
Secure Socket Layer
Copyright © 1999-2025 Ericsson AB. All Rights Reserved.

Secure Socket Layer 11.1.4.9
September 10, 2025

Copyright © 1999-2025 Ericsson AB. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See
the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

September 10, 2025

1.1 Introduction

1 SSL User's Guide

The SSL application implements Transport Layer Security (TLS), formerly known as the Secure Socket Layer (SSL),
that is it provides secure communication over sockets.

1.1 Introduction
1.1.1 Purpose
Transport Layer Security (TLS) and its predecessor, the Secure Sockets Layer (SSL), are cryptographic protocols
designed to provide communications security over a computer network. The protocols use X.509 certificates and
hence public key (asymmetric) cryptography to authenticate the counterpart with whom they communicate, and to
exchange a symmetric key for payload encryption. The protocol provides data/message confidentiality (encryption),
integrity (through message authentication code checks) and host verification (through certificate path validation).
DTLS (Datagram Transport Layer Security) that is based on TLS but datagram oriented instead of stream oriented.

1.1.2 Prerequisites
It is assumed that the reader is familiar with the Erlang programming language, the concepts of OTP, and has a basic
understanding of TLS/DTLS.

1.2 TLS/DTLS and TLS Predecessor, SSL
The Erlang SSL application implements the TLS/DTLS protocol for the currently supported versions, see the ssl(3)
manual page.

By default TLS is run over the TCP/IP protocol even though you can plug in any other reliable transport protocol
with the same Application Programming Interface (API) as the gen_tcp module in Kernel. DTLS is by default run
over UDP/IP, which means that application data has no delivery guarantees. Other transports, such as SCTP, may be
supported in future releases.

If a client and a server wants to use an upgrade mechanism, such as defined by RFC 2817, to upgrade a regular TCP/
IP connection to a TLS connection, this is supported by the Erlang SSL application API. This can be useful for, for
example, supporting HTTP and HTTPS on the same port and implementing virtual hosting. Note this is a TLS feature
only.

1.2.1 Security Overview
To achieve authentication and privacy, the client and server perform a TLS/DTLS handshake procedure before
transmitting or receiving any data. During the handshake, they agree on a protocol version and cryptographic
algorithms, generate shared secrets using public key cryptographies, and optionally authenticate each other with digital
certificates.

1.2.2 Data Privacy and Integrity
A symmetric key algorithm has one key only. The key is used for both encryption and decryption. These algorithms
are fast, compared to public key algorithms (using two keys, one public and one private) and are therefore typically
used for encrypting bulk data.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 1

1.2 TLS/DTLS and TLS Predecessor, SSL

The keys for the symmetric encryption are generated uniquely for each connection and are based on a secret negotiated
in the TLS/DTLS handshake.

The TLS/DTLS handshake protocol and data transfer is run on top of the TLS/DTLS Record Protocol, which uses a
keyed-hash Message Authenticity Code (MAC), or a Hash-based MAC (HMAC), to protect the message data integrity.
From the TLS RFC: "A Message Authentication Code is a one-way hash computed from a message and some secret
data. It is difficult to forge without knowing the secret data. Its purpose is to detect if the message has been altered."

1.2.3 Digital Certificates
A certificate is similar to a driver's license, or a passport. The holder of the certificate is called the subject. The
certificate is signed with the private key of the issuer of the certificate. A chain of trust is built by having the issuer
in its turn being certified by another certificate, and so on, until you reach the so called root certificate, which is self-
signed, that is, issued by itself.

Certificates are issued by Certification Authorities (CAs) only. A handful of top CAs in the world issue root certificates.
You can examine several of these certificates by clicking through the menus of your web browser.

1.2.4 Peer Authentication
Authentication of the peer is done by public key path validation as defined in RFC 3280. This means basically the
following:

• Each certificate in the certificate chain is issued by the previous one.

• The certificates attributes are valid.

• The root certificate is a trusted certificate that is present in the trusted certificate database kept by the peer.

The server always sends a certificate chain as part of the TLS handshake, but the client only sends one if requested by
the server. If the client does not have an appropriate certificate, it can send an "empty" certificate to the server.

The client can choose to accept some path evaluation errors, for example, a web browser can ask the user whether
to accept an unknown CA root certificate. The server, if it requests a certificate, does however not accept any path
validation errors. It is configurable if the server is to accept or reject an "empty" certificate as response to a certificate
request.

1.2.5 TLS Sessions - PRE TLS-1.3
From the TLS RFC: "A TLS session is an association between a client and a server. Sessions are created by the
handshake protocol. Sessions define a set of cryptographic security parameters, which can be shared among multiple
connections. Sessions are used to avoid the expensive negotiation of new security parameters for each connection."

Session data is by default kept by the SSL application in a memory storage, hence session data is lost at application
restart or takeover. Users can define their own callback module to handle session data storage if persistent data storage
is required. Session data is also invalidated when session database exceeds its limit or 24 hours after being saved (RFC
max lifetime recommendation). The amount of time the session data is to be saved can be configured.

By default the TLS/DTLS clients try to reuse an available session and by default the TLS/DTLS servers agree to reuse
sessions when clients ask for it. See also Session Reuse Pre TLS-1.3

1.2.6 TLS-1.3 session tickets
In TLS 1.3 the session reuse is replaced by a new session tickets mechanism based on the pre shared key concept. This
mechanism also obsoletes the session tickets from RFC5077, not implemented by this application. See also Session
Tickets and Session Resumption in TLS-1.3

2 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.3 Using SSL application API

1.3 Using SSL application API
To see relevant version information for ssl, call ssl:versions/0 .

To see all supported cipher suites, call ssl:cipher_suites(all, 'tlsv1.3') . The available cipher suites
for a connection depend on the TLS version and pre TLS-1.3 also on the certificate. To see the default cipher suite
list change all to default. Note that TLS 1.3 and previous versions do not have any cipher suites in common,
for listing cipher suites for a specific version use ssl:cipher_suites(exclusive, 'tlsv1.3') . Specific
cipher suites that you want your connection to use can also be specified. Default is to use the strongest available.

The following sections shows small examples of how to set up client/server connections using the Erlang shell. The
returned value of the sslsocket is abbreviated with [...] as it can be fairly large and is opaque to the user except
for the purpose of pattern matching.

Note:

Note that client certificate verification is optional for the server and needs additional conguration on both sides to
work. The Certificate and keys, in the examples, are provided using the certs_keys option introduced in OTP-25.

1.3.1 Basic Client
 1 > ssl:start(), ssl:connect("google.com", 443, [{verify, verify_peer},
 {cacerts, public_key:cacerts_get()}]).
 {ok,{sslsocket, [...]}}

1.3.2 Basic Connection
Step 1: Start the server side:

1 server> ssl:start().
ok

Step 2: with alternative certificates, in this example the EDDSA certificate will be preferred if TLS-1.3 is negotiated
and the RSA certificate will always be used for TLS-1.2 as it does not support the EDDSA algorithm:

2 server> {ok, ListenSocket} =
ssl:listen(9999, [{certs_keys, [#{certfile => "eddsacert.pem",
 keyfile => "eddsakey.pem"},
 #{certfile => "rsacert.pem",
 keyfile => "rsakey.pem",
 password => "foobar"}
]},{reuseaddr, true}]).
{ok,{sslsocket, [...]}}

Step 3: Do a transport accept on the TLS listen socket:

3 server> {ok, TLSTransportSocket} = ssl:transport_accept(ListenSocket).
{ok,{sslsocket, [...]}}

Note:

ssl:transport_accept/1 and ssl:handshake/2 are separate functions so that the handshake part can be called in a new
erlang process dedicated to handling the connection

Step 4: Start the client side:

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 3

1.3 Using SSL application API

1 client> ssl:start().
ok

Be sure to configure trusted certificates to use for server certificate verification.

2 client> {ok, Socket} = ssl:connect("localhost", 9999,
 [{verify, verify_peer},
 {cacertfile, "cacerts.pem"}, {active, once}], infinity).
{ok,{sslsocket, [...]}}

Step 5: Do the TLS handshake:

4 server> {ok, Socket} = ssl:handshake(TLSTransportSocket).
{ok,{sslsocket, [...]}}

Note:

A real server should use ssl:handshake/2 that has a timeout to avoid DoS attacks. In the example the timeout defaults
to infinty.

Step 6: Send a message over TLS:

5 server> ssl:send(Socket, "foo").
ok

Step 7: Flush the shell message queue to see that the message sent on the server side is recived by the client side:

3 client> flush().
Shell got {ssl,{sslsocket,[...]},"foo"}
ok

1.3.3 Upgrade Example - TLS only
Upgrading a a TCP/IP connection to a TLS connections is mostly used when there is a desire have unencrypted
communication first and then later secure the communication channel by using TLS. Note that the client and server need
to agree to do the upgrade in the protocol doing the communication. This is concept is often referenced as STARTLS
and used in many protocols such as SMTP, FTPS and HTTPS via a proxy.

Warning:

Maximum security recommendations are however moving away from such solutions.

To upgrade to a TLS connection:

Step 1: Start the server side:

1 server> ssl:start().
 ok

Step 2: Create a normal TCP listen socket and ensure active is set to false and not set to any active mode otherwise
TLS handshake messages can be delivered to the wrong process.

2 server> {ok, ListenSocket} = gen_tcp:listen(9999, [{reuseaddr, true},
 {active, false}]).
 {ok, #Port<0.475>}

Step 3: Accept client connection:

4 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.3 Using SSL application API

3 server> {ok, Socket} = gen_tcp:accept(ListenSocket).
 {ok, #Port<0.476>}

Step 4: Start the client side:

1 client> ssl:start().
 ok

2 client> {ok, Socket} = gen_tcp:connect("localhost", 9999, [], infinity).

Step 5: Do the TLS handshake:

4 server> {ok, TLSSocket} = ssl:handshake(Socket, [{verify, verify_peer},
 {fail_if_no_peer_cert, true},
 {cacertfile, "cacerts.pem"},
 {certs_keys, [#{certfile => "cert.pem", keyfile => "key.pem"}]}]).
 {ok,{sslsocket,[...]}}

Step 6: Upgrade to a TLS connection. The client and server must agree upon the upgrade. The server must be prepared
to be a TLS server before the client can do a successful connect.

3 client>{ok, TLSSocket} = ssl:connect(Socket, [{verify, verify_peer},
 {cacertfile, "cacerts.pem"},
 {certs_keys, [#{certfile => "cert.pem", keyfile => "key.pem"}]}], infinity).
{ok,{sslsocket,[...]}}

Step 7: Send a message over TLS:

4 client> ssl:send(TLSSocket, "foo").
 ok

Step 8: Set active once on the TLS socket:

5 server> ssl:setopts(TLSSocket, [{active, once}]).
 ok

Step 9: Flush the shell message queue to see that the message sent on the client side is recived by the server side:

5 server> flush().
 Shell got {ssl,{sslsocket,[...]},"foo"}
 ok

1.3.4 Customizing cipher suites
Fetch default cipher suite list for a TLS/DTLS version. Change default to all to get all possible cipher suites.

1> Default = ssl:cipher_suites(default, 'tlsv1.2').
 [#{cipher => aes_256_gcm,key_exchange => ecdhe_ecdsa,
 mac => aead,prf => sha384},]

In OTP 20 it is desirable to remove all cipher suites that uses rsa key exchange (removed from default in 21)

2> NoRSA =
 ssl:filter_cipher_suites(Default,
 [{key_exchange, fun(rsa) -> false;
 (_) -> true
 end}]).
 [...]

Pick just a few suites

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 5

1.3 Using SSL application API

 3> Suites =
 ssl:filter_cipher_suites(Default,
 [{key_exchange, fun(ecdh_ecdsa) -> true;
 (_) -> false
 end},
 {cipher, fun(aes_128_cbc) -> true;
 (_) ->false
 end}]).
 [#{cipher => aes_128_cbc,key_exchange => ecdh_ecdsa,
 mac => sha256,prf => sha256},
 #{cipher => aes_128_cbc,key_exchange => ecdh_ecdsa,mac => sha,
 prf => default_prf}]

Make some particular suites the most preferred, or least preferred by changing prepend to append.

 4>ssl:prepend_cipher_suites(Suites, Default).
 [#{cipher => aes_128_cbc,key_exchange => ecdh_ecdsa,
 mac => sha256,prf => sha256},
 #{cipher => aes_128_cbc,key_exchange => ecdh_ecdsa,mac => sha,
 prf => default_prf},
 #{cipher => aes_256_cbc,key_exchange => ecdhe_ecdsa,
 mac => sha384,prf => sha384}, ...]

1.3.5 Customizing signature algorithms(TLS-1.2)/schemes(TLS-1.3)
Starting from TLS-1.2 signature algorithms (called signature schemes in TLS-1.3) is something that can be negotiated
and hence also configured. These algorithms/schemes will be used for digital signatures in protocol messages and in
certificates.

Note:

TLS-1.3 schemes have atom names whereas TLS-1.2 configuration is two element tuples composed by one hash
algorithm and one signature algorithm. When both versions are supported the configuration can be a mix of these
as both versions might be negotiated. All rsa_pss based schemes are back ported to TLS-1.2 and can be used
also in a TLS-1.2 configuration. In TLS-1.2 the signature algorithms chosen by the server will also be affected by
the chiper suite that is chosen, which is not the case in TLS-1.3.

Using the function ssl:signature_algs/2 will let you inspect diffrent aspects of possible configurations for
your system. For example if TLS-1.3 and TLS-1.2 is supported the default signature_algorithm list in OTP-26 and
cryptolib from OpenSSL 3.0.2 would look like:

 1> ssl:signature_algs(default, 'tlsv1.3').
 %% TLS-1.3 schemes
 [eddsa_ed25519,eddsa_ed448,ecdsa_secp521r1_sha512,
 ecdsa_secp384r1_sha384,ecdsa_secp256r1_sha256,
 rsa_pss_pss_sha512,rsa_pss_pss_sha384,rsa_pss_pss_sha256,
 rsa_pss_rsae_sha512,rsa_pss_rsae_sha384,rsa_pss_rsae_sha256,
 %% Legacy schemes only valid for certificate signatures in TLS-1.3
 %% (would have a tuple name in TLS-1.2 only configuration)
 rsa_pkcs1_sha512,rsa_pkcs1_sha384,rsa_pkcs1_sha256
 %% TLS 1.2 algorithms
 {sha512,ecdsa},
 {sha384,ecdsa},
 {sha256,ecdsa}]

If you want to add support for non default supported algorithms you should append them to the default list as the
configuration is in prefered order, something like this:

6 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.3 Using SSL application API

 MySignatureAlgs = ssl:signature_algs(default, 'tlsv1.3') ++ [{sha, rsa}, {sha, dsa}],
 ssl:connect(Host,Port,[{signature_algs, MySignatureAlgs,...]}),
 ...

See also ssl:signature_algs/2 and sign_algo()

1.3.6 Using an Engine Stored Key
Erlang ssl application is able to use private keys provided by OpenSSL engines using the following mechanism:

1> ssl:start().
ok

Load a crypto engine, should be done once per engine used. For example dynamically load the engine called
MyEngine:

2> {ok, EngineRef} =
crypto:engine_load(<<"dynamic">>,
[{<<"SO_PATH">>, "/tmp/user/engines/MyEngine"},<<"LOAD">>],
[]).
{ok,#Ref<0.2399045421.3028942852.173962>}

Create a map with the engine information and the algorithm used by the engine:

3> PrivKey =
 #{algorithm => rsa,
 engine => EngineRef,
 key_id => "id of the private key in Engine"}.

Use the map in the ssl key option:

4> {ok, SSLSocket} =
ssl:connect("localhost", 9999,
 [{cacertfile, "cacerts.pem"},
 {certs_keys, [#{certfile => "cert.pem", key => PrivKey}]}
], infinity).

See also crypto documentation

1.3.7 NSS keylog
The NSS keylog debug feature can be used by authorized users to for instance enable wireshark to decrypt TLS packets.

Server (with NSS key logging)

 server() ->
 application:load(ssl),
 {ok, _} = application:ensure_all_started(ssl),
 Port = 11029,
 LOpts = [{certs_keys, [#{certfile => "cert.pem", keyfile => "key.pem"}]},
 {reuseaddr, true},
 {versions, ['tlsv1.2','tlsv1.3']},
 {keep_secrets, true} %% Enable NSS key log (debug option)
],
 {ok, LSock} = ssl:listen(Port, LOpts),
 {ok, ASock} = ssl:transport_accept(LSock),
 {ok, CSock} = ssl:handshake(ASock).

Exporting the secrets

 {ok, [{keylog, KeylogItems}]} = ssl:connection_information(CSock, [keylog]).
 file:write_file("key.log", [[KeylogItem,$\n] || KeylogItem <- KeylogItems]).

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 7

1.3 Using SSL application API

1.3.8 Session Reuse pre TLS 1.3
Clients can request to reuse a session established by a previous full handshake between that client and server by sending
the id of the session in the initial handshake message. The server may or may not agree to reuse it. If agreed the server
will send back the id and if not it will send a new id. The ssl application has several options for handling session reuse.

On the client side the ssl application will save session data to try to automate session reuse on behalf of the client
processes on the Erlang node. Note that only verified sessions will be saved for security reasons, that is session
resumption relies on the certificate validation to have been run in the original handshake. To minimize memory
consumption only unique sessions will be saved unless the special save value is specified for the following option
{reuse_sessions, boolean() | save} in which case a full handshake will be performed and that specific
session will have been saved before the handshake returns. The session id and even an opaque binary containing the
session data can be retrieved using ssl:connection_information/1 function. A saved session (guaranteed
by the save option) can be explicitly reused using {reuse_session, SessionId}. Also it is possible for
the client to reuse a session that is not saved by the ssl application using {reuse_session, {SessionId,
SessionData}}.

Note:

When using explicit session reuse, it is up to the client to make sure that the session being reused is for the correct
server and has been verified.

Here follows a client side example, divide into several steps for readability.

