
Diameter
Copyright © 2011-2025 Ericsson AB. All Rights Reserved.

Diameter 2.3.2.2
September 10, 2025

Copyright © 2011-2025 Ericsson AB. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See
the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

September 10, 2025

1.1 Introduction

1 Diameter Users Guide

The diameter application is a framework for building applications on top of the Diameter protocol.

1.1 Introduction
The diameter application is an implementation of the Diameter protocol as defined by RFC 6733. It supports arbitrary
Diameter applications by way of a dictionary interface that allows messages and AVPs to be defined and input into
diameter as configuration. It has support for all roles defined in the RFC: client, server and agent. This chapter provides
a short overview of the application.

A Diameter node is implemented by configuring a service and one or more transports using the interface module
diameter. The service configuration defines the Diameter applications to be supported by the node and, typically,
the capabilities that it should send to remote peers at capabilities exchange upon the establishment of transport
connections. A transport is configured on a service and provides protocol-specific send/receive functionality by way of
a transport interface defined by diameter and implemented by a transport module. The diameter application provides
two transport modules: diameter_tcp and diameter_sctp for transport over TCP (using gen_tcp) and SCTP (using
gen_sctp) respectively. Other transports can be provided by any module that implements diameter's transport interface.

While a service typically implements a single Diameter node (as identified by an Origin-Host AVP), transports can
themselves be associated with capabilities AVPs so that a single service can be used to implement more than one
Diameter node.

Each Diameter application defined on a service is configured with a callback module that implements the application
interface through which diameter communicates the connectivity of remote peers, requests peer selection for outgoing
requests, and communicates the reception of incoming Diameter request and answer messages. An application using
diameter implements these application callback modules to provide the functionality of the Diameter node(s) it
implements.

Each Diameter application is also configured with a dictionary module that provide encode/decode functionality
for outgoing/incoming Diameter messages belonging to the application. A dictionary module is generated from
a dictionary file using the diameterc utility. Dictionaries for the RFC 6733 Diameter Common Messages, Base
Accounting and Relay applications are provided with the diameter application.

1.2 Usage
To be written.

1.3 Examples
Example code can be found in the diameter application's examples subdirectory.

1.4 Standards Compliance
The table below summarizes the diameter application's compliance with RFC 6733. Since the diameter application
isn't a Diameter node on its own, compliance is strictly the responsibility of the user in many cases, diameter providing
the means for the user to be compliant rather than being compliant on its own.

Ericsson AB. All Rights Reserved.: Diameter | 1

1.4 Standards Compliance

The Compliance column notes C (Compliant) if the required functionality is implemented, PC (Partially Compliant)
if there are limitations, NC (Not Compliant) if functionality is not implemented, or a dash if text is informational or
only places requirements that must be met by the user's implementation.

Capitalized Diameter refers to the protocol, lowercase diameter to the Erlang application.

1.4.1 RFC 6733 - Diameter Base Protocol

Section Title Compliance Notes

1 Introduction —

1.1 Diameter Protocol —

1.1.1
Description of the
Document Set

—

1.1.2
Conventions Used in This
Document

—

1.1.3 Changes from RFC 3588 —

It is possible to configure a
3588 dictionary in order to
get 3588 semantics, where
the differ from 6733.

1.2 Terminology —

1.3 Approach to Extensibility —

The dictionary interface
documented in
diameter_dict(4) provides
extensibility, allowing
the user to defined new
AVPs, commands, and
applications. Ready
dictionaries are provided
for the RFC 6733 common
message, base accounting,
and relay applications,
as well as for RFC 7683,
Diameter Overload
Indicator Conveyance.

1.3.1 Defining New AVP Values —

1.3.2 Creating New AVPs —

New AVPs can be defined
using the dictionary
interface. Both RFC data
formats and extensions are
supported.

2 | Ericsson AB. All Rights Reserved.: Diameter

1.4 Standards Compliance

1.3.3 Creating New Commands —
New commands can
be defined using the
dictionary interface.

1.3.4
Creating New Diameter
Applications

—
New applications can
be defined using the
dictionary interface.

2 Protocol Overview —

Session state is the
responsibility of the user.

The role of a Diameter
node is determined by the
user's implementation.

2.1 Transport PC

Ports are configured by the
user: diameter places no
restrictions.

The transport interface
documented in
diameter_transport(3)
allows the user to
implement their own
methods. Ready support
is provided for TCP, TCP/
TLS, and SCTP, but not
DTLS/SCTP.

Multiple connections to
the same peer is possible.
ICMP messages are not
interpreted.

2.1.1 SCTP Guidelines C

Unordered sending
is configurable in
diameter_sctp(3). There
is no special handling of
DPR/DPA: since a user
that cares about pending
answers should wait for
them before initiating
DPR.

A PPID can be configured
with a a gen_sctp
sctp_default_send_param
option.

Ericsson AB. All Rights Reserved.: Diameter | 3

1.4 Standards Compliance

2.2
Securing Diameter
Messages

PC
DTLS is not supported by
diameter_sctp(3). See also
2.1.

2.3
Diameter Application
Compliance

—

2.4 Application Identifiers C

The user configures
diameter with the
identifiers to send at
capabilities exchange,
along with corresponding
dictionaries defining
the messages of the
applications.

2.5 Connections vs. Sessions C

Connections are
realized by configuring
transport. Sessions are the
responsibility of the user.

2.6 Peer Table PC

Routing is implemented
by the user in callbacks
documented in
diameter_app(3). A peer
table of the documented
form is not exposed to the
user.

2.7 Routing Table PC
See 2.6. A routing table
of the documented form is
not exposed to the user.

2.8 Role of Diameter Agents C

Most role-specific
behaviour is implemented
by the user. How a
node advertises itself at
capabilities exchange
is determined by user
configuration.

2.8.1 Relay Agents C

2.8.2 Proxy Agents C

2.8.3 Redirect Agents C

2.8.4 Translation Agents C

2.9
Diameter Path
Authorization

—
Authorization is the
responsibility of the user.

4 | Ericsson AB. All Rights Reserved.: Diameter

1.4 Standards Compliance

3 Diameter Header C

Hop-by-Hop and End-to-
End Identifiers are set by
diameter when sending
outgoing requests.

3.1 Command Codes C

3.2
Command Code Format
Specification

C
Commands are defined
as CCF specifications in
dictionary files.

3.3
Diameter Command
Naming Conventions

—

4 Diameter AVPs C

Any required padding
is added by diameter
when encoding outgoing
messages.

4.1 AVP Header C

4.1.1 Optional Header Elements C

4.2 Basic AVP Data Formats C

4.3
Derived AVP Data
Formats

C
Arbitrary derived data
formats are supported by
the dictionary interface.

4.3.1
Common Derived AVP
Data Formats

C

Beware that RFC 6733
changed the DiameterURI
transport/port defaults
specified in RFC3588.
Relying on the defaults can
result in interoperability
problems.

4.4 Grouped AVP Values C

The M-bit on a component
AVP of a Grouped AVP
that does not set M is
ignored: such AVPs are
not regarded as erroneous
at decode.

Grouped AVPs are defined
as CCF specifications in
dictionary files.

4.4.1
Example AVP with a
Grouped Data Type

—

Ericsson AB. All Rights Reserved.: Diameter | 5

1.4 Standards Compliance

4.5
Diameter Base Protocol
AVPs

C

The base AVPs are defined
in the common dictionary
provided by diameter.
There are common
dictionaries for both RFC
3588 and RFC 6733 since
the latter made changes to
both syntax and semantics.

5 Diameter Peers —

5.1 Peer Connections PC

A peer's DiameterIdentity
is not required when
initiating a connection:
the identify is received at
capabilities exchange, at
which time the connection
can be rejected if the
identity is objectionable.

The number of connections
established depends on
the user's configuration.
Multiple connections per
peer is possible.

5.2 Diameter Peer Discovery NC

No form of peer discovery
is implemented. The
user can implement this
independently of diameter
if required.

5.3 Capabilities Exchange C

All supported applications
are sent in CEA. The user
can reject an incoming
CER or CEA in a
configured callback.

Both transport security at
connection establishment
and negotiated via an
Inband-Security AVP are
supported.

5.3.1
Capabilities-Exchange-
Request

C
CER is sent and received
by diameter.

5.3.2
Capabilities-Exchange-
Answer

C
CEA is sent and received
by diameter.

5.3.3 Vendor-Id AVP C

6 | Ericsson AB. All Rights Reserved.: Diameter

1.4 Standards Compliance

5.3.4 Firmware-Revision AVP C

5.3.5 Host-IP-Address AVP C

5.3.6 Supported-Vendor-Id AVP C

5.3.7 Product-Name AVP C

5.4
Disconnecting Peer
Connections

C

DPA will not be answered
with error: a peer that
wants to a avoid a race can
wait for pending answers
before sending DPR.

5.4.1 Disconnect-Peer-Request C

DPR is sent by diameter in
response to configuration
changes requiring a
connection to be broken.
The user can also send
DPR.

5.4.2 Disconnect-Peer-Answer C
DPR is answered by
diameter.

5.4.3 Disconnect-Cause AVP C

5.5
Transport Failure
Detection

—

5.5.1 Device-Watchdog-Request C

DWR is sent and received
by diameter. Callbacks
notify the user of
transitions into and out of
the OKAY state.

5.5.2 Device-Watchdog-Answer C
DWA is sent and received
by diameter.

5.5.3
Transport Failure
Algorithm

C

5.5.4
Failover and Failback
Procedures

C

5.6 Peer State Machine PC
The election process is
modified as described in
5.6.4.

5.6.1 Incoming Connections C

5.6.2 Events —

Ericsson AB. All Rights Reserved.: Diameter | 7

1.4 Standards Compliance

5.6.3 Actions —

5.6.4 The Election Process PC

As documented, the
election assumes
knowledge of a peer's
DiameterIdentity when
initiating a connection,
which diameter doesn't
require. Connections
will be accepted if
configuration allows
multiple connections per
peer to be established
or there is no existing
connection. Note that the
election process is only
applicable when multiple
connections per peer is
disallowed.

6
Diameter Message
Processing

—

6.1
Diameter Request Routing
Overview

—

Routing is performed by
the user. A callback from
diameter provides a list
of available suitable peer
connections.

6.1.1 Originating a Request C

Requests are constructed
by the user; diameter sets
header fields as defined in
the relevant dictionary.

6.1.2 Sending a Request C

6.1.3 Receiving Requests C

Loops are detected by
diameter when the return
value of a request callback
asks that a request be
forwarded. Loop detection
in other cases is the
responsibility of the user.

6.1.4 Processing Local Requests C

The user decides whether
or not to process a request
locally in the request
callback from diameter.

6.1.5 Request Forwarding PC See 2.6.

6.1.6 Request Routing PC See 2.7.

8 | Ericsson AB. All Rights Reserved.: Diameter

1.4 Standards Compliance

6.1.7
Predictive Loop
Avoidance

C See 6.1.3.

6.1.8 Redirecting Requests PC See 2.6.

6.1.9
Relaying and Proxying
Requests

C

A Route-Record AVP
is appended by diameter
when the return value
of a request callback
asks that a request be
forwarded. Appending the
AVP in other cases is the
responsibility of the user.

6.2
Diameter Answer
Processing

C

Answer message are
constructed by the user,
except in the case of some
protocol errors, in which
case the procedures are
followed.

6.2.1
Processing Received
Answers

C
Answers with an unknown
Hop-by-Hop Identifier are
discarded.

6.2.2
Relaying and Proxying
Answers

—
Modifying answers is the
responsibility of the user in
callbacks from diameter.

6.3 Origin-Host AVP C

The order of AVPs in
an encoded message is
determined by the CCF of
the message in question.

AVPs defined in the RFC
are defined in dictionaries
provided by diameter.
Their proper use in
application messages is the
responsibility of the user.

6.4 Origin-Realm AVP C

6.5 Destination-Host AVP C

6.6 Destination-Realm AVP C

6.7 Routing AVPs —

6.7.1 Route-Record AVP C

6.7.2 Proxy-Info AVP C

Ericsson AB. All Rights Reserved.: Diameter | 9

1.4 Standards Compliance

6.7.3 Proxy-Host AVP C

6.7.4 Proxy-State AVP C

6.8 Auth-Application-Id AVP C

6.9 Acct-Application-Id AVP C

6.10 Inband-Security-Id AVP C See 2.1.

6.11
Vendor-Specific-
Application-Id AVP

C
Note that the CCF of this
AVP is not the same as in
RFC 3588.

6.12 Redirect-Host AVP C

6.13 Redirect-Host-Usage AVP C

6.14
Redirect-Max-Cache-Time
AVP

C

7 Error Handling C

Answers are formulated
by the user in most cases.
Answers setting the E-bit
can be sent by diameter
itself in response to a
request that cannot be
handled by the user.

7.1 Result-Code AVP C

7.1.1 Informational C

7.1.2 Success C

7.1.3 Protocol Errors C

Result codes 3001, 3002,
3005, and 3007 can be sent
in answers formulated by
diameter, if configured to
do so.

7.1.4 Transient Failures C

Result code 4003 is sent in
CEA if there is an existing
connection to the peer in
question and configuration
does not allow more than
one.

7.1.5 Permanent Failures C

Message reception detects
5001, 5004, 5005, 5008,
5009, 5010, 5011, 5014,
5015, and 5017 errors. It
ignores 5013 errors at the

10 | Ericsson AB. All Rights Reserved.: Diameter

1.4 Standards Compliance

admonition of sections 3
and 4.1.

Note that RFC 3588 did
not allow 5xxx result
codes in answers setting
the E-bit, while RFC 6733
does. This is a potential
interoperability problem
since the Diameter
protocol version has not
changed.

7.2 Error Bit C

7.3 Error-Message AVP C
The user can include this
AVP as required.

7.4 Error-Reporting-Host AVP C
The user can include this
AVP as required.

7.5 Failed-AVP AVP C

The user constructs
application-specific
messages, but diameter
provides failed AVPs
in message callbacks.
Failed component AVPs
are grouped within the
relevant Grouped AVPs.

7.6 Experimental-Result AVP C

7.7
Experimental-Result-Code
AVP

C

8 Diameter User Sessions —

Authorization and
accounting AVPs are
defined in provided
dictionaries. Their proper
use is the responsibility of
the user.

8.1
Authorization Session
State Machine

—

Authorization is the
responsibility of the
user: diameter does not
implement this state
machine.

8.2
Accounting Session State
Machine

—
Accounting is the
responsibility of the
user: diameter does not

Ericsson AB. All Rights Reserved.: Diameter | 11

1.4 Standards Compliance

implement this state
machine.

8.3 Server-Initiated Re-Auth —

8.3.1 Re-Auth-Request C

8.3.2 Re-Auth-Answer C

8.4 Session Termination —

Session-related messages
and AVPs are defined
in provided dictionaries.
Their proper use is the
user's responsibility.

8.4.1
Session-Termination-
Request

C

8.4.2
Session-Termination-
Answer

C

8.5 Aborting a Session —

Session-related messages
and AVPs are defined
in provided dictionaries.
Their proper use is the
user's responsibility.

