ERLANG

FTP

Copyright © 1997-2025 Ericsson AB. All Rights Reserved.
FTP1.2.1.1
September 10, 2025

Copyright © 1997-2025 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

September 10, 2025

1.1 Introduction

1 FTP User's Guide

The FTP application provides an FTP client.

1.1 Introduction

1.1.1 Purpose
AnFTP client.

1.1.2 Prerequisites

It is assumed that the reader is familiar with the Erlang programming language, concepts of OTP, and has a basic
understanding of the FTP protocol.

1.2 FTP Client
1.2.1 Getting Started

FTP clients are considered to be rather temporary. Thus, they are only started and stopped during runtime and cannot
be started at application startup. The FTP client API isdesigned to allow some functionsto return intermediate results.
Thisimpliesthat only the processthat started the FTP client can access it with preserved sane semantics. If the process
that started the FTP session dies, the FTP client process terminates.

The client supports I Pv6 as long as the underlying mechanisms also do so.

The following is a simple example of an FTP session, where the user guest with password passwor d logs on to
theremote host er | ang. or g:

1> ftp:start().

ok

2> {ok, Pid} = ftp:open([{host, "erlang.org"}]).
{ok,<0.22.0>}

3> ftp:user(Pid, "guest", "password").
ok

4> ftp:pwd(Pid).

{ok, "/home/guest"}

5> ftp:cd(Pid, "appl/examples").

ok

6> ftp:lpwd(Pid).

{ok, "/home/fred"}.

7> ftp:lcd(Pid, "/home/eproj/examples").

8> ftp:recv(Pid, "appl.erl").
9> ftp:close(Pid).

10> ftp:stop().
ok

Thefileappl . er | istransferred from the remote to the local host. When the session is opened, the current directory
at the remote host is/ hone/ guest , and / hone/ f r ed at the local host. Before transferring the file, the current

Ericsson AB. All Rights Reserved.: FTP | 1

1.2 FTP Client

local directory ischangedto/ hone/ epr oj / exanpl es, andtheremotedirectory issetto/ hore/ guest / appl /
exanpl es.

2 | Ericsson AB. All Rights Reserved.: FTP

1.2 FTP Client

2 Reference Manual

An FTP client.

Ericsson AB. All Rights Reserved.: FTP | 3

ftp

ftp

Erlang module

This module implements a client for file transfer according to a subset of the File Transfer Protocol (FTP), see RFC
959.

The FTP client always tries to use passive FTP mode and only resort to active FTP mode if this fails. This default
behavior can be changed by start option mode.

For asimple example of an FTP session, see FTP User's Guide.

In addition to the ordinary functions for receiving and sending files (seer ecv/ 2,r ecv/ 3,send/ 2, and send/ 3)
there are functions for receiving remote files as binaries (see r ecv_bi n/ 2) and for sending binaries to be stored as
remotefiles (seesend_bi n/ 3).

A set of functions is provided for sending and receiving contiguous parts of a file to be stored in a remote
file. For send, see send_chunk_start/ 2, send_chunk/ 2, and send_chunk_end/ 1. For receive, see
recv_chunk_start/2andrecv_chunk/).

The return values of the following functions depend much on the implementation of the FTP server at the remote host.
In particular, the results from | s and nl i st varies. Often real errors are not reported as errors by | s, even if, for
example, afileor directory does not exist. nl i st isusually more strict, but some implementations have the peculiar
behaviour of responding with an error if the request is alisting of the contents of adirectory that exists but is empty.

FTP CLIENT START/STOP

The FTP client can be started and stopped dynamicaly in runtime by calling the ftp application AP
ftp: open(Host, Options) andftp:close(Client).

