ERLANG

Secure Socket Layer

Copyright © 1999-2025 Ericsson AB. All Rights Reserved.
Secure Socket Layer 11.1.4.9
September 10, 2025

Copyright © 1999-2025 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

September 10, 2025

1.1 Introduction

1 SSL User's Guide

The SSL application implements Transport Layer Security (TLS), formerly known as the Secure Socket Layer (SSL),
that isit provides secure communication over sockets.

1.1 Introduction

1.1.1 Purpose

Transport Layer Security (TLS) and its predecessor, the Secure Sockets Layer (SSL), are cryptographic protocols
designed to provide communications security over a computer network. The protocols use X.509 certificates and
hence public key (asymmetric) cryptography to authenticate the counterpart with whom they communicate, and to
exchange a symmetric key for payload encryption. The protocol provides data/message confidentiality (encryption),
integrity (through message authentication code checks) and host verification (through certificate path validation).
DTLS (Datagram Transport Layer Security) that is based on TLS but datagram oriented instead of stream oriented.

1.1.2 Prerequisites

It is assumed that the reader is familiar with the Erlang programming language, the concepts of OTP, and has a basic
understanding of TLS/DTLS.

1.2 TLS/DTLS and TLS Predecessor, SSL

The Erlang SSL application implements the TLS/DTLS protocol for the currently supported versions, see the ssl(3)
manual page.

By default TLS is run over the TCP/IP protocol even though you can plug in any other reliable transport protocol
with the same Application Programming Interface (API) asthegen_t cp modulein Kernel. DTLS is by default run
over UDP/IP, which means that application data has no delivery guarantees. Other transports, such as SCTP, may be
supported in future rel eases.

If aclient and a server wants to use an upgrade mechanism, such as defined by RFC 2817, to upgrade aregular TCP/
I P connection to a TLS connection, this is supported by the Erlang SSL application API. This can be useful for, for
example, supporting HTTP and HTTPS on the same port and implementing virtual hosting. Note thisisa TLS feature
only.

1.2.1 Security Overview

To achieve authentication and privacy, the client and server perform a TLS/DTLS handshake procedure before
transmitting or receiving any data. During the handshake, they agree on a protocol version and cryptographic
algorithms, generate shared secrets using public key cryptographies, and optionally authenticate each other with digital
certificates.

1.2.2 Data Privacy and Integrity

A symmetric key algorithm has one key only. The key is used for both encryption and decryption. These algorithms
are fast, compared to public key algorithms (using two keys, one public and one private) and are therefore typicaly
used for encrypting bulk data.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 1

1.2 TLS/DTLS and TLS Predecessor, SSL

Thekeysfor the symmetric encryption are generated uniquely for each connection and are based on a secret negotiated
inthe TLS/DTLS handshake.

The TLS/DTLS handshake protocol and data transfer is run on top of the TLS/DTLS Record Protocol, which uses a
keyed-hash M essage A uthenticity Code (MAC), or aHash-based MAC (HMAC), to protect the message dataintegrity.
From the TLS RFC: "A Message Authentication Code is a one-way hash computed from a message and some secret
data. It is difficult to forge without knowing the secret data. Its purpose isto detect if the message has been altered.”

1.2.3 Digital Certificates

A certificate is similar to a driver's license, or a passport. The holder of the certificate is called the subject. The
certificate is signed with the private key of the issuer of the certificate. A chain of trust is built by having the issuer
in itsturn being certified by another certificate, and so on, until you reach the so called root certificate, which is self-
signed, that is, issued by itself.

Certificatesareissued by Certification Authorities (CAs) only. A handful of top CAsintheworld issueroot certificates.
Y ou can examine severa of these certificates by clicking through the menus of your web browser.

1.2.4 Peer Authentication

Authentication of the peer is done by public key path validation as defined in RFC 3280. This means basically the
following:

» Each certificate in the certificate chain isissued by the previous one.
* Thecertificates attributes are valid.
* Theroot certificate is atrusted certificate that is present in the trusted certificate database kept by the peer.

The server always sends a certificate chain as part of the TLS handshake, but the client only sends one if requested by
the server. If the client does not have an appropriate certificate, it can send an "empty" certificate to the server.

The client can choose to accept some path evaluation errors, for example, a web browser can ask the user whether
to accept an unknown CA root certificate. The server, if it requests a certificate, does however not accept any path
validation errors. It is configurable if the server isto accept or reject an "empty" certificate as response to a certificate
request.

1.2.5 TLS Sessions - PRE TLS-1.3

From the TLS RFC: "A TLS session is an association between a client and a server. Sessions are created by the
handshake protocol. Sessions define a set of cryptographic security parameters, which can be shared among multiple
connections. Sessions are used to avoid the expensive negotiation of new security parameters for each connection."

Session data is by default kept by the SSL application in a memory storage, hence session data is lost at application
restart or takeover. Users can define their own callback module to handle session data storage if persistent data storage
isrequired. Session datais also invalidated when session database exceedsits limit or 24 hours after being saved (RFC
max lifetime recommendation). The amount of time the session datais to be saved can be configured.

By default the TLS/DTL S clientstry to reuse an available session and by default the TLS/DTL S servers agree to reuse
sessions when clients ask for it. See also Session Reuse Pre TLS-1.3

1.2.6 TLS-1.3 session tickets

InTLS 1.3 the session reuseisreplaced by a new session tickets mechanism based on the pre shared key concept. This
mechanism also obsoletes the session tickets from RFC5077, not implemented by this application. See also Session
Tickets and Session Resumptionin TLS-1.3

2 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.3 Using SSL application API

1.3 Using SSL application API

To seerelevant version information for sd, call ssl : versi ons/ 0.

To see all supported cipher suites, call ssl : ci pher _suites(all, 'tlsvl.3") .Theavailablecipher suites
for a connection depend on the TLS version and pre TLS-1.3 aso on the certificate. To see the default cipher suite
list change al | to def aul t. Note that TLS 1.3 and previous versions do not have any cipher suites in common,
for listing cipher suitesfor aspecific versionusessl : ci pher _sui t es(excl usive, "tlsvl. 3") . Specific
cipher suites that you want your connection to use can aso be specified. Default is to use the strongest available.

The following sections shows small examples of how to set up client/server connections using the Erlang shell. The
returned value of thess| socket isabbreviatedwith|[. . .] asitcanbefairly large and is opague to the user except
for the purpose of pattern matching.

Note that client certificate verification is optional for the server and needs additional conguration on both sides to
work. The Certificate and keys, in the examples, are provided using the certs keys option introduced in OTP-25.

1.3.1 Basic Client

1 > ssl:start(), ssl:connect("google.com", 443, [{verify, verify peer},
{cacerts, public key:cacerts get()}]).
{ok, {sslsocket, [...1}}

1.3.2 Basic Connection
Step 1: Start the server side:

1 server> ssl:start().
ok

Step 2: with aternative certificates, in this example the EDDSA certificate will be preferred if TLS-1.3 is negotiated
and the RSA certificate will always be used for TLS-1.2 asit does not support the EDDSA agorithm:

2 server> {ok, ListenSocket} =
ssl:listen(9999, [{certs keys, [#{certfile => "eddsacert.pem",
keyfile => "eddsakey.pem"},
#{certfile => "rsacert.pem",
keyfile => "rsakey.pem",
password => "foobar"}
1},{reuseaddr, true}]).
{ok,{sslsocket, [...]1}}

Step 3: Do atransport accept on the TLS listen socket:

3 server> {ok, TLSTransportSocket} = ssl:transport accept(ListenSocket).
{ok, {sslsocket, [...]1}}

ssl:transport_accept/1 and ssl:handshake/2 are separate functions so that the handshake part can be called in anew
erlang process dedicated to handling the connection

Step 4: Start theclient side;

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 3

1.3 Using SSL application API

1 client> ssl:start().
ok

Be sure to configure trusted certificates to use for server certificate verification.

