Large-scale automated testing requires running multiple independent test sessions in paralel. This is accomplished
by running some Conmron Test nodes on one or more hosts, testing different target systems. Configuring, starting,
and controlling the test nodes independently can be a cumbersome operation. To aid this kind of automated large-
scale testing, Cormbn Test offers a master test node component, Common Test Master, which handles central
configuration and control in a system of distributed Conmon Test nodes.

The Conmon Test Master server runs on one dedicated Erlang node and uses distributed Erlang to communicate
with any number of Conmon Test test nodes, each hosting aregular Cormon Test server. Test specificationsare
used asinput to specify what to test on which test nodes, using what configuration.

The Common Test Master server writes progress information to HTML log files similarly to the regular Conrmon
Test server. The logs contain test statistics and links to the log files written by each independent Cormon Test
server.

The Cormon Test Master APl isexported by modulect _mast er.

1.11.2 Use

Common Test Master requires al test nodes to be on the same network and share a common file system. Conmon
Test Master cannot start test nodes automatically. The nodes must be started in advance for Conon Test Master
to be able to start test sessions on them.

Tests are started by caling ct_master:run(Test Specs) or ct_master:run(Test Specs,
I ncl Nodes, Excl Nodes)

Test Specs is either the name of a test specification file (string) or a list of test specifications. If it is alist, the
specifications are handled (and the corresponding tests executed) in sequence. An element in aTest Specs list can
also be list of test specifications. The specifications in such alist are merged into one combined specification before
test execution.

68 | Ericsson AB. All Rights Reserved.: Common Test

1.11 Using Common Test for Large-Scale Testing

Example:

ct master:run(["tsl","ts2",["ts3","ts4"]])

Here, the tests specified by "ts1" run first, then the tests specified by "ts2", and finally the tests specified by both
"ts3" and "tA4".

Thel ncl Nodes argument to r un/ 3 isalist of node names. Function r un/ 3 runs the testsin Test Specs just
likerun/ 1, but also takes any test in Test Specs, which is not explicitly tagged with a particular node name, and
execute it on the nodes listed in | ncl Nodes. By using r un/ 3 this way, any test specification can be used, with or
without node information, in alarge-scale test environment.

Excl Nodes isalist of nodesto be excluded from the test. That is, tests that are specified in the test specification to
run on a particular node are not performed if that node islisted in Excl Nodes at runtime.

If Common Test Master failsinitially to connect to any of the test nodes specified in a test specification or in the
I ncl Nodes list, the operator is prompted with the option to either start over again (after manually checking the status
of the nodes in question), to run without the missing nodes, or to abort the operation.

When tests start, Cormon Test Master displays information to console about the involved nodes. Cormbn Test
Master also reports when tests finish, successfully or unsuccessfully. If connection is lost to a node, the test on that
node is considered finished. Conmon Test Master does not attempt to re-establish contact with the failing node.

At any time, to get the current status of the test nodes, call functionct _mast er: progress().
To stop one or more tests, use functionct _nast er: abort () (tostopal) orct _nast er: abort (Nodes).
For details about the Cormon Test Master API, seemodulect _mast er .

1.11.3 Test Specifications

The test specifications used as input to Cormon Test Master are fully compatible with the specifications used as
input to theregular Cormon Test server. The syntax is described in section Test Specifications in section Running
Tests and Analyzing Results.

All test specificationterms can haveaNodeRef s element. Thiselement specifieswhich node or nodesaconfiguration
operation or atest isto be executed on. NodeRef s is defined as follows:

NodeRefs = all _nodes | [NodeRef] | NodeRef
NodeRef = NodeAlias | node() | master

A NodeAl i as (at om()) isused in atest specification as a reference to a node name (so the node name only needs
to be declared once, which also can be achieved using constants). The aliasis declared with anode term asfollows:

{node, NodeAlias, NodeNane}

If NodeRef s hasthevalueal | _nodes, the operation or test is performed on all specified test nodes. (Declaring a
term without aNodeRef s element has the same effect). If NodeRef s hasthe value mast er , the operation is only
performed on the Conmon Test Master node (namely set the log directory or install an event handler).

Consider the example in section Test Specifications in section Running Tests and Analysing Results, now extended
with node information and intended to be executed by Conmmon Test Master:

Ericsson AB. All Rights Reserved.: Common Test | 69

1.11 Using Common Test for Large-Scale Testing

{define, 'Top', "/home/test"}.

{define, 'T1', "'Top'/t1"}.
{define, 'T2', "'Top'/t2"}.
{define, 'T3', "'Top'/t3"}.

{define, 'CfgFile', "config.cfg"}.
{define, 'Node', ct node}.

{node, nodel, 'Node@host x'}.
{node, node2, 'Node@host y'}.

{logdir, master, "'Top'/master logs"}.
{logdir, "'Top'/logs"}.

{config, nodel, "'T1'/'CfgFile'"}.
{config, node2, "'T2'/'CfgFile'"}.
{config, "'T3'/'CfgFile'"}.

{suites, nodel, 'T1', all}.

{skip_suites, nodel, 'T1', [t1B SUITE,t1D SUITE], "Not implemented"}.
{skip cases, nodel, 'T1', t1lA SUITE, [test3,test4], "Irrelevant"}.
{skip cases, nodel, 'T1', t1C SUITE, [testl], "Ignore"}.

{suites, node2, 'T2', [t2B SUITE,t2C SUITE]}.
{cases, node2, 'T2', t2A SUITE, [test4,testl,test7]}.

{skip suites, 'T3', all, "Not implemented"}.

This example specifies the same tests as the origina example. But now if started with a cal to
ct _master:run(Test SpecNane), test t 1 is executed on node ct _node@ost _x (nodel), test t 2 on
ct _node@ost _y (node2) andtestt 3 on bothnodel and node2. Configurationfilet 1 isonly read on nodel
and configurationfilet 2 only onnode2, whilethe configurationfilet 3 isread on bothnodel and node2. Bothtest
nodes write log files to the same directory. (However, the Conmmon Test Master node uses a different log directory
than the test nodes.)

If the test session isinstead started with acall toct _nast er: run(Test SpecNane, [ct_node@ost z],
[ct _node@ost x]),theresultisthattestt 1 doesnotrunonct node@ost X (or any other node) whiletest
t 3runsonbothct _node@ost _y andct _node@ost _z.

A nicefeatureisthat atest specification that includes node information can still be used asinput to theregular Cormon
Test server (asdescribed in section Test Specifications). The result isthat any test specified to run on anode with the
same name asthe Conmon Test node in question (typically ct @ onehost if started withthect _r un program),
is performed. Tests without explicit node association are always performed too, of course.

1.11.4 Automatic Startup of Test Target Nodes

Initial actions can be started and performed automatically on test target nodes using test specification termi ni t .
Two subterms are supported, node_st art andeval .

Example:

{node, nodel, nodel@hostl}.

{node, node2, nodel@host2}.

{node, node3, node2@host2}.

{node, node4, nodel@host3}.

{init, nodel, [{node start, [{callback module, my slave callback}1}]}.

{init, [node2, node3], {node start, [{username, "ct user"}, {password, "ct password"}]}}.
{init, node4, {eval, {module, function, []}}}.

70 | Ericsson AB. All Rights Reserved.: Common Test

1.12 Event Handling

This test specification declares that nodel@ostl is to be started using the user callback function
cal | back_nodul e: my_sl ave_cal | back/ 0, and nodes nodel@ost 2 and node2@ost 2 are to be
started with the default callback module ct _sl ave. The specified username and password are used to log on to
remote host host 2. Also, function nodul e: f uncti on/ 0 isevauated on nodel@ost 3, and the result of this
cal is printed to the log.

The default callback module ct_dlave, has the following features:

» Starting Erlang target nodes on local or remote hosts (application SSHis used for communication).
« Ability to start an Erlang emulator with more flags (any flags supported by er | are supported).

e Supervision of anode being started using internal callback functions. Used to prevent hanging nodes.
(Configurable.)

* Monitoring of the master node by the slaves. A slave node can be stopped if the master node terminates.
(Configurable.)

« Execution of user functions after alave node is started. Functions can be specified asalist of { Modul e,
Functi on, Argunents} tuples.

Aneval term for thenodeand st artup_functi ons inthenode_st art optionslist can be specified. In
this case, the node is started first, then the st ar t up_f unct i ons are executed, and finally functions specified
witheval arecalled.

1.12 Event Handling
1.12.1 General

The operator of aCommon Test system can receive event notifications continuously during atest run. For example,
Common Test reports when atest case starts and stops, the current count of successful, failed, and skipped cases,
and so on. Thisinformation can be used for different purposes such aslogging progress and results in another format
than HTML, saving statistics to a database for report generation, and test system supervision.

Conmmon Test has a framework for event handling based on the OTP event manager concept and gen_event
behavior. When the Common Test server starts, it spawns an event manager. During test execution the manager
gets a notification from the server when something of potential interest happens. Any event handler plugged into the
event manager can match on events of interest, take action, or pass the information on. The event handlers are Erlang
modules implemented by the Cormon Test user according to the gen_event behavior (for details, see module
gen_event and sectiongen_event Behavi our in OTP Design Principlesin the System Documentation).

A Common Test server always starts an event manager. The server also plugsin adefault event handler, which only
purpose isto relay notificationsto aglobally registered Conmon Test Master event manager (if aConmmon Test

Master server isrunning in the system). The Common Test Master also spawns an event manager at startup. Event
handlers plugged into this manager receives the events from all the test nodes, plus information from the Common
Test Master server.

User-specific event handlers can be plugged into aConmon Test event manager, either by telling Conmron Test
to install them before the test run (described later), or by adding the handlers dynamically during the test run using
gen_event: add_handl er/ 3 orgen_event : add_sup_handl er/ 3. Inthelatter scenario, the reference of
the Cormon Test event manager is required. To get it, call ct: get _event _ngr _ref/ 0 or (on the Conmon
Test Master node) ct _mast er: get _event _ngr_ref/0.

Ericsson AB. All Rights Reserved.: Common Test | 71

1.12 Event Handling

1.12.2 Use

Event handlers can be installed by an event _handl er start flag (ct _run) or optionct : run_t est/ 1, where
the argument specifies the names of one or more event handler modules.

Example:

$ ct_run -suite test/my_SU TE -event _handl er handl ers/ ny_evhl handl ers/ ny_evh2
-pa $PWD handl ers

To pass start arguments to the event handler init function, use option ct _run -event _handl er _i ni t instead
of - event handl er.

All event handler modules must have gen_event behavior. These modules must be precompiled and their
locations must be added explicitly to the Erlang code server search path (asin the previous example).

An event_handler tuple in argument Opt s has the following definition (seect : run_t est/ 1):

{event handler,EventHandlers}

EventHandlers = EH | [EH]
EH = atom() | {atom(),InitArgs} | {[atom()],InitArgs}
InitArgs = [term()]

In the following example, two event handlers for themy _SUI TE test are installed:

1> ct:run_test([{suite,"test/my SUITE"}, {event handler, [my evhl,{my evh2,[node()]1}1}1).

Event handler my_evh1 isstarted with [] as argument to the init function. Event handler ny_evh?2 is started with
the name of the current node in the init argument list.

Event handlers can also be plugged in using one of the following test specification terms:

« {event_handl er, EventHandl ers}

« {event_handl er, EventHandlers, InitArgs}

e {event _handl er, NodeRefs, EventHandl ers}

« {event_handl er, NodeRefs, EventHandlers, InitArgs}

Event Handl er s isalist of module names. Before a test session starts, the init function of each plugged in event
handler iscalled (withthe |l ni t Ar gs list asargument or [] if no start arguments are specified).

To plug in ahandler to the Conmon Test Master event manager, specify mast er asthe nodein NodeRef s.

To be able to match on events, the event handler module must include the header filect _event . hrl . Aneventis
arecord with the following definition:

#event { nanme, node, data}
name
Label (type) of the event.
node
Name of the node that the event originated from (only relevant for Cormon Test Master event handlers).
dat a
Specific for the event.

72 | Ericsson AB. All Rights Reserved.: Common Test

1.12 Event Handling

General Events

The general events are as follows:

#event {name = start | oggi ng, data = LogDir}
LogDir = string(),top-level log directory for the test run.

This event indicates that the logging process of Cormbn Test has started successfully and is ready to receive
1/0 messages.

#event { name = stop_l ogging, data =[]}

This event indicates that the logging process of Conmon Test was shut down at the end of the test run.
#event{nane = test_start, data = {StartTine, LogDir}}

StartTine = {date(),tinme()},testrun start date and time.

LogDir = string(),top-level log directory for the test run.

This event indicates that Conrron Test hasfinished initial preparations and begins executing test cases.
#event { name = test_done, data = EndTi ne}

EndTine = {date(),tine()},dateand timethetest run finished.

This event indicates that the last test case has been executed and Cormon Test is shutting down.
#event {nanme = start_info, data = {Tests, Suites, Cases}}

Tests = integer (), number of tests.
Suites = integer (), tota number of suites.
Cases = integer() | unknown,total number of test cases.

Thisevent givesinitial test run information that can beinterpreted as. "Thistest run will execute Test s separate
tests, intotal containing Cases number of test cases, in Sui t es number of suites'. However, if atest case group
with arepeat property existsin any test, the total number of test cases cannot be calculated (unknown).

#event{nane = tc_start, data = {Suite, FuncOr G oup}}
Suite = atom(), name of thetest suite.
FuncOr Group = Func | {Conf, GroupNane, G- oupProperti es}
Func = at on{), name of test case or configuration function.
Conf = init_per_group | end_per _group, group configuration function.
GroupNane = at on{), name of the group.
GroupProperties = list(),listof execution propertiesfor the group.

This event informs about the start of a test case, or a group configuration function. The event is sent also for
init_per suiteandend per suite,butnotfori nit per testcaseandend_per _testcase.
If agroup configuration function starts, the group name and execution properties are also specified.

#event{name = tc_logfile, data = {{Suite, Func}, LogFi | eNane}}
Suite = atom(), name of thetest suite.
Func = at on{), name of test case or configuration function.
LogFi | eNane = string(), full name of thetest caselog file.

Thisevent issent at the start of each test case (and configuration function excepti ni t / end_per _t est case)
and carries information about the full name (that is, the file name including the absolute directory path) of the
current test case log file.

Ericsson AB. All Rights Reserved.: Common Test | 73

1.12 Event Handling

#event {name = tc_done, data = {Suite, FunhcOr G oup, Result}}
Suite = atom(), name of the suite.

FuncOr G oup = Func | {Conf, GroupNane, G oupProperti es}

Func at om() , name of test case or configuration function.
Conf = init_per_group | end_per _group, group configuration function.

GroupNane = unknown | aton(), name of the group (unknown if init- or end function times out).

G oupProperties = list(),listof execution propertiesfor the group.

Result = ok | {aut o_ski pped, Ski pReason} | { ski pped, Ski pReason} |
{fail ed, Fai | Reason}, theresult.

Ski pReason = {require_fail ed, Requirel nfo} |
{require_failed_in_suite0, Requirel nf o} | {fail ed,
{Suite,init_per_testcase, Faillnfo}} | User Ter mwhy the casewas skipped.

Fai |l Reason = {error, Faillnfo} | {error,{RunTi meError, StackTrace}} |
{timetrap_tinmeout,integer()} | {failed, {Suite, end_per_testcase, Faillnfo}},

reason for failure.
Requirelnfo = {not _avail able,atom() | tuple()},whyrequirefailed.

Faillnfo = {tinetrap_timeout,integer()} | {RunTinmeError, StackTrace} |
User Ter m error details.

RunTi neError = term(),aruntimeerror, for example, badnat ch or undef .
StackTrace = list(),listof function calls preceding aruntime error.
User Term = t erm(), any dataspecified by user, or exi t / 1 information.

This event informs about the end of atest case or a configuration function (see event t c_st art for details
on element FuncOr Gr oup). With this event comes the final result of the function in question. It is possible to
determine on the top level of Resul t if the function was successful, skipped (by the user), or if it failed.

It is also possible to dig deeper and, for example, perform pattern matching on the various reasons for skipped
or failed. Noticethat {' EXI T' , Reason} tuplesaretrandated into { err or, Reason}. Noticeaso that if a
{failed,{Suite, end_per testcase, Fail | nf o} resultisreceived, thetest case was successful, but
end_per _test case for the casefailed.

#event{name = tc_auto_skip, data = {Suite, Test Nane, Reason}}
Suite = atom(), the name of the suite.

TestNane = init_per_suite | end_per_suite | {init_per_group, GoupNane} |
{end_per _group, G oupNanme} | {FuncName, G oupNane} | FuncName

FuncName = at on(), the name of the test case or configuration function.
GroupNane = at on{), the name of the test case group.

Reason = {failed, Fail Reason} | {require_failed in_suite0, Requirelnfo}, reason
for auto-skipping Func.

Fai | Reason = {Suite, ConfigFunc, Faillnfo}} | {Suite, Fail edCasel nSequence},
reason for failure.

Requirelnfo = {not_avail abl e,atom() | tuple()},whyrequirefailed.

ConfigFunc = init_per_suite | init_per_group

74 | Ericsson AB. All Rights Reserved.: Common Test

1.12 Event Handling

Faillnfo = {tinetrap_timeout,integer()} | {RunTineError, StackTrace} |
bad_return | User Ter m error details.

Fai | edCasel nSequence = at on{), the name of a case that failed in a sequence.
RunTi neError = term(),aruntimeerror, for example badmat ch or undef .
StackTrace = list(), listof function calls preceding aruntime error.

User Term = tern(), any dataspecified by user, or exi t / 1 information.

This event is sent for every test case or configuration function that Conrron Test has skipped automatically
because of either afailedi nit _per _suiteorinit_per_group, afaledrequireinsuite/0,ora
failed test case in a sequence. Notice that this event is never received as a result of atest case getting skipped
because of i ni t _per _t est case failing, asthat information is carried with event t ¢_done. If afailed test
case belongs to a test case group, the second data element is a tuple { FuncNamne, Gr oupNane}, otherwise
only the function name.

#event {name = tc_user_skip, data = {Suite, Test Nanme, Conment }}
Suite = atom(), thename of the suite.

TestName = init_per_suite | end_per_suite | {init_per_group, GoupNane} |
{end_per _group, G oupName} | {FuncName, G oupNane} | FuncNane

FuncNanme = at on(), the name of the test case or configuration function.
GroupNane = at on{), the name of thetest case group.
Conment = string(),why thetest case was skipped.

This event specifies that a test case was skipped by the user. It is only received if the skip is declared in a test
specification. Otherwise, user skip information is received as a { ski pped, Ski pReason} result in event
t c_done for the test case. If a skipped test case belongsto atest case group, the second data element isatuple
{ FuncNane, G oupNane} , otherwise only the function name.

#event {name = test_stats, data = {Ck, Fail ed, Ski pped}}
Ok = integer (), current number of successful test cases.
Fail ed = integer (), current number of failed test cases.
Ski pped = {User Ski pped, Aut oSki pped}
User Ski pped = i nteger (), current number of user-skipped test cases.
Aut oSki pped = i nteger (), current number of auto-skipped test cases.
Thisis astatistics event with current count of successful, skipped, and failed test cases so far. This event is sent
after the end of each test case, immediately following eventt c_done.
Internal Events
The internal events are as follows:
#event {name = start_neke, data = Dir}
Dir = string(), running makein thisdirectory.
Thisinternal event saysthat Cormon Test starts compiling modulesin directory Di r .
#event {name = fini shed_nake, data = Dir}
Dir = string(),finished running makein this directory.
Thisinternal event saysthat Cormon Test isfinished compiling modulesin directory Di r .

Ericsson AB. All Rights Reserved.: Common Test | 75

1.13 Dependencies between Test Cases and Suites

#event{nanme = start_wite file, data = Full NameFil e}

Ful | NameFile = string(), full name of the file.

Thisinternal event isused by the Conmmon Test Master process to synchronize particular file operations.
#event{nane = finished wite file, data = Full NanmeFil e}

Ful | NameFile = string(), full name of the file.

Thisinternal event isused by the Conmon Test Master process to synchronize particular file operations.

Notes

The events are also documented inct _event . er | . Thismodule can serve as an example of what an event handler
for the Conmon Test event manager can look like.

To ensure that printoutsto st dout (or printouts made withct : | og/ 2, 3 or ct : pal , 2, 3) get written to the
test case log file, and not to the Conmon Test framework log, you can synchronize with the Conmon Test

server by matching on eventst ¢_start andt c_done. In the period between these events, all 1/0 is directed
to the test case log file. These events are sent synchronously to avoid potential timing problems (for example, that
the test case log file is closed just before an I/0O message from an external process gets through). Knowing this,
you need to be careful that your handl e_event / 2 callback function does not stall the test execution, possibly
causing unexpected behavior as a result.

1.13 Dependencies between Test Cases and Suites
1.13.1 General

When creating test suites, it is strongly recommended to not create dependencies between test cases, that is, letting

test cases depend on the result of previous test cases. There are various reasons for this, such as, the following:

e It makesitimpossibleto run test casesindividualy.

e It makesitimpossibleto run test casesin a different order.

* It makes debugging difficult (as afault can be the result of a problem in a different test case than the one
failing).

* Thereareno good and explicit ways to declare dependencies, so it can be difficult to see and understand these
in test suite code and in test logs.

» Extending, restructuring, and maintaining test suites with test case dependenciesis difficult.

There are often sufficient means to work around the need for test case dependencies. Generally, the problemisrelated

to the state of the System Under Test (SUT). The action of one test case can change the system state. For some other
test case to run properly, this new state must be known.

Instead of passing data between test cases, it isrecommended that thetest casesread the state from the SUT and perform
assertions (that is, |et the test case run if the state is as expected, otherwise reset or fail). It is aso recommended to use
the state to set variables necessary for the test case to execute properly. Common actions can often be implemented as
library functions for test casesto call to set the SUT in arequired state. (Such common actions can also be separately
tested, if necessary, to ensure that they work as expected). It is sometimes also possible, but not always desirable, to
group tests together in one test case, that is, let atest case perform a ' scenario” test (atest consisting of subtests).

Consider, for example, a server application under test. The following functionality is to be tested:

e Starting the server
» Configuring the server

76 | Ericsson AB. All Rights Reserved.: Common Test

1.13 Dependencies between Test Cases and Suites

e Connecting a client to the server
« Disconnecting aclient from the server
e Stopping the server

There are obvious dependencies between the listed functions. The server cannot be configured if it has not first been
started, aclient cannot be connected until the server is properly configured, and so on. If we want to have onetest case
for each function, we might be tempted to try to always run the test cases in the stated order and carry possible data
(identities, handles, and so on) between the cases and therefore introduce dependencies between them.

To avoid this, we can consider starting and stopping the server for every test. We can thusimplement the start and stop
action as common functions to be called fromi ni t _per testcase andend_per _t est case. (Remember to
test the start and stop functionality separately.) The configuration can also be implemented as a common function,
maybe grouped with the start function. Finaly, the testing of connecting and disconnecting a client can be grouped
into one test case. The resulting suite can look as follows:

Ericsson AB. All Rights Reserved.: Common Test | 77

1.13 Dependencies between Test Cases and Suites

-module(my server SUITE).
-compile(export all).
-include lib("ct.hrl").

%%% init and end functions...
suite() -> [{require,my server cfg}].

init per testcase(start and stop, Config) ->
Config;

init per testcase(config, Config) ->
[{server pid,start server()} | Config];

init per testcase(, Config) ->
ServerPid = start server(),
configure server(),
[{server pid,ServerPid} | Config].

end per testcase(start and stop,) ->
ok;

end per testcase(, Config) ->
ServerPid = proplists:get value(server pid, Config),
stop server(ServerPid).

%%% test cases...
all() -> [start and stop, config, connect and disconnect].

%% test that starting and stopping works
start _and stop() ->

ServerPid = start server(),

stop server(ServerPid).

%% configuration test

config(Config) ->
ServerPid = proplists:get value(server pid, Config),
configure server(ServerPid).

%% test connecting and disconnecting client

connect _and disconnect(Config) ->
ServerPid = proplists:get value(server pid, Config),
{ok,SessionId} = my server:connect(ServerPid),
ok = my server:disconnect(ServerPid, SessionId).

%%% common functions...

start _server() ->
{ok,ServerPid} = my server:start(),
ServerPid.

stop_server(ServerPid) ->
ok = my server:stop(),
ok.

configure server(ServerPid) ->
ServerCfgData = ct:get config(my server cfg),
ok = my server:configure(ServerPid, ServerCfgData),
ok.

78 | Ericsson AB. All Rights Reserved.: Common Test

1.13 Dependencies between Test Cases and Suites

1.13.2 Saving Configuration Data

Sometimes it is impossible, or infeasible, to implement independent test cases. Maybe it is not possible to read the
SUT state. Maybe resetting the SUT isimpossible and it takes too long time to restart the system. In situations where
test case dependency is necessary, CT offers a structured way to carry data from one test case to the next. The same
mechanism can also be used to carry datafrom one test suite to the next.

The mechanism for passing dataiscalled save_conf i g. Theideaisthat onetest case (or suite) can savethe current
value of Conf i g, or any list of key-value tuples, so that the next executing test case (or test suite) can read it. The
configuration datais not saved permanently but can only be passed from one case (or suite) to the next.

To save Confi g data, return tuple { save_confi g, Confi gLi st} from end_per _t est case or from the
main test case function.

To read data saved by a previous test case, use pr opl i st s: get _val ue withasaved_confi g key asfollows:
{Saver, ConfigList} = proplists:get_val ue(saved_config, Config)

Saver (at om()) isthe name of the previous test case (where the datawas saved). Thepr opl i st s: get _val ue
function can be used to extract particular data also from the recalled Conf i gLi st . It is strongly recommended that
Saver isaways matched to the expected name of the saving test case. Thisway, problems because of restructuring of
thetest suite can be avoided. Also, it makes the dependency more explicit and the test suite easier to read and maintain.

To pass data from one test suite to another, the same mechanism is used. The data is to be saved by finction
end_per _sui te andread by functioni ni t _per _sui t e in the suite that follows. When passing data between
suites, Saver carriesthe name of the test suite.

Example:

Ericsson AB. All Rights Reserved.: Common Test | 79

1.13 Dependencies between Test Cases and Suites

-module(server b SUITE).
-compile(export all).
-include lib("ct.hrl").

%%% init and end functions...

init per suite(Config) ->
%% read config saved by previous test suite
{server_a SUITE,O0ldConfig} = proplists:get value(saved config, Config),
%% extract server identity (comes from server a SUITE)
ServerId = proplists:get value(server id, O0ldConfig),
SessionIld = connect to server(Serverld),
[{ids,{ServerId,SessionId}} | Config].

end per suite(Config) ->
%% save config for server c SUITE (session_id and server id)
{save config,Config}

%%% test cases...
all() -> [allocate, deallocate].

allocate(Config) ->
{ServerId,SessionId} = proplists:get value(ids, Config),
{ok,Handle} = allocate resource(ServerId, SessionId),
%% save handle for deallocation test
NewConfig = [{handle,Handle}],
{save config,NewConfig}.

deallocate(Config) ->
{Serverld,Sessionld} = proplists:get value(ids, Config),
{allocate,0ldConfig} = proplists:get value(saved config, Config),
Handle = proplists:get value(handle, 0ldConfig),
ok = deallocate resource(ServerId, SessionId, Handle).

To sae Config data from a test <case tha is to be skipped, return tuple
{ski p_and_save, Reason, Confi gLi st}.

Theresult isthat the test case is skipped with Reason printed to thelog file (as described earlier) and Conf i gLi st

is saved for the next test case. Confi gLi st can be read using propl i sts: get _val ue(saved_confi g,

Confi g), asdescribed earlier. ski p_and_save can aso bereturned fromi ni t _per _suit e. Inthiscase, the
saved datacan beread by i ni t _per _sui t e inthe suite that follows.

1.13.3 Sequences

Sometimestest cases depend on each other so that if one casefails, thefollowing tests are not to be executed. Typically,
if thesave_confi g facility is used and atest case that is expected to save data crashes, the following case cannot
run. Cormon Test offersaway to declare such dependencies, called sequences.

A sequence of test cases is defined as a test case group with a sequence property. Test case groups are defined
through function gr oups/ 0 in the test suite (for details, see section Test Case Groups.

For example, to ensure that if al | ocat e inserver _b_SUl TE crashes, deal | ocat e is skipped, the following
sequence can be defined:

groups() -> [{alloc and dealloc, [sequence], [alloc,dealloc]}].

Assume that the suite contains the test case get _r esour ce_st at us that is independent of the other two cases,
then function al | canlook asfollows:

80 | Ericsson AB. All Rights Reserved.: Common Test

1.14 Common Test Hooks

all() -> [{group,alloc_and dealloc}, get resource status].

