
Erlang ODBC
Copyright © 1999-2025 Ericsson AB. All Rights Reserved.

Erlang ODBC 2.14.2
September 10, 2025

Copyright © 1999-2025 Ericsson AB. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See
the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

September 10, 2025

1.1 Introduction

1 Erlang ODBC User's Guide

The Erlang ODBC Application provides an interface for accessing relational SQL-databases from Erlang.

1.1 Introduction
1.1.1 Purpose
The purpose of the Erlang ODBC application is to provide the programmer with an ODBC interface that has a Erlang/
OTP touch and feel. So that the programmer may concentrate on solving his/her actual problem instead of struggling
with pointers and memory allocation which is not very relevant for Erlang. This user guide will give you some
information about technical issues and provide some examples of how to use the Erlang ODBC interface.

1.1.2 Prerequisites
It is assumed that the reader is familiar with the Erlang programming language, concepts of OTP and has a basic
understanding of relational databases and SQL.

1.1.3 About ODBC
Open Database Connectivity (ODBC) is a Microsoft standard for accessing relational databases that has become widely
used. The ODBC standard provides a c-level application programming interface (API) for database access. It uses
Structured Query Language (SQL) as its database access language.

1.1.4 About the Erlang ODBC application
Provides an Erlang interface to communicate with relational SQL-databases. It is built on top of Microsofts ODBC
interface and therefore requires that you have an ODBC driver to the database that you want to connect to. The
Erlang ODBC application is designed using the version 3.0 of the ODBC-standard, however using the option
{scrollable_cursors, off} for a connection has been known to make it work for at least some 2.X drivers.

1.2 Getting started
1.2.1 Setting things up
As the Erlang ODBC application is dependent on third party products there are a few administrative things that needs
to be done before you can get things up and running.

• The first thing you need to do, is to make sure you have an ODBC driver installed for the database that you
want to access. Both the client machine where you plan to run your erlang node and the server machine running
the database needs the the ODBC driver. (In some cases the client and the server may be the same machine).

• Secondly you might need to set environment variables and paths to appropriate values. This may differ a lot
between different os's, databases and ODBC drivers. This is a configuration problem related to the third party
product and hence we cannot give you a standard solution in this guide.

• The Erlang ODBC application consists of both Erlang and C code. The C code is delivered as a precompiled
executable for windows, solaris and linux (SLES10) in the commercial build. In the open source distribution it
is built the same way as all other application using configure and make. You may want to provide the the path
to your ODBC libraries using --with-odbc=PATH.

Ericsson AB. All Rights Reserved.: Erlang ODBC | 1

1.2 Getting started

Note:

The Erlang ODBC application should run on all Unix dialects including Linux, Windows 2000, Windows XP and
NT. But currently it is only tested for Solaris, Windows 2000, Windows XP and NT.

1.2.2 Using the Erlang API
The following dialog within the Erlang shell illustrates the functionality of the Erlang ODBC interface. The table used
in the example does not have any relevance to anything that exist in reality, it is just a simple example. The example
was created using sqlserver 7.0 with servicepack 1 as database and the ODBC driver for sqlserver
with version 2000.80.194.00.

 1 > odbc:start().
 ok

Connect to the database

 2 > {ok, Ref} = odbc:connect("DSN=sql-server;UID=aladdin;PWD=sesame", []).
 {ok,<0.342.0>}

Create a table

 3 > odbc:sql_query(Ref, "CREATE TABLE EMPLOYEE (NR integer,
 FIRSTNAME char varying(20), LASTNAME char varying(20), GENDER char(1),
 PRIMARY KEY(NR))").
 {updated,undefined}

Insert some data

 4 > odbc:sql_query(Ref, "INSERT INTO EMPLOYEE VALUES(1, 'Jane', 'Doe', 'F')").
 {updated,1}

Check what data types the database assigned for the columns. Hopefully this is not a surprise, some times it can be!
These are the data types that you should use if you want to do a parameterized query.

 5 > odbc:describe_table(Ref, "EMPLOYEE").
 {ok, [{"NR", sql_integer},
 {"FIRSTNAME", {sql_varchar, 20}},
 {"LASTNAME", {sql_varchar, 20}}
 {"GENDER", {sql_char, 1}}]}

Use a parameterized query to insert many rows in one go.

