
Dialyzer
Copyright © 2006-2025 Ericsson AB. All Rights Reserved.

Dialyzer 5.1.3.1
September 10, 2025



Copyright © 2006-2025 Ericsson AB. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See
the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

September 10, 2025



1.1  Dialyzer

1    Dialyzer User's Guide

1.1  Dialyzer
1.1.1  Introduction
Scope
Dialyzer is a static analysis tool that identifies software discrepancies, such as definite type errors, code that has become
dead or unreachable because of programming error, and unnecessary tests, in single Erlang modules or entire (sets
of) applications.

Dialyzer can be called from the command line, from Erlang, and from a GUI.

Prerequisites
It is assumed that the reader is familiar with the Erlang programming language.

1.1.2  The Persistent Lookup Table
Dialyzer stores the result of an analysis in a Persistent Lookup Table (PLT). The PLT can then be used as a starting
point for later analyses. It is recommended to build a PLT with the Erlang/OTP applications that you are using, but
also to include your own applications that you are using frequently.

The PLT is built using option --build_plt to Dialyzer. The following command builds the recommended minimal
PLT for Erlang/OTP:

dialyzer --build_plt --apps erts kernel stdlib mnesia

Dialyzer looks if there is an environment variable called DIALYZER_PLT and places the PLT at this
location. If no such variable is set, Dialyzer places the PLT in a file called .dialyzer_plt in the
filename:basedir(user_cache, "erlang") folder. The placement can also be specified using the options
--plt or --output_plt.

Information can be added to an existing PLT using option --add_to_plt. If you also want to include the Erlang
compiler in the PLT and place it in a new PLT, then use the following command:

dialyzer --add_to_plt --apps compiler --output_plt my.plt

Then you can add your favorite application my_app to the new PLT:

dialyzer --add_to_plt --plt my.plt -r my_app/ebin

But you realize that it is unnecessary to have the Erlang compiler in this one:

dialyzer --remove_from_plt --plt my.plt --apps compiler

Later, when you have fixed a bug in your application my_app, you want to update the PLT so that it becomes fresh
the next time you run Dialyzer. In this case, run the following command:

dialyzer --check_plt --plt my.plt

Ericsson AB. All Rights Reserved.: Dialyzer | 1



1.1  Dialyzer

Dialyzer then reanalyzes the changed files and the files that depend on these files. Notice that this consistency check
is performed automatically the next time you run Dialyzer with this PLT. Option --check_plt is only for doing
so without doing any other analysis.

To get information about a PLT, use the following option:

dialyzer --plt_info

To specify which PLT, use option --plt.

To get the output printed to a file, use option --output_file.

Notice that when manipulating the PLT, no warnings are emitted. To turn on warnings during (re)analysis of the PLT,
use option --get_warnings.

1.1.3  Using Dialyzer from the Command Line
Dialyzer has a command-line version for automated use. See dialyzer(3).

1.1.4  Using Dialyzer from Erlang
Dialyzer can also be used directly from Erlang. See dialyzer(3).

1.1.5  Using Dialyzer from the GUI
Choosing the Applications or Modules
The File window displays a listing of the current directory. Click your way to the directories/modules you want to
add or type the correct path in the entry.

Mark the directories/modules you want to analyze for discrepancies and click Add. You can either add the .beam
and .erl files directly, or add directories that contain these kind of files. Notice that you are only allowed to add
the type of files that can be analyzed in the current mode of operation (see below), and that you cannot mix .beam
and .erl files.

Analysis Modes
Dialyzer has two analysis modes: "Byte Code" and "Source Code". They are controlled by the buttons in the top-
middle part of the main window, under Analysis Options.

Controlling the Discrepancies Reported by Dialyzer
Under the Warnings pull-down menu, there are buttons that control which discrepancies are reported to the user in the
Warnings window. By clicking these buttons, you can enable/disable a whole class of warnings. Information about
the classes of warnings is found on the "Warnings" item under the Help menu (in the rightmost top corner).

If modules are compiled with inlining, spurious warnings can be emitted. In the Options menu you can choose to ignore
inline-compiled modules when analyzing byte code. When starting from source code, this is not a problem because
inlining is explicitly turned off by Dialyzer. The option causes Dialyzer to suppress all warnings from inline-compiled
modules, as there is currently no way for Dialyzer to find what parts of the code have been produced by inlining.

