ERLANG

Reltool

Copyright © 2009-2025 Ericsson AB, All Rights Reserved

Reltool 1.0
September 10, 2025

Copyright © 2009-2025 Ericsson AB, All Rights Reserved

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS 1S" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License. The Initial Developer
of the Original Code is Ericsson AB. Ericsson AB, All Rights Reserved.

September 10, 2025

1.1 Introduction

1 Reltool Users Guide

Reltool isarelease management tool. It analysesagiven Erlang/OTP install ation and determines various dependencies
between applications. Thegr aphi cal frontend depicts the dependencies and enables interactive customization of a
target system. The backend provides abat ch interface for generation of customized target systems.

1.1 Introduction

Reltool isarelease management tool. It analyses agiven Erlang/OTP install ation and determines various dependencies
between applications. Thegr aphi cal frontend depicts the dependencies and enables interactive customization of a
target system. The backend providesabat ch interface for generation of customized target systems.

1.1.1 Scope and Purpose

This manual describes the Reltool application, as a component of the Erlang/Open Telecom Platform development
environment. It is assumed that the reader is familiar with the Erlang Devel opment Environment, which is described
in a separate User's Guide.

1.1.2 Prerequisites

The following prerequisites are required for understanding the material in the Reltool User's Guide:
o familiarity with Erlang/OTP system principles and Erlang/OTP design principles

The application requires Erlang/OTP release R13B02 or later.

1.1.3 About This Manual

In addition to thisintroductory chapter, the Reltool User's Guide contains the following chapters:

» Chapter 2: "Usage" describes the architecture and typical usage of the application.
e Chapter 3: "Examples" gives some usage examples

1.1.4 Where to Find More Information

Refer to the following documentation for more information about Reltool and about the Erlang/OTP devel opment
system:

» the Reference Manual of Reltool

e theErlang/OTP Syst em Pri nci pl es

e theErlang/OTP Desi gn Pri nci pl es

e Programming Erlang: Software for a Concurrent World (2007), Pragmatic Bookshelf, ISBN13: 9781934356005.

1.2 Usage

1.2.1 Overview

This document focuses on the graphical parts of the tool. The concepts are explained in the reference manual for the
moduler el t ool .

Ericsson AB, All Rights Reserved: Reltool | 1

1.2 Usage

1.2.2 System window

The system window is started with the functionr el t ool : st art/ 1. At startup the tool will process all beamfiles
and app filesin order to find out dependencies between applications and their modules. Once all thisinformation has
been derived, it will be possible to explore the toal.

The system window consists of four main pages (tabs):
e Libraries

e System settings

* Applications

» Releases

Click on anametag to display its page.

Libraries

Onthelibrary pageit is possible to control which sources the tool will use. The pageis organized as atree which can
be expanded and collapsed by clicking on the little symbol in the beginning of the expandable/collapsible lines.

The Root di rectory can be edited by selecting the line where the path of the root directory is displayed and
clicking the right mouse button. Choose edit in the menu that pops up.

Library directories can be added, edited or deleted. This is done by selecting the line where the path to a library
directory is displayed and clicking the right mouse button. Choose add, edit or delete in the menu that pops up. New
library directories can also be added by selecting the line Li brary directori es and clicking the right mouse
button. Choose add in the menu that pops up.

Escript files can be added, edited or deleted. This is done by selecting the line where the path to an escript file is
displayed and clicking the right mouse button. Choose add, edit or delete in the menu that pops up. New escripts can
also be added by selecting theline Escri pt fi | es and clicking the right mouse button. Choose add in the menu
that pops up.

When libraries and escripts are expanded, the names of their contained applications will be displayed. Double click
on an application name to launch an application window.

System settings

Onthe system settingspageit is possibleto control someglobal settingsthat are used asdefaultsfor all applications. Set
theAppl i cation inclusion policytoincl ude toincludeall applicationsthat are not explicitly excluded.
Seei ncl _cond (application inclusion) and nod_cond (module inclusion) in the reference manual for the module
rel t ool for moreinfo.

The system settings page is rather incomplete.

Applications

There are four categories of applications on the applications page. | ncl uded contains applicationsthat are explicitly
included. Excl uded containsapplicationsthat are explicitly excluded. Der i ved contains applicationsthat either are
used directly by explicitly included applications or by other derived applications. Avai | abl e containsthe remaining
applications.

Select one or more applications and click on a button directly below the application column to change application
category. For example, select an available application and click on its tick button to move the application to the
included category. Clicking onthetick symbol for included applicationswill move the application back to the available
category. Thetick is undone.

The symbolsin front of the application names areintended to describe the status of the application. There are error and
warning symbolsto signalize that there is something which needs attention. Thetick symbol meansthat the application
isincluded or derived and no problem has been detected. The cross symbol means that the application is excluded or

2 | Ericsson AB, All Rights Reserved: Reltool

1.2 Usage

available and no problem has been detected. Applications with error symbols are listed first in each category and are
followed by the warnings and the normal ones (ticks and crosses) at the end.

Double click on an application to launch its application window.

Releases

The releases page isincomplete and very experimental .

File menu

« Display application dependency gr aph - Launchesan application force graph window. All included
and derived applications and their dependencies will be shown in agraph.

 Display nodul e dependency graph - Launch amodule force graph window. All included and derived
modules and their dependencies will be shown in a graph.

e Reset configuration to default
e Undo configuration (toggle)
e Load configuration - Loadsanew configuration from file.

e Save configuration - Saves the current configuration to file. Normally, only the explicit configuration
parameters with values that differ from their defaults are saved. But the configuration with or without default
values and with or without derived values may also be saved.

e Cenerate rel, script and boot files
e Cenerate target system
e { ose - Close the system window and all its subwindows.

Dependencies between applications or modules displayed as a graph

The dependency graph windows are launched from the file menu in the system window. The graph depictsall included
and derived applications/modules and their dependencies.

It is possible to perform some limited manipulations of the graph. Nodes can be moved, selected, locked or deleted.
Move a single node or the entire graph by moving the mouse while the left mouse button is pressed. A node can be
locked into afix position by holding down the shift button when the | eft mouse button is rel eased. Select several nodes
by moving the mouse while the control key and the left mouse button are pressed. Selected nodes can be locked,
unlocked or deleted by clicking on a suitable button.