 6 > odbc:param_query(Ref,"INSERT INTO EMPLOYEE (NR, FIRSTNAME, "
 "LASTNAME, GENDER) VALUES(?, ?, ?, ?)",
 [{sql_integer,[2,3,4,5,6,7,8]},
 {{sql_varchar, 20},
 ["John", "Monica", "Ross", "Rachel",
 "Piper", "Prue", "Louise"]},
 {{sql_varchar, 20},
 ["Doe","Geller","Geller", "Green",
 "Halliwell", "Halliwell", "Lane"]},
 {{sql_char, 1}, ["M","F","M","F","F","F","F"]}]).
 {updated, 7}

Fetch all data in the table employee

2 | Ericsson AB. All Rights Reserved.: Erlang ODBC

1.2 Getting started

 7> odbc:sql_query(Ref, "SELECT * FROM EMPLOYEE").
 {selected,["NR","FIRSTNAME","LASTNAME","GENDER"],
 [{1,"Jane","Doe","F"},
 {2,"John","Doe","M"},
 {3,"Monica","Geller","F"},
 {4,"Ross","Geller","M"},
 {5,"Rachel","Green","F"},
 {6,"Piper","Halliwell","F"},
 {7,"Prue","Halliwell","F"},
 {8,"Louise","Lane","F"}]]}

Associate a result set containing the whole table EMPLOYEE to the connection. The number of rows in the result set
is returned.

 8 > odbc:select_count(Ref, "SELECT * FROM EMPLOYEE").
 {ok,8}

You can always traverse the result set sequential by using next

 9 > odbc:next(Ref).
 {selected,["NR","FIRSTNAME","LASTNAME","GENDER"],[{1,"Jane","Doe","F"}]}

 10 > odbc:next(Ref).
 {selected,["NR","FIRSTNAME","LASTNAME","GENDER"],[{2,"John","Doe","M"}]}

If your driver supports scrollable cursors you have a little more freedom, and can do things like this.

 11 > odbc:last(Ref).
 {selected,["NR","FIRSTNAME","LASTNAME","GENDER"],[{8,"Louise","Lane","F"}]}

 12 > odbc:prev(Ref).
 {selected,["NR","FIRSTNAME","LASTNAME","GENDER"],[{7,"Prue","Halliwell","F"}]}

 13 > odbc:first(Ref).
 {selected,["NR","FIRSTNAME","LASTNAME","GENDER"],[{1,"Jane","Doe","F"}]}

 14 > odbc:next(Ref).
 {selected,["NR","FIRSTNAME","LASTNAME","GENDER"],[{2,"John","Doe","M"}]}

Fetch the fields FIRSTNAME and NR for all female employees

 15 > odbc:sql_query(Ref, "SELECT FIRSTNAME, NR FROM EMPLOYEE WHERE GENDER = 'F'").
 {selected,["FIRSTNAME","NR"],
 [{"Jane",1},
 {"Monica",3},
 {"Rachel",5},
 {"Piper",6},
 {"Prue",7},
 {"Louise",8}]}

Fetch the fields FIRSTNAME and NR for all female employees and sort them on the field FIRSTNAME .

 16 > odbc:sql_query(Ref, "SELECT FIRSTNAME, NR FROM EMPLOYEE WHERE GENDER = 'F'
 ORDER BY FIRSTNAME").
 {selected,["FIRSTNAME","NR"],
 [{"Jane",1},
 {"Louise",8},
 {"Monica",3},
 {"Piper",6},
 {"Prue",7},
 {"Rachel",5}]}

Ericsson AB. All Rights Reserved.: Erlang ODBC | 3

1.3 Databases

Associate a result set that contains the fields FIRSTNAME and NR for all female employees to the connection. The
number of rows in the result set is returned.

 17 > odbc:select_count(Ref, "SELECT FIRSTNAME, NR FROM EMPLOYEE WHERE GENDER = 'F'").
 {ok,6}

A few more ways of retrieving parts of the result set when the driver supports scrollable cursors. Note that next will
work even without support for scrollable cursors.

 18 > odbc:select(Ref, {relative, 2}, 3).
 {selected,["FIRSTNAME","NR"],[{"Monica",3},{"Rachel",5},{"Piper",6}]}

 19 > odbc:select(Ref, next, 2).
 {selected,["FIRSTNAME","NR"],[{"Prue",7},{"Louise",8}]}

 20 > odbc:select(Ref, {absolute, 1}, 2).
 {selected,["FIRSTNAME","NR"],[{"Jane",1},{"Monica",3}]}

 21 > odbc:select(Ref, next, 2).
 {selected,["FIRSTNAME","NR"],[{"Rachel",5},{"Piper",6}]}

 22 > odbc:select(Ref, {absolute, 1}, 4).
 {selected,["FIRSTNAME","NR"],
 [{"Jane",1},{"Monica",3},{"Rachel",5},{"Piper",6}]}

Select, using a parameterized query.

