
OS_Mon
Copyright © 1997-2025 Ericsson AB. All Rights Reserved.

OS_Mon 2.9.1
September 10, 2025

Copyright © 1997-2025 Ericsson AB. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See
the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

September 10, 2025

1 Reference Manual

The operating system monitor, OS_Mon, provides services for monitoring CPU load, disk usage, memory usage and
OS messages.

Ericsson AB. All Rights Reserved.: OS_Mon | 1

os_mon

os_mon
Application

The operating system monitor, OS_Mon, provides the following services:

• cpu_sup CPU load and utilization supervision (Unix)

• disksup Disk supervision(Unix, Windows)

• memsup Memory supervision (Unix, Windows)

• os_sup Interface to OS system messages (Solaris, Windows)

To simplify usage of OS_Mon on distributed Erlang systems, it is not considered an error trying to use a service at a
node where it is not available (either because OS_Mon is not running, or because the service is not available for that
OS, or because the service is not started). Instead, a warning message is issued via error_logger and a dummy
value is returned, which one is specified in the man pages for the respective services.

Configuration
When OS_Mon is started, by default all services available for the OS, except os_sup, are automatically started. This
configuration can be changed using the following application configuration parameters:

start_cpu_sup = bool()

Specifies if cpu_sup should be started. Defaults to true.

start_disksup = bool()

Specifies if disksup should be started. Defaults to true.

start_memsup = bool()

Specifies if memsup should be started. Defaults to true.

start_os_sup = bool()

Specifies if os_sup should be started. Defaults to false.

Configuration parameters effecting the different OS_Mon services are described in the respective man pages.

See config(4) for information about how to change the value of configuration parameters.

See Also
cpu_sup(3), disksup(3), memsup(3), os_sup(3), nteventlog(3), snmp(3).

2 | Ericsson AB. All Rights Reserved.: OS_Mon

cpu_sup

cpu_sup
Erlang module

cpu_sup is a process which supervises the CPU load and CPU utilization. It is part of the OS_Mon application, see
os_mon(6). Available for Unix, although CPU utilization values (util/0,1) are only available for Solaris, Linux,
FreeBSD and OpenBSD.

The load values are proportional to how long time a runnable Unix process has to spend in the run queue before it is
scheduled. Accordingly, higher values mean more system load. The returned value divided by 256 produces the figure
displayed by rup and top. What is displayed as 2.00 in rup, is displayed as load up to the second mark in xload.

For example, rup displays a load of 128 as 0.50, and 512 as 2.00.

If the user wants to view load values as percentage of machine capacity, then this way of measuring presents a
problem, because the load values are not restricted to a fixed interval. In this case, the following simple mathematical
transformation can produce the load value as a percentage:

 PercentLoad = 100 * (1 - D/(D + Load))

D determines which load value should be associated with which percentage. Choosing D = 50 means that 128 is 60%
load, 256 is 80%, 512 is 90%, and so on.

Another way of measuring system load is to divide the number of busy CPU cycles by the total number of CPU cycles.
This produces values in the 0-100 range immediately. However, this method hides the fact that a machine can be more
or less saturated. CPU utilization is therefore a better name than system load for this measure.

A server which receives just enough requests to never become idle will score a CPU utilization of 100%. If the server
receives 50% more requests, it will still score 100%. When the system load is calculated with the percentage formula
shown previously, the load will increase from 80% to 87%.

The avg1/0, avg5/0, and avg15/0 functions can be used for retrieving system load values, and the util/0 and
util/1 functions can be used for retrieving CPU utilization values.

When run on Linux, cpu_sup assumes that the /proc file system is present and accessible by cpu_sup. If it is
not, cpu_sup will terminate.

Exports

nprocs() -> UnixProcesses | {error, Reason}
Types:

UnixProcesses = int()

Reason = term()

Returns the number of UNIX processes running on this machine. This is a crude way of measuring the system load,
but it may be of interest in some cases.