2 client> {ok, Socket} = ssl:connect("localhost", 9999,
[{verify, verify peer},
{cacertfile, "cacerts.pem"}, {active, once}], infinity).
{ok,{sslsocket, [...]1}}

Step 5: Do the TLS handshake:

4 server> {ok, Socket} = ssl:handshake(TLSTransportSocket).
{ok, {sslsocket, [...]1}}

A real server should use ssl:handshake/2 that has atimeout to avoid DoS attacks. | n the exampl e the timeout defaults
to infinty.

Step 6: Send amessage over TLS:

5 server> ssl:send(Socket, "foo").
ok

Step 7: Flush the shell message queue to see that the message sent on the server side isrecived by the client side:

3 client> flush().
Shell got {ssl,{sslsocket,[...]},"foo"}
ok

1.3.3 Upgrade Example - TLS only

Upgrading a a TCP/IP connection to a TLS connections is mostly used when there is a desire have unencrypted
communication first and then later securethe communication channel by using TL S. Notethat the client and server need
to agree to do the upgrade in the protocol doing the communication. Thisis concept is often referenced as STARTLS
and used in many protocols such as SMIP, FTPS and HTTPS via a proxy.

| Maximum security recommendations are however moving away from such solutions. |

To upgrade to a TL S connection:
Step 1: Start the server side:

1 server> ssl:start().
ok

Step 2: Createanormal TCPlisten socket and ensureact i ve issettof al se and not set to any activemode otherwise
TL S handshake messages can be delivered to the wrong process.
2 server> {ok, ListenSocket} = gen tcp:listen(9999, [{reuseaddr, true},
{active, false}l]).
{ok, #Port<0.475>}

Step 3: Accept client connection:

4 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.3 Using SSL application API

3 server> {ok, Socket}
{ok, #Port<0.476>}

gen_tcp:accept(ListenSocket).

Step 4: Start theclient side:

1 client> ssl:start().
ok

2 client> {ok, Socket}

gen_tcp:connect("localhost", 9999, [], infinity).
Step 5: Do the TLS handshake:

4 server> {ok, TLSSocket} = ssl:handshake(Socket, [{verify, verify peer},
{fail if no_peer cert, true},
{cacertfile, "cacerts.pem"},
{certs _keys, [#{certfile => "cert.pem", keyfile => "key.pem"}]1}]).
{ok, {sslsocket,[...]1}}

Step 6: Upgradeto aTL S connection. The client and server must agree upon the upgrade. The server must be prepared
to bea TLS server before the client can do a successful connect.

3 client>{ok, TLSSocket} = ssl:connect(Socket, [{verify, verify peer},
{cacertfile, "cacerts.pem"},
{certs _keys, [#{certfile => "cert.pem", keyfile => "key.pem"}]}], infinity).
{ok,{sslsocket,[...]1}}

Step 7: Send amessage over TLS:

4 client> ssl:send(TLSSocket, "foo").
ok

Step 8: Setacti ve once onthe TLS socket:

5 server> ssl:setopts(TLSSocket, [{active, once}]).
ok

Step 9: Flush the shell message queue to see that the message sent on the client side is recived by the server side:

5 server> flush().
Shell got {ssl,{sslsocket,[...]},"foo"}
ok

1.3.4 Customizing cipher suites
Fetch default cipher suite list for aTLS/DTLS version. Change default to all to get al possible cipher suites.

1> Default = ssl:cipher suites(default, 'tlsvl.2').
[#{cipher => aes 256 gcm,key exchange => ecdhe ecdsa,
mac => aead,prf => sha384},]

In OTP 20 it is desirable to remove all cipher suites that uses rsa key exchange (removed from default in 21)

2> NoRSA =
ssl:filter cipher suites(Default,
[{key exchange, fun(rsa) -> false;
() -> true
end}]).
[...]

Pick just afew suites

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 5

1.3 Using SSL application API

3> Suites =

ssl:filter cipher suites(Default,

[{key exchange, fun(ecdh ecdsa) -> true;

() -> false
end},
{cipher, fun(aes 128 cbc) -> true;
() ->false
end}]).

[#{cipher => aes 128 cbc,key exchange => ecdh ecdsa,
mac => sha256,prf => sha256},
#{cipher => aes 128 cbc,key exchange => ecdh ecdsa,mac => sha,
prf => default prf}]

Make some particular suites the most preferred, or least preferred by changing prepend to append.

4>ssl:prepend cipher suites(Suites, Default).
[#{cipher => aes 128 cbc,key exchange => ecdh ecdsa,
mac => sha256,prf => sha256},
#{cipher => aes 128 cbc,key exchange => ecdh ecdsa,mac => sha,
prf => default prf},
#{cipher => aes 256 cbc,key exchange => ecdhe ecdsa,
mac => sha384,prf => sha384}, ...]

1.3.5 Customizing signature algorithms(TLS-1.2)/schemes(TLS-1.3)

Starting from TLS-1.2 signature algorithms (called signature schemesin TLS-1.3) is something that can be negotiated
and hence also configured. These algorithms/schemes will be used for digital signatures in protocol messages and in
certificates.

TLS-1.3 schemes have atom names whereas TLS-1.2 configuration is two element tuples composed by one hash
algorithm and one signature algorithm. When both versions are supported the configuration can be a mix of these
as both versions might be negotiated. All r sa_pss based schemes are back ported to TLS-1.2 and can be used
asoinaTLS 1.2 configuration. In TLS-1.2 the signature algorithms chosen by the server will aso be affected by
the chiper suite that is chosen, which is not the casein TLS-1.3.

Using the function ssl : si gnat ur e_al gs/ 2 will let you inspect diffrent aspects of possible configurations for
your system. For example if TLS-1.3 and TLS-1.2 is supported the default signature_algorithm list in OTP-26 and
cryptolib from OpenSSL 3.0.2 would look like:

1> ssl:signature algs(default, 'tlsvl.3').
%% TLS-1.3 schemes
[eddsa ed25519,eddsa ed448,ecdsa secp521rl sha512,
ecdsa secp384rl sha384,ecdsa secp256rl sha256,
rsa_pss_pss _sha512,rsa pss pss sha384,rsa pss pss sha256,
rsa_pss_rsae _sha512,rsa pss rsae sha384,rsa pss rsae sha256,
%% Legacy schemes only valid for certificate signatures in TLS-1.3
%% (would have a tuple name in TLS-1.2 only configuration)
rsa_pkcsl sha512,rsa pkcsl sha384,rsa pkcsl sha256
%% TLS 1.2 algorithms
{sha512,ecdsa},
{sha384,ecdsa},
{sha256,ecdsa}]

If you want to add support for non default supported algorithms you should append them to the default list as the
configuration isin prefered order, something like this:

6 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.3 Using SSL application API

MySignatureAlgs = ssl:signature algs(default, 'tlsvl.3') ++ [{sha, rsa}, {sha, dsa}],
ssl:connect(Host,Port, [{signature algs, MySignatureAlgs,...1}),

Seealsossl : signature_al gs/ 2 andsign algo()

1.3.6 Using an Engine Stored Key
Erlang ssl application is able to use private keys provided by OpenSSL engines using the following mechanism:

1> ssl:start().
ok

Load a crypto engine, should be done once per engine used. For example dynamically load the engine called
MyEngi ne:

2> {ok, EngineRef} =

crypto:engine load(<<"dynamic">>,

[{<<"SO PATH">>, "/tmp/user/engines/MyEngine"},<<"LOAD">>],
[1).