 23 > odbc:param_query(Ref, "SELECT * FROM EMPLOYEE WHERE GENDER=?",
 [{{sql_char, 1}, ["M"]}]).
 {selected,["NR","FIRSTNAME","LASTNAME","GENDER"],
 [{2,"John", "Doe", "M"},{4,"Ross","Geller","M"}]}

Delete the table EMPLOYEE.

 24 > odbc:sql_query(Ref, "DROP TABLE EMPLOYEE").
 {updated,undefined}

Shut down the connection.

 25 > odbc:disconnect(Ref).
 ok

Shut down the application.

 26 > odbc:stop().
 =INFO REPORT==== 7-Jan-2004::17:00:59 ===
 application: odbc
 exited: stopped
 type: temporary

 ok

1.3 Databases
1.3.1 Databases
If you need to access a relational database such as sqlserver, mysql, postgres, oracle, cybase etc. from
your erlang application using the Erlang ODBC interface is a good way to go about it.

4 | Ericsson AB. All Rights Reserved.: Erlang ODBC

1.3 Databases

The Erlang ODBC application should work for any relational database that has an ODBC driver. But currently it is
only regularly tested for sqlserver and postgres.

1.3.2 Database independence
The Erlang ODBC interface is in principal database independent, e.i. an erlang program using the interface could be
run without changes towards different databases. But as SQL is used it is alas possible to write database dependent
programs. Even though SQL is an ANSI-standard meant to be database independent, different databases have
proprietary extensions to SQL defining their own data types. If you keep to the ANSI data types you will minimize the
problem. But unfortunately there is no guarantee that all databases actually treats the ANSI data types equivalently.
For instance an installation of Oracle Enterprise release 8.0.5.0.0 for unix will accept that you
create a table column with the ANSI data type integer, but when retrieving values from this column the driver
reports that it is of type SQL_DECIMAL(0, 38) and not SQL_INTEGER as you may have expected.

Another obstacle is that some drivers do not support scrollable cursors which has the effect that the only way to traverse
the result set is sequentially, with next, from the first row to the last, and once you pass a row you cannot go back.
This means that some functions in the interface will not work together with certain drivers. A similar problem is that
not all drivers support "row count" for select queries, hence resulting in that the function select_count/[3,4]
will return {ok, undefined} instead of {ok, NrRows} where NrRows is the number of rows in the result set.

1.3.3 Data types
The following is a list of the ANSI data types. For details turn to the ANSI standard documentation. Usage of other
data types is of course possible, but you should be aware that this makes your application dependent on the database
you are using at the moment.

• CHARACTER (size), CHAR (size)

• NUMERIC (precision, scale), DECIMAL (precision, scale), DEC (precision, scale) precision - total number of
digits, scale - total number of decimal places

• INTEGER, INT, SMALLINT

• FLOAT (precision)

• REAL

• DOUBLE PRECISION

• CHARACTER VARYING(size), CHAR VARYING(size)

When inputting data using sql_query/[2,3] the values will always be in string format as they are part of an SQL-query.
Example:

 odbc:sql_query(Ref, "INSERT INTO TEST VALUES(1, 2, 3)").

Note:

Note that when the value of the data to input is a string, it has to be quoted with '. Example:

odbc:sql_query(Ref, "INSERT INTO EMPLOYEE VALUES(1, 'Jane', 'Doe', 'F')").

You may also input data using param_query/[3,4] and then the input data will have the Erlang type corresponding to
the ODBC type of the column.See ODBC to Erlang mapping

When selecting data from a table, all data types are returned from the database to the ODBC driver as an ODBC data
type. The tables below shows the mapping between those data types and what is returned by the Erlang API.

ODBC Data Type Erlang Data Type

Ericsson AB. All Rights Reserved.: Erlang ODBC | 5

1.3 Databases

SQL_CHAR(size) String | Binary (configurable)

SQL_WCHAR(size) Unicode binary encoded as UTF16 little endian.