Step 1 - Automated Session Reuse

1> ssl:start().
ok

2> {ok, C1} = ssl:connect("localhost", 9999, [{verify, verify_peer},
 {versions, ['tlsv1.2']},
 {cacertfile, "cacerts.pem"}]).
{ok,{sslsocket,{gen_tcp,#Port<0.7>,tls_connection,undefined}, ...}}

3> ssl:connection_information(C1, [session_id]).
{ok,[{session_id,<<95,32,43,22,35,63,249,22,26,36,106,
 152,49,52,124,56,130,192,137,161,
 146,145,164,232,...>>}]}

%% Reuse session if possible, note that if C2 is really fast the session
%% data might not be available for reuse.
4> {ok, C2} = ssl:connect("localhost", 9999, [{verify, verify_peer},
 {versions, ['tlsv1.2']},
 {cacertfile, "cacerts.pem"},
 {reuse_sessions, true}]).
{ok,{sslsocket,{gen_tcp,#Port<0.8>,tls_connection,undefined}, ...]}}

%% C2 got same session ID as client one, session was automatically reused.
5> ssl:connection_information(C2, [session_id]).
{ok,[{session_id,<<95,32,43,22,35,63,249,22,26,36,106,
 152,49,52,124,56,130,192,137,161,
 146,145,164,232,...>>}]}

Step 2- Using save Option

8 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.3 Using SSL application API

%% We want save this particular session for
%% reuse although it has the same basis as C1
6> {ok, C3} = ssl:connect("localhost", 9999, [{verify, verify_peer},
 {versions, ['tlsv1.2']},
 {cacertfile, "cacerts.pem"},
 {reuse_sessions, save}]).
{ok,{sslsocket,{gen_tcp,#Port<0.9>,tls_connection,undefined}, ...]}}

%% A full handshake is performed and we get a new session ID
7> {ok, [{session_id, ID}]} = ssl:connection_information(C3, [session_id]).
{ok,[{session_id,<<91,84,27,151,183,39,84,90,143,141,
 121,190,66,192,10,1,27,192,33,95,78,
 8,34,180,...>>}]}

%% Use automatic session reuse
8> {ok, C4} = ssl:connect("localhost", 9999, [{verify, verify_peer},
 {versions, ['tlsv1.2']},
 {cacertfile, "cacerts.pem"},
 {reuse_sessions, true}]).
{ok,{sslsocket,{gen_tcp,#Port<0.10>,tls_connection,
 undefined}, ...]}}

%% The "saved" one happened to be selected, but this is not a guarantee
9> ssl:connection_information(C4, [session_id]).
{ok,[{session_id,<<91,84,27,151,183,39,84,90,143,141,
 121,190,66,192,10,1,27,192,33,95,78,
 8,34,180,...>>}]}

%% Make sure to reuse the "saved" session
10> {ok, C5} = ssl:connect("localhost", 9999, [{verify, verify_peer},
 {versions, ['tlsv1.2']},
 {cacertfile, "cacerts.pem"},
 {reuse_session, ID}]).
{ok,{sslsocket,{gen_tcp,#Port<0.11>,tls_connection,
 undefined}, ...]}}

11> ssl:connection_information(C5, [session_id]).
{ok,[{session_id,<<91,84,27,151,183,39,84,90,143,141,
 121,190,66,192,10,1,27,192,33,95,78,
 8,34,180,...>>}]}

Step 3 - Explicit Session Reuse

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 9

1.3 Using SSL application API

%% Perform a full handshake and the session will not be saved for reuse
12> {ok, C9} =
ssl:connect("localhost", 9999, [{verify, verify_peer},
 {versions, ['tlsv1.2']},
 {cacertfile, "cacerts.pem"},
 {reuse_sessions, false},
 {server_name_indication, disable}]).
{ok,{sslsocket,{gen_tcp,#Port<0.14>,tls_connection, ...}}

%% Fetch session ID and data for C9 connection
12> {ok, [{session_id, ID1}, {session_data, SessData}]} =
 ssl:connection_information(C9, [session_id, session_data]).
{ok,[{session_id,<<9,233,4,54,170,88,170,180,17,96,202,
 85,85,99,119,47,9,68,195,50,120,52,
 130,239,...>>},
 {session_data,<<131,104,13,100,0,7,115,101,115,115,105,
 111,110,109,0,0,0,32,9,233,4,54,170,...>>}]}

%% Explicitly reuse the session from C9
13> {ok, C10} = ssl:connect("localhost", 9999, [{verify, verify_peer},
 {versions, ['tlsv1.2']},
 {cacertfile, "cacerts.pem"},
 {reuse_session, {ID1, SessData}}]).
{ok,{sslsocket,{gen_tcp,#Port<0.15>,tls_connection,
 undefined}, ...}}

14> ssl:connection_information(C10, [session_id]).
{ok,[{session_id,<<9,233,4,54,170,88,170,180,17,96,202,
 85,85,99,119,47,9,68,195,50,120,52,
 130,239,...>>}]}

Step 4 - Not Possible to Reuse Explicit Session by ID Only

%% Try to reuse the session from C9 using only the id
15> {ok, E} = ssl:connect("localhost", 9999, [{verify, verify_peer},
 {versions, ['tlsv1.2']},
 {cacertfile, "cacerts.pem"},
 {reuse_session, ID1}]).
{ok,{sslsocket,{gen_tcp,#Port<0.18>,tls_connection,
 undefined}, ...}}

%% This will fail (as it is not saved for reuse)
%% and a full handshake will be performed, we get a new id.
16> ssl:connection_information(E, [session_id]).
{ok,[{session_id,<<87,46,43,126,175,68,160,153,37,29,
 196,240,65,160,254,88,65,224,18,63,
 18,17,174,39,...>>}]}

On the server side the the {reuse_sessions, boolean()} option determines if the server will save session
data and allow session reuse or not. This can be further customized by the option {reuse_session, fun()}
that may introduce a local policy for session reuse.

1.3.9 Session Tickets and Session Resumption in TLS 1.3
TLS 1.3 introduces a new secure way of resuming sessions by using session tickets. A session ticket is an opaque data
structure that is sent in the pre_shared_key extension of a ClientHello, when a client attempts to resume a session with
keying material from a previous successful handshake.

Session tickets can be stateful or stateless. A stateful session ticket is a database reference (session ticket store) and used
with stateful servers, while a stateless ticket is a self-encrypted and self-authenticated data structure with cryptographic
keying material and state data, enabling session resumption with stateless servers.

10 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.3 Using SSL application API

The choice between stateful or stateless depends on the server requirements as the session tickets are opaque for the
clients. Generally, stateful tickets are smaller and the server can guarantee that tickets are only used once. Stateless
tickets contain additional data, require less storage on the server side, but they offer different guarantees against anti-
replay. See also Anti-Replay Protection in TLS 1.3

Session tickets are sent by servers on newly established TLS connections. The number of tickets sent and their lifetime
are configurable by application variables. See also SSL's configuration.

Session tickets are protected by application traffic keys, and in stateless tickets, the opaque data structure itself is self-
encrypted.

An example with automatic and manual session resumption:

 {ok, _} = application:ensure_all_started(ssl).
 LOpts = [{certs_keys, [#{certfile => "cert.pem",
 keyfile => "key.pem"}]},
 {versions, ['tlsv1.2','tlsv1.3']},
 {session_tickets, stateless}].
 {ok, LSock} = ssl:listen(8001, LOpts).
 {ok, ASock} = ssl:transport_accept(LSock).

Step 2 (client): Start the client and connect to server:

 {ok, _} = application:ensure_all_started(ssl).
 COpts = [{cacertfile, "cert.pem"},
 {versions, ['tlsv1.2','tlsv1.3']},
 {log_level, debug},
 {session_tickets, auto}].
 ssl:connect("localhost", 8001, COpts).

Step 3 (server): Start the TLS handshake:

 {ok, CSocket} = ssl:handshake(ASock).

A connection is established using a full handshake. Below is a summary of the exchanged messages:

 >>> TLS 1.3 Handshake, ClientHello ...
 <<< TLS 1.3 Handshake, ServerHello ...
 <<< Handshake, EncryptedExtensions ...
 <<< Handshake, Certificate ...
 <<< Handshake, CertificateVerify ...
 <<< Handshake, Finished ...
 >>> Handshake, Finished ...
 <<< Post-Handshake, NewSessionTicket ...

At this point the client has stored the received session tickets and ready to use them when establishing new connections
to the same server.

Step 4 (server): Accept a new connection on the server:

 {ok, ASock2} = ssl:transport_accept(LSock).

Step 5 (client): Make a new connection:

 ssl:connect("localhost", 8001, COpts).

Step 6 (server): Start the handshake:

 {ok, CSock2} =ssl:handshake(ASock2).

The second connection is a session resumption using keying material from the previous handshake:

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 11

1.3 Using SSL application API

 >>> TLS 1.3 Handshake, ClientHello ...
 <<< TLS 1.3 Handshake, ServerHello ...
 <<< Handshake, EncryptedExtensions ...
 <<< Handshake, Finished ...
 >>> Handshake, Finished ...
 <<< Post-Handshake, NewSessionTicket ...

Manual handling of session tickets is also supported. In manual mode, it is the responsibility of the client to handle
received session tickets.

Step 7 (server): Accept a new connection on the server:

 {ok, ASock3} = ssl:transport_accept(LSock).

Step 8 (client): Make a new connection to server:

 {ok, _} = application:ensure_all_started(ssl).
 COpts2 = [{cacertfile, "cacerts.pem"},
 {versions, ['tlsv1.2','tlsv1.3']},
 {log_level, debug},
 {session_tickets, manual}].
 ssl:connect("localhost", 8001, COpts).

Step 9 (server): Start the handshake:

 {ok, CSock3} = ssl:handshake(ASock3).

After the handshake is performed, the user process receivess messages with the tickets sent by the server.

Step 10 (client): Receive a new session ticket:

 Ticket = receive {ssl, session_ticket, {_, TicketData}} -> TicketData end.

Step 11 (server): Accept a new connection on the server:

 {ok, ASock4} = ssl:transport_accept(LSock).

Step 12 (client): Initiate a new connection to the server with the session ticket received in Step 10:

 {ok, _} = application:ensure_all_started(ssl).
 COpts2 = [{cacertfile, "cert.pem"},
 {versions, ['tlsv1.2','tlsv1.3']},
 {log_level, debug},
 {session_tickets, manual},
 {use_ticket, [Ticket]}].
 ssl:connect("localhost", 8001, COpts).

Step 13 (server): Start the handshake:

 {ok, CSock4} = ssl:handshake(ASock4).

1.3.10 Early Data in TLS-1.3
TLS 1.3 allows clients to send data on the first flight if the endpoints have a shared crypographic secret (pre-shared
key). This means that clients can send early data if they have a valid session ticket received in a previous successful
handshake. For more information about session resumption see Session Tickets and Session Resumption in TLS 1.3.

The security properties of Early Data are weaker than other kinds of TLS data. This data is not forward secret, and it
is vulnerable to replay attacks. For available mitigation strategies see Anti-Replay Protection in TLS 1.3.

In normal operation, clients will not know which, if any, of the available mitigation strategies servers actually
implement, and hence must only send early data which they deem safe to be replayed. For example, idempotent HTTP

12 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.3 Using SSL application API

operations, such as HEAD and GET, can usually be regarded as safe but even they can be exploited by a large number
of replays causing resource limit exhaustion and other similar problems.

An example of sending early data with automatic and manual session ticket handling:

Server

 early_data_server() ->
 application:load(ssl),
 {ok, _} = application:ensure_all_started(ssl),
 Port = 11029,
 LOpts = [{certs_keys, [#{certfile => "cert.pem", keyfile => "key.pem"}]},
 {reuseaddr, true},
 {versions, ['tlsv1.2','tlsv1.3']},
 {session_tickets, stateless},
 {early_data, enabled},
],
 {ok, LSock} = ssl:listen(Port, LOpts),
 %% Accept first connection
 {ok, ASock0} = ssl:transport_accept(LSock),
 {ok, CSock0} = ssl:handshake(ASock0),
 %% Accept second connection
 {ok, ASock1} = ssl:transport_accept(LSock),
 {ok, CSock1} = ssl:handshake(ASock1),
 Sock.

Client (automatic ticket handling):

 early_data_auto() ->
 %% First handshake 1-RTT - get session tickets
 application:load(ssl),
 {ok, _} = application:ensure_all_started(ssl),
 Port = 11029,
 Data = <<"HEAD / HTTP/1.1\r\nHost: \r\nConnection: close\r\n">>,
 COpts0 = [{cacertfile, "cacerts.pem"},
 {versions, ['tlsv1.2', 'tlsv1.3']},
 {session_tickets, auto}],
 {ok, Sock0} = ssl:connect("localhost", Port, COpts0),

 %% Wait for session tickets
 timer:sleep(500),
 %% Close socket if server cannot handle multiple
 %% connections e.g. openssl s_server
 ssl:close(Sock0),

 %% Second handshake 0-RTT
 COpts1 = [{cacertfile, "cacerts.pem"},
 {versions, ['tlsv1.2', 'tlsv1.3']},
 {session_tickets, auto},
 {early_data, Data}],
 {ok, Sock} = ssl:connect("localhost", Port, COpts1),
 Sock.

Client (manual ticket handling):

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 13

1.3 Using SSL application API

 early_data_manual() ->
 %% First handshake 1-RTT - get session tickets
 application:load(ssl),
 {ok, _} = application:ensure_all_started(ssl),
 Port = 11029,
 Data = <<"HEAD / HTTP/1.1\r\nHost: \r\nConnection: close\r\n">>,
 COpts0 = [{cacertfile, "cacerts.pem"},
 {versions, ['tlsv1.2', 'tlsv1.3']},
 {session_tickets, manual}],
 {ok, Sock0} = ssl:connect("localhost", Port, COpts0),

 %% Wait for session tickets
 Ticket =
 receive
 {ssl, session_ticket, Ticket0} ->
 Ticket0
 end,

 %% Close socket if server cannot handle multiple connections
 %% e.g. openssl s_server
 ssl:close(Sock0),

 %% Second handshake 0-RTT
 COpts1 = [{cacertfile, "cacerts.pem"},
 {versions, ['tlsv1.2', 'tlsv1.3']},
 {session_tickets, manual},
 {use_ticket, [Ticket]},
 {early_data, Data}],
 {ok, Sock} = ssl:connect("localhost", Port, COpts1),
 Sock.

1.3.11 Anti-Replay Protection in TLS 1.3
The TLS 1.3 protocol does not provide inherent protection for replay of 0-RTT data but describes mechanisms
that SHOULD be implemented by compliant server implementations. The implementation of TLS 1.3 in the SSL
application employs all standard methods to prevent potential threats.

Single-use tickets

This mechanism is available with stateful session tickets. Session tickets can only be used once, subsequent use of
the same ticket results in a full handshake. Stateful servers enforce this rule by maintaining a database of outstanding
valid tickets.

Client Hello Recording

This mechanism is available with stateless session tickets. The server records a unique value derived from
the ClientHello (PSK binder) in a given time window. The ticket's age is verified by using both the
"obsfuscated_ticket_age" and an additional timestamp encrypted in the ticket data. As the used datastore allows false
positives, apparent replays will be answered by doing a full 1-RTT handshake.

Freshness Checks

This mechanism is available with the stateless session tickets. As the ticket data has an embedded timestamp, the server
can determine if a ClientHello was sent reasonably recently and accept the 0-RTT handshake, otherwise if falls back
to a full 1-RTT handshake. This mechanism is tightly coupled with the previous one, it prevents storing an unlimited
number of ClientHellos.

The current implementation uses a pair of Bloom filters to implement the last two mechanisms. Bloom filters are fast,
memory-efficient, probabilistic data structures that can tell if an element may be in a set or if it is definitely not in
the set.

14 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.4 Using TLS for Erlang Distribution

If the option anti_replay is defined in the server, a pair of Bloom filters (current and old) are used to record incoming
ClientHello messages (it is the unique binder value that is actually stored). The current Bloom filter is used for
WindowSize seconds to store new elements. At the end of the time window the Bloom filters are rotated (the current
Bloom filter becomes the old and an empty Bloom filter is set as current.

The Anti-Replay protection feature in stateless servers executes in the following steps when a new ClientHello is
received:

• Reported ticket age (obfuscated ticket age) shall be less than ticket lifetime.

• Actual ticket age shall be less than the ticket lifetime (stateless session tickets contain the servers timestamp when
the ticket was issued).

• ClientHello created with the ticket shall be sent relatively recently (freshness checks).

• If all above checks passed both current and old Bloom filters are checked to detect if binder was already seen.
Being a probabilistic data structure, false positives can occur and they trigger a full handshake.

• If the binder is not seen, the binder is validated. If the binder is valid, the server proceeds with the 0-RTT
handshake.

1.3.12 Using DTLS
Using DTLS has basically the same API as TLS. You need to add the option {protocol, dtls} to the connect and listen
functions. For example

 client> {ok, Socket} = ssl:connect("localhost", 9999, [{protocol, dtls},
{verify, verify_peer},{cacertfile, "cacerts.pem"}], infinity).
{ok,{sslsocket, [...]}}

1.4 Using TLS for Erlang Distribution
This section describes how the Erlang distribution can use TLS to get extra verification and security.

The Erlang distribution can in theory use almost any connection-based protocol as bearer. However, a module
that implements the protocol-specific parts of the connection setup is needed. The default distribution module is
inet_tcp_dist in the Kernel application. When starting an Erlang node distributed, net_kernel uses this
module to set up listen ports and connections.

In the SSL application, an extra distribution module, inet_tls_dist, can be used as an alternative. All distribution
connections will use TLS and all participating Erlang nodes in a distributed system must use this distribution module.

The security level depends on the parameters provided to the TLS connection setup. Erlang node cookies are however
always used, as they can be used to differentiate between two different Erlang networks.

To set up Erlang distribution over TLS:

• Step 1: Build boot scripts including the SSL application.

• Step 2: Specify the distribution module for net_kernel.

• Step 3: Specify the security options and other SSL options.

• Step 4: Set up the environment to always use TLS.

The following sections describe these steps.

1.4.1 Building Boot Scripts Including the SSL Application
Boot scripts are built using the systools utility in the SASL application. For more information on systools, see
the SASL documentation. This is only an example of what can be done.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 15

1.4 Using TLS for Erlang Distribution

The simplest boot script possible includes only the Kernel and STDLIB applications. Such a script is located in the
bin directory of the Erlang distribution. The source for the script is found under the Erlang installation top directory
under releases/<OTP version>/start_clean.rel.

Do the following:

• Copy that script to another location (and preferably another name).

• Add the applications Crypto, Public Key, and SSL with their current version numbers after the STDLIB
application.

The following shows an example .rel file with TLS added:

 {release, {"OTP APN 181 01","R15A"}, {erts, "5.9"},
 [{kernel,"2.15"},
 {stdlib,"1.18"},
 {crypto, "2.0.3"},
 {public_key, "0.12"},
 {asn1, "4.0"},
 {ssl, "5.0"}
]}.

The version numbers differ in your system. Whenever one of the applications included in the script is upgraded, change
the script.

Do the following:

• Build the boot script.

Assuming the .rel file is stored in a file start_ssl.rel in the current directory, a boot script can be
built as follows:

 1> systools:make_script("start_ssl",[]).

There is now a start_ssl.boot file in the current directory.

Do the following:

• Test the boot script. To do this, start Erlang with the -boot command-line parameter specifying this boot script
(with its full path, but without the .boot suffix). In UNIX it can look as follows:

$ erl -boot /home/me/ssl/start_ssl
Erlang (BEAM) emulator version 5.0

Eshell V5.0 (abort with ^G)
1> whereis(ssl_manager).
<0.41.0>

The whereis function-call verifies that the SSL application is started.