{ok,#Ref<0.2399045421.3028942852.173962>}

Create amap with the engine information and the algorithm used by the engine:

3> PrivKey =
#{algorithm => rsa,
engine => EngineRef,
key id => "id of the private key in Engine"}.

Use the map in the ssl key option:

4> {ok, SSLSocket} =
ssl:connect("localhost", 9999,
[{cacertfile, "cacerts.pem"},
{certs _keys, [#{certfile => "cert.pem", key => PrivKey}]}
1, infinity).

See also crypto documentation

1.3.7 NSS keylog

TheNSSkeylog debug feature can be used by authorized usersto for instance enable wireshark to decrypt TL S packets.
Server (with NSS key logging)

server() ->
application:load(ssl),
{ok, } = application:ensure all started(ssl),
Port = 11029,
LOpts = [{certs keys, [#{certfile => "cert.pem", keyfile => "key.pem"}1},
{reuseaddr, true},
{versions, ['tlsvl.2',6 'tlsvl.3']},
{keep_secrets, true} %% Enable NSS key log (debug option)
] ’

{ok, LSock} = ssl:listen(Port, LOpts),
{ok, ASock} = ssl:transport accept(LSock),
{ok, CSock} = ssl:handshake(ASock).

Exporting the secrets

{ok, [{keylog, KeylogItems}]} = ssl:connection information(CSock, [keylog]).
file:write file("key.log", [[KeylogItem,$\n] || KeylogItem <- KeylogItems]).

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 7

1.3 Using SSL application API

1.3.8 Session Reuse pre TLS 1.3

Clients can request to reuse a session established by apreviousfull handshake between that client and server by sending
theid of the session in theinitial handshake message. The server may or may not agreeto reuseit. If agreed the server
will send back theid and if not it will send anew id. The ssl application has several options for handling session reuse.

On the client side the s3l application will save session data to try to automate session reuse on behalf of the client
processes on the Erlang node. Note that only verified sessions will be saved for security reasons, that is session
resumption relies on the certificate validation to have been run in the original handshake. To minimize memory
consumption only unique sessions will be saved unless the special save value is specified for the following option
{reuse_sessions, bool ean() | save} inwhichcaseafull handshake will be performed and that specific
session will have been saved before the handshake returns. The session id and even an opaque binary containing the
session data can be retrieved using ssl : connecti on_i nf or mati on/ 1 function. A saved session (guaranteed
by the save option) can be explicitly reused using {r euse_sessi on, Sessi onl d}. Also it is possible for
the client to reuse a session that is not saved by the ssl application using { r euse_sessi on, {Sessionld,
Sessi onDat a}}.

When using explicit session reuse, it is up to the client to make sure that the session being reused is for the correct
server and has been verified.

Here follows a client side example, divide into several steps for readability.
Step 1 - Automated Session Reuse

1> ssl:start().
ok

2> {ok, C1} = ssl:connect("localhost", 9999, [{verify, verify peer},
{versions, ['tlsvl.2'l},
{cacertfile, "cacerts.pem"}1]).

{ok, {sslsocket, {gen tcp,#Port<0.7>,tls connection,undefined}, ...}}

3> ssl:connection information(Cl, [session id]).

{ok, [{session_id,<<95,32,43,22,35,63,249,22,26,36, 106,
152,49,52,124,56,130,192,137,161,
146,145,164,232,...>>}]}

% Reuse session if possible, note that if C2 is really fast the session
% data might not be available for reuse.
4> {ok, C2} = ssl:connect("localhost", 9999, [{verify, verify peer},
{versions, ['tlsvl.2'l},
{cacertfile, "cacerts.pem"},
{reuse sessions, true}l]).
{ok, {sslsocket, {gen tcp,#Port<0.8>,tls connection,undefined}, ...1}}

[)
“©
[

“©

%% C2 got same session ID as client one, session was automatically reused.

5> ssl:connection information(C2, [session id]).

{ok, [{session_id,<<95,32,43,22,35,63,249,22,26,36,106,
152,49,52,124,56,130,192,137,161,
146,145,164,232,...>>}]}

Step 2- Using save Option

8 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.3 Using SSL application API

%% We want save this particular session for

%% reuse although it has the same basis as Cl

6> {ok, C3} = ssl:connect("localhost", 9999, [{verify, verify peer},
{versions, ['tlsvl.2'l},
{cacertfile, "cacerts.pem"},
{reuse sessions, save}]).

{ok, {sslsocket, {gen tcp,#Port<0.9>,tls connection,undefined}, ...1}}

%% A full handshake is performed and we get a new session ID
7> {ok, [{session _id, ID}]} = ssl:connection_information(C3, [session_id]).
{ok, [{session id,<<91,84,27,151,183,39,84,90,143, 141,
121,190,66,192,10,1,27,192,33,95,78,
8,34,180,...>>}1}

%% Use automatic session reuse
8> {ok, C4} = ssl:connect("localhost", 9999, [{verify, verify peer},
{versions, ['tlsvl.2']},
{cacertfile, "cacerts.pem"},
{reuse sessions, true}]).
{ok, {sslsocket, {gen_tcp,#Port<0.10>,tls connection,
undefined}, ...1}}

%% The "saved" one happened to be selected, but this is not a guarantee

9> ssl:connection information(C4, [session id]).

{ok, [{session id,<<91,84,27,151,183,39,84,90,143, 141,
121,190,66,192,10,1,27,192,33,95,78,
8,34,180,...>>}]1}

%% Make sure to reuse the "saved" session
10> {ok, C5} = ssl:connect("localhost", 9999, [{verify, verify peer},
{versions, ['tlsvl.2'l},
{cacertfile, "cacerts.pem"},
{reuse session, ID}]).
{ok, {sslsocket, {gen_tcp,#Port<0.11>,tls connection,
undefined}, ...1}}

11> ssl:connection_information(C5, [session id]).