8.5.1 Abort-Session-Request C

8.5.2 Abort-Session-Answer C

8.6
Inferring Session
Termination from Origin-
State-Id

—

Session-related messages
and AVPs are defined
in provided dictionaries.
Their proper use is the
user's responsibility.

8.7 Auth-Request-Type AVP C

8.8 Session-Id AVP C

8.9
Authorization-Lifetime
AVP

C

8.10 Auth-Grace-Period AVP C

8.11 Auth-Session-State AVP C

8.12
Re-Auth-Request-Type
AVP

C

8.13 Session-Timeout AVP C

12 | Ericsson AB. All Rights Reserved.: Diameter

1.4 Standards Compliance

8.14 User-Name AVP C

8.15 Termination-Cause AVP C

8.16 Origin-State-Id AVP C

8.17 Session-Binding AVP C

8.18
Session-Server-Failover
AVP

C

8.19
Multi-Round-Time-Out
AVP

C

8.20 Class AVP C

8.21 Event-Timestamp AVP C

9 Accounting —

Accounting-related
messages and AVPs
are defined in provided
dictionaries. Their
proper use is the user's
responsibility.

9.1 Server Directed Model —

9.2 Protocol Messages —

9.3
Accounting Application
Extension and
Requirements

—

9.4 Fault Resilience —

9.5 Accounting Records —

9.6
Correlation of Accounting
Records

—

9.7
Accounting Command
Codes

—

9.7.1 Accounting-Request C

9.7.2 Accounting-Answer C

9.8 Accounting AVPs —

9.8.1
Accounting-Record-Type
AVP

C

9.8.2 Acct-Interim-Interval AVP C

Ericsson AB. All Rights Reserved.: Diameter | 13

1.4 Standards Compliance

9.8.3
Accounting-Record-
Number AVP

C

9.8.4 Acct-Session-Id AVP C

9.8.5
Acct-Multi-Session-Id
AVP

C

9.8.6
Accounting-Sub-Session-
Id AVP

C

9.8.7
Accounting-Realtime-
Required AVP

C

10 AVP Occurrence Tables —

10.1
Base Protocol Command
AVP Table

—

10.2 Accounting AVP Table —

11 IANA Considerations —

11.1 AVP Header —

11.1.1 AVP Codes —

11.1.2 AVP Flags —

11.2 Diameter Header —

11.2.1 Command Codes —

11.2.2 Command Flags

11.3 AVP Values —

11.3.1
Experimental-Result-Code
AVP

—

11.3.2 Result-Code AVP Values —

11.3.3
Accounting-Record-Type
AVP Values

—

11.3.4
Termination-Cause AVP
Values

—

11.3.5
Redirect-Host-Usage AVP
Values

—

11.3.6
Session-Server-Failover
AVP Values

—

14 | Ericsson AB. All Rights Reserved.: Diameter

1.4 Standards Compliance

11.3.7
Session-Binding AVP
Values

—

11.3.8
Disconnect-Cause AVP
Values

—

11.3.9
Auth-Request-Type AVP
Values

—

11.3.10
Auth-Session-State AVP
Values

—

11.3.11
Re-Auth-Request-Type
AVP Values

—

11.3.12
Accounting-Realtime-
Required AVP Values

—

11.3.13
Inband-Security-Id AVP
(code 299)

—

11.4
_diameters Service
Name and Port Number
Registration

—

11.5
SCTP Payload Protocol
Identifiers

—

11.6 S-NAPTR Parameters —

12
Diameter Protocol-Related
Configurable Parameters

—

13 Security Considerations PC

See 2.1.

IPsec is transparent to
diameter.

13.1
TLS/TCP and DTLS/
SCTP Usage

PC See 2.1.

13.2
Peer-to-Peer
Considerations

—

13.3 AVP Considerations —

14 References —

14.1 Normative References —

14.2 Informative References —

Table 4.1: RFC 6733 Compliance

Ericsson AB. All Rights Reserved.: Diameter | 15

1.4 Standards Compliance

2 Reference Manual

The Diameter application is a framework for building applications on top of the Diameter protocol.

16 | Ericsson AB. All Rights Reserved.: Diameter

diameter

diameter
Erlang module

This module provides the interface with which a user can implement a Diameter node that sends and receives messages
using the Diameter protocol as defined in RFC 6733.

Basic usage consists of creating a representation of a locally implemented Diameter node and its capabilities
with start_service/2, adding transport capability using add_transport/2 and sending Diameter requests and receiving
Diameter answers with call/4. Incoming Diameter requests are communicated as callbacks to a diameter_app(3)
callback modules as specified in the service configuration.

Beware the difference between diameter (not capitalized) and Diameter (capitalized). The former refers to the Erlang
application named diameter whose main api is defined here, the latter to Diameter protocol in the sense of RFC 6733.

The diameter application must be started before calling most functions in this module.

DATA TYPES
Address()
DiameterIdentity()
Grouped()
OctetString()
Time()
Unsigned32()
UTF8String()

Types corresponding to RFC 6733 AVP Data Formats. Defined in diameter_dict(4).

elapsed_time()

Elapsed time since a given time.

application_alias() = term()

Name identifying a Diameter application in service configuration. Passed to call/4 when sending requests defined
by the application.

application_module() = Mod | [Mod | ExtraArgs] | #diameter_callback{}

Mod = atom()
ExtraArgs = list()

Module implementing the callback interface defined in diameter_app(3), along with any extra arguments to be
appended to those documented. Note that extra arguments specific to an outgoing request can be specified to
call/4, in which case those are appended to any module-specific extra arguments.

Specifying a #diameter_callback{} record allows individual functions to be configured in place of the
usual diameter_app(3) callbacks. See diameter_callback.erl for details.

application_opt()

Options defining a Diameter application. Has one of the following types.

{alias, application_alias()}

Unique identifier for the application in the scope of the service. Defaults to the value of the dictionary
option.

Ericsson AB. All Rights Reserved.: Diameter | 17

diameter

{dictionary, atom()}

Name of an encode/decode module for the Diameter messages defined by the application. These modules
are generated from files whose format is documented in diameter_dict(4).

{module, application_module()}

Callback module in which messages of the Diameter application are handled. See diameter_app(3) for the
required interface and semantics.

{state, term()}

Initial callback state. The prevailing state is passed to some diameter_app(3) callbacks, which can then return
a new state. Defaults to the value of the alias option.

{call_mutates_state, true|false}

Whether or not the pick_peer/4 application callback can modify the application state. Defaults to false.

Warning:

pick_peer/4 callbacks are serialized when this option is true, which is a potential performance
bottleneck. A simple Diameter client may suffer no ill effects from using mutable state but a server or
agent that responds to incoming request should probably avoid it.

{answer_errors, callback|report|discard}

Manner in which incoming answer messages containing decode errors are handled.

If callback then errors result in a handle_answer/4 callback in the same fashion as for handle_request/3,
with errors communicated in the errors field of the #diameter_packet{} passed to the callback. If
report then an answer containing errors is discarded without a callback and a warning report is written to
the log. If discard then an answer containing errors is silently discarded without a callback. In both the
report and discard cases the return value for the call/4 invocation in question is as if a callback had
taken place and returned {error, failure}.

Defaults to discard.

{request_errors, answer_3xxx|answer|callback}

Manner in which incoming requests are handled when an error other than 3007
(DIAMETER_APPLICATION_UNSUPPORTED, which cannot be associated with an application callback
module), is detected.

If answer_3xxx then requests are answered without a handle_request/3 callback taking place. If answer
then even 5xxx errors are answered without a callback unless the connection in question has configured the
RFC 3588 common dictionary as noted below. If callback then a handle_request/3 callback always takes
place and its return value determines the answer sent to the peer, if any.

Defaults to answer_3xxx.

Note:

Answers sent by diameter set the E-bit in the Diameter Header. Since RFC 3588 allows only 3xxx
result codes in an answer-message, answer has the same semantics as answer_3xxx when
the transport in question has been configured with diameter_gen_base_rfc3588 as its common
dictionary. Since RFC 6733 allows both 3xxx and 5xxx result codes in an answer-message, a
transport with diameter_gen_base_rfc6733 as its common dictionary does distinguish between
answer_3xxx and answer.

18 | Ericsson AB. All Rights Reserved.: Diameter

diameter

call_opt()

Options available to call/4 when sending an outgoing Diameter request. Has one of the following types.

{extra, list()}

Extra arguments to append to callbacks to the callback module in question. These are appended to any extra
arguments configured on the callback itself. Multiple options append to the argument list.

{filter, peer_filter()}

Filter to apply to the list of available peers before passing it to the pick_peer/4 callback for the application
in question. Multiple options are equivalent a single all filter on the corresponding list of filters. Defaults
to none.

{peer, diameter_app:peer_ref()}

Peer to which the request in question can be sent, preempting the selection of peers having advertised support
for the Diameter application in question. Multiple options can be specified, and their order is respected in
the candidate lists passed to a subsequent pick_peer/4 callback.

{timeout, Unsigned32()}

Number of milliseconds after which the request should timeout. Defaults to 5000.

detach

Cause call/4 to return ok as soon as the request in question has been encoded, instead of waiting for and
returning the result from a subsequent handle_answer/4 or handle_error/4 callback.

An invalid option will cause call/4 to fail.

capability()

AVP values sent in outgoing CER or CEA messages during capabilities exchange. Can be configured both on a
service and a transport, values on the latter taking precedence. Has one of the following types.

{'Origin-Host', DiameterIdentity()}
{'Origin-Realm', DiameterIdentity()}
{'Host-IP-Address', [Address()]}

An address list is available to the start function of a transport module, which can return a new list for use
in the subsequent CER or CEA. Host-IP-Address need not be specified if the transport module in question
communicates an address list as described in diameter_transport(3)

{'Vendor-Id', Unsigned32()}
{'Product-Name', UTF8String()}
{'Origin-State-Id', Unsigned32()}

Origin-State-Id is optional but, if configured, will be included in outgoing CER/CEA and DWR/DWA
messages. Setting a value of 0 (zero) is equivalent to not setting a value, as documented in RFC 6733. The
function origin_state_id/0 can be used as to retrieve a value that is computed when the diameter application
is started.

{'Supported-Vendor-Id', [Unsigned32()]}
{'Auth-Application-Id', [Unsigned32()]}
{'Inband-Security-Id', [Unsigned32()]}

Inband-Security-Id defaults to the empty list, which is equivalent to a list containing only 0
(NO_INBAND_SECURITY). If 1 (TLS) is specified then TLS is selected if the CER/CEA received from
the peer offers it.

{'Acct-Application-Id', [Unsigned32()]}
{'Vendor-Specific-Application-Id', [Grouped()]}

Ericsson AB. All Rights Reserved.: Diameter | 19

diameter

{'Firmware-Revision', Unsigned32()}

Note that each tuple communicates one or more AVP values. It is an error to specify duplicate tuples.

eval() = {M,F,A} | fun() | [eval() | A]

An expression that can be evaluated as a function in the following sense.

eval([{M,F,A} | T]) ->
 apply(M, F, T ++ A);
eval([[F|A] | T]) ->
 eval([F | T ++ A]);
eval([F|A]) ->
 apply(F, A);
eval(F) ->
 eval([F]).

Applying an eval() E to an argument list A is meant in the sense of eval([E|A]).

Warning:

Beware of using fun expressions of the form fun Name/Arity in situations in which the fun is not short-
lived and code is to be upgraded at runtime since any processes retaining such a fun will have a reference
to old code. In particular, such a value is typically inappropriate in configuration passed to start_service/2 or
add_transport/2.

peer_filter() = term()

Filter passed to call/4 in order to select candidate peers for a pick_peer/4 callback. Has one of the following types.

none

Matches any peer. This is a convenience that provides a filter equivalent to no filter.

host

Matches only those peers whose Origin-Host has the same value as Destination-Host in the outgoing request
in question, or any peer if the request does not contain a Destination-Host AVP.

realm

Matches only those peers whose Origin-Realm has the same value as Destination-Realm in the outgoing
request in question, or any peer if the request does not contain a Destination-Realm AVP.

{host, any|DiameterIdentity()}

Matches only those peers whose Origin-Host has the specified value, or all peers if the atom any.

{realm, any|DiameterIdentity()}

Matches only those peers whose Origin-Realm has the specified value, or all peers if the atom any.

{eval, eval()}

Matches only those peers for which the specified eval() returns true when applied to the connection's
diameter_caps record. Any other return value or exception is equivalent to false.

{neg, peer_filter()}

Matches only those peers not matched by the specified filter.

{all, [peer_filter()]}

Matches only those peers matched by each filter in the specified list.

20 | Ericsson AB. All Rights Reserved.: Diameter

diameter

{any, [peer_filter()]}

Matches only those peers matched by at least one filter in the specified list. The resulting list will be in match
order, peers matching the first filter of the list sorting before those matched by the second, and so on.

{first, [peer_filter()]}

Like any, but stops at the first filter for which there are matches, which can be much more efficient when
there are many peers. For example, the following filter causes only peers best matching both the host and
realm filters to be presented.

{first, [{all, [host, realm]}, realm]}

An invalid filter is equivalent to {any,[]}, a filter that matches no peer.

Note:

The host and realm filters cause the Destination-Host and Destination-Realm AVPs to be extracted
from the outgoing request, assuming it to be a record- or list-valued diameter_codec:message(),
and assuming at most one of each AVP. If this is not the case then the {host|
realm, DiameterIdentity()} filters must be used to achieve the desired result. An empty
DiameterIdentity() (which should not be typical) matches all hosts/realms for the purposes of filtering.

Warning:

A host filter is not typically desirable when setting Destination-Host since it will remove peer agents from
the candidates list.

service_event() = #diameter_event{service = service_name(), info =
service_event_info()}

An event message sent to processes that have subscribed to these using subscribe/1.

service_event_info() = term()

The info field of a service_event() record. Can have one of the following types.

start
stop

The service is being started or stopped. No event precedes a start event. No event follows a stop event,
and this event implies the termination of all transport processes.

{up, Ref, Peer, Config, Pkt}
{up, Ref, Peer, Config}
{down, Ref, Peer, Config}

Ref = transport_ref()
Peer = diameter_app:peer()
Config = {connect|listen, [transport_opt()]}
Pkt = #diameter_packet{}

The RFC 3539 watchdog state machine has transitioned into (up) or out of (down) the OKAY state. If a
#diameter_packet{} is present in an up event then there has been a capabilities exchange on a newly
established transport connection and the record contains the received CER or CEA.

Note that a single up or down event for a given peer corresponds to multiple peer_up/3 or peer_down/3
callbacks, one for each of the Diameter applications negotiated during capabilities exchange. That is, the

Ericsson AB. All Rights Reserved.: Diameter | 21

diameter

event communicates connectivity with the peer as a whole while the callbacks communicate connectivity
with respect to individual Diameter applications.

{reconnect, Ref, Opts}

Ref = transport_ref()
Opts = [transport_opt()]

A connecting transport is attempting to establish/reestablish a transport connection with a peer following
connect_timer or watchdog_timer expiry.