As an alternative to building a bootscript, you can explicitly add the path to the SSL ebin directory on the command
line. This is done with command-line option -pa. This works as the SSL application does not need to be started for the
distribution to come up, as a clone of the SSL application is hooked into the Kernel application. So, as long as the SSL
application code can be reached, the distribution starts. The -pa method is only recommended for testing purposes.

Note:

The clone of the SSL application must enable the use of the SSL code in such an early bootstage as needed to set
up the distribution. However, this makes it impossible to soft upgrade the SSL application.

16 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.4 Using TLS for Erlang Distribution

1.4.2 Specifying Distribution Module for net_kernel
The distribution module for TLS is named inet_tls_dist and is specified on the command line with option -
proto_dist. The argument to -proto_dist is to be the module name without suffix _dist. So, this distribution
module is specified with -proto_dist inet_tls on the command line.

Extending the command line gives the following:

$ erl -boot /home/me/ssl/start_ssl -proto_dist inet_tls

For the distribution to be started, give the emulator a name as well:

$ erl -boot /home/me/ssl/start_ssl -proto_dist inet_tls -sname ssl_test
Erlang (BEAM) emulator version 5.0 [source]

Eshell V5.0 (abort with ^G)
(ssl_test@myhost)1>

However, a node started in this way refuses to talk to other nodes, as no TLS parameters are supplied (see the next
section).

1.4.3 Specifying TLS Options
The TLS distribution options can be written into a file that is consulted when the node is started. This file name is then
specified with the command line argument -ssl_dist_optfile.

Any available TLS option can be specified in an options file, but note that options that take a fun() has to use the
syntax fun Mod:Func/Arity since a function body cannot be compiled when consulting a file.

Do not tamper with the socket options list, binary, active, packet, nodelay and deliver since they
are used by the distribution protocol handler itself. Other raw socket options such as packet_size may interfere
severely, so beware!

For TLS to work, at least a public key and a certificate must be specified for the server side. In the following example,
the PEM file "/home/me/ssl/erlserver.pem" contains both the server certificate and its private key.

Create a file named for example "/home/me/ssl/ssl_test@myhost.conf":

[{server,
 [{certfile, "/home/me/ssl/erlserver.pem"},
 {secure_renegotiate, true}]},
 {client,
 [{secure_renegotiate, true}]}].

And then start the node like this (line breaks in the command are for readability, and shall not be there when typed):

$ erl -boot /home/me/ssl/start_ssl -proto_dist inet_tls
 -ssl_dist_optfile "/home/me/ssl/ssl_test@myhost.conf"
 -sname ssl_test

The options in the {server, Opts} tuple are used when calling ssl:handshake/3, and the options in the
{client, Opts} tuple are used when calling ssl:connect/4.

For the client, the option {server_name_indication, atom_to_list(TargetNode)} is added when
connecting. This makes it possible to use the client option {verify, verify_peer}, and the client will verify
that the certificate matches the node name you are connecting to. This only works if the the server certificate is issued
to the name atom_to_list(TargetNode).

For the server it is also possible to use the option {verify, verify_peer} and the server will only accept
client connections with certificates that are trusted by a root certificate that the server knows. A client that presents

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 17

1.4 Using TLS for Erlang Distribution

an untrusted certificate will be rejected. This option is preferably combined with {fail_if_no_peer_cert,
true} or a client will still be accepted if it does not present any certificate.

A node started in this way is fully functional, using TLS as the distribution protocol.

1.4.4 Specifying TLS Options (Legacy)
As in the previous section the PEM file "/home/me/ssl/erlserver.pem" contains both the server certificate
and its private key.

On the erl command line you can specify options that the TLS distribution adds when creating a socket.

The simplest TLS options in the following list can be specified by adding the prefix server_ or client_ to the
option name:

• certfile

• keyfile

• password

• cacertfile

• verify

• verify_fun (write as {Module, Function, InitialUserState})

• crl_check

• crl_cache (write as Erlang term)

• reuse_sessions

• secure_renegotiate

• depth

• hibernate_after

• ciphers (use old string format)

Note that verify_fun needs to be written in a different form than the corresponding TLS option, since funs are
not accepted on the command line.

The server can also take the options dhfile and fail_if_no_peer_cert (also prefixed).

client_-prefixed options are used when the distribution initiates a connection to another node. server_-prefixed
options are used when accepting a connection from a remote node.

Raw socket options, such as packet and size must not be specified on the command line.

The command-line argument for specifying the TLS options is named -ssl_dist_opt and is to be followed by
pairs of SSL options and their values. Argument -ssl_dist_opt can be repeated any number of times.

An example command line doing the same as the example in the previous section can now look as follows (line breaks
in the command are for readability, and shall not be there when typed):

$ erl -boot /home/me/ssl/start_ssl -proto_dist inet_tls
 -ssl_dist_opt server_certfile "/home/me/ssl/erlserver.pem"
 -ssl_dist_opt server_secure_renegotiate true client_secure_renegotiate true
 -sname ssl_test
Erlang (BEAM) emulator version 5.0 [source]

Eshell V5.0 (abort with ^G)
(ssl_test@myhost)1>

18 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.5 Standards Compliance

1.4.5 Setting up Environment to Always Use TLS (Legacy)
A convenient way to specify arguments to Erlang is to use environment variable ERL_FLAGS. All the flags needed
to use the TLS distribution can be specified in that variable and are then interpreted as command-line arguments for
all subsequent invocations of Erlang.

In a Unix (Bourne) shell, it can look as follows (line breaks are for readability, they are not to be there when typed):

$ ERL_FLAGS="-boot /home/me/ssl/start_ssl -proto_dist inet_tls
 -ssl_dist_opt server_certfile /home/me/ssl/erlserver.pem
 -ssl_dist_opt server_secure_renegotiate true client_secure_renegotiate true"
$ export ERL_FLAGS
$ erl -sname ssl_test
Erlang (BEAM) emulator version 5.0 [source]

Eshell V5.0 (abort with ^G)
(ssl_test@myhost)1> init:get_arguments().
[{root,["/usr/local/erlang"]},
 {progname,["erl "]},
 {sname,["ssl_test"]},
 {boot,["/home/me/ssl/start_ssl"]},
 {proto_dist,["inet_tls"]},
 {ssl_dist_opt,["server_certfile","/home/me/ssl/erlserver.pem"]},
 {ssl_dist_opt,["server_secure_renegotiate","true",
 "client_secure_renegotiate","true"]
 {home,["/home/me"]}]

The init:get_arguments() call verifies that the correct arguments are supplied to the emulator.

1.4.6 Using TLS distribution over IPv6
It is possible to use TLS distribution over IPv6 instead of IPv4. To do this, pass the option -proto_dist
inet6_tls instead of -proto_dist inet_tls when starting Erlang, either on the command line or in the
ERL_FLAGS environment variable.

An example command line with this option would look like this:

$ erl -boot /home/me/ssl/start_ssl -proto_dist inet6_tls
 -ssl_dist_optfile "/home/me/ssl/ssl_test@myhost.conf"
 -sname ssl_test

A node started in this way will only be able to communicate with other nodes using TLS distribution over IPv6.

1.5 Standards Compliance
1.5.1 Purpose
This section describes the current state of standards compliance of the ssl application.

1.5.2 Common (pre TLS 1.3)
• For security reasons RSA key exchange cipher suites are no longer supported by default, but can be configured.

(OTP 21)

• For security reasons DES cipher suites are no longer supported by default, but can be configured. (OTP 20)

• For security reasons 3DES cipher suites are no longer supported by default, but can be configured. (OTP 21)

• Renegotiation Indication Extension RFC 5746 is supported

• Ephemeral Diffie-Hellman cipher suites are supported, but not Diffie Hellman Certificates cipher suites.

• Elliptic Curve cipher suites are supported if the Crypto application supports it and named curves are used.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 19

href

1.5 Standards Compliance

• Export cipher suites are not supported as the U.S. lifted its export restrictions in early 2000.

• IDEA cipher suites are not supported as they have become deprecated by the TLS 1.2 specification so it is not
motivated to implement them.

• Compression is not supported.

1.5.3 Common
• CRL validation is supported.

• Policy certificate extensions are not supported.

• 'Server Name Indication' extension (RFC 6066) is supported.

• Application Layer Protocol Negotiation (ALPN) and its successor Next Protocol Negotiation (NPN) are
supported.

• It is possible to use Pre-Shared Key (PSK) and Secure Remote Password (SRP) cipher suites, but they are not
enabled by default.

1.5.4 SSL 2.0
For security reasons SSL-2.0 is not supported. Interoperability with SSL-2.0 enabled clients dropped. (OTP 21)

1.5.5 SSL 3.0
For security reasons SSL-3.0 is no longer supported at all. (OTP 23)

For security reasons SSL-3.0 is no longer supported by default, but can be configured. (OTP 19)

1.5.6 TLS 1.0
For security reasons TLS-1.0 is no longer supported by default, but can be configured. (OTP 22)

1.5.7 TLS 1.1
For security reasons TLS-1.1 is no longer supported by default, but can be configured. (OTP 22)

1.5.8 TLS 1.2
Supported

1.5.9 DTLS 1.0
For security reasons DTLS-1.0 (based on TLS 1.1) is no longer supported by default, but can be configured. (OTP 22)

1.5.10 DTLS 1.2
Supported (based on TLS 1.2)

1.5.11 DTLS 1.3
Not yet supported

1.5.12 TLS 1.3
OTP-22 introduces support for TLS 1.3. The current implementation supports a selective set of cryptographic
algorithms:

• Key Exchange: ECDHE

20 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href

1.5 Standards Compliance

• Groups: all standard groups supported for the Diffie-Hellman key exchange

• Ciphers: all cipher suites are supported

• Signature Algorithms: All algorithms form RFC 8446

• Certificates: RSA, ECDSA and EDDSA keys

Other notable features:

• PSK and session resumption is supported (stateful and stateless tickets)

• Anti-replay protection using Bloom-filters with stateless tickets

• Early data and 0-RTT is supported

• Key and Initialization Vector Update is supported

For more detailed information see the Standards Compliance below.

The following table describes the current state of standards compliance for TLS 1.3.

(C = Compliant, NC = Non-Compliant, PC = Partially-Compliant, NA = Not Applicable)

Section Feature State Since

1.3. Updates
Affecting TLS 1.2

C 24.1

Version downgrade
protection
mechanism

C 22

RSASSA-PSS
signature schemes

C 24.1

supported_versions
(ClientHello)
extension

C 22

signature_algorithms_cert
extension

C 24.1

2. Protocol
Overview

PC 22

(EC)DHE C 22

PSK-only NC

PSK with (EC)DHE C 22.2

2.1. Incorrect DHE
share

HelloRetryRequest C 22

2.2. Resumption
and Pre-Shared
Key (PSK)

C 22.2

2.3. 0-RTT Data PC 23.3

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 21

href
href
href
href
href
href
href
href
href
href

1.5 Standards Compliance

4.1.1.
Cryptographic
Negotiation

C 22.2

supported_groups
extension

C 22

signature_algorithms
extension

C 22

pre_shared_key
extension

C 22.2

4.1.2. Client Hello Client PC 22.1

server_name
(RFC6066)

C 23.2

max_fragment_length
(RFC6066)

C 23.0

status_request
(RFC6066)

NC

supported_groups
(RFC7919)

C 22.1

signature_algorithms
(RFC8446)

C 22.1

use_srtp (RFC5764) C 26.0

heartbeat (RFC6520) NC

application_layer_protocol_negotiation
(RFC7301)

C 22.1

signed_certificate_timestamp
(RFC6962)

NC

client_certificate_type
(RFC7250)

NC

server_certificate_type
(RFC7250)

NC

padding (RFC7685) NC

key_share
(RFC8446)

C 22.1

pre_shared_key
(RFC8446)

C 22.2

22 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href
href
href

1.5 Standards Compliance

psk_key_exchange_modes
(RFC8446)

C 22.2

early_data
(RFC8446)

C 23.3

cookie (RFC8446) C 23.1

supported_versions
(RFC8446)

C 22.1

certificate_authorities
(RFC8446)

C 24.3

oid_filters
(RFC8446)

NC

post_handshake_auth
(RFC8446)

NC

signature_algorithms_cert
(RFC8446)

C 22.1

Server PC 22

server_name
(RFC6066)

C 23.2

max_fragment_length
(RFC6066)

C 23.0

status_request
(RFC6066)

NC

supported_groups
(RFC7919)

C 22

signature_algorithms
(RFC8446)

C 22

use_srtp (RFC5764) C 26.0

heartbeat (RFC6520) NC

application_layer_protocol_negotiation
(RFC7301)

C 22.1

signed_certificate_timestamp
(RFC6962)

NC

client_certificate_type
(RFC7250)

NC

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 23

1.5 Standards Compliance

server_certificate_type
(RFC7250)

NC

padding (RFC7685) NC

key_share
(RFC8446)

C 22

pre_shared_key
(RFC8446)

C 22.2

psk_key_exchange_modes
(RFC8446)

C 22.2

early_data
(RFC8446)

C 23.3

cookie (RFC8446) C 23.1

supported_versions
(RFC8446)

C 22

oid_filters
(RFC8446)

NC

post_handshake_auth
(RFC8446)

NC

signature_algorithms_cert
(RFC8446)

C 22

4.1.3. Server Hello Client C 22.2

Version downgrade
protection

C 22.1

key_share
(RFC8446)

C 22.1

pre_shared_key
(RFC8446)

C 22.2

supported_versions
(RFC8446)

C 22.1

use_srtp (RFC5764) C 26.0

Server C 22.2

Version downgrade
protection

C 22

24 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href

1.5 Standards Compliance

key_share
(RFC8446)

C 22

pre_shared_key
(RFC8446)

C 22.2

supported_versions
(RFC8446)

C 22

use_srtp (RFC5764) C 26.0

4.1.4. Hello Retry
Request

Server C 22

key_share
(RFC8446)

C 22

cookie (RFC8446) C 23.1

supported_versions
(RFC8446)

C 22

4.2.1. Supported
Versions

Client C 22.1

Server C 22

4.2.2. Cookie Client C 23.1

Server C 23.1

4.2.3. Signature
Algorithms

Client C 24

rsa_pkcs1_sha256 C 22.1

rsa_pkcs1_sha384 C 22.1

rsa_pkcs1_sha512 C 22.1

ecdsa_secp256r1_sha256C 22.1

ecdsa_secp384r1_sha384C 22.1

ecdsa_secp521r1_sha512C 22.1

rsa_pss_rsae_sha256 C 22.1

rsa_pss_rsae_sha384 C 22.1

rsa_pss_rsae_sha512 C 22.1

ed25519 C 24

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 25

href
href
href
href
href
href
href

1.5 Standards Compliance

ed448 C 24

rsa_pss_pss_sha256 C 23

rsa_pss_pss_sha384 C 23

rsa_pss_pss_sha512 C 23

rsa_pkcs1_sha1 C 22.1

ecdsa_sha1 C 22.1

Server C 24

rsa_pkcs1_sha256 C 22

rsa_pkcs1_sha384 C 22

rsa_pkcs1_sha512 C 22

ecdsa_secp256r1_sha256C 22.1

ecdsa_secp384r1_sha384C 22.1

ecdsa_secp521r1_sha512C 22.1

rsa_pss_rsae_sha256 C 22

rsa_pss_rsae_sha384 C 22

rsa_pss_rsae_sha512 C 22

ed25519 C 24

ed448 C 24

rsa_pss_pss_sha256 C 23

rsa_pss_pss_sha384 C 23

rsa_pss_pss_sha512 C 23

rsa_pkcs1_sha1 C 22

ecdsa_sha1 C 22

4.2.4. Certificate
Authorities

Client C 24.3

Server C 24.3

4.2.5. OID Filters Client NC

26 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href
href

1.5 Standards Compliance

Server NC

4.2.6. Post-
Handshake Client
Authentication

Client NC

Server NC

4.2.7. Supported
Groups

Client C 22.1

secp256r1 C 22.1

secp384r1 C 22.1

secp521r1 C 22.1

x25519 C 22.1

x448 C 22.1

ffdhe2048 C 22.1

ffdhe3072 C 22.1

ffdhe4096 C 22.1

ffdhe6144 C 22.1

ffdhe8192 C 22.1

Server C 22

secp256r1 C 22

secp384r1 C 22

secp521r1 C 22

x25519 C 22

x448 C 22

ffdhe2048 C 22

ffdhe3072 C 22

ffdhe4096 C 22

ffdhe6144 C 22

ffdhe8192 C 22

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 27

href
href
href
href
href

1.5 Standards Compliance

4.2.8. Key Share Client C 22.1

Server C 22

4.2.9. Pre-Shared
Key Exchange
Modes

Client C 22.2

Server C 22.2

4.2.10. Early Data
Indication

Client C 23.3

Server C 23.3

4.2.11. Pre-Shared
Key Extension

Client C 22.2

Server C 22.2

4.2.11.1. Ticket Age Client C 22.2

Server C 22.2

4.2.11.2. PSK
Binder

Client C 22.2

Server C 22.2

4.2.11.3. Processing
Order

Client NC

Server NC

4.3.1. Encrypted
Extensions

Client PC 22.1

server_name
(RFC6066)

C 23.2

max_fragment_length
(RFC6066)

C 23.0

supported_groups
(RFC7919)

NC

use_srtp (RFC5764) NC

heartbeat (RFC6520) NC

application_layer_protocol_negotiation
(RFC7301)

C 23.0

28 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href
href
href
href
href
href
href
href
href
href
href
href
href
href

1.5 Standards Compliance

client_certificate_type
(RFC7250)

NC

server_certificate_type
(RFC7250)

NC

early_data
(RFC8446)

C 23.3

Server PC 22

server_name
(RFC6066)

C 23.2

max_fragment_length
(RFC6066)

C 23.0

supported_groups
(RFC7919)

NC

use_srtp (RFC5764) NC

heartbeat (RFC6520) NC

application_layer_protocol_negotiation
(RFC7301)

C 23.0

client_certificate_type
(RFC7250)

NC

server_certificate_type
(RFC7250)

NC

early_data
(RFC8446)

C 23.3

4.3.2. Certificate
Request

Client PC 22.1

status_request
(RFC6066)

NC

signature_algorithms
(RFC8446)

C 22.1

signed_certificate_timestamp
(RFC6962)

NC

certificate_authorities
(RFC8446)

C 24.3

oid_filters
(RFC8446)

NC

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 29

href
href

1.5 Standards Compliance

signature_algorithms_cert
(RFC8446)

C 22.1

Server PC 22

status_request
(RFC6066)

NC

signature_algorithms
(RFC8446)

C 22

signed_certificate_timestamp
(RFC6962)

NC

certificate_authorities
(RFC8446)

C 24.3

oid_filters
(RFC8446)

NC

signature_algorithms_cert
(RFC8446)

C 22

4.4.1. The
Transcript Hash

C 22

4.4.2. Certificate Client PC 22.1

Arbitrary certificate
chain orderings

C 22.2

Extraneous
certificates in chain

C 23.2

status_request
(RFC6066)

NC

signed_certificate_timestamp
(RFC6962)

NC

Server PC 22

status_request
(RFC6066)

NC

signed_certificate_timestamp
(RFC6962)

NC

4.4.2.1. OCSP
Status and SCT
Extensions

Client NC

Server NC

30 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href
href
href
href
href

1.5 Standards Compliance

4.4.2.2. Server
Certificate Selection

C 24.3

The certificate type
MUST be X.509v3,
unless explicitly
negotiated otherwise

C 22

The server's end-
entity certificate's
public key
(and associated
restrictions) MUST
be compatible
with the selected
authentication
algorithm from
the client's
"signature_algorithms"
extension (currently
RSA, ECDSA, or
EdDSA).