{ok, [{session id,<<91,84,27,151,183,39,84,90,143, 141,
121,190,66,192,10,1,27,192,33,95,78,
8,34,180,...>>}1}

Step 3 - Explicit Session Reuse

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 9

1.3 Using SSL application API

%% Perform a full handshake and the session will not be saved for reuse
12> {ok, C9} =
ssl:connect("localhost", 9999, [{verify, verify peer},
{versions, ['tlsvl.2']l},
{cacertfile, "cacerts.pem"},
{reuse sessions, false},
{server name indication, disable}]).
{ok, {sslsocket, {gen tcp,#Port<0.14>,tls connection, ...}}

%% Fetch session ID and data for C9 connection
12> {ok, [{session_id, ID1}, {session data, SessData}]} =
ssl:connection information(C9, [session id, session datal).
{ok, [{session id,<<9,233,4,54,170,88,170,180,17,96,202,
85,85,99,119,47,9,68,195,50,120,52,
130,239, ...>>},
{session data,<<131,104,13,100,0,7,115,1601,115,115,105,
111,110,109,0,0,0,32,9,233,4,54,170,...>>}]}

%% Explicitly reuse the session from C9
13> {ok, C10} = ssl:connect("localhost", 9999, [{verify, verify peer},
{versions, ['tlsvl.2']l},
{cacertfile, "cacerts.pem"},
{reuse session, {ID1, SessData}}]).
{ok, {sslsocket, {gen_tcp,#Port<0.15>,tls connection,
undefined}, ...}}

14> ssl:connection_information(C10, [session id]).

{ok, [{session id,<<9,233,4,54,170,88,170,180,17,96,202,
85,85,99,119,47,9,68,195,50,120,52,
130,239, ...>>}]}

Step 4 - Not Possible to Reuse Explicit Session by ID Only

%% Try to reuse the session from C9 using only the id
15> {ok, E} = ssl:connect("localhost", 9999, [{verify, verify peer},
{versions, ['tlsvl.2'l},
{cacertfile, "cacerts.pem"},
{reuse session, ID1}]).
{ok, {sslsocket, {gen tcp,#Port<0.18>,tls connection,
undefined}, ...}}

%% This will fail (as it is not saved for reuse)

%% and a full handshake will be performed, we get a new id.
16> ssl:connection information(E, [session id]).

{ok, [{session_id,<<87,46,43,126,175,68,160,153,37,29,
196,240,65,160,254,88,65,224,18,63,
18,17,174,39,...>>}1}

o°
Q —

On the server side thethe { r euse_sessi ons, bool ean()} option determinesif the server will save session
data and allow session reuse or not. This can be further customized by the option { r euse_sessi on, fun()}
that may introduce alocal policy for session reuse.

1.3.9 Session Tickets and Session Resumption in TLS 1.3

TLS 1.3introduces a new secure way of resuming sessions by using session tickets. A session ticket is an opagque data
structure that is sent inthe pre_shared key extension of a ClientHello, when aclient attempts to resume a session with
keying material from a previous successful handshake.

Session tickets can be stateful or stateless. A stateful session ticket isadatabase reference (session ticket store) and used
with stateful servers, while astatel essticket isaself-encrypted and self-authenticated data structure with cryptographic
keying material and state data, enabling session resumption with statel ess servers.

10 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.3 Using SSL application API

The choice between stateful or statel ess depends on the server requirements as the session tickets are opaque for the
clients. Generaly, stateful tickets are smaller and the server can guarantee that tickets are only used once. Stateless
tickets contain additional data, require less storage on the server side, but they offer different guarantees against anti-
replay. See also Anti-Replay Protectionin TLS 1.3

Session tickets are sent by servers on newly established TL S connections. The number of tickets sent and their lifetime
are configurable by application variables. See also SSL's configuration.

Session tickets are protected by application traffic keys, and in statel esstickets, the opague data structure itself is self-

encrypted.

An example with automatic and manual session resumption:

{ok, } = application:ensure all started(ssl).
LOpts = [{certs keys, [#{certfile => "cert.pem",
keyfile => "key.pem"}1},
{versions, ['tlsvl.2',6 'tlsvl.3']},
{session tickets, stateless}].
{ok, LSock} = ssl:listen(8001, LOpts).
{ok, ASock} = ssl:transport accept(LSock).

Step 2 (client): Start the client and connect to server:

{ok, _}

COpts [{cacertfile, "cert.pem"},

application:ensure all started(ssl).

{versions, ['tlsvl.2',6 'tlsvl.3'1},

{log level, debug},
{session tickets, auto}].

ssl:connect("localhost", 8001, COpts).

Step 3 (server): Start the TLS handshake:

{ok, CSocket} = ssl:handshake(ASock).

A connection is established using a full handshake. Below is a summary of the exchanged messages.

>>> TLS 1.3 Handshake, ClientHello ...
<<< TLS 1.3 Handshake, ServerHello ...
<<< Handshake, EncryptedExtensions ...

<<< Handshake, Certificate ...

<<< Handshake, CertificateVerify ...

<<< Handshake, Finished ...
>>> Handshake, Finished ...

<<< Post-Handshake, NewSessionTicket ...

At thispoint the client has stored the received session tickets and ready to use them when establishing new connections

to the same server.

Step 4 (server): Accept a new connection on the server:

{ok, ASock2} = ssl:transport accept(LSock).

Step 5 (client): Make a new connection:

ssl:connect("localhost", 8001, COpts).

Step 6 (server): Start the handshake:

{ok, CSock2} =ssl:handshake(ASock2).

The second connection is a session resumption using keying material from the previous handshake:

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 11

1.3 Using SSL application API

>>> TLS 1.3 Handshake, ClientHello ...
<<< TLS 1.3 Handshake, ServerHello ...
<<< Handshake, EncryptedExtensions ...
<<< Handshake, Finished ...

>>> Handshake, Finished ...

<<< Post-Handshake, NewSessionTicket ...

Manual handling of session tickets is also supported. In manual mode, it is the responsibility of the client to handle
received session tickets.

Step 7 (server): Accept a new connection on the server:
{ok, ASock3} = ssl:transport accept(LSock).
Step 8 (client): Make a new connection to server:

{ok, } = application:ensure all started(ssl).
COpts2 = [{cacertfile, "cacerts.pem"},
{versions, ['tlsvl.2',6 'tlsv1l.3']},
{log level, debug},
{session tickets, manual}].
ssl:connect("localhost", 8001, COpts).

Step 9 (server): Start the handshake:
{ok, CSock3} = ssl:handshake(ASock3).

After the handshake is performed, the user process receivess messages with the tickets sent by the server.
Step 10 (client): Receive a new session ticket:

Ticket = receive {ssl, session ticket, { , TicketData}} -> TicketData end.
Step 11 (server): Accept anew connection on the server:

{ok, ASock4} = ssl:transport accept(LSock).
Step 12 (client): Initiate a new connection to the server with the session ticket received in Step 10:

{ok, } = application:ensure all started(ssl).

COpts2 = [{cacertfile, "cert.pem"},
{versions, ['tlsvl.2',6 'tlsvl.3']},
{log level, debug},
{session tickets, manual},
{use ticket, [Ticketl}].
ssl:connect("localhost", 8001, COpts).

Step 13 (server): Start the handshake:

{ok, CSock4} = ssl:handshake(ASock4).

1.3.10 Early Data in TLS-1.3

TLS 1.3 alows clients to send data on the first flight if the endpoints have a shared crypographic secret (pre-shared
key). This means that clients can send early data if they have a valid session ticket received in a previous successful
handshake. For more information about session resumption see Session Tickets and Session Resumptionin TLS 1.3.

The security properties of Early Data are weaker than other kinds of TLS data. This datais not forward secret, and it
isvulnerable to replay attacks. For available mitigation strategies see Anti-Replay Protection in TLS 1.3.