If al |l oc succeeds, deal | oc is aso executed. If al | oc fails however, deal | oc is not executed but
marked as SKI PPED in the HTML log. get _resource_status runs no matter what happens to the
al | oc_and_deal | oc cases.

Test cases in a sequence are executed in order until all succeed or one fails. If one fails, al following cases in the
sequence are skipped. The cases in the sequence that have succeeded up to that point are reported as successful in the
log. Any number of sequences can be specified.

Example:

groups() -> [{scenarioA, [sequence], [testAl, testA2]},
{scenarioB, [sequence], [testBl, testB2, testB3]}].

all() -> [testl,
test2,
{group,scenarioA},
test3,
{group,scenarioB},
test4].

A sequence group can have subgroups. Such subgroups can have any property, that is, they are not required
to also be sequences. If you want the status of the subgroup to affect the sequence on the level above, return
{return_group_result, Status} fromend_per _group/ 2, as described in section Repeated Groups in
Writing Test Suites. A failed subgroup (St at us == f ai | ed) causes the execution of a sequence to fail in the
same way atest case does.

1.14 Common Test Hooks
1.14.1 General

The Common Test Hook (CTH) framework allows extensions of the default behavior of Cormon Test using
hooks before and after all test suite calls. CTHs allow advanced Cormpn Test usersto abstract out behavior that is
common to multiple test suites without littering all test suiteswith library calls. This can be used for logging, starting,
and monitoring external systems, building C files needed by the tests, and so on.

In brief, CTH allows you to do the following:

« Manipulate the runtime configuration before each suite configuration call.
e Manipulate the return of all suite configuration calls, and in extension, the result of the tests themselves.

Thefollowing sections describe how to use CTHs, when they are run, and how to manipulate the test resultsina CTH.

When executing withina CTH, all timetraps are shut off. Soif your CTH never returns, the entiretest runis stalled.

1.14.2 Installing a CTH

A CTH can be ingtalled in multiple ways in your test run. You can do it for all testsin arun, for specific test suites,
and for specific groups within atest suite. If you want a CTH to be present in all test suites within your test run, there
are three ways to accomplish that, as follows:

Ericsson AB. All Rights Reserved.: Common Test | 81

1.14 Common Test Hooks

e Add-ct_hooks asanargument to ct_run. To add multiple CTHs using this method, append them to each
other using the keyword and, that is,ct _run -ct_hooks cthl [{debug,true}] and cth2

 Addtagct _hooks toyour Test Specification.

e« Addtagct _hooks toyour call to ctirun_test/1.

CTHs can aso be added within atest suite. Thisisdone by returning { ct _hooks, [CTH] } inthe configuration list
from suite/0, init_per_suite/1, or init_per_group/2.

In this case, CTH can either be only the module name of the CTH or a tuple with the module name and the initial
arguments, and optionally the hook priority of the CTH. For example, one of the following:

e {ct_hooks,[ny_cth_nodul e]}

e {ct_hooks, [{ny_cth_nodul e, [{debug, true}]}]}

e {ct_hooks, [{nmy_cth_nodul e, [{debug, true}], 500}]}

Note that regardless of how you install aCTH, its BEAM file must be available in the code path when Common Test
runs. ct _r un acceptsthe - pa command line option.

Overriding CTHs

By default, each installation of aCTH causes anew instance of it to be activated. This can cause problemsif you want
to override CTHs in test specifications while still having them in the suite information function. The id/1 callback
exists to address this problem. By returning the same i d in both places, Conmon Test knows that this CTH is
already installed and does not try to install it again.

CTH Execution Order

By default, each CTH installed is executed in the order that they are installed for init calls, and then reversed for end
cals. Thisis not dways desired, so Common Test allows the user to specify a priority for each hook. The priority
can either be specified in the CTH function init/2 or when installing the hook. The priority specified at installation
overrides the priority returned by the CTH.

1.14.3 CTH Scope

Oncethe CTH isinstalled into acertain test run it remainsthere until its scopeis expired. The scope of a CTH depends
on when it isinstalled, see the following table. Function init/2 is called at the beginning of the scope and function
terminate/1 is called when the scope ends.

CTH ingtalled in CTH scope begins before CTH scope ends after
ct_run the first test suiteisto berun the last test suite has been run
ct:run_test the first test suiteisrun the last test suite has been run

Test Specification

thefirst test suiteisrun

the last test suite has been run

suite/0

pre_init_per_suite/3iscalled

post_end per_suite/4 has been
called for that test suite

init_per_suite/1

post_init_per_suite/4is called

post_end per_suite/4 has been
called for that test suite

init_per_group/2

post_init_per_group/5iscalled

post_end per_group/5 has been
called for that group

Table 14.1: Scope of a CTH

82 | Ericsson AB. All Rights Reserved.: Common Test

1.14 Common Test Hooks

CTH Processes and Tables

CTHs are run with the same process scoping as normal test suites, that is, a different process executes the
init_per_suite hooksthentheinit per_group or per_testcase hooks. So if you want to spawn a
processin the CTH, you cannot link with the CTH process, as it exits after the post hook ends. Also, if you for some
reason need an ETS table with your CTH, you must spawn a process that handlesiit.

External Configuration Data and Logging

Configuration data values in the CTH can be read by calling ct : get _confi g/ 1, 2, 3 (as explained in section
Requiring and Reading Configuration Data). The configuration variables in question must, as always, first have been
required by asuite-, group-, or test case information function, or by functionct : r equi r e/ 1/ 2. Thelatter can also
be used in CT hook functions.

The CT hook functions can call any logging function in the ct interface to print information to the log files, or to
add comments in the suite overview page.

1.14.4 Manipulating Tests

Through CTHs the results of tests and configuration functions can be manipulated. The main purpose to do this with
CTHs is to alow common patterns to be abstracted out from test suites and applied to multiple test suites without
duplicating any code. All the callback functions for a CTH follow a common interface described hereafter.

Common Test aways cdls al available hook functions, even pre- and post hooks for configuration
functions that are not implemented in the suite. For example, pre_i nit _per _suite(x_SU TE, ...) and
post _init_per _suite(x SUTE, ...) ae cdled for test suite x_SUl TE, even if it does not export
i ni t_per_suite/ 1. Withthisfeature hookscan be used asconfiguration fallbacks, and all configuration functions
can be replaced with hook functions.

Pre Hooks

Ina CTH, the behavior can be hooked in before the following functions:

e init_per_suite

e init_per_group

e init_per_testcase

« end_per_testcase

e end_per_group

e end_per_suite

This is done in the CTH functions called pr e_<nane of functi on>. These functions take the arguments

Sui t eName, Nane (group or test case name, if applicable), Conf i g, and CTHSt at e. Thereturn value of the CTH
function is always a combination of aresult for the suite/group/test and an updated CTHSt at e.

To let the test suite continue on executing, return the configuration list that you want the test to use as the result.

All pre hooks, except pre_end_per _t est case/ 4, can skip or fail the test by returning a tuple with ski p or
fai |, and areason asthe result.

Example:

pre _init per suite(SuiteName, Config, CTHState) ->
case db:connect() of
{error, Reason} ->
{{fail, "Could not connect to DB"}, CTHState};
{ok, Handle} ->
{[{db_handle, Handle} | Config], CTHState#state{ handle = Handle }}
end.

Ericsson AB. All Rights Reserved.: Common Test | 83

1.14 Common Test Hooks

If you use multiple CTHSs, the first part of the return tuple is used as input for the next CTH. So in the previous
example the next CTH can get { f ai | , Reason} asthe second parameter. If you have many CTHs interacting,
do not let each CTH return f ai | or ski p. Instead, return that an action is to be taken through the Conf i g list
and implement a CTH that, at the end, takes the correct action.

Post Hooks

InaCTH, behavior can be hooked in after the following functions:
e init_per_suite

e init_per_group

e init_per_testcase

e end_per_testcase

 end_per_group

e end_per _suite

This is done in the CTH functions called post _<nane of functi on>. These functions take the arguments
Sui t eNanme, Nane (group or test case name, if applicable), Conf i g, Ret ur n, and CTHSt at e. Confi g in this
caseisthe same Conf i g asthetestcase is called with. Ret ur n isthe value returned by the testcase. If the testcase
failsby crashing, Ret urnis{' EXI T', {{ Error, Reason}, St acktrace}}.

The return value of the CTH function is always a combination of a result for the suite/group/test and an updated
CTHSt at e. If you do not want the callback to affect the outcome of the test, return the Ret ur n dataasitisgivento
the CTH. Y ou can also modify the test result. By returning the Conf i g list with elementt ¢c_st at us removed, you
can recover from atest failure. Asin al the pre hooks, it is also possible to fail/skip the test case in the post hook.

Example:

post end per testcase(Suite, TC, Config, {'EXIT',{ , }}, CTHState) ->
case db:check consistency() of
true ->
%% DB is good, pass the test.
{proplists:delete(tc_status, Config), CTHState};
false ->
%% DB is not good, mark as skipped instead of failing
{{skip, "DB is inconsistent!"}, CTHState}
end;
post end per testcase(Suite, TC, Config, Return, CTHState) ->
%% Do nothing if tc does not crash.
{Return, CTHState}.

Dorecover from atestcasefailure using CTHsonly alast resort. If used wrongly, it can bevery difficult to determine
which tests that pass or fail in atest run.

Skip and Fail Hooks

After any post hook has been executed for all installed CTHSs, on _tc fail or on_tc skip iscalled if the testcase failed
or was skipped, respectively. You cannot affect the outcome of the tests any further at this point.

84 | Ericsson AB. All Rights Reserved.: Common Test

1.14 Common Test Hooks

1.14.5 Synchronizing External User Applications with Common Test

CTHscan be used to synchronize test runswith external user applications. Theinit function can, for example, start and/
or communicate with an application that has the purpose of preparing the SUT for an upcoming test run, or initiaize
adatabase for saving test data to during the test run. The terminate function can similarly order such an application to
reset the SUT after the test run, and/or tell the application to finish active sessions and terminate. Any system error-
or progress reports generated during the init- or termination stage are saved in the Pre- and Post Test I/O Log. (This
isalso true for any printouts made withct : | og/ 2 and ct : pal / 2).

To ensure that Conmon Test does not start executing tests, or closes its log files and shuts down, before the
external application is ready for it, Conmon Test can be synchronized with the application. During startup and
shutdown, Cormon Test can be suspended, simply by having aCTH evaluatear ecei ve expression in theinit- or
terminate function. The macros ?CT_HOOK | NI T_PROCESS (the process executing the hook init function) and ?
CT_HOOK_TERM NATE_PROCESS (the process executing the hook terminate function) each specifies the name of
the correct Conmon Test process to send a message to. Thisis done to return from ther ecei ve. These macros
aredefinedinct . hrl .

1.14.6 Example CTH

The following CTH logs information about atest run into aformat parseable by file:consult/1 (in Kernel):

Ericsson AB. All Rights Reserved.: Common Test | 85

1.14 Common Test Hooks

%% Common Test Example Common Test Hook module.

o
O
299
000
%%% To use this hook, on the command line:

%%% ct run -suite example SUITE -pa . -ct hooks example cth
%%% B

299

000

Note "-pa . : the hook beam file must be in the code path when installing.
module(example cth).

%% Mandatory Callbacks
-export([init/2]).

%% Optional Callbacks
-export([id/1]).

-export([pre_init per suite/31]).
-export([post _end per suite/4]).

-export([pre_init per testcase/4]).
-export([post _end per testcase/5]).

-export([on_tc skip/4]).

-export([terminate/1]).

%% This hook state is threaded through all the callbacks.
-record(state, {filename, total, suite total, ts, tcs, data, skipped}).

%% This example hook prints its results to a file, see terminate/1l.
-record(test run, {total, skipped, suites}).

%% Return a unique id for this CTH.

%% Using the filename means the hook can be used with different
%% log files to separate timing data within the same test run.
%% See Installing a CTH for more information.

id(Opts) ->

%% the path is relative to the test run directory
proplists:get value(filename, Opts, "example cth.log").

Always called before any other callback function. Use this to initiate
any common state.

init(Id, Opts) ->

{ok, #state{filename = Id, total = 0, data = []}}.

%% Called before init per suite is called.
pre_init per suite(Suite,Config,State) ->
{Config, State#state{suite total = 0, tcs = []}}.

%% Called after end per suite.
post end per suite(Suite, Config,Return,State) ->
Data = {suites, Suite, State#state.suite total,
lists:reverse(State#state.tcs)},
{Return, State#state{data = [Data | State#state.datal,
total = State#state.total + State#state.suite total}}.

%% Called before each init per testcase.
pre init per testcase(Suite, TC,Config,State) ->
Now = erlang:monotonic time(microsecond),
{Config, State#state{ts = Now, suite total = State#state.suite total + 1}}.

%% Called after each end per testcase.
post _end per testcase(Suite,TC, Config,Return,State) ->
Now = erlang:monotonic time(microsecond),
TCInfo = {testcase, Suite, TC, Return, Now - State#state.ts},
{Return, State#state{ts = undefined, tcs = [TCInfo | State#state.tcs]}}.

%% Called when a test case is skipped by either user action

86 | Ericsson AB. All Rights Reserved.: Common Test

1.14 Common Test Hooks

%% or due to an init function failing.
on tc skip(Suite, TC, Reason, State) ->
State#state{skipped = State#state.skipped + 1}.

%% Called when the scope of the CTH is done.
terminate(State) ->
%% use append to avoid data loss if the path is reused
{ok, File} = file:open(State#state.filename, [write, append]),
io:format(File, "~p.~n", [results(State)]),
file:close(File),
ok.

results(State) ->
#state{skipped = Skipped, data

= Data, total = Total} = State,
#test run{total = Total, skipped =

Skipped, suites = lists:reverse(Data)}.

1.14.7 Built-In CTHs

Conmmon Test is delivered with some general-purpose CTHSs that can be enabled by the user to provide generic
testing functionality. Some of these CTHs are enabled by default when conmon_t est is started to run. They can
be disabled by settingenabl e_bui | ti n_hooks tof al se onthe command line or in the test specification. The
following two CTHs are delivered with Conrmbn Test :

cth_log_redirect
Built-in

Capturesall log eventsthat would normally be printed by the default logger handler, and printsthem to the current
test caselog. If an event cannot be associated with atest case, it isprinted inthe Conmon Test framework log.
This happens for test cases running in parallel and events occurring in-between test cases.

The log events are handled using a Logger handler called cth_log_redirect. The formatting and level is copied
from the current def aul t handler when the cth is started. If you want to use another level either change the
def aul t handler level before starting common_test, or usethel ogger : set _handl er _confi g/ 3 API.

cth_surefire
Not built-in

Captures all test results and outputs them as surefire XML into a file. The created file is by default called
junit_report.xm . Thefile name can be changed by setting option pat h for this hook, for example:

-ct_hooks cth_surefire [{path,"/tnmp/report.xm"}]

If optionur | _base isset, an extraattribute named ur | isaddedtoeacht est sui t e andt est case XML
element. Thevalueisconstructedfromur | _base and arelative pathto thetest suite or test caselog, respectively,
for example:

-ct_hooks cth_surefire [{url _base, "http://nyserver.con "}]
givesan URL attribute value similar to

"http://myserver.conict_run.ct@yhost.2012-12-12_11.19. 39/ x86_64- unknown-
i nux-gnu. my_test.logs/run.2012-12-12_11.19.39/suite.log. htm"

Surefire XML can, for example, be used by Jenkins to display test results.

Ericsson AB. All Rights Reserved.: Common Test | 87

1.15 Some Thoughts about Testing

1.15 Some Thoughts about Testing
1.15.1 Goals

It is not possible to prove that a program is correct by testing. On the contrary, it has been formally proven that it is
impossible to prove programs in general by testing. Theoretical program proofs or plain examination of code can be
viable options for those wishing to certify that a program is correct. The test server, asit is based on testing, cannot
be used for certification. Its intended use is instead to (cost effectively) find bugs. A successful test suite is one that
reveals abug. If atest suite resultsin OK, then we know very little that we did not know before.

1.15.2 What to Test

There are many kinds of test suites. Some concentrate on calling every function or command (in the documented way)
in acertain interface. Some others do the same, but use al kinds of illegal parameters, and verify that the server stays
aliveand regjectsthe requests with reasonabl e error codes. Sometest suites simulate an application (typically consisting
of afew modules of an application), some try to do tricky requests in general, and some test suites even test internal
functions with help of special Load Modules on target.

Another interesting category of test suites is the one checking that fixed bugs do not reoccur. When a bugfix is
introduced, atest case that checks for that specific bug iswritten and submitted to the affected test suites.

Aim for finding bugs. Write whatever test that has the highest probability of finding a bug, now or in the future.
Concentrate more on the critical parts. Bugsin critical subsystems are much more expensive than others.

Aimfor functionality testing rather than implementation details. |mplementation detail s change quite often, and the test
suites are to be long lived. Implementation details often differ on different platforms and versions. If implementation
details must be tested, try to factor them out into separate test cases. These test cases can later be rewritten or skipped.

Also, aim for testing everything once, no less, no more. It is not effective having every test case fail only because one
function in the interface changed.

1.16 Common Test's Property Testing Support:
ct property_test

1.16.1 General

The Common Test Property Testing Support (ct_property test) is an aid to run property based testing tools in
Common Test test suites.

Basic knowledge of property based testing is assumed in the following. It is also assumed that at least one of the
following property based testing toolsis installed and available in the library path:

e QuickCheck,
* PropEr or
e« Triqg

1.16.2 What Is Supported?

The ct_property_test module does the following:

* Compilesthefiles with property testsin the subdirectory pr operty_t est
» Tests propertiesin those files using the first found Property Testing Tool.
» Savestheresults - that is the printouts - in the usual Common Test Log

88 | Ericsson AB. All Rights Reserved.: Common Test

href
href
href

1.16 Common Test's Property Testing Support: ct_property_test

1.16.3 Introductory Example

Assume that we want to test the lists:sort/1 function.

We need a property to test the function. In normal way, we create property_test/ct_prop. erl modulein

thet est directory in our application:

-module(ct _prop).
-export([prop sort/0]).

%% This will include the .hrl file for the installed testing tool:
include lib("common test/include/ct property test.hrl").

oo

The property we want to check:
For all possibly unsorted lists,
the result of lists:sort/1 is sorted.
prop_sort() ->
?FORALL (UnSorted, list(),
is sorted(lists:sort(UnSorted))

).

o o of
o o° o°

)
i
)
i
)
"0

%%% Function to check that a list is sorted:
is sorted([]) ->
true;
is sorted([1) ->
true;
is sorted([H1,H2|SortedTail]) when Hl1 =< H2 ->
is sorted([H2|SortedTaill);
is sorted() ->
false.

We aso need a CommonTest test suite:

-module(ct property test SUITE).
-compile(export all). % Only in tests!

-include lib("common test/include/ct.hrl").

all() -> [prop sort
.

%%% First prepare Config and compile the property tests for the found tool:
init per suite(Config) ->
ct property test:init per suite(Config).

end per suite(Config) ->
Config.

)
©

%% Test suites

prop sort(Config) ->

ct property test:quickcheck(
ct prop:prop sort(),
Config
) o

@ o of

o°

Werun it as usual, for example with ct_run in the OS shell:

Ericsson AB. All Rights Reserved

. Common Test | 89

1.16 Common Test's Property Testing Support: ct_property test

..../test$ ct run -suite ct property test SUITE

Common Test: Running make in test directories...
TEST INFO: 1 test(s), 1 case(s) in 1 suite(s)

Testing lib.common test.ct property test SUITE: Starting test, 1 test cases

2019-12-18 10:44:46.293
Found property tester proper
at "/home/X/lib/proper/ebin/proper.beam"

2019-12-18 10:44:46.294

Compiling in "/home/..../test/property test"
Deleted: ["ct prop.beam"]
ErlFiles: ["ct prop.erl"]
MacroDefs: [{d, 'PROPER'}]

Testing lib.common_ test.ct property test SUITE: TEST COMPLETE, 1 ok, 0 failed of 1 test cases

1.16.4 A stateful testing example

Assume atest that generates some parallel stateful commands, and runs 300 tests:

prop _parallel(Config) ->
numtests (300,
?FORALL (Cmds, parallel commands(?MODULE),
begin
RunResult = run parallel commands(?MODULE, Cmds),
ct property test:present result(?MODULE, Cmds, RunResult, Config)
end)).

Thect_property_test:present_result/4 is a help function for printing some statistics in the CommonTest log file.

Our example test could for example be a simple test of an ftp server, where we perform get, put and delete requests,
some of them in parallel. Per default, the result has three sections:

90 | Ericsson AB. All Rights Reserved.: Common Test

1.16 Common Test's Property Testing Support: ct_property_test

*xk User 2019-12-11 13:28:17.504 **x*
Distribution sequential/parallel
57.7% sequential

28.0% parallel 2
14.3% parallel 1

**x User 2019-12-11 13:28:17.505 **x*
Function calls
44.4% get

39.3% put
16.3% delete

**x User 2019-12-11 13:28:17.505 **x*

Length of command sequences

Range : Number in range

0 - 4: 8 2.7% <-- min=3
5- 09: 44 14.7%

10 - 14: 74 24.7%

15 - 19: 60 20.0% <-- mean=18.7 <-- median=16.0
20 - 24: 38 12.7%

25 - 29: 26 8.7%

30 - 34: 19 6.3%

35 - 39 19 6.3%

40 - 44: 8 2.7%

45 - 49: 4 1.3% <-- max=47

Thefirst part - Distribution sequential/parallel - shows the distribution in the sequential and parallel part of the result
of parallel_commands/1. See any property testing tool for an explanation of this function. The table shows that of all
commands (get and put in our case), 57.7% are executed in the sequential part prior to the parallel part, 28.0% are
executed in thefirst paralldl list and the rest in the second parallel list.

The second part - Function calls - shows the distribution of the three calls in the generated command lists. We see
that al of the three calls are executed. If it was so that we thought that we also generated a fourth call, a table like
this shows that we failed with that.

The third and final part - Length of command sequences - show statistics of the generated command sequences. We
see that the shortest list has three elementes while the longest has 47 elements. The mean and median values are also
shown. Further we could for example seethat only 2.7% of thelists (that is eight lists) only hasthree or four elements.

Ericsson AB. All Rights Reserved.: Common Test | 91

1.16 Common Test's Property Testing Support: ct_property test

2 Reference Manual

92 | Ericsson AB. All Rights Reserved.: Common Test

common_test

common_test
Application

The Conmon Test framework is an environment for implementing and performing automatic and semi-automatic
execution of test cases.

Inbrief, Cormon Test supports:

« Automated execution of test suites (sets of test cases)
» Logging of events during execution

e HTML presentation of test suite results

e HTML presentation of test suite code

e Support functions for test suite authors

e Step-by-step execution of test cases

Ericsson AB. All Rights Reserved.: Common Test | 93

ct_run

ct run

Command

The ct _r un program is automatically installed with Erlang/OTP and the Conmon Test application (for more
information, see section Installation in the User's Guide). The program accepts different start flags. Some flags trigger
ct _runtostart Cormon Test and passon datato it. Some flags start an Erlang node prepared for running Conmon
Test inaparticular mode.

Theinterfacefunctionct : run_t est/ 1, correspondingtothect _r un program, isused for starting Cormon Test
from the Erlang shell (or an Erlang program). For details, seethe ct manual page.

ct _run also accepts Erlang emulator flags. These are used when ct _run callser | to start the Erlang node (this
makes it possible to add directories to the code server path, change the cookie on the node, start more applications,
and so on).

With the optional flag - er | _ar gs, optionsonthect _r un command line can be divided into two groups:

e Onegroup that Common Test isto process (those preceding - er | _ar gs).

* Onegroup that Conmon Test istoignore and pass on directly to the emulator (those following -
erl _args).

Optionspreceding - er | _ar gs that Common Test doesnot recognize are al so passed on to the emul ator untouched.
By - erl _ar gs the user can specify flags with the same name, but with different destinations, on the ct _r un
command line.

If flags- pa or - pz arespecifiedintheConmon Test group of options(preceding- er | _ar gs), relativedirectories
are converted to absolute and reinserted into the code path by Conmon Test . Thisisto avoid problems loading user
modules when Cormon Test changes working directory during test runs. However, Conmon Test ignores flags
- pa and - pz following - er| _ar gs on the command line. These directories are added to the code path normally
(that is, on specified form).

Exit status is set before the program ends. Value 0 indicates a successful test result, 1 indicates one or more failed or
auto-skipped test cases, and 2 indicates test execution failure.

If ct _runiscaledwithoption - hel p, it printsall valid start flagsto st dout .

94 | Ericsson AB. All Rights Reserved.: Common Test

ct_run

Run Tests from Command Line

ct run -dir TestDirl TestDir2 .. TestDirN |
[-dir TestDir] -suite Suitel Suite2 .. SuiteN
[-group Groupsl Groups2 .. GroupsN] [-case Casel Case2 .. CaseN]
[-step [config | keep inactive]]
[-config ConfigFilel ConfigFile2 .. ConfigFileN]
[-userconfig CallbackModulel ConfigStringl and CallbackModule2
ConfigString2 and .. CallbackModuleN ConfigStringN]
[-decrypt key Keyl | [-decrypt file KeyFile]
[-label Label]
[-logdir LogDir]
[-logopts LogOpts]
[-verbosity GenVLevel | [Categoryl VLevell and
Category2 VLevel2 and .. CategoryN VLevelN]]
[-silent connections [ConnTypel ConnType2 .. ConnTypeN]]
[-stylesheet CSSFile]
[-cover CoverCfgFile]
[-cover stop Bool]
[-event handler EvHandlerl EvHandler2 .. EvHandlerN] |
[-event handler init EvHandlerl InitArgl and
EvHandler2 InitArg2 and .. EvHandlerN InitArgN]
[-include InclDirl InclDir2 .. InclDirN]
[-no_auto compile]
[-abort if missing suites]
[-multiply timetraps Multiplier]
[-scale timetraps]
[-create priv _dir auto per run | auto per tc | manual per tc]
[-repeat N] |
[-duration HHMMSS [-force stop [skip restll] |
[-until [YYMOMoDD]HHMMSS [-force stop [skip rest]l]
[-basic_html]
[-no_esc chars]
[-keep logs all | NLogs]
[-ct hooks CTHModulel CTHOptsl and CTHModule2 CTHOpts2 and ..
CTHModuleN CTHOptsN]
[-exit status ignore config]
[-help]

Ericsson AB. All Rights Reserved.: Common Test | 95

ct_run

Run Tests using Test Specification

ct run -spec TestSpecl TestSpec2 .. TestSpecN
[-join specs]
[-config ConfigFilel ConfigFile2 .. ConfigFileN]
[-userconfig CallbackModulel ConfigStringl and CallbackModule2
ConfigString2 and .. and CallbackModuleN ConfigStringN]
[-decrypt key Keyl | [-decrypt file KeyFile]
[-label Label]
[-logdir LogDir]
[-logopts LogOpts]
[-verbosity GenVLevel | [Categoryl VLevell and
Category2 VLevel2 and .. CategoryN VLevelN]]
[-allow user terms]
[-silent connections [ConnTypel ConnType2 .. ConnTypeN]]
[-stylesheet CSSFile]
[-cover CoverCfgFile]
[-cover stop Bool]
[-event handler EvHandlerl EvHandler2 .. EvHandlerN] |
[-event handler init EvHandlerl InitArgl and
EvHandler2 InitArg2 and .. EvHandlerN InitArgN]
[-include InclDirl InclDir2 .. InclDirN]
[-no_auto compile]
[-abort if missing suites]
[-multiply timetraps Multiplier]
[-scale timetraps]
[-create priv _dir auto per run | auto per tc | manual per tc]
[-repeat N] |
[-duration HHMMSS [-force stop [skip restll] |
[-until [YYMOMoDD]HHMMSS [-force stop [skip rest]l]
[-basic_html]
[-no_esc chars]
[-keep logs all | NLogs]
[-ct hooks CTHModulel CTHOptsl and CTHModule2 CTHOpts2 and ..
CTHModuleN CTHOptsN]
[-exit status ignore config]

Refresh HTML Index Files

ct run -refresh logs [-logdir LogDir] [-basic html]
[-keep logs all | NLogs]

Run Common Test in Interactive Mode

ct run -shell
[-config ConfigFilel ConfigFile2 ... ConfigFileN]
[-userconfig CallbackModulel ConfigStringl and CallbackModule2
ConfigString2 and .. and CallbackModuleN ConfigStringN]
[-decrypt key Key] | [-decrypt file KeyFile]

Start a Common Test Master Node

ct run -ctmaster

96 | Ericsson AB. All Rights Reserved.: Common Test

ct_run

See Also
For information about the start flags, see section Running Tests and Analyzing Resultsin the User's Guide.