SQL_NUMERIC(p,s)
when (p >= 0 and p <= 9 and s == 0)

Integer

SQL_NUMERIC(p,s)
when (p >= 10 and p <= 15 and s == 0) or (s <= 15 and
s > 0)

Float

SQL_NUMERIC(p,s)
when p >= 16

String

SQL_DECIMAL(p,s)
when (p >= 0 and p <= 9 and s == 0)

Integer

SQL_DECIMAL(p,s)
when (p >= 10 and p <= 15 and s == 0) or (s <= 15 and
s > 0)

Float

SQL_DECIMAL(p,s)
when p >= 16

String

SQL_INTEGER Integer

SQL_SMALLINT Integer

SQL_FLOAT Float

SQL_REAL Float

SQL_DOUBLE Float

SQL_VARCHAR(size) String | Binary (configurable)

SQL_WVARCHAR(size) Unicode binary encoded as UTF16 little endian.

Table 3.1: Mapping of ODBC data types to the Erlang data types returned to the Erlang application.

ODBC Data Type Erlang Data Type

SQL_TYPE_DATE String

SQL_TYPE_TIME String

SQL_TYPE_TIMESTAMP {{YY, MM, DD}, {HH, MM, SS}}

SQL_LONGVARCHAR String | Binary (configurable)

SQL_WLONGVARCHAR(size) Unicode binary encoded as UTF16 little endian.

6 | Ericsson AB. All Rights Reserved.: Erlang ODBC

1.4 Error handling

SQL_BINARY String | Binary (configurable)

SQL_VARBINARY String | Binary (configurable)

SQL_LONGVARBINARY String | Binary (configurable)

SQL_TINYINT Integer

SQL_BIT Boolean

Table 3.2: Mapping of extended ODBC data types to the Erlang data types returned to the Erlang application.

Note:

To find out which data types will be returned for the columns in a table use the function describe_table/[2,3]

1.3.4 Batch handling
Grouping of SQL queries can be desirable in order to reduce network traffic. Another benefit can be that the data
source sometimes can optimize execution of a batch of SQL queries.

Explicit batches an procedures described below will result in multiple results being returned from sql_query/[2,3].
while with parameterized queries only one result will be returned from param_query/[2,3].

Explicit batches
The most basic form of a batch is created by semicolons separated SQL queries, for example:

"SELECT * FROM FOO; SELECT * FROM BAR" or
"INSERT INTO FOO VALUES(1,'bar'); SELECT * FROM FOO"

Procedures
Different databases may also support creating of procedures that contains more than one SQL query. For example,
the following SQLServer-specific statement creates a procedure that returns a result set containing information about
employees that work at the department and a result set listing the customers of that department.

 CREATE PROCEDURE DepartmentInfo (@DepartmentID INT) AS
 SELECT * FROM Employee WHERE department = @DepartmentID
 SELECT * FROM Customers WHERE department = @DepartmentID

Parameterized queries
To effectively perform a batch of similar queries, you can use parameterized queries. This means that you in your SQL
query string will mark the places that usually would contain values with question marks and then provide lists of values
for each parameter. For instance you can use this to insert multiple rows into the EMPLOYEE table while executing
only a single SQL statement, for example code see "Using the Erlang API" section in the "Getting Started" chapter.

1.4 Error handling
1.4.1 Strategy
On a conceptual level starting a database connection using the Erlang ODBC API is a basic client server application.
The client process uses the API to start and communicate with the server process that manages the connection.

Ericsson AB. All Rights Reserved.: Erlang ODBC | 7

1.4 Error handling

The strategy of the Erlang ODBC application is that programming faults in the application itself will cause the
connection process to terminate abnormally.(When a process terminates abnormally its supervisor will log relevant
error reports.) Calls to API functions during or after termination of the connection process, will return {error,
connection_closed}. Contextual errors on the other hand will not terminate the connection it will only return
{error, Reason} to the client, where Reason may be any erlang term.

Clients
The connection is associated with the process that created it and can only be accessed through it. The reason for this
is to preserve the semantics of result sets and transactions when select_count/[2,3] is called or auto_commit is turned
off. Attempts to use the connection from another process will fail. This will not effect the connection. On the other
hand, if the client process dies the connection will be terminated.

Timeouts
All request made by the client to the connection are synchronous. If the timeout is used and expires the client process
will exit with reason timeout. Probably the right thing to do is let the client die and perhaps be restarted by its supervisor.
But if the client chooses to catch this timeout, it is a good idea to wait a little while before trying again. If there are
too many consecutive timeouts that are caught the connection process will conclude that there is something radically
wrong and terminate the connection.

Guards
All API-functions are guarded and if you pass an argument of the wrong type a runtime error will occur. All input
parameters to internal functions are trusted to be correct. It is a good programming practise to only distrust input from
truly external sources. You are not supposed to catch these errors, it will only make the code very messy and much
more complex, which introduces more bugs and in the worst case also covers up the actual faults. Put your effort on
testing instead, you should trust your own input.