The algorithm that is used to draw a graph with as few crossed links as possible is called force graph. A force graph
consists of nodes and directed links between nodes. Each node is associated with a repulsive force that pushes nodes
away from each other. Thisforce can be adjusted with the |eft slider or with the mouse whedl. Each link is associated
with an attractive force that pulls the nodes nearer to each other. This force can be adjusted with the right dlider. If
this force becomes too strong, the graph will be unstable. The third parameter that can be adjusted is the length of the
links. It is adjusted with the middle slider.

TheFr eez e button starts/stops the redrawing of the graph. Reset movesthe graph to the middle of the window and
resets all graph settings to default, with the exception of deleted nodes.

1.2.3 Application window

The application window is started by double clicking on an application name. The application window consists of
four pages (tabs):

e Application settings

* Modules

e Application dependencies

e Module dependencies

Ericsson AB, All Rights Reserved: Reltool | 3

1.2 Usage

Click on anametag to display its page.

Application settings

Select version of the applicationinthe Sour ce sel ecti on pol i cy part of the page. By default the latest version
of the application is selected, but it is possible to override this by explicitly selecting another version.

Note that in order for reltool to sort application versions and thereby be able to select the latest, it is required that the
version id for the application consists of integers and dots only, for example1,2. 0 or 3. 17. 1.

By default the Appl i cati on incl usi on policy onsystem level isused for all applications. Set the value to
i ncl ude if you want to explicitly include one particular application. Set it to excl ude if you want to exclude the
application despite that it is used by another (explicitly or implicitly) included application. der i ved means that the
application automatically will beincluded if some other (explicitly or implicitly) included application usesit.

By default theMbdul e i ncl usi on pol i cy onsystemlevel isusedfor all applications. Setittoderi ved if you
only want actually used modulesto be included. Set it to app if you, besides derived modules, also want the modules
listed inthe app fileto beincluded. Set it to ebi n if you, besides derived modules, al so want the modules that exist as
beam filesin the ebin directory to be included. Setitto al | if you want all modules to be included, that is the union
of modules found in the ebin directory and listed in the app file.

The application settings page is rather incompl ete.
Modules

There are four categories of modules on the modules page. | ncl uded contains modules that are explicitly included.
Excl uded contains modules that are explicitly excluded. Der i ved contains modules that either are used directly
by explicitly included modules or by other derived modules. Avai | abl e contains the remaining modules.

Select one or more modules and click on a button directly below the module column to change module category. For
example, select an available module and click onitstick button to move the module to theincluded category. Clicking
on the tick symbol for included modules will move the module back to the available category. The tick is undone.

The symbolsin front of the module names are intended to describe the status of the module. There are error and and
warning symbols to signaize that there is something that needs attention. The tick symbol means that the module
isincluded or derived and no problem has been detected. The cross symbol means that the module is excluded or
available and no problem has been detected. Modules with error symbols are listed first in each category and are
followed by warnings and the normal ones (ticks and crosses) at the end.

Double click on amodul e to launch its modul e window.

Application dependencies

There are four categories of applications on the Appl i cati on dependenci es page. If the application is used
by other applications, these are listed under Used by. If the application requires other applications be started before
it can be started, these are listed under Requi r ed. These applications are listed in the appl i cat i ons part of the
app file. If the application includes other applications, these arelisted under | ncl uded. These applicationsarelisted
inthei ncl uded_appl i cati ons part of the app file. If the application uses other applications, these are listed
under Uses.

Double click on an application name to launch an application window.

Module dependencies

There are two categories of moduleson the Modul e dependenci es page. If the moduleisused by other modules,
these are listed under Modul es usi ng thi s. If the module uses other modules, these are listed under Used
nodul es.

Double click on an module name to launch a modul e window.

4 | Ericsson AB, All Rights Reserved: Reltool

1.3 Examples

1.2.4 Module window

The module window is started by double clicking on an module name. The module window consists initially of two
pages (tabs):

* Dependencies
* Code

Click on aname tag to display its page.
Dependencies

There are two categories of modules on the Dependenci es page. If the module is used by other modules, these are
listed under Modul es usi ng t hi s. If the module uses other modules, these are listed under Used nodul es.

Double click on an module name to launch a modul e window.

Code

On the Code page the Erlang source code is displayed. It is possible to search forwards and backwards for text in the
module. Enter aregular expression in the Fi nd field and press enter. It is also possible to go to a certain line in the
module. The Back button can be used to go back to the previous position.

Put the marker on a function name and double click to go to the definition of the function. If the function is defined
in another module, that module will be loaded and added to the page list.

1.3 Examples

1.3.1 Start and stop windows and servers

The main process in Reltool is the server. It can be used as it is or be used via the GUI frontend process.
When the GUI is started, a server process will automatically be started. The GUI process is started with
reltool:start/0O,reltool:start/1orreltool:start_I|ink/1. Thepidof itsserver can be obtained
withrel t ool : get_server/1

Erlang/0TP 20 [erts-9.0] [source-c13b302] [64-bit] [smp:4:4] [ds:4:4:10] [async-threads:10]
[hipe] [kernel-poll:falsel

Eshell V9.0 (abort with ~G)

1>

1> {ok, Win} = reltool:start([]).
{ok,<0.36.01>}

2> {ok, Server} = reltool:get server(Win).
{o0k,<0.37.01>}

3> reltool:get config(Server).

{ok, {sys, [1}}

4>

4> {ok, Server2} = reltool:start server([]).
{ok,<0.6535.01>}

5> reltool:get config(Server2).

{ok, {sys, [1}}

6> reltool:stop(Server2).

ok

Ericsson AB, All Rights Reserved: Reltool | 5

1.3 Examples

1.3.2 Inspecting the configuration

Erlang/0TP 20 [erts-9.0] [source-c13b302] [64-bit] [smp:4:4] [ds:4:4:10] [async-threads:

[hipe] [kernel-poll:falsel

Eshell V9.0 (abort with "G)

1>

1> Config = {sys, [{escript, "examples/display args", [{incl cond, include}l},

{app, inets, [{incl cond, include}]},

{app, mnesia, [{incl cond, exclude}l},

{app, ssl, [{incl cond, exclude}]},

{app, runtime tools, [{incl cond, exclude}l},
{app, syntax tools, [{incl cond, exclude}]}1}.

{sys, [{escript, "examples/display args", [{incl cond,include}1},
{app,inets, [{incl cond,include}]},
{app,mnesia, [{incl cond,exclude}]},
{app,ssl, [{incl cond,exclude}1},

{app, runtime tools, [{incl cond,exclude}]},
{app,syntax_tools, [{incl cond,exclude}]1}1}

2>

2> {ok, Server} = reltool:start server([Config]).