Ericsson AB. All Rights Reserved.: Common Test | 97

ct

ct

Erlang module

Main user interface for the Conmmon Test framework.

This module implements the command-line interface for running tests and basic functions for Cormon Test case
issues, such as configuration and logging.

The framework stores configuration values in a property list usually named Conf i g. The list contains information
about the test run added by the framework itself and may also contain user-provided values. The configuration is
passed into individual test cases as well as support functions if defined.

Possible configuration variables include:

e data_dir -Datafiledirectory
e priv_dir - Scratch filedirectory
e Whateveraddedbyinit _per _suite/lorinit_per_testcase/2inthetest suite.

The ?conf i g macro, used to receive individual config values from the Conf i g property list, is deprecated.
Pleaseusepr opl i st s: get _val ue/ 2- 3 instead.

Data Types

handle() = pid()

Theidentity (handl€) of a connection.

config key() = atom()

A configuration key which existsin a configuration file
target name() = atom()

A name and association to configuration data introduced through a require statement, or acall toct : require/ 2,
for example, ct : r equi r e(mynodenane, { node, [tel net]}).

key or name() = config key() | target name()
conn_log options() = [conn_log option()]

Options that can be given to the ct h_conn_I| og hook, which is used for logging of NETCONF and Telnet
connections. See ct_netconfc or ct_telnet for description and examples of how to use this hook.

conn_log option() =

{log_type, conn log type()} | {hosts, [key or name()]}
conn_log type() = raw | pretty | html | silent
conn log mod() = ct netconfc | ct telnet

Exports

abort current testcase(Reason) -> ok | {error, ErrorReason}
Types:

98 | Ericsson AB. All Rights Reserved.: Common Test

ct

Reason = term()
ErrorReason = no_testcase running | parallel group

Abortsthe currently executing test case. The user must know with certainty which test caseis currently executing. The
function istherefore only safeto call from afunction that has been called (or synchronously invoked) by the test case.

Reason, the reason for aborting the test case, is printed in the test case log.

add config(Callback, Config) -> ok | {error, Reason}

Types:
Callback = atom()
Config = string()
Reason = term()

Loads configuration variables using the specified callback module and configuration string. The callback module is
to be either loaded or present in the code path. Loaded configuration variables can later be removed using function
ct:renmove_config/ 2.

break (Comment) -> ok | {error, Reason}
Types:
Comment = string()

Reason =
{multiple cases running, TestCases} |
‘enable break with release shell option'

TestCases = [atom()]
Cancelsany activetimetrap and pausesthe execution of the current test case until theuser callsfunctioncont i nue/ 0.

The user can then interact with the Erlang node running the tests, for example, for debugging purposes or for manually
executing a part of the test case. If aparalel group isexecuting, ct : br eak/ 2 isto be called instead.

A cancelled timetrap is not automatically reactivated after the break, but must be started explicitly with
ct:timetrap/ 1.

In order for the break/continue functionality to work, Common Test must release the shell process controlling
st di n. Thisisdone by setting start optionr el ease_shel | tot r ue. For details, see section Running Tests from
the Erlang Shell or from an Erlang Program in the User's Guide.

break(TestCase, Comment) -> ok | {error, Reason}
Types:

TestCase = atom()

Comment = string()

Reason =
‘test case not running' |
‘enable break with release shell option'

Works the same way as ct : br eak/ 1, only argument Test Case makes it possible to pause a test case executing
inaparalel group. Function ct : cont i nue/ 1 isto be used to resume execution of Test Case.

For details, seect : br eak/ 1.

capture get() -> ListOfStrings
Types.

Ericsson AB. All Rights Reserved.: Common Test | 99

ct

List0fStrings = [string()]
Equivalent to ct:capture_get([default]).

capture get(ExclCategories) -> ListO0fStrings
Types:

ExclCategories = [atom()]

ListO0fStrings = [string()]

Returns and purges the list of text strings buffered during the latest session of capturing printouts to st dout .
Log categories that are to be ignored in Li st Of Strings can be specified with Excl Cat egori es. If
Excl Cat egori es = [], nofiltering takes place.

Seeasoct: capture_start/0,ct:capture_stop/O0,ct:|og/3.

capture start() -> ok
Starts capturing all text strings printed to st dout during execution of the test case.
Seealsoct: capture_get/1,ct:capture_stop/O0.

capture stop() -> ok
Stops capturing text strings (a session started with capt ur e_st art/ 0).
Seealsoct:capture_get/1,ct:capture_start/O0.

comment (Comment) -> ok
Types:
Comment = term()
Prints the specified Conmrent in the comment field in the table on the test suite result page.

If called several times, only the last comment is printed. Thetest casereturn value{ conmrent , Conmrent } overwrites
the string set by this function.

comment (Format, Args) -> ok
Types:
Format = string()
Args = list()
Prints the formatted string in the comment field in the table on the test suite result page.

Arguments For mat and Ar gs areusedinacall toi o_| i b: f or mat / 2 to create the comment string. The behavior
of conment / 2 is otherwise the same asfunction ct : comrent / 1.

continue() -> ok

This function must be called to continue after a test case (not executing in a parallel group) has called function
ct: break/ 1.

continue(TestCase) -> ok
Types:

100 | Ericsson AB. All Rights Reserved.: Common Test

ct

TestCase = atom()

Thisfunction must be called to continue after atest casehascalled ct : br eak/ 2. If the paused test case, Test Case,
executesin aparallel group, thisfunction, rather than cont i nue/ 0, must be used to let the test case proceed.

decrypt config file(EncryptFileName, TargetFileName) ->
ok | {error, Reason}

Types:
EncryptFileName = TargetFileName = string()
Reason = term()

Decrypts Encr ypt Fi | eNane, previoudy generated with ct: encrypt _config_fil e/ 2, 3. The origina
file contents is saved in the target file. The encryption key, a string, must be available in a text file named
.ct_config. crypt, either in the current directory, or the home directory of the user (it is searched for in that
order).

decrypt config file(EncryptFileName, TargetFileName, KeyOrFile) ->
ok | {error, Reason}

Types:
EncryptFileName = TargetFileName = string()
KeyOrFile = {key, string()} | {file, string()}
Reason = term()

Decrypts Encr ypt Fi | eNane, previously generated withct : encrypt _config_fil e/ 2, 3. Theorigina file
contents is saved in the target file. The key must have the same value as that used for encryption.

encrypt config file(SrcFileName, EncryptFileName) ->
ok | {error, Reason}

Types.
SrcFileName = EncryptFileName = string()
Reason = term()

Encrypts the source configuration file with DES3 and savestheresultinfile Encr ypt Fi | eNane. Thekey, astring,
must be available in atext file named . ct _confi g. crypt, ether in the current directory, or the home directory
of the user (it is searched for in that order).

For information about using encrypted configuration files when running tests, see section Encrypted Configuration
Filesin the User's Guide.

For details on DES3 encryption/decryption, see application Cr ypt o.

encrypt config file(SrcFileName, EncryptFileName, KeyOrFile) ->
ok | {error, Reason}

Types.
SrcFileName = EncryptFileName = string()
KeyOrFile = {key, string()} | {file, string()}

Reason = term()

Encrypts the source configuration file with DES3 and saves the result in the target file Encr ypt Fi | eNane. The
encryption key to use is either thevaluein { key, Key} or the value stored in the file specified by {fi |l e, Fi | e}.

For information about using encrypted configuration files when running tests, see section Encrypted Configuration
Filesin the User's Guide.

Ericsson AB. All Rights Reserved.: Common Test | 101

ct

For details on DES3 encryption/decryption, see application Cr ypt o.

fail(Reason) -> no_return()
Types:
Reason = term()
Terminates atest case with the specified error Reason.

fail(Format, Args) -> no return()
Types:

Format = io:format()

Args = [term()]

Terminates a test case with an error message specified by aformat string and a list of values (used as arguments to
io_lib:format/2).

get config(Required) -> Value
Types:
Required =
KeyOrName | {KeyOrName, SubKey} | {KeyOrName, SubKey, SubKey}
KeyOrName = SubKey = atom()
Value = term()

Equivalenttoct : get _confi g(Requi red, undefined, []).

get config(Required, Default) -> Value
Types:
Required =
KeyOrName | {KeyOrName, SubKey} | {KeyOrName, SubKey, SubKey}

KeyOrName = SubKey = atom()
Default = Value = term()

Equivalenttoct : get _confi g(Required, Default, []).

get config(Required, Default, Opts) -> ValueOrElement
Types:
Required =
KeyOrName | {KeyOrName, SubKey} | {KeyOrName, SubKey, SubKey}

KeyOrName = SubKey = atom()
Default = term()

Opts = [Opt]
Opt = element | all
ValueOrElement = term() | Default

Reads configuration data values.

Returns the matching values or configuration elements, given a configuration variable key or its associated name (if
one has been specified with ct : requi re/ 2 or ar equi r e statement).

Example:

102 | Ericsson AB. All Rights Reserved.: Common Test

ct

Given the following configuration file:

{unix, [{telnet, IpAddr},
{user, [{username,Username},
{password,Password}]}1}.

Then:

ct:get config(unix,Default) -> [{telnet,IpAddr},

{user, [{username,Username}, {password,Password}]}]
ct:get config({unix, telnet},Default) -> IpAddr
ct:get config({unix,user,username},Default) -> Username
ct:get config({unix, ftp},Default) -> Default
ct:get config(unknownkey,Default) -> Default

If aconfiguration variable key has been associated with aname (by ct : requi r e/ 2 or ar equi r e statement), the
name can be used instead of the key to read the value:

ct:require(myuser,{unix,user}) -> ok.
ct:get config(myuser,Default) -> [{username,Username}, {password,Password}]

If a configuration variable is defined in multiple files, use option al | to access al possible values. The values are
returnedin alist. Theorder of the elements correspondsto the order that the configuration fileswere specified at startup.

If configuration elements (key-value tuples) are to be returned as result instead of values, use option el enent . The
returned elements are then on the form { Requi r ed, Val ue}.

Seealsoct:get _config/1l,ct:get _config/2,ct:require/1,ct:require/?2.

get event mgr ref() -> EvMgrRef
Types.
EvMgrRef = atom()

Getsareferenceto the Common Test event manager. The reference can be used to, for example, add a user-specific
event handler while tests are running.

Example:
gen_event:add handler(ct:get event mgr ref(), my ev h, [1)

get progname() -> string()

Returns the command used to start this Erlang instance. If this information could not be found, the string
"no_prog_nane" isreturned.

get status() -> TestStatus | {error, Reason} | no_tests running
Types:
TestStatus
StatusElem =
{current, TestCaseInfo} |
{successful, Successful} |
{failed, Failed} |
{skipped, Skipped} |

[StatusElem]

Ericsson AB. All Rights Reserved.: Common Test | 103

ct

{total, Total}
TestCaseInfo = {Suite, TestCase} | [{Suite, TestCase}]

Suite = TestCase = atom()

Successful = Failed = integer()

Skipped = {UserSkipped, AutoSkipped}
UserSkipped = AutoSkipped = Total = integer()
Reason = term()

Returns status of ongoing test. The returned list contains information about which test caseis executing (alist of cases
when a parallel test case group is executing), as well as counters for successful, failed, skipped, and total test cases
so far.

get target name(Handle) -> {ok, TargetName} | {error, Reason}
Types:

Handle = handle()

TargetName = target name()

Reason = term()

Returns the name of the target that the specified connection belongs to.

get testspec terms() -> TestSpecTerms | undefined

Types:
TestSpecTerms = [{Tag, Value}]
Tag = atom()

Value = [term()]
Getsalist of all test specification terms used to configure and run this test.

get testspec terms(Tags) -> TestSpecTerms | undefined

Types:
Tags = [Tag] | Tag
Tag = atom()

TestSpecTerms = [{Tag, Value}] | {Tag, Value}
Value = [{Node, term()}] | [term()]
Node = atom()

Reads one or more terms from the test specification used to configure and run this test. Tag is any valid test
specification tag, for example, | abel , confi g, orl ogdi r . User-specific terms are also available to read if option
al | ow_user _ternsisset.

All value tuples returned, except user terms, have the node name as first element.

Toreadtestterms, use Tag = t est s (ratherthansui t es, gr oups, or cases). Val ue isthenthelist of all tests
ontheform[{ Node, Di r, [{ Test Spec, G oupsAndCasesl},...]},...],wheeG oupsAndCases =
[{Goup, [Case]}] | [Case].

get timetrap info() -> {Time, {Scaling, ScaleVal}}
Types.

104 | Ericsson AB. All Rights Reserved.: Common Test

ct

Time = integer() | infinity
Scaling = boolean()
ScaleVal = integer()
Reads information about the timetrap set for the current test case. Scal i ng indicatesif Common Test will attempt

to compensate timetraps automatically for runtime delays introduced by, for example, tools like cover. Scal eVal is
the value of the current scaling multiplier (always 1 if scaling is disabled). Note the Ti ne is not the scaled result.

get verbosity(Category) -> Level | undefined
Types.

Category = default | atom()

Level = integer()

This function returns the verbosity level for the specified logging category. See the User's Guide for details. Use the
valuedef aul t to read the general verbosity level.

install(Opts) -> ok | {error, Reason}
Types:
Opts = [Opt]
Opt =
{config, ConfigFiles} |
{event handler, Modules} |
{decrypt, KeyOrFile}
ConfigFiles = [ConfigFile]
ConfigFile = string()
Modules = [atom()]
KeyOrFile = {key, Key} | {file, KeyFile}
Key = KeyFile = string()
Reason = term()
Installs configuration files and event handlers.
Run this function once before the first test.

Example:

install([{config, ["config node.ctc","config user.ctc"]}1)

This function is automatically run by programct _r un.

listenv(Telnet) -> {ok, [Env]}
Types:

Telnet = term()

Env = {Key, Value}

Key = Value = string()

Performs command | i st env on the specified Telnet connection and returns the result as a list of key-value pairs.

log(Format) -> ok
Types.

Ericsson AB. All Rights Reserved.: Common Test | 105

ct

Format = string()

Equivalenttoct : | og(defaul t, 50, Format, [], []).

log(X1, X2) -> ok

Types:
X1 = Category | Importance | Format
X2 = Format | FormatArgs

Category = atom() | integer() | string()
Importance = integer()

Format = string()

FormatArgs = list()

Equivalenttoct : | og(Cat egory, | nmportance, Fornat,

log(X1, X2, X3) -> ok

Types:
X1 = Category | Importance
X2 = Importance | Format
X3 = Format | FormatArgs | Opts

Category = atom() | integer() | string()
Importance = integer()

Format = string()

FormatArgs = list()

Opts = [Opt]

For mat Ar gs,

Opt = {heading, string()} | no_css | esc chars

Equivalenttoct : | og(Cat egory, | nmportance, Fornat,

log(X1, X2, X3, X4) -> ok

Types.
X1 = Category | Importance
X2 = Importance | Format
X3 = Format | FormatArgs
X4 = FormatArgs | Opts

Category = atom() | integer() | string()
Importance = integer()

Format = string()

FormatArgs = list()

Opts = [Opt]

For mat Ar gs,

Opt = {heading, string()} | no_css | esc chars

Equivalenttoct : | og(Cat egory, | nmportance, Fornat,

For mat Ar gs,

log(Category, Importance, Format, FormatArgs, Opts) -> ok

Types.

106 | Ericsson AB. All Rights Reserved.: Common Test

(1.

Opt s) .

Opt s) .

ct

Category = atom() | integer() | string()
Importance = integer()
Format = string()
FormatArgs = list()
Opts = [Opt]
Opt = {heading, string()} | no _css | esc chars
Prints from atest case to the log file.
This function is meant for printing a string directly from atest case to the test case log file.

Default Cat egory is default, default | nportance is ?STD | MPORTANCE, and default value for
Format Argsis[].

For detailson Cat egory, | nport ance andtheno_css option, see section Logging - Categories and Verbosity
Levelsin the User's Guide.

Common Test will not escape special HTML characters (<, > and &) in the text printed with this function, unless the
esc_char s option is used.

make priv dir() -> ok | {error, Reason}
Types:
Reason = term()

If the test is started with option cr eat e_priv_di r settomanual _per _tc, inorder for the test case to use the
private directory, it must first create it by calling this function.

notify(Name, Data) -> ok

Types.
Name = atom()
Data = term()

Sends an asynchronous natification of type Name with Dat ato the Common Test event manager. This can later be
caught by any installed event manager.

Seeasogen_event (3).

pal(Format) -> ok
Types:
Format = string()
Equivalenttoct : pal (default, 50, Format, [], []).

pal (X1, X2) -> ok

Types:
X1 = Category | Importance | Format
X2 = Format | FormatArgs

Category = atom() | integer() | string()
Importance = integer()

Format = string()

FormatArgs = list()

Equivalenttoct : pal (Cat egory, |nportance, Format, FormatArgs, []).

Ericsson AB. All Rights Reserved.: Common Test | 107

ct

pal(X1, X2, X3) -> ok

Types.
X1 = Category | Importance
X2 = Importance | Format
X3 = Format | FormatArgs | Opt

Category = atom() | integer() | string()
Importance = integer()

Format = string()

FormatArgs = list()

Opt = {heading, string()} | no_css

Equivalenttoct : pal (Cat egory, |nportance, Format, FormatArgs, Opts).

pal(X1l, X2, X3, X4) -> ok

Types:
X1 = Category | Importance
X2 = Importance | Format
X3 = Format | FormatArgs
X4 = FormatArgs | Opts

Category = atom() | integer() | string()
Importance = integer()
Format = string()
FormatArgs = list()
Opts = [Opt]
Opt = {heading, string()} | no_css
Equivalenttoct : pal (Cat egory, |nportance, Format, FormatArgs, Opts).

pal(Category, Importance, Format, FormatArgs, Opts) -> ok
Types.
Category = atom() | integer() | string()
Importance = integer()
Format = string()
FormatArgs = list()
Opts = [Opt]
Opt = {heading, string()} | no_css
Prints and logs from a test case.
This function is meant for printing a string from atest case, both to the test case log file and to the console.

Default Cat egory is default, default | nportance is ?STD | MPORTANCE, and default value for
Format Argsis[].

For details on Cat egory and | npor t ance, see section Logging - Categories and Verbosity Levelsin the User's
Guide.

Note that special characters in the text (<, > and &) will be escaped by Common Test before the text is printed to
thelogfile.

108 | Ericsson AB. All Rights Reserved.: Common Test

ct

parse table(Data) -> {Heading, Table}
Types.

Data = [string()]

Heading = tuple()

Table = [tuple()]

Parses the printout from an SQL table and returns alist of tuples.

The printout to parse is typically the result of asel ect command in SQL. The returned Tabl e isalist of tuples,

where each tupleisarow in the table.

Headi ng isatuple of strings representing the headings of each column in thetable.

print(Format) -> ok
Types:

Format = string()

Equivalenttoct : print (default, 50, Format, [],

print (X1, X2) -> ok

Types:
X1 = Category | Importance | Format
X2 = Format | FormatArgs
Category = atom() | integer()
Importance = integer()
Format = string()
FormatArgs = list()

Equivalenttoct : pri nt (Cat egory,

| string()

| nportance, Format,

print(X1, X2, X3)
Types.
X1

-> ok

Category | Importance
X2 Importance | Format
X3 = Format | FormatArgs | Opts
Category = atom() | integer() | string()
Importance = integer()
Format = string()
FormatArgs = list()
Opts = [Opt]
Opt = {heading, string()}
Equivalenttoct : pri nt (Cat egory,

| nportance, Format,

print (X1, X2, X3, X4) -> ok
Types:

(1.

Format Args, []).

For mat Args, Opts).

Ericsson AB. All Rights Reserved.: Common Test | 109

ct

X1 = Category | Importance
X2 = Importance | Format
X3 = Format | FormatArgs
X4 = FormatArgs | Opts

Category = atom() | integer() | string()
Importance = integer()
Format = string()
FormatArgs = list()
Opts = [Opt]
Opt = {heading, string()}
Equivalenttoct : pri nt (Cat egory, |nportance, Format, FormatArgs, Opts).

print(Category, Importance, Format, FormatArgs, Opts) -> ok
Types.
Category = atom() | integer() | string()
Importance = integer()
Format = string()
FormatArgs = list()
Opts = [Opt]
Opt = {heading, string()}
Prints from atest case to the console.
This function is meant for printing a string from atest case to the console.

Default Cat egory is default, default | nportance is ?STD | MPORTANCE, and default value for
Format Argsis[].

For details on Cat egory and | npor t ance, see section Logging - Categories and Verbosity Levelsin the User's
Guide.

reload config(Required) -> ValueOrElement | {error, Reason}
Types:
Required =
KeyOrName | {KeyOrName, SubKey} | {KeyOrName, SubKey, SubKey}

KeyOrName = SubKey = atom()
ValueOrElement = Reason = term()

Reloads configuration file containing specified configuration key.

This function updates the configuration data from which the specified configuration variable was read, and returns
the (possibly) new value of this variable.

If some variables were present in the configuration, but are not loaded using this function, they are removed from the
configuration table together with their aliases.

remaining test procs() -> {TestProcs, SharedGL, OtherGLs}
Types:

110 | Ericsson AB. All Rights Reserved.: Common Test

ct

TestProcs = [{pid(), GL}]
GL = SharedGL = pid()
OtherGLs = [pid()]

This function will return the identity of test- and group leader processes that are still running at the time of this call.
Test Procs are processes in the system that have a Common Test 10 process as group leader. Shar ed@L is the
central Common Test 10 process, responsible for printing to log files for configuration functions and sequentially
executing test cases. & her GLs are Common Test 10 processes that print to log files for test cases in parallel test
case groups.

The process information returned by this function may be used to locate and terminate remaining processes after tests
have finished executing. The function would typically by called from Common Test Hook functions.

Note that processes that execute configuration functions or test cases are never included in Test Procs. It
is therefore safe to use post configuration hook functions (such as post_end_per suite, post_end_per_group,
post_end per testcase) to terminate all processes in Test Pr ocs that have the current group leader process as its
group leader.

Note also that the shared group leader (Shar edGL) must never be terminated by the user, only by Common Test.
Group leader processes for parallel test case groups (Ot her GLs) may however beterminated in post_end_per_group
hook functions.

remove config(Callback, Config) -> ok
Types:

Callback = atom()

Config = string()

Removes configuration variables (together with their aliases) that were loaded with specified callback module and
configuration string.

require(Required) -> ok | {error, Reason}

Types:
Required = Key | {Key, SubKeys} | {Key, SubKey, SubKeys}
Key = atom()

SubKeys = SubKey | [SubKey]
SubKey = atom()
Reason = term()

Checksif the required configuration is available. Arbitrarily deep tuples can be specified asRequi r ed. Only the last
element of the tuple can be alist of SubKeys.

Example 1. Require the variable myvar :

ok = ct:require(myvar).

In this case the configuration file must at least contain:

{myvar,Value}.

Example 2. Require key nyvar with subkeyssubl and sub2:

ok = ct:require({myvar, [subl,sub2]}).

Ericsson AB. All Rights Reserved.: Common Test | 111

ct

In this case the configuration file must at least contain:

{myvar, [{subl,Value}, {sub2,Value}]}.

Example 3. Require key nyvar with subkey subl with subsub1l:

ok = ct:require({myvar,subl,sub2}).

In this case the configuration file must at least contain:

{myvar, [{subl, [{sub2,Value}1}1}.

Seeasoct:get _config/1,ct:get_config/2,ct:get_config/3,ct:require/?2.

require(Name, Required) -> ok | {error, Reason}
Types:
Name = atom()
Required = Key | {Key, SubKey} | {Key, SubKey, SubKey}
SubKey = Key
Key = atom()
Reason = term()

Checksif the required configuration is available and givesit a name. The semantics for Requi r ed isthe sameasin
ct:require/ 1 exceptthat alist of SubKeys cannot be specified.

If the requested data is available, the subentry is associated with Nane so that the value of the element can be read
withct: get _confi g/ 1, 2 provided Nane isused instead of the whole Requi r ed term.

Example:
Reguire one node with a Telnet connection and an FTP connection. Name the node a:

ok = ct:require(a,{machine,node}).

All references to this node can then use the node name. For example, afile over FTPisfetched like follows:

ok = ct:ftp get(a,RemoteFile,LocalFile).

For this to work, the configuration file must at least contain:

{machine, [{node, [{telnet,IpAddr}, {ftp, IpAddr}]1}1}.

The behavior of thisfunction changed radically in Common Test 1.6.2. To keep some backwards compatibility,
itisstill possible to do:

ct:require(a,{node,[telnet,ftp]}).

This associates the name a with the top-level node entry. For this to work, the configuration file must at least
contain:

{node, [{tel net, | pAddr}, {ftp, | pAddr}]}.

112 | Ericsson AB. All Rights Reserved.: Common Test

ct

Seeasoct:get _config/1l,ct:get_config/2,ct:get_config/3,ct:require/1.

run(TestDirs) -> Result
Types:

TestDirs = TestDir | [TestDir]

TestDir = string()

Result = [TestResult] | {error, Reason}

TestResult = Reason = term()

Runs all test casesin all suites in the specified directories.

Seedsoct:run/ 3.

run(TestDir, Suite) -> Result
Types.

TestDir = string()

Suite = atom()

Result = [TestResult] | {error, Reason}

TestResult = Reason = term()

Runs all test cases in the specified suite.
Seedsoct:run/ 3.

run(TestDir, Suite, Cases) -> Result

Types:
TestDir = string()
Suite = atom()
Cases = atom() | [atom()]

Result = [TestResult] | {error, Reason}

TestResult = Reason = term()

Runs the specified test cases.

Requiresthatct : i nstal | / 1 hasbeenrunfirst.

Suites (* _SUI TE. er |) files must be stored in Test Di r or Test Di r/ t est . All suites are compiled when the

test isrun.

run_test(Opts) -> Result
Types:
Opts = [OptTuples]
OptTuples =
{dir, TestDirs} |
{suite, Suites} |
{group, Groups} |
{testcase, Cases} |
{spec, TestSpecs} |
{join specs, boolean()} |
{label, Label} |

Ericsson AB. All Rights Reserved.: Common Test | 113

ct

{config, CfgFiles} |

{userconfig, UserConfig} |
{allow user terms, boolean()} |
{logdir, LogDir} |
{silent_connections, Conns} |
{stylesheet, CSSFile} |

{cover, CoverSpecFile} |
{cover_stop, boolean()} |

{step, StepOpts} |

{event handler, EventHandlers} |
{include, InclDirs} |
{auto_compile, boolean()} |

{abort if missing suites, boolean()} |
{create priv dir, CreatePrivDir} |
{multiply timetraps, M} |

{scale timetraps, boolean()} |
{repeat, N} |

{duration, DurTime} |

{until, StopTime} |

{force stop, ForceStop} |
{decrypt, DecryptKeyOrFile} |
{refresh _logs, LogDir} |

{logopts, LogOpts} |

{verbosity, VLevels} |
{basic_html, boolean()} |
{esc_chars, boolean()} |

{keep logs, KeepSpec} |

{ct_hooks, CTHs} |

{enable builtin hooks, boolean()} |
{release shell, boolean()}

TestDirs = [string()] | string()

GroupNameOrPath = [atom()] | atom() | all
TestSpecs = [string()] |
Label = string() | atom()
CfgFiles = [string()] | string()
UserConfig =

string()

114 | Ericsson AB. All Rights Reserved.: Common Test

Suites = [string()] | [atom()] | string() | atom()
Cases = [atom()] | atom()
Groups = GroupNameOrPath | [GroupNameOrPath]

ct

[{CallbackMod, CfgStrings}] | {CallbackMod, CfgStrings}
CallbackMod = atom()
CfgStrings = [string()] | string()
LogDir = string()
Conns = all | [atom()]
CSSFile = CoverSpecFile = string()
StepOpts = [StepOpt]
StepOpt = config | keep inactive
EventHandlers = EH | [EH]
EH = atom() | {atom(), InitArgs} | {[atom()], InitArgs}
InitArgs = [term()]
InclDirs = [string()] | string()
CreatePrivDir = auto per run | auto per tc | manual per tc
M = N = integer()
DurTime = HHMMSS
HHMMSS = string()
StopTime = YYMoMoDDHHMMSS | HHMMSS
YYMoMoDDHHMMSS = string()
ForceStop = skip rest | boolean()
DecryptKeyOrFile = {key, DecryptKey} | {file, DecryptFile}
DecryptKey = DecryptFile = string()
LogOpts = [LogOpt]
LogOpt = no nl | no_src
VLevels = VLevel | [{Category, VLevel}]
VLevel = integer()
Category = atom()
KeepSpec = all | integer() >=1
CTHs = [CTHModule | {CTHModule, CTHInitArgs}]
CTHModule = atom()
CTHInitArgs = term()

Result =
{0k, Failed, {UserSkipped, AutoSkipped}} |
TestRunnerPid |

{error, Reason}

Ok = Failed = UserSkipped = AutoSkipped = integer()
TestRunnerPid = pid()

Reason = term()

Runs tests as specified by the combination of optionsin Opt s. The options are the same as those used with program
ct _run, see Run Tests from Command Lineinthect _r un manual page.