Returns 0 if cpu_sup is not available.

avg1() -> SystemLoad | {error, Reason}
Types:

SystemLoad = int()

Reason = term()

Ericsson AB. All Rights Reserved.: OS_Mon | 3

cpu_sup

Returns the average system load in the last minute, as described above. 0 represents no load, 256 represents the load
reported as 1.00 by rup.

Returns 0 if cpu_sup is not available.

avg5() -> SystemLoad | {error, Reason}
Types:

SystemLoad = int()

Reason = term()

Returns the average system load in the last five minutes, as described above. 0 represents no load, 256 represents the
load reported as 1.00 by rup.

Returns 0 if cpu_sup is not available.

avg15() -> SystemLoad | {error, Reason}
Types:

SystemLoad = int()

Reason = term()

Returns the average system load in the last 15 minutes, as described above. 0 represents no load, 256 represents the
load reported as 1.00 by rup.

Returns 0 if cpu_sup is not available.

util() -> CpuUtil | {error, Reason}
Types:

CpuUtil = float()

Reason = term()

Returns CPU utilization since the last call to util/0 or util/1 by the calling process.

Note:

The returned value of the first call to util/0 or util/1 by a process will on most systems be the CPU utilization
since system boot, but this is not guaranteed and the value should therefore be regarded as garbage. This also applies
to the first call after a restart of cpu_sup.

The CPU utilization is defined as the sum of the percentage shares of the CPU cycles spent in all busy processor states
(see util/1 below) in average on all CPUs.

Returns 0 if cpu_sup is not available.

util(Opts) -> UtilSpec | {error, Reason}
Types:

Opts = [detailed | per_cpu]

UtilSpec = UtilDesc | [UtilDesc]

 UtilDesc = {Cpus, Busy, NonBusy, Misc}

 Cpus = all | int() | [int()]()

 Busy = NonBusy = {State, Share} | Share

 State = user | nice_user | kernel

4 | Ericsson AB. All Rights Reserved.: OS_Mon

cpu_sup

 | wait | idle | atom()

 Share = float()

 Misc = []

Reason = term()

Returns CPU utilization since the last call to util/0 or util/1 by the calling process, in more detail than util/0.

Note:

The returned value of the first call to util/0 or util/1 by a process will on most systems be the CPU utilization
since system boot, but this is not guaranteed and the value should therefore be regarded as garbage. This also applies
to the first call after a restart of cpu_sup.

Currently recognized options:

detailed

The returned UtilDesc(s) will be even more detailed.

per_cpu

Each CPU will be specified separately (assuming this information can be retrieved from the operating system),
that is, a list with one UtilDesc per CPU will be returned.

Description of UtilDesc = {Cpus, Busy, NonBusy, Misc}:

Cpus

If the detailed and/or per_cpu option is given, this is the CPU number, or a list of the CPU numbers.

If not, this is the atom all which implies that the UtilDesc contains information about all CPUs.

Busy

If the detailed option is given, this is a list of {State, Share} tuples, where each tuple contains
information about a processor state that has been identified as a busy processor state (see below). The atom
State is the name of the state, and the float Share represents the percentage share of the CPU cycles spent in
this state since the last call to util/0 or util/1.

If not, this is the sum of the percentage shares of the CPU cycles spent in all states identified as busy.

If the per_cpu is not given, the value(s) presented are the average of all CPUs.

NonBusy

Similar to Busy, but for processor states that have been identified as non-busy (see below).

Misc

Currently unused; reserved for future use.

Currently these processor states are identified as busy:

user

Executing code in user mode.

nice_user

Executing code in low priority (nice) user mode. This state is currently only identified on Linux.

kernel

Executing code in kernel mode.

Currently these processor states are identified as non-busy:

Ericsson AB. All Rights Reserved.: OS_Mon | 5

cpu_sup

wait

Waiting. This state is currently only identified on Solaris.

idle

Idle.

Note:

Identified processor states may be different on different operating systems and may change between different
versions of cpu_sup on the same operating system. The sum of the percentage shares of the CPU cycles spent in
all busy and all non-busy processor states will always add up to 100%, though.

Returns {all,0,0,[]} if cpu_sup is not available.