Data Types

The following type definitions are used by more than one function in the FTP client API:

pi d() =identifier of an FTP connection

string() =list of ASCII characters

Exports
account(Pid :: pid(), Acc :: string()) ->
ok | {error, Reason :: term()}

Sets the account for an operation, if needed.

append(Pid :: pid(), LocalFileName :: string()) ->

ok | {error, Reason :: term()}
append(Pid :: pid(),
LocalFileName :: string(),
RemoteFileName :: string()) ->
ok | {error, Reason :: term()}

Transfers the file Local Fi | e to the remote server. If Renpt eFi | e is specified, the name of the remote file that
thefileis appended to is set to Renot eFi | e, otherwiseto Local Fi | e. If thefile does not exists, it is created.

append bin(Pid :: pid(), Bin :: binary(), RemoteFile :: string()) ->

4 | Ericsson AB. All Rights Reserved.: FTP

href
href

ftp

ok | {error, Reason :: term()}

Transfers the binary Bi n to the remote server and appends it to the file Renot eFi | e. If the file does not exist, it
is created.

append chunk(Pid :: pid(), Bin :: binary()) ->
ok | {error, Reason :: term()}

Transfers the chunk Bi n to the remote server, which appends it to the file specified in the cal to
append_chunk_start/2.

For some errors, for example, file system full, it is necessary to call append_chunk _end to get the proper reason.

append chunk start(Pid :: pid(), RemoteFile :: string()) ->
ok | {error, Reason :: term()}

Starts the transfer of chunks for appending to the file Renot eFi | e at the remote server. If the file does not exist,
it iscreated.

append chunk end(Pid :: pid()) -> ok | {error, Reason :: term()}

Stops transfer of chunks for appending to the remote server. The file at the remote server, specified in the call to
append_chunk_start/ 2, isclosed by the server.

cd(Pid :: pid(), Dir :: string()) ->
ok | {error, Reason :: term()}

Changes the working directory at the remote serverto Di r .

close(Pid :: pid()) -> ok
Ends an FTP session, created using function open.

delete(Pid :: pid(), File :: string()) ->
ok | {error, Reason :: term()}

DeletesthefileFi | e at the remote server.

formaterror(Tag :: atom() | {error, atom()}) -> string()
Given an error return value{ err or, At onReason}, thisfunction returns a readable string describing the error.

lcd(Pid :: pid(), Dir :: string()) ->
ok | {error, Reason :: term()}

Changes the working directory to Di r for thelocal client.

lpwd(Pid :: pid()) -> {ok, Dir :: string()}
Returns the current working directory at the local client.
ls(Pid :: pid()) ->

{ok, Listing :: string()} | {error, Reason :: term()}
ls(Pid :: pid(), Dir :: string()) ->

Ericsson AB. All Rights Reserved.: FTP | 5

ftp

{ok, Listing :: string()} | {error, Reason :: term()}
Returnsalist of filesin long format.
Di r can beadirectory or afile. TheDi r string can contain wildcards.
| s/ 1 impliesthe current remote directory of the user.

The format of Li st i ng depends on the operating system. On UNIX, it istypically produced from the output of the
I's -1 shell command.

mkdir(Pid :: pid(), Dir :: string()) ->
ok | {error, Reason :: term()}

Createsthe directory Di r at the remote server.

nlist(Pid :: pid()) ->

{ok, Listing :: string()} | {error, Reason :: term()}
nlist(Pid :: pid(), Pathname :: string()) ->
{ok, Listing :: string()} | {error, Reason :: term()}

Returns alist of filesin short format.
Pat hname can be adirectory or afile. The Pat hname string can contain wildcards.
nl i st/ 1 impliesthe current remote directory of the user.