{0k, <0.66.0>}

3>

3> reltool:get config(Server).

{ok,{sys, [{escript, "/usr/local/lib/erlang/lib/reltool-0.7.3/examples/display args",

[{incl cond,include}1},
{app,inets, [{incl cond,include}]},
{app,mnesia, [{incl cond,exclude}]},

{app, runtime tools, [{incl cond,exclude}]},
{app,ssl, [{incl cond,exclude}]},
{app,syntax tools, [{incl cond,exclude}]}1}}

4>

4> reltool:get config(Server, false, false).

{ok,{sys, [{escript, "/usr/local/lib/erlang/lib/reltool-0.7.3/examples/display args",

[{incl cond,include}1},
{app,inets, [{incl cond,include}]},
{app,mnesia, [{incl cond,exclude}]},

{app, runtime tools, [{incl cond,exclude}]},
{app,ssl, [{incl cond,exclude}]},
{app,syntax tools, [{incl cond,exclude}]}]1}}

5>

5> reltool:get config(Server, true, false).

{ok,{sys, [{root dir,"/usr/local/lib/erlang"},

{lib dirs,[1},
{escript, "/usr/local/lib/erlang/lib/reltool-0.7.3/examples/display args",

[{incl cond,include}1},

{mod cond,all},
{incl cond,derived},
{app,inets,
[{incl cond,include}, {vsn,undefined},{lib dir,undefined}1},
{app,mnesia, [{incl cond,exclude}]},
{app, runtime tools, [{incl cond,exclude}]},
{app,ssl, [{incl cond,exclude}]},
{app,syntax tools, [{incl cond,exclude}]},
{boot rel,"start clean"},
{rel,"start clean","1.0",[1},
{rel,"start sasl","1.0",[sasl]},
{emu_name, "beam"},
{relocatable, true},
{profile,development},
{incl sys filters,[".*"1},
{excl sys filters,[1},
{incl app filters,[".*"1},
{excl app filters,[1},

6 | Ericsson AB, All Rights Reserved: Reltool

10]

1.3 Examples

{rel_app_type,...},
{31
6>
6> reltool:get config(Server, true, true).
{ok,{sys, [{root dir,"/usr/local/lib/erlang"},
{lib dirs,[]1},
{escript, "/usr/local/lib/erlang/lib/reltool-0.7.3/examples/display args",
[{incl cond,include}1},
{mod cond,all},
{incl_cond,derived},
{erts, [{app,erts,
[{vsn,"10.0"},
{lib dir,"/usr/local/lib/erlang/lib/erts-10.0"},
{mod,erl prim loader,[]},
{mod,erl tracer,[]},
{mod,erlang, [1},
{mod,erts code purger,[]},
{mod,erts dirty process signal handler,[]},
{mod,erts _internal, [1},
{mod,erts literal area collector,[]},
{mod, init, [1},

{mod,erl init,...},
{mod, ...},
{...}H...1} 1},

{app, compiler,
[{vsn,"7.0.4"},
{lib _dir,"/usr/local/lib/erlang/lib/compiler-7.0.4"},
{mod, beam a, []},
{mod, beam asm, []},
{mod, beam block,[]},
{mod, beam bs,[]},
{mod, beam bsm, []},
{mod, beam clean,[]},
{mod, beam dead, []},
{mod, beam dict,[]},
{mod, beam disasm,[]},
{mod, beam except,[]},
{mod, beam flatten,...},
{mod, ...},
{..H ..
{app,crypto,
[{vsn,"3.7.4"},
{lib_dir,"/usr/local/lib/erlang/lib/crypto-3.7.4"},
{mod, crypto, [1},
{mod, crypto_ec curves,[]}1},
{app,hipe,
[{vsn,"3.15.4"},
{lib_dir,"/usr/local/lib/erlang/lib/hipe-3.15.4"},
{mod, cerl cconv,[]1},
{mod, cerl closurean,[]},
{mod, cerl hipeify,[]1},
{mod, cerl lib,[]},
{mod, cerl messagean,[]},
{mod, cerl pmatch,[]},
{mod, cerl prettypr,[1},
{mod, cerl to icode,[]},
{mod, cerl typean,...},
{mod, ...},
O I P b 8
{app,inets,
[{incl cond,include},
{vsn,"6.3.9"},
{lib dir,"/usr/local/lib/erlang/lib/inets-6.3.9"},
{mod, ftp, [},
{mod, ftp _progress,[1},

Ericsson AB, All Rights Reserved: Reltool | 7

1.3 Examples

{mod, ftp_response, [1},
{mod, ftp_sup, [1},
{mod, http chunk,[1},
{mod, http request,[]1},
{mod, http response, ...},
{mod, ...},
{000
{app, kernel,
[{vsn,"5.2"},
{lib_dir,"/usr/local/lib/erlang/lib/kernel-5.2"},
{mod, application,[]},
{mod,application controller,[]},
{mod,application master,[]},
{mod,application starter,[]},
{mod,auth, [1},
{mod, code, [1},
{mod, code_server, ...},
{mod, ...},
O I PO b8
{app,mnesia, [{incl cond,exclude}l},
{app, runtime_tools, [{incl_cond,exclude}]},
{app,sast,
[{vsn,"3.0.3"},
{lib _dir,"/usr/local/lib/erlang/lib/sas1-3.0.3"},
{mod,alarm handler,[]1},
{mod,erlsrv,[1},
{mod, format_1ib_supp, []},
{mod,misc_supp,...},

{mod, ...},

{00
{app,ssl, [{incl cond,exclude}]},
{app,stdlib,

[{vsn,"3.3"},

{lib _dir,"/usr/local/lib/erlang/lib/stdlib-3.3"},
{mod,array, [1},

{mod, baseb4, ...},

{mod, ...},

{00
{app,syntax_tools, [{incl cond,exclude}]},
{app, tools,

[{vsn,"2.9.1"},{lib dir,[...]1},{mod, ...}, {...}|...1},
{boot rel, "start clean"},
{rel,"start clean","1.0",[1},
{rel,"start sasl","1.0",[...1},
{emu_name, "beam"},
{relocatable, true},
{profile, ...},
[OPPS PS 3
7>
7> reltool:get config([{sys, [{profile, embedded}]}], true, false).
{ok,{sys, [{root dir,"/usr/local/lib/erlang"},
{lib dirs,[]1},
{mod cond,all},
{incl_cond,derived},
{boot rel, "start clean"},
{rel,"start clean","1.0",[1},
{rel,"start sasl","1.0",[sasl]},
{emu_name, "beam"},
{relocatable, true},
{profile,embedded},
{incl_sys filters,[""bin",""erts","~lib",""releases"]},
{excl _sys filters,[""bin/(erlc|dialyzer|typer)(|\\.exe)$",
"~erts.*/bin/(erlc|dialyzer|typer) (|\\.exe)$",
"~erts.*/bin/.*(debug|pdb)"1},
{incl _app_ filters,[""ebin","~include","~priv"]},