See Also
os_mon(3)

6 | Ericsson AB. All Rights Reserved.: OS_Mon

disksup

disksup
Erlang module

disksup is a process which supervises the available disk space in the system. It is part of the OS_Mon application,
see os_mon(6). Available for Unix and Windows.

Periodically checks the disks. For each disk or partition which uses more than a certain amount of the available space,
the alarm {{disk_almost_full, MountedOn}, []} is set.

On Unix

All (locally) mounted disks are checked, including the swap disk if it is present.

On WIN32

All logical drives of type "FIXED_DISK" are checked.

Alarms are reported to the SASL alarm handler, see alarm_handler(3). To set an alarm,
alarm_handler:set_alarm(Alarm) is called where Alarm is the alarm specified above.

The alarms are cleared automatically when the alarm cause is no longer valid.

Data Types
time()
Supported units:

integer() >= 1

The time interval in minutes.

{TimeUnit, Time}

The time interval Time in a time unit specified by TimeUnit where TimeUnit is of the type
erlang:time_unit() and Time is a positive integer. The time interval needs to be at least one millisecond
long.

Configuration
The following configuration parameters can be used to change the default values for time interval and threshold:

disk_space_check_interval = time()

The time interval for the periodic disk space check. The default is 30 minutes.

disk_almost_full_threshold = float()

The threshold, as percentage of total disk space, for how much disk can be utilized before the
disk_almost_full alarm is set. The default is 0.80 (80%).

disksup_posix_only = bool()

Specifies whether the disksup helper process should only use POSIX conformant commands (true) or not.
The default is false. Setting this parameter to true can be necessary on embedded systems with stripped-
down versions of Unix tools like df. The returned disk data and alarms can be different when using this option.

The parameter is ignored on platforms that are known to not be POSIX compatible (Windows and SunOS).

See config(4) for information about how to change the value of configuration parameters.

Ericsson AB. All Rights Reserved.: OS_Mon | 7

disksup

Exports

get_disk_data() -> [DiskData]
Types:

DiskData = {Id, TotalKiB, Capacity}

 Id = string()

 TotalKiB = int()

 Capacity = int()

Returns the result of the latest disk check. Id is a string that identifies the disk or partition. TotalKiB is the total
size of the disk or partition in kibibytes. Capacity is the percentage of disk space used.

The function is asynchronous in the sense that it does not invoke a disk check, but returns the latest available value.

Returns [{"none",0,0}] if disksup is not available.

get_disk_info() -> [DiskData]
Types:

DiskData = {Id, TotalKiB, AvailableKiB, Capacity}

 Id = string()

 TotalKiB = int()

 AvailableKiB = int()

 Capacity = int()

Immediately fetches total space, available space and capacity for local disks. Id is a string that identifies the disk or
partition. TotalKiB is the total size of the disk or partition in kibibytes. AvailableKiB is the disk space used in
kibibytes. Capacity is the percentage of disk space used.

Returns [{"none",0,0,0}] if disksup is not available.

get_disk_info(Path) -> DiskData
Types:

DiskData = [{Id, TotalKiB, AvailableKiB, Capacity}]

 Id = string()

 TotalKiB = int()

 AvailableKiB = int()

 Capacity = int()

Immediately fetches total space, available space and capacity for a path. Id is a string that identifies the disk or
partition. TotalKiB is the total size of the disk or partition in kibibytes. AvailableKiB is the disk space used in
kibibytes. Capacity is the percentage of disk space used.

Returns [{Path,0,0,0}] if the Path is invalid or space can't be determined. Returns [{"none",0,0,0}] if
disksup is not available.

get_check_interval() -> MS
Types:

MS = int()

Returns the time interval, in milliseconds, for the periodic disk space check.

8 | Ericsson AB. All Rights Reserved.: OS_Mon

disksup

set_check_interval(Time) -> ok
Types:

Time = time()

Changes the time interval for the periodic disk space check.