{closed, Ref, Reason, Config}

Ref = transport_ref()
Config = {connect|listen, [transport_opt()]}

Capabilities exchange has failed. Reason can have one of the following types.

{'CER', Result, Caps, Pkt}

Result = ResultCode | {capabilities_cb, CB, ResultCode|discard}
Caps = #diameter_caps{}
Pkt = #diameter_packet{}
ResultCode = integer()
CB = eval()

An incoming CER has been answered with the indicated result code, or discarded. Caps contains pairs
of values, for the local node and remote peer respectively. Pkt contains the CER in question. In the
case of rejection by a capabilities callback, the tuple contains the rejecting callback.

{'CER', Caps, {ResultCode, Pkt}}

ResultCode = integer()
Caps = #diameter_caps{}
Pkt = #diameter_packet{}

An incoming CER contained errors and has been answered with the indicated result code. Caps
contains values for the local node only. Pkt contains the CER in question.

{'CER', timeout}

An expected CER was not received within capx_timeout of connection establishment.

{'CEA', Result, Caps, Pkt}

Result = ResultCode | atom() | {capabilities_cb, CB, ResultCode|discard}
Caps = #diameter_caps{}
Pkt = #diameter_packet{}
ResultCode = integer()

An incoming CEA has been rejected for the indicated reason. An integer-valued Result indicates the
result code sent by the peer. Caps contains pairs of values for the local node and remote peer. Pkt
contains the CEA in question. In the case of rejection by a capabilities callback, the tuple contains the
rejecting callback.

22 | Ericsson AB. All Rights Reserved.: Diameter

diameter

{'CEA', Caps, Pkt}

Caps = #diameter_caps{}
Pkt = #diameter_packet{}

An incoming CEA contained errors and has been rejected. Caps contains only values for the local
node. Pkt contains the CEA in question.

{'CEA', timeout}

An expected CEA was not received within capx_timeout of connection establishment.

{watchdog, Ref, PeerRef, {From, To}, Config}

Ref = transport_ref()
PeerRef = diameter_app:peer_ref()
From, To = initial | okay | suspect | down | reopen
Config = {connect|listen, [transport_opt()]}

An RFC 3539 watchdog state machine has changed state.

any()

For forward compatibility, a subscriber should be prepared to receive info fields of forms other than the
above.

service_name() = term()

Name of a service as passed to start_service/2 and with which the service is identified. There can be at most one
service with a given name on a given node. Note that erlang:make_ref/0 can be used to generate a service name
that is somewhat unique.

service_opt()

Option passed to start_service/2. Can be any capability() as well as the following.

{application, [application_opt()]}

A Diameter application supported by the service.

A service must configure one tuple for each Diameter application it intends to support. For an outgoing
request, the relevant application_alias() is passed to call/4, while for an incoming request the
application identifier in the message header determines the application, the identifier being specified in the
application's dictionary file.

Warning:

The capabilities advertised by a node must match its configured applications. In particular,
application configuration must be matched by corresponding capability() configuration, of *-
Application-Id AVPs in particular.

{decode_format, record | list | map | none}

The format of decoded messages and grouped AVPs in the msg field of diameter_packet records and value
field of diameter_avp records respectively. If record then a record whose definition is generated from the
dictionary file in question. If list or map then a [Name | Avps] pair where Avps is a list of AVP
name/values pairs or a map keyed on AVP names respectively. If none then the atom-value message name,
or undefined for a Grouped AVP. See also diameter_codec:message().

Defaults to record.

Ericsson AB. All Rights Reserved.: Diameter | 23

diameter

Note:

AVPs are decoded into a list of diameter_avp records in avps field of diameter_packet records
independently of decode_format.

{restrict_connections, false | node | nodes | [node()] | eval()}

The degree to which the service allows multiple transport connections to the same peer, as identified by its
Origin-Host at capabilities exchange.

If [node()] then a connection is rejected if another already exists on any of the specified nodes. Types
false, node, nodes and eval() are equivalent to [], [node()], [node()|nodes()] and the
evaluated value respectively, evaluation of each expression taking place whenever a new connection is to be
established. Note that false allows an unlimited number of connections to be established with the same
peer.

Multiple connections are independent and governed by their own peer and watchdog state machines.

Defaults to nodes.

{sequence, {H,N} | eval()}

A constant value H for the topmost 32-N bits of of 32-bit End-to-End and Hop-by-Hop Identifiers generated
by the service, either explicitly or as a return value of a function to be evaluated at start_service/2. In
particular, an identifier Id is mapped to a new identifier as follows.

(H bsl N) bor (Id band ((1 bsl N) - 1))

Note that RFC 6733 requires that End-to-End Identifiers remain unique for a period of at least 4 minutes
and that this and the call rate places a lower bound on appropriate values of N: at a rate of R requests per
second, an N-bit counter traverses all of its values in (1 bsl N) div (R*60) minutes, so the bound
is 4*R*60 =< 1 bsl N.

N must lie in the range 0..32 and H must be a non-negative integer less than 1 bsl (32-N).

Defaults to {0,32}.

Warning:

Multiple Erlang nodes implementing the same Diameter node should be configured with different
sequence masks to ensure that each node uses a unique range of End-to-End and Hop-by-Hop Identifiers
for outgoing requests.

{share_peers, boolean() | [node()] | eval()}

Nodes to which peer connections established on the local Erlang node are communicated. Shared peers
become available in the remote candidates list passed to pick_peer/4 callbacks on remote nodes whose
services are configured to use them: see use_shared_peers below.

If false then peers are not shared. If [node()] then peers are shared with the specified list of nodes. If
eval() then peers are shared with the nodes returned by the specified function, evaluated whenever a peer
connection becomes available or a remote service requests information about local connections. The value
true is equivalent to fun erlang:nodes/0. The value node() in a list is ignored, so a collection of
services can all be configured to share with the same list of nodes.

Defaults to false.

24 | Ericsson AB. All Rights Reserved.: Diameter

diameter

Note:

Peers are only shared with services of the same name for the purpose of sending outgoing requests. Since
the value of the application_opt() alias, passed to call/4, is the handle for identifying a peer as a suitable
candidate, services that share peers must use the same aliases to identify their supported applications.
They should typically also configure identical capabilities(), since by sharing peer connections they are
distributing the implementation of a single Diameter node across multiple Erlang nodes.

{strict_arities, boolean() | encode | decode}

Whether or not to require that the number of AVPs in a message or grouped AVP agree with those specified
in the dictionary in question when passing messages to diameter_app(3) callbacks. If true then mismatches
in an outgoing messages cause message encoding to fail, while mismatches in an incoming message are
reported as 5005/5009 errors in the errors field of the diameter_packet record passed to handle_request/3 or
handle_answer/4 callbacks. If false then neither error is enforced/detected. If encode or decode then
errors are only enforced/detected on outgoing or incoming messages respectively.

Defaults to true.

Note:

Disabling arity checks affects the form of messages at encode/decode. In particular, decoded AVPs are
represented as lists of values, regardless of the AVP's arity (ie. expected number in the message/AVP
grammar in question), and values are expected to be supplied as lists at encode. This differs from the
historic decode behaviour of representing AVPs of arity 1 as bare values, not wrapped in a list.

{string_decode, boolean()}

Whether or not to decode AVPs of type OctetString() and its derived types DiameterIdentity(),
DiameterURI(), IPFilterRule(), QoSFilterRule(), and UTF8String(). If true then AVPs of these types are
decoded to string(). If false then values are retained as binary().

Defaults to true.

Warning:

This option should be set to false since a sufficiently malicious peer can otherwise cause large amounts
of memory to be consumed when decoded Diameter messages are passed between processes. The default
value is for backwards compatibility.

{traffic_counters, boolean()}

Whether or not to count application-specific messages; those for which diameter_app(3) callbacks take place.
If false then only messages handled by diameter itself are counted: CER/CEA, DWR/DWA, DPR/DPA.

Defaults to true.

Note:

Disabling counters is a performance improvement, but means that the omitted counters are not returned
by service_info/2.

{use_shared_peers, boolean() | [node()] | eval()}

Nodes from which communicated peers are made available in the remote candidates list of pick_peer/4
callbacks.

Ericsson AB. All Rights Reserved.: Diameter | 25

diameter

If false then remote peers are not used. If [node()] then only peers from the specified list of nodes are
used. If eval() then only peers returned by the specified function are used, evaluated whenever a remote
service communicates information about an available peer connection. The value true is equivalent to fun
erlang:nodes/0. The value node() in a list is ignored.

Defaults to false.

Note:

A service that does not use shared peers will always pass the empty list as the second argument of
pick_peer/4 callbacks.

Warning:

Sending a request over a peer connection on a remote node is less efficient than sending it over a local
connection. It may be preferable to make use of the service_opt() restrict_connections and
maintain a dedicated connection on each node from which requests are sent.

{bins_info, boolean() | non_neg_integer()}

This option is only used when when the service_info/1 function is called. The point is that in a system under
heavy load, the heap can contain a lot of binaries, so counting them all (and there size's) can be costly.

If true then the binaries on the heap are counted. If false info about binaries on the heap is not collected.
If non_neg_integer() the binaries on the heap are counted, up to this point.

Defaults to true.

transport_opt()

Any transport option except applications, capabilities, transport_config, and
transport_module. Used as defaults for transport configuration, values passed to add_transport/2
overriding values configured on the service.

transport_opt()

Option passed to add_transport/2. Has one of the following types.

{applications, [application_alias()]}

Diameter applications to which the transport should be restricted. Defaults to all applications configured on
the service in question. Applications not configured on the service in question are ignored.

Warning:

The capabilities advertised by a node must match its configured applications. In particular, setting
applications on a transport typically implies having to set matching *-Application-Id AVPs in a
capabilities() tuple.

{avp_dictionaries, [module()]}

A list of alternate dictionary modules with which to encode/decode AVPs that are not defined by the
dictionary of the application in question. At decode, such AVPs are represented as diameter_avp records in
the 'AVP' field of a decoded message or Grouped AVP, the first alternate that succeeds in decoding the
AVP setting the record's value field. At encode, values in an 'AVP' list can be passed as AVP name/value
2-tuples, and it is an encode error for no alternate to define the AVP of such a tuple.

Defaults to the empty list.

26 | Ericsson AB. All Rights Reserved.: Diameter

diameter

Note:

The motivation for alternate dictionaries is RFC 7683, Diameter Overload Indication Conveyance
(DOIC), which defines AVPs to be piggybacked onto existing application messages rather than defining
an application of its own. The DOIC dictionary is provided by the diameter application, as module
diameter_gen_doic_rfc7683, but alternate dictionaries can be used to encode/decode any set of
AVPs not known to an application dictionary.

{capabilities, [capability()]}

AVPs used to construct outgoing CER/CEA messages. Values take precedence over any specified on the
service in question.

Specifying a capability as a transport option may be particularly appropriate for Inband-Security-Id, in case
TLS is desired over TCP as implemented by diameter_tcp(3).

{capabilities_cb, eval()}

Callback invoked upon reception of CER/CEA during capabilities exchange in order to ask whether or not
the connection should be accepted. Applied to the transport_ref() and #diameter_caps{} record
of the connection.

The return value can have one of the following types.

ok

Accept the connection.

integer()

Causes an incoming CER to be answered with the specified Result-Code.

discard

Causes an incoming CER to be discarded without CEA being sent.

unknown

Equivalent to returning 3010, DIAMETER_UNKNOWN_PEER.

Returning anything but ok or a 2xxx series result code causes the transport connection to be broken. Multiple
capabilities_cb options can be specified, in which case the corresponding callbacks are applied until either
all return ok or one does not.

{capx_timeout, Unsigned32()}

Number of milliseconds after which a transport process having an established transport connection will be
terminated if the expected capabilities exchange message (CER or CEA) is not received from the peer. For
a connecting transport, the timing of connection attempts is governed by connect_timer or watchdog_timer
expiry. For a listening transport, the peer determines the timing.

Defaults to 10000.

{connect_timer, Tc}

Tc = Unsigned32()

For a connecting transport, the RFC 6733 Tc timer, in milliseconds. This timer determines the frequency with
which a transport attempts to establish an initial connection with its peer following transport configuration.
Once an initial connection has been established, watchdog_timer determines the frequency of reconnection
attempts, as required by RFC 3539.

Ericsson AB. All Rights Reserved.: Diameter | 27

diameter

For a listening transport, the timer specifies the time after which a previously connected peer will be
forgotten: a connection after this time is regarded as an initial connection rather than reestablishment, causing
the RFC 3539 state machine to pass to state OKAY rather than REOPEN. Note that these semantics are
not governed by the RFC and that a listening transport's connect_timer should be greater than its peer's Tw
plus jitter.

Defaults to 30000 for a connecting transport and 60000 for a listening transport.

{disconnect_cb, eval()}

Callback invoked prior to terminating the transport process of a transport connection having watchdog
state OKAY. Applied to application|service|transport and the transport_ref() and
diameter_app:peer() in question: application indicates that the diameter application is being
stopped, service that the service in question is being stopped by stop_service/1, and transport that
the transport in question is being removed by remove_transport/2.

The return value can have one of the following types.

{dpr, [option()]}

Send Disconnect-Peer-Request to the peer, the transport process being terminated following reception
of Disconnect-Peer-Answer or timeout. An option() can be one of the following.

{cause, 0|rebooting|1|busy|2|goaway}

Disconnect-Cause to send, REBOOTING, BUSY and DO_NOT_WANT_TO_TALK_TO_YOU
respectively. Defaults to rebooting for Reason=service|application and goaway
for Reason=transport.

{timeout, Unsigned32()}

Number of milliseconds after which the transport process is terminated if DPA has not been
received. Defaults to the value of dpa_timeout.

dpr

Equivalent to {dpr, []}.

close

Terminate the transport process without Disconnect-Peer-Request being sent to the peer.

ignore

Equivalent to not having configured the callback.

Multiple disconnect_cb options can be specified, in which case the corresponding callbacks are applied until
one of them returns a value other than ignore. All callbacks returning ignore is equivalent to not having
configured them.

Defaults to a single callback returning dpr.

{dpa_timeout, Unsigned32()}

Number of milliseconds after which a transport connection is terminated following an outgoing DPR if DPA
is not received.

Defaults to 1000.

{dpr_timeout, Unsigned32()}

Number of milliseconds after which a transport connection is terminated following an incoming DPR if the
peer does not close the connection.

Defaults to 5000.

28 | Ericsson AB. All Rights Reserved.: Diameter

diameter

{incoming_maxlen, 0..16777215}

Bound on the expected size of incoming Diameter messages. Messages larger than the specified number of
bytes are discarded.

Defaults to 16777215, the maximum value of the 24-bit Message Length field in a Diameter Header.

{length_errors, exit|handle|discard}

How to deal with errors in the Message Length field of the Diameter Header in an incoming message. An
error in this context is that the length is not at least 20 bytes (the length of a Header), is not a multiple of
4 (a valid length) or is not the length of the message in question, as received over the transport interface
documented in diameter_transport(3).