8 | Ericsson AB, All Rights Reserved: Reltool

1.3 Examples

8>

8> reltool:get config([{sys,

{excl _app_ filters,[1},
{rel _app_type,permanent},
{embedded app type,load},
{app_file, keep},

{debug _info,keep}]1}}

{ok,{sys, [{root dir,"/usr/local/lib/erlang"},

{lib dirs,[]1},

{mod cond,all},
{incl_cond,derived},

{boot rel, "start clean"},
{rel,"start clean","1.0",[1},
{rel,"start sasl","1.0",[sasl]},
{emu_name, "beam"},

{relocatable, true},
{profile,standalone},

{incl sys filters,[""bin/(erl|epmd) (|\\.exe|[\\.ini)$",
"~bin/start(| clean).boot$",""erts.*/bin","~1ib$"]},
{excl sys filters,[""erts.*/bin/(erlc|dialyzer|typer) (|\\.exe)$",

[{profile, standalone}]}], true, false).

"~erts.*/bin/(start|escript|to _erl|run_erl) (|\\.exe)$",

"~erts.*/bin/.*(debug|pdb)"1},
{incl app_ filters,[""ebin",""priv"1},
{excl _app filters,[""ebin/.*\\.appup$"]},
{rel _app_type,permanent},
{app_file, keep},
{debug _info,keep}]1}}

Ericsson AB, All Rights Reserved: Reltool | 9

1.3 Examples

1.3.3 Generate release and script files

Erlang/0TP 20 [erts-10.0] [source-c13b302] [64-bit] [smp:4:4] [ds:4:4:10] [async-threads:10]
[hipe] [kernel-poll:falsel
Eshell V10.0 (abort with ~G)
1>
1> {ok, Server} = reltool:start server([{config,
{sys,
[{boot rel, "NAME"},
{rel, "NAME", "VSN",
[sasl],
[{load dot erlang, false}1}1}}1).
{0k, <0.1288.0>}
2>
2> reltool:get config(Server).
{ok, {sys, [{boot rel, "NAME"},
{rel, "NAME", "VSN", [sas1]}]}}
3>
3> reltool:get rel(Server, "NAME").
{ok,{release, {"NAME", "VSN"},
{erts,"10.0"},
[{kernel,"5.2"},{stdlib,"3.3"}, {sas1,"3.0.3"}1}}
4>
4> reltool:get script(Server, "NAME").
{ok, {script, {"NAME", "VSN"},
[{preLoaded, [erl prim loader,erl tracer,erlang,
erts code purger,erts dirty process signal handler,
erts internal,erts literal area collector,init,erl init,
prim eval,prim file,prim_inet,prim zip,zlib]},

{progress,preloaded},

{path, ["$RO0T/lib/kernel-5.2/ebin",

"$RO0T/1lib/stdlib-3.3/ebin"]},

{primLoad, [error_handler]},

{kernel load completed},

{progress,kernel load completed},

{path, ["$RO0T/lib/kernel-5.2/ebin"1},

{primLoad, [application,application controller,
application master,application starter,auth, code,
code server,disk log,disk log 1,disk log server,
disk log sup,dist ac,dist util,erl boot server|...1},

{path, ["$RO0T/1lib/stdlib-3.3/ebin"1},

{primLoad, [array,base64,beam lib,binary,c,calendar,dets,
dets server,dets sup,dets utils,dets v9,dict]|...]},

{path, ["$R0O0T/lib/sas1-3.0.3/ebin"1},

{primLoad, [alarm_handler,erlsrv,format lib supp,misc_supp,
rb,rb_format supp,release handler,release handler 1,sasl,
sasl report]|...]1},

{progress,modules loaded},

{path, ["$RO0T/lib/kernel-5.2/ebin",

"$RO0T/lib/stdlib-3.3/ebin", "$R0O0T/1lib/sasl-3.0.3/ebin"1},
{kernelProcess,heart,{heart,start,[]}},
{kernelProcess,error _logger,{error _logger,start link,[]}},
{kernelProcess,application controller,

{application controller,start,[{...}1}},

{progress,init kernel started},

{apply, {application,load,[...1}},

{apply, {application,load, ...}},

{progress,applications loaded},

{apply,{...}},
{apply, ...},
Tooolooo T

5>
5> reltool:stop(Server).

10 | Ericsson AB, All Rights Reserved: Reltool

1.3 Examples

ok

Ericsson AB, All Rights Reserved: Reltool | 11

1.3 Examples

1.3.4 Create a target system

Erlang/0TP 20 [erts-10.0] [source-c13b302] [64-bit] [smp:4:4] [ds:4:4:10] [async-threads:10]

[hipe] [kernel-poll:falsel

Eshell V10.0 (abort with ~G)

1>

1> Config = {sys, [{escript, "examples/display args", [{incl cond, include}l},

{app, inets, [{incl cond, include}]},

{app, mnesia, [{incl cond, exclude}l},

{app, ssl, [{incl cond, exclude}]},

{app, runtime tools, [{incl cond, exclude}l},
{app, syntax tools, [{incl cond, exclude}]}1}.

{sys, [{escript, "examples/display args", [{incl cond,include}1},
{app,inets, [{incl cond,include}]},
{app,mnesia, [{incl cond,exclude}]},
{app,ssl, [{incl cond,exclude}1},

{app, runtime tools, [{incl cond,exclude}]},
{app,syntax_tools, [{incl cond,exclude}]1}1}

2>

2> {ok, Spec} = reltool:get target spec([Config]).