The change will take effect after the next disk space check and is non-persist. That is, in case of a process restart, this
value is forgotten and the default value will be used. See Configuration above.

get_almost_full_threshold() -> Percent
Types:

Percent = int()

Returns the threshold, in percent, for disk space utilization.

set_almost_full_threshold(Float) -> ok
Types:

Float = float(), 0=<Float=<1

Changes the threshold, given as a float, for disk space utilization.

The change will take effect during the next disk space check and is non-persist. That is, in case of a process restart,
this value is forgotten and the default value will be used. See Configuration above.

See Also
alarm_handler(3), os_mon(3)

Ericsson AB. All Rights Reserved.: OS_Mon | 9

memsup

memsup
Erlang module

memsup is a process which supervises the memory usage for the system and for individual processes. It is part of the
OS_Mon application, see os_mon(6). Available for Unix and Windows.

Periodically performs a memory check:

• If more than a certain amount of available system memory is allocated, as reported by the underlying operating
system, the alarm {system_memory_high_watermark, []} is set.

• If any Erlang process Pid in the system has allocated more than a certain amount of total system memory, the
alarm {process_memory_high_watermark, Pid} is set.

Alarms are reported to the SASL alarm handler, see alarm_handler(3). To set an alarm,
alarm_handler:set_alarm(Alarm) is called where Alarm is either of the alarms specified above.

The alarms are cleared automatically when the alarm cause is no longer valid.

The function get_memory_data() can be used to retrieve the result of the latest periodic memory check.

There is also a interface to system dependent memory data, get_system_memory_data(). The result is highly dependent
on the underlying operating system and the interface is targeted primarily for systems without virtual memory.
However, the output on other systems is still valid, although sparse.

A call to get_system_memory_data/0 is more costly than a call to get_memory_data/0 as data is collected
synchronously when this function is called.

The total system memory reported under UNIX is the number of physical pages of memory times the page size, and
the available memory is the number of available physical pages times the page size. This is a reasonable measure as
swapping should be avoided anyway, but the task of defining total memory and available memory is difficult because
of virtual memory and swapping.

Configuration
The following configuration parameters can be used to change the default values for time intervals and thresholds:

memory_check_interval = int()>0

The time interval, in minutes, for the periodic memory check. The default is one minute.

system_memory_high_watermark = float()

The threshold, as percentage of system memory, for how much system memory can be allocated before the
corresponding alarm is set. The default is 0.80 (80%).

process_memory_high_watermark = float()

The threshold, as percentage of system memory, for how much system memory can be allocated by one Erlang
process before the corresponding alarm is set. The default is 0.05 (5%).

memsup_helper_timeout = int()>0

A timeout, in seconds, for how long the memsup process should wait for a result from a memory check. If
the timeout expires, a warning message "OS_MON (memsup) timeout" is issued via error_logger
and any pending, synchronous client calls will return a dummy value. Normally, this situation should not occur.
There have been cases on Linux, however, where the pseudo file from which system data is read is temporarily
unavailable when the system is heavily loaded.

The default is 30 seconds.

10 | Ericsson AB. All Rights Reserved.: OS_Mon

memsup

memsup_system_only = bool()

Specifies whether the memsup process should only check system memory usage (true) or not. The default is
false, meaning that information regarding both system memory usage and Erlang process memory usage is
collected.

It is recommended to set this parameter to false on systems with many concurrent processes, as each process
memory check makes a traversal of the entire list of processes.

See config(4) for information about how to change the value of configuration parameters.

Exports

get_memory_data() -> {Total,Allocated,Worst}
Types:

Total = Allocated = int()

Worst = {Pid, PidAllocated} | undefined

 Pid = pid()

 PidAllocated = int()

Returns the result of the latest memory check, where Total is the total memory size and Allocated the allocated
memory size, in bytes.

Worst is the pid and number of allocated bytes of the largest Erlang process on the node. If memsup should not
collect process data, that is if the configuration parameter memsup_system_only was set to true, Worst is
undefined.

The function is normally asynchronous in the sense that it does not invoke a memory check, but returns the latest
available value. The one exception if is the function is called before a first memory check is finished, in which case
it does not return a value until the memory check is finished.