If exit then the transport process in question exits. If handle then the message is processed as usual,
a resulting handle_request/3 or handle_answer/4 callback (if one takes place) indicating the 5015 error
(DIAMETER_INVALID_MESSAGE_LENGTH). If discard then the message in question is silently
discarded.

Defaults to exit.

Note:

The default value reflects the fact that a transport module for a stream-oriented transport like TCP may
not be able to recover from a message length error since such a transport must use the Message Length
header to divide the incoming byte stream into individual Diameter messages. An invalid length leaves
it with no reliable way to rediscover message boundaries, which may result in the failure of subsequent
messages. See diameter_tcp(3) for the behaviour of that module.

{pool_size, pos_integer()}

Number of transport processes to start. For a listening transport, determines the size of the pool of accepting
transport processes, a larger number being desirable for processing multiple concurrent peer connection
attempts. For a connecting transport, determines the number of connections to the peer in question that will
be attempted to be establshed: the service_opt(): restrict_connections should also be configured
on the service in question to allow multiple connections to the same peer.

{spawn_opt, [term()] | {M,F,A}}

An options list passed to erlang:spawn_opt/2 to spawn a handler process for an incoming Diameter request
on the local node, or an MFA that returns the pid of a handler process.

Options monitor and link are ignored in the list-valued case. An MFA is applied with an additional
term prepended to its argument list, and should return either the pid of the handler process that invokes
diameter_traffic:request/1 on the argument in order to process the request, or the atom
discard. The handler process need not be local, and diameter need not be started on the remote node, but
diameter and relevant application callbacks must be on the code path.

Defaults to the empty list.

{strict_capx, boolean()]}

Whether or not to enforce the RFC 6733 requirement that any message before capabilities exchange should
close the peer connection. If false then unexpected messages are discarded.

Defaults to true. Changing this results in non-standard behaviour, but can be useful in case peers are known
to be behave badly.

Ericsson AB. All Rights Reserved.: Diameter | 29

diameter

{strict_mbit, boolean()}

Whether or not to regard an AVP setting the M-bit as erroneous when the command grammar in
question does not explicitly allow the AVP. If true then such AVPs are regarded as 5001 errors,
DIAMETER_AVP_UNSUPPORTED. If false then the M-bit is ignored and policing it becomes the
receiver's responsibility.

Defaults to true.

Warning:

RFC 6733 is unclear about the semantics of the M-bit. One the one hand, the CCF specification in section
3.2 documents AVP in a command grammar as meaning any arbitrary AVP; on the other hand, 1.3.4
states that AVPs setting the M-bit cannot be added to an existing command: the modified command must
instead be placed in a new Diameter application.

The reason for the latter is presumably interoperability: allowing arbitrary AVPs setting the M-bit
in a command makes its interpretation implementation-dependent, since there's no guarantee that all
implementations will understand the same set of arbitrary AVPs in the context of a given command.
However, interpreting AVP in a command grammar as any AVP, regardless of M-bit, renders 1.3.4
meaningless, since the receiver can simply ignore any AVP it thinks isn't relevant, regardless of the
sender's intent.

Beware of confusing mandatory in the sense of the M-bit with mandatory in the sense of the command
grammar. The former is a semantic requirement: that the receiver understand the semantics of the AVP
in the context in question. The latter is a syntactic requirement: whether or not the AVP must occur in
the message in question.

{transport_config, term()}
{transport_config, term(), Unsigned32() | infinity}

Term passed as the third argument to the start/3 function of the relevant transport module in order to start
a transport process. Defaults to the empty list.

The 3-tuple form additionally specifies an interval, in milliseconds, after which a started transport process
should be terminated if it has not yet established a connection. For example, the following options on a
connecting transport request a connection with one peer over SCTP or another (typically the same) over TCP.

{transport_module, diameter_sctp}
{transport_config, SctpOpts, 5000}
{transport_module, diameter_tcp}
{transport_config, TcpOpts}

To listen on both SCTP and TCP, define one transport for each.

{transport_module, atom()}

Module implementing a transport process as defined in diameter_transport(3). Defaults to diameter_tcp.

Multiple transport_module and transport_config options are allowed. The order of these is significant
in this case (and only in this case), a transport_module being paired with the first transport_config
following it in the options list, or the default value for trailing modules. Transport starts will be attempted
with each of the modules in order until one establishes a connection within the corresponding timeout (see
below) or all fail.

{watchdog_config, [{okay|suspect, non_neg_integer()}]}

Configuration that alters the behaviour of the watchdog state machine. On key okay, the non-negative
number of answered DWR messages before transitioning from REOPEN to OKAY. On key suspect, the

30 | Ericsson AB. All Rights Reserved.: Diameter

diameter

number of watchdog timeouts before transitioning from OKAY to SUSPECT when DWR is unanswered,
or 0 to not make the transition.

Defaults to [{okay, 3}, {suspect, 1}]. Not specifying a key is equivalent to specifying the default
value for that key.

Warning:

The default value is as required by RFC 3539: changing it results in non-standard behaviour that should
only be used to simulate misbehaving nodes during test.

{watchdog_timer, TwInit}

TwInit = Unsigned32()
 | {M,F,A}

The RFC 3539 watchdog timer. An integer value is interpreted as the RFC's TwInit in milliseconds, a jitter
of ± 2 seconds being added at each rearming of the timer to compute the RFC's Tw. An MFA is expected
to return the RFC's Tw directly, with jitter applied, allowing the jitter calculation to be performed by the
callback.

An integer value must be at least 6000 as required by RFC 3539. Defaults to 30000.

Unrecognized options are silently ignored but are returned unmodified by service_info/2 and can be referred to
in predicate functions passed to remove_transport/2.

transport_ref() = reference()

Reference returned by add_transport/2 that identifies the configuration.

Exports

add_transport(SvcName, {connect|listen, [Opt]}) -> {ok, Ref} | {error,
Reason}
Types:

SvcName = service_name()

Opt = transport_opt()

Ref = transport_ref()

Reason = term()

Add transport capability to a service.

The service will start transport processes as required in order to establish a connection with the peer, either by
connecting to the peer (connect) or by accepting incoming connection requests (listen). A connecting transport
establishes transport connections with at most one peer, an listening transport potentially with many.

The diameter application takes responsibility for exchanging CER/CEA with the peer. Upon successful completion of
capabilities exchange the service calls each relevant application module's peer_up/3 callback after which the caller can
exchange Diameter messages with the peer over the transport. In addition to CER/CEA, the service takes responsibility
for the handling of DWR/DWA and required by RFC 3539, as well as for DPR/DPA.

The returned reference uniquely identifies the transport within the scope of the service. Note that the function returns
before a transport connection has been established.

Ericsson AB. All Rights Reserved.: Diameter | 31

diameter

Note:

It is not an error to add a transport to a service that has not yet been configured: a service can be started after
configuring its transports.

call(SvcName, App, Request, [Opt]) -> Answer | ok | {error, Reason}
Types:

SvcName = service_name()

App = application_alias()

Request = diameter_codec:message() | diameter_codec:packet()

Answer = term()

Opt = call_opt()

Send a Diameter request message.

App specifies the Diameter application in which the request is defined and callbacks to the corresponding callback
module will follow as described below and in diameter_app(3). Unless the detach option is specified, the call returns
either when an answer message is received from the peer or an error occurs. In the answer case, the return value is as
returned by a handle_answer/4 callback. In the error case, whether or not the error is returned directly by diameter or
from a handle_error/4 callback depends on whether or not the outgoing request is successfully encoded for transmission
to the peer, the cases being documented below.

If there are no suitable peers, or if pick_peer/4 rejects them by returning false, then {error,no_connection}
is returned. Otherwise pick_peer/4 is followed by a prepare_request/3 callback, the message is encoded and then sent.

There are several error cases which may prevent an answer from being received and passed to a handle_answer/4
callback:

• If the initial encode of the outgoing request fails, then the request process fails and {error,encode} is
returned.

• If the request is successfully encoded and sent but the answer times out then a handle_error/4 callback takes place
with Reason = timeout.

• If the request is successfully encoded and sent but the service in question is stopped before an answer is received
then a handle_error/4 callback takes place with Reason = cancel.

• If the transport connection with the peer goes down after the request has been sent but before an answer has been
received then an attempt is made to resend the request to an alternate peer. If no such peer is available, or if the
subsequent pick_peer/4 callback rejects the candidates, then a handle_error/4 callback takes place with Reason
= failover. If a peer is selected then a prepare_retransmit/3 callback takes place, after which the semantics
are the same as following an initial prepare_request/3 callback.

• If an encode error takes place during retransmission then the request process fails and {error,failure} is
returned.

• If an application callback made in processing the request fails (pick_peer, prepare_request, prepare_retransmit,
handle_answer or handle_error) then either {error,encode} or {error,failure} is returned depending
on whether or not there has been an attempt to send the request over the transport.

Note that {error,encode} is the only return value which guarantees that the request has not been sent over the
transport connection.

origin_state_id() -> Unsigned32()
Return a reasonable value for use as Origin-State-Id in outgoing messages.

32 | Ericsson AB. All Rights Reserved.: Diameter

diameter

The value returned is the number of seconds since 19680120T031408Z, the first value that can be encoded as a
Diameter Time(), at the time the diameter application was started.

remove_transport(SvcName, Pred) -> ok | {error, Reason}
Types:

SvcName = service_name()

Pred = Fun | MFA | transport_ref() | list() | true | false
Fun = fun((transport_ref(), connect|listen, list()) -> boolean())

 | fun((transport_ref(), list()) -> boolean())

 | fun((list()) -> boolean())

MFA = {atom(), atom(), list()}

Reason = term()

Remove previously added transports.

Pred determines which transports to remove. An arity-3-valued Pred removes all transports for which Pred(Ref,
Type, Opts) returns true, where Type and Opts are as passed to add_transport/2 and Ref is as returned by it.
The remaining forms are equivalent to an arity-3 fun as follows.

Pred = fun(transport_ref(), list()): fun(Ref, _, Opts) -> Pred(Ref, Opts) end
Pred = fun(list()): fun(_, _, Opts) -> Pred(Opts) end
Pred = transport_ref(): fun(Ref, _, _) -> Pred == Ref end
Pred = list(): fun(_, _, Opts) -> [] == Pred -- Opts end
Pred = true: fun(_, _, _) -> true end
Pred = false: fun(_, _, _) -> false end
Pred = {M,F,A}: fun(Ref, Type, Opts) -> apply(M, F, [Ref, Type, Opts | A]) end

Removing a transport causes the corresponding transport processes to be terminated. Whether or not a DPR message
is sent to a peer is controlled by value of disconnect_cb configured on the transport.

which_connections() -> [SvcConnections]
Types:

SvcConnections = {SvcName, [Connection]}

SvcName = string()

Connection = #{peer := PeerInfo, wd := WDInfo, peername := Address,
sockname := Address}

PeerInfo = #{pid := pid(), uptime := elapsed_time()}

WDInfo = #{ref := reference(), type := atom(), pid := pid(), state :=
diameter_service:wd_state(), uptime := elapsed_time()}

Address = {inet:ip_address(), inet:port_number()}

Return a list of all connections, grouped by the service they are associated with.

which_connections(SvcName) -> [Connection]
Types:

SvcName = string()

Connection = #{peer := PeerInfo, wd := WDInfo, peername := Address,
sockname := Address}

PeerInfo = #{pid := pid(), uptime := elapsed_time()}

Ericsson AB. All Rights Reserved.: Diameter | 33

diameter

WDInfo = #{ref := reference(), type := atom(), pid := pid(), state :=
diameter_service:wd_state(), uptime := elapsed_time()}

Address = {inet:ip_address(), inet:port_number()}

Return a list of connections associated with the service 'SvcName'.

which_transports() -> [Transport]
Types:

Transport = #{ref := reference(), type := atom(), service := SvcName}

SvcName = string()

Return a list of all transports.

which_transports(SvcName) -> [Transport]
Types:

SvcName = string()

Transport = #{ref := reference(), type := atom()}

Return a list of transports associated with the service 'SvcName'.

which_watchdogs() -> [Watchdog]
Types:

Watchdog = #{ref := reference(), type := atom(), pid := pid(), state :=
diameter_service:wd_state(), peer := boolean() | pid(), uptime :=
elapsed_time(), service := SvcName}

SvcName = string()

Return a list of all watchdogs.

which_watchdogs(SvcName) -> [Transport]
Types:

SvcName = string()

Watchdog = #{ref := reference(), type := atom(), pid := pid(), state :=
diameter_service:wd_state(), peer := boolean() | pid(), uptime :=
elapsed_time()

Return a list of watchdogs associated with the service 'SvcName'.

service_info(SvcName, Info) -> term()
Types:

SvcName = service_name()

Info = Item | [Info]

Item = atom()

Return information about a started service. Requesting info for an unknown service causes undefined to be returned.
Requesting a list of items causes a tagged list to be returned.

Item can be one of the following.

'Origin-Host'
'Origin-Realm'
'Vendor-Id'

34 | Ericsson AB. All Rights Reserved.: Diameter

diameter

'Product-Name'
'Origin-State-Id'
'Host-IP-Address'
'Supported-Vendor'
'Auth-Application-Id'
'Inband-Security-Id'
'Acct-Application-Id'
'Vendor-Specific-Application-Id'
'Firmware-Revision'

Return a capability value as configured with start_service/2.

applications

Return the list of applications as configured with start_service/2.

capabilities

Return a tagged list of all capabilities values as configured with start_service/2.

transport

Return a list containing one entry for each of the service's transport as configured with add_transport/2. Each entry
is a tagged list containing both configuration and information about established peer connections. An example
return value with for a client service with Origin-Host "client.example.com" configured with a single transport
connected to "server.example.com" might look as follows.