Running the Analysis
Once you have chosen the modules or directories you want to analyze, click the Run button to start the analysis. If
you for some reason want to stop the analysis while it is running, click the Stop button.

The information from the analysis is displayed in the Log window and the Warnings window.

2 | Ericsson AB. All Rights Reserved.: Dialyzer



1.1  Dialyzer

Include Directories and Macro Definitions
When analyzing from source, you might have to supply Dialyzer with a list of include directories and macro definitions
(as you can do with the erlc flags -I and -D). This can be done either by starting Dialyzer with these flags from
the command line as in:

dialyzer -I my_includes -DDEBUG -Dvsn=42 -I one_more_dir

or by adding these explicitly using submenu Manage Macro Definitions or Manage Include Directories in the
Options menu.

Saving the Information on the Log and Warnings Windows
The File menu includes options to save the contents of the Log window and the Warnings window. Simply choose
the options and enter the file to save the contents in.

There are also buttons to clear the contents of each window.

Inspecting the Inferred Types of the Analyzed Functions
Dialyzer stores the information of the analyzed functions in a Persistent Lookup Table (PLT), see section The Persistent
Lookup Table.

After an analysis, you can inspect this information. In the PLT menu you can choose to either search the PLT or
inspect the contents of the whole PLT. The information is presented in EDoc format.

1.1.6  Dialyzer's Model of Analysis
Dialyzer operates somewhere between a classical type checker and a more general static-analysis tool: It checks and
consumes function specs, yet doesn't require them, and it can find bugs across modules which consider the dataflow
of the programs under analysis. This means Dialyzer can find genuine bugs in complex code, and is pragmatic in the
face of missing specs or limited information about the codebase, only reporting issues which it can prove have the
potential to cause a genuine issue at runtime. This means Dialyzer will sometimes not report every bug, since it cannot
always find this proof.

How Dialyzer Utilises Function Specifications
Dialyzer infers types for all top-level functions in a module. If the module also has a spec given in the source-code,
Dialyzer will compare the inferred type to the spec. The comparison checks, for each argument and the return, that the
inferred and specified types overlap - which is to say, the types have at least one possible runtime value in common.
Notice that Dialyzer does not check that one type contains a subset of values of the other, or that they're precisely
equal: This allows Dialyzer to make simplifying assumptions to preserve performance and avoid reporting program
flows which could potentially succeed at runtime.

If the inferred and specified types do not overlap, Dialyzer will warn that the spec is invalid with respect to the
implementation. If they do overlap, however, Dialyzer will proceed under the assumption that the correct type for the
given function is the intersection of the inferred type and the specified type (the rationale being that the user may know
something that Dialyzer itself cannot deduce). One implication of this is that if the user gives a spec for a function
which overlaps with Dialyzer's inferred type, but is more restrictive, Dialyzer will trust those restrictions. This may
then generate an error elsewhere which follows from the erroneously restricted spec.

Examples:

Non-overlapping argument:

-spec foo(boolean()) -> string().
%% Dialyzer will infer: foo(integer()) -> string().
foo(N) ->
    integer_to_list(N).

Ericsson AB. All Rights Reserved.: Dialyzer | 3



1.1  Dialyzer

Since the type of the argument in the spec is different from the type that Dialyzer inferred, Dialyzer will generate
the following warning:

some_module.erl:7:2: Invalid type specification for function some_module:foo/1.
 The success typing is t:foo
          (integer()) -> string()
 But the spec is t:foo
          (boolean()) -> string()
 They do not overlap in the 1st argument

Non-overlapping return:

-spec bar(a | b) -> atom().
%% Dialyzer will infer: bar(a | b) -> binary().
bar(a) -> <<"a">>;
bar(b) -> <<"b">>.

Since the return value in the spec and the return value inferred by Dialyzer are different, Dialyzer will generate the
following warning:

some_module.erl:11:2: Invalid type specification for function some_module:bar/1.
 The success typing is t:bar
          ('a' | 'b') -> <<_:8>>
 But the spec is t:bar
          ('a' | 'b') -> atom()
 The return types do not overlap

Overlapping spec and inferred type:

-spec baz(a | b) -> non_neg_integer().
%% Dialyzer will infer: baz(b | c | d) -> -1 | 0 | 1.
baz(b) -> -1;
baz(c) -> 0;
baz(d) -> 1.