Returns {0,0,{pid(),0}} or {0,0,undefined} if memsup is not available, or if all memory checks so far
have timed out.

get_system_memory_data() -> MemDataList
Types:

MemDataList = [{Tag, Size}]

 Tag = atom()

 Size = int()

Invokes a memory check and returns the resulting, system dependent, data as a list of tagged tuples, where Tag
currently can be one of the following:

total_memory
The total amount of memory available to the Erlang emulator, allocated and free. May or may not be equal to
the amount of memory configured in the system.

available_memory
Informs about the amount memory that is available for increased usage if there is an increased memory need.
This value is not based on a calculation of the other provided values and should give a better value of the
amount of memory that actually is available than calculating a value based on the other values reported. This
value is currently only present on newer Linux kernels. If this value is not available on Linux, you can use the
sum of cached_memory, buffered_memory, and free_memory as an approximation.

free_memory
The amount of free memory available to the Erlang emulator for allocation.

Ericsson AB. All Rights Reserved.: OS_Mon | 11

memsup

system_total_memory
The amount of memory available to the whole operating system. This may well be equal to total_memory
but not necessarily.

buffered_memory
The amount of memory the system uses for temporary storing raw disk blocks.

cached_memory
The amount of memory the system uses for cached files read from disk. On Linux, also memory marked as
reclaimable in the kernel slab allocator will be added to this value.

total_swap
The amount of total amount of memory the system has available for disk swap.

free_swap
The amount of memory the system has available for disk swap.

Note:

Note that new tagged tuples may be introduced in the result at any time without prior notice

Note that the order of the tuples in the resulting list is undefined and may change at any time.

All memory sizes are presented as number of bytes.

Returns the empty list [] if memsup is not available, or if the memory check times out.

get_os_wordsize() -> Wordsize
Types:

Wordsize = 32 | 64 | unsupported_os

Returns the wordsize of the current running operating system.

get_check_interval() -> MS
Types:

MS = int()

Returns the time interval, in milliseconds, for the periodic memory check.

set_check_interval(Minutes) -> ok
Types:

Minutes = int()>0

Changes the time interval, given in minutes, for the periodic memory check.

The change will take effect after the next memory check and is non-persistent. That is, in case of a process restart, this
value is forgotten and the default value will be used. See Configuration above.

get_procmem_high_watermark() -> int()
Returns the threshold, in percent, for process memory allocation.

set_procmem_high_watermark(Float) -> ok
Changes the threshold, given as a float, for process memory allocation.

The change will take effect during the next periodic memory check and is non-persistent. That is, in case of a process
restart, this value is forgotten and the default value will be used. See Configuration above.

12 | Ericsson AB. All Rights Reserved.: OS_Mon

memsup

get_sysmem_high_watermark() -> int()
Returns the threshold, in percent, for system memory allocation.

set_sysmem_high_watermark(Float) -> ok
Changes the threshold, given as a float, for system memory allocation.

The change will take effect during the next periodic memory check and is non-persistent. That is, in case of a process
restart, this value is forgotten and the default value will be used. See Configuration above.

get_helper_timeout() -> Seconds
Types:

Seconds = int()

Returns the timeout value, in seconds, for memory checks.

set_helper_timeout(Seconds) -> ok
Types:

Seconds = int() (>= 1)

Changes the timeout value, given in seconds, for memory checks.

The change will take effect for the next memory check and is non-persistent. That is, in the case of a process restart,
this value is forgotten and the default value will be used. See Configuration above.

See Also
alarm_handler(3), os_mon(3)

Ericsson AB. All Rights Reserved.: OS_Mon | 13

os_sup

os_sup
Erlang module

os_sup is a process providing a message passing service from the operating system to the error logger in the Erlang
runtime system. It is part of the OS_Mon application, see os_mon(6). Available for Solaris and Windows.

Messages received from the operating system results in an user defined callback function being called. This function
can do whatever filtering and formatting is necessary and then deploy any type of logging suitable for the user's
application.