Ericsson AB. All Rights Reserved.: Diameter | 35

diameter

[[{ref,#Ref<0.0.0.93>},
 {type,connect},
 {options,[{transport_module,diameter_tcp},
 {transport_config,[{ip,{127,0,0,1}},
 {raddr,{127,0,0,1}},
 {rport,3868},
 {reuseaddr,true}]}]},
 {watchdog,{<0.66.0>,-576460736368485571,okay}},
 {peer,{<0.67.0>,-576460736357885808}},
 {apps,[{0,common}]},
 {caps,[{origin_host,{"client.example.com","server.example.com"}},
 {origin_realm,{"example.com","example.com"}},
 {host_ip_address,{[{127,0,0,1}],[{127,0,0,1}]}},
 {vendor_id,{0,193}},
 {product_name,{"Client","Server"}},
 {origin_state_id,{[],[]}},
 {supported_vendor_id,{[],[]}},
 {auth_application_id,{[0],[0]}},
 {inband_security_id,{[],[0]}},
 {acct_application_id,{[],[]}},
 {vendor_specific_application_id,{[],[]}},
 {firmware_revision,{[],[]}},
 {avp,{[],[]}}]},
 {port,[{owner,<0.69.0>},
 {module,diameter_tcp},
 {socket,{{127,0,0,1},48758}},
 {peer,{{127,0,0,1},3868}},
 {statistics,[{recv_oct,656},
 {recv_cnt,6},
 {recv_max,148},
 {recv_avg,109},
 {recv_dvi,19},
 {send_oct,836},
 {send_cnt,6},
 {send_max,184},
 {send_avg,139},
 {send_pend,0}]}]},
 {statistics,[{{{0,258,0},recv},3},
 {{{0,258,1},send},3},
 {{{0,258,0},recv,{'Result-Code',2001}},3},
 {{{0,257,0},recv},1},
 {{{0,257,1},send},1},
 {{{0,257,0},recv,{'Result-Code',2001}},1},
 {{{0,280,1},recv},2},
 {{{0,280,0},send},2},
 {{{0,280,0},send,{'Result-Code',2001}},2}]}]]

Here ref is a transport_ref() and options the corresponding transport_opt() list passed to
add_transport/2. The watchdog entry shows the state of a connection's RFC 3539 watchdog state machine. The
peer entry identifies the diameter_app:peer_ref() for which there will have been peer_up/3 callbacks
for the Diameter applications identified by the apps entry, common being the application_alias().
The caps entry identifies the capabilities sent by the local node and received from the peer during capabilities
exchange. The port entry displays socket-level information about the transport connection. The statistics
entry presents Diameter-level counters, an entry like {{{0,280,1},recv},2} saying that the client has
received 2 DWR messages: {0,280,1} = {Application_Id, Command_Code, R_Flag}.

Note that watchdog, peer, apps, caps and port entries depend on connectivity with the peer and may
not be present. Note also that the statistics entry presents values accumulated during the lifetime of the
transport configuration.

36 | Ericsson AB. All Rights Reserved.: Diameter

diameter

A listening transport presents its information slightly differently since there may be multiple accepted connections
for the same transport_ref(). The transport info returned by a server with a single client connection
might look as follows.

[[{ref,#Ref<0.0.0.61>},
 {type,listen},
 {options,[{transport_module,diameter_tcp},
 {transport_config,[{reuseaddr,true},
 {ip,{127,0,0,1}},
 {port,3868}]}]},
 {accept,[[{watchdog,{<0.56.0>,-576460739249514012,okay}},
 {peer,{<0.58.0>,-576460638229179167}},
 {apps,[{0,common}]},
 {caps,[{origin_host,{"server.example.com","client.example.com"}},
 {origin_realm,{"example.com","example.com"}},
 {host_ip_address,{[{127,0,0,1}],[{127,0,0,1}]}},
 {vendor_id,{193,0}},
 {product_name,{"Server","Client"}},
 {origin_state_id,{[],[]}},
 {supported_vendor_id,{[],[]}},
 {auth_application_id,{[0],[0]}},
 {inband_security_id,{[],[]}},
 {acct_application_id,{[],[]}},
 {vendor_specific_application_id,{[],[]}},
 {firmware_revision,{[],[]}},
 {avp,{[],[]}}]},
 {port,[{owner,<0.62.0>},
 {module,diameter_tcp},
 {socket,{{127,0,0,1},3868}},
 {peer,{{127,0,0,1},48758}},
 {statistics,[{recv_oct,1576},
 {recv_cnt,16},
 {recv_max,184},
 {recv_avg,98},
 {recv_dvi,26},
 {send_oct,1396},
 {send_cnt,16},
 {send_max,148},
 {send_avg,87},
 {send_pend,0}]}]}],
 [{watchdog,{<0.72.0>,-576460638229717546,initial}}]]},
 {statistics,[{{{0,280,0},recv},7},
 {{{0,280,1},send},7},
 {{{0,280,0},recv,{'Result-Code',2001}},7},
 {{{0,258,1},recv},3},
 {{{0,258,0},send},3},
 {{{0,258,0},send,{'Result-Code',2001}},3},
 {{{0,280,1},recv},5},
 {{{0,280,0},send},5},
 {{{0,280,0},send,{'Result-Code',2001}},5},
 {{{0,257,1},recv},1},
 {{{0,257,0},send},1},
 {{{0,257,0},send,{'Result-Code',2001}},1}]}]]

The information presented here is as in the connect case except that the client connections are grouped under
an accept tuple.

Whether or not the transport_opt() pool_size has been configured affects the format of the listing in the
case of a connecting transport, since a value greater than 1 implies multiple transport processes for the same
transport_ref(), as in the listening case. The format in this case is similar to the listening case, with a
pool tuple in place of an accept tuple.

Ericsson AB. All Rights Reserved.: Diameter | 37

diameter

connections

Return a list containing one entry for every established transport connection whose watchdog state machine is
not in the down state. This is a flat view of transport info which lists only active connections and for which
Diameter-level statistics are accumulated only for the lifetime of the transport connection. A return value for the
server above might look as follows.

[[{ref,#Ref<0.0.0.61>},
 {type,accept},
 {options,[{transport_module,diameter_tcp},
 {transport_config,[{reuseaddr,true},
 {ip,{127,0,0,1}},
 {port,3868}]}]},
 {watchdog,{<0.56.0>,-576460739249514012,okay}},
 {peer,{<0.58.0>,-576460638229179167}},
 {apps,[{0,common}]},
 {caps,[{origin_host,{"server.example.com","client.example.com"}},
 {origin_realm,{"example.com","example.com"}},
 {host_ip_address,{[{127,0,0,1}],[{127,0,0,1}]}},
 {vendor_id,{193,0}},
 {product_name,{"Server","Client"}},
 {origin_state_id,{[],[]}},
 {supported_vendor_id,{[],[]}},
 {auth_application_id,{[0],[0]}},
 {inband_security_id,{[],[]}},
 {acct_application_id,{[],[]}},
 {vendor_specific_application_id,{[],[]}},
 {firmware_revision,{[],[]}},
 {avp,{[],[]}}]},
 {port,[{owner,<0.62.0>},
 {module,diameter_tcp},
 {socket,{{127,0,0,1},3868}},
 {peer,{{127,0,0,1},48758}},
 {statistics,[{recv_oct,10124},
 {recv_cnt,132},
 {recv_max,184},
 {recv_avg,76},
 {recv_dvi,9},
 {send_oct,10016},
 {send_cnt,132},
 {send_max,148},
 {send_avg,75},
 {send_pend,0}]}]},
 {statistics,[{{{0,280,0},recv},62},
 {{{0,280,1},send},62},
 {{{0,280,0},recv,{'Result-Code',2001}},62},
 {{{0,258,1},recv},3},
 {{{0,258,0},send},3},
 {{{0,258,0},send,{'Result-Code',2001}},3},
 {{{0,280,1},recv},66},
 {{{0,280,0},send},66},
 {{{0,280,0},send,{'Result-Code',2001}},66},
 {{{0,257,1},recv},1},
 {{{0,257,0},send},1},
 {{{0,257,0},send,{'Result-Code',2001}},1}]}]]

Note that there may be multiple entries with the same ref, in contrast to transport info.

statistics

Return a {{Counter, Ref}, non_neg_integer()} list of counter values. Ref can be either a
transport_ref() or a diameter_app:peer_ref(). Entries for the latter are folded into corresponding

38 | Ericsson AB. All Rights Reserved.: Diameter

diameter

entries for the former as peer connections go down. Entries for both are removed at remove_transport/2. The
Diameter-level statistics returned by transport and connections info are based upon these entries.

diameter_app:peer_ref()

Return transport configuration associated with a single peer, as passed to add_transport/2. The returned list is
empty if the peer is unknown. Otherwise it contains the ref, type and options tuples as in transport and
connections info above. For example:

[{ref,#Ref<0.0.0.61>},
 {type,accept},
 {options,[{transport_module,diameter_tcp},
 {transport_config,[{reuseaddr,true},
 {ip,{127,0,0,1}},
 {port,3868}]}]}]

services() -> [SvcName]
Types:

SvcName = service_name()

Return the list of started services.

session_id(Ident) -> OctetString()
Types:

Ident = DiameterIdentity()

Return a value for a Session-Id AVP.

The value has the form required by section 8.8 of RFC 6733. Ident should be the Origin-Host of the peer from which
the message containing the returned value will be sent.

start() -> ok | {error, Reason}
Start the diameter application.

The diameter application must be started before starting a service. In a production system this is typically accomplished
by a boot file, not by calling start/0 explicitly.

start_service(SvcName, Options) -> ok | {error, Reason}
Types:

SvcName = service_name()

Options = [service_opt()]

Reason = term()

Start a diameter service.

A service defines a locally-implemented Diameter node, specifying the capabilities to be advertised during capabilities
exchange. Transports are added to a service using add_transport/2.

Note:

A transport can both override its service's capabilities and restrict its supported Diameter applications so "service
= Diameter node as identified by Origin-Host" is not necessarily the case.

Ericsson AB. All Rights Reserved.: Diameter | 39

diameter

stop() -> ok | {error, Reason}
Stop the diameter application.

stop_service(SvcName) -> ok | {error, Reason}
Types:

SvcName = service_name()

Reason = term()

Stop a diameter service.

Stopping a service causes all associated transport connections to be broken. A DPR message will be sent as in the
case of remove_transport/2.

Note:

Stopping a service does not remove any associated transports: remove_transport/2 must be called to remove
transport configuration.

subscribe(SvcName) -> true
Types:

SvcName = service_name()

Subscribe to service_event() messages from a service.

It is not an error to subscribe to events from a service that does not yet exist. Doing so before adding transports is
required to guarantee the reception of all transport-related events.

unsubscribe(SvcName) -> true
Types:

SvcName = service_name()

Unsubscribe to event messages from a service.

SEE ALSO
diameter_app(3), diameter_transport(3), diameter_dict(4)

40 | Ericsson AB. All Rights Reserved.: Diameter

diameterc

diameterc
Command

The diameterc utility is used to compile a diameter dictionary file into Erlang source. The resulting source implements
the interface diameter required to encode and decode the dictionary's messages and AVPs.

The module diameter_make(3) provides an alternate compilation interface.

USAGE
diameterc [<options>] <file>

Compile a single dictionary file to Erlang source. Valid options are as follows.

-i <dir>

Prepend the specified directory to the code path. Use to point at beam files compiled from inherited
dictionaries, @inherits in a dictionary file creating a beam dependency, not an erl/hrl dependency.

Multiple -i options can be specified.

-o <dir>

Write generated source to the specified directory. Defaults to the current working directory.

-E
-H

Suppress erl and hrl generation, respectively.

--name <name>
--prefix <prefix>

Transform the input dictionary before compilation, setting @name or @prefix to the specified string.

--inherits <arg>

Transform the input dictionary before compilation, appending @inherits of the specified string.

Two forms of --inherits have special meaning:

--inherits -
--inherits Prev/Mod

The first has the effect of clearing any previous inherits, the second of replacing a previous inherits of Prev
to one of Mod. This allows the semantics of the input dictionary to be changed without modifying the file
itself.

Multiple --inherits options can be specified.

EXIT STATUS
Returns 0 on success, non-zero on failure.

SEE ALSO
diameter_make(3), diameter_dict(4)

Ericsson AB. All Rights Reserved.: Diameter | 41

diameter_app

diameter_app
Erlang module

A diameter service as started by diameter:start_service/2 configures one of more Diameter applications, each of whose
configuration specifies a callback that handles messages specific to the application. The messages and AVPs of the
application are defined in a dictionary file whose format is documented in diameter_dict(4) while the callback module
is documented here. The callback module implements the Diameter application-specific functionality of a service.

A callback module must export all of the functions documented below. The functions themselves are of three distinct
flavours:

• peer_up/3 and peer_down/3 signal the attainment or loss of connectivity with a Diameter peer.

• pick_peer/4, prepare_request/3, prepare_retransmit/3, handle_answer/4 and handle_error/4 are (or may be) called
as a consequence of a call to diameter:call/4 to send an outgoing Diameter request message.

• handle_request/3 is called in response to an incoming Diameter request message.

The arities for the the callback functions here assume no extra arguments. All functions will also be passed any extra
arguments configured with the callback module itself when calling diameter:start_service/2 and, for the call-specific
callbacks, any extra arguments passed to diameter:call/4.

DATA TYPES
capabilities() = #diameter_caps{}

A record containing the identities of the local Diameter node and the remote Diameter peer having an established
transport connection, as well as the capabilities as determined by capabilities exchange. Each field of the record
is a 2-tuple consisting of values for the (local) host and (remote) peer. Optional or possibly multiple values are
encoded as lists of values, mandatory values as the bare value.

message() = diameter_codec:message()

The representation of a Diameter message as passed to diameter:call/4 or returned from a handle_request/3
callback.

packet() = diameter_codec:packet()

A container for incoming and outgoing Diameter messages that's passed through encode/decode and transport.
Fields should not be set in return values except as documented.

peer_ref() = term()

A term identifying a transport connection with a Diameter peer.

peer() = {peer_ref(), capabilities()}

A tuple representing a Diameter peer connection.

state() = term()

The state maintained by the application callback functions peer_up/3, peer_down/3 and (optionally) pick_peer/4.
The initial state is configured in the call to diameter:start_service/2 that configures the application on a service.
Callback functions returning a state are evaluated in a common service-specific process while those not returning
state are evaluated in a request-specific process.

42 | Ericsson AB. All Rights Reserved.: Diameter

diameter_app

Exports

Mod:peer_up(SvcName, Peer, State) -> NewState
Types:

SvcName = diameter:service_name()

Peer = peer()

State = NewState = state()

Invoked to signal the availability of a peer connection on the local Erlang node. In particular, capabilities exchange
with the peer has indicated support for the application in question, the RFC 3539 watchdog state machine for the
connection has reached state OKAY and Diameter messages can be both sent and received.

Note:

A watchdog state machine can reach state OKAY from state SUSPECT without a new capabilities exchange taking
place. A new transport connection (and capabilities exchange) results in a new peer_ref().

Note:

There is no requirement that a callback return before incoming requests are received: handle_request/3 callbacks
must be handled independently of peer_up/3 and peer_down/3.

Mod:peer_down(SvcName, Peer, State) -> NewState
Types:

SvcName = diameter:service_name()

Peer = peer()

State = NewState = state()

Invoked to signal that a peer connection on the local Erlang node is no longer available following a previous call to
peer_up/3. In particular, that the RFC 3539 watchdog state machine for the connection has left state OKAY and the
peer will no longer be a candidate in pick_peer/4 callbacks.

Mod:pick_peer(LocalCandidates, RemoteCandidates, SvcName, State) -> Selection
| false
Types:

LocalCandidates = RemoteCandidates = [peer()]

SvcName = diameter:service_name()

State = NewState = state()

Selection = {ok, Peer} | {Peer, NewState}

Peer = peer() | false

Invoked as a consequence of a call to diameter:call/4 to select a destination peer for an outgoing request. The return
value indicates the selected peer.

The candidate lists contain only those peers that have advertised support for the Diameter application in question
during capabilities exchange, that have not be excluded by a filter option in the call to diameter:call/4 and whose
watchdog state machine is in the OKAY state. The order of the elements is unspecified except that any peers whose
Origin-Host and Origin-Realm matches that of the outgoing request (in the sense of a {filter, {all, [host,
realm]}} option to diameter:call/4) will be placed at the head of the list. LocalCandidates contains peers

Ericsson AB. All Rights Reserved.: Diameter | 43

diameter_app

whose transport process resides on the local Erlang node while RemoteCandidates contains peers that have been
communicated from other nodes by services of the same name.