{ok, [{create dir,"releases",

[{write file,"start erl.data","10.0 1.6\n"},
{create dir,"1.0",
[{write file,"start clean.rel",
[37,37,32,114,101,108,32,163,1601,110,101,114,97,116|...]1},
{write file,"start clean.script",
[37,37,32,115,99,114,105,112,116,32,103,1601,110|...]},
{write file,"start clean.boot",
<<131,104,3,119,6,115,99,114,105,112,116, 1064, ...>>},
{write file,"start sasl.rel",
[37,37,32,114,101,108,32,163,101,110,101|...1},
{write file,"start sasl.script",
[37,37,32,115,99,114,165,112,116,32|...1},
{write file,"start sasl.boot",
<<131,104,3,119,6,115,99,114,105, ...>>}]}1},
{create dir,"bin",
[{copy file,"display args.escript",
"/usr/local/lib/erlang/lib/reltool-0.7.3/examples/display args"},
{copy file,"display args","erts-10.0/bin/escript"},
{copy file,"start","erts-10.0/bin/start"},
{copy file,"ct run","erts-10.0/bin/ct run"},
{copy file,"dialyzer","erts-10.0/bin/dialyzer"},
{copy file,"run erl","erts-10.0/bin/run_erl"},
{copy file,"erl","erts-10.0/bin/dyn erl"},
{copy file,"to erl","erts-10.0/bin/to erl"},
{copy file,"epmd","erts-10.0/bin/epmd"},
{copy file,"erlc","erts-10.0/bin/erlc"},
{copy file,"typer","erts-10.0/bin/typer"},
{copy file,"escript","erts-10.0/bin/escript"},
{write file,"start clean.boot",<<131,104,3,119,6,115,...>>},
{write file,"start sasl.boot",<<131,104,3,119,6,...>>},
{write file,"start.boot",6<<131,104,3,119,...>>}1},
{copy file,"Install"},
{create dir,"misc",
[{copy file,"format man pages"}1},
{create dir,"usr",
[{create dir,"lib",
[{copy file,"liberl interface st.a"},
{copy file,"libic.a"},
{copy file,"liberl interface.a"},
{copy file,"libei st.a"},
{copy file,"libei.a"}1},
{create dir,"include",

12 | Ericsson AB, All Rights Reserved: Reltool

1.3 Examples

[{copy file,"driver int.h"},

{copy file,"ei connect.h"},

{copy file,"ei.h"},

{copy file,"erl nif api funcs.h"},

{copy_file,"erl fixed size int types.h"},

{copy_file,"erl int sizes config.h"},

{copy file,"erl interface.h"},

{copy file,"eicode.h"},

{copy file,"erl driver.h"},

{copy file,"erlang.idl"},

{copy file,[...]},

{copy file,...},

{...}1}1},

{create dir,"erts-10.0",
[{create dir,"bin",
[{copy file,"start"},

{copy file,"ct run"},

{copy file,"erlexec"},

{copy file,"dialyzer"},

{copy_file, "beam.smp"},

{copy file,"run erl"},

{copy file,"erl","erts-10.0/bin/dyn_erl"},

{copy file,"to erl"},

{copy file, "epmd"},

{copy file,"erl child setup"},

{copy file,"heart"},

{copy file,[...]},

{copy file,...},

{...}]...1},

{create dir,"lib",
[{create dir,"internal",
[{copy file,"liberts internal.a"},
{copy_file,"liberts_internal_r.a"},
{copy file,"libethread.a"},
{copy file,"README"}1},

1},
{create_dir,"src", [{copy file,"setuid socket wrap.c"}I},
{create dir,"doc",[1},

{create dir,"man",[1},

{create dir,"include",

[{create dir,"internal",

[{create dir,"i386",[{...}|...1},
{copy_file,"erl _errno.h"},
{copy file,[...]},
{copy file,...},
IO TR b 8

{copy file,"driver int.h"},

{copy file,"erl nif api funcs.h"},

{copy_file,"erl fixed size int types.h"},

{copy_file,"erl int sizes config.h"},

{copy file,[...]},

{copy file,...},

{...}1}1},

{create dir,"lib",
[{create dir,"compiler-7.0.4",
[{create dir,"src",
[{copy file,"beam flatten.erl"},
{copy file,[...]},
{copy file,...},
{030

{create dir,"ebin",

[{copy file,[...1},{copy file,...},{...}|...1}1},
{create dir,"crypto-3.7.4",
[{create dir,"src",[{copy_file,[...]},{copy file,...}1},

{create dir,"ebin", [{copy file,...},{...}|...1}1},

Ericsson AB, All Rights Reserved: Reltool | 13

1.3 Examples

{create dir,"crypto-3.7.4",

[{create dir,"priv",

[{create dir,"lib", [{copy file,[...]},{copy file,...}1},
{create dir,"obj", [{copy file,...},{...}|...1}1}1},

{create dir,"erts-10.0",

[{create dir,"src",[{...}]|...]1},

{create dir,"ebin",[...]1}1},
{create dir,"hipe-3.15.4",

[{create dir,"flow",[...1},

{copy file,[...]},

{create dir,...},

{..H .0,
{create dir,"inets-6.3.9",

[{create dir,[...],...},{create dir,...},{...}1},
{create dir,"inets-6.3.9",

[{create dir,"priv", [{create dir,[...],...}]1},

{create_dir,"include", [{copy file,...},{...}1}1},
{create dir,"kernel-5.2",[{...}]|...1},
{create dir,"kernel-5.2",

[{create dir,"include", [{...}|...1}1},
{create dir,[...],...},

{create dir,...},
{create dir,"stdlib-3.3", [{create dir,...}1},
<. 131}

3>

3> TargetDir = "/tmp/my_ target dir".

"/tmp/my target dir"

4>

4> reltool:eval target spec(Spec, code:root dir(), TargetDir).

{error,"/tmp/my target dir: no such file or directory"}

5>

5> file:make dir(TargetDir).

ok

6>

6> reltool:eval target spec(Spec, code:root dir(), TargetDir).

ok

7>

7> file:list dir(TargetDir).

{ok, ["bin","Install","lib", "misc","usr", "erts-10.0",
"releases"]}

8>

8> file:list dir(filename:join([TargetDir,"1ib"])).

{ok,["tools-2.9.1","inets-6.3.9",
"kernel-5.2","sas1-3.0.3",
"crypto-3.7.4","erts-10.0",
"stdlib-3.3","compiler-7.0.4"]}

9>

9> file:make dir("/tmp/yet_another target dir").

ok

10>

10> reltool:create target([Config], "/tmp/yet another target dir").

ok

11>

11> file:list dir("/tmp/yet_another_ target dir").