HereaTest Di r can be used to point out the pathto aSui t e. Optiont est case correspondsto option - case in
program ct _r un. Configuration files specified in Opt s areinstalled automatically at startup.

Test Runner Pi d isreturned if r el ease_shel | == true. For details, seect : br eak/ 1.

Reason indicates the type of error encountered.

Ericsson AB. All Rights Reserved.: Common Test | 115

ct

run_testspec(TestSpec) -> Result
Types.
TestSpec = [term()]

Result =
{0k, Failed, {UserSkipped, AutoSkipped}} | {error, Reason}

Ok = Failed = UserSkipped = AutoSkipped = integer()
Reason = term()
Runs atest specified by Test Spec. The sameterms are used asin test specification files.

Reason indicates the type of error encountered.

set verbosity(Category, Level) -> ok
Types:

Category = default | atom()

Level = integer()

Use this function to set, or modify, the verbosity level for alogging category. See the User's Guide for details. Use
thevaluedef aul t to set the general verbosity level.

sleep(Time) -> ok
Types:
Time =
{hours, Hours} |
{minutes, Mins} |
{seconds, Secs} |
Millisecs | infinity
Hours = Mins = Secs = integer()
Millisecs = integer() | float()
This function, similar tot i mer : sl eep/ 1 in STDLIB, suspends the test case for a specified time. However, this

function also multiplies Ti me withtherrul ti pl y_ti netraps value (if set) and under certain circumstances also
scales up thetime automaticaly if scal e_ti netraps issettotrue (defaultisf al se).

start interactive() -> ok
Starts Commbn Test ininteractive mode.

From this mode, all test case support functions can be executed directly from the Erlang shell. The interactive mode
can also be started from the OS command linewithct _run -shell [-config File...].

If any functions (for example, Telnet or FTP) using "required configuration data’' are to be called from the Erlang
shell, configuration data must first be required withct : r equi r e/ 2.

Example:

> ct:require(unix_telnet, unix).

ok

> ct_telnet:open(unix_telnet).
{ok,<0.105.0>}

> ct_telnet:cmd(unix_telnet, "1s .").
{ok,["ls","filel ...",...1}

116 | Ericsson AB. All Rights Reserved.: Common Test

ct

step(TestDir, Suite, Case) -> Result
Types.
TestDir = string()

Suite = Case = atom()
Result = term()

Steps through atest case with the debugger.
Seedsoct:run/ 3.

step(TestDir, Suite, Case, Opts) -> Result
Types:

TestDir = string()

Suite = Case = atom()

Opts = [Opt]

Opt = config | keep inactive

Result = term()

Steps through a test case with the debugger. If option conf i g has been specified, breakpoints are also set on the
configuration functionsin Sui t e.

Seedsoct:run/3.

stop_interactive() -> ok
Exits the interactive mode.

Seealsoct:start_interactive/O0.

sync_notify(Name, Data) -> ok

Types:
Name = atom()
Data = term()

Sends a synchronous notification of type Nane with Dat a to the Conmon Test event manager. This can later be
caught by any installed event manager.

Seeasogen_event (3).

testcases(TestDir, Suite) -> Testcases | {error, Reason}
Types:

TestDir = string()

Suite = atom()

Testcases = list()

Reason = term()

Returns all test cases in the specified suite.

timetrap(Time) -> infinity | pid()
Types:
Time =
{hours, Hours} |

Ericsson AB. All Rights Reserved.: Common Test | 117

ct

{minutes, Mins} |
{seconds, Secs} |
Millisecs | infinity | Func
Hours = Mins = Secs = Millisecs = integer()
Func = {M, F, A} | function()
M F = atom()
A = list()

Sets a new timetrap for the running test case.

If theargument is Func, thetimetrap istriggered when thisfunction returns. Func can alsoreturn anew Ti e value,
which in that case is the value for the new timetrap.

userdata(TestDir, Suite) -> SuiteUserData | {error, Reason}
Types.

TestDir = string()

Suite = atom()

SuiteUserData = [term()]

Reason = term()

Returns any data specified with tag user dat a inthelist of tuplesreturned from sui t e/ 0.

userdata(TestDir, Suite, Case :: GroupOrCase) ->
TCUserData | {error, Reason}

Types:
TestDir = string()
Suite = atom()
GroupOrCase = {group, GroupName} | atom()
GroupName = atom()
TCUserData = [term()]
Reason = term()

Returns any data specified with tag user dat a in the list of tuples returned from Sui t e: gr oup(G oupNane)
or Sui t e: Case().

118 | Ericsson AB. All Rights Reserved.: Common Test

ct_master

ct_master

Erlang module

Distributed test execution control for Conmon Test .
This module exports functions for running Conmon Test nodes on multiple hostsin parallel.

Exports

abort() -> ok
Stops al running tests.

abort(Nodes) -> ok
Types:

Nodes = atom() | [atom()]
Stops tests on specified nodes.

basic html(Bool) -> ok
Types:
Bool = true | false

If settotrue, thect _master | ogs arewritten on a primitive HTML format, not using the Cormon Test
CSS style shest.

get event mgr ref() -> MasterEvMgrRef
Types:
Mast er EvMgr Ref = atom()
Getsareferencetothe Conmon Test master event manager. The reference can be used to, for example, add a user-

specific event handler while tests are running.
Example:

gen _event:add handler(ct master:get event mgr ref(), my ev h, [])

progress() -> [{Node, Status}]

Types:
Node = atom()
Status = finished_ok | ongoing | aborted | {error, Reason}
Reason = term()

Returnstest progress. If St at us isongoi ng, tests are running on the node and are not yet finished.

run(TestSpecs) -> ok
Types:

Test Specs = string() | [SeparateO Merged]
Equivalenttoct _master: run(Test Specs, false, [], []).

Ericsson AB. All Rights Reserved.: Common Test | 119

ct_master

run(TestSpecs, InclNodes, ExclNodes) -> ok
Types.
Test Specs = string() | [SeparateO Merged]
SeparateOrMerged = string() | [string()]
I ncl Nodes = [aton()]
Excl Nodes = [aton()]

Equivalenttoct _mast er: run(Test Specs, fal se, Incl Nodes, Excl Nodes).

run(TestSpecs, AllowUserTerms, InclNodes, ExclNodes) -> ok
Types:
Test Specs = string() | [SeparateO Merged]
SeparateOrMerged = string() | [string()]
Al'l owlUser Terns = bool ()
I ncl Nodes = [aton()]
Excl Nodes = [aton()]
Tests are spawned on the nodes as specified in Test Specs. Each specification in Test Spec is handled separately.
However, it is also possible to specify alist of specifications to be merged into one specification before the tests are

executed. Any test without a particular node specification is also executed on the nodesin | ncl Nodes. Nodesin the
Excl Nodes list are excluded from the test.

run_on node(TestSpecs, Node) -> ok

Types:
Test Specs = string() | [SeparateO Merged]
SeparateOrMerged = string() | [string()]
Node = atom()

Equivalenttoct _mast er: run_on_node(Test Specs, fal se, Node).

run_on node(TestSpecs, AllowUserTerms, Node) -> ok
Types:
Test Specs = string() | [SeparateO Merged]
SeparateOrMerged = string() | [string()]
Al'l owlser Terns = bool ()
Node = atom()

Tests are spawned on Node according to Test Specs.

run_test(Node, Opts) -> ok

Types:
Node = atom()
Opts = [Opt Tupl es]

Opt Tupl es = {config, CigFiles} | {dir, TestDirs} | {suite, Suites}

| {testcase, Cases} | {spec, TestSpecs} | {allow user_ternms, Bool} |
{logdir, LogDir} | {event_handler, EventHandl ers} | {silent_connections,
Conns} | {cover, CoverSpecFile} | {cover_stop, Bool} | {userconfig,

User Cf gFi | es}

120 | Ericsson AB. All Rights Reserved.: Common Test

ct_master

CfgFiles string() | [string()]

TestDirs = string() | [string()]

Suites = aton() | [atom()]

Cases = atom() | [atom()]

Test Specs = string() | [string()]

LogDir = string()

Event Handl ers = EH | [EH|

EH = atom() | {atom(), InitArgs} | {[atom()], |nitArgs}

InitArgs = [term()]

Conns = all | [atom()]
Tests are spawned on Node usingct : run_test/ 1

Ericsson AB. All Rights Reserved.: Common Test | 121

ct_cover

ct cover

Erlang module

Conmmon Test framework code coverage support module.

This module exports help functions for performing code coverage analysis.

Exports

add nodes(Nodes) -> {ok, StartedNodes} | {error, Reason}
Types:

Nodes = [atom()]

StartedNodes = [atom()]

Reason = cover_not_running | not_rmai n_node
Adds nodes to current cover test. Notice that this only works if cover support is active.

To have effect, this function is to be called from i nit _per _suite/ 1 (see ct _suite) before any tests are
performed.

cross _cover analyse(Level, Tests) -> ok

Types.
Level = overview | details
Tests = [{Tag, Dir}]
Tag = aton()

Dir = string()
Accumulates cover results over multiple tests. See section Cross Cover Analysisin the Users's Guide.

remove nodes(Nodes) -> ok | {error, Reason}
Types:

Nodes = [atom()]

Reason = cover_not_running | not_rmai n_node

Removes nodes from the current cover test.

Cadll this function to stop cover test on nodes previously added with ct _cover: add_nodes/ 1. Results on the
remote node are transferred to the Conmon Test node.

122 | Ericsson AB. All Rights Reserved.: Common Test

ct_ftp

ct ftp

Erlang module

FTP client module (based on the f t p application).

Data Types

connection() = handle() | target name()
Fortarget nane, seemodulect .

handle() = handle()

Handle for a specific FTP connection, see modulect .

Exports

cd(Connection, Dir) -> ok | {error, Reason}
Types:

Connection = connection()

Dir = string()
Changes directory on remote host.

close(Connection) -> ok | {error, Reason}
Types.

Connection = connection()
Closes the FTP connection.

delete(Connection, File) -> ok | {error, Reason}
Types.

Connecti on = connection()

File = string()
Deletes afile on remote host.

get(KeyOrName, RemoteFile, LocalFile) -> ok | {error, Reason}

Types:
KeyOr Name = Key | Nanme
Key = atom()

Name = target_nane()
RenoteFile = string()
Local File = string()

Opens an FTP connection and fetches afile from the remote host.
Renot eFi | e and Local Fi | e must be absolute paths.

The configuration file must beasfor ct _ft p: put/ 3.

Fort arget nane, seemodulect .

Ericsson AB. All Rights Reserved.: Common Test | 123

ct_ftp

Seedsoct:require/ 2.

ls(Connection, Dir) -> {ok, Listing} | {error, Reason}
Types:

Connection = connection()

Dir = string()

Listing = string()
Listsdirectory Di r .

open(KeyOrName) -> {ok, Handle} | {error, Reason}

Types:
KeyOr Name = Key | Nane
Key = atom()

Name = target_nane()
Handl e = handl e()
Opens an FTP connection to the specified node.

Y ou can open a connection for a particular Nane and use the same name as reference for all following subsequent
operations. If you want the connection to be associated with Handl e instead (if you, for example, need to open
multiple connections to a host), use Key, the configuration variable name, to specify the target. A connection without
an associated target name can only be closed with the handle value.

For information on how to create anew Nane, seect : requi re/ 2.
Fort ar get _nane, seemodulect .

put (KeyOrName, LocalFile, RemoteFile) -> ok | {error, Reason}
Types:

KeyOr Name = Key | Nane

Key = atom()

Name = target_nane()

Local File = string()

RemoteFile = string()

Opens an FTP connection and sends a file to the remote host.

Local Fi | e and Renot eFi | e must be absolute paths.

Fortarget nane, seemodulect .

If the target host is a"specia" node, the FTP address must be specified in the configuration file as follows:

{node, [{ftp,IpAddr}]}.
If the target host is something else, for example, a UNIX host, the configuration file must also include the username
and password (both strings):

{unix, [{ftp,IpAddr},
{username,Username},
{password,Password}]}.

124 | Ericsson AB. All Rights Reserved.: Common Test

ct_ftp

Seedsoct:require/ 2.

recv(Connection, RemoteFile) -> ok | {error, Reason}
Fetches afile over FTP.

The file gets the same name on the local host.

Seedsoct _ftp:recv/3.

recv(Connection, RemoteFile, LocalFile) -> ok | {error, Reason}
Types:

Connecti on = connection()

RenmoteFile = string()

Local File = string()
Fetches afile over FTP.

Thefileisnamed Local Fi | e on thelocal host.

send(Connection, LocalFile) -> ok | {error, Reason}
Sends afile over FTP.

The file gets the same name on the remote host.

Seeasoct _ftp:send/ 3.

send(Connection, LocalFile, RemoteFile) -> ok | {error, Reason}
Types:

Connection = connection()

Local File = string()

RemoteFile = string()
Sends afile over FTP.

Thefileis named Renot eFi | e on the remote host.

type(Connection, Type) -> ok | {error, Reason}

Types:
Connection = connection()
Type = ascii | binary

Changes the file transfer type.

Ericsson AB. All Rights Reserved.: Common Test | 125

ct_ssh

ct ssh

Erlang module

SSH/SFTP client module.

This module uses application SSH, which provides detailed information about, for example, functions, types, and
options.

Argument Ser ver inthe SFTPfunctionsisonly to be used for SFTP sessionsthat have been started on existing SSH
connections (that is, when the original connection typeisssh). Whenever the connection typeissf t p, use the SSH
connection reference only.

The following options are valid for specifying an SSH/SFTP connection (that is, can be used as configuration
elements):

[{ConnType, Addr},

{port, Port},

{user, UserName}

{password, Pwd}

{user dir, String}
{public_key alg, PubKeyAlg}
{connect timeout, Timeout}
{key cb, KeyCallbackMod}]

ConnType = ssh | sftp.
For other types, seessh(3) .
All time-out parametersinct _ssh functions are values in milliseconds.

Data Types

connection() = handle() | target name()
Fort ar get _nane, seemodulect .

handle() = handle()

Handle for a specific SSH/SFTP connection, see modulect .
ssh sftp return() = term()

Return value from an ssh_sf t p function.

Exports

apread(SSH, Handle, Position, Length) -> Result
Types:
SSH = connection()
Result = ssh_sftp return() | {error, Reason}
Reason = term()

For information and other types, seessh_sft p(3).

apread(SSH, Server, Handle, Position, Length) -> Result
Types:

126 | Ericsson AB. All Rights Reserved.: Common Test

ct_ssh

SSH = connecti on()
Resul t ssh_sftp return() | {error, Reason}
Reason = term)

For information and other types, seessh_sft p(3).

apwrite(SSH, Handle, Position, Data) -> Result
Types.
SSH = connecti on()
Result = ssh_sftp_return() | {error, Reason}
Reason = term)

For information and other types, seessh_sft p(3).

apwrite(SSH, Server, Handle, Position, Data) -> Result
Types.

SSH = connecti on()

Resul t ssh_sftp return() | {error, Reason}

Reason term)

For information and other types, seessh_sft p(3).

aread(SSH, Handle, Len) -> Result

Types.
SSH = connecti on()
Result = ssh_sftp_return() | {error, Reason}
Reason = term)

For information and other types, seessh_sft p(3).

aread(SSH, Server, Handle, Len) -> Result

Types.
SSH = connecti on()
Result = ssh_sftp_return() | {error, Reason}
Reason = term)

For information and other types, seessh_sft p(3).

awrite(SSH, Handle, Data) -> Result

Types.
SSH = connecti on()
Result = ssh_sftp_return() | {error, Reason}
Reason = term)

For information and other types, seessh_sft p(3).
awrite(SSH, Server, Handle, Data) -> Result

Types:
SSH = connecti on()

Ericsson AB. All Rights Reserved.: Common Test | 127

ct_ssh

Resul t ssh_sftp return() | {error, Reason}
Reason = term()

For information and other types, seessh_sft p(3).

close(SSH, Handle) -> Result

Types:
SSH = connection()
Result = ssh_sftp return() | {error, Reason}
Reason = term()

For information and other types, seessh_sft p(3).

close(SSH, Server, Handle) -> Result

Types:
SSH = connection()
Result = ssh_sftp return() | {error, Reason}
Reason = term()

For information and other types, seessh_sft p(3).

connect (KeyOrName) -> {ok, Handle} | {error, Reason}
Equivalenttoct _ssh: connect (KeyOr Nane, host, []).

connect (KeyOrName, ConnType) -> {ok, Handle} | {error, Reason}
Equivalenttoct _ssh: connect (KeyOr Nane, ConnType, []).

connect (KeyOrName, ConnType, ExtraOpts) -> {ok, Handle} | {error, Reason}
Types:

KeyOr Name = Key | Nane

Key = atom()

Name = target_nane()

ConnType = ssh | sftp | host

ExtraOpts = ssh_connect _options()

Handl e = handl e()

Reason = term()

Opens an SSH or SFTP connection using the information associated with Key Or Narre.

If Nae (an alias name for Key) is used to identify the connection, this name can be used as connection reference for
subsequent calls. Only one open connection at a time associated with Nane is possible. If Key is used, the returned
handle must be used for subsequent calls (multiple connections can be opened using the configuration data specified
by Key).

For information on how to create anew Nane, seect : requi re/ 2.
Fort ar get _nane, seemodulect .

ConnType aways overrides the type specified in the address tuple in the configuration data (and in Ext r aOpt s).
Soitispossibleto, for example, open an SFTP connection directly using dataoriginally specifying an SSH connection.

128 | Ericsson AB. All Rights Reserved.: Common Test

ct_ssh

Value host means that the connection type specified by the host option (either in the configuration data or in
Ext r aOpt s) isused.

Ext raOpt s (optional) are extra SSH options to be added to the configuration data for KeyOr Nane. The extra
options override any existing options with the same key in the configuration data. For details on valid SSH options,
see application SSH.

del dir(SSH, Name) -> Result

Types:
SSH = connecti on()
Result = ssh_sftp_return() | {error, Reason}
Reason = term)

For information and other types, seessh_sft p(3).

del dir(SSH, Server, Name) -> Result

Types:
SSH = connection()
Result = ssh_sftp_return() | {error, Reason}
Reason = term)

For information and other types, seessh_sft p(3).

delete(SSH, Name) -> Result

Types:
SSH = connection()
Result = ssh_sftp_return() | {error, Reason}
Reason = term)

For information and other types, seessh_sft p(3).

delete(SSH, Server, Name) -> Result

Types:
SSH = connection()
Result = ssh_sftp_return() | {error, Reason}
Reason = term)

For information and other types, seessh_sft p(3).

disconnect(SSH) -> ok | {error, Reason}
Types:

SSH = connecti on()

Reason = term()

Closes an SSH/SFTP connection.

exec(SSH, Command) -> {ok, Data} | {error, Reason}
Equivalenttoct _ssh: exec(SSH, Conmand, Defaul t Ti neout).

Ericsson AB. All Rights Reserved.: Common Test | 129

ct_ssh

exec(SSH, Command, Timeout) -> {ok, Data} | {error, Reason}
Types.
SSH = connection()

Command = string()
Ti meout = integer()
Data = list()

Reason = term()

Requests server to perform Command. A session channel is opened automatically for the request. Dat a is received
from the server as aresult of the command.

exec(SSH, Channelld, Command, Timeout) -> {ok, Data} | {error, Reason}
Types:

SSH = connection()

Channel Id = integer()

Command = string()
Ti meout = integer()
Data = list()

Reason = term()

Requests server to perform Command. A previously opened session channel is used for the request. Dat a isreceived
from the server as aresult of the command.

get file info(SSH, Handle) -> Result

Types.
SSH = connection()
Result = ssh_sftp_return() | {error, Reason}
Reason = term()

For information and other types, seessh_sft p(3).

get file info(SSH, Server, Handle) -> Result
Types.
SSH = connecti on()
Result = ssh_sftp_return() | {error, Reason}
Reason = term()

For information and other types, seessh_sft p(3).

list dir(SSH, Path) -> Result

Types.
SSH = connecti on()
Result = ssh_sftp_return() | {error, Reason}
Reason = term()

For information and other types, seessh_sft p(3).

130 | Ericsson AB. All Rights Reserved.: Common Test

ct_ssh

list dir(SSH, Server, Path) -> Result
Types.
SSH = connection()
Result = ssh_sftp_return() | {error
Reason = term()

For information and other types, seessh_sft p(3).

make dir(SSH, Name) -> Result

Types.
SSH = connection()
Result = ssh_sftp_return() | {error
Reason = term()

For information and other types, seessh_sft p(3).

make dir(SSH, Server, Name) -> Result
Types.
SSH = connection()
Result = ssh_sftp_return() | {error
Reason = term)

For information and other types, seessh_sft p(3).

, Reason}

, Reason}

, Reason}

make symlink(SSH, Name, Target) -> Result

Types.
SSH = connection()
Result = ssh_sftp_return() | {error
Reason = term)

For information and other types, seessh_sft p(3).

, Reason}

make symlink(SSH, Server, Name, Target) -> Result

Types.
SSH = connection()
Resul t ssh_sftp_return() | {error
Reason = term)

For information and other types, seessh_sft p(3).

open(SSH, File, Mode) -> Result

Types.
SSH = connection()
Result = ssh_sftp_return() | {error
Reason = term()

For information and other types, seessh_sft p(3).

, Reason}

, Reason}

Ericsson AB. All Rights Reserved.: Common Test | 131

ct_ssh

open(SSH, Server, File, Mode) -> Result

Types.
SSH = connection()
Result = ssh_sftp_return() | {error, Reason}
Reason = term()

For information and other types, seessh_sft p(3).

opendir(SSH, Path) -> Result

Types.
SSH = connection()
Result = ssh_sftp_return() | {error, Reason}
Reason = term()

For information and other types, seessh_sft p(3).

opendir(SSH, Server, Path) -> Result

Types.
SSH = connection()
Result = ssh_sftp_return() | {error, Reason}
Reason = term()

For information and other types, seessh_sft p(3).

position(SSH, Handle, Location) -> Result

Types.
SSH = connection()
Result = ssh_sftp_return() | {error, Reason}
Reason = term()

For information and other types, seessh_sft p(3).

position(SSH, Server, Handle, Location) -> Result
Types.
SSH = connection()
Resul t ssh_sftp_return() | {error, Reason}
Reason = term()

For information and other types, seessh_sft p(3).

pread(SSH, Handle, Position, Length) -> Result
Types.
SSH = connection()
Result = ssh_sftp_return() | {error, Reason}
Reason = term()

For information and other types, seessh_sft p(3).

132 | Ericsson AB. All Rights Reserved.: Common Test

ct_ssh

pread(SSH, Server, Handle, Position, Length) -> Result
Types.

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For information and other types, seessh_sft p(3).

pwrite(SSH, Handle, Position, Data) -> Result
Types.
SSH = connection()
Result = ssh_sftp_return() | {error, Reason}
Reason = term()

For information and other types, seessh_sft p(3).

pwrite(SSH, Server, Handle, Position, Data) -> Result
Types.
SSH = connection()
Result = ssh_sftp_return() | {error, Reason}
Reason = term)

For information and other types, seessh_sft p(3).

read(SSH, Handle, Len) -> Result

Types.
SSH = connection()
Result = ssh_sftp_return() | {error, Reason}
Reason = term)

For information and other types, seessh_sft p(3).

read(SSH, Server, Handle, Len) -> Result

Types.
SSH = connection()
Resul t ssh_sftp_return() | {error, Reason}
Reason = term)

For information and other types, seessh_sft p(3).

read file(SSH, File) -> Result

Types.
SSH = connection()
Result = ssh_sftp_return() | {error, Reason}
Reason = term()

For information and other types, seessh_sft p(3).

Ericsson AB. All Rights Reserved.: Common Test | 133

ct_ssh

read file(SSH, Server, File) -> Result

Types.
SSH = connection()
Result = ssh_sftp_return() | {error, Reason}
Reason = term()

For information and other types, seessh_sft p(3).

read file info(SSH, Name) -> Result

Types.
SSH = connection()
Result = ssh_sftp_return() | {error, Reason}
Reason = term()

For information and other types, seessh_sft p(3).

read file info(SSH, Server, Name) -> Result
Types.
SSH = connection()
Result = ssh_sftp_return() | {error, Reason}
Reason = term()

For information and other types, seessh_sft p(3).

read 1ink(SSH, Name) -> Result

Types.
SSH = connection()
Result = ssh_sftp_return() | {error, Reason}
Reason = term()

For information and other types, seessh_sft p(3).

read link(SSH, Server, Name) -> Result

Types.
SSH = connection()
Resul t ssh_sftp_return() | {error, Reason}
Reason = term()

For information and other types, seessh_sft p(3).

read link info(SSH, Name) -> Result

Types.
SSH = connection()
Result = ssh_sftp_return() | {error, Reason}
Reason = term()

For information and other types, seessh_sft p(3).

134 | Ericsson AB. All Rights Reserved.: Common Test

ct_ssh

read link info(SSH, Server, Name) -> Result

Types.
SSH = connection()
Result = ssh_sftp_return() |
Reason = term()

For information and other types, seessh_sft p(3).

{error,

Reason}

receive response(SSH, Channelld) -> {ok, Data} | {error, Reason}

Equivalenttoct _ssh: recei ve_r esponse(SSH,

receive response(SSH, Channelld, End)
Equivalenttoct _ssh: recei ve_response(SSH,

receive response(SSH, Channelld, End,

Channel 1d, close).

-> {ok, Data} | {error, Reason}
Channel 1d, End, DefaultTimeout).

Timeout) -> {ok, Data} | {timeout,

Data} | {error, Reason}

Types:
SSH = connection()
Channel Id = integer()
End = Fun | close | timeout
Ti meout = integer()
Data = list()
Reason = term()
Receives expected data from server on the specified session channel.
If End == cl ose, dataisreturned to the caller when the channel is closed by the server. If atime-out occurs before

this happens, the function returns{ t i neout , Dat a} (where Dat a isthe datareceived so far).

If End ti meout , atime-out is expected and { ok, Dat a} isreturned both in the case of atime-out and when
the channel is closed.

If End is a fun, this fun is called with one argument, the data value in a received ssh_cm message (see
ssh_connecti on(3).Thefunistoreturneithert r ue to end the receiving operation (and have the so far collected
data returned) or f al se to wait for more data from the server. Even if a fun is supplied, the function returns
immediately if the server closes the channel).

rename(SSH, OldName, NewName) -> Result

Types:
SSH = connection()
Result = ssh_sftp return() | {error, Reason}
Reason = term()

For information and other types, seessh_sft p(3).

rename(SSH, Server, OldName, NewName) -> Result
Types:

SSH = connection()

Result = ssh_sftp return() | {error, Reason}

Ericsson AB. All Rights Reserved.: Common Test | 135

ct_ssh

Reason = term()

For information and other types, seessh_sft p(3).

send(SSH, Channelld, Data) -> ok | {error, Reason}
Equivalenttoct _ssh: send(SSH, Channelld, 0, Data, DefaultTi neout).

send(SSH, Channelld, Data, Timeout) -> ok | {error, Reason}
Equivalenttoct _ssh: send(SSH, Channel Id, 0, Data, Tineout).

send(SSH, Channelld, Type, Data, Timeout) -> ok | {error, Reason}
Types.

SSH = connection()

Channel 1d = integer()

Type = integer()

Data = list()

Ti meout = integer()

Reason = term()

Sends data to server on specified session channel.

send and receive(SSH, Channelld, Data) -> {ok, Data} | {error, Reason}
Equivalenttoct _ssh: send_and_recei ve(SSH, Channel | d, Data, close).

send and receive(SSH, Channelld, Data, End) -> {ok, Data} | {error, Reason}
Equivalenttoct _ssh; send_and_recei ve(SSH, Channelld, 0, Data, End, DefaultTi nmeout).

send and receive(SSH, Channelld, Data, End, Timeout) -> {ok, Data} | {error,
Reason}

Equivalenttoct _ssh: send_and_r ecei ve(SSH, Channelld, 0, Data, End, Ti neout).

send and receive(SSH, Channelld, Type, Data, End, Timeout) -> {ok, Data} |
{error, Reason}

Types:
SSH = connection()
Channel Id = integer()
Type = integer()

Data = list()
End = Fun | close | timeout
Ti mreout = integer()

Reason = term()
Sends data to server on specified session channel and waits to receive the server response.
For details on argument End, seect _ssh: recei ve_r esponse/ 4.