C 22

The certificate
MUST allow
the key to be
used for signing
with a signature
scheme indicated
in the client's
"signature_algorithms"/"signature_algorithms_cert"
extensions

C 22

The
"server_name" and
"certificate_authorities"
extensions are used
to guide certificate
selection. As servers
MAY require the
presence of the
"server_name"
extension, clients
SHOULD send this
extension, when
applicable.

C 24.3

4.4.2.3. Client
Certificate Selection

PC 22.1

The certificate type
MUST be X.509v3,

C 22.1

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 31

href
href
href
href

1.5 Standards Compliance

unless explicitly
negotiated otherwise

If the
"certificate_authorities"
extension in the
CertificateRequest
message was present,
at least one of the
certificates in the
certificate chain
SHOULD be issued
by one of the listed
CAs.

C 24.3

The certificates
MUST be signed
using an acceptable
signature algorithm

C 22.1

If the
CertificateRequest
message contained
a non-empty
"oid_filters"
extension, the end-
entity certificate
MUST match the
extension OIDs that
are recognized by the
client

NC

4.4.2.4. Receiving a
Certificate Message

Client C 22.1

Server C 22

4.4.3. Certificate
Verify

Client C 22.1

Server C 22

4.4.4. Finished Client C 22.1

Server C 22

4.5. End of Early
Data

Client C 23.3

Server C 23.3

32 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href
href
href
href
href
href

1.5 Standards Compliance

4.6.1. New Session
Ticket Message

Client C 23.3

early_data
(RFC8446)

C 23.3

Server C 23.3

early_data
(RFC8446)

C 23.3

4.6.2. Post-
Handshake
Authentication

Client NC

Server NC

4.6.3. Key and
Initialization Vector
Update

Client C 22.3

Server C 22.3

5.1. Record Layer C 22

MUST NOT be
interleaved with
other record types

C 22

MUST NOT span
key changes

C 22

MUST NOT
send zero-length
fragments

C 22

Alert messages
MUST NOT be
fragmented

C 22

5.2. Record
Payload Protection

C 22

5.3. Per-Record
Nonce

C 22

5.4. Record
Padding

PC 22

MAY choose to pad NC

MUST NOT send
Handshake and

NC

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 33

href
href
href
href
href
href
href
href
href
href
href
href
href
href
href

1.5 Standards Compliance

Alert records that
have a zero-length
TLSInnerPlaintext.content

The padding sent
is automatically
verified

C 22

5.5. Limits on Key
Usage

C 22.3

6.1. Closure Alerts 22

close_notify C 22

user_cancelled C 22

6.2. Error Alerts PC 22

7.1. Key Schedule C 22

7.2. Updating
Traffic Secrets

C 22

7.3. Traffic Key
Calculation

C 22

7.5. Exporters PC 26.3

8. 0-RTT and Anti-
Replay

C 22.2

8.1. Single-Use
Tickets

C 22.2

8.2. Client Hello
Recording

C 22.2

8.3. Freshness
Checks

C 22.2

9.1. Mandatory-to-
Implement Cipher
Suites

C 22.1

MUST
implement the
TLS_AES_128_GCM_SHA256

C 22

SHOULD
implement the
TLS_AES_256_GCM_SHA384

C 22

34 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href

1.5 Standards Compliance

SHOULD
implement the
TLS_CHACHA20_POLY1305_SHA256

C 22

Digital signatures C 22.1

MUST support
rsa_pkcs1_sha256
(for certificates)

C 22

MUST support
rsa_pss_rsae_sha256
(for CertificateVerify
and certificates)

C 22

MUST support
ecdsa_secp256r1_sha256

C 22.1

Key Exchange C 22

MUST support
key exchange with
secp256r1

C 22

SHOULD support
key exchange with
X25519

C 22

9.2. Mandatory-
to-Implement
Extensions

C 23.2

Supported Versions C 22

Cookie C 23.1

Signature Algorithms C 22

Signature Algorithms
Certificate

C 22

Negotiated Groups C 22

Key Share C 22

Server Name
Indication

C 23.2

MUST send and use
these extensions

C 22.2

"supported_versions"
is REQUIRED

C 22.1

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 35

href
href
href

1.5 Standards Compliance

for ClientHello,
ServerHello and
HelloRetryRequest

"signature_algorithms"
is REQUIRED
for certificate
authentication

C 22

"supported_groups"
is REQUIRED
for ClientHello
messages using
(EC)DHE key
exchange

C 22

"key_share" is
REQUIRED for
(EC)DHE key
exchange

C 22

"pre_shared_key" is
REQUIRED for PSK
key agreement

C 22.2

"psk_key_exchange_modes"
is REQUIRED for
PSK key agreement

C 22.2

TLS 1.3 ClientHello C 22.1

If not containing a
"pre_shared_key"
extension, it MUST
contain both a
"signature_algorithms"
extension and a
"supported_groups"
extension.

C 22.1

If containing a
"supported_groups"
extension, it
MUST also contain
a "key_share"
extension, and vice
versa. An empty
KeyShare.client_shares
vector is permitted.

C 22.1

TLS 1.3
ServerHello

C 23.2

36 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.5 Standards Compliance

MUST support
the use of the
"server_name"
extension

C 23.2

9.3. Protocol
Invariants

C 22.1

MUST correctly
handle extensible
fields

C 22.1

A client sending
a ClientHello
MUST support
all parameters
advertised in it.
Otherwise, the
server may fail to
interoperate by
selecting one of
those parameters.

C 22.1

A server receiving a
ClientHello MUST
correctly ignore all
unrecognized cipher
suites, extensions,
and other parameters.
Otherwise, it may
fail to interoperate
with newer clients.
In TLS 1.3, a
client receiving a
CertificateRequest or
NewSessionTicket
MUST also ignore
all unrecognized
extensions.

C 22.1

A middlebox
which terminates
a TLS connection
MUST behave as
a compliant TLS
server

NA

A middlebox which
forwards ClientHello
parameters it does
not understand
MUST NOT process

NA

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 37

href
href

1.5 Standards Compliance

any messages
beyond that
ClientHello. It
MUST forward
all subsequent
traffic unmodified.
Otherwise, it may
fail to interoperate
with newer clients
and servers.

B.4. Cipher Suites C 23

TLS_AES_128_GCM_SHA256C 22

TLS_AES_256_GCM_SHA384C 22

TLS_CHACHA20_POLY1305_SHA256C 22

TLS_AES_128_CCM_SHA256C 22

TLS_AES_128_CCM_8_SHA256C 23

C.1. Random
Number Generation
and Seeding

C 22

C.2. Certificates
and Authentication

C 22

C.3.
Implementation
Pitfalls

PC 22

C.4. Client
Tracking
Prevention

C 22.2

C.5.
Unauthenticated
Operation

C 22

D.1. Negotiating
with an Older
Server

C 22.2

D.2. Negotiating
with an Older
Client

C 22

D.3. 0-RTT
Backward
Compatibility

NC

38 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href

1.5 Standards Compliance

D.4. Middlebox
Compatibility Mode

C 23

D.5. Security
Restrictions Related
to Backward
Compatibility

C 22

Table 5.1: Standards Compliance

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 39

href
href
href
href
href
href

1.5 Standards Compliance

2 Reference Manual

40 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

ssl
Application

The ssl application is an implementation of the SSL, TLS and DTLS protocols in Erlang.

For current statement of standards compliance see the User's Guide.

DEPENDENCIES
The SSL application uses the public_key, asn1 and Crypto application to handle public keys and encryption,
hence these applications must be loaded for the SSL application to work. In an embedded environment this means
they must be started with application:start/[1,2] before the SSL application is started.

CONFIGURATION
The application environment configuration parameters in this section are defined for the SSL application. For more
information about configuration parameters, see the application(3) manual page in Kernel.

The environment parameters can be set on the command line, for example:

erl -ssl protocol_version "['tlsv1.2', 'tlsv1.1']"

protocol_version = ssl:tls_version() | [ssl:tls_version()] <optional>

Protocol supported by started clients and servers. If this option is not set, it defaults to all TLS protocols currently
supported, more might be configurable, by the SSL application. This option can be overridden by the version
option to ssl:connect/[2,3] and ssl:listen/2.

dtls_protocol_version = ssl:dtls_version() | [ssl:dtls_version()] <optional>

Protocol supported by started clients and servers. If this option is not set, it defaults to all DTLS protocols currently
supported, more might be configurable, by the SSL application. This option can be overridden by the version
option to ssl:connect/[2,3] and ssl:listen/2.

session_lifetime = integer() <optional>

Maximum lifetime of the session data in seconds. Defaults to 24 hours which is the maximum recommended
lifetime by RFC 5246. However sessions may be invalidated earlier due to the maximum limitation of the session
cache table.

session_cb = atom() <optional>

Deprecated Since OTP-23.3 replaced by client_session_cb and server_session_cb

client_session_cb = atom() <optional>

Since OTP-23.3 Name client of the session cache callback module that implements the
ssl_session_cache_api behavior. Defaults to ssl_client_session_cache_db.

server_session_cb = atom() <optional>

Since OTP-23.3 Name of the server session cache callback module that implements the
ssl_session_cache_api behavior. Defaults to ssl_server_session_cache_db.

session_cb_init_args = proplist:proplist() <optional>

Deprecated Since OTP-23.3 replaced by client_session_cb_init_args and
server_session_cb_init_args

client_session_cb_init_args = proplist:proplist() <optional>

List of extra user-defined arguments to the init function in the session cache callback module. Defaults to [].

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 41

href

ssl

server_session_cb_init_args = proplist:proplist() <optional>

List of extra user-defined arguments to the init function in the session cache callback module. Defaults to [].

session_cache_client_max = integer() <optional>

Limits the growth of the clients session cache, that is how many sessions towards servers that are cached to be
used by new client connections. If the maximum number of sessions is reached, the current cache entries will
be invalidated regardless of their remaining lifetime. Defaults to 1000. Recommended ssl-8.2.1 or later for this
option to work as intended.

session_cache_server_max = integer() <optional>

Limits the growth of the servers session cache, that is how many client sessions are cached by the server. If the
maximum number of sessions is reached, the current cache entries will be invalidated regardless of their remaining
lifetime. Defaults to 1000. Recommended ssl-8.2.1 or later for this option to work as intended.

ssl_pem_cache_clean = integer() <optional>

Number of milliseconds between PEM cache validations. Defaults to 2 minutes.

Note: The cache can be reloaded by calling ssl:clear_pem_cache/0.

bypass_pem_cache = boolean() <optional>

Introduced in ssl-8.0.2. Disables the PEM-cache. Can be used as a workaround for the PEM-cache bottleneck
before ssl-8.1.1. Defaults to false.

alert_timeout = integer() <optional>

Number of milliseconds between sending of a fatal alert and closing the connection. Waiting a little while
improves the peers chances to properly receiving the alert so it may shutdown gracefully. Defaults to 5000
milliseconds.

internal_active_n = integer() <optional>

For TLS connections this value is used to handle the internal socket. As the implementation was changed from
an active once to an active N behavior (N = 100), for performance reasons, this option exist for possible tweaking
or restoring of the old behavior (internal_active_n = 1) in unforeseen scenarios. The option will not affect erlang
distribution over TLS that will always run in active N mode. Added in ssl-9.1 (OTP-21.2).

server_session_tickets_amount = integer() <optional>

Number of session tickets sent by the server. It must be greater than 0. Defaults to 3.

server_session_ticket_lifetime = integer() <optional>

Lifetime of session tickets sent by the server. Servers must not use any value greater than 604800 seconds (7
days). Expired tickets are automatically removed. Defaults to 7200 seconds (2 hours).

server_session_ticket_store_size = integer() <optional>

Sets the maximum size of the server session ticket store (stateful tickets). Defaults to 1000. Size limit is enforced
by dropping old tickets.

server_session_ticket_max_early_data = integer() <optional>

Sets the maximum size of the early data that the server accepts and also configures its NewSessionTicket messages
to include this same size limit in their early_data_indication extension. Defaults to 16384. Size limit is enforced
by both client and server.

client_session_ticket_lifetime = integer() <optional>

Lifetime of session tickets in the client ticket store. Expired tickets are automatically removed. Defaults to 7200
seconds (2 hours).

42 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

client_session_ticket_store_size = integer() <optional>

Sets the maximum size of the client session ticket store. Defaults to 1000. Size limit is enforced by dropping
old tickets.

ERROR LOGGER AND EVENT HANDLERS
The SSL application uses OTP logger. TLS/DTLS alerts are logged on notice level. Unexpected errors are logged on
error level. These log entries will by default end up in the default Erlang log. The option log_level may be used
to in run-time to set the log level of a specific TLS connection, which is handy when you want to use level debug to
inspect the TLS handshake setup.

SEE ALSO
application(3)

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 43

ssl

ssl
Erlang module

This module contains interface functions for the TLS/DTLS protocol. For detailed information about the supported
standards see ssl(6).

Data Types
Types used in TLS/DTLS
socket() = gen_tcp:socket()
sslsocket() = any()
An opaque reference to the TLS/DTLS connection, may be used for equality matching.

tls_option() = tls_client_option() | tls_server_option()
tls_client_option() =
 client_option() |
 common_option() |
 socket_option() |
 transport_option()
tls_server_option() =
 server_option() |
 common_option() |
 socket_option() |
 transport_option()
socket_option() =
 gen_tcp:connect_option() |
 gen_tcp:listen_option() |
 gen_udp:option()
The default socket options are [{mode,list},{packet, 0},{header, 0},{active, true}].

For valid options, see the inet(3), gen_tcp(3) and gen_udp(3) manual pages in Kernel. Note that stream oriented options
such as packet are only relevant for TLS and not DTLS

active_msgs() =
 {ssl, sslsocket(), Data :: binary() | list()} |
 {ssl_closed, sslsocket()} |
 {ssl_error, sslsocket(), Reason :: any()} |
 {ssl_passive, sslsocket()}
When a TLS/DTLS socket is in active mode (the default), data from the socket is delivered to the owner of the socket
in the form of messages as described above.

The ssl_passive message is sent only when the socket is in {active, N} mode and the counter dropped to 0.
It indicates that the socket has transitioned to passive ({active, false}) mode.

transport_option() =
 {cb_info,
 {CallbackModule :: atom(),
 DataTag :: atom(),
 ClosedTag :: atom(),
 ErrTag :: atom()}} |

44 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

 {cb_info,
 {CallbackModule :: atom(),
 DataTag :: atom(),
 ClosedTag :: atom(),
 ErrTag :: atom(),
 PassiveTag :: atom()}}
Defaults to {gen_tcp, tcp, tcp_closed, tcp_error, tcp_passive} for TLS (for backward
compatibility a four tuple will be converted to a five tuple with the last element "second_element"_passive) and
{gen_udp, udp, udp_closed, udp_error} for DTLS (might also be changed to five tuple in the future).
Can be used to customize the transport layer. The tag values should be the values used by the underlying transport
in its active mode messages. For TLS the callback module must implement a reliable transport protocol, behave as
gen_tcp, and have functions corresponding to inet:setopts/2, inet:getopts/2, inet:peername/1,
inet:sockname/1, and inet:port/1. The callback gen_tcp is treated specially and calls inet directly. For
DTLS this feature must be considered experimental.

host() = inet:hostname() | inet:ip_address()
protocol_version() = tls_version() | dtls_version()
tls_version() = 'tlsv1.2' | 'tlsv1.3' | tls_legacy_version()
dtls_version() = 'dtlsv1.2' | dtls_legacy_version()
tls_legacy_version() = tlsv1 | 'tlsv1.1'
dtls_legacy_version() = dtlsv1
prf_random() = client_random | server_random
verify_type() = verify_none | verify_peer
ciphers() = [erl_cipher_suite()] | string()
erl_cipher_suite() =
 #{key_exchange := kex_algo(),
 cipher := cipher(),
 mac := hash() | aead,
 prf := hash() | default_prf}
cipher() =
 aes_256_gcm | aes_128_gcm | aes_256_ccm | aes_128_ccm |
 chacha20_poly1305 | aes_256_ccm_8 | aes_128_ccm_8 |
 aes_128_cbc | aes_256_cbc |
 legacy_cipher()
legacy_cipher() = '3des_ede_cbc' | des_cbc | rc4_128
cipher_filters() =
 [{key_exchange | cipher | mac | prf, algo_filter()}]
hash() = sha2() | legacy_hash()
sha2() = sha512 | sha384 | sha256
legacy_hash() = sha224 | sha | md5
old_cipher_suite() =
 {kex_algo(), cipher(), hash()} |
 {kex_algo(), cipher(), hash() | aead, hash()}
sign_algo() = eddsa | ecdsa | rsa | dsa
sign_scheme() =
 eddsa_ed25519 | eddsa_ed448 | ecdsa_secp384r1_sha384 |
 ecdsa_secp521r1_sha512 | ecdsa_secp256r1_sha256 |
 rsassa_pss_scheme() |

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 45

ssl

 sign_scheme_legacy()
rsassa_pss_scheme() =
 rsa_pss_rsae_sha512 | rsa_pss_rsae_sha384 |
 rsa_pss_rsae_sha256 | rsa_pss_pss_sha512 |
 rsa_pss_pss_sha384 | rsa_pss_pss_sha256
sign_scheme_legacy() =
 rsa_pkcs1_sha512 | rsa_pkcs1_sha384 | rsa_pkcs1_sha256 |
 ecdsa_sha1 | rsa_pkcs1_sha1
group() =
 x25519 | x448 | secp256r1 | secp384r1 | secp521r1 |
 ffdhe2048 | ffdhe3072 | ffdhe4096 | ffdhe6144 | ffdhe8192
kex_algo() =
 ecdhe_ecdsa | ecdh_ecdsa | ecdh_rsa | rsa | dhe_rsa |
 dhe_dss | srp_rsa | srp_dss | dhe_psk | rsa_psk | psk |
 ecdh_anon | dh_anon | srp_anon | any
algo_filter() =
 fun((kex_algo() | cipher() | hash() | aead | default_prf) ->
 true | false)
named_curve() =
 x25519 | x448 | secp521r1 | brainpoolP512r1 |
 brainpoolP384r1 | secp384r1 | brainpoolP256r1 | secp256r1 |
 legacy_named_curve()
legacy_named_curve() =
 sect571r1 | sect571k1 | sect409k1 | sect409r1 | sect283k1 |
 sect283r1 | secp256k1 | sect239k1 | sect233k1 | sect233r1 |
 secp224k1 | secp224r1 | sect193r1 | sect193r2 | secp192k1 |
 secp192r1 | sect163k1 | sect163r1 | sect163r2 | secp160k1 |
 secp160r1 | secp160r2
psk_identity() = string()
srp_identity() = {Username :: string(), Password :: string()}
srp_param_type() =
 srp_8192 | srp_6144 | srp_4096 | srp_3072 | srp_2048 |
 srp_1536 | srp_1024
app_level_protocol() = binary()
protocol_extensions() =
 #{renegotiation_info => binary(),
 signature_algs => signature_algs(),
 alpn => app_level_protocol(),
 srp => binary(),
 next_protocol => app_level_protocol(),
 max_frag_enum => 1..4,
 ec_point_formats => [0..2],
 elliptic_curves => [public_key:oid()],
 sni => inet:hostname()}
error_alert() =
 {tls_alert, {tls_alert(), Description :: string()}}
tls_alert() =
 close_notify | unexpected_message | bad_record_mac |
 record_overflow | handshake_failure | bad_certificate |