1.4.2 The whole picture
As the Erlang ODBC application relies on third party products and communicates with a database that probably runs
on another computer in the network there are plenty of things that might go wrong. To fully understand the things that
might happen it facilitate to know the design of the Erlang ODBC application, hence here follows a short description
of the current design.

Note:

Please note that design is something, that not necessarily will, but might change in future releases. While the
semantics of the API will not change as it is independent of the implementation.

8 | Ericsson AB. All Rights Reserved.: Erlang ODBC

1.4 Error handling

Figure 4.1: Architecture of the Erlang odbc application

When you do application:start(odbc) the only thing that happens is that a supervisor process is started. For each call to
the API function connect/2 a process is spawned and added as a child to the Erlang ODBC supervisor. The supervisors
only tasks are to provide error-log reports, if a child process should die abnormally, and the possibility to do a code
change. Only the client process has the knowledge to decide if this connection managing process should be restarted.

The erlang connection process spawned by connect/2, will open a port to a c-process that handles the communication
with the database through Microsoft's ODBC API. The erlang port will be kept open for exit signal propagation, if
something goes wrong in the c-process and it exits we want know as mush as possible about the reason. The main
communication with the c-process is done through sockets. The C-process consists of two threads, the supervisor
thread and the database handler thread. The supervisor thread checks for shutdown messages on the supervisor socket
and the database handler thread receives requests and sends answers on the database socket. If the database thread
seems to hang on some database call, the erlang control process will send a shutdown message on the supervisor

Ericsson AB. All Rights Reserved.: Erlang ODBC | 9

1.4 Error handling

socket, in this case the c-process will exit. If the c-process crashes/exits it will bring the erlang-process down too and
vice versa i.e. the connection is terminated.

Error types
The types of errors that may occur can be divide into the following categories.

• Configuration problems - Everything from that the database was not set up right to that the c-program that
should be run through the erlang port was not compiled for your platform.

• Errors discovered by the ODBC driver - If calls to the ODBC-driver fails due to circumstances that cannot be
controlled by the Erlang ODBC application programmer, an error string will be dug up from the driver. This
string will be the Reason in the {error, Reason} return value. How good this error message is will of
course be driver dependent. Examples of such circumstances are trying to insert the same key twice, invalid
SQL-queries and that the database has gone off line.

• Connection termination - If a connection is terminated in an abnormal way, or if you try to use a connection
that you have already terminated in a normal way by calling disconnect/1, the return value will be{error,
connection_closed}. A connection could end abnormally because of an programming error in the Erlang
ODBC application, but also if the ODBC driver crashes.

• Contextual errors - If API functions are used in the wrong context, the Reason in the error tuple will
be a descriptive atom. For instance if you try to call the function last/[1,2] without first calling
select_count/[2,3] to associate a result set with the connection. If the ODBC-driver does not support
some functions, or if you disabled some functionality for a connection and then try to use it.

10 | Ericsson AB. All Rights Reserved.: Erlang ODBC

1.4 Error handling

2 Reference Manual

The Erlang ODBC application provides an interface for accessing relational SQL-databases from Erlang.

Ericsson AB. All Rights Reserved.: Erlang ODBC | 11

odbc

odbc
Erlang module

This application provides an Erlang interface to communicate with relational SQL-databases. It is built on top of
Microsofts ODBC interface and therefore requires that you have an ODBC driver to the database that you want to
connect to.

Note:

The functions first/[1,2], last/[1,2], next/[1,2], prev[1,2] and select/[3,4] assumes
there is a result set associated with the connection to work on. Calling the function select_count/[2,3]
associates such a result set with the connection. Calling select_count again will remove the current result set
association and create a new one. Calling a function which dose not operate on an associated result sets, such as
sql_query/[2,3], will remove the current result set association.