136 | Ericsson AB. All Rights Reserved.: Common Test

ct_ssh

session close(SSH, Channelld) -> ok | {error, Reason}
Types.

SSH = connection()

Channel Id = integer()

Reason = term()

Closes an SSH session channel.

session open(SSH) -> {ok, Channelld} | {error, Reason}

Equivalenttoct _ssh: sessi on_open(SSH, Def aul t Ti meout).

session open(SSH, Timeout) -> {ok, ChannelIld} | {error, Reason}
Types:

SSH = connection()

Ti meout = integer()

Channel Id = integer()

Reason = term()

Opens a channel for an SSH session.

sftp_connect(SSH) -> {ok, Server} | {error, Reason}
Types:

SSH = connection()

Server = pid()

Reason = term()

Starts an SFTP session on an aready existing SSH connection. Ser ver identifies the new session and must be

specified whenever SFTP requests are to be sent.

shell(SSH, ChannelId) -> ok | {error, Reason}
Equivalenttoct _ssh: shel | (SSH, Channel I d, Defaul t Ti meout).

shell(SSH, Channelld, Timeout) -> ok | {error, Reason}
Types.

SSH = connecti on()

Channel Id = integer()

Ti meout = integer()

Reason = term()

Requeststhat the user default shell (typically definedin/ et ¢/ passwd in Unix systems) isexecuted at the server end.

subsystem(SSH, ChannellId, Subsystem) -> Status | {error, Reason}
Equivalenttoct _ssh: subsyst en(SSH, Channel I d, Subsystem DefaultTi neout).

subsystem(SSH, Channelld, Subsystem, Timeout) -> Status | {error, Reason}
Types:
SSH = connection()

Ericsson AB. All Rights Reserved.: Common Test | 137

ct_ssh

Channel 1 d i nteger()
Subsystem = string()

Ti meout = integer()

Status = success | failure
Reason term))

Sends a request to execute a predefined subsystem.

write(SSH, Handle, Data) -> Result

Types.
SSH = connection()
Result = ssh_sftp_return() | {error, Reason}
Reason = term()

For information and other types, seessh_sft p(3).

write(SSH, Server, Handle, Data) -> Result
Types.
SSH = connection()
Result = ssh_sftp_return() | {error, Reason}
Reason = term()

For information and other types, seessh_sft p(3).

write file(SSH, File, Iolist) -> Result

Types.
SSH = connection()
Result = ssh_sftp_return() | {error, Reason}
Reason = term()

For information and other types, seessh_sft p(3).

write file(SSH, Server, File, Iolist) -> Result
Types.
SSH = connection()
Result = ssh_sftp_return() | {error, Reason}
Reason = term()

For information and other types, seessh_sft p(3).

write file info(SSH, Name, Info) -> Result
Types.
SSH = connection()
Result = ssh_sftp_return() | {error, Reason}
Reason = term()

For information and other types, seessh_sft p(3).

138 | Ericsson AB. All Rights Reserved.: Common Test

ct_ssh

write file info(SSH, Server, Name, Info) -> Result
Types.
SSH = connection()
Result = ssh_sftp_return() | {error, Reason}
Reason = term()

For information and other types, seessh_sft p(3).

Ericsson AB. All Rights Reserved.: Common Test | 139

ct_netconfc

ct_netconfc

Erlang module

NETCONF client module compliant with RFC 6241, NETCONF Configuration Protocol, and RFC 6242, Using the
NETCONF Configuration Protocol over Secure SHell (SSH), and with support for RFC 5277, NETCONF Event
Notifications.

Connecting to a NETCONF server

Call connect / 1, 2 to establish aconnectionto aserver, then passthereturned handletosessi on/ 1- 3 to establish
a NETCONF session on a new SSH channel. Each call to sessi on/ 1- 3 establishes a new session on the same
connection, and resultsin a hello message to the server.

Alternately, open/ 1, 2 can be used to establish a single session on a dedicated connection. (Or, equivalently,
only _open/ 1, 2 followed by hel | o/ 1- 3.)

Connect/session options can be specified in a configuration file with entries like the following.

{server _id(), [option()]}.
Theserver _id() oranassociated ct : t ar get _nane() can then be passed to the aforementioned functions to
use the referenced configuration.
Signaling
Protocol operationsinthe NETCONF protocol are realized as remote procedure calls (RPCs) from client to server and
a corresponding reply from server to client. RPCs are sent using like-named functions (eg. edi t _confi g/ 3-5 to
send an edit-config RPC), with the server reply asreturn value. There are functions for each RPC defined in RFC 6241

and the create-subscription RPC from RFC 5277, all of which are wrappersonsend_r pc/ 2, 3, that can be used to
send an arbitrary RPC not defined in RFC 6241 or RFC 5277.

All of the signaling functions have one variant with a Ti meout argument and one without, corresponding to an
infinite timeout. The latter is inappropriate in most cases since a non-response by the server or a missing message-
id causes the call to hang indefinitely.

Logging

The NETCONF server uses er r or _| ogger for logging of NETCONF traffic. A special purpose error handler is
implemented in ct _conn_| og_h. To use this error handler, add the ct h_conn_| og hook in the test suite, for
example:

suite() ->
[{ct _hooks, [{cth conn log, [{ct:conn_log_nod(), ct:conn_log_options()}1}1}].

conn_l og_nod() isthename of the Conrron Test module implementing the connection protocol, for example,
ct _netconfc.

Hook option| og_t ype specifies the type of logging:
raw

The sent and received NETCONF datais logged to a separate text file "asis" without any formatting. A link to
thefileis added to the test case HTML log.

pretty

The sent and received NETCONF data is logged to a separate text file with XML data nicely indented. A link
to thefile is added to the test case HTML log.

140 | Ericsson AB. All Rights Reserved.: Common Test

ct_netconfc

htm (default)
The sent and received NETCONF traffic is pretty printed directly in the test case HTML log.
si | ent

NETCONTF traffic is not logged.

By default, all NETCONF traffic is logged in one single log file. However, different connections can be logged in
separatefiles. To do this, use hook option host s and list the names of the servers/connectionsto be used in the suite.
The connections must be named for this to work, that is, they must be opened with open/ 2.

Option host s hasno effectif | og_t ype issettoht m orsil ent.
The hook options can also be specified in a configuration file with configuration variablect _conn_1 og:

{ct_conn_log, [{ct:conn_l og_nod(), ct:conn_|l og_options()}1}.

For example:

{ct _conn log, [{ct netconfc, [{log type,pretty},
{hosts, [ct: key_or_nanme() 1}1}1}

Hook options specified in a configuration file overwrite the hard-coded hook optionsin the test suite. |

L ogging Example 1.

Thefollowing ct _hooks statement causes pretty printing of NETCONF traffic to separate logs for the connections
named nc_server 1 andnc_ser ver 2. Any other connections are logged to default NETCONF log.

suite() ->
[{ct_hooks, [{cth conn log, [{ct netconfc,[{log type,pretty}},
{hosts, [nc_serverl,nc server2]}]}
13131,

Connections must be opened as follows:
open(nc_serverl,[...]),
open(nc_server2,[...]).

L ogging Example 2;
The following configuration file causes raw logging of all NETCONF traffic in to one single text file:

{ct conn log, [{ct netconfc, [{log type,raw}]}1}.
Thect _hooks statement must look as follows:
suite() ->
[{ct _hooks, [{cth conn log, []}1}].

The same ct _hooks statement without the configuration file would cause HTML logging of all NETCONF
connectionsin to the test case HTML log.

Ericsson AB. All Rights Reserved.: Common Test | 141

ct_netconfc

Data Types

client() = handle() | server id() | ct:target name()
Handle to aNETCONF session, as required by signaling functions.
handle()

Handle to a connection to a NETCONF server as returned by connect/ 1, 2, or to a session as returned by
session/ 1-3,o0pen/ 1, 2,oronly_open/1, 2.

xs datetime() = string()

Date and time of a startTime/stopTime element in an RFC 5277 create-subscription request. Of XML primitive type
dat eTi ne, which has the (informal) form

[-1YYYY-MM-DDThh:mm:ss[.s]1[Z]| (+]-)hh:mm]

where T and Z areliteral and . s isone or more fractional seconds.

notification() =
{notification, xml attributes(), [simple xml()]}

Event notification messages sent as aresult of callstocr eat e_subscri ption/ 2, 3.

option() =
{host | ssh, host()} |
{port, inet:port number()} |
{timeout, timeout()} |
{capability, string() | [string()1} |
{receiver, term()} |
ssh:client option()

Options host and port specify the server endpoint to which to connect, and are passed directly to
ssh: connect/ 4, asare arbitrary ssh options. Common optionsareuser , passwor d anduser _di r.

Optiont i meout specifies the number of milliseconds to allow for connection establishment and, if the function in
guestion results in an outgoing hello message, reception of the server hello. The timeout applies to connection and
hello independently; one timeout for connection establishment, another for hello reception.

Optionr ecei ver specifiesadestination for incoming notification messages; aleft operand of the send operator (!).
If not specified then a process calling cr eat e_subscri pti on/ 2, 3 becomes the receiver, but explicitly setting
areceiver makes it possible to receive natifications that are not ordered by calling this function. Multiple receiver
options can be specified.

Receiver options are ignored by connect/1-3.

Option capabi | i ty specifies the content of a corresponding element in an outgoing hello message, each option
specifying the content of a single element. If no base NETCONF capability is configured then the RFC 4741 1.0
capability, "urn:ietf:params:netconf:base:1.0", is added, otherwise not. In particular, the RFC 6241 1.1 capability
must be explicitly configured. NETCONF capabilities can be specified using the shorthand notation defined
in RFC 6241, any capability string starting with a colon being prefixed by either "urn:ietf:params:netconf" or
"urn:ietf:params:netconf:capability", as appropriate.

Capability options are ignored by connect/1-3 and only_open/1-2, which don't result in an outgoing hello message.
server_id() = atom()
Identity of connection or session configuration in a configuration file.

stream data() =
{description, string()} |

142 | Ericsson AB. All Rights Reserved.: Common Test

ct_netconfc

{replaySupport, string()} |
{replayLogCreationTime, string()} |
{replayLogAgedTime, string()}

stream name() = string()

streams() = [{stream name(), [stream data()]}]

Stream information as returned by get _event _streans/1-3. See RFC 5277, "XML Schema for Event
Notifications', for detail on the format of the string values.

xml_attribute tag() = atom()

xml attribute value() = string()

xml attributes() =
[{xml attribute tag(), xml attribute value()}]

xml content() = [simple xml() | iolist()]

xml tag() = atom()

simple xml() =
{xml tag(), xml attributes(), xml content()} |
{xml tag(), xml content()} |
xml tag()

Representation of XML, as described in application xmer | .
xpath() = {xpath, string()}

error_reason() = term()

host() = inet:hostname() | inet:ip address()
netconf db() = running | startup | candidate

Exports

action(Client, Action) -> Result
action(Client, Action, Timeout) -> Result

Types:
Client = client()
Action = simple xml()

Timeout = timeout()
Result = ok | {ok, [simple xml()1} | {error, error reason()}

Executes an action. If the return type isvoid, ok isreturned instead of { ok, [si npl e_xm ()]}.

close session(Client) -> Result
close session(Client, Timeout) -> Result
Types.

Client = client()

Timeout = timeout()

Result = ok | {error, error_reason()}

Requests graceful termination of the session associated with the client.

When aNETCONF server receivesacl ose- sessi on request, it gracefully closes the session. The server releases
any locks and resources associated with the session and gracefully closes any associated connections. Any NETCONF
requests received after acl ose- sessi on request are ignored.

Ericsson AB. All Rights Reserved.: Common Test | 143

ct_netconfc

connect(Options) -> Result
Types:
Options = [option()]
Result = {ok, handle()} | {error, error reason()}
Opens an SSH connection to a NETCONF server.
If the server options are specified in a configuration file, use connect / 2 instead.

The opague handl e() reference returned from this function is required as connection identifier when opening
sessions over this connection, seesessi on/ 1- 3.

connect (KeyOrName, ExtraOptions) -> Result
Types:

KeyOrName = ct:key or name()

ExtraOptions = [option()]

Result = {ok, handle()} | {error, error _reason()}
Open an SSH connection to a named NETCONF server.

If KeyOr Nane isaconfiguredserver _i d() orat arget name() associated with such an Id, then the options
for this server are fetched from the configuration file.

The options list is added to those of the configuration file. If an option is specified in both lists, the configuration
file takes precedence.

If the server is not specified in a configuration file, use connect / 1 instead.

The opague handl e() reference returned from this function can be used as connection identifier when opening
sessions over this connection, see sessi on/ 1- 3. However, if KeyOr Nane isat ar get _namne() , that is, if the
server is named through acall toct : requi re/ 2 or ar equi r e statement in the test suite, then this name can be
used instead of handl e() .

copy_config(Client, Target, Source) -> Result
copy_config(Client, Target, Source, Timeout) -> Result
Types.

Client = client()

Target = Source = netconf db()
Timeout = timeout()

Result = ok | {error, error_reason()}
Copies configuration data.

Which source and target options that can be issued depends on the capabilities supported by the server. That is,
: candi dat e and/or : st art up arerequired.

create subscription(Client, Values) -> Result
create subscription(Client, Values, Timeout) -> Result
Types:

Client = client()

Values =
#{stream => Stream,
filter => Filter,

144 | Ericsson AB. All Rights Reserved.: Common Test

ct_netconfc

start => StartTime,
stop => StopTime}
Stream = stream name()
Filter = simple xml() | [simple xml()]
StartTime = StopTime = xs datetime()
Timeout = timeout()
Result = ok | {error, error_reason()}
Creates a subscription for event notifications by sending an RFC 5277 create-subscription RPC to the server. The
calling process receives events as messages of typenot i fi cati on().

From RFC 5722, 2.1 Subscribing to Receive Event Notifications:

Stream
Indicates which stream of event is of interest. If not present, eventsin the default NETCONF stream are sent.

Filter

Indicates which subset of all possible eventsis of interest. The parameter format is the same as that of the filter
parameter in the NETCONF protocol operations. If not present, all events not precluded by other parameters
are sent.

StartTi ne

Used to trigger the replay feature and indicate that thereplay isto start at the time specified. If St ar t Ti ne isnot
present, thisis not areplay subscription. Itisnot valid to specify start timesthat are later than the current time. If
St art Ti ne isspecified earlier than thelog can support, the replay beginswith the earliest avail able notification.
This parameter is of type dat eTi nme and compliant to RFC 3339. Implementations must support time zones.

St opTi e
Used with the optional replay feature to indicate the newest notifications of interest. If St opTi e isnot present,
the notifications continues until the subscription isterminated. Must be used with and be later than St ar t Ti re.

Vauesof St opTi e inthe future are valid. This parameter is of type dat eTi e and compliant to RFC 3339.
Implementations must support time zones.

See RFC 5277 for moredetails. Therequirement that St opTi me must only beused with St ar t Ti ne isnot enforced,
to allow an invalid request to be sent to the server.

Prior to OTP 22.1, this function was documented as having 15 variants in 6 arities. These are still exported for
backwards compatibility, but no longer documented. The map-based variants documented above provide the same
functionality with simpler arguments.

create-subscription is no longer the only RPC with which NETCONF notifications can be ordered: RFC 8639 adds
establish-subscription and future RFCs may add other methods. Specify ar ecei ver option at session creation to
provide a destination for incoming notifications independently of acal tocr eat e_subscri pti on/ 2, 3,and
usesend_r pc/ 2, 3 to send establish-subscription and other arbitrary RPCs.

delete config(Client, Target) -> Result
delete config(Client, Target, Timeout) -> Result
Types:

Ericsson AB. All Rights Reserved.: Common Test | 145

ct_netconfc

Client client()

Target = startup | candidate

Timeout = timeout()

Result = ok | {error, error reason()}

Deletes configuration data.
The running configuration cannot be deleted and : candi dat e or : st ar t up must be advertised by the server.

disconnect(Conn) -> ok | {error, error_reason()}
Types:

Conn = handle()
Closes the given SSH connection.

If there are open NETCONF sessions on the connection, these will be brutally aborted. To avoid this, close each
sessionwithcl ose_session/ 1, 2

edit config(Client, Target, Config) -> Result

edit config(Client, Target, Config, OptParams) -> Result

edit config(Client, Target, Config, Timeout) -> Result

edit config(Client, Target, Config, OptParams, Timeout) -> Result

Types:
Client = client()
Target = netconf db()
Config = simple xml() | [simple xml()]

OptParams = [simple xml()]
Timeout = timeout()
Result = ok | {error, error_reason()}
Edits configuration data.
By default only the running target is available, unless the server includes : candi dat e or: st art up initslist of
capabilities.
Opt Par ans can be used for specifying optional parameters(def aul t - oper ati on,t est-opti on,orerror-

opt i on) to be added to the edi t - confi g request. The value must be a list containing valid simple XML, for
example:

[{'default-operation', ["none"]},
{'error-option', ["rollback-on-error"]}]

If Opt Par ans isnot given, the default value[] isused.

get(Client, Filter) -> Result
get(Client, Filter, Timeout) -> Result
Types:

146 | Ericsson AB. All Rights Reserved.: Common Test

ct_netconfc

Client client()

Filter = simple xml() | xpath()

Timeout = timeout()

Result = {ok, [simple xml()]} | {error, error reason()}
Gets data.

This operation returns both configuration and state data from the server.

Filter type xpat h can be used only if the server supports: xpat h.

get capabilities(Client) -> Result
get capabilities(Client, Timeout) -> Result
Types:

Client = client()

Timeout = timeout()

Result = [string()] | {error, error reason()}

Returns the server capabilities as received in its hello message.

get config(Client, Source, Filter) -> Result
get config(Client, Source, Filter, Timeout) -> Result

Types.
Client = client()
Source = netconf db()
Filter = simple xml() | xpath()

Timeout = timeout()
Result = {ok, [simple xml()]} | {error, error _reason()}

Gets configuration data.
To be able to access another source than r unni ng, the server must advertise: candi dat e and/or : st art up.
Filter type xpat h can be used only if the server supports: xpat h.

get event streams(Client) -> Result
get event streams(Client, Timeout) -> Result
get event streams(Client, Streams) -> Result
get event streams(Client, Streams, Timeout) -> Result
Types:

Client = client()

Streams = [stream name()]

Timeout = timeout()

Result = {ok, streams()} | {error, error reason()}
Sends arequest to get the specified event streams.

St r eans isalist of stream names. The following filter is sent to the NETCONF server inaget request:

Ericsson AB. All Rights Reserved.: Common Test | 147

ct_netconfc

<netconf xmlns="urn:ietf:params:xml:ns:netmod:notification">
<streams>
<stream>
<name>StreamNamel</name>
</stream>
<stream>
<name>StreamName2</name>
</stream>
</streams>
</netconf>

If St r eans isan empty list, all streams are requested by sending the following filter:

<netconf xmlns="urn:ietf:params:xml:ns:netmod:notification">
<streams/>
</netconf>

If more complex filtering is needed, usect _net conf c: get/ 2, 3 and specify the exact filter according to "XML
Schemafor Event Notifications' in RFC 5277.

get session id(Client) -> Result
get session_id(Client, Timeout) -> Result
Types:
Client = client()
Timeout = timeout()
Result = integer() >= 1 | {error, error reason()}

Returns the session Id associated with the specified client.

hello(Client) -> Result
hello(Client, Timeout) -> Result
hello(Client, Options, Timeout) -> Result
Types:
Client = handle()
Options = [{capability, [string()]1}]
Timeout = timeout()
Result = ok | {error, error_reason()}

Exchanges hel | o messages with the server. Returns when the server hello has been received or after the specified
timeout.

Note that capabilities for an outgoing hello can be passed directly to open/ 2.
kill session(Client, SessionId) -> Result

kill session(Client, SessionId, Timeout) -> Result
Types:

148 | Ericsson AB. All Rights Reserved.: Common Test

ct_netconfc

Client = client()
Sessionld = integer() >=1
Timeout = timeout()
Result = ok | {error, error reason()}
Forces termination of the session associated with the supplied session Id.

The server side must abort any ongoing operations, release any locks and resources associated with the session, and
close any associated connections.

Only if the server is in the confirmed commit phase, the configuration is restored to its state before entering the
confirmed commit phase. Otherwise, no configuration rollback is performed.

If the specified Sessi onl d isequal to the current session Id, an error is returned.

lock(Client, Target) -> Result
lock(Client, Target, Timeout) -> Result
Types:

Client = client()

Target = netconf db()

Timeout = timeout()

Result = ok | {error, error_reason()}

L ocks the configuration target.

Which target parametersthat can be used dependsonif : candi dat e and/or : st ar t up are supported by the server.
If successful, the configuration system of the device is unavailable to other clients (NETCONF, CORBA, SNMP, and
so on). Locks are intended to be short-lived.

Operation ki | | _sessi on/ 2, 3 can be used to force the release of alock owned by another NETCONF session.
How thisis achieved by the server side isimplementation-specific.

only open(Options) -> Result
Types:

Options = [option()]

Result = {ok, handle()} | {error, error reason()}
Opens a NETCONF session, but does not send hel | o.

Asopen/ 1, but does not send ahel | 0 message.

only open(KeyOrName, ExtraOptions) -> Result
Types.

KeyOrName = ct:key or name()

ExtraOptions = [option()]

Result = {ok, handle()} | {error, error _reason()}
Opens a named NETCONF session, but does not send hel | o.

Asopen/ 2, but does not send ahel | 0 message.

open(Options) -> Result
Types:

Ericsson AB. All Rights Reserved.: Common Test | 149

ct_netconfc

Options = [option()]
Result = {ok, handle()} | {error, error _reason()}
Opens a NETCONF session and exchanges hel | 0 messages.

If the server options are specified in a configuration file, or if a named client is needed for logging purposes (see
section Logging in this module), use open/ 2 instead.

The opagque handl e() reference returned from this function is required as client identifier when calling any other
function in this module.

open(KeyOrName, ExtraOption) -> Result
Types:

KeyOrName = ct:key or name()

ExtraOption = [option()]

Result = {ok, handle()} | {error, error reason()}
Opens a named NETCONF session and exchanges hel | o messages.

If KeyOr Namre isaconfigured ser ver _i d() orat ar get _nane() associated with such an Id, then the options
for this server are fetched from the configuration file.

The options list is added to those of the configuration file. If an option is specified in both lists, the configuration
file take precedence.

If the server is not specified in aconfiguration file, use open/ 1 instead.

The opague handl e() reference returned from this function can be used as client identifier when calling any other
function in this module. However, if KeyOr Nane isat ar get _nane(), that is, if the server is named through a
caltoct:require/ 2orarequire statementinthetest suite, then this name can be used instead of handl e() .

Seedsoct:require/ 2.

send(Client, SimpleXml) -> Result
send(Client, SimpleXml, Timeout) -> Result
Types.
Client = client()
SimpleXml = simple xml()
Timeout = timeout()
Result = simple xml() | {error, error reason()}
Sends an XML document to the server.

The specified XML document is sent "asis" to the server. Thisfunction can be used for sending XML documents that
cannot be expressed by other interface functions in this module.

send rpc(Client, SimpleXml) -> Result
send rpc(Client, SimpleXml, Timeout) -> Result
Types:
Client = client()
SimpleXml = simple xml()
Timeout = timeout()
Result = [simple xml()] | {error, error _reason()}

Sends aNETCONF r pc request to the server.

150 | Ericsson AB. All Rights Reserved.: Common Test

ct_netconfc

The specified XML document iswrapped in avalid NETCONF r pc request and sent to the server. The message-
i d and namespace attributes are added to element r pc.

Thisfunction can beused for sendingr pc requeststhat cannot be expressed by other interface functionsin thismodule.

session(Conn) -> Result
session(Conn, Options) -> Result
session(KeyOrName, Conn) -> Result
session(KeyOrName, Conn, Options) -> Result
Types:

Conn = handle()

Options = [session option()]

KeyOrName = ct:key or name()

Result = {ok, handle()} | {error, error reason()}

session option() =

{timeout, timeout()} |

{receiver, term()} |
{capability, string() | [string()]1}

Opens aNETCONF session as a channel on the given SSH connection, and exchanges hello messages with the server.

The opague handl e() reference returned from this function can be used as client identifier when calling any other
function in thismodule. However, if KeyOr Nane isused anditisat ar get _nanme() , thatis, if the server isnamed
through acall toct : requi re/ 2 or ar equi r e statement in the test suite, then this name can be used instead of
handl e() .

unlock(Client, Target) -> Result
unlock(Client, Target, Timeout) -> Result

Types:
Client = client()
Target = netconf db()

Timeout = timeout()
Result = ok | {error, error_reason()}
Unlocks the configuration target.

If the client earlier has acquired a lock through | ock/ 2, 3, this operation releases the associated lock. To access
another target thanr unni ng, the server must support : candi dat e and/or : st art up.

Ericsson AB. All Rights Reserved.: Common Test | 151

ct_rpc

ct_rpc

Erlang module

Common Test specific layer on Erlang/OTPT pc.

Exports

app_node(App, Candidates) -> NodeName
Types:
App = aton()
Candi dat es = [NodeNane]
NodeName = atom()
From a set of candidate nodes determines which of them is running the application App. If none of the candidate

nodesisrunning App, the function makes the test case calling thisfunction to fail. Thisfunction isthe same as calling
app_node(App, Candi dates, true).

app_node(App, Candidates, FailOnBadRPC) -> NodeName
Types:

App = aton()

Candi dat es = [NodeNane]

NodeName = atomn()

Fai | OnBadRPC = true | false

Sameasct _rpc: app_node/ 2, except that argument Fai | OnBadRPC determines if the search for a candidate
node isto stop if badr pc isreceived at some point.

app_node(App, Candidates, FailOnBadRPC, Cookie) -> NodeName
Types:

App = atomn()

Candi dat es = [NodeNane]

NodeName = atom()

Fai | OnBadRPC = true | false

Cooki e = aton()

Sameasct _rpc: app_node/ 2, except that argument Fai | OnBadRPC determines if the search for a candidate
node isto stop if badr pc isreceived at some point.

The cookie on the client node is set to Cooki e for thisr pc operation (used to match the server node cookie).

call(Node, Module, Function, Args) -> term() | {badrpc, Reason}
Sameascal | (Node, Modul e, Function, Args, infinity).

call(Node, Module, Function, Args, TimeOut) -> term() | {badrpc, Reason}
Types:

Node = NodeNane | {Fun, FunArgs}

Fun = function()

152 | Ericsson AB. All Rights Reserved.: Common Test

ct_rpc

FunArgs = term))
NodeName = atom()
Modul e = atom()
Function = atom()
Args = [tern()]
Reason = tinmeout | term)
Evaluatesappl y(Modul e, Function, Args) onthenodeNode. Returnseither whatever Funct i on returns,

or { badrpc, Reason} if the remote procedure cal fails. If Node is { Fun, FunArgs}, applying Fun to
FunAr gs isto return a node name.

call(Node, Module, Function, Args, TimeOut, Cookie) -> term() | {badrpc,
Reason}

Types:
Node = NodeNane | {Fun, FunArgs}
Fun = function()
FunArgs = term))
NodeName = atom()
Modul e = atom()
Function = atom()
Args = [tern()]
Reason = tinmeout | term()
Cooki e = aton()
Evaluatesapp! y(Modul e, Function, Args) onthenodeNode. Returnseither whatever Funct i on returns,

or { badrpc, Reason} if the remote procedure cal fails. If Node is { Fun, FunArgs}, applying Fun to
FunAr gs isto return a node name.

The cookie on the client node is set to Cooki e for thisr pc operation (used to match the server node cookie).

cast(Node, Module, Function, Args) -> ok
Types:

Node = NodeNane | {Fun, FunArgs}

Fun = function()

FunArgs = term))

NodeNanme = atom()

Modul e = at om()

Function = atom()

Args = [tern()]

Reason = tinmeout | term)
Evaluates appl y(Modul e, Function, Args) onthenode Node. No response is delivered and the process

that makesthe call is not suspended until the evaluationis completed asinthecaseof cal | / 3, 4. If Node is{ Fun,
FunAr gs}, applying Fun to FunAr gs isto return a node name.

cast(Node, Module, Function, Args, Cookie) -> ok

Types:
Node = NodeNane | {Fun, FunArgs}

Ericsson AB. All Rights Reserved.: Common Test | 153

ct_rpc

Fun = function()

FunArgs = term))

NodeName = atom()

Modul e = at om()

Function = atom()

Args = [tern()]

Reason = tinmeout | term)
Cooki e = aton()

Evaluates appl y(Mbdul e, Function, Args) onthe node Node. No response is delivered and the process

that makesthe call is not suspended until the evaluationis completed asinthecaseof cal |1 / 3, 4. 1f Node is{ Fun,
FunAr gs}, applying Fun to FunAr gs isto return a node name.