46 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

 unsupported_certificate | certificate_revoked |
 certificate_expired | certificate_unknown |
 illegal_parameter | unknown_ca | access_denied |
 decode_error | decrypt_error | export_restriction |
 protocol_version | insufficient_security | internal_error |
 inappropriate_fallback | user_canceled | no_renegotiation |
 unsupported_extension | certificate_unobtainable |
 unrecognized_name | bad_certificate_status_response |
 bad_certificate_hash_value | unknown_psk_identity |
 no_application_protocol
reason() = any()
bloom_filter_window_size() = integer()
bloom_filter_hash_functions() = integer()
bloom_filter_bits() = integer()
client_session_tickets() = disabled | manual | auto
server_session_tickets() =
 disabled | stateful | stateless | stateful_with_cert |
 stateless_with_cert

Data Types
TLS/DTLS OPTION DESCRIPTIONS - COMMON for SERVER and CLIENT
common_option() =
 {protocol, protocol()} |
 {handshake, handshake_completion()} |
 {cert, cert() | [cert()]} |
 {certfile, cert_pem()} |
 {key, key()} |
 {keyfile, key_pem()} |
 {password, key_pem_password()} |
 {certs_keys, certs_keys()} |
 {ciphers, cipher_suites()} |
 {eccs, [named_curve()]} |
 {signature_algs, signature_algs()} |
 {signature_algs_cert, sign_schemes()} |
 {supported_groups, supported_groups()} |
 {secure_renegotiate, secure_renegotiation()} |
 {keep_secrets, keep_secrets()} |
 {depth, allowed_cert_chain_length()} |
 {verify_fun, custom_verify()} |
 {allow_any_ca_purpose, allow_any_ca_purpose()} |
 {crl_check, crl_check()} |
 {crl_cache, crl_cache_opts()} |
 {max_handshake_size, handshake_size()} |
 {partial_chain, root_fun()} |
 {versions, protocol_versions()} |
 {user_lookup_fun, custom_user_lookup()} |
 {log_level, logging_level()} |
 {log_alert, log_alert()} |
 {hibernate_after, hibernate_after()} |

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 47

ssl

 {padding_check, padding_check()} |
 {beast_mitigation, beast_mitigation()} |
 {ssl_imp, ssl_imp()} |
 {session_tickets, session_tickets()} |
 {key_update_at, key_update_at()} |
 {receiver_spawn_opts, spawn_opts()} |
 {sender_spawn_opts, spawn_opts()}
protocol() = tls | dtls
Choose TLS or DTLS protocol for the transport layer security. Defaults to tls. For DTLS other transports than UDP
are not yet supported.

handshake_completion() = hello | full
Defaults to full. If hello is specified the handshake will pause after the hello message and give the user a
possibility make decisions based on hello extensions before continuing or aborting the handshake by calling
handshake_continue/3 or handshake_cancel/1

cert() = public_key:der_encoded()
The DER-encoded user certificate. Note that the cert option may also be a list of DER-encoded certificates where
the first one is the user certificate, and the rest of the certificates constitutes the certificate chain. For maximum
interoperability the certificates in the chain should be in the correct order, the chain will be sent as is to the peer. If chain
certificates are not provided, certificates from client_cacerts(), server_cacerts(), or client_cafile(), server_cafile() are
used to construct the chain. If this option is supplied, it overrides option certfile.

cert_pem() = file:filename()
Path to a file containing the user certificate on PEM format or possible several certificates where the first one is the
user certificate and the rest of the certificates constitutes the certificate chain. For more details see cert(),

key() =
 {'RSAPrivateKey' | 'DSAPrivateKey' | 'ECPrivateKey' |
 'PrivateKeyInfo',
 public_key:der_encoded()} |
 #{algorithm := rsa | dss | ecdsa,
 engine := crypto:engine_ref(),
 key_id := crypto:key_id(),
 password => crypto:password()}
The DER-encoded user's private key or a map referring to a crypto engine and its key reference that optionally can
be password protected, see also crypto:engine_load/3 and Crypto's Users Guide. If this option is supplied, it overrides
option keyfile.

key_pem() = file:filename()
Path to the file containing the user's private PEM-encoded key. As PEM-files can contain several entries, this option
defaults to the same file as given by option certfile.

key_pem_password() = iodata() | fun(() -> iodata())
String containing the user's password or a function returning same type. Only used if the private keyfile is password-
protected.

certs_keys() = [cert_key_conf()]
A list of a certificate (or possible a certificate and its chain) and the associated key of the certificate, that may be
used to authenticate the client or the server. The certificate key pair that is considered best and matches negotiated
parameters for the connection will be selected. Different signature algorithms are prioritized in the order eddsa,
ecdsa, rsa_pss_pss, rsa and dsa . If more than one key is supplied for the same signing algorithm

48 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

(which is probably an unusual use case) they will prioritized by strength unless it is a so called engine key that
will be favoured over other keys. As engine keys cannot be inspected, supplying more than one engine key will make
no sense. This offers flexibility to for instance configure a newer certificate that is expected to be used in most cases
and an older but acceptable certificate that will only be used to communicate with legacy systems. Note that there is
a trade off between the induced overhead and the flexibility so alternatives should be chosen for good reasons. If the
certs_keys option is specified it overrides all single certificate and key options. For examples see the Users Guide

Note:

eddsa certificates are only supported by TLS-1.3 that does not support dsa certificates. rsa_pss_pss (RSA
certificates using Probabilistic Signature Scheme) are supported in TLS-1.2 and TLS-1.3, but some TLS-1.2
implementations may not support rsa_pss_pss.

cert_key_conf() =
 #{cert => cert(),
 key => key(),
 certfile => cert_pem(),
 keyfile => key_pem(),
 password => key_pem_password()}
A certificate (or possibly a certificate and its chain) and its associated key on one of the possible formats. For the PEM
file format there may also be a password associated with the file containg the key.

cipher_suites() = ciphers()
A list of cipher suites that should be supported

The function ssl:cipher_suites/2 can be used to find all cipher suites that are supported by default and all cipher suites
that may be configured.

If you compose your own cipher_suites() make sure they are filtered for cryptolib support
ssl:filter_cipher_suites/2 Additionally the functions ssl:append_cipher_suites/2 , ssl:prepend_cipher_suites/2,
ssl:suite_to_str/1, ssl:str_to_suite/1, and ssl:suite_to_openssl_str/1 also exist to help creating customized cipher suite
lists.

Note:

Note that TLS-1.3 and TLS-1.2 cipher suites are not overlapping sets of cipher suites so to support both these
versions cipher suites from both versions need to be included. Also if the supplied list does not comply with the
configured versions or cryptolib so that the list becomes empty, this option will fallback on its appropriate default
value for the configured versions.

Non-default cipher suites including anonymous cipher suites (PRE TLS-1.3) are supported for interop/testing purposes
and may be used by adding them to your cipher suite list. Note that they must also be supported/enabled by the peer
to actually be used.

signature_algs() = [{hash(), sign_algo()} | sign_scheme()]
Explicitly list acceptable signature algorithms for certificates and handshake messages in the preferred order. The
client will send its list as the client hello signature_algorithm extension introduced in TLS-1.2, see Section
7.4.1.4.1 in RFC 5246. Previously these algorithms where implicitly chosen and partly derived from the cipher suite.

In TLS-1.2 a somewhat more explicit negotiation is made possible using a list of {hash(), sign_algo()} pairs.

In TLS-1.3 these algorithm pairs are replaced by so called signature schemes sign_scheme() and completely decoupled
from the cipher suite.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 49

href
href

ssl

Signature algorithms used for certificates may be overridden by the signature schemes (algorithms) supplied by the
signature_algs_cert option.

TLS-1.2 default is Default_TLS_12_Alg_Pairs interleaved with rsa_pss_schemes since ssl-11.0 (OTP-25) pss_pss is
prefered over pss_rsae that is prefered over rsa

Default_TLS_12_Alg_Pairs =

[
%% SHA2
{sha512, ecdsa},
{sha512, rsa},
{sha384, ecdsa},
{sha384, rsa},
{sha256, ecdsa},
{sha256, rsa}
]

Support for {md5, rsa} was removed from the the TLS-1.2 default in ssl-8.0 (OTP-22) and support for SHA1 {sha,
_} and SHA224 {sha224, _} was removed in ssl-11.0 (OTP-26)

rsa_pss_schemes =

[rsa_pss_pss_sha512,
rsa_pss_pss_sha384,
rsa_pss_pss_sha256,
rsa_pss_rsae_sha512,
rsa_pss_rsae_sha384,
rsa_pss_rsae_sha256]

TLS_13_Legacy_Schemes =

 [
 %% Legacy algorithms only applicable to certificate signatures
rsa_pkcs1_sha512, %% Corresponds to {sha512, rsa}
rsa_pkcs1_sha384, %% Corresponds to {sha384, rsa}
rsa_pkcs1_sha256, %% Corresponds to {sha256, rsa}
]

Default_TLS_13_Schemes =

 [
 %% EDDSA
eddsa_ed25519,
eddsa_ed448

%% ECDSA
ecdsa_secp521r1_sha512,
ecdsa_secp384r1_sha384,
ecdsa_secp256r1_sha256] ++

%% RSASSA-PSS
rsa_pss_schemes()

EDDSA was made highest priority in ssl-10.8 (OTP-25)

TLS-1.3 default is

Default_TLS_13_Schemes

If both TLS-1.3 and TLS-1.2 are supported the default will be

Default_TLS_13_Schemes ++ TLS_13_Legacy_Schemes ++ Default_TLS_12_Alg_Pairs (not represented in TLS_13_Legacy_Schemes)

50 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

so appropriate algorithms can be chosen for the negotiated version.

Note:

TLS-1.2 algorithms will not be negotiated for TLS-1.3, but TLS-1.3 RSASSA-PSS rsassa_pss_scheme() signature
schemes may be negotiated also for TLS-1.2 from 24.1 (fully working from 24.1.3). However if TLS-1.3 is
negotiated when both TLS-1.3 and TLS-1.2 is supported using defaults, the corresponding TLS-1.2 algorithms to
the TLS-1.3 legacy signature schemes will be considered as the legacy schemes and applied only to certificate
signatures.

sign_schemes() = [sign_scheme()]
Explicitly list acceptable signature schemes (algorithms) in the preferred order. Overrides the algorithms supplied in
signature_algs option for certificates.

In addition to the signature_algorithms extension from TLS 1.2, TLS 1.3 (RFC 5246 Section 4.2.3) adds the
signature_algorithms_cert extension which enables having special requirements on the signatures used in
the certificates that differs from the requirements on digital signatures as a whole. If this is not required this extension
is not need.

The client will send a `signature_algorithms_cert` extension (in the client hello message), if TLS version 1.2 (back-
ported to TLS 1.2 in 24.1) or later is used, and the signature_algs_cert option is explicitly specified. By default, only
the extension signature_algs is sent with the exception of when signature_algs option is not explicitly specified, in
which case it will append the rsa_pkcs1_sha1 algorithm to the default value of signature_algs and use it as value for
signature_algs_cert to allow certificates to have this signature but still disallow sha1 use in the TLS protocol, since
OTP-26.2.5.2

Note:

Note that supported signature schemes for TLS-1.2 are sign_scheme_legacy() and rsassa_pss_scheme()

supported_groups() = [group()]
TLS 1.3 introduces the "supported_groups" extension that is used for negotiating the Diffie-Hellman parameters in a
TLS 1.3 handshake. Both client and server can specify a list of parameters that they are willing to use.

If it is not specified it will use a default list ([x25519, x448, secp256r1, secp384r1]) that is filtered based on the installed
crypto library version.

secure_renegotiation() = boolean()
Specifies if to reject renegotiation attempt that does not live up to RFC 5746. By default secure_renegotiate is
set to true, that is, secure renegotiation is enforced. If set to false secure renegotiation will still be used if possible,
but it falls back to insecure renegotiation if the peer does not support RFC 5746.

allowed_cert_chain_length() = integer()
Maximum number of non-self-issued intermediate certificates that can follow the peer certificate in a valid certification
path. So, if depth is 0 the PEER must be signed by the trusted ROOT-CA directly; if 1 the path can be PEER, CA,
ROOT-CA; if 2 the path can be PEER, CA, CA, ROOT-CA, and so on. The default value is 10.

custom_verify() =
 {Verifyfun :: function(), InitialUserState :: any()}
The verification fun is to be defined as follows:

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 51

href
href
href

ssl

fun(OtpCert :: #'OTPCertificate'{},
 Event, InitialUserState :: term()) ->
 {valid, UserState :: term()} |
 {fail, Reason :: term()} | {unknown, UserState :: term()}.

fun(OtpCert :: #'OTPCertificate'{}, DerCert :: public_key:der_encoded(),
 Event, InitialUserState :: term()) ->
 {valid, UserState :: term()} |
 {fail, Reason :: term()} | {unknown, UserState :: term()}.

Types:
 Event = {bad_cert, Reason :: atom() |
 {revoked, atom()}} |
 {extension, #'Extension'{}} |
 valid |
 valid_peer

The verification fun is called during the X509-path validation when an error or an extension unknown to the SSL
application is encountered. It is also called when a certificate is considered valid by the path validation to allow access
to each certificate in the path to the user application. It differentiates between the peer certificate and the CA certificates
by using valid_peer or valid as Event argument to the verification fun. See the public_key User's Guide for
definition of #'OTPCertificate'{} and #'Extension'{}.

• If the verify callback fun returns {fail, Reason}, the verification process is immediately stopped, an alert
is sent to the peer, and the TLS/DTLS handshake terminates.

• If the verify callback fun returns {valid, UserState}, the verification process continues.

• If the verify callback fun always returns {valid, UserState}, the TLS/DTLS handshake does not terminate
regarding verification failures and the connection is established.

• If called with an extension unknown to the user application, return value {unknown, UserState} is to be
used.

Note that if the fun returns unknown for an extension marked as critical, validation will fail.

Default option verify_fun in verify_peer mode:

{fun(_,{bad_cert, _} = Reason, _) ->
 {fail, Reason};
 (_,{extension, _}, UserState) ->
 {unknown, UserState};
 (_, valid, UserState) ->
 {valid, UserState};
 (_, valid_peer, UserState) ->
 {valid, UserState}
 end, []}

Default option verify_fun in mode verify_none:

{fun(_,{bad_cert, _}, UserState) ->
 {valid, UserState};
 (_,{extension, #'Extension'{critical = true}}, UserState) ->
 {valid, UserState};
 (_,{extension, _}, UserState) ->
 {unknown, UserState};
 (_, valid, UserState) ->
 {valid, UserState};
 (_, valid_peer, UserState) ->
 {valid, UserState}
 end, []}

The possible path validation errors are given on form {bad_cert, Reason} where Reason is:

52 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

unknown_ca

No trusted CA was found in the trusted store. The trusted CA is normally a so called ROOT CA, which is a self-
signed certificate. Trust can be claimed for an intermediate CA (trusted anchor does not have to be self-signed
according to X-509) by using option partial_chain.

selfsigned_peer

The chain consisted only of one self-signed certificate.

{invalid_ext_keyusage, [public_key:oid()]}

If the peer certificate specifies the extended keyusage extension and does not include the purpose for either being
a TLS server (id-kp-ServerAuth) or TLS client (id-kp-ClientAuth) depending on the peers role.

{ca_invalid_ext_keyusage, [public_key:oid()]}

If a CA certificate specifies the extended keyusage extension and does not include the purpose for either
being a TLS server (id-kp-ServerAuth) or TLS client (id-kp-ClientAuth) depending on the role of
the peer chained with this CA, or the option allow_any_ca_purpose is set to `true` but the special any-value
(anyExtendedKeyUsage) is not included in the CA cert purposes.

PKIX X-509-path validation error

For possible reasons, see public_key:pkix_path_validation/3

allow_any_ca_purpose() = boolean()
If a CA certificate has an extended key usage extension but it does not want to restrict the usages of the key it can include
a special `anyExtendedKeyUsage` purpose. If this is option is set to `true` all key usage purposes is automatically
accepted for the CA that includes this purpose, the option default to false.

crl_check() = boolean() | peer | best_effort
Perform CRL (Certificate Revocation List) verification (public_key:pkix_crls_validate/3) on all the certificates during
the path validation (public_key:pkix_path_validation/3) of the certificate chain. Defaults to false.

peer
check is only performed on the peer certificate.

best_effort
if certificate revocation status cannot be determined it will be accepted as valid.

The CA certificates specified for the connection will be used to construct the certificate chain validating the CRLs.

The CRLs will be fetched from a local or external cache. See ssl_crl_cache_api(3).

crl_cache_opts() =
 {Module :: atom(),
 {DbHandle :: internal | term(), Args :: list()}}
Specify how to perform lookup and caching of certificate revocation lists. Module defaults to ssl_crl_cache with
DbHandle being internal and an empty argument list.

There are two implementations available:

ssl_crl_cache

This module maintains a cache of CRLs. CRLs can be added to the cache using the function ssl_crl_cache:insert/1,
and optionally automatically fetched through HTTP if the following argument is specified:

{http, timeout()}

Enables fetching of CRLs specified as http URIs inX509 certificate extensions. Requires the OTP inets
application.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 53

ssl

ssl_crl_hash_dir

This module makes use of a directory where CRLs are stored in files named by the hash of the issuer name.

The file names consist of eight hexadecimal digits followed by .rN, where N is an integer, e.g. 1a2b3c4d.r0.
For the first version of the CRL, N starts at zero, and for each new version, N is incremented by one. The OpenSSL
utility c_rehash creates symlinks according to this pattern.

For a given hash value, this module finds all consecutive .r* files starting from zero, and those files taken
together make up the revocation list. CRL files whose nextUpdate fields are in the past, or that are issued by
a different CA that happens to have the same name hash, are excluded.