The format of Li sti ng is astream of filenames where each filename is separated by <CRLF> or <NL>. Contrary
tofunction| s, the purpose of nl i st isto enable a program to process filename information automatically.

open(Host :: string() | inet:ip_address()) ->
{ok, Pid :: pid()} | {error, Reason :: term()}
open(Host :: string() | inet:ip address(), Opts) ->
{ok, Pid :: pid()} | {error, Reason :: term()}
Types:
Opts = [Opt]
Opt = StartOption | OpenOption
StartOption = {verbose, Verbose} | {debug, Debug}
Verbose = boolean()
Debug = disable | debug | trace
OpenOption =
{ipfamily, IpFamily} |
{port, Port :: port()} |
{mode, Mode} |
{tls, TLSOptions :: [ssl:tls option()1} |
{tls_sec _method, TLSSecMethod :: ftps | ftpes} |

{tls _ctrl session reuse, TLSSessionReuse :: boolean()} |
{timeout, Timeout :: timeout()} |
{dtimeout, DTimeout :: timeout()} |

{progress, Progress} |
{sock ctrl, SocketCtrls} |
{sock data act, [SocketControll} |

6 | Ericsson AB. All Rights Reserved.: FTP

ftp

{sock data pass, [SocketControl]}
SocketCtrls = [SocketControl]
IpFamily = inet | inet6 | inet6fb4
Mode = active | passive

Module = Function = atom()
InitialData = term()

Progress = ignore | {Module, Function, InitialData}
SocketControl = gen tcp:option()

Starts a FTP client process and opens a session with the FTP server at Host .
A session opened in thisway is closed using function close.
The available configuration options are as follows:
{host, Host}
Host=string() | ip_address()
{port, Port}
Default is0 which aliasesto 21 or 990 when used with{t | s_sec_net hod, ft ps}).
{mode, Mode}
Default ispassi ve.
{verbose, Verbose}
Determines if the FTP communication isto be verbose or not.
Defaultisf al se.
{ debug, Debug}
Debugging using the dbg toolkit.
Defaultisdi sabl e.
{ipfamily, IpFamily}
Withi net 6f b4 theclient behavesasbefore, that is, triesto use | Pv6, and only if that doesnot work it uses | Pv4).
Defaultisi net (IPv4).
{timeout, Timeout}
Connection time-out.
Default is60000 (milliseconds).
{ dtimeout, DTimeout}
Data connect time-out. The time the client waits for the server to connect to the data socket.
Defaultisi nfinity.
{tls, TLSOptions}

The FTP session is transported over t | s (ft ps, see RFC 4217). The list TLSOpt i ons can be empty. The
functionssl : connect / 3 isused for securing both the control connection and the data sessions.

{tls_sec_method, TL SSecM ethod}

When set to f t ps will connect immediately with SSL instead of upgrading with STARTTLS. This suboption
isignored unless the suboptiont | s isalso set.

Ericsson AB. All Rights Reserved.: FTP | 7

href

ftp

Default isf t pes
{tls_ctrl_session_reuse, boolean()}

When settot r ue theclient will re-usethe TLS session from the control channel on the data channel as enforced
by many FTP servers as (proposed and implemented first by vsftpd).

Defaultisf al se.

{sock_ctrl, SocketCitrls :: [SocketContral :: gen_tcp:option()]}
Passes options from Socket Ct r | s down to the underlying transport layer (tcp).
gen_tcp:option() except fori pv6_veonl y,acti ve, packet , node, packet _si ze and header .
Default valueisSocket Ctrls = [].

{sock_data act, [SocketControl]}
Passes options from [Socket Cont r ol] down to the underlying transport layer (tcp).
sock _dat a_act usesthevalueof sock ctrl asdefault value.

{sock data pass, [SocketControl]}
Passes options from [Socket Cont r ol] down to the underlying transport layer (tcp).
sock_dat a_pass usesthevalueof sock_ctr| asdefault value.

{progress, Progress}
Progress=i gnore | {Mddul e, Function, Initial Data}
Modul e = atom(),Function = atom()
InitialData = term))
Defaultisi gnor e.

Option pr ogr ess isintended to be used by applications that want to create some type of progress report, such
asaprogress bar in a GUI. Default for the progress optionisi gnor e, that is, the option is not used. When the
progress option is specified, thefollowing happenswhenf t p: send/ [3, 4] orftp: recv/[3, 4] arecaled:

* Beforeafileistransferred, the following call is made to indicate the start of the file transfer and how large
thefileis. Thereturn value of the callback function isto be anew value for the User Pr ogr essTer mthat
will be used as input the next time the callback function is called.