The cookie on the client node is set to Cooki e for thisr pc operation (used to match the server node cookie).

154 | Ericsson AB. All Rights Reserved.: Common Test

ct_snmp

ct_ snmp

Erlang module

Common Test user interface module for the SNIVP application.

The purpose of this module is to simplify SNMP configuration for the test case writer. Many test cases can use
default valuesfor common operations and then no SNMP configuration files need to be supplied. When it is necessary
to change particular configuration parameters, a subset of the relevant SNMP configuration files can be passed to
ct _snnp by Conmon Test configuration files. For more specialized configuration parameters, a simple SNMP
configuration file can be placed in the test suite data directory. To simplify thetest suite, Conmon Test keepstrack
of some of the SNM P manager information. This way the test suite does not have to handle as many input parameters
asif it had to interface wthe OTP SNMP manager directly.

Configurable SNMP Manager and Agent Parameters:

Manager configuration:;
[{start_manager, bool ean()}
Optional. Defaultist r ue.

{users, [{user_name(), [call_back nodul e(), user _data()]}]}

Optional.

{usmusers, [{usm.user_name(), [usmconfig()]}]}

Optional. SNMPv3 only.
{managed_agents, [{agent _nane(),
[agent _config()]]}]1}

managed_agent s isoptional.
{max_nsg_si ze, integer()}

Optional. Default is484.

{mgr _port, integer()}

Optional. Default is5000.
{engine _id, string()}

Optional. Default is" mgr Engi ne" .
Agent configuration:

{start_agent, bool ean()}

Optional. Default isf al se.

{agent _sysnane, string()}

Optional. Defaultis" ct _test™".
{agent _manager _i p, manager _i p()}

Optional. Defaultis| ocal host .
{agent _vsns, list()}

Optional. Defaultis[v2] .

[user_nane(), agent_ip(), agent_port(),

Ericsson AB. All Rights Reserved.: Common Test | 155

ct_snmp

{agent _trap_udp, integer()}
Optional. Default is5000.

{agent _udp, integer()}
Optional. Default is4000.

{agent _notify type, atom()}
Optional. Defaultist r ap.

{agent _sec_type, sec_type()}
Optional. Defaultisnone.

{agent _passwd, string()}
Optional. Defaultis™ " .

{agent _engine_id, string()}
Optional. Default is" agent Engi ne".

{agent _max_nmnsg_size, string()}
Optional. Default is484.

The following parameters represents the SNMP configuration files cont ext. conf,
st andar d. conf ,conmuni ty. conf,vacm conf,usm conf ,noti fy. conf,target_addr. conf,and
t ar get _par ans. conf . Notice that all valuesin agent . conf can be modified by the parameters listed above.
All these configuration files have default values set by the SNIMP application. These values can be overridden by
suppling alist of valid configuration values or afile located in the test suites data directory, which can produce a list
of valid configuration valuesif you apply functionf i | e: consul t/ 1 to thefile.

{agent _contexts, [term()] | {data_dir_file, rel_path()}}

Optional.

{agent _conmmunity, [term()] | {data dir file, rel_path()}}
Optional.

{agent _sysinfo, [term()] | {data_dir _file, rel_path()}}
Optional.

{agent _vacm [term()] | {data_dir_file, rel_path()}}
Optional.

{agent _usm [term()] | {data dir file, rel_path()}}
Optional.

{agent _notify def, [term()] | {data_dir_file, rel_path()}}
Optional.

{agent _target_address_def, [term()] | {data_dir_file, rel_path()}}
Optional.

{agent target paramdef, [term()] | {data dir _file, rel_path()}}
Optional.

Parameter Mgr Agent Conf Narme in the functions is to be a name you allocate in your test suite using ar equi r e
statement. Example (where Mgr Agent Conf Name = snnp_ngr _agent):

156 | Ericsson AB. All Rights Reserved.: Common Test

ct_snmp

suite() -> [{require, snmp mgr _agent, snmp}].

or

ct:require(snmp _mgr agent, snmp).

Notice that USM users are needed for SNMPv3 configuration and are not to be confused with users.

SNMP traps, inform, and report messages are handled by the user callback module. For details, see the SNVP
application.

It is recommended to use the . hr | files created by the Erlang/OTP MIB compiler to define the Object Identifiers
(OIDs). For example, to get the Erlang node name from er | NodeTabl e inthe OTP-MIB:

0id = ?erlNodeEntry ++ [?erlNodeName, 1]

Furthermore, values can be set for SNIMP application configuration parameters, conf i g, server,net _i f,and so
on (for alist of valid parameters and types, seethe User' s Gui de for the SNWVP applicati on). Thisis
done by defining a configuration data variable on the following form:

{snmp_app, [{manager, [snmp app manager params()]},
{agent, [snmp app agent params()]}1}.

A name for the data must be alocated in the suite using r equi r e (see the example above). Pass this name
as argument SnnpAppConf Nane to ct _snnp: start/ 3. ct _snnp specifies default values for some SNVP
application configuration parameters (such as{ ver bosi ty, t race} for parameter conf i g). This set of defaults
is merged with the parameters specified by the user. The user values override ct _snnp defaults.

Data Types

agent config() = {Item, Value}agent ip() = ip()agent name() =

atom()agent port() = integer()call back module() = atom()error index()

= integer()error_status() = noError | atom()ip() = string() |

{integer(), integer(), integer(), integer()}manager ip() = ip()oid()

= [byte()]oids() = [oid()]rel path() = string()sec type() = none |

minimum | semisnmp_app_agent params() = term()snmp app manager params() =
term()snmpreply() = {error_status(), error_index(), varbinds()}user data()

= term()user_name() = atom()usm config() = {Item, Value}usm user name()

= string()value type() = o('OBJECT IDENTIFIER') | i('INTEGER') |
u('Unsigned32') | g('Unsigned32') | s('OCTET STRING')var _and val() = {oid(),
value type(), value()}varbind() = term()varbinds() = [varbind()]varsandvals()
= [var_and val()]

These data types are described in the documentation for the SNMP application.

Exports

get next values(Agent, 0ids, MgrAgentConfName) -> SnmpReply
Types:

Agent = agent _nane()

O ds = oids()

Mgr Agent Conf Nane = atom()

Ericsson AB. All Rights Reserved.: Common Test | 157

ct_snmp

SnnpReply = snnprepl y()
Issues a synchronous SNMP get next request.

get values(Agent, 0ids, MgrAgentConfName) -> SnmpReply
Types:

Agent = agent _nane()

G ds = oids()

Mgr Agent Conf Nane = atomn()

SnnmpReply = snnprepl y()
Issues a synchronous SNMP get request.

load mibs(Mibs) -> ok | {error, Reason}
Types:

M bs = [M bNane]

M bNane = string()

Reason = term()

Loads the MIBsinto agent snnp_nast er _agent .

register agents(MgrAgentConfName, ManagedAgents) -> ok | {error, Reason}
Types:

Mgr Agent Conf Nanme = atom()

ManagedAgents = [agent ()]

Reason = term()
Explicitly instructs the manager to handle this agent. Corresponds to making an entry in agent s. conf .

This function tries to register the specified managed agents, without checking if any of them exist. To change a
registered managed agent, the agent must first be unregistered.

register users(MgrAgentConfName, Users) -> ok | {error, Reason}
Types:

Myr Agent Conf Name = at om()

Users = [user()]

Reason = term()

Registers the manager entity (=user) responsible for specific agent(s). Corresponds to making an entry in
users. conf.

This function tries to register the specified users, without checking if any of them exist. To change a registered user,
the user must first be unregistered.

register usm users(MgrAgentConfName, UsmUsers) -> ok | {error, Reason}
Types:

Mgr Agent Conf Nanme = atom()

UsniJsers = [usm user()]

Reason = term()

Explicitly instructs the manager to handle this USM user. Corresponds to making an entry inusm conf .

158 | Ericsson AB. All Rights Reserved.: Common Test

ct_snmp

This function tries to register the specified users, without checking if any of them exist. To change a registered user,
the user must first be unregistered.

set info(Config) -> [{Agent, 0ldVarsAndVals, NewVarsAndVals}]
Types:
Config = [{Key, Value}]
Agent = agent _nane()
A dVar sAndVal s = varsandval s()
NewVar sAndVal s = var sandval s()
Returnsalist of all successful set requests performed in the test case in reverse order. Thelist contains the involved

user and agent, the value before set , and the new value. This is intended to simplify the cleanup in function
end_per testcase,that is, the undoing of the set requests and their possible side-effects.

set values(Agent, VarsAndVals, MgrAgentConfName, Config) -> SnmpReply
Types.

Agent = agent _nane()

O ds = oids()

Mygr Agent Conf Nanme = at om()

Config = [{Key, Value}]

SnnmpReply = snnprepl y()
Issues a synchronous SNMP set request.

start(Config, MgrAgentConfName) -> ok
Equivalenttoct _snnp: start (Confi g, MyrAgent Conf Nane, undefi ned).

start(Config, MgrAgentConfName, SnmpAppConfName) -> ok

Types.
Config = [{Key, Value}]
Key = atom()

Value = term))

Myr Agent Conf Nane = atomn()

SnnpConf Nanme = at om()
Starts an SNMP manager and/or agent. In the manager case, registrations of users and agents, as specified by the
configuration Mgr Agent Conf Nane, are performed. When using SNMPv3, called USM users are aso registered.

Users, usm user s, and managed agents can also be registered later using ct _snnp: regi st er _users/ 2,
ct_snnp:regi ster_agents/2,andct_snnp:regi ster_usm users/ 2.

The agent started iscalled snnp_nast er _agent . Usect _snnp: | oad_mi bs/ 1 toload MIBs into the agent.

With ShnpAppConf Nanme SNMP applications can be configured with parameters confi g, mi bs, net _i f, and
so on. The values are merged with (and possibly override) default values set by ct _snnp.

stop(Config) -> ok

Types:
Config = [{Key, Value}]
Key = atom()

Ericsson AB. All Rights Reserved.: Common Test | 159

ct_snmp

Value = term)
Stops the SNM P manager and/or agent, and removes all files created.

unload mibs(Mibs) -> ok | {error, Reason}
Types:

M bs = [M bNane]

M bName = string()

Reason = term()

Unloads the MIBs from agent snnp_nast er _agent .

unregister agents(MgrAgentConfName) -> ok
Types:

Mgr Agent Conf Nane = aton()

Reason = term()

Unregisters al managed agents.

unregister agents(MgrAgentConfName, ManagedAgents) -> ok
Types.

Mgr Agent Conf Name = at om()

ManagedAgents = [agent _nane()]

Reason = term()

Unregisters the specified managed agents.

unregister users(MgrAgentConfName) -> ok
Types.

Mgr Agent Conf Name = at om()

Reason = term()

Unregisters all users.

unregister users(MgrAgentConfName, Users) -> ok
Types:

Myr Agent Conf Name = at om()

Users = [user_namne()]

Reason = term()

Unregisters the specified users.

unregister usm _users(MgrAgentConfName) -> ok
Types:

Myr Agent Conf Name = at om()

Reason = term()

Unregistersal USM users.

160 | Ericsson AB. All Rights Reserved.: Common Test

ct_snmp

unregister usm users(MgrAgentConfName, UsmUsers) -> ok
Types.

Myr Agent Conf Name = at om()

Usmsers = [usm user_nane()]

Reason = term()

Unregisters the specified USM users.

Ericsson AB. All Rights Reserved.: Common Test | 161

ct_telnet

ct_telnet

Erlang module

Conmmon Test specific layer ontop of Telnet clientct _tel net _client.erl.

Use this module to set up Telnet connections, send commands, and perform string matching on the result. For
information about how to use ct _t el net and configure connections, specifically for UNIX hosts, see the
uni x_t el net manual page.

Default values definedinct _t el net :

e Connection timeout (time to wait for connection) = 10 seconds

e Command timeout (time to wait for acommand to return) = 10 seconds

e Max number of reconnection attempts =3

* Reconnection interval (timeto wait in between reconnection attempts) = 5 seconds

* Keepdive (sends NOP to the server every 8 sec if connectionisidle) =t r ue

e Palling limit (max number of times to poll to get aremaining string terminated) = 0

» Pollinginterval (sleep time between polls) = 1 second

e TheTCP_NODELAY option for the telnet socket isdisabled (set to f al se) per default

These parameters can be modified by the user with the following configuration term:

{telnet settings, [{connect timeout,Millisec},
{command timeout,Millisec},
{reconnection attempts,N},
{reconnection interval,Millisec},
{keep _alive,Bool},
{poll limit,N},
{poll interval,Millisec},
{tcp_nodelay,Bool}]}.

MIlisec = integer(), N = integer()
Enter the t el net _setti ngs term in a configuration file included in the test and ct _t el net retrieves the
information automatically.

keep_al i ve can be specified per connection, if necessary. For details, seeuni x_t el net.

Logging

The default logging behavior of ct _t el net isto print information about performed operations, commands, and
their corresponding results to the test case HTML log. The following is not printed to the HTML log: text strings
sent from the Telnet server that are not explicitly received by act _t el net function, suchasexpect / 3. However,
ct _t el net canbeconfiguredtouseaspecial purposeevent handler,implementedinct _conn_| og_h, forlogging
all Telnet traffic. To use this handler, install aCommon Test hook named ct h_conn_| og. Example (using the
test suite information function):

suite() ->
[{ct hooks, [{cth conn log, [{conn _mod(),hook options()}1}1}].

conn_nod() isthenameof theConmon Test moduleimplementing the connection protocol, thatis,ct _t el net .

162 | Ericsson AB. All Rights Reserved.: Common Test

ct_telnet

The cth_conn_l og hook performs unformatted logging of Telnet data to a separate text file. All Telnet
communication is captured and printed, including any data sent from the server. The link to this text file is located
at the top of the test case HTML log.

By default, data for all Telnet connections is logged in one common file (named def aul t), which can get messy,
for example, if multiple Telnet sessions are running in parallel. Therefore a separate log file can be created for each
connection. To configure this, use hook option host s and list the names of the servers/connections to be used in the
suite. The connections must be named for thisto work (seect _t el net : open/ 1, 2, 3, 4).

Hook option | og_t ype can be used to change the ct h_conn_| og behavior. The default value of this option is
r aw, which results in the behavior described above. If the value is set to ht m , al Telnet communication is printed
to the test case HTML log instead.

For raw logs, pr ef i x option can be used for adjusting prefix data added to connection log. The default value of this
option is di sabl ed, which results with no prefix data. If the value is set to f ul | prefix contains timestamp and
additonal information. If thevalueis set to shor t prefix includes only human readabl e timestamp.

All ct h_conn_I| og hook options described can aso be specified in a configuration file with configuration variable
ct _conn_I og.

Example:

{ct_conn log, [{ct telnet,[{log type,raw},
{hosts, [key or name()]}1}1}

Hook options specified in a configuration file overwrite any hard-coded hook options in the test suite. ‘

L ogging Example:

Thefollowing ct _hooks statement causes printing of Telnet traffic to separate logs for the connectionsser ver 1
and ser ver 2. Traffic for any other connectionsislogged in the default Telnet log.

suite() ->
[{ct hooks,
[{cth_conn_log, [{ct_telnet, [{hosts,[serverl,server2]}1}1}1}1.

As previously explained, this specification can also be provided by an entry like the following in a configuration file:

{ct _conn _log, [{ct telnet,[{hosts,[serverl,server2]}1}]}.

Inthiscasethect _hooks statement in the test suite can look as follows:

suite() ->
[{ct hooks, [{cth conn log, [1}1}].

Data Types
connection() = handle() | {target name(), connection type()} | target name()
Fortarget nane(), seemodulect .

Ericsson AB. All Rights Reserved.: Common Test | 163

ct_telnet

connection type() = telnet | tsl | ts2
handle() = handle()

Handle for a specific Telnet connection, see modulect .
prompt_regexp() = string()

Regular expression matching all possible prompts for a specific target type. r egexp must not have any groups, that
is, when matching, r e: r un/ 3 (in STDLIB) must return alist with one single element.

Exports

close(Connection) -> ok | {error, Reason}
Types:

Connection = connection()

Reason = term()

Closes the Telnet connection and stops the process managing it.

A connection can be associated with atarget name and/or ahandle. If Connect i on has no associated target name,
it can only be closed with the handle value (seect _t el net : open/ 4).

cmd(Connection, Cmd) -> {ok, Data} | {error, Reason}
Equivalenttoct _tel net: cnd(Connection, Cnd, []).

cmd (Connection, Cmd, Opts) -> {ok, Data} | {error, Reason}
Types.

Connection = connection()

Cnd = string()

Opts = [Opt]

Opt = {tineout, timeout()} | {newine, boolean() | string()}

Data = [string()]

Reason = term()

Sends a command through Telnet and waits for prompt.

By default, this function adds "\n" to the end of the specified command. If this is not desired, use option
{new i ne, fal se}. This is necessary, for example, when sending Telnet command sequences prefixed with
character Interpret AsCommand (IAC). Option{ newl i ne, stri ng()} canasobeusedif adifferent lineend than
"\n" isrequired, for instance{ new i ne, "\ r\ n"}, to add both carriage return and newline characters.

Option ti meout specifies how long the client must wait for prompt. If the time expires, the function returns
{error,timeout}.Forinformation about the default value for the command timeout, seethelist of default values
in the beginning of this module.

cmdf (Connection, CmdFormat, Args) -> {ok, Data} | {error, Reason}
Equivalenttoct _t el net : cndf (Connecti on, CrdFormat, Args, []).

cmdf (Connection, CmdFormat, Args, Opts) -> {ok, Data} | {error, Reason}

Types:
Connecti on = connection()

164 | Ericsson AB. All Rights Reserved.: Common Test

ct_telnet

CndFormat = string()

Args list()

Opts = [Opt]

Opt = {tineout, timeout()} | {new ine, boolean() | string()}
Data = [string()]

Reason = term()

Sends a Telnet command and waits for prompt (uses aformat string and a list of arguments to build the command).
For details, seect _tel net: cnd/ 3.

expect(Connection, Patterns) -> term()
Equivalenttoct _t el net : expect (Connections, Patterns, []).

expect(Connection, Patterns, Opts) -> {ok, Match} | {ok, MatchlList,
HaltReason} | {error, Reason}

Types:
Connecti on = connection()
Patterns = Pattern | [Pattern]

Pattern = string() | {Tag, string()} | pronpt | {pronpt, Pronpt}
Pronmpt = string()

Tag = ternm()

Opts = [Opt]

Opt = {idle_tineout, IdleTineout} | {total tineout, Total Ti neout} |
repeat | {repeat, N} | sequence | {halt, HaltPatterns} | ignore_pronpt |
no_pronpt _check | wait_for_pronpt | {wait_for_pronpt, Pronpt}

Idl eTimeout = infinity | integer()

Total Timeout = infinity | integer()

N = i nteger()
Hal t Patterns = Patterns
Mat chLi st = [Mat ch]
Match = RxMatch | {Tag, RxMatch} | {pronpt, Pronpt}
RxMatch = [string()]
Hal t Reason = done | Match
Reason = tineout | {pronpt, Pronpt}
Gets data from Telnet and waits for the expected pattern.

Pat t er n can be a POSIX regular expression. The function returns when a pattern is successfully matched (at |least
one, in the case of multiple patterns).

RxMat ch isalist of matched strings. It looks as follows [Ful | Mat ch, SubMatchl, SubMatch2, ...],
where Ful | Mat ch isthe string matched by the whole regular expression, and SubMat chNisthe string that matched
subexpression number N. Subexpressions are denoted with' (* ') "' intheregular expression.

If aTag is specified, the returned Mat ch also includes the matched Tag. Otherwise, only RxMat ch isreturned.
Options:

Ericsson AB. All Rights Reserved.: Common Test | 165

ct_telnet

idle_tineout

Indicates that the function must return if the Telnet client isidle (that is, if no data is received) for more than
I dl eTi meout milliseconds. Default time-out is 10 seconds.

total tineout

Sets a time limit for the complete expect operation. After Tot al Ti neout milliseconds,
{error,timeout} isreturned. Defaultisi nfi ni ty (that is, no time limit).

i gnore_pronpt | no_pronpt_check

>The function returns when a prompt is received, even if no pattern has yet been matched, and { error,
{pronpt, Pronpt}} isreturned. However, this behavior can be modified with option i gnor e_pr onpt or
optionno_pronpt _check, whichtellsexpect to return only when amatch isfound or after atime-out.

i gnore_pronpt

ct _tel net ignores any prompt found. This option is useful if data sent by the server can include a pattern
matching prompt r egexp (as returned by Tar gedMbd: get _pr onpt _r egexp/ 0), but is not to not cause
the function to return.

no_pronpt _check

ct _tel net does not search for a prompt at al. This is useful if, for example, Pat t er n itself matches the
prompt.

wait _for_pronpt

Forcesct _t el net towait until the prompt string isreceived before returning (even if apattern has already been
matched). Thisisequal to calling expect (Conn, Patterns++[{pronpt, Pronpt}], [sequence]|
Opt s]) . Notice that option i dl e_ti nmeout andtotal _ti meout can abort the operation of waiting for
prompt.

repeat | repeat, N

The pattern(s) must be matched multiple times. If N is specified, the pattern(s) are matched N times, and the

function returns Hal t Reason = done. This option can be interrupted by one or more Hal t Pat t er ns.
Mat chLi st is always returned, that is, a list of Mat ch instead of only one Mat ch. Also Hal t Reason is
returned.

sequence

All patterns must be matched in a sequence. A match is not concluded until all patterns are matched. This option
can be interrupted by one or more Hal t Pat t er ns. Mat chLi st isaways returned, that is, alist of Mat ch
instead of only one Mat ch. Also Hal t Reason isreturned.

Example 1

expect(Connection, [{abc, "ABC"}, {xyz,"XYZ"}], [sequence, {halt, [{nnn, "NNN"}1}1])

First this tries to match " ABC', and then " XYZ", but if " NNN" appears, the function returns { err or, { nnn,
["NNN']}}.If both" ABC' and" XYZ" are matched, the function returns{ ok, [AbcMat ch, XyzMat ch] }.

Example 2:

expect(Connection, [{abc, "ABC"}, {xyz,"XYZ"}], [{repeat, 2}, {halt, [{nnn,"NNN"}]}1)

This tries to match " ABC" or " XYZ" twice. If " NNN" appears, the function returns Hal t Reason = {nnn,
["NNN']}.

Optionsr epeat and sequence can be combined to match a sequence multiple times.

166 | Ericsson AB. All Rights Reserved.: Common Test

ct_telnet

get data(Connection) -> {ok, Data} | {error, Reason}
Types.
Connection = connection()
Data = [string()]
Reason = term()
Gets all data received by the Telnet client since the last command was sent. Only newline-terminated strings are

returned. If the last received string has not yet been terminated, the connection can be polled automatically until the
string is complete.

The polling feature is controlled by the configuration valuespol | _|imt andpol | _i nt erval andisby default
disabled. This means that the function immediately returns al complete strings received and saves a remaining non-
terminated string for alater get _dat a call.

open(Name) -> {ok, Handle} | {error, Reason}
Equivalenttoct _t el net: open(Name, tel net).

open(Name, ConnType) -> {ok, Handle} | {error, Reason}
Types.

Name = target_nane()

ConnType = connection_type()

Handl e handl e()

Reason term()

Opens a Telnet connection to the specified target host.

open(KeyOrName, ConnType, TargetMod) -> {ok, Handle} | {error, Reason}
Equivalenttoct _tel net:ct_tel net:open(KeyOr Nane, ConnType, TargetMd, []).

open(KeyOrName, ConnType, TargetMod, Extra) -> {ok, Handle} | {error, Reason}
Types.

KeyOr Name = Key | Name

Key = atom()

Name = target_nane()

ConnType = connection_type()

Target Mod = atom()

Extra = tern()

Handl e = handl e()

Reason = term)

Opens a Telnet connection to the specified target host.

The target data must exist in a configuration file. The connection can be associated with Nane and/or the returned
Handl e. To alocate a name for the target, use one of the following alternatives:

e ct:require/2inatestcase
e Arequir e statement in the suite information function (sui t e/ 0)
* Avrequire statement in atest case information function

Ericsson AB. All Rights Reserved.: Common Test | 167

ct_telnet

If you want the connection to be associated with Handl e only (if you, for example, need to open multiple connections
to a host), use Key, the configuration variable name, to specify the target. Notice that a connection without an
associated target name can only be closed with the Handl e value.

Tar get Mbd is a module that exports the functions connect (I p, Port, KeepAlive, Extra) and
get _pronpt _regexp() for the specified Tar get Type (for example, uni x_t el net).

Fort arget _nane(), seemodulect .
Seeasoct:requirel/ 2.

send(Connection, Cmd) -> ok | {error, Reason}
Equivalenttoct _t el net: send(Connection, Cmd, []).

send(Connection, Cmd, Opts) -> ok | {error, Reason}
Types:

Connection = connection()

Crd = string()

Opts = [Opt]

Opt = {new ine, boolean() | string()}

Reason = term()

Sends a Telnet command and returns immediately.

By default, this function adds "\n" to the end of the specified command. If this is not desired, option
{new i ne, fal se} canbeused. Thisisnecessary, for example, when sending Telnet command sequences prefixed
with character Interpret As Command (IAC). Option { new i ne, string()} can also be used if a different line
end than "\n" isrequired, for instance{ new i ne, "\ r\ n"}, to add both carriage return and newline characters.

The resulting output from the command can be read with ct _telnet:get _data/2 or
ct _tel net:expect/2,3.

sendf(Connection, CmdFormat, Args) -> ok | {error, Reason}
Equivalenttoct _t el net : sendf (Connecti on, CndFormat, Args, []).

sendf (Connection, CmdFormat, Args, Opts) -> ok | {error, Reason}
Types.
Connection = connection()
CndFormat = string()
Args = list()
Opts = [Opt]
Opt = {new ine, boolean() | string()}
Reason = term()
Sends a Telnet command and returnsimmediately (uses aformat string and alist of arguments to build the command).

For details, seect _t el net: send/ 3.

See Also

uni x_t el net

168 | Ericsson AB. All Rights Reserved.: Common Test

unix_telnet

unix_telnet

Erlang module

Callback module for ct _t el net , for connecting to a Telnet server on a UNIX host.

It requires the following entry in the configuration file:

{unix, [{telnet,HostNameOrIpAddress},
{port,PortNum}, % optional
{username,UserName},

{password,Password},
{keep_alive,Bool}]}. % optional

To communicate through Telnet to the host specified by Host NameOr | pAddr ess, use the interface functions in
ct _tel net, for example, open(Nane) and cnd(Nane, Cnd) .

Nare isthe name you allocated to the Unix host in your r equi r e statement, for example:

suite() -> [{require,Name,{unix, [telnet]}}].

or

ct:require(Name, {unix, [telnet]}).

The "keep alive" activity (that is, that Conmon Test sends NOP to the server every 10 seconds if the connection is
idle) can be enabled or disabled for one particular connection as described here. It can be disabled for all connections
usingt el net _settings (seect _tel net).

The{ port, Port Nunt tupleisoptional andif omitted, default Telnet port 23 isused. Alsothekeep_al i ve tuple
isoptional, and the value default to t r ue (enabled).

Exports

connect(ConnName, Ip, Port, Timeout, KeepAlive, TCPNoDelay, Extra) -> {ok,
Handle} | {error, Reason}

Types:
ConnNanme = target_nane()
Ip = string() | {integer(), integer(), integer(), integer()}
Port = integer()
Ti meout = integer()
KeepAl i ve = bool ()
TCPNoDel ay = bool ()
Extra = target_nane() | {Usernane, Password}
Usernanme = string()
Password = string()
Handl e handl e()
Reason term))

Callback forct _telnet.erl.

Ericsson AB. All Rights Reserved.: Common Test | 169

unix_telnet

Setup Telnet connection to a Unix host.

Fortarget _nane(),seect.Forhandl e(),seect _tel net.

get prompt regexp() -> PromptRegexp
Types:
Pr onpt Regexp = pronpt _regexp()
Calback forct _telnet.erl.
Returns a suitabler egexp string matching common prompts for users on Unix hosts.