The following argument is required:

{dir, string()}

Specifies the directory in which the CRLs can be found.

root_fun() = function()

fun(Chain::[public_key:der_encoded()]) ->
 {trusted_ca, DerCert::public_key:der_encoded()} | unknown_ca.

Claim an intermediate CA in the chain as trusted. TLS then performs public_key:pkix_path_validation/3 with the
selected CA as trusted anchor and the rest of the chain.

protocol_versions() = [protocol_version()]
TLS protocol versions supported by started clients and servers. This option overrides the application environment
option protocol_version and dtls_protocol_version. If the environment option is not set, it defaults to
all versions, supported by the SSL application. See also ssl(6).

custom_user_lookup() =
 {Lookupfun :: function(), UserState :: any()}
The lookup fun is to defined as follows:

fun(psk, PSKIdentity :: binary(), UserState :: term()) ->
 {ok, SharedSecret :: binary()} | error;
fun(srp, Username :: binary(), UserState :: term()) ->
 {ok, {SRPParams :: srp_param_type(), Salt :: binary(),
 DerivedKey :: binary()}} | error.

For Pre-Shared Key (PSK) cipher suites, the lookup fun is called by the client and server to determine the shared secret.
When called by the client, PSKIdentity is set to the hint presented by the server or to undefined. When called by
the server, PSKIdentity is the identity presented by the client.

For Secure Remote Password (SRP), the fun is only used by the server to obtain parameters that it uses to generate
its session keys. DerivedKey is to be derived according to RFC 2945 and RFC 5054: crypto:sha([Salt,
crypto:sha([Username, <<$:>>, Password])])

session_id() = binary()
Identifies a TLS session.

log_alert() = boolean()
If set to false, TLS/DTLS Alert reports are not displayed. Deprecated in OTP 22, use {log_level, logging_level()}
instead.

logging_level() = logger:level() | none | all
Specifies the log level for a TLS/DTLS connection. Alerts are logged on notice level, which is the default level.
The level debug triggers verbose logging of TLS/DTLS protocol messages. See also ssl(6)

54 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href

ssl

hibernate_after() = timeout()
When an integer-value is specified, TLS/DTLS-connection goes into hibernation after the specified number of
milliseconds of inactivity, thus reducing its memory footprint. When undefined is specified (this is the default),
the process never goes into hibernation.

handshake_size() = integer()
Integer (24 bits unsigned). Used to limit the size of valid TLS handshake packets to avoid DoS attacks. Defaults to
256*1024.

padding_check() = boolean()
Affects TLS-1.0 connections only. If set to false, it disables the block cipher padding check to be able to interoperate
with legacy software.

Warning:

Using {padding_check, boolean()} makes TLS vulnerable to the Poodle attack.

beast_mitigation() = one_n_minus_one | zero_n | disabled
Affects TLS-1.0 connections only. Used to change the BEAST mitigation strategy to interoperate with legacy software.
Defaults to one_n_minus_one.

one_n_minus_one - Perform 1/n-1 BEAST mitigation.

zero_n - Perform 0/n BEAST mitigation.

disabled - Disable BEAST mitigation.

Warning:

Using {beast_mitigation, disabled} makes TLS-1.0 vulnerable to the BEAST attack.

ssl_imp() = new | old
Deprecated since OTP-17, has no effect.

session_tickets() =
 client_session_tickets() | server_session_tickets()
Configures the session ticket functionality in TLS 1.3 client and server.

key_update_at() = integer() >= 1
Configures the maximum amount of bytes that can be sent on a TLS 1.3 connection before an automatic key update
is performed.

There are cryptographic limits on the amount of plaintext which can be safely encrypted under a given set of keys.
The current default ensures that data integrity will not be breached with probability greater than 1/2^57. For more
information see Limits on Authenticated Encryption Use in TLS.

Warning:

The default value of this option shall provide the above mentioned security guarantees and it shall be reasonable
for most applications (~353 TB).

middlebox_comp_mode() = boolean()
Configures the middlebox compatibility mode on a TLS 1.3 connection.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 55

href

ssl

A significant number of middleboxes misbehave when a TLS 1.3 connection is negotiated. Implementations can
increase the chance of making connections through those middleboxes by making the TLS 1.3 handshake more like
a TLS 1.2 handshake.

The middlebox compatibility mode is enabled (true) by default.

spawn_opts() = [erlang:spawn_opt_option()]
Configures spawn options of TLS sender and receiver processes.

Setting up garbage collection options can be helpful for trade-offs between CPU usage and Memory usage. See
erlang:spawn_opt/2.

For dist connections, default sender option is [...{priority, max}], this priority option cannot be changed.
For all connections, ...link is added to receiver and cannot be changed.

keep_secrets() = boolean()
Configures a TLS 1.3 connection for keylogging

In order to retrieve keylog information on a TLS 1.3 connection, it must be configured in advance to keep the
client_random and various handshake secrets.

The keep_secrets functionality is disabled (false) by default.

Added in OTP 23.2

Data Types
TLS/DTLS OPTION DESCRIPTIONS - CLIENT
client_option() =
 {verify, client_verify_type()} |
 {reuse_session, client_reuse_session()} |
 {reuse_sessions, client_reuse_sessions()} |
 {cacerts, client_cacerts()} |
 {cacertfile, client_cafile()} |
 {alpn_advertised_protocols, client_alpn()} |
 {client_preferred_next_protocols,
 client_preferred_next_protocols()} |
 {psk_identity, client_psk_identity()} |
 {srp_identity, client_srp_identity()} |
 {server_name_indication, sni()} |
 {max_fragment_length, max_fragment_length()} |
 {customize_hostname_check, customize_hostname_check()} |
 {fallback, fallback()} |
 {middlebox_comp_mode, middlebox_comp_mode()} |
 {certificate_authorities, client_certificate_authorities()} |
 {session_tickets, client_session_tickets()} |
 {use_ticket, use_ticket()} |
 {early_data, client_early_data()} |
 {use_srtp, use_srtp()}
client_verify_type() = verify_type()
Defaults to verify_peer, since OTP-26, which means the option cacerts or cacertfile is also required to perform
the certificate verification unless verify_none is explicitly configured. For example an HTTPS client would
normally use the option {cacerts, public_key:cacerts_get()} (available since OTP-25) to access the
CA certificates provided by the OS. Using verify_none means that all x509-certificate path validation errors will be
ignored. See also option verify_fun.

56 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

client_reuse_session() =
 session_id() | {session_id(), SessionData :: binary()}
Reuses a specific session. The session should be referred by its session id if it is earlier saved with the option
{reuse_sessions, save} since OTP-21.3 or explicitly specified by its session id and associated data since
OTP-22.3. See also SSL's Users Guide, Session Reuse pre TLS 1.3.

client_reuse_sessions() = boolean() | save
When save is specified a new connection will be negotiated and saved for later reuse. The session ID can be fetched
with connection_information/2 and used with the client option reuse_session The boolean value true specifies that if
possible, automated session reuse will be performed. If a new session is created, and is unique in regard to previous
stored sessions, it will be saved for possible later reuse. Since OTP-21.3.

client_certificate_authorities() = boolean()
If set to true, sends the certificate authorities extension in TLS-1.3 client hello. The default is false. Note that setting
it to true may result in a big overhead if you have many trusted CA certificates. Since OTP-24.3.

client_cacerts() =
 [public_key:der_encoded()] | [public_key:combined_cert()]
The DER-encoded trusted certificates. If this option is supplied it overrides option cacertfile.

client_cafile() = file:filename()
Path to a file containing PEM-encoded CA certificates. The CA certificates are used during server authentication and
when building the client certificate chain.

Note:

When PEM caching is enabled, files provided with this option will be checked for updates at fixed time intervals
specified by the ssl_pem_cache_clean environment parameter.

Note:

Alternatively, CA certificates can be provided as a DER-encoded binary with client_cacerts option.

client_alpn() = [app_level_protocol()]
The list of protocols supported by the client to be sent to the server to be used for an Application-Layer Protocol
Negotiation (ALPN). If the server supports ALPN then it will choose a protocol from this list; otherwise it will fail
the connection with a "no_application_protocol" alert. A server that does not support ALPN will ignore this value.

The list of protocols must not contain an empty binary.

The negotiated protocol can be retrieved using the negotiated_protocol/1 function.

client_preferred_next_protocols() =
 {Precedence :: server | client,
 ClientPrefs :: [app_level_protocol()]} |
 {Precedence :: server | client,
 ClientPrefs :: [app_level_protocol()],
 Default :: app_level_protocol()}
Indicates that the client is to try to perform Next Protocol Negotiation.

If precedence is server, the negotiated protocol is the first protocol to be shown on the server advertised list, which
is also on the client preference list.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 57

ssl

If precedence is client, the negotiated protocol is the first protocol to be shown on the client preference list, which is
also on the server advertised list.

If the client does not support any of the server advertised protocols or the server does not advertise any protocols, the
client falls back to the first protocol in its list or to the default protocol (if a default is supplied). If the server does not
support Next Protocol Negotiation, the connection terminates if no default protocol is supplied.

max_fragment_length() = undefined | 512 | 1024 | 2048 | 4096
Specifies the maximum fragment length the client is prepared to accept from the server. See RFC 6066

client_psk_identity() = psk_identity()
Specifies the identity the client presents to the server. The matching secret is found by calling user_lookup_fun

client_srp_identity() = srp_identity()
Specifies the username and password to use to authenticate to the server.

sni() = inet:hostname() | disable
Specify the hostname to be used in TLS Server Name Indication extension. If not specified it will default to the Host
argument of connect/[3,4] unless it is of type inet:ipaddress().

The HostName will also be used in the hostname verification of the peer certificate using
public_key:pkix_verify_hostname/2.

The special value disable prevents the Server Name Indication extension from being sent and disables the hostname
verification check public_key:pkix_verify_hostname/2

customize_hostname_check() = list()
Customizes the hostname verification of the peer certificate, as different protocols that use TLS such as HTTP or
LDAP may want to do it differently. For example the get standard HTTPS handling provide the already implememnted
fun from the public_key application for HTTPS. {customize_hostname_check, [{match_fun,
public_key:pkix_verify_hostname_match_fun(https)}]} For futher description of customize
options see public_key:pkix_verify_hostname/3

fallback() = boolean()
Send special cipher suite TLS_FALLBACK_SCSV to avoid undesired TLS version downgrade. Defaults to false

Warning:

Note this option is not needed in normal TLS usage and should not be used to implement new clients. But legacy
clients that retries connections in the following manner

ssl:connect(Host, Port, [...{versions, ['tlsv2', 'tlsv1.1', 'tlsv1']}])

ssl:connect(Host, Port, [...{versions, [tlsv1.1', 'tlsv1']}, {fallback,
true}])

ssl:connect(Host, Port, [...{versions, ['tlsv1']}, {fallback, true}])

may use it to avoid undesired TLS version downgrade. Note that TLS_FALLBACK_SCSV must also be supported
by the server for the prevention to work.

client_session_tickets() = disabled | manual | auto
Configures the session ticket functionality. Allowed values are disabled, manual and auto. If it is set to manual
the client will send the ticket information to user process in a 3-tuple:

{ssl, session_ticket, {SNI, TicketData}}

58 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href

ssl

where SNI is the ServerNameIndication and TicketData is the extended ticket data that can be used in subsequent
session resumptions.

If it is set to auto, the client automatically handles received tickets and tries to use them when making new TLS
connections (session resumption with pre-shared keys).

Note:

This option is supported by TLS 1.3 and above. See also SSL's Users Guide, Session Tickets and Session
Resumption in TLS 1.3

use_ticket() = [binary()]
Configures the session tickets to be used for session resumption. It is a mandatory option in manual mode
(session_tickets = manual).

Note:

Session tickets are only sent to user if option session_tickets is set to manual

This option is supported by TLS 1.3 and above. See also SSL's Users Guide, Session Tickets and Session
Resumption in TLS 1.3

client_early_data() = binary()
Configures the early data to be sent by the client.

In order to be able to verify that the server has the intention to process the early data, the following 3-tuple is sent
to the user process:

{ssl, SslSocket, {early_data, Result}}

where Result is either accepted or rejected.

Warning:

It is the responsibility of the user to handle a rejected Early Data and to resend when it is appropriate.

use_srtp() =
 #{protection_profiles := [binary()], mki => binary()}
Configures the use_srtp DTLS hello extension.

In order to negotiate the use of SRTP data protection, clients include an extension of type "use_srtp" in the DTLS
extended client hello. This extension MUST only be used when the data being transported is RTP or RTCP.

The value is a map with a mandatory protection_profiles and an optional mki parameters.

protection_profiles configures the list of the client's acceptable SRTP Protection Profiles. Each profile is a
2-byte binary. Example: #{protection_profiles => [<<0,2>>, <<0,5>>]}

mki configures the SRTP Master Key Identifier chosen by the client.

The srtp_mki field contains the value of the SRTP MKI which is associated with the SRTP master keys derived from
this handshake. Each SRTP session MUST have exactly one master key that is used to protect packets at any given
time. The client MUST choose the MKI value so that it is distinct from the last MKI value that was used, and it
SHOULD make these values unique for the duration of the TLS session.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 59

ssl

Note:

This extension MUST only be used with DTLS, and not with TLS.

Note:

OTP does not handle SRTP, so an external implementations of SRTP encoder/decoder and a packet demultiplexer
are needed to make use of the use_srtp extension. See also cb_info option.

Data Types
TLS/DTLS OPTION DESCRIPTIONS - SERVER
server_option() =
 {cacerts, server_cacerts()} |
 {cacertfile, server_cafile()} |
 {dh, dh_der()} |
 {dhfile, dh_file()} |
 {verify, server_verify_type()} |
 {fail_if_no_peer_cert, fail_if_no_peer_cert()} |
 {certificate_authorities, server_certificate_authorities()} |
 {reuse_sessions, server_reuse_sessions()} |
 {reuse_session, server_reuse_session()} |
 {alpn_preferred_protocols, server_alpn()} |
 {next_protocols_advertised, server_next_protocol()} |
 {psk_identity, server_psk_identity()} |
 {sni_hosts, sni_hosts()} |
 {sni_fun, sni_fun()} |
 {honor_cipher_order, honor_cipher_order()} |
 {honor_ecc_order, honor_ecc_order()} |
 {client_renegotiation, client_renegotiation()} |
 {session_tickets, server_session_tickets()} |
 {stateless_tickets_seed, stateless_tickets_seed()} |
 {anti_replay, anti_replay()} |
 {cookie, cookie()} |
 {early_data, server_early_data()} |
 {use_srtp, use_srtp()}
server_cacerts() =
 [public_key:der_encoded()] | [public_key:combined_cert()]
The DER-encoded trusted certificates. If this option is supplied it overrides option cacertfile.

server_certificate_authorities() = boolean()
Determines if a TLS-1.3 server should include the authorities extension in its certificate request message that will be
sent if the option verify is set to verify_peer. Defaults to true.

If set to false for older TLS versions its corresponding certificate authorities definition in its certificate request will
be set to the empty list instead of including the appropriate certificate authorities. This has the same affect as excluding
the TLS-1.3 extension.

A reason to exclude the certificate authorities would be if the server wants to communicate with clients incapable of
sending complete certificate chains that adhere to the certificate authorities, but the server still has the capability to
recreate a chain that it can verify.

60 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

server_cafile() = file:filename()
Path to a file containing PEM-encoded CA certificates. The CA certificates are used to build the server certificate
chain and for client authentication. The CAs are also used in the list of acceptable client CAs passed to the client when
a certificate is requested. Can be omitted if there is no need to verify the client and if there are no intermediate CAs
for the server certificate.

Note:

When PEM caching is enabled, files provided with this option will be checked for updates at fixed time intervals
specified by the ssl_pem_cache_clean environment parameter.

Note:

Alternatively, CA certificates can be provided as a DER-encoded binary with server_cacerts option.

dh_der() = binary()
The DER-encoded Diffie-Hellman parameters. If specified, it overrides option dhfile.

Warning:

The dh_der option is not supported by TLS 1.3. Use the supported_groups option instead.

dh_file() = file:filename()
Path to a file containing PEM-encoded Diffie Hellman parameters to be used by the server if a cipher suite using Diffie
Hellman key exchange is negotiated. If not specified, default parameters are used.

Warning:

The dh_file option is not supported by TLS 1.3. Use the supported_groups option instead.

server_verify_type() = verify_type()
Client certificates are an optional part of the TLS protocol. A server only does x509-certificate path validation
in mode verify_peer. By default the server is in verify_none mode an hence will not send an certificate
request to the client. When using verify_peer you may also want to specify the options fail_if_no_peer_cert and
certificate_authorities.

fail_if_no_peer_cert() = boolean()
Used together with {verify, verify_peer} by an TLS/DTLS server. If set to true, the server fails if the
client does not have a certificate to send, that is, sends an empty certificate. If set to false, it fails only if the client
sends an invalid certificate (an empty certificate is considered valid). Defaults to false.

server_reuse_sessions() = boolean()
The boolean value true specifies that the server will agree to reuse sessions. Setting it to false will result in an empty
session table, that is no sessions will be reused. See also option reuse_session.

server_reuse_session() = function()
Enables the TLS/DTLS server to have a local policy for deciding if a session is to be reused or not. Meaningful only
if reuse_sessions is set to true. SuggestedSessionId is a binary(), PeerCert is a DER-encoded
certificate, Compression is an enumeration integer, and CipherSuite is of type ciphersuite().

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 61

ssl

server_alpn() = [app_level_protocol()]
Indicates the server will try to perform Application-Layer Protocol Negotiation (ALPN).

The list of protocols is in order of preference. The protocol negotiated will be the first in the list that matches
one of the protocols advertised by the client. If no protocol matches, the server will fail the connection with a
"no_application_protocol" alert.

The negotiated protocol can be retrieved using the negotiated_protocol/1 function.

server_next_protocol() = [app_level_protocol()]
List of protocols to send to the client if the client indicates that it supports the Next Protocol extension. The client can
select a protocol that is not on this list. The list of protocols must not contain an empty binary. If the server negotiates
a Next Protocol, it can be accessed using the negotiated_next_protocol/1 method.

server_psk_identity() = psk_identity()
Specifies the server identity hint, which the server presents to the client.

honor_cipher_order() = boolean()
If set to true, use the server preference for cipher selection. If set to false (the default), use the client preference.

sni_hosts() =
 [{inet:hostname(), [server_option() | common_option()]}]
If the server receives a SNI (Server Name Indication) from the client matching a host listed in the sni_hosts option,
the specific options for that host will override previously specified options. The option sni_fun, and sni_hosts
are mutually exclusive.

sni_fun() = fun((string()) -> [] | undefined)
If the server receives a SNI (Server Name Indication) from the client, the given function will be called to retrieve
[server_option()] for the indicated server. These options will be merged into predefined [server_option()] list. The
function should be defined as: fun(ServerName :: string()) -> [server_option()] and can be specified as a fun or as
named fun module:function/1 The option sni_fun, and sni_hosts are mutually exclusive.

client_renegotiation() = boolean()
In protocols that support client-initiated renegotiation, the cost of resources of such an operation is higher for the server
than the client. This can act as a vector for denial of service attacks. The SSL application already takes measures to
counter-act such attempts, but client-initiated renegotiation can be strictly disabled by setting this option to false.
The default value is true. Note that disabling renegotiation can result in long-lived connections becoming unusable
due to limits on the number of messages the underlying cipher suite can encipher.

honor_cipher_order() = boolean()
If true, use the server's preference for cipher selection. If false (the default), use the client's preference.

honor_ecc_order() = boolean()
If true, use the server's preference for ECC curve selection. If false (the default), use the client's preference.

server_session_tickets() =
 disabled | stateful | stateless | stateful_with_cert |
 stateless_with_cert
Configures the session ticket functionality. Allowed values are disabled, stateful, stateless,
stateful_with_cert, stateless_with_cert.