In normal operation, clients will not know which, if any, of the available mitigation strategies servers actually
implement, and hence must only send early datawhich they deem safe to be replayed. For example, idempotent HTTP

12 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.3 Using SSL application API

operations, such asHEAD and GET, can usually be regarded as safe but even they can be exploited by alarge number

of replays causing resource limit exhaustion and other similar problems.
An example of sending early data with automatic and manual session ticket handling:
Server

early data server() ->
application:load(ssl),
{ok, } = application:ensure all started(ssl),
Port = 11029,
LOpts = [{certs keys, [#{certfile => "cert.pem", keyfile => "key.pem"}1},
{reuseaddr, true},
{versions, ['tlsvl.2',6 'tlsvl.3']},
{session tickets, stateless},
{early data, enabled},

] ’

{ok, LSock} = ssl:listen(Port, LOpts),

%% Accept first connection

{ok, ASock0} = ssl:transport accept(LSock),
{ok, CSock0} = ssl:handshake(ASock0),

%% Accept second connection

{ok, ASockl} ssl:transport accept(LSock),
{ok, CSockl} ssl:handshake(ASockl),

Sock.

Client (automatic ticket handling):

early data auto() ->
%% First handshake 1-RTT - get session tickets
application:load(ssl),
{ok, } = application:ensure all started(ssl),
Port 11029,
Data <<"HEAD / HTTP/1.1\r\nHost: \r\nConnection: close\r\n">>,
COptsO = [{cacertfile, "cacerts.pem"},
{versions, ['tlsvl.2',6 'tlsv1l.3']},
{session_tickets, auto}l],
{ok, Sock0} = ssl:connect("localhost", Port, COptsO),

%% Wait for session tickets
timer:sleep(500),
%% Close socket if server cannot handle multiple
%% connections e.g. openssl s server
ssl:close(Socko0),

%% Second handshake O-RTT
= [{cacertfile, "cacerts.pem"},
{versions, ['tlsvl.2', 'tlsv1l.3']},
{session tickets, auto},
{early data, Data}l,
{ok, Sock} = ssl:connect("localhost", Port, COptsl),

COptsl

Sock.

Client (manual ticket handling):

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 13

1.3 Using SSL application API

early data manual() ->
%% First handshake 1-RTT - get session tickets
application:load(ssl),
{ok, } = application:ensure all started(ssl),
Port 11029,
Data <<"HEAD / HTTP/1.1\r\nHost: \r\nConnection: close\r\n">>,
COptsO = [{cacertfile, "cacerts.pem"},
{versions, ['tlsvl.2',6 'tlsvl.3']},
{session_tickets, manual}l],
{ok, Sock0} = ssl:connect("localhost", Port, COptsO),

%% Wait for session tickets
Ticket =
receive
{ssl, session ticket, Ticket0} ->
Ticket0
end,

%% Close socket if server cannot handle multiple connections
%% e.g. openssl s server
ssl:close(Sock0),

%% Second handshake O-RTT
COptsl = [{cacertfile, "cacerts.pem"},
{versions, ['tlsvl.2', 'tlsvl.3'l},

{session_tickets, manual},
{use ticket, [Ticket]},
{early data, Data}],

{ok, Sock} = ssl:connect("localhost", Port, COptsl),

Sock.

1.3.11 Anti-Replay Protection in TLS 1.3

The TLS 1.3 protocol does not provide inherent protection for replay of O-RTT data but describes mechanisms
that SHOULD be implemented by compliant server implementations. The implementation of TLS 1.3 in the SSL
application employs al standard methods to prevent potential threats.

Single-usetickets

This mechanism is available with stateful session tickets. Session tickets can only be used once, subsequent use of
the sameticket resultsin afull handshake. Stateful servers enforce this rule by maintaining a database of outstanding
valid tickets.

Client Hello Recording

This mechanism is available with stateless session tickets. The server records a unique value derived from
the ClientHello (PSK binder) in a given time window. The ticket's age is verified by using both the
"obsfuscated_ticket_age" and an additional timestamp encrypted in the ticket data. As the used datastore allows false
positives, apparent replays will be answered by doing afull 1-RTT handshake.

Freshness Checks

Thismechanismisavailablewith the statel ess session tickets. Astheticket data has an embedded timestamp, the server
can determine if a ClientHello was sent reasonably recently and accept the O-RTT handshake, otherwise if falls back
toafull 1-RTT handshake. This mechanism istightly coupled with the previous one, it prevents storing an unlimited
number of ClientHellos.

The current implementation uses a pair of Bloom filters to implement the last two mechanisms. Bloom filters are fast,
memory-efficient, probabilistic data structures that can tell if an element may be in a set or if it is definitely not in
the set.

14 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.4 Using TLS for Erlang Distribution

If the option anti_replay isdefined in the server, apair of Bloom filters (current and old) are used to record incoming
ClientHello messages (it is the unique binder value that is actually stored). The current Bloom filter is used for
W ndowSi ze secondsto store new elements. At the end of thetime window the Bloom filtersarerotated (the current
Bloom filter becomes the old and an empty Bloom filter is set as current.

The Anti-Replay protection feature in stateless servers executes in the following steps when a new ClientHello is
received:
* Reported ticket age (obfuscated ticket age) shall be less than ticket lifetime.

« Actual ticket age shall belessthan theticket lifetime (statel ess session tickets contain the servers timestamp when
the ticket was issued).

e ClientHello created with the ticket shall be sent relatively recently (freshness checks).

» If al above checks passed both current and old Bloom filters are checked to detect if binder was already seen.
Being a probabilistic data structure, false positives can occur and they trigger a full handshake.

e |If the binder is not seen, the binder is validated. If the binder is valid, the server proceeds with the O-RTT
handshake.

1.3.12 Using DTLS

Using DTL S has basically the same APl as TLS. Y ou need to add the option { protocol, dtls} to the connect and listen
functions. For example

client> {ok, Socket} = ssl:connect("localhost", 9999, [{protocol, dtls},
{verify, verify peer},{cacertfile, "cacerts.pem"}], infinity).
{ok,{sslsocket, [...]1}}

1.4 Using TLS for Erlang Distribution

This section describes how the Erlang distribution can use TLS to get extra verification and security.

The Erlang distribution can in theory use almost any connection-based protocol as bearer. However, a module
that implements the protocol-specific parts of the connection setup is needed. The default distribution module is
i net _tcp_dist inthe Kernel application. When starting an Erlang node distributed, net _ker nel uses this
module to set up listen ports and connections.

Inthe SSL application, an extradistribution module, i net _t | s_di st, canbeused asan aternative. All distribution
connectionswill use TLS and all participating Erlang nodes in adistributed system must use this distribution module.

The security level depends on the parameters provided to the TLS connection setup. Erlang node cookies are however
always used, as they can be used to differentiate between two different Erlang networks.

To set up Erlang distribution over TLS:

* Step 1: Build boot scripts including the SSL application.

e Step 2: Specify the distribution module for net _ker nel .
e Step 3: Specify the security options and other SSL options.
e Step 4: Set up the environment to always use TLS.

The following sections describe these steps.

1.4.1 Building Boot Scripts Including the SSL Application

Boot scriptsare built using the sy st ool s utility in the SASL application. For moreinformation onsyst ool s, see
the SASL documentation. Thisis only an example of what can be done.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 15

1.4 Using TLS for Erlang Distribution

The simplest boot script possible includes only the Kernel and STDLIB applications. Such a script is located in the
bi n directory of the Erlang distribution. The source for the script is found under the Erlang installation top directory
under r el eases/ <OTP version>/start _clean.rel.