Dialyzer will "trust" the spec and using the intersection of the spec and inferred type:

baz(b) -> 0 | 1.

Notice how the c and d from the argument to baz/1 and the -1 in the return from the inferred type were dropped
once the spec and inferred type were intersected. This could result in warnings being emitted for later functions.

For example, if baz/1 is called like this:

call_baz1(A) ->
    case baz(A) of
        -1 -> negative;
        0 -> zero;
        1 -> positive
    end.

Dialyzer will generate the following warning:

some_module.erl:25:9: The pattern
          -1 can never match the type
          0 | 1

If baz/1 is called like this:

4 | Ericsson AB. All Rights Reserved.: Dialyzer



1.1  Dialyzer

call_baz2() ->
    baz(a).

Dialyzer will generate the following warnings:

some_module.erl:30:1: Function call_baz2/0 has no local return
some_module.erl:31:9: The call t:baz
         ('a') will never return since it differs in the 1st argument
               from the success typing arguments:
         ('b' | 'c' | 'd')

1.1.7  Feedback and Bug Reports
We very much welcome user feedback - even wishlists! If you notice anything weird, especially if Dialyzer reports any
discrepancy that is a false positive, please send an error report describing the symptoms and how to reproduce them.

Ericsson AB. All Rights Reserved.: Dialyzer | 5



1.1  Dialyzer

2    Reference Manual

6 | Ericsson AB. All Rights Reserved.: Dialyzer



dialyzer

dialyzer
Erlang module

Dialyzer is a static analysis tool that identifies software discrepancies, such as definite type errors, code that has become
dead or unreachable because of programming errors, and unnecessary tests, in single Erlang modules or entire (sets
of) applications.

Dialyzer starts its analysis from either debug-compiled BEAM bytecode or from Erlang source code. The file and
line number of a discrepancy is reported along with an indication of what the discrepancy is about. Dialyzer bases its
analysis on the concept of success typings, which allows for sound warnings (no false positives).

Using Dialyzer from the Command Line
Dialyzer has a command-line version for automated use. This section provides a brief description of the options. The
same information can be obtained by writing the following in a shell:

dialyzer --help

For more details about the operation of Dialyzer, see section Using Dialyzer from the GUI in the User's Guide.

Exit status of the command-line version:

0

No problems were found during the analysis and no warnings were emitted.

1

Problems were found during the analysis.

2

No problems were found during the analysis, but warnings were emitted.

Usage:

dialyzer [--add_to_plt] [--apps applications] [--build_plt]
         [--check_plt] [-Ddefine]* [-Dname]* [--dump_callgraph file]
         [--error_location flag] [files_or_dirs] [--fullpath]
         [--get_warnings] [--gui] [--help] [-I include_dir]*
         [--incremental] [--metrics_file] [--no_check_plt] [--no_indentation]
         [--no_spec] [-o outfile] [--output_plt file] [-pa dir]* [--plt plt]
         [--plt_info] [--plts plt*] [--quiet] [-r dirs] [--raw]
         [--remove_from_plt] [--shell] [--src] [--statistics] [--verbose]
         [--version] [--warning_apps applications] [-Wwarn]*

Note:

* denotes that multiple occurrences of the option are possible.

Options of the command-line version:

--add_to_plt

The PLT is extended to also include the files specified with -c and -r. Use --plt to specify which PLT to start
from, and --output_plt to specify where to put the PLT. Notice that the analysis possibly can include files
from the PLT if they depend on the new files. This option only works for BEAM files.

Ericsson AB. All Rights Reserved.: Dialyzer | 7



dialyzer

--apps applications

By default, warnings will be reported to all applications given by --apps. However, if --warning_apps is
used, only those applications given to --warning_apps will have warnings reported. All applications given
by --apps, but not --warning_apps, will be analysed to provide context to the analysis, but warnings will
not be reported for them. For example, you may want to include libraries you depend on in the analysis with --
apps so discrepancies in their usage can be found, but only include your own code with --warning_apps
so that discrepancies are only reported in code that you own.

--warning_apps applications

This option is typically used when building or modifying a PLT as in:

dialyzer --build_plt --apps erts kernel stdlib mnesia ...

to refer conveniently to library applications corresponding to the Erlang/OTP installation. However, this option
is general and can also be used during analysis to refer to Erlang/OTP applications. File or directory names can
also be included, as in:

dialyzer --apps inets ssl ./ebin ../other_lib/ebin/my_module.beam

--build_plt

The analysis starts from an empty PLT and creates a new one from the files specified with -c and -r. This option
only works for BEAM files. To override the default PLT location, use --plt or --output_plt.