If it is not set to disabled, session resumption with pre-shared keys is enabled and the server will send stateful or
stateless session tickets to the client after successful connections.

62 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

Note:

Pre-shared key session ticket resumption does not include any certificate exchange, hence the function ssl:peercert/1
will not be able to return the peer certificate as it is only communicated in the initial handshake. The server
options stateful_with_cert or stateless_with_cert may be used to make a server associate the
client certificate from the original handshake with the tickets it issues.

A stateful session ticket is a database reference to internal state information. A stateless session ticket is a self-encrypted
binary that contains both cryptographic keying material and state data.

Warning:

If it is set to stateful_with_cert the client certificate is stored with the internal state information, increasing
memory consumption. If it is set to stateless_with_cert the client certificate is encoded in the self-
encrypted binary that is sent to the client, increasing the payload size.

Note:

This option is supported by TLS 1.3 and above. See also SSL's Users Guide, Session Tickets and Session
Resumption in TLS 1.3

stateless_tickets_seed() = binary()
Configures the seed used for the encryption of stateless session tickets. Allowed values are any randomly generated
binary(). If this option is not configured, an encryption seed will be randomly generated.

Warning:

Reusing the ticket encryption seed between multiple server instances enables stateless session tickets to work across
multiple server instances, but it breaks anti-replay protection across instances.

Inaccurate time synchronization between server instances can also affect session ticket freshness checks, potentially
causing false negatives as well as false positives.

Note:

This option is supported by TLS 1.3 and above and only with stateless session tickets.

anti_replay() =
 '10k' | '100k' |
 {bloom_filter_window_size(),
 bloom_filter_hash_functions(),
 bloom_filter_bits()}
Configures the server's built-in anti replay feature based on Bloom filters.

Allowed values are the pre-defined '10k', '100k' or a custom 3-tuple that defines the properties of the bloom
filters: {WindowSize, HashFunctions, Bits}. WindowSize is the number of seconds after the current
Bloom filter is rotated and also the window size used for freshness checks of ClientHello. HashFunctions is the
number hash functions and Bits is the number of bits in the bit vector. '10k' and '100k' are simple defaults
with the following properties:

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 63

ssl

• '10k': Bloom filters can hold 10000 elements with 3% probability of false positives. WindowSize: 10,
HashFunctions: 5, Bits: 72985 (8.91 KiB).

• '100k': Bloom filters can hold 100000 elements with 3% probability of false positives. WindowSize: 10,
HashFunctions: 5, Bits: 729845 (89.09 KiB).

Note:

This option is supported by TLS 1.3 and above and only with stateless session tickets. Ticket lifetime, the number
of tickets sent by the server and the maximum number of tickets stored by the server in stateful mode are configured
by application variables. See also SSL's Users Guide, Anti-Replay Protection in TLS 1.3

cookie() = boolean()
If true (default), the server sends a cookie extension in its HelloRetryRequest messages.

Note:

The cookie extension has two main purposes. It allows the server to force the client to demonstrate reachability
at their apparent network address (thus providing a measure of DoS protection). This is primarily useful for non-
connection-oriented transports. It also allows to offload the server's state to the client. The cookie extension is
enabled by default as it is a mandatory extension in RFC8446.

server_early_data() = disabled | enabled
Configures if the server accepts (enabled) or rejects (rejects) early data sent by a client. The default value is
disabled.

Warning:

This option is a placeholder, early data is not yet implemented on the server side.

use_srtp() =
 #{protection_profiles := [binary()], mki => binary()}
Configures the use_srtp DTLS hello extension.

Servers that receive an extended hello containing a "use_srtp" extension can agree to use SRTP by including an
extension of type "use_srtp", with the chosen protection profile in the extended server hello. This extension MUST
only be used when the data being transported is RTP or RTCP.

The value is a map with a mandatory protection_profiles and an optional mki parameters.

• protection_profiles configures the list of the server's chosen SRTP Protection Profile as a list of a single
2-byte binary. Example: #{protection_profiles => [<<0,5>>]}

• mki configures the server's SRTP Master Key Identifier.

Upon receipt of a "use_srtp" extension containing a "srtp_mki" field, the server MUST either (assuming it accepts
the extension at all):

• include a matching "srtp_mki" value in its "use_srtp" extension to indicate that it will make use of the MKI, or

• return an empty "srtp_mki" value to indicate that it cannot make use of the MKI (default).

Note:

This extension MUST only be used with DTLS, and not with TLS.

64 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

Note:

OTP does not handle SRTP, so an external implementations of SRTP encoder/decoder and a packet demultiplexer
are needed to make use of the use_srtp extension. See also cb_info option.

connection_info() =
 [common_info() |
 curve_info() |
 ssl_options_info() |
 security_info()]
common_info() =
 {protocol, protocol_version()} |
 {session_id, session_id()} |
 {session_resumption, boolean()} |
 {selected_cipher_suite, erl_cipher_suite()} |
 {sni_hostname, term()} |
 {srp_username, term()}
curve_info() = {ecc, {named_curve, term()}}
ssl_options_info() = tls_option()
security_info() =
 {client_random, binary()} |
 {server_random, binary()} |
 {master_secret, binary()}
connection_info_items() = [connection_info_item()]
connection_info_item() =
 protocol | session_id | session_resumption |
 selected_cipher_suite | sni_hostname | srp_username | ecc |
 client_random | server_random | master_secret | keylog |
 tls_options_name()
tls_options_name() = atom()

Exports

append_cipher_suites(Deferred, Suites) -> ciphers()
Types:

Deferred = ciphers() | cipher_filters()
Suites = ciphers()

Make Deferred suites become the least preferred suites, that is put them at the end of the cipher suite list Suites
after removing them from Suites if present. Deferred may be a list of cipher suites or a list of filters in which
case the filters are use on Suites to extract the Deferred cipher list.

cipher_suites(Description, Version) -> ciphers()
Types:

Description =

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 65

ssl

 default | all | exclusive | anonymous | exclusive_anonymous
Version = protocol_version() | ssl_record:ssl_version()

Lists all possible cipher suites corresponding to Description that are available. The exclusive and
exclusive_anonymous option will exclusively list cipher suites first supported in Version whereas the other
options are inclusive from the lowest possible version to Version. The all options includes all suites except the
anonymous and no anonymous suites are supported by default.

Note:

TLS-1.3 has no overlapping cipher suites with previous TLS versions, that is the result of
cipher_suites(all, 'tlsv1.3'). contains a separate set of suites that can be used with TLS-1.3 an
other set that can be used if a lower version is negotiated. PRE TLS-1.3 so called PSK and SRP suites need extra
configuration to work see user lookup function. No anonymous suites are supported by TLS-1.3.

Also note that the cipher suites returned by this function are the cipher suites that the OTP ssl application
can support provided that they are supported by the cryptolib linked with the OTP crypto application. Use
ssl:filter_cipher_suites(Suites, []). to filter the list for the current cryptolib. Note that cipher suites may be filtered
out because they are too old or too new depending on the cryptolib

cipher_suites(Description, Version, StringType :: rfc | openssl) ->
 [string()]
Types:

Description = default | all | exclusive | anonymous
Version = protocol_version() | ssl_record:ssl_version()

Same as cipher_suites/2 but lists RFC or OpenSSL string names instead of erl_cipher_suite()

eccs() -> NamedCurves
Types:

NamedCurves = [named_curve()]
Returns a list of all supported elliptic curves, including legacy curves, for all TLS/DTLS versions pre TLS-1.3.

eccs(Version) -> NamedCurves
Types:

Version = 'tlsv1.2' | 'tlsv1.1' | tlsv1 | 'dtlsv1.2' | dtlsv1
NamedCurves = [named_curve()]

Returns the by default supported elliptic curves for Version, which is a subset of what eccs/0 returns.

clear_pem_cache() -> ok
PEM files, used by ssl API-functions, are cached for performance reasons. The cache is automatically checked at
regular intervals to see if any cache entries should be invalidated.

This function provides a way to unconditionally clear the entire cache, thereby forcing a reload of previously cached
PEM files.

connect(TCPSocket, TLSOptions) ->
 {ok, sslsocket()} |
 {error, reason()} |

66 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

 {option_not_a_key_value_tuple, any()}
connect(TCPSocket, TLSOptions, Timeout) ->
 {ok, sslsocket()} | {error, reason()}
Types:

TCPSocket = socket()
TLSOptions = [tls_client_option()]
Timeout = timeout()

Upgrades a gen_tcp, or equivalent, connected socket to a TLS socket, that is, performs the client-side TLS
handshake.

Note:

If the option verify is set to verify_peer the option server_name_indication shall also be specified,
if it is not no Server Name Indication extension will be sent, and public_key:pkix_verify_hostname/2 will be called
with the IP-address of the connection as ReferenceID, which is probably not what you want.

If the option {handshake, hello} is used the handshake is paused after receiving the server hello message and
the success response is {ok, SslSocket, Ext} instead of {ok, SslSocket}. Thereafter the handshake is
continued or canceled by calling handshake_continue/3 or handshake_cancel/1.

If the option active is set to once, true or an integer value, the process owning the sslsocket will receive messages
of type active_msgs()

connect(Host, Port, TLSOptions) ->
 {ok, sslsocket()} |
 {ok, sslsocket(), Ext :: protocol_extensions()} |
 {error, reason()} |
 {option_not_a_key_value_tuple, any()}
connect(Host, Port, TLSOptions, Timeout) ->
 {ok, sslsocket()} |
 {ok, sslsocket(), Ext :: protocol_extensions()} |
 {error, reason()} |
 {option_not_a_key_value_tuple, any()}
Types:

Host = host()
Port = inet:port_number()
TLSOptions = [tls_client_option()]
Timeout = timeout()

Opens a TLS/DTLS connection to Host, Port.

When the option verify is set to verify_peer the check public_key:pkix_verify_hostname/2 will be performed
in addition to the usual x509-path validation checks. If the check fails the error {bad_cert, hostname_check_failed}
will be propagated to the path validation fun verify_fun, where it is possible to do customized checks by using the
full possibilities of the public_key:pkix_verify_hostname/3 API. When the option server_name_indication
is provided, its value (the DNS name) will be used as ReferenceID to public_key:pkix_verify_hostname/2. When
no server_name_indication option is given, the Host argument will be used as Server Name Indication
extension. The Host argument will also be used for the public_key:pkix_verify_hostname/2 check and if the Host
argument is an inet:ip_address() the ReferenceID used for the check will be {ip, Host} otherwise
dns_id will be assumed with a fallback to ip if that fails.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 67

ssl

Note:

According to good practices certificates should not use IP-addresses as "server names". It would be very surprising
if this happened outside a closed network.

If the option {handshake, hello} is used the handshake is paused after receiving the server hello message and
the success response is {ok, SslSocket, Ext} instead of {ok, SslSocket}. Thereafter the handshake is
continued or canceled by calling handshake_continue/3 or handshake_cancel/1.

If the option active is set to once, true or an integer value, the process owning the sslsocket will receive messages
of type active_msgs()

close(SslSocket) -> ok | {error, Reason}
Types:

SslSocket = sslsocket()
Reason = any()

Closes a TLS/DTLS connection.

close(SslSocket, How) ->
 ok | {ok, port()} | {ok, port(), Data} | {error, Reason}
Types:

SslSocket = sslsocket()
How = timeout() | {NewController :: pid(), timeout()}
Data = binary()
Reason = any()

Closes or downgrades a TLS connection. In the latter case the transport connection will be handed over to the
NewController process after receiving the TLS close alert from the peer. The returned transport socket will have
the following options set: [{active, false}, {packet, 0}, {mode, binary}].

In case of downgrade, the close function might return some binary data that should be treated by the user as the first
bytes received on the downgraded connection.

controlling_process(SslSocket, NewOwner) -> ok | {error, Reason}
Types:

SslSocket = sslsocket()
NewOwner = pid()
Reason = any()

Assigns a new controlling process to the SSL socket. A controlling process is the owner of an SSL socket, and receives
all messages from the socket.

connection_information(SslSocket) ->
 {ok, Result} | {error, reason()}
Types:

68 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

SslSocket = sslsocket()
Result = connection_info()

Returns the most relevant information about the connection, ssl options that are undefined will be filtered out.
Note that values that affect the security of the connection will only be returned if explicitly requested by
connection_information/2.

Note:

The legacy Item = cipher_suite was removed in OTP-23. Previously it returned the cipher suite on its
(undocumented) legacy format. It is replaced by selected_cipher_suite.

connection_information(SslSocket, Items) ->
 {ok, Result} | {error, reason()}
Types:

SslSocket = sslsocket()
Items = connection_info_items()
Result = connection_info()

Returns the requested information items about the connection, if they are defined.

Note that client_random, server_random, master_secret and keylog are values that affect the security of connection.
Meaningful atoms, not specified above, are the ssl option names.

In order to retrieve keylog and other secret information from a TLS 1.3 connection, keep_secrets must be configured
in advance and set to true.

Note:

If only undefined options are requested the resulting list can be empty.

filter_cipher_suites(Suites, Filters) -> Ciphers
Types:

Suites = ciphers()
Filters = cipher_filters()
Ciphers = ciphers()

Removes cipher suites if any of the filter functions returns false for any part of the cipher suite. If no filter function is
supplied for some part the default behaviour regards it as if there was a filter function that returned true. For examples
see Customizing cipher suites Additionally, this function also filters the cipher suites to exclude cipher suites not
supported by the cryptolib used by the OTP crypto application. That is calling ssl:filter_cipher_suites(Suites, []) will
be equivalent to only applying the filters for cryptolib support.

format_error(Reason :: Reason | {error, Reason}) -> string()
Types:

Reason = any()
Presents the error returned by an SSL function as a printable string.

getopts(SslSocket, OptionNames) ->

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 69

ssl

 {ok, [gen_tcp:option()]} | {error, reason()}
Types:

SslSocket = sslsocket()
OptionNames = [gen_tcp:option_name()]

Gets the values of the specified socket options.

getstat(SslSocket) -> {ok, OptionValues} | {error, inet:posix()}
getstat(SslSocket, Options) ->
 {ok, OptionValues} | {error, inet:posix()}
Types:

SslSocket = sslsocket()
Options = [inet:stat_option()]
OptionValues = [{inet:stat_option(), integer()}]

Gets one or more statistic options for the underlying TCP socket.

See inet:getstat/2 for statistic options description.

handshake(HsSocket) ->
 {ok, SslSocket} |
 {ok, SslSocket, Ext} |
 {error, Reason}
handshake(HsSocket, Timeout) ->
 {ok, SslSocket} |
 {ok, SslSocket, Ext} |
 {error, Reason}
Types:

HsSocket = sslsocket()
Timeout = timeout()
SslSocket = sslsocket()
Ext = protocol_extensions()
Reason = closed | timeout | error_alert()

Performs the TLS/DTLS server-side handshake.

Returns a new TLS/DTLS socket if the handshake is successful.

If the option active is set to once, true or an integer value, the process owning the sslsocket will receive messages
of type active_msgs()

Warning:

Not setting the timeout makes the server more vulnerable to DoS attacks.

handshake(Socket, Options) ->
 {ok, SslSocket} |
 {ok, SslSocket, Ext} |
 {error, Reason}
handshake(Socket, Options, Timeout) ->
 {ok, SslSocket} |

70 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

 {ok, SslSocket, Ext} |
 {error, Reason}
Types:

Socket = socket() | sslsocket()
SslSocket = sslsocket()
Options = [server_option()]
Timeout = timeout()
Ext = protocol_extensions()
Reason = closed | timeout | {options, any()} | error_alert()

If Socket is a ordinary socket(): upgrades a gen_tcp, or equivalent, socket to an SSL socket, that is, performs
the TLS server-side handshake and returns a TLS socket.

Warning:

The ordinary Socket shall be in passive mode ({active, false}) before calling this function, and before the client
tries to connect with TLS, or else the behavior of this function is undefined. The best way to ensure this is to create
the ordinary listen socket in passive mode.

If Socket is an sslsocket() : provides extra TLS/DTLS options to those specified in listen/2 and then performs the
TLS/DTLS handshake. Returns a new TLS/DTLS socket if the handshake is successful.

Warning:

Not setting the timeout makes the server more vulnerable to DoS attacks.

If option {handshake, hello} is specified the handshake is paused after receiving the client hello message and
the success response is {ok, SslSocket, Ext} instead of {ok, SslSocket}. Thereafter the handshake is
continued or canceled by calling handshake_continue/3 or handshake_cancel/1.

If the option active is set to once, true or an integer value, the process owning the sslsocket will receive messages
of type active_msgs()

handshake_cancel(Sslsocket :: #sslsocket{}) -> any()
Cancel the handshake with a fatal USER_CANCELED alert.

handshake_continue(HsSocket, Options) ->
 {ok, SslSocket} | {error, Reason}
handshake_continue(HsSocket, Options, Timeout) ->
 {ok, SslSocket} | {error, Reason}
Types:

HsSocket = sslsocket()
Options = [tls_client_option() | tls_server_option()]
Timeout = timeout()
SslSocket = sslsocket()
Reason = closed | timeout | error_alert()

Continue the TLS handshake, possibly with new, additional or changed options.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 71

ssl

listen(Port, Options) -> {ok, ListenSocket} | {error, reason()}
Types:

Port = inet:port_number()
Options = [tls_server_option()]
ListenSocket = sslsocket()

Creates an SSL listen socket.

negotiated_protocol(SslSocket) -> {ok, Protocol} | {error, Reason}
Types:

SslSocket = sslsocket()
Protocol = binary()
Reason = protocol_not_negotiated | closed

Returns the protocol negotiated through ALPN or NPN extensions.

peercert(SslSocket) -> {ok, Cert} | {error, reason()}
Types:

SslSocket = sslsocket()
Cert = public_key:der_encoded()

The peer certificate is returned as a DER-encoded binary. The certificate can be decoded with
public_key:pkix_decode_cert/2 Suggested further reading about certificates is public_key User's Guide and ssl User's
Guide

peername(SslSocket) -> {ok, {Address, Port}} | {error, reason()}
Types:

SslSocket = sslsocket()
Address = inet:ip_address()
Port = inet:port_number()

Returns the address and port number of the peer.

prepend_cipher_suites(Preferred, Suites) -> ciphers()
Types:

Preferred = ciphers() | cipher_filters()
Suites = ciphers()

Make Preferred suites become the most preferred suites that is put them at the head of the cipher suite list Suites
after removing them from Suites if present. Preferred may be a list of cipher suites or a list of filters in which
case the filters are use on Suites to extract the preferred cipher list.

prf(SslSocket, Secret, Label, Seed, WantedLength) ->
 {ok, binary()} | {error, reason()}
Types:

72 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

SslSocket = sslsocket()
Secret = binary() | master_secret
Label = binary()
Seed = [binary() | prf_random()]
WantedLength = integer() >= 0

Uses the Pseudo-Random Function (PRF) of a TLS session to generate extra key material. It either takes user-generated
values for Secret and Seed or atoms directing it to use a specific value from the session security parameters.