Alas some drivers only support sequential traversal of the result set, e.i. they do not support what in the ODBC
world is known as scrollable cursors. This will have the effect that functions such as first/[1,2], last/
[1,2], prev[1,2], etc will return {error, driver_does_not_support_function}

Data Types
Types used in ODBC application
connection_reference()
Opaque reference to an ODBC connection as returnded by connect/2.

col_name() = string()
Name of column in the result set.

row() = tuple()
A tuple, with the number of elements selected form columns in a database row, containg the values of the columns
such as {value(), value() ... value()} .

value() = null | term()
Erlang data type that corresponds to the ODBC data type being handled.

selected() = {selected, [col_name()], [row()]}
Return value for queries that select data from database tabels.

updated() = {updated, n_rows()}
Return value for queries that update database tables.

n_rows() = integer()
The number of affected rows for UPDATE, INSERT, or DELETE queries. For other query types the value is driver
defined, and hence should be ignored.

odbc_data_type() =
 sql_integer | sql_smallint | sql_tinyint |
 {sql_decimal, Precision :: integer(), Scale :: integer()} |
 {sql_numeric, Precision :: integer(), Scale :: integer()} |
 {sql_char, Size :: integer()} |
 {sql_wchar, Size :: integer()} |

12 | Ericsson AB. All Rights Reserved.: Erlang ODBC

odbc

 {sql_varchar, Size :: integer()} |
 {sql_wvarchar, Size :: integer()} |
 {sql_float, Precision :: integer()} |
 {sql_wlongvarchar, Size :: integer()} |
 {sql_float, Precision :: integer()} |
 sql_real | sql_double | sql_bit |
 atom()
Data type used by ODBC, to learn which Erlang data type corresponds to an ODBC data type see the Erlang to ODBC
data type mapping in the User's Guide.

common_reason() = connection_closed | extended_error() | term()
An explanation of what went wrong. For common errors there will be atom decriptions.

extended_error() = {string(), integer(), term()}
extended error type with ODBC and native database error codes, as well as the base reason that would have been
returned had extended_errors not been enabled.

ERROR HANDLING
The error handling strategy and possible errors sources are described in the Erlang ODBC User's Guide.

Exports

commit(ConnectionReference, CommitMode) -> ok | {error, Reason}
commit(ConnectionReference, CommitMode, TimeOut) ->
 ok | {error, Reason}
Types:

ConnectionReference = connection_reference()
CommitMode = commit | rollback
TimeOut = erlang:timeout()
Reason =
 not_an_explicit_commit_connection |
 process_not_owner_of_odbc_connection |
 common_reason()

Commits or rollbacks a transaction. Needed on connections where automatic commit is turned off.

connect(ConnectionStr, Options) ->
 {ok, ConnectionReferense} | {error, Reason}
Types:

ConnectionStr = string()
Options =
 [{auto_commit, on | off} |
 {timeout, erlang:timeout()} |
 {binary_strings, on | off} |
 {tuple_row, on | off} |
 {scrollable_cursors, on | off} |
 {trace_driver, on | off} |

Ericsson AB. All Rights Reserved.: Erlang ODBC | 13

odbc

 {extended_errors, on | off}]
ConnectionReferense = connection_reference()
Reason = port_program_executable_not_found | common_reason()

Opens a connection to the database. The connection is associated with the process that created it and can only be
accessed through it. This function may spawn new processes to handle the connection. These processes will terminate
if the process that created the connection dies or if you call disconnect/1.

If automatic commit mode is turned on, each query will be considered as an individual transaction and will be
automatically committed after it has been executed. If you want more than one query to be part of the same transaction
the automatic commit mode should be turned off. Then you will have to call commit/3 explicitly to end a transaction.

The default timeout is infinity

If the option binary_strings is turned on all strings will be returned as binaries and strings inputted to param_query
will be expected to be binaries. The user needs to ensure that the binary is in an encoding that the database expects.
By default this option is turned off.

As default result sets are returned as a lists of tuples. The TupleMode option still exists to keep some degree of
backwards compatibility. If the option is set to off, result sets will be returned as a lists of lists instead of a lists of tuples.

Scrollable cursors are nice but causes some overhead. For some connections speed might be more important than
flexible data access and then you can disable scrollable cursor for a connection, limiting the API but gaining speed.

Note:

Turning the scrollable_cursors option off is noted to make old odbc-drivers able to connect that will otherwise fail.

If trace mode is turned on this tells the ODBC driver to write a trace log to the file SQL.LOG that is placed in the
current directory of the erlang emulator. This information may be useful if you suspect there might be a bug in the
erlang ODBC application, and it might be relevant for you to send this file to our support. Otherwise you will probably
not have much use of this.

Note:

For more information about the ConnectStr see description of the function SQLDriverConnect in [1].

The extended_errors option enables extended ODBC error information when an operation fails. Rather
than returning {error, Reason}, the failing function will return {error, {ODBCErrorCode,
NativeErrorCode, Reason}}. Note that this information is probably of little use when writing database-
independent code, but can be of assistance in providing more sophisticated error handling when dealing with a known
underlying database.