Solaris Operation
The Solaris (SunOS 5.x) messages are retrieved from the syslog daemon, syslogd.

Enabling the service includes actions which require root privileges, such as change of ownership and file privileges
of an executable binary file, and creating a modified copy of the configuration file for syslogd. When os_sup is
terminated, the service must be disabled, meaning the original configuration must be restored. Enabling/disabling can
be done either outside or inside os_sup. See Configuration below.

Warning:

This process cannot run in multiple instances on the same hardware. OS_Mon must be configured to start os_sup
on one node only if two or more Erlang nodes execute on the same machine.

The format of received events is not defined.

Windows Operation
The Windows messages are retrieved from the eventlog file.

The nteventlog module is used to implement os_sup. See nteventlog(3). Note that the start functions of
nteventlog does not need to be used, as in this case the process is started automatically as part of the OS_Mon
supervision tree.

OS messages are formatted as a tuple {Time, Category, Facility, Severity, Message}:

Time = {MegaSecs, Secs, MicroSecs}

A time stamp as returned by the BIF now().

Category = string()

Usually one of "System", "Application" or "Security". Note that the NT eventlog viewer has another
notion of category, which in most cases is totally meaningless and therefore not imported into Erlang. What is
called a category here is one of the main three types of events occurring in a normal NT system.

Facility = string()

The source of the message, usually the name of the application that generated it. This could be almost any
string. When matching messages from certain applications, the version number of the application may have to be
accounted for. This is what the NT event viewer calls "source".

Severity = string()

One of "Error", "Warning", "Informational", "Audit_Success", "Audit_Faulure" or, in
case of a currently unknown Windows NT version "Severity_Unknown".

14 | Ericsson AB. All Rights Reserved.: OS_Mon

os_sup

Message = string()

Formatted exactly as it would be in the NT eventlog viewer. Binary data is not imported into Erlang.

Configuration
os_sup_mfa = {Module, Function, Args}

The callback function to use. Module and Function are atoms and Args is a list of terms. When an OS
message Msg is received, this function is called as apply(Module, Function, [Msg | Args]).

Default is {os_sup, error_report, [Tag]} which will send the event to the error logger using
error_logger:error_report(Tag, Msg). Tag is the value of os_sup_errortag, see below.

os_sup_errortag = atom()

This parameter defines the error report type used when messages are sent to error logger using the default callback
function. Default is std_error, which means the events are handled by the standard event handler.

os_sup_enable = bool()

Solaris only. Defines if the service should be enabled (and disabled) inside (true) or outside (false) os_sup.
For backwards compatibility reasons, the default is true. The recommended value is false, as the Erlang
emulator should normally not be run with root privileges, as is required for enabling the service.

os_sup_own = string()

Solaris only. Defines the directory which contains the backup copy and the Erlang specific configuration files for
syslogd, and a named pipe to receive the messages from syslogd. Default is "/etc".

os_sup_syslogconf = string()

Solaris only. Defines the full name of the configuration file for syslogd. Default is "/etc/syslog.conf".

Exports

enable() -> ok | {error, Res}
enable(Dir, Conf) -> ok | {error, Error}
Types:

Dir = Conf = Res = string()

Enables the os_sup service. Needed on Solaris only.

If the configuration parameter os_sup_enable is false, this function is called automatically by os_sup, using
the values of os_sup_own and os_sup_syslogconf as arguments.

If os_sup_enable is true, this function must be called before OS_Mon/os_sup is started. Dir defines the
directory which contains the backup copy and the Erlang specific configuration files for syslogd, and a named pipe
to receive the messages from syslogd. Defaults to "/etc". Conf defines the full name of the configuration file
for syslogd. Default is "/etc/syslog.conf".

Results in a OS call to:

<PRIVDIR>/bin/mod_syslog otp Dir Conf

where <PRIVDIR> is the priv directory of OS_Mon, code:priv_dir(os_mon).

Returns ok if this yields the expected result "0", and {error, Res} if it yields anything else.