Note:

This function will be replaced by a new function export_key_materials/4 in OTP-27, which is equivalent to
prf(TLSSocket, master_secret, Label, [client_random, server_random, Context],
WantedLength) pre TLS-1.3 and also will behave correctly for TLS-1.3, although the API is not really logical
in the TLS-1.3 context. Other ways of calling this function was for testing purposes only and has no use case.

recv(SslSocket, Length) -> {ok, Data} | {error, reason()}
recv(SslSocket, Length, Timeout) -> {ok, Data} | {error, reason()}
Types:

SslSocket = sslsocket()
Length = integer() >= 0
Data = binary() | list() | HttpPacket
Timeout = timeout()
HttpPacket = any()
See the description of HttpPacket in erlang:decode_packet/3 in ERTS.

Receives a packet from a socket in passive mode. A closed socket is indicated by return value {error, closed}.

Argument Length is meaningful only when the socket is in mode raw and denotes the number of bytes to read. If
Length = 0, all available bytes are returned. If Length > 0, exactly Length bytes are returned, or an error; possibly
discarding less than Length bytes of data when the socket gets closed from the other side.

Optional argument Timeout specifies a time-out in milliseconds. The default value is infinity.

renegotiate(SslSocket) -> ok | {error, reason()}
Types:

SslSocket = sslsocket()
Initiates a new handshake. A notable return value is {error, renegotiation_rejected} indicating that the
peer refused to go through with the renegotiation, but the connection is still active using the previously negotiated
session.

TLS-1.3 has removed the renegotiate feature of earlier TLS versions and instead adds a new feature called key update
that replaces the most important part of renegotiate, that is the refreshing of session keys. This is triggered automatically
after reaching a plaintext limit and can be configured by option key_update_at.

update_keys(SslSocket, Type) -> ok | {error, reason()}
Types:

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 73

ssl

SslSocket = sslsocket()
Type = write | read_write

There are cryptographic limits on the amount of plaintext which can be safely encrypted under a given set of keys.
If the amount of data surpasses those limits, a key update is triggered and a new set of keys are installed. See also
the option key_update_at.

This function can be used to explicitly start a key update on a TLS 1.3 connection. There are two types of the key
update: if Type is set to write, only the writing key is updated; if Type is set to read_write, both the reading and
writing keys are updated.

send(SslSocket, Data) -> ok | {error, reason()}
Types:

SslSocket = sslsocket()
Data = iodata()

Writes Data to SslSocket.

A notable return value is {error, closed} indicating that the socket is closed.

setopts(SslSocket, Options) -> ok | {error, reason()}
Types:

SslSocket = sslsocket()
Options = [gen_tcp:option()]

Sets options according to Options for socket SslSocket.

shutdown(SslSocket, How) -> ok | {error, reason()}
Types:

SslSocket = sslsocket()
How = read | write | read_write

Immediately closes a socket in one or two directions.

How == write means closing the socket for writing, reading from it is still possible.

To be able to handle that the peer has done a shutdown on the write side, option {exit_on_close, false}
is useful.

signature_algs(Description, Version) -> signature_algs()
Types:

Description = default | all | exclusive
Version = protocol_version()

Lists all possible signature algorithms corresponding to Description that are available. The exclusive option
will exclusively list algorithms/schemes for that protocol version, whereas the default and all options lists the
combined list to support the range of protocols from (D)TLS-1.2, the first version to support configuration of the
signature algorithms, to Version.

Example:

74 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

 1> ssl:signature_algs(default, 'tlsv1.3').
 [eddsa_ed25519,eddsa_ed448,ecdsa_secp521r1_sha512,
 ecdsa_secp384r1_sha384,ecdsa_secp256r1_sha256,
 rsa_pss_pss_sha512,rsa_pss_pss_sha384,rsa_pss_pss_sha256,
 rsa_pss_rsae_sha512,rsa_pss_rsae_sha384,rsa_pss_rsae_sha256,
 rsa_pkcs1_sha512,rsa_pkcs1_sha384,rsa_pkcs1_sha256,
 {sha512,ecdsa},
 {sha384,ecdsa},
 {sha256,ecdsa}]

 2>ssl:signature_algs(all, 'tlsv1.3').
 [eddsa_ed25519,eddsa_ed448,ecdsa_secp521r1_sha512,
 ecdsa_secp384r1_sha384,ecdsa_secp256r1_sha256,
 rsa_pss_pss_sha512,rsa_pss_pss_sha384,rsa_pss_pss_sha256,
 rsa_pss_rsae_sha512,rsa_pss_rsae_sha384,rsa_pss_rsae_sha256,
 rsa_pkcs1_sha512,rsa_pkcs1_sha384,rsa_pkcs1_sha256,
 {sha512,ecdsa},
 {sha384,ecdsa},
 {sha256,ecdsa},
 {sha224,ecdsa},
 {sha224,rsa},
 {sha,rsa},
 {sha,dsa}]

 3> ssl:signature_algs(exclusive, 'tlsv1.3').
 [eddsa_ed25519,eddsa_ed448,ecdsa_secp521r1_sha512,
 ecdsa_secp384r1_sha384,ecdsa_secp256r1_sha256,
 rsa_pss_pss_sha512,rsa_pss_pss_sha384,rsa_pss_pss_sha256,
 rsa_pss_rsae_sha512,rsa_pss_rsae_sha384,rsa_pss_rsae_sha256]

Note:

Some TLS-1-3 scheme names overlap with TLS-1.2 algorithm-tuple-pair-names and then TLS-1.3 names will be
used, for example rsa_pkcs1_sha256 instead of {sha256, rsa} these are legacy algorithms in TLS-1.3
that apply only to certificate signatures in this version of the protocol.

sockname(SslSocket) -> {ok, {Address, Port}} | {error, reason()}
Types:

SslSocket = sslsocket()
Address = inet:ip_address()
Port = inet:port_number()

Returns the local address and port number of socket SslSocket.

start() -> ok | {error, reason()}
start(Type :: permanent | transient | temporary) ->
 ok | {error, reason()}
Starts the SSL application. Default type is temporary.

stop() -> ok
Stops the SSL application.

str_to_suite(CipherSuiteName) ->
 erl_cipher_suite() |

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 75

ssl

 {error, {not_recognized, CipherSuiteName}}
Types:

CipherSuiteName = string()
Converts an RFC or OpenSSL name string to an erl_cipher_suite() Returns an error if the cipher suite is not supported
or the name is not a valid cipher suite name.

suite_to_openssl_str(CipherSuite) -> string()
Types:

CipherSuite = erl_cipher_suite()
Converts erl_cipher_suite() to OpenSSL name string.

PRE TLS-1.3 these names differ for RFC names

suite_to_str(CipherSuite) -> string()
Types:

CipherSuite = erl_cipher_suite()
Converts erl_cipher_suite() to RFC name string.

transport_accept(ListenSocket) ->
 {ok, SslSocket} | {error, reason()}
transport_accept(ListenSocket, Timeout) ->
 {ok, SslSocket} | {error, reason()}
Types:

ListenSocket = sslsocket()
Timeout = timeout()
SslSocket = sslsocket()

Accepts an incoming connection request on a listen socket. ListenSocket must be a socket returned from listen/2.
The socket returned is to be passed to handshake/[2,3] to complete handshaking, that is, establishing the TLS/DTLS
connection.

Warning:

Most API functions require that the TLS/DTLS connection is established to work as expected.

The accepted socket inherits the options set for ListenSocket in listen/2.

The default value for Timeout is infinity. If Timeout is specified and no connection is accepted within the
given time, {error, timeout} is returned.

versions() -> [VersionInfo]
Types:

VersionInfo =
 {ssl_app, string()} |
 {supported | available | implemented, [tls_version()]} |
 {supported_dtls | available_dtls | implemented_dtls,
 [dtls_version()]}

Lists information, mainly concerning TLS/DTLS versions, in runtime for debugging and testing purposes.

76 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

app_vsn
The application version of the SSL application.

supported
TLS versions supported with current application environment and crypto library configuration. Overridden
by a version option on connect/[2,3,4], listen/2, and handshake/[2,3]. For the negotiated TLS version, see
connection_information/1 .

supported_dtls
DTLS versions supported with current application environment and crypto library configuration. Overridden
by a version option on connect/[2,3,4], listen/2, and handshake/[2,3]. For the negotiated DTLS version, see
connection_information/1 .

available
All TLS versions supported with the linked crypto library.

available_dtls
All DTLS versions supported with the linked crypto library.

implemented
All TLS versions supported by the SSL application if linked with a crypto library with the necessary support.

implemented_dtls
All DTLS versions supported by the SSL application if linked with a crypto library with the necessary support.

SEE ALSO
inet(3) and gen_tcp(3) gen_udp(3)

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 77

ssl_crl_cache

ssl_crl_cache
Erlang module

Implements an internal CRL (Certificate Revocation List) cache. In addition to implementing the ssl_crl_cache_api
behaviour the following functions are available.

Data Types
DATA TYPES
crl_src() =
 {file, file:filename()} | {der, public_key:der_encoded()}

Exports

delete(Entries) -> ok | {error, Reason}
Delete CRLs from the ssl applications local cache.

insert(CRLSrc) -> ok | {error, Reason}
insert(DistPointURI, CRLSrc) -> ok | {error, Reason}
Types:

DistPointURI = uri_string:uri_string()
CRLSrc = crl_src()
Reason = term()

Insert CRLs into the ssl applications local cache, with or without a distribution point reference URI

78 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl_crl_cache_api

ssl_crl_cache_api
Erlang module

When TLS performs certificate path validation according to RFC 5280 it should also perform CRL validation checks.
To enable the CRL checks the application needs access to CRLs. A database of CRLs can be set up in many different
ways. This module provides the behavior of the API needed to integrate an arbitrary CRL cache with the erlang ssl
application. It is also used by the application itself to provide a simple default implementation of a CRL cache.

Data Types
crl_cache_ref() = any()
Reference to the CRL cache.

dist_point() = #'DistributionPoint'{}
For description see X509 certificates records

logger_info() =
 {logger:level(),
 Report :: #{description => string(), reason => term()},
 logger:metadata()}
Information for ssl applications use of Logger(3)

Exports

Module:fresh_crl(DistributionPoint, CRL) -> FreshCRL
Module:fresh_crl(DistributionPoint, CRL) -> FreshCRL | {LoggerInfo, FreshCRL}
Types:

DistributionPoint = dist_point()

CRL = [public_key:der_encoded()]

FreshCRL = [public_key:der_encoded()]

LoggerInfo = {logger, logger_info() }}

fun fresh_crl/2 will be used as input option update_crl to public_key:pkix_crls_validate/3

It is possible to return logger info that will be used by the TLS connection to produce log events.

Module:lookup(DistributionPoint, Issuer, DbHandle) -> not_available | CRLs |
{LoggerInfo, CRLs}
Module:lookup(DistributionPoint, Issuer, DbHandle) -> not_available | CRLs
Module:lookup(DistributionPoint, DbHandle) -> not_available | CRLs
Types:

DistributionPoint = dist_point()

Issuer = public_key:issuer_name()

DbHandle = crl_cache_ref()

CRLs = [public_key:der_encoded()]

LoggerInfo = {logger, logger_info() }}

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 79

href

ssl_crl_cache_api

Lookup the CRLs belonging to the distribution point Distributionpoint. This function may choose to only
look in the cache or to follow distribution point links depending on how the cache is administrated.

The Issuer argument contains the issuer name of the certificate to be checked. Normally the returned CRL should
be issued by this issuer, except if the cRLIssuer field of DistributionPoint has a value, in which case that
value should be used instead.

In an earlier version of this API, the lookup function received two arguments, omitting Issuer. For compatibility,
this is still supported: if there is no lookup/3 function in the callback module, lookup/2 is called instead.

It is possible to return logger info that will be used by the TLS connection to produce log events.

Module:select(Issuer, DbHandle) -> CRLs | {LoggerInfo, CRLs}
Module:select(Issuer, DbHandle) -> CRLs
Types:

Issuer = public_key:issuer_name() | list()

DbHandle = cache_ref()

LoggerInfo = {logger, logger_info() }

Select the CRLs in the cache that are issued by Issuer unless the value is a list of so called general names, see
X509 certificates records, originating form #'DistributionPoint'.cRLissuer and representing different
mechanism to obtain the CRLs. The cache callback needs to use the appropriate entry to retrieve the CRLs or return
an empty list if it does not exist.

It is possible to return logger info that will be used by the TLS connection to produce log events.

80 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl_session_cache_api

ssl_session_cache_api
Erlang module

Defines the API for the TLS session cache (pre TLS-1.3) so that the data storage scheme can be replaced by defining
a new callback module implementing this API.

Data Types
session_cache_ref() = any()
session_cache_key() = {partial_key(), ssl:session_id()}
A key to an entry in the session cache.

partial_key()
The opaque part of the key. Does not need to be handled by the callback.

session()
The session data that is stored for each session.

Exports

Module:delete(Cache, Key) -> _
Types:

Cache = session_cache_ref()

Key = session_cache_key()

Deletes a cache entry. Is only called from the cache handling process.

Module:foldl(Fun, Acc0, Cache) -> Acc
Types:

Fun = fun()

Acc0 = Acc = term()

Cache = session_cache_ref()

Calls Fun(Elem, AccIn) on successive elements of the cache, starting with AccIn == Acc0. Fun/2 must
return a new accumulator, which is passed to the next call. The function returns the final value of the accumulator.
Acc0 is returned if the cache is empty.

Note:

Since OTP-23.3 this functions is only used on the client side and does not need to implemented for a server cache.

Module:init(Args) -> Cache
Types:

Cache = session_cache_ref()

Args = proplists:proplist()

Includes property {role, client | server}. Currently this is the only predefined property, there can also be
user-defined properties. See also application environment variable session_cb_init_args.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 81

ssl_session_cache_api

Performs possible initializations of the cache and returns a reference to it that is used as parameter to the other API
functions. Is called by the cache handling processes init function, hence putting the same requirements on it as a
normal process init function. This function is called twice when starting the SSL application, once with the role
client and once with the role server, as the SSL application must be prepared to take on both roles.

Module:lookup(Cache, Key) -> Entry
Types:

Cache = session_cache_ref()

Key = session_cache_key()

Session = session() | undefined

Looks up a cache entry. Is to be callable from any process.

Module:select_session(Cache, PartialKey) -> [Session]
Types:

Cache = session_cache_ref()

PartialKey = partial_key()

Session = session()

Selects sessions that can be reused, that is sessions that include PartialKey in its key. Is to be callable from any
process.

Note:

Since OTP-23.3 This functions is only used on the client side and does not need to implemented for a server cache.

Module:size(Cache) -> integer()
Types:

Cache = session_cache_ref()

Returns the number of sessions in the cache. If size exceeds the maximum number of sessions, the current cache entries
will be invalidated regardless of their remaining lifetime. Is to be callable from any process.

Module:terminate(Cache) -> _
Types:

Cache = session_cache_ref()

As returned by init/0

Takes care of possible cleanup that is needed when the cache handling process terminates.

Module:update(Cache, Key, Session) -> _
Types:

Cache = session_cache_ref()

Key = session_cache_key()

Session = session()

Caches a new session or updates an already cached one. Is only called from the cache handling process.

82 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

	Secure Socket Layer
	SSL User's Guide
	Introduction
	Purpose
	Prerequisites

	TLS/DTLS and TLS Predecessor, SSL
	Security Overview
	Data Privacy and Integrity
	Digital Certificates
	Peer Authentication
	TLS Sessions - PRE TLS-1.3
	TLS-1.3 session tickets

	Using SSL application API
	Basic Client
	Basic Connection
	Upgrade Example - TLS only
	Customizing cipher suites
	Customizing signature algorithms(TLS-1.2)/schemes(TLS-1.3)
	Using an Engine Stored Key
	NSS keylog
	Session Reuse pre TLS 1.3
	Session Tickets and Session Resumption in TLS 1.3
	Early Data in TLS-1.3
	Anti-Replay Protection in TLS 1.3
	Using DTLS

	Using TLS for Erlang Distribution
	Building Boot Scripts Including the SSL Application
	Specifying Distribution Module for net_kernel
	Specifying TLS Options
	Specifying TLS Options (Legacy)
	Setting up Environment to Always Use TLS (Legacy)
	Using TLS distribution over IPv6

	Standards Compliance
	Purpose
	Common (pre TLS 1.3)
	Common
	SSL 2.0
	SSL 3.0
	TLS 1.0
	TLS 1.1
	TLS 1.2
	DTLS 1.0
	DTLS 1.2
	DTLS 1.3
	TLS 1.3

	Reference Manual
	ssl
	ssl
	append_cipher_suites/2
	cipher_suites/2
	cipher_suites/3
	eccs/0
	eccs/1
	clear_pem_cache/0
	connect/2
	connect/3
	connect/3
	connect/4
	close/1
	close/2
	controlling_process/2
	connection_information/1
	connection_information/2
	filter_cipher_suites/2
	format_error/1
	getopts/2
	getstat/1
	getstat/2
	handshake/1
	handshake/2
	handshake/2
	handshake/3
	handshake_cancel/1
	handshake_continue/2
	handshake_continue/3
	listen/2
	negotiated_protocol/1
	peercert/1
	peername/1
	prepend_cipher_suites/2
	prf/5
	recv/2
	recv/3
	renegotiate/1
	update_keys/2
	send/2
	setopts/2
	shutdown/2
	signature_algs/2
	sockname/1
	start/0
	start/1
	stop/0
	str_to_suite/1
	suite_to_openssl_str/1
	suite_to_str/1
	transport_accept/1
	transport_accept/2
	versions/0

	ssl_crl_cache
	delete/1
	insert/1
	insert/2

	ssl_crl_cache_api
	Module:fresh_crl/2
	Module:fresh_crl/2
	Module:lookup/3
	Module:lookup/3
	Module:lookup/2
	Module:select/2
	Module:select/2

	ssl_session_cache_api
	Module:delete/2
	Module:foldl/3
	Module:init/1
	Module:lookup/2
	Module:select_session/2
	Module:size/1
	Module:terminate/1
	Module:update/3