• ODBCErrorCode is the ODBC error string returned by the ODBC driver.

• NativeErrorCode is the numeric error code returned by the underlying database. The possible values and
their meanings are dependent on the database being used.

• Reason is as per the Reason field when extended errors are not enabled.

Note:

The current implementation spawns a port program written in C that utilizes the actual ODBC driver. There is a
default timeout of 5000 msec for this port program to connect to the Erlang ODBC application. This timeout can
be changed by setting an application specific environment variable 'port_timeout' with the number of milliseconds
for the ODBC application. E.g.: [{odbc, [{port_timeout, 60000}]}] to set it to 60 seconds.

14 | Ericsson AB. All Rights Reserved.: Erlang ODBC

odbc

disconnect(ConnectionReferense) -> ok | {error, Reason}
Types:

ConnectionReferense = connection_reference()
Reason =
 process_not_owner_of_odbc_connection | extended_error()

Closes a connection to a database. This will also terminate all processes that may have been spawned when the
connection was opened. This call will always succeed. If the connection cannot be disconnected gracefully it will be
brutally killed. However you may receive an error message as result if you try to disconnect a connection started by
another process.

describe_table(ConnectionReference, Table) ->
 {ok, Description} | {error, Reason}
describe_table(ConnectionReference, Table, TimeOut) ->
 {ok, Description} | {error, Reason}
Types:

ConnectionReference = connection_reference()
Table = string()
TimeOut = erlang:timeout()
Description = [{col_name(), odbc_data_type()}]
Reason = process_not_owner_of_odbc_connection | common_reason()

Queries the database to find out the ODBC data types of the columns of the table Table.

first(ConnectionReference) -> Result | {error, Reason}
first(ConnectionReference, TimeOut) -> Result | {error, Reason}
Types:

ConnectionReference = connection_reference()
TimeOut = erlang:timeout()
Result = selected()
Reason =
 result_set_does_not_exist | driver_does_not_support_function |
 scrollable_cursors_disabled |
 process_not_owner_of_odbc_connection |
 common_reason()

Returns the first row of the result set and positions a cursor at this row.

last(ConnectionReference) -> Result | {error, Reason}
last(ConnectionReference, TimeOut) -> Result | {error, Reason}
Types:

ConnectionReference = connection_reference()
TimeOut = erlang:timeout()
Result = selected()
Reason =
 result_set_does_not_exist | driver_does_not_support_function |
 scrollable_cursors_disabled |
 process_not_owner_of_odbc_connection |

Ericsson AB. All Rights Reserved.: Erlang ODBC | 15

odbc

 common_reason()
Returns the last row of the result set and positions a cursor at this row.

next(ConnectionReference) -> Result | {error, Reason}
next(ConnectionReference, TimeOut) -> Result | {error, Reason}
Types:

ConnectionReference = connection_reference()
TimeOut = erlang:timeout()
Result = selected()
Reason =
 result_set_does_not_exist | driver_does_not_support_function |
 scrollable_cursors_disabled |
 process_not_owner_of_odbc_connection |
 common_reason()

Returns the next row of the result set relative the current cursor position and positions the cursor at this row. If the
cursor is positioned at the last row of the result set when this function is called the returned value will be {selected,
ColNames,[]} e.i. the list of row values is empty indicating that there is no more data to fetch.

param_query(ConnectionReference, SQLQuery, Params) ->
 Result | {error, Reason}
param_query(ConnectionReference, SQLQuery, Params, TimeOut) ->
 Result | {error, Reason}
Types:

ConnectionReference = connection_reference()
SQLQuery = string()
Params =
 [{odbc_data_type(), [value()]}] |
 [{odbc_data_type(), in | out | inout, [value()]}]
TimeOut = erlang:timeout()
Result = selected() | updated()
Reason =
 driver_does_not_support_function |
 process_not_owner_of_odbc_connection |
 common_reason()

Executes a parameterized SQL query. For an example see the "Using the Erlang API" in the Erlang ODBC User's
Guide.

Note:

Use the function describe_table/[2,3] to find out which ODBC data type that is expected for each column of that
table. If a column has a data type that is described with capital letters, alas it is not currently supported by the
param_query function. To learn which Erlang data type corresponds to an ODBC data type see the Erlang to ODBC
data type mapping in the User's Guide.