Modul e: Function(lnitialData, File, {file_size, FileSize})
* Every timeachunk of bytesis transferred the following call is made:

Modul e: Function(UserProgressTerm File, {transfer_size, TransferSize})
< Attheend of thefilethe following call is made to indicate the end of the transfer:

Modul e: Function(UserProgressTerm File, {transfer_size, 0})
The callback function isto be defined as follows:
Modul e: Function(UserProgressTerm File, Size) -> UserProgressTerm
User ProgressTerm = term()
File = string()

Size = {transfer_size, integer()} | {file_size, integer()} | {file_size,
unknown}

For remotefiles, f t p cannot determine the file sizein a platform independent way. In this case the size becomes
unknown and it isleft to the application to determine the size.

8 | Ericsson AB. All Rights Reserved.: FTP

href

ftp

The callback is made by a middleman process, hence thefiletransfer isnot affected by the codein the progress
callback function. If the callback crashes, this is detected by the FTP connection process, which then prints
an info-report and goes on asiif the progress option was set toi gnor e.

Thefiletransfer typeisset to the default of the FTP server when the sessionisopened. Thisisusually ASCIl mode.

The current local working directory (comparel pwd/ 1) isset to thevaluereportedby fi | e: get _cwd/ 1, the
wanted local directory.

The return value Pi d is used as a reference to the newly created FTP client in all other functions, and they are
to be called by the process that created the connection. The FTP client process monitors the process that created
it and terminates if that process terminates.

pwd(Pid :: pid()) ->
{ok, Dir :: string()} | {error, Reason :: term()}

Returns the current working directory at the remote server.

recv(Pid :: pid(), RemoteFileName :: string()) ->
ok | {error, Reason :: term()}
recv(Pid :: pid(),
RemoteFileName :: string(),
LocalFileName :: string()) ->
ok | {error, Reason :: term()}

Transfers the file Renot eFi | eNane from the remote server to the file system of the local client. If
Local Fi | eNane isspecified, thelocal filewill be Local Fi | eNane, otherwise Renot eFi | eNane.

If thefilewritefails, thecommandisabortedand{ error, tern()} isreturned. However, thefileisnot removed.

recv_bin(Pid :: pid(), RemoteFile :: string()) ->
{ok, Bin :: binary()} | {error, Reason :: term()}

Transfersthe file Renot eFi | e from the remote server and receivesit asabinary.
recv_chunk start(Pid :: pid(), RemoteFile :: string()) ->
ok | {error, Reason :: term()}

Starts transfer of the file Renot eFi | e from the remote server.

recv_chunk(Pid :: pid()) ->

ok |
{ok, Bin :: binary()} |
{error, Reason :: term()}

Receives a chunk of the remotefile (Renot eFi | e of recv_chunk_st ar t). Thereturn values have the following
meaning

e 0ok =thetransfer is complete.

« {ok, Bin} =justanother chunk of thefile.

e {error, Reason} =transferfailed.

rename(Pid :: pid(), Old :: string(), New :: string()) ->

Ericsson AB. All Rights Reserved.: FTP | 9

ftp

ok | {error, Reason :: term()}

Renames A d to New at the remote server.
rmdir(Pid :: pid(), Dir :: string()) ->
ok | {error, Reason :: term()}

Removes directory Di r at the remote server.

send(Pid :: pid(), LocalFileName :: string()) ->

ok | {error, Reason :: term()}
send(Pid :: pid(),
LocalFileName :: string(),
RemoteFileName :: string()) ->
ok | {error, Reason :: term()}

TransfersthefileLocal Fi | eNane totheremote server. If Renot eFi | eName is specified, the name of the remote
fileisset to Renot eFi | eNamne, otherwiseto Local Fi | eNane.

send bin(Pid :: pid(), Bin :: binary(), RemoteFile :: string()) ->
ok | {error, Reason :: term()}

Transfersthe binary Bi n into thefile Renot eFi | e at the remote server.

send chunk(Pid :: pid(), Bin :: binary()) ->
ok | {error, Reason :: term()}

Transfers the chunk Bi n to the remote server, which writes it into the file specified in the cal to
send_chunk_start/ 2.