For pronpt _regexp(),seect _tel net.

See Also

ct,ct _tel net

170 | Ericsson AB. All Rights Reserved.: Common Test

ct_slave

ct _slave

Erlang module

Common Test framework functions for starting and stopping nodes for Large-Scale Testing.

This module exports functions used by the Cormon Test Master to start and stop "slave”" nodes. It is the default
callback modulefor the{i nit, node_start} termin the Test Specification.

Exports

start(Node) -> Result
Types:
Node = atom()
Result = {ok, NodeNane} | {error, Reason, NodeNane}

Reason = already started | started_not _connected | boot tineout |
init _tineout | startup_tineout | not_alive

NodeName = atom()
Starts an Erlang node with name Node on the local host.

Seedsoct sl ave:start/3.

start(HostOrNode, NodeOrOpts) -> Result

Types:
Host Or Node = at on()
NodeOr Opts = aton() | list()

Result = {ok, NodeNane} | {error, Reason, NodeNane}

Reason = already_started | started_not_connected | boot _tineout |
init_tineout | startup_timeout | not_alive

NodeNanme = atom()

Starts an Erlang node with default options on a specified host, or on the local host with specified options. That is,
the call is interpreted as st art (Host, Node) when the second argument is atom-valued and st ar t (Node,
Opt s) whenitislist-valued.

Seedsoct _slave:start/ 3.

start(Host, Node, Opts) -> Result

Types.
Node = atom()
Host = atom()
Opts = [Opt Tupl es]

Opt Tupl es = {usernane, Usernane} | {password, Password} | {boot_tinmeout,
Boot Timeout} | {init_timeout, InitTimeout} | {startup_timeout,
StartupTineout} | {startup_functions, StartupFunctions} | {nonitor_master,
Monitor} | {kill_if _fail, KilllfFail} | {erl_flags, ErlangFlags} | {env,
[{EnvVar, Value}]}

Username = string()

Ericsson AB. All Rights Reserved.: Common Test | 171

ct_slave

Password = string()

Boot Ti meout = i nteger()
InitTi meout = integer()
StartupTi meout = integer()

StartupFunctions = [StartupFunctionSpec]

St art upFuncti onSpec = {Moddul e, Function, Argunents}
Modul e = atom()

Function = atom()

Argunents = [tern]

Moni tor = bool ()

KilllfFail = bool ()

Erl angFl ags = string()

EnvVar = string()

Val ue = string()

Result = {ok, NodeNane} | {error, Reason, NodeNane}

Reason = already_started | started_not_connected | boot_tinmeout |
init_tineout | startup_tineout | not_alive

NodeName = atom()
Starts an Erlang node with name Node on host Host as specified by the combination of optionsin Opt s.

Options User nane and Passwor d are used to log on to the remote host Host . User nane, if omitted, defaultsto
the current username. Passwor d is empty by default.

A list of functions specified in option St ar t up are executed after startup of the node. Notice that all used modules
are to be present in the code path on Host .

The time-outs are applied as follows:
Boot Ti meout

Thetime to start the Erlang node, in seconds. Defaults to 3 seconds. If the node is not pingable within this time,
theresult{error, boot _timeout, NodeNane} isreturned.

I ni t Ti neout

The time to wait for the node until it calls the internal callback function informing master about a successful
startup. Defaults to 1 second. In case of a timed out message, the result {error, init_timeout,
NodeNane} isreturned.

Start upTi neout

Thetimetowait until the node stopstorun St ar t upFunct i ons. Defaultsto 1 second. If thistime-out occurs,
theresult{error, startup_timeout, NodeNane} isreturned.

Options:
nmoni t or _mast er

Specifiesif the dave node is to be stopped if the master node stops. Defaultstof al se.
kill _if_fail

Specifiesif the dlave node isto be killed if atime-out occurs during initialization or startup. Defaultstot r ue.
Notice that the node can also be still aive it the boot time-out occurred, but it is not killed in this case.

erl _flags
Specifies which flags are added to the parameters of the executableer | .

172 | Ericsson AB. All Rights Reserved.: Common Test

ct_slave

env
Specifies alist of environment variables that will extend the environment.
Special return values:

e {error, already_started, NodeNane} if the node with the specified name is already started on a
specified host.

e {error, started_not_connected, NodeNane} if thenodeisstarted, but not connected to the master
node.

e {error, not_alive, NodeNane} if the node on which ct sl ave: start/ 3 iscalled, isnot aive.
Notice that NodeNane isthe name of the current nodein this case.

stop(Node) -> Result

Types:
Node = atom()
Result = {ok, NodeNane} | {error, Reason, NodeNane}
Reason = not_started | not_connected | stop_ti meout

Stops the running Erlang node with name Node on the local host.

stop(Host, Node) -> Result

Types:
Host = atom()
Node = atom()

Result = {ok, NodeNane} | {error, Reason, NodeNane}
Reason = not_started | not_connected | stop_tinmeout
NodeName = atom()

Stops the running Erlang node with name Node on host Host .

Ericsson AB. All Rights Reserved.: Common Test | 173

ct_hooks

ct_hooks

Erlang module

The Common Test Hook (CTH) framework allows extensions of the default behavior of Cormon Test by callbacks
before and after al test suite cals. It is intended for advanced users of Conmon Test who want to abstract out
behavior that is common to multiple test suites.

In brief, CTH allows you to:

* Manipulate the runtime configuration before each suite configuration call.
* Manipulate the return of al suite configuration calls and by extension the result of the test themselves.

The following sections describe the mandatory and optional CTH functions that Conmon Test calls during test
execution. For more details, see section Common Test Hooks in the User's Guide.

For information about how to add a CTH to your suite, see section Installing a CTH in the User's Guide.

For aminimal example of a CTH, see section Example CTH in the User's Guide. |

The following functions define the callback interface for a CTH.

Exports

Module:init(Id, Opts) -> {ok, State} | {ok, State, Priority}
Types:

Id = reference() | term))

Opts = term)

State = term))

Priority = integer()
MANDATORY

This function is always called before any other callback function. Use it to initiate any common state. It is to return
astate for this CTH.

| d iseither thereturn value of ct _hooks: i d/ 1, or ar ef er ence (created using erlang:make _ref/0 in ERTY) if
ct _hooks: i d/ 1 isnotimplemented.

Priority istherelativepriority of thishook. Hookswith alower priority are executedfirst. If no priority isspecified,
itissetto 0.

For details about hook execution order, see section CTH Execution Order in the User's Guide.

For details about wheni ni t is called, see section CTH Scope in the User's Guide.

Module:post groups(SuiteName, GroupDefs) -> NewGroupDefs
Types.

Sui teNane = aton()

G oupDefs = NewG oupDefs = [Group]

Group = {G oupNane, Properties, G oupsAndTest Cases}

G oupNane = aton()

174 | Ericsson AB. All Rights Reserved.: Common Test

ct_hooks

Properties = [parallel | sequence | Shuffle | {G oupRepeat Type, N}]

G oupsAndTest Cases = [Goup | {group, GoupNane} | TestCase |
{test case, Test Case, TCRepeat Props}]

Test Case = aton()
TCRepeat Props = [{repeat, N} | {repeat_until _ok, N} | {repeat_until_fail, N}]
Shuffle = shuffle | {shuffle, Seed}
Seed = {integer(),integer(),integer()}
G oupRepeat Type = repeat | repeat _until _all_ok | repeat_until _all _fail |
repeat _until _any ok | repeat_until _any fail
N = integer() | forever
OPTIONAL

Thisfunction iscalled after gr oups/ 0. It is used to modify the test group definitions, for instance to add or remove
groups or change group properties.

G oupDef s iswhat gr oups/ O returned, that is, alist of group definitions.
NewG oupDef s isthe possibly modified version of thislist.

Thisfunctioniscalled only if the CTH isadded beforei ni t _per _sui t e isrun. For details, see section CTH Scope
in the User's Guide.

Notice that for CTHs that are installed by means of the sui t e/ O function, post _gr oups/ 2 is called before the
i ni t/ 2 hook function. However, for CTHs that are installed by means of the CT start flag, thei ni t/ 2 function
iscalled first.

Prior to each test execution, Common Test does a simulated test run in order to count test suites, groups and cases
for logging purposes. This causesthe post _gr oups/ 2 hook function to always be called twice. For this reason,
side effects are best avoided in this callback.

Module:post all(SuiteName, Return, GroupDefs) -> NewReturn
Types.

Sui teNane = at on()

Return = NewReturn = Tests | {skip, Reason}

Tests = [TestCase | {testcase, Test Case, TCRepeat Props} | {group, G oupNane}
| {group, GroupNane, Properties} | {group, GoupNane, Properties, SubG oups}]

Test Case = aton()

TCRepeat Props = [{repeat, N} | {repeat_until_ok,N} | {repeat_until _fail, N}]
GroupNane = aton()

Properties = GoupProperties | default

SubGroups = [{G oupNane, Properties} | {GoupNane, Properties, SubG oups}]
Shuffle = shuffle | {shuffle, Seed}

Seed = {integer(),integer(),integer()}

GroupRepeat Type = repeat | repeat _until _all_ok | repeat _until _all _fail |
repeat _until _any_ok | repeat_until_any_fail

N = integer() | forever

G oupDefs = NewG oupDefs = [G oup]

Ericsson AB. All Rights Reserved.: Common Test | 175

ct_hooks

Group = {G oupNane, G oupProperties, G oupsAndTest Cases}
G oupProperties = [parallel | sequence | Shuffle | {G oupRepeat Type, N}]
GroupsAndTest Cases = [Goup | {group, GoupNanme} | Test Case]
Reason = term()
OPTIONAL

Thisfunctioniscalled after al | / 0. It isused to modify the set of test cases and test group to be executed, for instance
to add or remove test cases and groups, change group properties, or even skip all testsin the suite.

Ret urniswhat al | / O returned, that is, alist of test cases and groupsto be executed, or atuple{ ski p, Reason}.
G oupDef s iswhat gr oups/ 0 or the post _gr oups/ 2 hook returned, that is, alist of group definitions.
NewRet ur n isthe possibly modified version of Ret ur n.

Thisfunctioniscalled only if the CTH isadded beforei ni t _per sui t e isrun. For details, see section CTH Scope
in the User's Guide.

Noticethat for CTHsthat areinstalled by meansof thesui t e/ O function, post _al | / 2 iscalled beforethei ni t/ 2
hook function. However, for CTHsthat areinstalled by means of the CT start flag, thei ni t / 2 functioniscalled first.

Prior to each test execution, Common Test does a simulated test run in order to count test suites, groups and cases
for logging purposes. This causesthe post _al | / 3 hook function to always be called twice. For thisreason, side
effects are best avoided in this callback.

Module:pre init per suite(SuiteName, InitData, CTHState) -> Result
Types.

Sui teNane = aton()

InitData = Config | SkipOFail

Config = NewConfig = [{Key, Val ue}]

CTHState = NewCTHState = tern()

Result = {Return, NewCTHSt at e}

Return = NewConfig | SkipOFail

Ski pOrFail = {fail, Reason} | {skip, Reason}

Key = atom()

Value = term))

Reason = term()

OPTIONAL

This function is called before i nit _per _suite if it exists. It typically contains initialization/logging that
must be done before i nit_per _suite is cdled. If {skip, Reason} or {fail, Reason} is returned,
i nit_per _suiteandall test cases of the suite are skipped and Reason printed in the overview log of the suite.

Sui t eNane isthe name of the suite to be run.

I ni t Dat a istheoriginal configuration list of thetest suite, or aSki pOr Fai | tupleif aprevious CTH has returned
this.

CTHSt at e isthe current internal state of the CTH.

Ret ur n is the result of the i nit _per _suite function. If it is { ski p, Reason} or {fail, Reason},
i nit_per_suite isnever caled, instead the initiation is considered to be skipped or failed, respectively. If a

176 | Ericsson AB. All Rights Reserved.: Common Test

ct_hooks

NewConf i g listisreturned, i nit _per _sui t e iscalled with that NewConf i g list. For more details, see section
Pre Hooks in the User's Guide.

Thisfunction is called only if the CTH isadded beforei ni t _per _suite i s run. For details, see section CTH
Scope in the User's Guide.

Module:post init per suite(SuiteName, Config, Return, CTHState) -> Result
Types:

Sui teNane = aton()

Config = [{Key, Val ue}]

Return = NewReturn = Config | SkipOFail | term))

Ski pOrFail = {fail, Reason} | {skip, Reason} | term))

CTHState = NewCTHState = tern()

Result = {NewReturn, NewCTHSt at e}

Key = atom()

Value = term))

Reason = term()

OPTIONAL

This function is called after i ni t _per _sui t e if it exists. It typically contains extra checks to ensure that al the
correct dependencies are started correctly.

Returniswhati nit_per _suite returned, that is, { f ai | , Reason}, { ski p, Reason},aConfi g list, ora
term describinghow i ni t _per _sui t e failed.

NewRet ur n is the possibly modified return value of i nit_per_suite. To recover from a failure in
i nit_per_suite,returnConfi gLi st withthet c_st at us element removed. For more details, see Post Hooks
in section "Manipulating Tests" in the User's Guide.

CTHSt at e isthe current internal state of the CTH.

Thisfunctioniscalled only if the CTH isadded beforeorini ni t _per _sui t e. For details, see section CTH Scope
in the User's Guide.

Module:pre init per group(SuiteName, GroupName, InitData, CTHState) -> Result

Types:
Sui teNane = at on()
G oupNanme = atom()

InitData = Config | SkipO Fail
Config = NewConfig = [{Key, Val ue}]
CTHState = NewCTHState = tern()
Result = {NewConfig | SkipOrFail, NewCTHSt ate}
Ski pOrFail = {fail, Reason} | {skip, Reason}
Key = atom()
Value = term))
Reason = term()
OPTIONAL

Thisfunctioniscaled beforei ni t _per _gr oup if it exists. It behavesthe sameway aspre_i nit_per _suite,
but for functioni ni t _per _gr oup instead.

Ericsson AB. All Rights Reserved.: Common Test | 177

ct_hooks

If Module:pre_init_per_group/4 is not exported, common test will attempt to cal
Modul e: pre_init_per_group(G oupNane, |nitData, CTHState) instead. Thisis for backwards
compatibility.

Module:post init per group(SuiteName, GroupName, Config, Return, CTHState) ->
Result

Types:
Sui t eNane atom)
GroupNane = aton()
Config = [{Key, Val ue}]
Return = NewReturn = Config | SkipOFail | term)
Ski pOrFail = {fail, Reason} | {skip, Reason}
CTHState = NewCTHState = tern()
Result = {NewReturn, NewCTHSt at e}
Key = atom()
Value = term)
Reason = term()

OPTIONAL

Thisfunctioniscalled afteri ni t _per _gr oup if it exists. It behavesthe sameway aspost _i nit _per _suite,
but for functioni ni t _per _gr oup instead.

If Modul e:post _init_per_group/5 is not exported, common test will attempt to cal
Modul e: post _init_per_group(G oupNane, Config, Return, CTHState) instead. Thisis for
backwards compatibility.

Module:pre init per testcase(SuiteName, TestcaseName, InitData, CTHState) ->
Result

Types.
Sui teNane = aton()
TestcaseNane = atom()
InitData = Config | SkipOFail
Config = NewConfig = [{Key, Val ue}]
CTHSt ate = NewCTHState = term()
Result = {NewConfig | SkipOFail, NewCTHSt ate}
Ski pOrFail = {fail, Reason} | {skip, Reason}
Key = atom()
Value = term)
Reason = term()

OPTIONAL

This function is caled before init_per testcase if it exists. It behaves the same way as
pre_init_per_suite,butforfunctioni nit per _testcase instead.

If Module:pre_init_per_testcase/4 is not exported, common test will attempt to cal
Modul e: pre_init_per testcase(TestcaseNane, |InitData, CTHState) instead. This is for
backwards compatibility.

178 | Ericsson AB. All Rights Reserved.: Common Test

ct_hooks

CTHs cannot be added here right now. That feature may be added in a later release, but it would right now break
backwards compatibility.

Module:post init per testcase(SuiteName, TestcaseName, Config, Return,
CTHState) -> Result

Types:
Sui teNane = at on()
Test caseNanme = atom()
Config = [{Key, Val ue}]
Return = NewReturn = Config | SkipOFail | term)
Ski pOrFail = {fail, Reason} | {skip, Reason}
CTHState = NewCTHState = tern()
Result = {NewReturn, NewCTHSt at e}
Key = atom()
Value = term))
Reason = term()

OPTIONAL

This function is caled after init_per_testcase if it exists It behaves the same way as
post _init_per_suite,butforfunctioni nit_per _t estcase instead.

If Modul e:post_init_per testcase/5 is not exported, common test will attempt to cal
Modul e: post _init_per_testcase(TestcaseNane, Config, Return, CTHState) instead. This
isfor backwards compatibility.

Module:pre end per testcase(SuiteName, TestcaseName, EndData, CTHState) ->
Result

Types.
Sui teNane = aton()
TestcaseNane = atom()
EndData = Config
Config = NewConfig = [{Key, Val ue}]
CTHState = NewCTHState = tern()
Result = {NewConfi g, NewCTHSt at e}
Key = atom()
Value = term)
Reason = term()

OPTIONAL

Thisfunctioniscalledbeforeend_per _t est case if it exists. It behavesthesameway aspr e_end_per _suite,
but for function end_per _t est case instead.

Thisfunction cannot change the result of thetest case by returning skip or fail tuples, but it may insertitemsin Conf i g
that can beread inend_per _t est case/ 2 orinpost _end_per _t est case/ 5.

If Mbdul e:pre_end per _testcase/4 is not exported, common test will attempt to cal
Modul e: pre_end_per _t est case(Test caseNane, EndDat a, CTHSt at e) instead. This is for
backwards compatibility.

Ericsson AB. All Rights Reserved.: Common Test | 179

ct_hooks

Module:post end per testcase(SuiteName, TestcaseName, Config, Return,
CTHState) -> Result

Types.
Sui teNane = aton()
Test caseNane = aton()
Config = [{Key, Val ue}]
Return = NewReturn = Config | SkipOFail | term)
Ski pOrFail = {fail, Reason} | {skip, Reason}
CTHState = NewCTHState = tern()
Result = {NewRet urn, NewCTHSt at e}
Key = atom()
Value = term))
Reason = term()
OPTIONAL

Thisfunctioniscaled afterend_per _t est case if it exists. It behavesthesameway aspost _end_per _suite,
but for function end_per _t est case instead.

If Modul e: post _end_per _testcase/5 is not exported, common test will attempt to cal
Modul e: post _end_per _testcase(TestcaseNane, Config, Return, CTHState) instead. This
isfor backwards compatibility.

Module:pre end per _group(SuiteName, GroupName, EndData, CTHState) -> Result

Types:
Sui teNane = aton()
GroupNane = aton()

EndData = Config | SkipO Fail
Config = NewConfig = [{Key, Val ue}]
CTHState = NewCTHState = tern()
Result = {NewConfig | SkipOrFail, NewCTHSt at e}
Ski pOrFail = {fail, Reason} | {skip, Reason}
Key = atom()
Value = term)
Reason = term()
OPTIONAL

Thisfunction is called before end_per _gr oup if it exists. It behavesthe sasmeway aspre_i nit _per _suite,
but for function end_per _gr oup instead.

If Mbdul e:pre_end_per_group/4 is not exported, common test will atempt to call
Modul e: pre_end_per _group(G oupNane, EndData, CTHState) instead. This is for backwards
compatibility.

Module:post end per group(SuiteName, GroupName, Config, Return, CTHState) ->
Result

Types:
Sui teNane = aton()
G oupNane = aton()

180 | Ericsson AB. All Rights Reserved.: Common Test

ct_hooks

Config = [{Key, Val ue}]

Return = NewReturn = Config | SkipOFail | term)
Ski pOrFail = {fail, Reason} | {skip, Reason}
CTHState = NewCTHState = term()

Result = {NewReturn, NewCTHSt at e}

Key = atom()

Value = term))

Reason = term()

OPTIONAL

Thisfunction is called after end_per _gr oup if it exists. It behaves the sameway aspost _i nit_per _suite,
but for function end_per_group instead.

If Modul e: post_end_per_group/5 is not exported, common test will attempt to cal
Modul e: post _end_per _group(G oupNane, Config, Return, CTHState) instead. This is for
backwards compatibility.

Module:pre end per suite(SuiteName, EndData, CTHState) -> Result
Types.
Sui teNane = at on()
EndData = Config | SkipOFail
Config = NewConfig = [{Key, Val ue}]
CTHState = NewCTHState = tern()
Result = {NewConfig | SkipOrFail, NewCTHSt ate}
Ski pOrFail = {fail, Reason} | {skip, Reason}
Key = atom()
Value = term))
Reason = term()

OPTIONAL

Thisfunction is called before end_per _sui t e if it exists. It behavesthe ssmeway aspre_i nit _per _suite,
but for function end_per _sui t e instead.

Module:post end per suite(SuiteName, Config, Return, CTHState) -> Result
Types:
Sui teNane = aton()
Config = [{Key, Val ue}]
Return = NewReturn = Config | SkipOFail | term)
Ski pOrFail = {fail, Reason} | {skip, Reason}
CTHState = NewCTHState = tern()
Result = {NewRet urn, NewCTHSt at e}
Key = atom()
Value = term)
Reason = term()

OPTIONAL

Ericsson AB. All Rights Reserved.: Common Test | 181

ct_hooks

Thisfunction is called after end_per _sui t e if it exists. It behaves the sameway aspost _i nit_per _suite,
but for function end_per _sui t e instead.

Module:on tc fail(SuiteName, TestName, Reason, CTHState) -> NewCTHState
Types:

Sui teNane = at on()

TestNane = init_per_suite | end_per_suite | {init_per_group, G oupNane} |

{end_per _group, G oupNane} | {FuncNane, G oupNane} | FuncName

FuncName = atom()

G oupNane = aton()

Reason = term()

CTHState = NewCTHState = tern()

OPTIONAL

Thisfunctionis called whenever atest case (or configuration function) fails. It is called after the post functioniscalled
for the failed test case, that is:

« Ifinit_per_suite fals thisfunctioniscalled after post _i nit_per_suite.

» |f atest casefails, thisfunctionis called after post _end_per _t est case.

If thefailed test case belongsto atest case group, thefirst argument isatuple{ FuncNamne, Gr oupNane}, otherwise
only the function name.

The data that comes with Reason follows the same format as Fai | Reason in eventt ¢_done. For details, see
section Event Handling in the User's Guide.

If Modul e:on_tc fail/4 is not exported, common_test will attempt to call
Modul e: on_tc_fail (Test Nane, Reason, CTHSt at e) instead. Thisisfor backwards compatibility.

Module:on tc skip(SuiteName, TestName, Reason, CTHState) -> New(CTHState
Types:
Sui teNane = aton()
TestNane = init_per_suite | end_per_suite | {init_per_group, GoupNane} |
{end_per _group, G oupNane} | {FuncNane, G oupNane} | FuncNane
FuncName = atom()
G oupNane = aton()
Reason = {tc_auto skip | tc_user_skip, tern()}
CTHState = NewCTHState = tern()
OPTIONAL

This function is called whenever atest case (or configuration function) is skipped. It is called after the post function
is called for the skipped test case, that is:

« Ifinit_per_group isskipped, thisfunctioniscalled after post _i ni t _per _gr oup.
» |f atest caseis skipped, thisfunction is called after post _end_per _t est case.

If the skipped test case belongs to a test case group, the first argument is a tuple { FuncNane, G- oupNane},
otherwise only the function name.

The data that comes with Reason follows the same format as eventst ¢_aut o_ski p andt c_user _ski p For
details, see section Event Handling in the User's Guide.

182 | Ericsson AB. All Rights Reserved.: Common Test

ct_hooks

If Modul e: on_tc_skip/ 4 is not exported, common_test will attempt to call
Modul e: on_t c_ski p(Test Nane, Reason, CTHSt at e) instead. Thisisfor backwards compatibility.

Module:terminate(CTHState) -> term()
Types:

CTHState = term))
OPTIONAL

Thisfunction iscalled at the end of a CTH scope. The returned term isignored.

Module:id(Opts) -> Id
Types:

Opts = term)

Id = tern()
OPTIONAL

Thel didentifiesaCTH instance uniquely. If two CTHsreturnthesamel d, the second CTH isignored and subsegquent
callsto the CTH are only made to thefirst instance. For details, see section Installing a CTH in the User's Guide.

This function is not to have any side effects, asit can be called multiple times by Conmon Test .
If not implemented, the CTH acts asif this function returned acall to make_r ef /0.

Ericsson AB. All Rights Reserved.: Common Test | 183

ct_property test

ct property_test

Erlang module

This module helps running property-based tests in the Conmon Test framework. One (or more) of the property
testing tools

e QuickCheck,
e PropEr or
e« Triqg

is assumed to be installed.

The ideawith this moduleisto have aConmmon Test test suite calling a property testing tool with special property
test suites as defined by that tool. Thetestsare collected inthet est directory of the application. Thet est directory
has asubdirectory pr oper ty_t est , where everything needed for the property tests are collected. The usual Erlang
application directory structure is assumed.

A typical Cormon Test test suiteusingct _property_test isorganized asfollows:

-module(my prop test SUITE).
-compile(export all).

-include lib("common test/include/ct.hrl").
all() -> [prop_ftp case].

init per suite(Config) ->
ct property test:init per suite(Config).

%%%---- test case
prop ftp case(Config) ->
ct _property test:quickcheck(
ftp _simple client server:prop ftp(),
Config
).

and thethe property test module (inthisexamplef t p_si npl e_cl i ent _server. er|) asamost ausual property
testing module (More examples are in the User's Guide):

-module(ftp simple client server).
-export([prop ftp/0...1).

-include lib("common test/include/ct property test.hrl").
prop_ftp() ->
?FORALL(....

Exports

init per suite(Config) -> Config | {skip, Reason}
Initializes and extends Conf i g for property based testing.

Thisfunction investigatesif support is available for either QuickCheck, PropEr or Triq and compiles the properties
with thefirst tool found. Itissupposedto becalledinthei ni t _per _sui t e/ 1 functioninaCommonTest test suite.

184 | Ericsson AB. All Rights Reserved.: Common Test

href
href
href
href
href
href

ct_property_test

Which toolsto check for, and in which order could be set with the option { prop_t ool s, i st (eqc| proper |
triq)} inthe CommonTest configuration Conf i g. The default valueis[eqc, proper, triq] witheqc
being the first one searched for.

If no support isfound for any tool, thisfunction returns{ ski p, Expl anati on}.

If support isfound, theoption{ pr operty_t est tool, Tool Modul e} withtheselected tool main module name
(eqc, proper ortriq)isaddedtothelist Conf i g which thenisreturned.

The property tests are assumed to be in a subdirectory named property test. All found Erlang files in that
directory are compiled with one of the macros' EQC , ' PROPER or ' TRI Q set, depending on which tool that
is first found. This could make parts of the Erlang property tests code to be included or excluded with the macro
directives-i f def (Macro). or-i fndef (Macro)..

Thefile(s) inthe pr operty_t est subdirectory could, or should, include the ct_property_test includefile:

-include lib("common test/include/ct property test.hrl").

Thisincluded file will:

* Include the correct tool's include file

e Setthemacro' MOD_eqc' to the correct module name for the selected tool. That is, the macro' MOD_eqc' is
set to either eqc, proper ortriq.

quickcheck(Property, Config) -> true | {fail, Reason}

Callsthe selected tool's function for running the Pr oper t y. It isusually and by historical reasons called quickcheck,
and that iswhy that nameisused in thismodule (ct _property_test).

Theresult isreturned in aform suitable for Common Test test suites.
This function isintended to be called in test cases in test suites.

present result(Module, Cmds, Triple, Config) -> Result
Sameaspresent _result(Mdule, Cnds, Triple, Config, [])

present result(Module, Cmds, Triple, Config, Options) -> Result
Types:
Modul e = nodul e()
Cmds =
thelist of commands generated by the property testing tool, for example by proper:commands/1 or by
proper:parallel_commands/1
Triple =
the output from for example proper:run_commands/2 or proper:run_parallel_commands/2
Config =
the Common Test Config in test cases.
Options = [present _option()]
present _option() = {print_fun, fun(Format, Args)}
| {spec, StatisticsSpec}
Thepri nt _f un defines which function to do the actual printout. The default is ct:log/2. The spec defines
what statistics are to be printed

Result = bool ean()
Isf al se if thetest failed andist r ue if the test passed

Ericsson AB. All Rights Reserved.: Common Test | 185

ct_property test

Presents the result of stateful (statem) property testing using the aggregate function in PropEr, QuickCheck or other
similar property testing tool.