16 | Ericsson AB. All Rights Reserved.: Erlang ODBC

odbc

prev(ConnectionReference) -> Result | {error, Reason}
prev(ConnectionReference, TimeOut) -> Result | {error, Reason}
Types:

ConnectionReference = connection_reference()
TimeOut = erlang:timeout()
Result = selected()
Reason =
 result_set_does_not_exist | driver_does_not_support_function |
 scrollable_cursors_disabled |
 process_not_owner_of_odbc_connection |
 common_reason()

Returns the previous row of the result set relative the current cursor position and positions the cursor at this row.

start() -> ok | {error, Reason}
start(Type) -> ok | {error, Reason}
Types:

Type = permanent | transient | temporary
Reason = term()

Starts the odbc application. Default type is temporary. See application(3)

stop() -> ok
Stops the odbc application. See application(3)

sql_query(ConnectionReference, SQLQuery) ->
 Result | {error, Reason}
sql_query(ConnectionReference, SQLQuery, TimeOut) ->
 Result | {error, Reason}
Types:

ConnectionReference = connection_reference()
SQLQuery = string()
TimeOut = erlang:timeout()
Result = updated() | selected()
Reason = process_not_owner_of_odbc_connection | common_reason()

Executes a SQL query or a batch of SQL queries. If it is a SELECT query the result set is returned, on the format
{selected, ColNames, Rows}. For other query types the tuple {updated, NRows} is returned, and for
batched queries, if the driver supports them, this function can also return a list of result tuples.

Note:

Some drivers may not have the information of the number of affected rows available and then the return value may
be {updated, undefined} .

The list of column names is ordered in the same way as the list of values of a row, e.g. the first ColName is
associated with the first Value in a Row.

Ericsson AB. All Rights Reserved.: Erlang ODBC | 17

odbc

select_count(ConnectionReference, SQLQuery) ->
 {ok, NrRows} | {error, Reason}
select_count(ConnectionReference, SQLQuery, TimeOut) ->
 {ok, NrRows} | {error, Reason}
Types:

ConnectionReference = connection_reference()
SQLQuery = string()
TimeOut = erlang:timeout()
NrRows = n_rows()
Reason = process_not_owner_of_odbc_connection | common_reason()

Executes a SQL SELECT query and associates the result set with the connection. A cursor is positioned before the
first row in the result set and the tuple {ok, NrRows} is returned.

Note:

Some drivers may not have the information of the number of rows in the result set, then NrRows will have the
value undefined.

select(ConnectionReference, Position, N) ->
 Result | {error, Reason}
select(ConnectionReference, Position, N, TimeOut) ->
 Result | {error, Reason}
Types:

ConnectionReference = connection_reference()
Position = next | {relative, integer()} | {absolute, integer()}
N = integer()
TimeOut = erlang:timeout()
Result = selected()
Reason =
 result_set_does_not_exist | driver_does_not_support_function |
 scrollable_cursors_disabled |
 process_not_owner_of_odbc_connection |
 common_reason()

Selects N consecutive rows of the result set. If Position is next it is semantically equivalent of calling next/
[1,2] N times. If Position is {relative, Pos}, Pos will be used as an offset from the current cursor position
to determine the first selected row. If Position is {absolute, Pos}, Pos will be the number of the first row
selected. After this function has returned the cursor is positioned at the last selected row. If there is less then N rows
left of the result set the length of Rows will be less than N. If the first row to select happens to be beyond the last
row of the result set, the returned value will be {selected, ColNames,[]} e.i. the list of row values is empty
indicating that there is no more data to fetch.

REFERENCES
[1]: Microsoft ODBC 3.0, Programmer's Reference and SDK Guide
See also http://msdn.microsoft.com/

18 | Ericsson AB. All Rights Reserved.: Erlang ODBC

	Erlang ODBC
	Erlang ODBC User's Guide
	Introduction
	Purpose
	Prerequisites
	About ODBC
	About the Erlang ODBC application

	Getting started
	Setting things up
	Using the Erlang API

	Databases
	Databases
	Database independence
	Data types
	Batch handling
	Explicit batches
	Procedures
	Parameterized queries

	Error handling
	Strategy
	Clients
	Timeouts
	Guards

	The whole picture
	Error types

	Reference Manual
	odbc
	commit/2
	commit/3
	connect/2
	disconnect/1
	describe_table/2
	describe_table/3
	first/1
	first/2
	last/1
	last/2
	next/1
	next/2
	param_query/3
	param_query/4
	prev/1
	prev/2
	start/0
	start/1
	stop/0
	sql_query/2
	sql_query/3
	select_count/2
	select_count/3
	select/3
	select/4