Do the following:

» Copy that script to another location (and preferably another name).

« Add the applications Crypto, Public Key, and SSL with their current version numbers after the STDLIB
application.

The following shows an example. r el filewith TLS added:

{release, {"OTP APN 181 01","R15A"}, {erts, "5.9"},
[{kernel,"2.15"},

{stdlib,"1.18"},

{crypto, "2.0.3"},

{public_key, "0.12"},

{asnl, "4.0"},

{ssl, "5.0"}

I},

Theversion numbersdiffer inyour system. Whenever one of the applicationsincluded in the script isupgraded, change
the script.

Do the following:
* Build the boot script.

Assumingthe.rel fileisstoredinafilestart_ssl.rel inthe current directory, aboot script can be
built as follows:

1> systools:make script("start ssl",[]).

Thereisnow ast art _ssl . boot fileinthe current directory.
Do the following:

e Test theboot script. To do this, start Erlang with the - boot command-line parameter specifying this boot script
(with its full path, but without the . boot suffix). In UNIX it can look asfollows:

$ erl -boot /home/me/ssl/start ssl
Erlang (BEAM) emulator version 5.0

Eshell V5.0 (abort with ~G)
1> whereis(ssl manager).
<0.41.0>

Thewher ei s function-call verifies that the SSL application is started.

Asan dternative to building a bootscript, you can explicitly add the path to the SSL ebi n directory on the command
line. Thisisdone with command-line option - pa. Thisworks asthe SSL application does not need to be started for the
distribution to come up, as a clone of the SSL application is hooked into the Kernel application. So, aslong asthe SSL
application code can be reached, the distribution starts. The - pa method is only recommended for testing purposes.

The clone of the SSL application must enable the use of the SSL code in such an early bootstage as needed to set
up the distribution. However, this makes it impossible to soft upgrade the SSL application.

16 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.4 Using TLS for Erlang Distribution

1.4.2 Specifying Distribution Module for net_kernel

The distribution module for TLSisnamed i net _tls_di st and is specified on the command line with option -
prot o_di st.Theargumentto- pr ot o_di st istobethe module namewithout suffix _di st . So, thisdistribution
moduleis specified with- prot o_di st i net _t| s onthecommand line.

Extending the command line gives the following:
$ erl -boot /home/me/ssl/start ssl -proto dist inet tls
For the distribution to be started, give the emulator a name as well:

$ erl -boot /home/me/ssl/start ssl -proto dist inet tls -sname ssl test
Erlang (BEAM) emulator version 5.0 [source]

Eshell V5.0 (abort with "G)
(ssl test@myhost)1>

However, a node started in this way refuses to talk to other nodes, as no TLS parameters are supplied (see the next
section).

1.4.3 Specifying TLS Options

The TL S distribution options can be written into afile that is consulted when the node is started. Thisfile nameisthen
specified with the command line argument - ssl _di st _optfile.

Any available TLS option can be specified in an options file, but note that options that take af un() hasto use the
syntax f un Mod: Func/ Ari t y since afunction body cannot be compiled when consulting afile.

Do not tamper with the socket options | i st , bi nary, acti ve, packet, nodel ay and del i ver since they
are used by the distribution protocol handler itself. Other raw socket options such as packet _si ze may interfere
severely, so beware!

For TLSto work, at least apublic key and a certificate must be specified for the server side. In the following example,
the PEM file" / home/ me/ ssl / er| server. pem' contains both the server certificate and its private key.

Create afile named for example” / homre/ e/ ssl / ssl _t est @ryhost . conf":

[{server,
[{certfile, "/home/me/ssl/erlserver.pem"},
{secure renegotiate, true}l},

{client,
[{secure renegotiate, true}]}].

And then start the node like this (line breaks in the command are for readability, and shall not be there when typed):

$ erl -boot /home/me/ssl/start ssl -proto dist inet tls
-ssl dist optfile "/home/me/ssl/ssl test@myhost.conf"
-sname ssl_test

The options in the { server, Opt s} tuple are used when caling ssl : handshake/ 3, and the options in the
{client, Opts} tupleareused whencalingssl : connect/ 4.

For the client, the option { ser ver _nane_i ndi cati on, atomto_list(Target Node)} isadded when
connecting. This makes it possible to use the client option { veri fy, verify_peer}, andthe client will verify
that the certificate matches the node name you are connecting to. This only worksif the the server certificate isissued
tothenameat om to_I| i st (Tar get Node) .

For the server it is also possible to use the option { veri fy, verify_peer} and the server will only accept
client connections with certificates that are trusted by a root certificate that the server knows. A client that presents

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 17

1.4 Using TLS for Erlang Distribution

an untrusted certificate will be rejected. This option is preferably combined with {fai |l _i f_no_peer _cert,
t rue} oraclient will still be accepted if it does not present any certificate.

A node started in thisway is fully functional, using TL S as the distribution protocol.

1.4.4 Specifying TLS Options (Legacy)

Asin the previous section the PEM file" / home/ me/ ssl / er | server. pem' contains both the server certificate
and its private key.

Ontheer| command line you can specify options that the TLS distribution adds when creating a socket.

The simplest TLS options in the following list can be specified by adding the prefix server _or cl i ent _ to the
option name:

« certfile

« keyfile

e« password

 cacertfile

e verify

o verify_fun (writeas{ Modul e, Function, Initial UserState})

e crl_check

* crl _cache (write as Erlang term)

e reuse_sessions

e secure_renegotiate

 depth

e hibernate_after

* ci phers (useold string format)

Note that veri fy_f un needs to be written in a different form than the corresponding TLS option, since funs are
not accepted on the command line.

The server can also takethe optionsdhfil eandfail _i f_no_peer_cert (aso prefixed).

cl i ent _-prefixed options are used when the distribution initiates a connection to another node. ser ver _-prefixed
options are used when accepting a connection from a remote node.

Raw socket options, such aspacket and si ze must not be specified on the command line.

The command-line argument for specifying the TLS optionsis named - ssl _di st _opt and is to be followed by
pairs of SSL options and their values. Argument - ssl _di st _opt can be repeated any number of times.

An example command line doing the same as the exampl e in the previous section can now look asfollows (line breaks
in the command are for readability, and shall not be there when typed):

$ erl -boot /home/me/ssl/start ssl -proto dist inet tls
-ssl dist opt server certfile "/home/me/ssl/erlserver.pem"
-ssl dist opt server secure renegotiate true client secure renegotiate true
-sname ssl_test

Erlang (BEAM) emulator version 5.0 [source]

Eshell V5.0 (abort with "G)
(ssl test@myhost)1>

18 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.5 Standards Compliance

1.4.5 Setting up Environment to Always Use TLS (Legacy)

A convenient way to specify arguments to Erlang is to use environment variable ERL_FLAGS. All the flags needed
to use the TLS distribution can be specified in that variable and are then interpreted as command-line arguments for
all subsequent invocations of Erlang.