{ok, ["bin","Install","lib", "misc","usr", "erts-10.0",
"releases"]}

14 | Ericsson AB, All Rights Reserved: Reltool

1.3 Examples

2 Reference Manual

Reltool isarelease management tool. It analysesagiven Erlang/OTP install ation and determines various dependencies
between applications. Thegr aphi cal frontend depicts the dependencies and enables interactive customization of a
target system. The backend provides abat ch interface for generation of customized target systems.

Ericsson AB, All Rights Reserved: Reltool | 15

reltool

reltool

Erlang module

Thisis an interface module for the Reltool application.

Reltool isarelease management tool. It analysesagiven Erlang/OTP installation and determines various dependencies
between applications. Thegr aphi cal frontend depicts the dependencies and enables interactive customization of a
target system. The backend provides abat ch interface for generation of customized target systems.

Thetool uses an installed Erlang/OTP system asinput. r oot _di r istheroot directory of the analysed system and it
defaults to the system executing Reltool. Applications may also be located outsider oot _di r. 1 i b_di r s defines
library directories where additional applications may reside and it defaults to the directories listed by the operating
system environment variable ERL LI BS. See the module code for more info.

An application directory AppDi r under a library directory is recognized by the existence of an AppDi r/ ebi n
directory. If this does not exist, Reltool will not consider AppDi r at all when looking for applications.

Itisrecommended that application directories are named asthe application, possibly followed by adash and theversion
number. For example myapp or myapp- 1. 1.

Finally single modules and entire applications may be read from Escripts.

Some configuration parameters control the behavior of Reltool on system (sys) level. Others provide control on
application (app) level and yet others are on module (nod) level. Module level parameters override application level
parameters and application level parameters override system level parameters. Escript escri pt level parameters
override system level parameters.

Thefollowing top level opt i ons are supported:
config

Thisisthe main option and it controls the configuration of Reltool. It can either be asys tuple or aname of a
fil e containing asystuple.

trap_exit

This option controls the error handling behavior of Reltool. By default the window processes traps exit, but this
behavior can altered by settingt rap_exit tof al se.

wx_debug

This option controls the debug level of wx. As its name indicates it is only useful for debugging. See
wx: debug/ 1 for moreinfo.

Besides the already mentioned source parameters r oot _di r and | i b_di r s, the following system (sys) level
options are supported:

erts
Erts specific configuration. See application level options below.
escri pt

Escript specific configuration. An escript has a mandatory file name and escript level options that are described
below.

app

Application specific configuration. An application has a mandatory name and application level options that are
described below.

16 | Ericsson AB, All Rights Reserved: Reltool

reltool

nod_cond

This parameter controls the module inclusion policy. It defaults to al | which means that if an application is
included (either explicitly or implicitly) all modules in that application will be included. This implies that both
modules that exist in the ebi n directory of the application, as well as modules that are named in the app file
will be included. If the parameter is set to ebi n, both modules in the ebi n directory and derived modules are
included. If the parameter isset to app, both modulesintheapp fileand derived modulesareincluded. der i ved
meansthat only modulesthat are used by other included modulesareincluded. Therod__cond setting on system
level is used as default for all applications.

i ncl _cond

This parameter controls the application and escript inclusion policy. It defaultsto der i ved which means that
the applications that do not have any expliciti ncl _cond setting, will only be included if any other (explicitly
or implicitly included) application usesit. Thevaluei ncl ude impliesthat all applications and escripts that do
not have any expliciti ncl _cond setting will beincluded. excl ude impliesthat all applications and escripts
that do not have any expliciti ncl _cond setting will be excluded.

boot rel

rel

A target system may have severa releases but the one given as boot _r el will be used as default when the
system is booting up.

Release specific configuration. Each release mapstoar el ,scri pt andboot file. Seethemodulesyst ool s
for more info about the details. Each release has a name, a version and a set of applications with a few release
specific parameters such as type and included applications.

rel ocat abl e

This parameter controls whether the er | executable in the target system should automatically determine where
itisinstalled or if it should use a hardcoded path to the installation. In the latter case the target system must be
installed withr el t ool : i nst al | / 2 beforeit can be used. If the system is rel ocatable, thefile tree containing
the target system can be moved to another location without re-installation. The defaultist r ue.

profile

The creation of the specification for a target system is performed in two steps. In the first step a complete
specification is generated. It will likely contain much more files than you are interested in in your customized
target system. In the second step the specification will be filtered according to your filters. There you have the
ability to specify filters per application as well as system wide filters. You can also select apr of i | e for your
system. Depending on the pr of i | e, different default filters will be used. There are three different profiles to
choose from: devel oprent , enbedded and st andal one. devel opnent isdefault. The parameters that
areaffectedby theprofil eareii ncl _sys filters,excl _sys filters,incl_app filtersand
excl _app_filters.

app_file

This parameter controls the default handling of the app files when a target system is generated. It defaults to
keep which meansthat app files are copied to the target system and their contents are kept asthey are. st ri p
meansthat anew app fileis generated from the contents of the original app file where the non included modules
areremoved from thefile. al | doesalso imply that anew app fileis generated from the contents of the original
app file, with the difference that all included modules are added to the file. If the application does not have any
app fileafilewill be created for al | but not for keep andstri p.

debug_info

Thedebug_i nf o parameter controlswhat debug information in the beam file should be kept or stripped. keep
keeps all debug info, st ri p stripsall debug info, and alist of chunkids keeps only those chunks.

Ericsson AB, All Rights Reserved: Reltool | 17

reltool

excl _lib

‘ This option is experimental.

Iftheexcl _|i boptionissettoot p_r oot thenreltool will not copy anything from the Erlang/OTPinstallation
($OTPROOQT) into the target structure. The goal is to create a "dim" release which can be used together
with an existing Erlang/OTP installation. The target structure will therefore only contain al i b directory with
the applications that were found outside of $OTPROOT (typically your own applications), and ar el eases
directory with the generated . rel , . scri pt and. boot files.

When starting this rel ease, three things must be specified:

Which r el eases directory to use
Tell the release handler to use ther el eases directory in our target structure instead of $OTPROOT/
r el eases. Thisisdone by setting the SASL environment variabler el eases_di r, either from the
command line (- sasl rel eases_dir <target-dir>/rel eases)orinsys. config.
Which boot fileto use
The default boot fileis $OTPROCOT/ bi n/ st ar t , but in this case we need to specify a boot file from our
target structure, typically <t ar get - di r >/ r el eases/ <vsn>/ <Rel Nane>. Thisis done with the -
boot command line optiontoer |
Thelocation of our applications
The generated .script (and .boot) file uses the environment variable $SRELTOOL _EXT_LI B as prefix for
the pathsto al applications. The - boot _var optiontoer | can be used for specifying the value of this
variable, typically - boot _var RELTOOL_EXT LIB <target-dir>/1ib.