A callback that returns a peer() will be followed by a prepare_request/3 callback and, if the latter indicates that the
request should be sent, by either handle_answer/4 or handle_error/4 depending on whether or not an answer message
is received from the peer. If the transport becomes unavailable after prepare_request/3 then a new pick_peer/4 callback
may take place to failover to an alternate peer, after which prepare_retransmit/3 takes the place of prepare_request/3
in resending the request. There is no guarantee that a pick_peer/4 callback to select an alternate peer will be followed
by any additional callbacks since a retransmission to an alternate peer is abandoned if an answer is received from a
previously selected peer.

The return values false and {false, State} (that is, NewState = State) are equivalent, as are {ok,
Peer} and {Peer, State}.

Note:

The diameter:service_opt() use_shared_peers determines whether or not a service uses peers shared from
other nodes. If not then RemoteCandidates is the empty list.

Warning:

The return value {Peer, NewState} is only allowed if the Diameter application in question was configured
with the diameter:application_opt() {call_mutates_state, true}. Otherwise, the State argument is
always the initial value as configured on the application, not any subsequent value returned by a peer_up/3 or
peer_down/3 callback.

Mod:prepare_request(Packet, SvcName, Peer) -> Action
Types:

Packet = packet()

SvcName = diameter:service_name()

Peer = peer()

Action = Send | Discard | {eval_packet, Action, PostF}

Send = {send, packet() | message()}

Discard = {discard, Reason} | discard

PostF = diameter:eval()}

Invoked to return a request for encoding and transport. Allows the sender to use the selected peer's capabilities to
modify the outgoing request. Many implementations may simply want to return {send, Packet}

A returned packet() should set the request to be encoded in its msg field and can set the transport_data field
in order to pass information to the transport process. Extra arguments passed to diameter:call/4 can be used to
communicate transport (or any other) data to the callback.

A returned packet() can set the header field to a #diameter_header{} to specify values that should be preserved
in the outgoing request, values otherwise being those in the header record contained in Packet. A returned length,
cmd_code or application_id is ignored.

A returned PostF will be evaluated on any encoded #diameter_packet{} prior to transmission, the bin field
containing the encoded binary. The return value is ignored.

Returning {discard, Reason} causes the request to be aborted and the diameter:call/4 for which the callback
has taken place to return {error, Reason}. Returning discard is equivalent to returning {discard,
discarded}.

44 | Ericsson AB. All Rights Reserved.: Diameter

diameter_app

Mod:prepare_retransmit(Packet, SvcName, Peer) -> Action
Types:

Packet = packet()

SvcName = diameter:service_name()

Peer = peer()

Action = Send | Discard | {eval_packet, Action, PostF}

Send = {send, packet() | message()}

Discard = {discard, Reason} | discard

PostF = diameter:eval()}

Invoked to return a request for encoding and retransmission. Has the same role as prepare_request/3 in the case
that a peer connection is lost an an alternate peer selected but the argument packet() is as returned by the initial
prepare_request/3.

Returning {discard, Reason} causes the request to be aborted and a handle_error/4 callback to take place with
Reason as initial argument. Returning discard is equivalent to returning {discard, discarded}.

Mod:handle_answer(Packet, Request, SvcName, Peer) -> Result
Types:

Packet = packet()

Request = message()

SvcName = diameter:service_name()

Peer = peer()

Result = term()

Invoked when an answer message is received from a peer. The return value is returned from diameter:call/4 unless
the detach option was specified.

The decoded answer record and undecoded binary are in the msg and bin fields of the argument packet() respectively.
Request is the outgoing request message as was returned from prepare_request/3 or prepare_retransmit/3.

For any given call to diameter:call/4 there is at most one handle_answer/4 callback: any duplicate answer (due to
retransmission or otherwise) is discarded. Similarly, only one of handle_answer/4 or handle_error/4 is called.

By default, an incoming answer message that cannot be successfully decoded causes the request process to fail, causing
diameter:call/4 to return {error, failure} unless the detach option was specified. In particular, there is
no handle_error/4 callback in this case. The diameter:application_opt() answer_errors can be set to change this
behaviour.

Mod:handle_error(Reason, Request, SvcName, Peer) -> Result
Types:

Reason = timeout | failover | term()

Request = message()

SvcName = diameter:service_name()

Peer = peer()

Result = term()

Invoked when an error occurs before an answer message is received in response to an outgoing request. The return
value is returned from diameter:call/4 unless the detach option was specified.

Ericsson AB. All Rights Reserved.: Diameter | 45

diameter_app

Reason timeout indicates that an answer message has not been received within the time specified with the
corresponding diameter:call_opt(). Reason failover indicates that the transport connection to the peer to which the
request has been sent has become unavailable and that not alternate peer was not selected.

Mod:handle_request(Packet, SvcName, Peer) -> Action
Types:

Packet = packet()

SvcName = term()

Peer = peer()

Action = Reply | {relay, [Opt]} | discard | {eval|eval_packet, Action,
PostF}

Reply = {reply, packet() | message()} | {answer_message, 3000..3999|
5000..5999} | {protocol_error, 3000..3999}

Opt = diameter:call_opt()

PostF = diameter:eval()

Invoked when a request message is received from a peer. The application in which the callback takes place (that is, the
callback module as configured with diameter:start_service/2) is determined by the Application Identifier in the header
of the incoming request message, the selected module being the one whose corresponding dictionary declares itself as
defining either the application in question or the Relay application.

The argument packet() has the following signature.

#diameter_packet{header = #diameter_header{},
 avps = [#diameter_avp{}],
 msg = record() | undefined,
 errors = [Unsigned32() | {Unsigned32(), #diameter_avp{}}],
 bin = binary(),
 transport_data = term()}

The msg field will be undefined in case the request has been received in the relay application. Otherwise it contains
the record representing the request as outlined in diameter_dict(4).

The errors field specifies any results codes identifying errors found while decoding the request. This is used to set
Result-Code and/or Failed-AVP in a returned answer unless the callback returns a #diameter_packet{} whose
errors field is set to either a non-empty list of its own, in which case this list is used instead, or the atom false
to disable any setting of Result-Code and Failed-AVP. Note that the errors detected by diameter are of the 3xxx and
5xxx series, Protocol Errors and Permanent Failures respectively. The errors list is empty if the request has been
received in the relay application.

The transport_data field contains an arbitrary term passed into diameter from the transport module in question,
or the atom undefined if the transport specified no data. The term is preserved if a message() is returned but must
be set explicitly in a returned packet().

The semantics of each of the possible return values are as follows.

{reply, packet() | message()}

Send the specified answer message to the peer. In the case of a packet(), the message to be sent must be set in
the msg field and the header field can be set to a #diameter_header{} to specify values that should be
preserved in the outgoing answer, appropriate values otherwise being set by diameter.

{answer_message, 3000..3999|5000..5999}

Send an answer message to the peer containing the specified Result-Code. Equivalent to

46 | Ericsson AB. All Rights Reserved.: Diameter

diameter_app

{reply, ['answer-message' | Avps]

where Avps sets the Origin-Host, Origin-Realm, the specified Result-Code and (if the request contained one)
Session-Id AVPs, and possibly Failed-AVP as described below.

Returning a value other than 3xxx or 5xxx will cause the request process in question to fail, as will returning
a 5xxx value if the peer connection in question has been configured with the RFC 3588 common dictionary
diameter_gen_base_rfc3588. (Since RFC 3588 only allows 3xxx values in an answer-message.)

When returning 5xxx, Failed-AVP will be populated with the AVP of the first matching Result-Code/AVP pair
in the errors field of the argument packet(), if found. If this is not appropriate then an answer-message should
be constructed explicitly and returned in a reply tuple instead.

{relay, Opts}

Relay a request to another peer in the role of a Diameter relay agent. If a routing loop is detected then the request
is answered with 3005 (DIAMETER_LOOP_DETECTED). Otherwise a Route-Record AVP (containing the
sending peer's Origin-Host) is added to the request and pick_peer/4 and subsequent callbacks take place just as
if diameter:call/4 had been called explicitly. The End-to-End Identifier of the incoming request is preserved in
the header of the relayed request.

The returned Opts should not specify detach. A subsequent handle_answer/4 callback for the relayed request
must return its first argument, the packet() containing the answer message. Note that the extra option can
be specified to supply arguments that can distinguish the relay case from others if so desired. Any other
return value (for example, from a handle_error/4 callback) causes the request to be answered with 3002
(DIAMETER_UNABLE_TO_DELIVER).

discard

Discard the request. No answer message is sent to the peer.

{eval, Action, PostF}

Handle the request as if Action has been returned and then evaluate PostF in the request process. The return
value is ignored.

{eval_packet, Action, PostF}

Like eval but evaluate PostF on any encoded #diameter_packet{} prior to transmission, the bin field
containing the encoded binary. The return value is ignored.

{protocol_error, 3000..3999}

Equivalent to {answer_message, 3000..3999}.

Note:

Requests containing errors may be answered by diameter, without a callback taking place, depending on the value
of the diameter:application_opt() request_errors.

Ericsson AB. All Rights Reserved.: Diameter | 47

diameter_codec

diameter_codec
Erlang module

Incoming Diameter messages are decoded from binary() before being communicated to diameter_app(3) callbacks.
Similarly, outgoing Diameter messages are encoded into binary() before being passed to the appropriate
diameter_transport(3) module for transmission. The functions documented here implement the default encode/decode.

Warning:

The diameter user does not need to call functions here explicitly when sending and receiving messages using
diameter:call/4 and the callback interface documented in diameter_app(3): diameter itself provides encode/decode
as a consequence of configuration passed to diameter:start_service/2, and the results may differ from those returned
by the functions documented here, depending on configuration.

The header() and packet() records below are defined in diameter.hrl, which can be included as follows.

-include_lib("diameter/include/diameter.hrl").

Application-specific records are defined in the hrl files resulting from dictionary file compilation.

DATA TYPES
uint8() = 0..255
uint24() = 0..16777215
uint32() = 0..4294967295

8-bit, 24-bit and 32-bit integers occurring in Diameter and AVP headers.

avp() = #diameter_avp{}

The application-neutral representation of an AVP. Primarily intended for use by relay applications that need to
handle arbitrary Diameter applications. A service implementing a specific Diameter application (for which it
configures a dictionary) can manipulate values of type message() instead.

Fields have the following types.

code = uint32()
is_mandatory = boolean()
need_encryption = boolean()
vendor_id = uint32() | undefined

Values in the AVP header, corresponding to AVP Code, the M flag, P flags and Vendor-ID respectively. A
Vendor-ID other than undefined implies a set V flag.

data = iolist()

The data bytes of the AVP.

name = atom()

The name of the AVP as defined in the dictionary file in question, or undefined if the AVP is unknown
to the dictionary file in question.

48 | Ericsson AB. All Rights Reserved.: Diameter

diameter_codec

value = term()

The decoded value of an AVP. Will be undefined on decode if the data bytes could not be decoded,
the AVP is unknown, or if the decode format is none. The type of a decoded value is as document in
diameter_dict(4).

type = atom()

The type of the AVP as specified in the dictionary file in question (or one it inherits). Possible types
are undefined and the Diameter types: OctetString, Integer32, Integer64, Unsigned32,
Unsigned64, Float32, Float64, Grouped, Enumerated, Address, Time, UTF8String,
DiameterIdentity, DiameterURI, IPFilterRule and QoSFilterRule.

dictionary() = module()

The name of a generated dictionary module as generated by diameterc(1) or diameter_make:codec/2. The
interface provided by a dictionary module is an implementation detail that may change.

header() = #diameter_header{}

The record representation of the Diameter header. Values in a packet() returned by decode/2 are as extracted from
the incoming message. Values set in an packet() passed to encode/2 are preserved in the encoded binary(), with
the exception of length, cmd_code and application_id, all of which are determined by the dictionary()
in question.

Note:

It is not necessary to set header fields explicitly in outgoing messages as diameter itself will set appropriate
values. Setting inappropriate values can be useful for test purposes.

Fields have the following types.

version = uint8()
length = uint24()
cmd_code = uint24()
application_id = uint32()
hop_by_hop_id = uint32()
end_to_end_id = uint32()

Values of the Version, Message Length, Command-Code, Application-ID, Hop-by-Hop Identifier and End-
to-End Identifier fields of the Diameter header.

is_request = boolean()
is_proxiable = boolean()
is_error = boolean()
is_retransmitted = boolean()

Values corresponding to the R(equest), P(roxiable), E(rror) and T(Potentially re-transmitted message) flags
of the Diameter header.

message() = record() | maybe_improper_list()

The representation of a Diameter message as passed to diameter:call/4 or returned from a handle_request/3
callback. The record representation is as outlined in diameter_dict(4): a message as defined in a dictionary file
is encoded as a record with one field for each component AVP. Equivalently, a message can also be encoded as
a list whose head is the atom-valued message name (as specified in the relevant dictionary file) and whose tail
is either a list of AVP name/values pairs or a map with values keyed on AVP names. The format at decode is
determined by diameter:service_opt() decode_format. Any of the formats is accepted at encode.

Ericsson AB. All Rights Reserved.: Diameter | 49

diameter_codec

Another list-valued representation allows a message to be specified as a list whose head is a header() and whose
tail is an avp() list. This representation is used by diameter itself when relaying requests as directed by the return
value of a handle_request/3 callback. It differs from the other two in that it bypasses the checks for messages that
do not agree with their definitions in the dictionary in question: messages are sent exactly as specified.

packet() = #diameter_packet{}

A container for incoming and outgoing Diameter messages. Fields have the following types.

header = header() | undefined

The Diameter header of the message. Can be (and typically should be) undefined for an outgoing message
in a non-relay application, in which case diameter provides appropriate values.

avps = [avp()] | undefined

The AVPs of the message. Ignored for an outgoing message if the msg field is set to a value other than
undefined.

msg = message() | undefined

The incoming/outgoing message. For an incoming message, a term corresponding to the configured decode
format if the message can be decoded in a non-relay application, undefined otherwise. For an outgoing
message, setting a [header() | avp()] list is equivalent to setting the header and avps fields to
the corresponding values.

Warning:

A value in the msg field does not imply an absence of decode errors. The errors field should also
be examined.

bin = binary()

The incoming message prior to encode or the outgoing message after encode.

errors = [5000..5999 | {5000..5999, avp()}]

Errors detected at decode of an incoming message, as identified by a corresponding 5xxx series Result-
Code (Permanent Failures). For an incoming request, these should be used to formulate an appropriate
answer as documented for the handle_request/3 callback in diameter_app(3). For an incoming answer, the
diameter:application_opt() answer_errors determines the behaviour.

transport_data = term()

An arbitrary term of meaning only to the transport process in question, as documented in
diameter_transport(3).