InaUnix (Bourne) shell, it can look as follows (line breaks are for readability, they are not to be there when typed):

$ ERL_FLAGS="-boot /home/me/ssl/start ssl -proto dist inet tls
-ssl dist opt server certfile /home/me/ssl/erlserver.pem
-ssl dist opt server secure renegotiate true client secure renegotiate true"
$ export ERL_FLAGS
$ erl -sname ssl test
Erlang (BEAM) emulator version 5.0 [source]

Eshell V5.0 (abort with ~G)

(ssl _test@myhost)1> init:get arguments().

[{root,["/usr/local/erlang"]},

{progname, ["erl "1},

{sname, ["ss1l test"]},

{boot, ["/home/me/ss1/start ssl"]1},

{proto dist,["inet tls"]},

{ssl dist opt,["server certfile","/home/me/ssl/erlserver.pem"]},

{ssl dist opt,["server secure renegotiate","true",
"client secure renegotiate","true"]

{home, ["/home/me"]}]

Theini t: get _argunent s() cal verifiesthat the correct arguments are supplied to the emulator.

1.4.6 Using TLS distribution over IPv6

It is possible to use TLS distribution over IPv6 instead of IPv4. To do this, pass the option - prot o_di st
inet6_tl s instead of - proto_di st inet_tls when starting Erlang, either on the command line or in the
ERL_FLAGS environment variable.

An example command line with this option would look like this:

$ erl -boot /home/me/ssl/start ssl -proto dist inet6 tls
-ssl dist optfile "/home/me/ssl/ssl test@myhost.conf"
-sname ssl_test

A node started in this way will only be able to communicate with other nodes using TL S distribution over |Pv6.

1.5 Standards Compliance

1.5.1 Purpose

This section describes the current state of standards compliance of the ssl application.

1.5.2 Common (pre TLS 1.3)

e For security reasons RSA key exchange cipher suites are no longer supported by default, but can be configured.
(OTP21)

» For security reasons DES cipher suites are no longer supported by default, but can be configured. (OTP 20)

» For security reasons 3DES cipher suites are no longer supported by default, but can be configured. (OTP 21)

* Renegotiation Indication Extension RFC 5746 is supported

« Ephemeral Diffie-Hellman cipher suites are supported, but not Diffie Hellman Certificates cipher suites.

» Elliptic Curve cipher suites are supported if the Crypto application supports it and named curves are used.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 19

href

1.5 Standards Compliance

» Export cipher suites are not supported as the U.S. lifted its export restrictionsin early 2000.

« |DEA cipher suites are not supported as they have become deprecated by the TL S 1.2 specification so it is not
motivated to implement them.

e Compression is not supported.

1.5.3 Common

e CRL validation is supported.
» Policy certificate extensions are not supported.
* 'Server Name Indication’' extension (RFC 6066) is supported.

e Application Layer Protocol Negotiation (ALPN) and its successor Next Protocol Negotiation (NPN) are
supported.

* Itispossibleto use Pre-Shared Key (PSK) and Secure Remote Password (SRP) cipher suites, but they are not
enabled by default.

1.5.4 SSL 2.0
For security reasons SSL-2.0 is hot supported. Interoperability with SSL-2.0 enabled clients dropped. (OTP 21)

1.5.5 SSL 3.0

For security reasons SSL-3.0 is no longer supported at all. (OTP 23)
For security reasons SSL-3.0 is ho longer supported by default, but can be configured. (OTP 19)

1.5.6 TLS 1.0
For security reasons TLS-1.0 is no longer supported by default, but can be configured. (OTP 22)

157 TLS 1.1
For security reasons TLS-1.1 is no longer supported by default, but can be configured. (OTP 22)

1.5.8 TLS 1.2
Supported

1.5.9 DTLS 1.0
For security reasons DTLS-1.0 (based on TLS 1.1) isno longer supported by default, but can be configured. (OTP 22)

1.5.10 DTLS 1.2
Supported (based on TLS 1.2)

1.5.11 DTLS 1.3
Not yet supported

1.5.12 TLS 1.3

OTP-22 introduces support for TLS 1.3. The current implementation supports a selective set of cryptographic
algorithms:

« Key Exchange: ECDHE

20 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href

1.5 Standards Compliance

e Groups: dl standard groups supported for the Diffie-Hellman key exchange
« Ciphers: all cipher suites are supported

e Signature Algorithms: All algorithms form RFC 8446

* Certificates: RSA, ECDSA and EDDSA keys

Other notable features:

e PSK and session resumption is supported (stateful and statel ess tickets)

e Anti-replay protection using Bloom-filters with statel ess tickets

e Early dataand O-RTT is supported

« Key and Initialization Vector Update is supported

For more detailed information see the Standards Compliance below.

The following table describes the current state of standards compliance for TLS 1.3.

(C = Compliant, NC = Non-Compliant, PC = Partially-Compliant, NA = Not Applicable)

Section Feature State Since

1.3. Updates

Affecting TLS 1.2 c 241

Version downgrade

protection C 22
mechanism

RIASSA-PSS c 24.1
signature schemes

supported versions

(ClientHello) C 22
extension
slgnaIL_Jre_aI gonthms_cgt oa1
extension
2. Prot.ocol PC 2
Overview
(EC)DHE C 22
PSK-only NC
PSK with (EC)DHE |C 222
2.1. Incorrect DHE
share HelloRetryRequest | C 22
2.2. Resumption
and Pre-Shared C 22.2
Key (PSK)
2.3.0-RTT Data PC 233

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 21

href
href
href
href
href
href
href
href
href
href

1.5 Standards Compliance

4.1.1.
Cryptographic C 22.2
Negotiation
supported_groups c 2
extension
signature_algorithms C 2
extension
pre_shared_key
extension c 222
4.1.2. Client Hello | Client PC 22.1
server_name
(RFC6066) c 232
max_fragment_length
(RFC6066) c 230
status_request
(RFC6066) NC
supported _groups
(RFC7919) ¢ 221
signature_algorithms
(RFC8446) c 22.1
use srtp (RFC5764) |C 26.0
heartbeat (RFC6520) | NC
application_layer_profocol_negotiation
(RFC7301) € 221
signed_certificate tim p
(RFC6962) eﬁggn
client_certificate type NC
(RFC7250)
server_certificate type NC
(RFC7250)
padding (RFC7685) | NC
key share
(RFC8446) c 22.1
pre_shared_key
(RFC8446) c 22:2

22 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href
href
href

1.5 Standards Compliance

psk_key exchange mpdes

(RFC8446) 8 22:2
early_data

(RFC8446) ¢ 233
cookie (RFC8446) C 23.1
supported versions

(RFC8446) c 22.1
certificate_authorities

(RFC8446) ¢ 243
oid_filters

(RFC8446) NC

post_handshake auth NG

(RFC8446)

signature_algorithms_fert

(RFC8446) € 221
Server PC 22
server_name

(RFC6066) c 232
max_fragment_length

(RFC6066) c 230
status_request

(RFC6066) NC

supported_groups

(RFC7919) c 22
signature_algorithms

(RFC8446) ¢ 22
use_srtp (RFC5764) |C 26.0
heartbeat (RFC6520) | NC

application_layer Jarotogol_negotiation 291

(RFC7301)

signed_certificate tim
(RFC6962)

R

client_certificate type

NC

(RFC7250)