Example:

erl -sasl releases dir \"mytarget/releases\" -boot mytarget/releases/1.0/myrel\
-boot var RELTOOL EXT LIB mytarget/lib

incl_sys filters
This parameter normally contains a list of regular expressions that controls which files in the system should
be included. Each file in the target system must match at least one of the listed regular expressions in order
to be included. Further the files may not match any filter in excl _sys_fil ters in order to be included.

Which application files should be included is controlled with the parameters i ncl _app_filters and
excl _app_filters. Thisparameter defaultsto[". *"] .

excl _sys filters

This parameter normally contains a list of regular expressions that controls which files in the system should not
beincluded in the target system. In order to beincluded, afile must match somefilterini ncl _sys filters
but not any filterinexcl _sys_fil ters. Thisparameter defaultsto[] .

incl _app filters

This parameter normally contains a list of regular expressions that controls which application specific files that
should be included. Each file in the application must match at least one of the listed regular expressions in order
to beincluded. Further the files may not match any filterinexcl _app_fi | t er s inorder to beincluded. This
parameter defaultsto[". *"] .

excl _app_filters

This parameter normally contains a list of regular expressions that controls which application specific files
should not be included in the target system. In order to be included, a file must match some filter in
i ncl _app_filters butnotanyfilterinexcl _app_filters.Thisparameter defaultsto[] .

18 | Ericsson AB, All Rights Reserved: Reltool

reltool

On application (escri pt) level, the following options are supported:

i nc

| _cond

The value of this parameter overrides the parameter with the same name on system level.

On application (app) level, the following options are supported:

vsn

The version of the application. In an installed system there may exist several versions of an application. Thevsn
parameter controls which version of the application will be chosen.

This parameter is mutual exclusive with i b_dir.If vsnand|i b_dir are both omitted, the latest version
will be chosen.

Notethat in order for reltool to sort application versions and thereby be able to select the latest, it is required that
the version id for the application consists of integers and dots only, for example1,2. 0 or 3. 17. 1.

lib_dir

nod

The directory to read the application from. This parameter can be used to point out a specific location to fetch
the application from. This is useful for instance if the parent directory for some reason is no good as a library
directory on system level.

This parameter is mutual exclusive with vsn. If vsn and | i b_di r are both omitted, the latest version will
be chosen.

Notethat in order for reltool to sort application versions and thereby be able to select the latest, it is required that
the version id for the application consists of integers and dots only, for example1,2. 0 or 3. 17. 1.

Module specific configuration. A module has a mandatory name and module level options that are described
below.

nmod_cond

The value of this parameter overrides the parameter with the same name on system level.

i ncl_cond

The value of this parameter overrides the parameter with the same name on system level.

app_file

The value of this parameter overrides the parameter with the same name on system level.

debug_info

The value of this parameter overrides the parameter with the same name on system level.

incl _app filters

The value of this parameter overrides the parameter with the same name on system level.

excl _app_filters

The value of this parameter overrides the parameter with the same name on system level.

On module (nmod) level, the following options are supported:

i ncl_cond

This parameter controls whether the module is included or not. By default the nod _cond parameter on
application and system level will be used to control whether the module is included or not. The vaue of
i ncl _cond overrides the module inclusion policy. i ncl ude implies that the module is included, while

Ericsson AB, All Rights Reserved: Reltool | 19

reltool

excl ude implies that the module is not included. der i ved implies that the module is included if it is used
by any other included module.

debug_info
The value of this parameter overrides the parameter with the same name on application level.

20 | Ericsson AB, All Rights Reserved: Reltool

reltool

DATA TYPES

options()
option()

config()
sys()

app()

| {excl lib, e

mod ()

rel _app()

rel opt()
app_name()
app_type()
app_vsn()
boot rel()
app_file()

debug _info()

dir()

escript()

escript file()
excl app filters()
excl lib()

excl sys filters()
file()

incl _app()

incl _app filters()
incl cond()

incl sys filters()
1ib dir()

mod cond()

mod name()

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
I
I
I
I
I
I
X
I
I
|
I
I
I
I

[option()]
{config, config()

{sys, [sys()1}

| file()}
{trap_exit, bool()}
{wx_debug, term()}

{root dir, root dir()}

{lib dirs,

{erts, app()}

{escript, escript file(),
lapp()1}

{app, app_name(),

[lib dir()1}
{profile, profile()

}

[escript ()1}

{mod cond, mod cond()}
{incl cond, incl cond()}
{boot rel, boot rel()}

{rel, rel name(),
{rel, rel name(),
{relocatable,

rel vsn(),
rel vsn(),
relocatable()}

[rel_app()1}

[rel _app()], [rel opt()]1}

{app_file, app file()}
{debug info, debug info()}

{incl sys filters,
{excl sys filters,
{incl app filters,
{excl app filters,
{vsn, app vsn()}

incl sys filters
excl sys filters
incl app filters
excl app filters

0}
0}
0}
03

{lib_dir, lib_dir()}

{mod, mod name(),

[mod ()1}

{mod cond, mod cond()}
{incl cond, incl cond()}
{debug info, debug info()}
{app_file, app file()}

cl lib()}

{incl sys filters,
{excl sys filters,
{incl app filters,
{excl app filters,

incl sys filters
excl sys filters
incl app filters
excl app filters

0}
0}
0}
03

{incl cond, incl cond()}
{debug info, debug info()}

app_name()

{app_name(), app_type()}

{app_name(),

[incl_app()1}
{app_name(), app_type(),

[incl_app()1}

{load dot erlang, boolean()}

atom()

permanent | transient | temporary | load | none

string()
rel name()

keep | strip | all
[beam lib:chunkid()]

keep | strip |
string()

{incl cond, incl cond()}

file()
regexps ()
otp root
regexps ()
string()
app_name()
regexps ()

include | exclude | derived

regexps ()

dir()

all | app | ebin |
atom()

derived | none

Ericsson AB, All Rights Reserved: Reltool | 21

reltool

target spec() [target spec()]
{create _dir, base dir
{create _dir, base dir

(), [target spec()]}

(),
{copy file, base file()}

()