--check_plt

Check the PLT for consistency and rebuild it if it is not up-to-date.

-Dname (or -Dname=value)

When analyzing from source, pass the define to Dialyzer. (**)

--dump_callgraph file

Dump the call graph into the specified file whose format is determined by the filename extension. Supported
extensions are: raw, dot, and ps. If something else is used as filename extension, default format .raw is used.

--error_location column | line

Use a pair {Line, Column} or an integer Line to pinpoint the location of warnings. The default is to use a
pair {Line, Column}. When formatted, the line and the column are separated by a colon.

files_or_dirs (for backward compatibility also as -c files_or_dirs)

Use Dialyzer from the command line to detect defects in the specified files or directories containing .erl or
.beam files, depending on the type of the analysis.

--fullpath

Display the full path names of files for which warnings are emitted.

--get_warnings

Make Dialyzer emit warnings even when manipulating the PLT. Warnings are only emitted for files that are
analyzed.

--gui

Use the GUI.

--help (or -h)

Print this message and exit.

8 | Ericsson AB. All Rights Reserved.: Dialyzer



dialyzer

-I include_dir

When analyzing from source, pass the include_dir to Dialyzer. (**)

--input_list_file file

Analyze the file names that are listed in the specified file (one file name per line).

--no_check_plt

Skip the PLT check when running Dialyzer. This is useful when working with installed PLTs that never change.

--incremental

The analysis starts from an existing incremental PLT, or builds one from scratch if one does not exist, and runs
the minimal amount of additional analysis to report all issues in the given set of apps. Notably, incremental PLT
files are not compatible with "classic" PLT files, and vice versa. The initial incremental PLT will be updated
unless an alternative output incremental PLT is given.

--no_indentation

Do not insert line breaks in types, contracts, and Erlang Code when formatting warnings.

--no_spec

Ignore functions specs. This is useful for debugging when one suspects that some specs are incorrect.

-o outfile (or --output outfile)

When using Dialyzer from the command line, send the analysis results to the specified outfile rather than to
stdout.

--metrics_file file

Write metrics about Dialyzer's incrementality (for example, total number of modules considered, how many
modules were changed since the PLT was last updated, how many modules needed to be analyzed) to a file. This
can be useful for tracking and debugging Dialyzer's incrementality.

--output_plt file

Store the PLT at the specified file after building it.

-pa dir

Include dir in the path for Erlang. This is useful when analyzing files that have -include_lib() directives.

--plt plt

Use the specified PLT as the initial PLT. If the PLT was built during setup, the files are checked for consistency.

--plt_info

Make Dialyzer print information about the PLT and then quit. The PLT can be specified with --plt(s).

--plts plt*

Merge the specified PLTs to create the initial PLT. This requires that the PLTs are disjoint (that is, do not have
any module appearing in more than one PLT). The PLTs are created in the usual way:

dialyzer --build_plt --output_plt plt_1 files_to_include
...
dialyzer --build_plt --output_plt plt_n files_to_include

They can then be used in either of the following ways:

dialyzer files_to_analyze --plts plt_1 ... plt_n

or

Ericsson AB. All Rights Reserved.: Dialyzer | 9



dialyzer

dialyzer --plts plt_1 ... plt_n -- files_to_analyze

Notice the -- delimiter in the second case.

--quiet (or -q)

Make Dialyzer a bit more quiet.

-r dirs

Same as files_or_dirs, but the specified directories are searched recursively for subdirectories containing
.erl or .beam files in them, depending on the type of analysis.

--raw

When using Dialyzer from the command line, output the raw analysis results (Erlang terms) instead of the
formatted result. The raw format is easier to post-process (for example, to filter warnings or to output HTML
pages).

--remove_from_plt

The information from the files specified with -c and -r is removed from the PLT. Notice that this can cause a
reanalysis of the remaining dependent files.

--shell

Do not disable the Erlang shell while running the GUI.

--src

Override the default, which is to analyze BEAM files, and analyze starting from Erlang source code instead.

--statistics

Print information about the progress of execution (analysis phases, time spent in each, and size of the relative
input).

--verbose

Make Dialyzer a bit more verbose.