Ericsson AB. All Rights Reserved.: OS_Mon | 15

os_sup

Note:

This function requires root privileges to succeed.

disable() -> ok | {error, Res}
disable(Dir, Conf) -> ok | {error, Error}
Types:

Dir = Conf = Res = string()

Disables the os_sup service. Needed on Solaris only.

If the configuration parameter os_sup_enable is false, this function is called automatically by os_sup, using
the same arguments as when enable/2 was called.

If os_sup_enable is true, this function must be called after OS_Mon/os_sup is stopped. Dir defines the
directory which contains the backup copy and the Erlang specific configuration files for syslogd, and a named pipe
to receive the messages from syslogd. Defaults to "/etc". Conf defines the full name of the configuration file
for syslogd. Default is "/etc/syslog.conf".

Results in a OS call to:

<PRIVDIR>/bin/mod_syslog nootp Dir Conf

where <PRIVDIR> is the priv directory of OS_Mon, code:priv_dir(os_mon).

Returns ok if this yields the expected result "0", and {error, Res} if it yields anything else.

Note:

This function requires root privileges to succeed.

See also
error_logger(3), os_mon(3)

syslogd(1M), syslog.conf(4) in the Solaris documentation.

16 | Ericsson AB. All Rights Reserved.: OS_Mon

nteventlog

nteventlog
Erlang module

nteventlog provides a generic interface to the Windows event log. It is part of the OS_Mon application, see
os_mon(6).

This module is used as the Windows backend for os_sup. See os_sup(3).

To retain backwards compatibility, this module can also be used to start a standalone nteventlog process which
is not part of the OS_Mon supervision tree. When starting such a process, the user has to supply an identifier as well
as a callback function to handle the messages.

The identifier, an arbitrary string, should be reused whenever the same application (or node) wants to start the process.
nteventlog is informed about all events that have arrived to the eventlog since the last accepted message for the
current identifier. As long as the same identifier is used, the same eventlog record will not be sent to nteventlog
more than once (with the exception of when graved system failures arise, in which case the last records written before
the failure may be sent to Erlang again after reboot).

If the event log is configured to wrap around automatically, records that have arrived to the log and been overwritten
when nteventlog was not running are lost. However, it detects this state and loses no records that are not
overwritten.

The callback function works as described in os_sup(3).

Exports

start(Identifier, MFA) -> Result
start_link(Identifier, MFA) -> Result
Types:

Identifier = string() | atom()

MFA = {Mod, Func, Args}

 Mod = Func = atom()

 Args = [term()]

Result = {ok, Pid} | {error, {already_started, Pid}}

Pid = pid()

This function starts the standalone nteventlog process and, if start_link/2 is used, links to it.

Identifier is an identifier as described above.

MFA is the supplied callback function. When nteventlog receives information about a new event, this function will
be called as apply(Mod, Func, [Event|Args]) where Event is a tuple

stop() -> stopped
Types:

Result = stopped

Stops nteventlog. Usually only used during development. The server does not have to be shut down gracefully
to maintain its state.

See Also
os_mon(6), os_sup(3)

Ericsson AB. All Rights Reserved.: OS_Mon | 17

nteventlog

Windows NT documentation

18 | Ericsson AB. All Rights Reserved.: OS_Mon

	OS_Mon
	Reference Manual
	os_mon
	cpu_sup
	nprocs/0
	avg1/0
	avg5/0
	avg15/0
	util/0
	util/1

	disksup
	get_disk_data/0
	get_disk_info/0
	get_disk_info/1
	get_check_interval/0
	set_check_interval/1
	get_almost_full_threshold/0
	set_almost_full_threshold/1

	memsup
	get_memory_data/0
	get_system_memory_data/0
	get_os_wordsize/0
	get_check_interval/0
	set_check_interval/1
	get_procmem_high_watermark/0
	set_procmem_high_watermark/1
	get_sysmem_high_watermark/0
	set_sysmem_high_watermark/1
	get_helper_timeout/0
	set_helper_timeout/1

	os_sup
	enable/0
	enable/2
	disable/0
	disable/2

	nteventlog
	start/2
	start_link/2
	stop/0