(

top dir(), [target spec()]}

{copy file, base file(), top file()}
{write file, base file(), iolist()}
{strip beam file, base file()}

profile() = development | embedded | standalone
re _regexp() = string()
reason() = string()
regexps() = [re_regexp()]
| {add, [re_regexp()]}
| {del, [re_regexp()]}
rel file() = term()
rel name() = string()
rel vsn() = string()
relocatable = boolean()
root dir() = dir()
script file() = term()
server() = server_pid() | options()
server _pid() = pid()
target dir() = file()
window pid() = pid()
base dir() = dir()
base file() = file()
top dir() = file()
top file() = file()
I
I
I
I
I

Exports

create target(Server, TargetDir) -> ok | {error, Reason}

Types:
Server = server()
TargetDir = target _dir()
Reason = reason()

Createatarget system. Givesthesameresult as{ ok, Tar get Spec} =rel t ool : get target spec(Server)
andrel tool : eval target spec(Target Spec, RootDir, TargetDir).

eval target spec(TargetSpec, RootDir, TargetDir) -> ok | {error, Reason}
Types:

Tar get Spec = target_spec()

RootDir = root _dir()
TargetDir = target_dir()
Reason = reason()

Create the actual target system from a specification generated by r el t ool : get _t arget _spec/ 1. The creation
of the specification for a target system is performed in two steps. In the first step a complete specification will be
generated. It will likely contain much morefilesthan you are interested inin your target system. In the second step the
specification will be filtered according to your filters. There you have the ability to specify filters per application as
well as system wide filters. You can also select apr of i | e for your system. Depending on the pr of i | e, different
default filterswill be used.

The top directories bi n, r el eases and | i b are treated differently from other files. All other files are by default
copied to the target system. Ther el eases directory contains generated r el , scri pt, and boot files. Thel i b
directory contains the applications. Which applications are included and if they should be customized (stripped from

22 | Ericsson AB, All Rights Reserved: Reltool

reltool

debug info etc.) is specified with various configuration parameters. The filesin the bi n directory are copied from the
ert s-vsn/ bi ndirectory, but only thosefilesthat were originally included inthebi n directory of the source system.

If the configuration parameter r el ocat abl e was set to t r ue there is no need to install the target system with
reltool:install/2 beforeit can be started. In that case the file tree containing the target system can be moved
without re-installation.

In most cases, the Root Di r parameter should be set to the same asther oot _di r configuration parameter used in
thecalltor el t ool : get _t arget _spec/ 1 (orcode: r oot _di r () if theconfiguration parameter isnot set). In
some cases it might be useful to evaluate the same target specification towards different root directories. This should,
however, be used with great care as it requires equivalent file structures under all roots.

get config(Server) -> {ok, Config} | {error, Reason}

Types.
Server = server()
Config = config()

Reason = reason()
Get reltool configuration. Shorthand for r el t ool : get _confi g(Server, f al se, fal se).

get config(Server, InclDefaults, InclDerived) -> {ok, Config} | {error,
Reason}

Types.
Server = server()
Incl Defaults = incl_defaul ts()
I ncl Derived = incl_derived()

Config = config()
Reason = reason()
Get reltool configuration. Normally, only the explicit configuration parameters with values that differ from their

defaults are interesting. But the builtin default values can be returned by setting | ncl Def aul t s totrue. The
derived configuration can be returned by setting | ncl Deri ved totrue.

get rel(Server, Relname) -> {ok, RelFile} | {error, Reason}
Types.

Server = server()

Rel Name = rel _name()

RelFile = rel _file()

Reason = reason()

Get contents of areleasefile. Seer el (4) for more details.

get script(Server, Relname) -> {ok, ScriptFile | {error, Reason}
Types:

Server = server()

Rel Nane = rel _nane()

ScriptFile = script_file()

Reason = reason()

Get contents of aboot script file. Seescri pt (4) for more details.

Ericsson AB, All Rights Reserved: Reltool | 23

reltool

get status(Server) -> {ok, [Warning]} | {error, Reason}
Types.

Server = server()

Warning = string()

Reason = reason()
Get status about the configuration

get server(WindowPid) -> {ok, ServerPid} | {error, Reason}
Types.

W ndowPi d = wi ndow_pi d()

ServerPid = server_pid()

Reason = reason()

Return the process identifier of the server process.

get target spec(Server) -> {ok, TargetSpec} | {error, Reason}
Types.

Server = server()

Tar get Spec = target _spec()

Reason = reason()

Return a specification of the target system. The actual target system can be created with
reltool:eval target spec/3.

install(RelName, TargetDir) -> ok | {error, Reason}
Types.

Rel Nane = rel _nane()

TargetDir = target _dir()

Reason = reason()
Install a created target system

start() -> {ok, WindowPid} | {error, Reason}
Types:

W ndowPi d = wi ndow_pi d()

Reason = reason()
Start amain window process with default options

start(Options) -> {ok, WindowPid} | {error, Reason}
Types:

Options = options()

W ndowPi d = wi ndow_pi d()

Reason = reason()
Start amain window process with options

24 | Ericsson AB, All Rights Reserved: Reltool

reltool

start link(Options) -> {ok, WindowPid} | {error, Reason}
Types.

Options = options()

W ndowPi d = wi ndow_pi d()

Reason = reason()
Start amain window process with options. The processis linked.

start server(Options) -> {ok, ServerPid} | {error, Reason}
Types.

Options = options()

ServerPid = server_pid()

Reason = reason()

Start a server process with options. The server process identity can be given as an argument to several other functions
inthe API.

stop(Pid) -> ok | {error, Reason}
Types:
Pid = server_pid() | w ndow_pid()
Reason = reason()
Stop a server or window process

Ericsson AB, All Rights Reserved: Reltool | 25

	Reltool
	Reltool Users Guide
	Introduction
	Scope and Purpose
	Prerequisites
	About This Manual
	Where to Find More Information

	Usage
	Overview
	System window
	Libraries
	System settings
	Applications
	Releases
	File menu
	Dependencies between applications or modules displayed as a graph

	Application window
	Application settings
	Modules
	Application dependencies
	Module dependencies

	Module window
	Dependencies
	Code

	Examples
	Start and stop windows and servers
	Inspecting the configuration
	Generate release and script files
	Create a target system

	Reference Manual
	reltool
	create_target/2
	eval_target_spec/3
	get_config/1
	get_config/3
	get_rel/2
	get_script/2
	get_status/1
	get_server/1
	get_target_spec/1
	install/2
	start/0
	start/1
	start_link/1
	start_server/1
	stop/1