Exports

decode(Mod, Bin) -> Pkt
Types:

Mod = dictionary()

Bin = binary()

Pkt = packet()

Decode a Diameter message.

50 | Ericsson AB. All Rights Reserved.: Diameter

diameter_codec

encode(Mod, Msg) -> Pkt
Types:

Mod = dictionary()

Msg = message() | packet()

Pkt = packet()

Encode a Diameter message.

SEE ALSO
diameterc(1), diameter_app(3), diameter_dict(4), diameter_make(3)

Ericsson AB. All Rights Reserved.: Diameter | 51

diameter_dict

diameter_dict
Name

A diameter service, as configured with diameter:start_service/2, specifies one or more supported Diameter
applications. Each Diameter application specifies a dictionary module that knows how to encode and decode its
messages and AVPs. The dictionary module is in turn generated from a file that defines these messages and AVPs. The
format of such a file is defined in FILE FORMAT below. Users add support for their specific applications by creating
dictionary files, compiling them to Erlang modules using either diameterc(1) or diameter_make(3) and configuring
the resulting dictionaries modules on a service.

Dictionary module generation also results in a hrl file that defines records for the messages and Grouped AVPs
defined by the dictionary, these records being what a user of the diameter application sends and receives, modulo other
possible formats as discussed in diameter_app(3). These records and the underlying Erlang data types corresponding
to Diameter data formats are discussed in MESSAGE RECORDS and DATA TYPES respectively. The generated hrl
also contains macro definitions for the possible values of AVPs of type Enumerated.

The diameter application includes five dictionary modules corresponding to applications defined in section 2.4
of RFC 6733: diameter_gen_base_rfc3588 and diameter_gen_base_rfc6733 for the Diameter
Common Messages application with application identifier 0, diameter_gen_accounting (for RFC 3588) and
diameter_gen_acct_rfc6733 for the Diameter Base Accounting application with application identifier 3 and
diameter_gen_relay the Relay application with application identifier 0xFFFFFFFF.

The Common Message and Relay applications are the only applications that diameter itself has any specific knowledge
of. The Common Message application is used for messages that diameter itself handles: CER/CEA, DWR/DWA and
DPR/DPA. The Relay application is given special treatment with regard to encode/decode since the messages and
AVPs it handles are not specifically defined.

FILE FORMAT
A dictionary file consists of distinct sections. Each section starts with a tag followed by zero or more arguments
and ends at the the start of the next section or end of file. Tags consist of an ampersand character followed by
a keyword and are separated from their arguments by whitespace. Whitespace separates individual tokens but is
otherwise insignificant.

The tags, their arguments and the contents of each corresponding section are as follows. Each section can occur multiple
times unless otherwise specified. The order in which sections are specified is unimportant.

@id Number

Defines the integer Number as the Diameter Application Id of the application in question. Can occur at most once
and is required if the dictionary defines @messages. The section has empty content.

The Application Id is set in the Diameter Header of outgoing messages of the application, and the value in the
header of an incoming message is used to identify the relevant dictionary module.

Example:

@id 16777231

@name Mod

Defines the name of the generated dictionary module. Can occur at most once and defaults to the name of the
dictionary file minus any extension. The section has empty content.

Note that a dictionary module should have a unique name so as not collide with existing modules in the system.

Example:

52 | Ericsson AB. All Rights Reserved.: Diameter

diameter_dict

@name etsi_e2

@prefix Name

Defines Name as the prefix to be added to record and constant names (followed by a '_' character) in the
generated dictionary module and hrl. Can occur at most once. The section has empty content.

A prefix is optional but can be be used to disambiguate between record and constant names resulting from similarly
named messages and AVPs in different Diameter applications.

Example:

@prefix etsi_e2

@vendor Number Name

Defines the integer Number as the the default Vendor-Id of AVPs for which the V flag is set. Name documents
the owner of the application but is otherwise unused. Can occur at most once and is required if an AVP sets the
V flag and is not otherwise assigned a Vendor-Id. The section has empty content.

Example:

@vendor 13019 ETSI

@avp_vendor_id Number

Defines the integer Number as the Vendor-Id of the AVPs listed in the section content, overriding the @vendor
default. The section content consists of AVP names.

Example:

@avp_vendor_id 2937

WWW-Auth
Domain-Index
Region-Set

@inherits Mod

Defines the name of a dictionary module containing AVP definitions that should be imported into the current
dictionary. The section content consists of the names of those AVPs whose definitions should be imported from
the dictionary, an empty list causing all to be imported. Any listed AVPs must not be defined in the current
dictionary and it is an error to inherit the same AVP from more than one dictionary.

Note that an inherited AVP that sets the V flag takes its Vendor-Id from either @avp_vendor_id in the
inheriting dictionary or @vendor in the inherited dictionary. In particular, @avp_vendor_id in the inherited
dictionary is ignored. Inheriting from a dictionary that specifies the required @vendor is equivalent to using
@avp_vendor_id with a copy of the dictionary's definitions but the former makes for easier reuse.

All dictionaries should typically inherit RFC 6733 AVPs from diameter_gen_base_rfc6733.

Example:

@inherits diameter_gen_base_rfc6733

@avp_types

Defines the name, code, type and flags of individual AVPs. The section consists of definitions of the form

Ericsson AB. All Rights Reserved.: Diameter | 53

diameter_dict

Name Code Type Flags

where Code is the integer AVP code, Type identifies an AVP Data Format as defined in section DATA TYPES
below, and Flags is a string of V, M and P characters indicating the flags to be set on an outgoing AVP or a single
'-' (minus) character if none are to be set.

Example:

@avp_types

Location-Information 350 Grouped MV
Requested-Information 353 Enumerated V

Warning:

The P flag has been deprecated by RFC 6733.

@custom_types Mod

Specifies AVPs for which module Mod provides encode/decode functions. The section contents consists of AVP
names. For each such name, Mod:Name(encode|decode, Type, Data, Opts) is expected to provide
encode/decode for values of the AVP, where Name is the name of the AVP, Type is it's type as declared in the
@avp_types section of the dictionary, Data is the value to encode/decode, and Opts is a term that is passed
through encode/decode.

Example:

@custom_types rfc4005_avps

Framed-IP-Address

@codecs Mod

Like @custom_types but requires the specified module to export Mod:Type(encode|decode, Name,
Data, Opts) rather than Mod:Name(encode|decode, Type, Data, Opts).

Example:

@codecs rfc4005_avps

Framed-IP-Address

@messages

Defines the messages of the application. The section content consists of definitions of the form specified in section
3.2 of RFC 6733, "Command Code Format Specification".

54 | Ericsson AB. All Rights Reserved.: Diameter

diameter_dict

@messages

RTR ::= < Diameter Header: 287, REQ, PXY >
 < Session-Id >
 { Auth-Application-Id }
 { Auth-Session-State }
 { Origin-Host }
 { Origin-Realm }
 { Destination-Host }
 { SIP-Deregistration-Reason }
 [Destination-Realm]
 [User-Name]
 * [SIP-AOR]
 * [Proxy-Info]
 * [Route-Record]
 * [AVP]

RTA ::= < Diameter Header: 287, PXY >
 < Session-Id >
 { Auth-Application-Id }
 { Result-Code }
 { Auth-Session-State }
 { Origin-Host }
 { Origin-Realm }
 [Authorization-Lifetime]
 [Auth-Grace-Period]
 [Redirect-Host]
 [Redirect-Host-Usage]
 [Redirect-Max-Cache-Time]
 * [Proxy-Info]
 * [Route-Record]
 * [AVP]

@grouped

Defines the contents of the AVPs of the application having type Grouped. The section content consists of
definitions of the form specified in section 4.4 of RFC 6733, "Grouped AVP Values".

Example:

@grouped

SIP-Deregistration-Reason ::= < AVP Header: 383 >
 { SIP-Reason-Code }
 [SIP-Reason-Info]
 * [AVP]

Specifying a Vendor-Id in the definition of a grouped AVP is equivalent to specifying it with
@avp_vendor_id.

@enum Name

Defines values of AVP Name having type Enumerated. Section content consists of names and corresponding
integer values. Integer values can be prefixed with 0x to be interpreted as hexadecimal.

Note that the AVP in question can be defined in an inherited dictionary in order to introduce additional values
to an enumeration otherwise defined in another dictionary.

Example:

Ericsson AB. All Rights Reserved.: Diameter | 55

diameter_dict

@enum SIP-Reason-Code

PERMANENT_TERMINATION 0
NEW_SIP_SERVER_ASSIGNED 1
SIP_SERVER_CHANGE 2
REMOVE_SIP_SERVER 3

@end

Causes parsing of the dictionary to terminate: any remaining content is ignored.

Comments can be included in a dictionary file using semicolon: characters from a semicolon to end of line are ignored.

MESSAGE RECORDS
The hrl generated from a dictionary specification defines records for the messages and grouped AVPs defined in
@messages and @grouped sections. For each message or grouped AVP definition, a record is defined whose name
is the message or AVP name, prefixed with any dictionary prefix defined with @prefix, and whose fields are the
names of the AVPs contained in the message or grouped AVP in the order specified in the definition in question. For
example, the grouped AVP

SIP-Deregistration-Reason ::= < AVP Header: 383 >
 { SIP-Reason-Code }
 [SIP-Reason-Info]
 * [AVP]

will result in the following record definition given an empty prefix.

-record('SIP-Deregistration-Reason', {'SIP-Reason-Code',
 'SIP-Reason-Info',
 'AVP'}).

The values encoded in the fields of generated records depends on the type and number of times the AVP can occur.
In particular, an AVP which is specified as occurring exactly once is encoded as a value of the AVP's type while an
AVP with any other specification is encoded as a list of values of the AVP's type. The AVP's type is as specified in
the AVP definition, the RFC 6733 types being described below.

DATA TYPES
The data formats defined in sections 4.2 ("Basic AVP Data Formats") and 4.3 ("Derived AVP Data Formats") of RFC
6733 are encoded as values of the types defined here. Values are passed to diameter:call/4 in a request record when
sending a request, returned in a resulting answer record and passed to a handle_request/3 callback upon reception of
an incoming request.

In cases in which there is a choice between string() and binary() types for OctetString() and derived types, the
representation is determined by the value of diameter:service_opt() string_decode.

Basic AVP Data Formats

OctetString() = string() | binary()
Integer32() = -2147483647..2147483647
Integer64() = -9223372036854775807..9223372036854775807
Unsigned32() = 0..4294967295
Unsigned64() = 0..18446744073709551615
Float32() = '-infinity' | float() | infinity
Float64() = '-infinity' | float() | infinity
Grouped() = record()

56 | Ericsson AB. All Rights Reserved.: Diameter

diameter_dict

On encode, an OctetString() can be specified as an iolist(), excessively large floats (in absolute value) are equivalent
to infinity or '-infinity' and excessively large integers result in encode failure. The records for grouped
AVPs are as discussed in the previous section.

Derived AVP Data Formats

Address() = OctetString()
 | tuple()

On encode, an OctetString() IPv4 address is parsed in the usual x.x.x.x format while an IPv6 address is parsed in any
of the formats specified by section 2.2 of RFC 2373, "Text Representation of Addresses". An IPv4 tuple() has length
4 and contains values of type 0..255. An IPv6 tuple() has length 8 and contains values of type 0..65535. The tuple
representation is used on decode.

Time() = {date(), time()}

where

 date() = {Year, Month, Day}
 time() = {Hour, Minute, Second}

 Year = integer()
 Month = 1..12
 Day = 1..31
 Hour = 0..23
 Minute = 0..59
 Second = 0..59

Additionally, values that can be encoded are limited by way of their encoding as four octets as required by RFC 6733
with the required extension from RFC 2030. In particular, only values between {{1968,1,20},{3,14,8}} and
{{2104,2,26},{9,42,23}} (both inclusive) can be encoded.

UTF8String() = [integer()] | binary()

List elements are the UTF-8 encodings of the individual characters in the string. Invalid codepoints will result in
encode/decode failure. On encode, a UTF8String() can be specified as a binary, or as a nested list of binaries and
codepoints.

DiameterIdentity() = OctetString()

A value must have length at least 1.

DiameterURI() = OctetString()
 | #diameter_URI{type = Type,
 fqdn = FQDN,
 port = Port,
 transport = Transport,
 protocol = Protocol}

where

 Type = aaa | aaas
 FQDN = OctetString()
 Port = integer()
 Transport = sctp | tcp
 Protocol = diameter | radius | 'tacacs+'

Ericsson AB. All Rights Reserved.: Diameter | 57

diameter_dict

On encode, fields port, transport and protocol default to 3868, sctp and diameter respectively. The grammar of an
OctetString-valued DiameterURI() is as specified in section 4.3 of RFC 6733. The record representation is used on
decode.

Enumerated() = Integer32()

On encode, values can be specified using the macros defined in a dictionary's hrl file.

IPFilterRule() = OctetString()
QoSFilterRule() = OctetString()

Values of these types are not currently parsed by diameter.

SEE ALSO
diameterc(1), diameter(3), diameter_app(3), diameter_codec(3), diameter_make(3)

58 | Ericsson AB. All Rights Reserved.: Diameter

diameter_make

diameter_make
Erlang module

The function codec/2 is used to compile a diameter dictionary file into Erlang source. The resulting source implements
the interface diameter requires to encode and decode the dictionary's messages and AVPs.

The utility diameterc(1) provides an alternate compilation interface.

Exports

codec(File :: iolist() | binary(), [Opt]) -> ok | {ok, [Out]} | {error,
Reason}
Compile a single dictionary file. The input File can be either a path or a literal dictionary, the occurrence of newline
(ascii NL) or carriage return (ascii CR) identifying the latter. Opt determines the format of the results and whether
they are written to file or returned, and can have the following types.

parse | forms | erl | hrl

Specifies an output format. Whether the output is returned or written to file depends on whether or not option
return is specified. When written to file, the resulting file(s) will have extensions .D, .F, .erl, and .hrl
respectively, basenames defaulting to dictionary if the input dictionary is literal and does not specify @name.
When returned, results are in the order of the corresponding format options. Format options default to erl and
hrl (in this order) if unspecified.

The parse format is an internal representation that can be passed to flatten/1 and format/1, while the forms
format can be passed to compile:forms/2. The erl and hrl formats are returned as iolists.

{include, string()}

Prepend the specified directory to the code path. Use to point at beam files compiled from inherited dictionaries,
@inherits in a dictionary file creating a beam dependency, not an erl/hrl dependency.

Multiple include options can be specified.

{outdir, string()}

Write generated source to the specified directory. Defaults to the current working directory. Has no effect if
option return is specified.

return

Return results in a {ok, [Out]} tuple instead of writing to file and returning ok.

{name|prefix, string()}

Transform the input dictionary before compilation, setting @name or @prefix to the specified string.

{inherits, string()}

Transform the input dictionary before compilation, appending @inherits of the specified string.

Two forms have special meaning:

{inherits, "-"}
{inherits, "Prev/Mod"}

The first has the effect of clearing any previous inherits, the second of replacing a previous inherits of Prev to
one of Mod. This allows the semantics of the input dictionary to be changed without modifying the file itself.