It is assumed to be called inside the property called by quickcheck/2:

RunResult = run parallel commands(?MODULE, Cmds),
ct property test:present result(?MODULE, Cmds, RunResult, Config)

See the User's Guide for an exampl e of the usage and of the default printout.
The St ati sti csSpec isalist of the tuples:

e {Title::string(), CollectFun::fun/1}
o {Title::string(), FrequencyFun::/0, CollectFun::fun/1}

Each tuple will produce one table in the order of their placesin the list.

 Titl e will bethetitle of oneresult table

e Col | ect Fun iscalled with one argument: the Crrds.. It should return alist of the values to be counted. The
following pre-defined functions exist:

e ct_property_test:crmd_nanes/ 1 returnsalist of commands (function calls) generated in the
Cmd sequence, without Module, Arguments and other details.

e ct_property_test:numcall s/ 1returnsalist of thelength of commandslists

e ct_property test:sequential _parall el/1returnsalist with information about sequential
and parallel partsfrom Tool : paral | el _commuands/ 1, 2

* FrequencyFun/ 0 returns afun/1 which is supposed to take alist of items as input, and return aniolist which
will be printed as the table. Per default, the number of each item is counted and the percentage is printed for
each. Thelist [a,b,a,a,c] could for example return

["a 60%\n","b 20%\n","c 20%\n"]

which will be printed by thepri nt _f un. Thedefault pri nt _f un will print it as:

0O oo
NN O

o® o° o°

0
0
0

The default St ati sti csSpec is:
* For sequential commands:

[{"Function calls", fun cmnd names/1},
{"Length of command sequences", fun print frequency ranges/0,
fun num_calls/1}]

e For paralel commands:

[{"Distribution sequential/parallel", fun sequential parallel/1},
{"Function calls", fun cmnd names/1},
{"Length of command sequences", fun print frequency ranges/0,

fun num_calls/1}]

186 | Ericsson AB. All Rights Reserved.: Common Test

ct_testspec

ct_testspec

Erlang module

Parsing of test specificationsfor Cormon Test .
This module exports help functions for parsing of test specifications.

Exports

get tests(SpecsIn) -> {ok, [{Specs,Tests}]} | {error, Reason}
Types:

Specsln = [string()] | [[string()]]

Specs = [string()]

Test = [{Node, Run, Ski p}]

Node = atom()

Run = {Dir, Sui tes, Cases}

Skip = {Dir,Suites, Cooment} | {Dir, Suites, Cases, Conment }

Dir = string()

Suites = atom| [aton()] | all

Cases = atom | [atom()] | all

Comrent = string()

Reason = term()

Parse the given test specification files and return the tests to run and skip.

If Specsl n=[Specl, Spec2,...], separate tests will be created per specification.
Specsl n=[[Specl, Spec2, ...]], al specifications will be mergeinto one test.

If

For each test, a{ Specs, Test s} element isreturned, where Specs isalist of al included test specifications, and

Test s specifies actual tests to run/skip per node.

Ericsson AB. All Rights Reserved.: Common Test | 187

ct_suite

ct_suite

Erlang module

The following section describes the mandatory and optional test suite functionsthat Conmon Test calls during test
execution. For more details, see section Writing Test Suitesin the User's Guide.

Data Types

ct testname() = atom()

The name of the testcase function.

ct groupname() = atom()

The name of the test group.

ct config() = [{Key :: atom(), Value :: term()}]
The configuration data that can be modified.

ct status() = ok | skipped | failed

The status value for a nested subgroup.

ct group def()

The test group definition, as returned by Modul e: gr oups/ 0.

ct test def()

The test suite definition, as returned by Modul e: al | / 0.

ct info()

The test suite information, as returned by Modul e: sui t e/ 0, Modul e: gr oup/ 1 and Modul e: Test case/ 0.

Thefollowing functionsareto be exported fromact _sui t e callback modulein order to definethe callback interface
for atest suite.

Exports

Module:all() -> [ct test def()] | {skip, Reason}
Types:
ct _test_def() = TestCase | {group, G oupNane} | {group, G oupNane,

Properties} | {group, G oupNane, Properties, SubG oups} | {testcase,
Test Case, Test CaseRepeat Type}

Test Case = ct_testnanme()

GroupNane = ct_groupnane()

Properties = [parallel | sequence | Shuffle | {RepeatType, N}] | default
SubGroups = [{G oupNane, Properties} | {GoupNane, Properties, SubG oups}]
Shuffle = shuffle | {shuffle, Seed}

Seed = {integer(), integer(), integer()}

Repeat Type = repeat | repeat_until_all_ok | repeat_until _all_fail |

repeat _until _any ok | repeat_until _any fail

Test CaseRepeat Type = [{repeat, N | {repeat_until_ok, N |

{repeat _until _fail, N}]

188 | Ericsson AB. All Rights Reserved.: Common Test

ct suite

N = integer() | forever
Reason = term()

MANDATORY

Returnsthelist of all test cases and test case groupsin the test suite module to be executed. Thislist aso specifiesthe
order the cases and groups are executed by Conmron Test . A test case is represented by an atom, the name of the
test casefunction, or at est case tupleindicating that the test case shall be repeated. A test case group is represented
by a gr oup tuple, where G oupNane, an atom, is the name of the group (defined in Modul e: gr oups/ 0).
Execution properties for groups can also be specified, both for atop-level group and for any of its subgroups. Group
execution properties specified here override propertiesin the group definition (seeModul e: gr oups/ 0). (Withvalue
def aul t , the group definition properties are used).

If {ski p, Reason} isreturned, all test cases in the module are skipped and Reason is printed on the HTML
result page.

For details on groups, see section Test Case Groups in the User's Guide.

Module:groups() -> [ct group def()]

Types:
ct_group_def() = {GoupNane, Properties, G oupsAndTest Cases}
G oupNanme = ct_groupnane()
Properties = [parallel | sequence | Shuffle | {RepeatType, N}]

G oupsAndTest Cases = [Goup | {group, G oupNane} | TestCase | {testcase,
Test Case, Test CaseRepeat Type}]

Test Case = ct_testnanme()

Shuffle = shuffle | {shuffle, Seed}

Seed = {integer(), integer(), integer()}

Repeat Type = repeat | repeat_until _all _ok | repeat_until _all _fail |
repeat _until _any ok | repeat_until _any fail

Test CaseRepeat Type = [{repeat, N} | {repeat_until_ok, N |

{repeat _until_fail, N}]

N = integer() | forever
OPTIONAL

Defines test case groups. For details, see section Test Case Groups in the User's Guide.

Module:suite() -> [ct info()]

Types:
ct _info() = {timetrap, Tine} | {require, Required} | {require, Nane,
Required} | {userdata, UserData} | {silent_connections, Conns} |
{styl esheet, CSSFile} | {ct_hooks, CTHs}

Time = TinmeVal | Ti neFunc
TimeVal = MI1liSec | {seconds, integer()} | {mnutes, integer()} | {hours,
i nteger()}

Ti reFunc = {Mod, Func, Args} | Fun
MIIliSec = integer()

Mod = atom()
Func = atom()
Args = list()

Ericsson AB. All Rights Reserved.: Common Test | 189

ct_suite

Fun = fun()
Required = Key | {Key, SubKeys} | {Key, SubKey} | {Key, SubKey, SubKeys}
Key = atom()

SubKeys = SubKey | [SubKey]
SubKey = aton()
Name = atom()
UserData = term()
Conns = [aton()]
CSSFile = string()
CTHs = [CTHvbdul e |
{CTHwbdul e, CTHI nit Args} |
{CTHwbdul e, CTHInitArgs, CTHPriority}]
CTHVbdul e = at on()

CTH nitArgs = tern()
CTHPriority = integer()
OPTIONAL

Thetest suiteinformation function. Returnsalist of tagged tuples specifying various propertiesrel ated to the execution
of thistest suite (common for al test casesin the suite).

Tag tinmetrap sets the maximum time that each test case is alowed to execute (including
Modul e:init_per_testcasel/2 and Mbdul e: end_per _t estcase/ 2). If the timetrap time is exceeded,
the test case failswithreasont i metrap_ti meout . A Ti meFunc function can be used to set a new timetrap by
returning aTi nmeVal . It can also be used to trigger atimetrap time-out by, at some point, returning avalue other than
aTi meVal . For details, see section Timetrap Time-Outsin the User's Guide.

Tag r equi r e specifies configuration variables required by test cases (or configuration functions) in the suite. If the
required configuration variables are not found in any of the configuration files, all test cases are skipped. For details
about ther equi r e functionality, seefunctionct : require/ 1, 2.

With userdat a, the user can specify any test suite-related information, which can be read by caling
ct: userdata/ 2.

Tagct _hooks specifiesthe Common Test Hooks to be run with this suite.
Other tuples than the ones defined are ignored.
For details about the test suite information function, see section Test Suite Information Function in the User's Guide.

Module:init per suite(Config) -> NewConfig | {skip, Reason} | {skip_and save,
Reason, SaveConfig}

Types:
Config = NewConfig = SaveConfig = ct_config()
Reason = term()

OPTIONAL; if thisfunction is defined, then Modul e: end_per _sui t e/ 1 must aso be defined.

This configuration function is called as the first function in the suite. It typically contains initializations that are
common for all test cases in the suite, and that must only be done once. Parameter Conf i g isthe configuration data
that can be modified. Whatever is returned from this function is specified as Conf i g to all configuration functions
and test casesin the suite.

If {ski p, Reason} isreturned, al test casesin the suite are skipped and Reason is printed in the overview log
for the suite.

190 | Ericsson AB. All Rights Reserved.: Common Test

ct suite

For information on save_confi g and ski p_and_save, see section Saving Configuration Data in the User's
Guide.

Module:end per suite(Config) -> term() | {save config, SaveConfig}
Types:

Config = SaveConfig = ct_config()
OPTIONAL; if thisfunction is defined, then Modul e: i nit _per suit e/ 1 must also be defined.

This function is caled as the last test case in the suite. It is meant to be used for cleaning up after
Modul e:init_per_suite/1.

For information on save_conf i g, see section Saving Configuration Data in the User's Guide.

Module:group(GroupName) -> [ct info()]
Types:
G oupNane ct _groupnane()

ct_info() = {timetrap, Tine} | {require, Required} | {require, Nane,
Required} | {userdata, UserData} | {silent_connections, Conns} |
{styl esheet, CSSFile} | {ct_hooks, CTHs}

Time = TinmeVal | Ti neFunc
TimeVal = MI1liSec | {seconds, integer()} | {mnutes, integer()} | {hours,
i nteger()}

Ti mreFunc = {Mod, Func, Args} | Fun
MI1liSec = integer()

Mod = atom()

Func = atom()

Args = list()

Fun = fun()

Required = Key | {Key, SubKeys} | {Key, SubKey} | {Key, SubKey, SubKeys}
Key = atom()

SubKeys = SubKey | [SubKey]
SubKey = at on()
Name = atom()
UserData = term()
Conns = [aton()]
CSSFile = string()
CTHs = [CTHvbdul e |
{CTHModul e, CTHI nitArgs} |
{CTHModul e, CTHInitArgs, CTHPriority}]
CTHVbdul e = at on()
CTH nitArgs = tern()
CTHPriority i nteger()
OPTIONAL
Thetest case group information function. It is supposed to return alist of tagged tuples that specify various properties

related to the execution of atest casegroup (that is, itstest cases and subgroups). Properties set by Modul e: gr oup/ 1
override properties with the same key that have been set previously by Mbdul e: sui t e/ 0.

Ericsson AB. All Rights Reserved.: Common Test | 191

ct_suite

Tag tinmetrap sets the maximum time that each test case is alowed to execute (including
Modul e:init_per_testcase/2 and Mbdul e: end_per _t est case/ 2). If the timetrap time is exceeded,
the test case failswithreasont i metrap_t i meout . A Ti meFunc function can be used to set a new timetrap by
returningaTi meVal . It can aso be used to trigger atimetrap time-out by, at some point, returning avalue other than
aTi meVal . For details, see section Timetrap Time-Outsin the User's Guide.

Tagr equi r e specifies configuration variables required by test cases (or configuration functions) in the suite. If the
required configuration variables are not found in any of the configuration files, all test casesin this group are skipped.
For details about ther equi r e functionality, seefunctionct : require/ 1, 2.

With user dat a, the user can specify any test case group related information that can be read by calling
ct:userdata/ 2.

Tagct _hooks specifiesthe Common Test Hooks to be run with this suite.
Other tuples than the ones defined are ignored.
For details about the test case group information function, see section Group I nformation Function in the User's Guide.

Module:init per group(GroupName, Config) -> NewConfig | {skip, Reason}
Types:

G oupNanme = ct_groupnane()

Config = NewConfig = ct_config()

Reason = term()

OPTIONAL; if thisfunction is defined, then Modul e: end_per _gr oup/ 2 must aso be defined.

This configuration function is called before execution of a test case group. It typically contains initializations that
are common for al test cases and subgroups in the group, and that must only be performed once. G- oupNane is
the name of the group, as specified in the group definition (see Modul e: gr oups/ 0). Parameter Conf i g is the
configuration data that can be modified. The return value of this function is given as Conf i g to al test cases and
subgroups in the group.

If {ski p, Reason} isreturned, all test cases in the group are skipped and Reason is printed in the overview
log for the group.

For information about test case groups, see section Test Case Groups in the User's Guide.

Module:end per group(GroupName, Config) -> term() | {return group result,
Status}

Types.
GroupNanme = ct_groupnane()
Config = ct_config()
Status = ct_status()

OPTIONAL; if thisfunction is defined, then Modul e: i ni t _per _gr oup/ 2 must also be defined.

This function is called after the execution of a test case group is finished. It is meant to be used for
cleaning up after Modul e: i nit_per _group/ 2. A status value for a nested subgroup can be returned with
{return_group_result, Status}. The status can be retrieved in Modul e: end_per _gr oup/ 2 for the
group on the level above. The statusisaso used by Common Test for deciding if execution of agroup isto proceed
if property sequence orrepeat _until _* isset.

For details about test case groups, see section Test Case Groups in the User's Guide.

192 | Ericsson AB. All Rights Reserved.: Common Test

ct suite

Module:init per testcase(TestCase, Config) -> NewConfig | {fail, Reason} |
{skip, Reason}

Types.
Test Case = ct_testnane()
Config = NewConfig = ct_config()
Reason = term()
OPTIONAL; if thisfunction is defined, then Modul e: end_per _t est case/ 2 must also be defined.

This function is called before each test case. Argument Test Case isthe test case name, and Conf i g (list of key-
value tuples) isthe configuration data that can be modified. The NewConf i g list returned from this function is given
asConfi gtothetestcase. If {fai |, Reason} isreturned, thetest caseismarked asfailed without being executed.

If {ski p, Reason} isreturned, thetest caseis skipped and Reason is printed in the overview log for the suite.

Module:end per testcase(TestCase, Config) -> term() | {fail, Reason} |
{save config, SaveConfig}

Types:
Test Case = ct_testnanme()
Config = SaveConfig = ct_config()
Reason = term()

OPTIONAL; if thisfunction is defined, then Modul e: i nit _per testcase/ 2 must aso be defined.

This function is called after each test case, and can be used to clean up after Modul e: i nit _per _t estcase/ 2
and thetest case. Any return value (besides{ f ai | , Reason} and{save_confi g, SaveConfi g})isignored.
By returning {f ai | , Reason}, Test Case is marked as faulty (even though it was successful in the sense that
it returned a value instead of terminating).

For information on save_conf i g, see section Saving Configuration Data in the User's Guide.

Module:Testcase() -> [ct info()]

Types:
ct_info() = {timetrap, Tinme} | {require, Required} | {require, Nane,
Required} | {userdata, UserData} | {silent_connections, Conns} |
{styl esheet, CSSFile} | {ct_hooks, CTHs}

Time = TinmeVal | Ti neFunc
TimeVal = MI1liSec | {seconds, integer()} | {mnutes, integer()} | {hours,
i nteger()}

Ti meFunc = {Mod, Func, Args} | Fun
MI1liSec = integer()

Mod = atom()
Func = atom()
Args = list()
Fun = fun()

Required = Key | {Key, SubKeys} | {Key, SubKey} | {Key, SubKey, SubKeys}
Key = atom()

SubKeys = SubKey | [SubKey]

SubKey = aton{)

Name = atom()

Ericsson AB. All Rights Reserved.: Common Test | 193

ct_suite

UserData = term)
Conns = [aton()]
CSSFile = string()
CTHs = [CTHWbdul e |
{CTHModul e, CTHI nit Args} |
{CTHModul e, CTHInitArgs, CTHPriority}]
CTHWbdul e = at on()

CTHIinitArgs = term)
CTHPriority = integer()
OPTIONAL

The test case information function. It is supposed to return a list of tagged tuples that specify various properties
related to the execution of this particular test case. Properties set by Modul e: Test case/ 0 override properties set
previously for the test case by Modul e: gr oup/ 1 or Modul e: sui t e/ 0.

Tag timetrap sets the maximum time that the test case is allowed to execute. If the timetrap time is
exceeded, the test case fails with reason timetrap_ti meout. Modul e:init_per_testcase/2 and
Modul e: end_per _t est case/ 2 areincluded in the timetrap time. A Ti neFunc function can be used to set a
new timetrap by returning a Ti meVal . It can also be used to trigger a timetrap time-out by, at some point, returning
avalue other than aTi neVal . For details, see section Timetrap Time-Outs in the User's Guide.

Tag r equi r e specifies configuration variables that are required by thetest case (ori nit _per _testcase/ 2 or
end_per _t est case/ 2). If therequired configuration variables are not found in any of the configuration files, the
test case is skipped. For details about ther equi r e functionality, see functionct : requi re/ 1, 2.

Iftinmetraporrequire isnot set, the default values specified by Modul e: sui t e/ 0 (or Modul e: gr oup/ 1)
are used.

Withuser dat a, the user can specify any test case-related information that can beread by callingct : user dat a/ 3.
Other tuples than the ones defined are ignored.
For details about the test case information function, see section Test Case Information Function in the User's Guide.

Module:Testcase(Config) -> term() | {skip, Reason} | {comment, Comment} |
{save config, SaveConfig} | {skip and save, Reason, SaveConfig} | exit()

Types:
Config = SaveConfig = ct_config()
Reason = term()
Comment = string()

MANDATORY

Theimplementation of atest case. Call the functionsto test and check the result. If something fails, ensurethe function
causesaruntimeerror or call ct : fai |l /1, 2 (which also causes the test case process to terminate).

Elements from the Conf i g list can, for example, be read with propl i st s: get _val ue/ 2 in STDLIB.

If you decide not to run the test case after all, return{ ski p, Reason}.Reason isthen printedin field Corment
on the HTML result page.

To print some information in field Comment on the HTML result page, return{ conment, Comment }.

If the function returns anything else, the test case is considered successful. The return value always gets printed in
thetest caselog file.

For details about test case implementation, see section Test Cases in the User's Guide.

194 | Ericsson AB. All Rights Reserved.: Common Test

ct suite

For information on save_confi g and ski p_and_save, see section Saving Configuration Data in the User's
Guide.

Ericsson AB. All Rights Reserved.: Common Test | 195

	Common Test
	Common Test User's Guide
	Introduction
	Scope
	Prerequisites

	Common Test Basics
	General
	Test Suite Organization
	Support Libraries
	Suites and Test Cases
	External Interfaces

	Getting Started
	Introduction for Newcomers
	Test Case Execution
	A Simple Test Suite
	A Test Suite with Configuration Functions
	Questions and Answers

	Installation
	General Information

	Writing Test Suites
	Support for Test Suite Authors
	Test Suites
	Init and End per Suite
	Init and End per Test Case
	Test Cases
	Test Case Information Function
	Test Suite Information Function
	Test Case Groups
	Parallel Property and Nested Groups
	Parallel Test Cases and I/O
	Repeated Groups
	Shuffled Test Case Order
	Group Information Function
	Information Functions for Init- and End-Configuration
	Data and Private Directories
	Execution Environment
	Timetrap Time-Outs
	Logging - Categories and Verbosity Levels
	Illegal Dependencies

	Test Structure
	General
	Skipping Test Cases
	Definition of Terms

	Examples and Templates
	Test Suite Example
	Test Suite Templates

	Running Tests and Analyzing Results
	Using the Common Test Framework
	Automatic Compilation of Test Suites and Help Modules
	Running Tests from the OS Command Line
	Running Tests from the Erlang Shell or from an Erlang Program
	Releasing the Erlang Shell

	Test Case Group Execution
	Running the Interactive Shell Mode
	Step-by-Step Execution of Test Cases with the Erlang Debugger
	Test Specifications
	General Description
	Using Multiple Test Specification Files
	Test Specification File Inclusion
	Test Case Groups
	Test Specification Syntax
	Constants
	Example
	The init Term
	User-Specific Terms
	Reading Test Specification Terms

	Log Files
	Log Options
	Sorting HTML Table Columns
	The Unexpected I/O Log
	The Pre- and Post Test I/O Log
	Delete Old Logs

	HTML Style Sheets
	Repeating Tests
	Silent Connections

	External Configuration Data
	General
	Syntax
	Requiring and Reading Configuration Data
	Using Configuration Variables Defined in Multiple Files
	Encrypted Configuration Files
	Opening Connections Using Configuration Data
	User-Specific Configuration Data Formats
	Default Callback Modules for Handling Configuration Data
	Using XML Configuration Files
	Implement a User-Specific Handler

	Examples of Configuration Data Handling
	Example of User-Specific Configuration Handler

	Code Coverage Analysis
	General
	Use
	Stopping the Cover Tool When Tests Are Completed
	The Cover Specification File
	General Config
	OTP application Config

	Cross Cover Analysis
	Logging

	Using Common Test for Large-Scale Testing
	General
	Use
	Test Specifications
	Automatic Startup of Test Target Nodes

	Event Handling
	General
	Use
	General Events
	Internal Events
	Notes

	Dependencies between Test Cases and Suites
	General
	Saving Configuration Data
	Sequences

	Common Test Hooks
	General
	Installing a CTH
	Overriding CTHs
	CTH Execution Order

	CTH Scope
	CTH Processes and Tables
	External Configuration Data and Logging

	Manipulating Tests
	Pre Hooks
	Post Hooks
	Skip and Fail Hooks

	Synchronizing External User Applications with Common Test
	Example CTH
	Built-In CTHs

	Some Thoughts about Testing
	Goals
	What to Test

	Common Test's Property Testing Support: ct_property_test
	General
	What Is Supported?
	Introductory Example
	A stateful testing example

	Reference Manual
	common_test
	ct_run
	ct
	abort_current_testcase/1
	add_config/2
	break/1
	break/2
	capture_get/0
	capture_get/1
	capture_start/0
	capture_stop/0
	comment/1
	comment/2
	continue/0
	continue/1
	decrypt_config_file/2
	decrypt_config_file/3
	encrypt_config_file/2
	encrypt_config_file/3
	fail/1
	fail/2
	get_config/1
	get_config/2
	get_config/3
	get_event_mgr_ref/0
	get_progname/0
	get_status/0
	get_target_name/1
	get_testspec_terms/0
	get_testspec_terms/1
	get_timetrap_info/0
	get_verbosity/1
	install/1
	listenv/1
	log/1
	log/2
	log/3
	log/4
	log/5
	make_priv_dir/0
	notify/2
	pal/1
	pal/2
	pal/3
	pal/4
	pal/5
	parse_table/1
	print/1
	print/2
	print/3
	print/4
	print/5
	reload_config/1
	remaining_test_procs/0
	remove_config/2
	require/1
	require/2
	run/1
	run/2
	run/3
	run_test/1
	run_testspec/1
	set_verbosity/2
	sleep/1
	start_interactive/0
	step/3
	step/4
	stop_interactive/0
	sync_notify/2
	testcases/2
	timetrap/1
	userdata/2
	userdata/3

	ct_master
	abort/0
	abort/1
	basic_html/1
	get_event_mgr_ref/0
	progress/0
	run/1
	run/3
	run/4
	run_on_node/2
	run_on_node/3
	run_test/2

	ct_cover
	add_nodes/1
	cross_cover_analyse/2
	remove_nodes/1

	ct_ftp
	cd/2
	close/1
	delete/2
	get/3
	ls/2
	open/1
	put/3
	recv/2
	recv/3
	send/2
	send/3
	type/2

	ct_ssh
	apread/4
	apread/5
	apwrite/4
	apwrite/5
	aread/3
	aread/4
	awrite/3
	awrite/4
	close/2
	close/3
	connect/1
	connect/2
	connect/3
	del_dir/2
	del_dir/3
	delete/2
	delete/3
	disconnect/1
	exec/2
	exec/3
	exec/4
	get_file_info/2
	get_file_info/3
	list_dir/2
	list_dir/3
	make_dir/2
	make_dir/3
	make_symlink/3
	make_symlink/4
	open/3
	open/4
	opendir/2
	opendir/3
	position/3
	position/4
	pread/4
	pread/5
	pwrite/4
	pwrite/5
	read/3
	read/4
	read_file/2
	read_file/3
	read_file_info/2
	read_file_info/3
	read_link/2
	read_link/3
	read_link_info/2
	read_link_info/3
	receive_response/2
	receive_response/3
	receive_response/4
	rename/3
	rename/4
	send/3
	send/4
	send/5
	send_and_receive/3
	send_and_receive/4
	send_and_receive/5
	send_and_receive/6
	session_close/2
	session_open/1
	session_open/2
	sftp_connect/1
	shell/2
	shell/3
	subsystem/3
	subsystem/4
	write/3
	write/4
	write_file/3
	write_file/4
	write_file_info/3
	write_file_info/4

	ct_netconfc
	action/2
	action/3
	close_session/1
	close_session/2
	connect/1
	connect/2
	copy_config/3
	copy_config/4
	create_subscription/2
	create_subscription/3
	delete_config/2
	delete_config/3
	disconnect/1
	edit_config/3
	edit_config/4
	edit_config/4
	edit_config/5
	get/2
	get/3
	get_capabilities/1
	get_capabilities/2
	get_config/3
	get_config/4
	get_event_streams/1
	get_event_streams/2
	get_event_streams/2
	get_event_streams/3
	get_session_id/1
	get_session_id/2
	hello/1
	hello/2
	hello/3
	kill_session/2
	kill_session/3
	lock/2
	lock/3
	only_open/1
	only_open/2
	open/1
	open/2
	send/2
	send/3
	send_rpc/2
	send_rpc/3
	session/1
	session/2
	session/2
	session/3
	unlock/2
	unlock/3

	ct_rpc
	app_node/2
	app_node/3
	app_node/4
	call/4
	call/5
	call/6
	cast/4
	cast/5

	ct_snmp
	get_next_values/3
	get_values/3
	load_mibs/1
	register_agents/2
	register_users/2
	register_usm_users/2
	set_info/1
	set_values/4
	start/2
	start/3
	stop/1
	unload_mibs/1
	unregister_agents/1
	unregister_agents/2
	unregister_users/1
	unregister_users/2
	unregister_usm_users/1
	unregister_usm_users/2

	ct_telnet
	close/1
	cmd/2
	cmd/3
	cmdf/3
	cmdf/4
	expect/2
	expect/3
	get_data/1
	open/1
	open/2
	open/3
	open/4
	send/2
	send/3
	sendf/3
	sendf/4

	unix_telnet
	connect/7
	get_prompt_regexp/0

	ct_slave
	start/1
	start/2
	start/3
	stop/1
	stop/2

	ct_hooks
	Module:init/2
	Module:post_groups/2
	Module:post_all/3
	Module:pre_init_per_suite/3
	Module:post_init_per_suite/4
	Module:pre_init_per_group/4
	Module:post_init_per_group/5
	Module:pre_init_per_testcase/4
	Module:post_init_per_testcase/5
	Module:pre_end_per_testcase/4
	Module:post_end_per_testcase/5
	Module:pre_end_per_group/4
	Module:post_end_per_group/5
	Module:pre_end_per_suite/3
	Module:post_end_per_suite/4
	Module:on_tc_fail/4
	Module:on_tc_skip/4
	Module:terminate/1
	Module:id/1

	ct_property_test
	init_per_suite/1
	quickcheck/2
	present_result/4
	present_result/5

	ct_testspec
	get_tests/1

	ct_suite
	Module:all/0
	Module:groups/0
	Module:suite/0
	Module:init_per_suite/1
	Module:end_per_suite/1
	Module:group/1
	Module:init_per_group/2
	Module:end_per_group/2
	Module:init_per_testcase/2
	Module:end_per_testcase/2
	Module:Testcase/0
	Module:Testcase/1