--version (or -v)

Print the Dialyzer version and some more information and exit.

-Wwarn

A family of options that selectively turn on/off warnings. (For help on the names of warnings, use dialyzer
-Whelp.) Notice that the options can also be specified in the file with a -dialyzer() attribute. For details,
see section Requesting or Suppressing Warnings in Source Files.

Note:

** options -D and -I work both from the command line and in the Dialyzer GUI; the syntax of defines and includes
is the same as that used by erlc(1).

Warning options:

-Werror_handling (***)

Include warnings for functions that only return by an exception.

-Wextra_return (***)

Warn about functions whose specification includes types that the function cannot return.

10 | Ericsson AB. All Rights Reserved.: Dialyzer



dialyzer

-Wmissing_return (***)

Warn about functions that return values that are not part of the specification.

-Wno_behaviours

Suppress warnings about behavior callbacks that drift from the published recommended interfaces.

-Wno_contracts

Suppress warnings about invalid contracts.

-Wno_fail_call

Suppress warnings for failing calls.

-Wno_fun_app

Suppress warnings for fun applications that will fail.

-Wno_improper_lists

Suppress warnings for construction of improper lists.

-Wno_match

Suppress warnings for patterns that are unused or cannot match.

-Wno_missing_calls

Suppress warnings about calls to missing functions.

-Wno_opaque

Suppress warnings for violations of opacity of data types.

-Wno_return

Suppress warnings for functions that will never return a value.

-Wno_undefined_callbacks

Suppress warnings about behaviors that have no -callback attributes for their callbacks.

-Wno_unused

Suppress warnings for unused functions.

-Wno_unknown

Suppress warnings about unknown functions and types. The default is to warn about unknown functions and
types when setting the exit status. When using Dialyzer from Erlang, warnings about unknown functions and
types are returned.

-Wunderspecs (***)

Warn about underspecified functions (the specification is strictly more allowing than the success typing).

-Wunmatched_returns (***)

Include warnings for function calls that ignore a structured return value or do not match against one of many
possible return values. However, no warnings are included if the possible return values are a union of atoms or
a union of numbers.

The following options are also available, but their use is not recommended (they are mostly for Dialyzer developers
and internal debugging):

-Woverspecs (***)

Warn about overspecified functions (the specification is strictly less allowing than the success typing).

Ericsson AB. All Rights Reserved.: Dialyzer | 11



dialyzer

-Wspecdiffs (***)

Warn when the specification is different than the success typing.

Note:

*** denotes options that turn on warnings rather than turning them off.

The following option is not strictly needed as it specifies the default. It is primarily intended to be used with the -
dialyzer attribute. For an example see section Requesting or Suppressing Warnings in Source Files.

-Wno_underspecs

Suppress warnings about underspecified functions (the specification is strictly more allowing than the success
typing).

-Wno_extra_return

Suppress warnings about functions whose specification includes types that the function cannot return.

-Wno_missing_return

Suppress warnings about functions that return values that are not part of the specification.

Using Dialyzer from Erlang
Dialyzer can be used directly from Erlang. Both the GUI and the command-line versions are also available. The options
are similar to the ones given from the command line, see section Using Dialyzer from the Command Line.

Default Dialyzer Options
The (host operating system) environment variable ERL_COMPILER_OPTIONS can be used to give default Dialyzer
options. Its value must be a valid Erlang term. If the value is a list, it is used as is. If it is not a list, it is put into a list.

The list is appended to any options given to run/1 or on the command line.

The list can be retrieved with compile:env_compiler_options/0.

Currently the only option used is the error_location option.

Dialyzer configuration file:

Dialyzer's configuration file may also be used to augment the default options and those given directly to the Dialyzer
command. It is commonly used to avoid repeating options which would otherwise need to be given explicitly to
Dialyzer on every invocation.

The location of the configuration file can be set via the DIALYZER_CONFIG environment variable, and defaults to
within the user_config from filename:basedir/3.

An example configuration file's contents might be:

      {incremental,
        {default_apps,[stdlib,kernel,erts]},
        {default_warning_apps,[stdlib]}
      }.
      {warnings, [no_improper_lists]}.
      {add_pathsa,["/users/samwise/potatoes/ebin"]}.
      {add_pathsz,["/users/smeagol/fish/ebin"]}.