Ericsson AB. All Rights Reserved.: Diameter | 59

diameter_make

Multiple inherits options can be specified.

Note that a dictionary's @name, together with the outdir option, determine the output paths when the return
option is not specified. The @name of a literal input dictionary defaults to dictionary.

A returned error reason can be converted into a readable string using format_error/1.

format(Parsed) -> iolist()
Turns a parsed dictionary, as returned by codec/2, back into the dictionary format.

flatten(Parsed) -> term()
Reconstitute a parsed dictionary, as returned by codec/2, without using @inherits. That is, construct an equivalent
dictionary in which all AVP's are definined in the dictionary itself. The return value is also a parsed dictionary.

format_error(Reason) -> string()
Turn an error reason returned by codec/2 into a readable string.

BUGS
Unrecognized options are silently ignored.

SEE ALSO
diameterc(1), diameter_dict(4)

60 | Ericsson AB. All Rights Reserved.: Diameter

diameter_transport

diameter_transport
Erlang module

A module specified as a transport_module to diameter:add_transport/2 must implement the interface
documented here. The interface consists of a function with which diameter starts a transport process and a message
interface with which the transport process communicates with the process that starts it (aka its parent).

DATA TYPES
message() = binary() | diameter_codec:packet()

A Diameter message as passed over the transport interface.

For an inbound message from a transport process, a diameter_codec:packet() must contain the received message
in its bin field. In the case of an inbound request, any value set in the transport_data field will passed back
to the transport module in the corresponding answer message, unless the sender supplies another value.

For an outbound message to a transport process, a diameter_codec:packet() has a value other than undefined
in its transport_data field and has the binary() to send in its bin field.

Exports

Mod:start({Type, Ref}, Svc, Config) -> {ok, Pid} | {ok, Pid, LAddrs} |
{error, Reason}
Types:

Type = connect | accept

Ref = diameter:transport_ref()

Svc = #diameter_service{}

Config = term()

Pid = pid()

LAddrs = [inet:ip_address()]

Reason = term()

Start a transport process. Called by diameter as a consequence of a call to diameter:add_transport/2 in order to establish
or accept a transport connection respectively. A transport process maintains a connection with a single remote peer.

Type indicates whether the transport process in question is being started for a connecting (Type=connect) or
listening (Type=accept) transport. In the latter case, transport processes are started as required to accept connections
from multiple peers.

Ref is the value that was returned from the call to diameter:add_transport/2 that has lead to starting of a transport
process.

Svc contains capabilities passed to diameter:start_service/2 and diameter:add_transport/2, values passed to the latter
overriding those passed to the former.

Config is as passed in transport_config tuple in the diameter:transport_opt() list passed to
diameter:add_transport/2.

The start function should use the Host-IP-Address list in Svc and/or Config to select and return an appropriate
list of local IP addresses. In the connecting case, the local address list can instead be communicated in a connected
message (see MESSAGES below) following connection establishment. In either case, the local address list is used

Ericsson AB. All Rights Reserved.: Diameter | 61

diameter_transport

to populate Host-IP-Address AVPs in outgoing capabilities exchange messages if Host-IP-Address is
unspecified.

A transport process must implement the message interface documented below. It should retain the pid of its parent,
monitor the parent and terminate if it dies. It should not link to the parent. It should exit if its transport connection
with its peer is lost.

MESSAGES
All messages sent over the transport interface are of the form {diameter, term()}.

A transport process can expect messages of the following types from its parent.

{diameter, {send, message() | false}}

An outbound Diameter message. The atom false can only be received when request acknowledgements have
been requests: see the ack message below.

{diameter, {close, Pid}}

A request to terminate the transport process after having received DPA in response to DPR. The transport process
should exit. Pid is the pid() of the parent process.

{diameter, {tls, Ref, Type, Bool}}

Indication of whether or not capabilities exchange has selected inband security using TLS. Ref is a reference()
that must be included in the {diameter, {tls, Ref}} reply message to the transport's parent process (see
below). Type is either connect or accept depending on whether the process has been started for a connecting
or listening transport respectively. Bool is a boolean() indicating whether or not the transport connection should
be upgraded to TLS.

If TLS is requested (Bool=true) then a connecting process should initiate a TLS handshake with the peer and
an accepting process should prepare to accept a handshake. A successful handshake should be followed by a
{diameter, {tls, Ref}} message to the parent process. A failed handshake should cause the process
to exit.

This message is only sent to a transport process over whose Inband-Security-Id configuration has
indicated support for TLS.

A transport process should send messages of the following types to its parent.

{diameter, {self(), connected}}

Inform the parent that the transport process with Type=accept has established a connection with the peer. Not
sent if the transport process has Type=connect.

{diameter, {self(), connected, Remote}}
{diameter, {self(), connected, Remote, [LocalAddr]}}

Inform the parent that the transport process with Type=connect has established a connection with a peer. Not
sent if the transport process has Type=accept. Remote is an arbitrary term that uniquely identifies the remote
endpoint to which the transport has connected. A LocalAddr list has the same semantics as one returned from
start/3.

{diameter, ack}

Request acknowledgements of unanswered requests. A transport process should send this once before passing
incoming Diameter messages into diameter. As a result, every Diameter request passed into diameter with a recv
message (below) will be answered with a send message (above), either a message() for the transport process to
send or the atom false if the request has been discarded or otherwise not answered.

This is to allow a transport process to keep count of the number of incoming request messages that have not
yet been answered or discarded, to allow it to regulate the amount of incoming traffic. Both diameter_tcp and

62 | Ericsson AB. All Rights Reserved.: Diameter

diameter_transport

diameter_sctp request acknowledgements when a message_cb is configured, turning send/recv message into
callbacks that can be used to regulate traffic.

{diameter, {recv, message()}}

An inbound Diameter message.

{diameter, {tls, Ref}}

Acknowledgment of a successful TLS handshake. Ref is the reference() received in the {diameter, {tls,
Ref, Type, Bool}} message in response to which the reply is sent. A transport must exit if a handshake
is not successful.

SEE ALSO
diameter_tcp(3), diameter_sctp(3)

Ericsson AB. All Rights Reserved.: Diameter | 63

diameter_tcp

diameter_tcp
Erlang module

This module implements diameter transport over TCP using gen_tcp(3). It can be specified as the value
of a transport_module option to diameter:add_transport/2 and implements the behaviour documented in
diameter_transport(3). TLS security is supported, either as an upgrade following capabilities exchange or at connection
establishment.

Note that the ssl application is required for TLS and must be started before configuring TLS capability on diameter
transports.

Exports

start({Type, Ref}, Svc, [Opt]) -> {ok, Pid} | {ok, Pid, [LAddr]} | {error,
Reason}
Types:

Type = connect | accept

Ref = diameter:transport_ref()

Svc = #diameter_service{}

Opt = OwnOpt | SslOpt | TcpOpt

Pid = pid()

LAddr = inet:ip_address()

Reason = term()

OwnOpt = {raddr, inet:ip_address()} | {rport, integer()} | {accept,
Match} | {port, integer()} | {fragment_timer, infinity | 0..16#FFFFFFFF} |
{message_cb, diameter:eval()} | {sender, boolean()}

SslOpt = {ssl_options, true | list()}

TcpOpt = term()

Match = inet:ip_address() | string() | [Match]

The start function required by diameter_transport(3).

Options raddr and rport specify the remote address and port for a connecting transport and are not valid for a
listening transport.

Option accept specifies remote addresses for a listening transport and is not valid for a connecting transport. If
specified, a remote address that does not match one of the specified addresses causes the connection to be aborted.
Multiple accept options can be specified. A string-valued Match that does not parse as an address is interpreted
as a regular expression.

Option ssl_options must be specified for a transport that should support TLS: a value of true results in a TLS
handshake immediately upon connection establishment while list() specifies options to be passed to ssl:connect/2
or ssl:handshake/2 after capabilities exchange if TLS is negotiated.

Option fragment_timer specifies the timeout, in milliseconds, of a timer used to flush messages from the incoming
byte stream even if the number of bytes indicated in the Message Length field of its Diameter Header have not yet
been accumulated: such a message is received over the transport interface after two successive timeouts without the
reception of additional bytes. Defaults to 1000.

64 | Ericsson AB. All Rights Reserved.: Diameter

diameter_tcp

Option sender specifies whether or not to use a dedicated process for sending outgoing messages, which avoids
the possibility of send blocking reception. Defaults to false. If set to true then a message_cb that avoids the
possibility of messages being queued in the sender process without bound should be configured.

Option message_cb specifies a callback that is invoked on incoming and outgoing messages, that can be used to
implement flow control. It is applied to two arguments: an atom indicating the reason for the callback (send, recv,
or ack after a completed send), and the message in question (binary() on recv, binary() or diameter_packet record
on send or ack, or false on ack when an incoming request has been discarded). It should return a list of actions
and a new callback as tail; eg. [fun cb/3, State]. Valid actions are the atoms send or recv, to cause a
following message-valued action to be sent/received, a message to send/receive (binary() or diameter_packet record),
or a boolean() to enable/disable reading on the socket. More than one send/recv/message sequence can be returned
from the same callback, and an initial send/recv can be omitted if the same as the value passed as the callback's
first argument. Reading is initially enabled, and returning false does not imply there cannot be subsequent recv
callbacks since messages may already have been read. An empty tail is equivalent to the prevailing callback. Defaults
to a callback equivalent to fun(ack, _) -> []; (_, Msg) -> [Msg] end.

Remaining options are any accepted by ssl:connect/3 or gen_tcp:connect/3 for a connecting transport, or ssl:listen/2 or
gen_tcp:listen/2 for a listening transport, depending on whether or not {ssl_options, true} has been specified.
Options binary, packet and active cannot be specified. Also, option port can be specified for a listening
transport to specify the local listening port, the default being the standardized 3868. Note that the option ip specifies
the local address.

An ssl_options list must be specified if and only if the transport in question has set Inband-Security-Id to
1 (TLS), as specified to either diameter:start_service/2 or diameter:add_transport/2, so that the transport process will
receive notification of whether or not to commence with a TLS handshake following capabilities exchange. Failing
to specify an options list on a TLS-capable transport for which TLS is negotiated will cause TLS handshake to fail.
Failing to specify TLS capability when ssl_options has been specified will cause the transport process to wait
for a notification that will not be forthcoming, which will eventually cause the RFC 3539 watchdog to take down
the connection.

The first element of a non-empty Host-IP-Address list in Svc provides the local IP address if an ip option is
not specified. The local address is either returned fromstart/3 or passed in a connected message over the transport
interface.

SEE ALSO
diameter(3), diameter_transport(3), gen_tcp(3), inet(3), ssl(3)

Ericsson AB. All Rights Reserved.: Diameter | 65

diameter_sctp

diameter_sctp
Erlang module

This module implements diameter transport over SCTP using gen_sctp(3). It can be specified as the value
of a transport_module option to diameter:add_transport/2 and implements the behaviour documented in
diameter_transport(3).

Exports

start({Type, Ref}, Svc, [Opt]) -> {ok, Pid, [LAddr]} | {error, Reason}
Types:

Type = connect | accept

Ref = diameter:transport_ref()

Svc = #diameter_service{}

Opt = OwnOpt | SctpOpt

Pid = pid()

LAddr = inet:ip_address()

Reason = term()

OwnOpt = {raddr, inet:ip_address()} | {rport, integer()} | {accept, Match}
| {unordered, boolean() | pos_integer()} | {packet, boolean() | raw} |
{message_cb, diameter:eval()} | {sender, boolean()}

SctpOpt = term()

Match = inet:ip_address() | string() | [Match]

The start function required by diameter_transport(3).

Options raddr and rport specify the remote address and port for a connecting transport and not valid for a listening
transport: the former is required while latter defaults to 3868 if unspecified. Multiple raddr options can be specified,
in which case the connecting transport in question attempts each in sequence until an association is established.

Option accept specifies remote addresses for a listening transport and is not valid for a connecting transport. If
specified, a remote address that does not match one of the specified addresses causes the association to be aborted.
Multiple accept options can be specified. A string-valued Match that does not parse as an address is interpreted
as a regular expression.

Option unordered specifies whether or not to use unordered delivery, integer N being equivalent to N =< OS,
where OS is the number of outbound streams negotiated on the association in question. Regardless of configuration,
sending is ordered on stream 0 until reception of a second incoming message, to ensure that a peer receives capabilities
exchange messages before any other. Defaults to false.

Option packet determines how/if an incoming message is packaged into a diameter_packet record. If false then
messages are received as binary(). If true then as a record with the binary() message in the bin field and a {stream,
Id} tuple in the transport_data field, where Id is the identifier of the inbound stream the message was received
on. If raw then as a record with the received ancillary sctp_sndrcvinfo record in the transport_data field.
Defaults to true.

Options message_cb and sender have semantics identical to those documented in diameter_tcp(3), but with the
message argument to a recv callback being as directed by the packet option.

66 | Ericsson AB. All Rights Reserved.: Diameter

diameter_sctp

An {outstream, Id} tuple in the transport_data field of a outgoing diameter_packet record sets the
outbound stream on which the message is sent, modulo the negotiated number of outbound streams. Any other value
causes successive such sends to cycle though all outbound streams.

Remaining options are any accepted by gen_sctp:open/1, with the exception of options mode, binary, list,
active and sctp_events. Note that options ip and port specify the local address and port respectively.

Multiple ip options can be specified for a multihomed peer. If none are specified then the values of Host-IP-
Address in the diameter_service record are used. Option port defaults to 3868 for a listening transport and
0 for a connecting transport.

Warning:

An small receive buffer may result in a peer having to resend incoming messages: set the inet(3) option recbuf
to increase the buffer size.

An small send buffer may result in outgoing messages being discarded: set the inet(3) option sndbuf to increase
the buffer size.

SEE ALSO
diameter(3), diameter_transport(3), gen_sctp(3), inet(3)

Ericsson AB. All Rights Reserved.: Diameter | 67

	Diameter
	Diameter Users Guide
	Introduction
	Usage
	Examples
	Standards Compliance
	RFC 6733 - Diameter Base Protocol

	Reference Manual
	diameter
	add_transport/2
	call/4
	origin_state_id/0
	remove_transport/2
	which_connections/0
	which_connections/1
	which_transports/0
	which_transports/1
	which_watchdogs/0
	which_watchdogs/1
	service_info/2
	services/0
	session_id/1
	start/0
	start_service/2
	stop/0
	stop_service/1
	subscribe/1
	unsubscribe/1

	diameterc
	diameter_app
	Mod:peer_up/3
	Mod:peer_down/3
	Mod:pick_peer/4
	Mod:prepare_request/3
	Mod:prepare_retransmit/3
	Mod:handle_answer/4
	Mod:handle_error/4
	Mod:handle_request/3

	diameter_codec
	decode/2
	encode/2

	diameter_dict
	diameter_make
	codec/2
	format/1
	flatten/1
	format_error/1

	diameter_transport
	Mod:start/3

	diameter_tcp
	start/3

	diameter_sctp
	start/3