For some errors, for example, file system full, it is necessary to to call send_chunk _end to get the proper reason.

send chunk start(Pid :: pid(), RemoteFile :: string()) ->
ok | {error, Reason :: term()}

Starts transfer of chunks into the file Renot eFi | e at the remote server.

send chunk end(Pid :: pid()) -> ok | {error, Reason :: term()}

Stops transfer of chunks to the remote server. The file at the remote server, specified in the cal to
send_chunk_start/ 2 isclosed by the server.

type(Pid :: pid(), Type :: ascii | binary) ->
ok | {error, Reason :: term()}

Setsthefiletransfer typetoasci i or bi nar y. When an FTP session is opened, the default transfer type of the server
isused, most often asci i , which is default according to RFC 959.

user(Pid :: pid(), User :: string(), Pass :: string()) ->
ok | {error, Reason :: term()}

Performslogin of User with Pass.

user(Pid :: pid(),
User :: string(),

10 | Ericsson AB. All Rights Reserved.: FTP

href

ftp

Pass :: string(),
Account :: string()) ->
ok | {error, Reason :: term()}

Performslogin of User with Pass to the account specified by Account .

quote(Pid :: pid(), Cmd :: string()) -> [FTPLine :: string()]

The telnet end of line characters, from the FTP protocol definition, CRLF, for example, "\r\\n" has been removed.

Sends an arbitrary FTP command and returns verbatim alist of the lines sent back by the FTP server. This function
is intended to give application accesses to FTP commands that are server-specific or that cannot be provided by this
FTP client.

| FTP commands requiring a data connection cannot be successfully issued with this function. |

ERRORS

The possible error reasons and the corresponding diagnostic strings returned by f or mat er r or / 1 are asfollows:
echunk
Synchronization error during chunk sending according to one of the following:

e Acdlismadetosend_chunk/ 2 or send_chunk_end/ 1 beforeacal tosend_chunk_start/ 2.

¢ A cdl has been made to another transfer function during chunk sending, that is, before a call to
send_chunk_end/ 1.

ecl osed
The session is closed.
econn
Connection to the remote server is prematurely closed.
ehost
Host is not found, FTP server is not found, or connection isrejected by FTP server.
el ogin
User isnot logged in.
enot bi nary
Termisnot abinary.
epat h
No such file or directory, or directory aready exists, or permission denied.
etype
No such type.
euser

Invalid username or password.

Ericsson AB. All Rights Reserved.: FTP | 11

ftp

et nospc

Insufficient storage space in system [452].
epnospc

Exceeded storage allocation (for current directory or dataset) [552].
ef namena

Filename not allowed [553].

SEE ALSO
file(3) filename(3) and J. Postel and J. Reynolds: File Transfer Protocol (RFC 959).

12 | Ericsson AB. All Rights Reserved.: FTP

href

	FTP
	FTP User's Guide
	Introduction
	Purpose
	Prerequisites

	FTP Client
	Getting Started

	Reference Manual
	ftp
	account/2
	append/2
	append/3
	append_bin/3
	append_chunk/2
	append_chunk_start/2
	append_chunk_end/1
	cd/2
	close/1
	delete/2
	formaterror/1
	lcd/2
	lpwd/1
	ls/1
	ls/2
	mkdir/2
	nlist/1
	nlist/2
	open/1
	open/2
	pwd/1
	recv/2
	recv/3
	recv_bin/2
	recv_chunk_start/2
	recv_chunk/1
	rename/3
	rmdir/2
	send/2
	send/3
	send_bin/3
	send_chunk/2
	send_chunk_start/2
	send_chunk_end/1
	type/2
	user/3
	user/4
	quote/2