12 | Ericsson AB. All Rights Reserved.: Dialyzer



dialyzer

Requesting or Suppressing Warnings in Source Files
Attribute -dialyzer() can be used for turning off warnings in a module by specifying functions or warning options.
For example, to turn off all warnings for the function f/0, include the following line:

-dialyzer({nowarn_function, f/0}).

To turn off warnings for improper lists, add the following line to the source file:

-dialyzer(no_improper_lists).

Attribute -dialyzer() is allowed after function declarations. Lists of warning options or functions are allowed:

-dialyzer([{nowarn_function, [f/0]}, no_improper_lists]).

Warning options can be restricted to functions:

-dialyzer({no_improper_lists, g/0}).

-dialyzer({[no_return, no_match], [g/0, h/0]}).

The warning option for underspecified functions, -Wunderspecs, can result in useful warnings, but often functions
with specifications that are strictly more allowing than the success typing cannot easily be modified to be less allowing.
To turn off the warning for underspecified function f/0, include the following line:

-dialyzer({no_underspecs, f/0}).

For help on the warning options, use dialyzer -Whelp. The options are also enumerated, see type
warn_option().

Attribute -dialyzer() can also be used for turning on warnings. For example, if a module has been fixed regarding
unmatched returns, adding the following line can help in assuring that no new unmatched return warnings are
introduced:

-dialyzer(unmatched_returns).

Data Types
dial_option() =
    {files, [FileName :: file:filename()]} |
    {files_rec, [DirName :: file:filename()]} |
    {defines, [{Macro :: atom(), Value :: term()}]} |
    {from, src_code | byte_code} |
    {init_plt, FileName :: file:filename()} |
    {plts, [FileName :: file:filename()]} |
    {include_dirs, [DirName :: file:filename()]} |
    {output_file, FileName :: file:filename()} |
    {metrics_file, FileName :: file:filename()} |
    {module_lookup_file, FileName :: file:filename()} |
    {output_plt, FileName :: file:filename()} |
    {check_plt, boolean()} |
    {analysis_type,
     succ_typings | plt_add | plt_build | plt_check | plt_remove |
     incremental} |
    {warnings, [warn_option()]} |
    {get_warnings, boolean()} |
    {use_spec, boolean()} |

Ericsson AB. All Rights Reserved.: Dialyzer | 13



dialyzer

    {filename_opt, filename_opt()} |
    {callgraph_file, file:filename()} |
    {mod_deps_file, file:filename()} |
    {warning_files_rec, [DirName :: file:filename()]} |
    {error_location, error_location()}
Option from defaults to byte_code. Options init_plt and plts change the default.

dial_warn_tag() =
    warn_behaviour | warn_bin_construction | warn_callgraph |
    warn_contract_extra_return | warn_contract_missing_return |
    warn_contract_not_equal | warn_contract_range |
    warn_contract_subtype | warn_contract_supertype |
    warn_contract_syntax | warn_contract_types |
    warn_failing_call | warn_fun_app | warn_map_construction |
    warn_matching | warn_non_proper_list | warn_not_called |
    warn_opaque | warn_overlapping_contract |
    warn_return_no_exit | warn_return_only_exit |
    warn_undefined_callbacks | warn_unknown | warn_umatched_return
dial_warning() =
    {Tag :: dial_warn_tag(),
     Id :: file_location(),
     Msg :: {atom(), [term()]}}
error_location() = column | line
If the value of this option is line, an integer Line is used as Location in messages. If the value is column, a
pair {Line, Column} is used as Location. The default is column.

file_location() =
    {File :: file:filename(), Location :: erl_anno:location()}
filename_opt() = basename | fullpath
format_option() =
    {indent_opt, boolean()} |
    {filename_opt, filename_opt()} |
    {error_location, error_location()}
warn_option() =
    error_handling | no_behaviours | no_contracts | no_fail_call |
    no_fun_app | no_improper_lists | no_match | no_missing_calls |
    no_opaque | no_return | no_undefined_callbacks |
    no_underspecs | no_unknown | no_unused | underspecs |
    unknown | unmatched_returns | overspecs | specdiffs |
    extra_return | no_extra_return | missing_return |
    no_missing_return
See section Warning options for a description of the warning options.

Exports

format_warning(Warnings) -> string()
Types:

Warnings = dial_warning()
Get a string from warnings as returned by run/1.

14 | Ericsson AB. All Rights Reserved.: Dialyzer



dialyzer

format_warning(Warnings, Options) -> string()
Types:

Warnings = dial_warning()
Options = filename_opt() | [format_option()]
format_option() =
    {indent_opt, boolean()} |
    {filename_opt, filename_opt()} |
    {error_location, error_location()}
filename_opt() = basename | fullpath

Get a string from warnings as returned by run/1.

If indent_opt is set to true (default), line breaks are inserted in types, contracts, and Erlang code to improve
readability.

If error_location is set to column (default), locations are formatted as Line:Column if the column number
is available, otherwise locations are formatted as Line even if the column number is available.

gui() -> ok
gui(Options) -> ok
Types:

Options = [dial_option()]
Dialyzer GUI version.

plt_info(Plt) ->
            {ok, ClassicResult | IncrementalResult} |
            {error, Reason}
Types:

Plt = file:filename()
ClassicResult = [{files, [file:filename()]}]
IncrementalResult = {incremental, [{modules, [module()]}]}
Reason = not_valid | no_such_file | read_error

Returns information about the specified PLT.

run(Options) -> Warnings
Types:

Options = [dial_option()]
Warnings = [dial_warning()]

Dialyzer command-line version.

Ericsson AB. All Rights Reserved.: Dialyzer | 15



typer

typer
Command

TypEr shows type information for Erlang modules to the user. Additionally, it can annotate the code of files with such
type information.

Using TypEr from the Command Line
TypEr is used from the command-line. This section provides a brief description of the options. The same information
can be obtained by writing the following in a shell:

typer --help

Usage:

typer [--help] [--version] [--plt PLT] [--edoc]
      [--show | --show-exported | --annotate | --annotate-inc-files | --annotate-in-place]
      [-Ddefine]* [-I include_dir]* [-pa dir]* [-pz dir]*
      [-T application]* file* [-r directory*]

Note:

* denotes that multiple occurrences of the option are possible.

Options:

-r

Search directories recursively for .erl files below them. If a list of files is given, this must be after them.

--show

Print type specifications for all functions on stdout. (This is the default behaviour; this option is not really needed.)

--show-exported (or show_exported)

Same as --show, but print specifications for exported functions only. Specs are displayed sorted alphabetically
on the function's name.

--annotate

Annotate the specified files with type specifications.

--annotate-inc-files

Same as --annotate but annotates all -include() files as well as all .erl files. (Use this option with caution
- it has not been tested much).

--annotate-in-place

Annotate directly on the source code files, instead of dumping the annotated files in a different directory (use this
option with caution - has not been tested much)

--edoc

Print type information as Edoc @spec comments, not as type specs.

--plt

Use the specified dialyzer PLT file rather than the default one.

16 | Ericsson AB. All Rights Reserved.: Dialyzer



typer

-T file*

The specified file(s) already contain type specifications and these are to be trusted in order to print specs for the
rest of the files. (Multiple files or dirs, separated by spaces, can be specified.)

-Dname (or -Dname=value)

Pass the defined name(s) to TypEr. (**)

-I

Pass the include_dir to TypEr. (**)

-pa dir

Include dir in the path for Erlang. This is useful when analyzing files that have -include_lib() directives
or use parse transforms.

-pz dir

Include dir in the path for Erlang. This is useful when analyzing files that have -include_lib() directives
or use parse transforms.

--version (or -v)

Print the TypEr version and some more information and exit.

Note:

** options -D and -I work both from the command line and in the TypEr GUI; the syntax of defines and includes
is the same as that used by erlc(1).

Ericsson AB. All Rights Reserved.: Dialyzer | 17


	Dialyzer
	Dialyzer User's Guide
	Dialyzer
	Introduction
	Scope
	Prerequisites

	The Persistent Lookup Table
	Using Dialyzer from the Command Line
	Using Dialyzer from Erlang
	Using Dialyzer from the GUI
	Choosing the Applications or Modules
	Analysis Modes
	Controlling the Discrepancies Reported by Dialyzer
	Running the Analysis
	Include Directories and Macro Definitions
	Saving the Information on the Log and Warnings Windows
	Inspecting the Inferred Types of the Analyzed Functions

	Dialyzer's Model of Analysis
	How Dialyzer Utilises Function Specifications

	Feedback and Bug Reports


	Reference Manual
	dialyzer
	format_warning/1
	format_warning/2
	gui/0
	gui/1
	plt_info/1
	run/1

	typer