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 23

1.5 Standards Compliance

server_certificate_typ(la NG

(RFC7250)

padding (RFC7685) |NC

key share

(RFC8446) ¢ 22

pre_shared_key

(RFC8446) c 22.2

psk_key exchange mpdes

(RFC8446) 8 222

early data

(RFC8446) c 233

cookie (RFC8446) C 231

supported versions

(RFC8446) c 22

oid filters

(RFC8446) NC

post_handshake auth NC

(RFC8446)

signature_algorithms eyt

(RFC8446) € 22
4.1.3. Server Hello | Client C 22.2

Version downgrade

protection c 221

key share

(RFC8446) c 221

pre_shared_key

(RFC8446) ¢ 222

supported versions

(RFC8446) c 22.1

use srtp (RFC5764) |C 26.0

Server C 22.2

Version downgrade

protection c 22

24 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href

1.5 Standards Compliance

key_share
(RFC8446) ¢ 22
pre_shared_key
(RFC8446) ¢ 222
supported versions
(RFC8446) ¢ 22
use srtp (RFC5764) |C 26.0
4.1.4. Hello Retry
Request Server C 22
key share
(RFC8446) ¢ 22
cookie (RFC8446) C 231
supported versions
(RFC8446) ¢ 22
4.2.1 Supported | ooy c 221
Versions
Server C 22
4.2.2. Cookie Client C 23.1
Server C 23.1
4.2.3. Signature .
Algorithms Client ¢ 24
rsa_pkcsl_sha?56 C 221
rsa_pkecsl sha3g4 C 22.1
rsa_pkecsl shab12 C 22.1
ecdsa secp256rl sha?%b 22.1
ecdsa secp384rl sha3® 22.1
ecdsa_secp521rl1 shab12 22.1
rsa pss rsae sha256 | C 22.1
rsa pss rsae sha3g4 | C 22.1
rsa pss rsae shabl2 | C 22.1
ed25519 C 24

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 25

href
href
href
href
href
href
href

1.5 Standards Compliance

ed448 C 24
rsa pss pss sha256 |C 23
rsa pss pss sha3g4 |C 23
rsa pss pss shab12 |C 23
rsa_pkecsl shal C 22.1
ecdsa_shal C 22.1
Server C 24
rsa_pkcsl_sha?56 C 22
rsa_pkcsl sha3g4 C 22
rsa_pkecsl shabl2 C 22
ecdsa secp256rl sha?%b 22.1
ecdsa secp384rl sha3®2 22.1
ecdsa_secp521rl1 shab12 22.1
rsa pss rsae sha256 | C 22
rsa pss rsae sha3g4 | C 22
rsa pss rsae shabl2 | C 22
ed25519 C 24
ed448 C 24
rsa pss pss sha2s6 | C 23
rsa pss pss sha3g4 |C 23
rsa pss pss shab12 |C 23
rsa_pkecsl shal C 22
ecdsa_shal C 22
24 catficate | Glient c 243
Server C 243
4.25.0ID Filters Client NC

26 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href
href

1.5 Standards Compliance

Server NC

4.2.6. Post-

Handshake Client | Client NC

Authentication
Server NC

éfgu' pSS“ppo”ed Client c 21
secp256r1 C 22.1
secp384rl C 22.1
secp521rl C 22.1
x25519 C 22.1
X448 C 22.1
ffdhe2048 Cc 221
ffdhe3072 C 22.1
ffdhe4096 C 221
ffdhe6144 C 22.1
ffdhe8192 C 22.1
Server C 22
secp256r1 C 22
secp384rl C 22
secp521rl C 22
x25519 C 22
X448 C 22
ffdhe2048 C 22
ffdhe3072 Cc 22
ffdhe4096 C 22
ffdhe6144 C 22
ffdhe8192 C 22

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 27

href
href
href
href
href

1.5 Standards Compliance

4.2.8. Key Share Client C 221

Server C 22
4.2.9. Pre-Shared
Key Exchange Client C 22.2
M odes

Server C 22.2
4.2.10. Barly Data | ooy c 233
Indication

Server C 233
4.2.11. Pre-_Shared Client c 299
Key Extension

Server C 222
4.2.11.1. Ticket Age | Client C 222

Server C 22.2
4..2.11.2. PSK Client c 229
Binder

Server C 22.2
4.2.11.3. Processing Client NC
Order

Server NC
431 Encrypted | oo PC 21
Extensions

server_name

(RFC6066) c 232

max_fragment_length

(RFC6066) c 230

supported_groups NG

(RFC7919)

use srtp (RFC5764) | NC

heartbeat (RFC6520) | NC

application_layer _protoeol_negotlatlon 230

(RFC7301)

28 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href
href
href
href
href
href
href
href
href
href
href
href
href
href

1.5 Standards Compliance

client_certificate type
(RFC7250)

NC

server_certificate type

(RFC7250) NC
early data
(RFC8446) ¢ 233
Server PC 22
server_name
(RFC6066) c 232
max_fragment_length
(RFC6066) c 230
supported_groups NG
(RFC7919)
use_srtp (RFC5764) | NC
heartbeat (RFC6520) | NC
application_layer J)rotoeol_negoti ation 23.0
(RFC7301) '
client_certificate type NG
(RFC7250)
server_certificate type NG
(RFC7250)
early data
(RFC8446) c 233
4.3.2. Certificate .
Request Client PC 22.1
status_request
(RFC6066) NC
signature_algorithms
(RFC8446) c 22.1
signed_certificate tim p
(RFC6962) eﬁgn
certificate_authorities
(RFC8446) ¢ 243
oid filters
(RFC8446) NC

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 29

href
href

1.5 Standards Compliance

signature_algorithms eyt
(RFC8446) ¢ 221
Server PC 22
status_request
(RFC6066) NC
signature_algorithms
(RFC8446) ¢ 22
signed_certificate tim p
(RFC6962) eﬁgn
certificate_authorities
(RFC8446) ¢ 243
oid_filters
(RFC8446) NC
signature_algorithms_fert
(RFC8446) € 22
4.4.1. The
Transcript Hash ¢ 22
4.4.2. Certificate Client PC 221
Arbitrary certificate C 299
chain orderings ’
Extraneous
certificatesin chain ¢ 232
status_request
(RFC6066) NC
signed_certificate tim p
(RFC6962) Eﬁgn
Server PC 22
status_request
(RFCB066) NC
signed_certificate tim p
(RFC6962) eﬁgn
4.42.1. OCSP
Statusand SCT Client NC
Extensions
Server NC

30 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href
href
href
href
href

1.5 Standards Compliance

4.4.2.2. Server

Certificate Selection c 24.3

The certificate type
MUST be X.509v3,
unless explicitly
negotiated otherwise

The server's end-
entity certificate's
public key

(and associated
restrictions) MUST
be compatible

with the selected
authentication
algorithm from
theclient's
"signature_algorithms
extension (currently
RSA, ECDSA, or
EdDSA).

The certificate
MUST alow
the key to be
used for signing
with a signature C 22
scheme indicated
intheclient's
"signature_algorithms|/"signature_algorithmg_cert
extensions

The
"server_name" and
"certificate_authorities
extensions are used
to guide certificate
selection. As servers
MAY requirethe C 243
presence of the
"server_name"
extension, clients
SHOULD send this
extension, when
applicable.

4.4.2.3. Client

Certificate Selection PC 22.1

The certificate type

MUST be X.500v3, | 221

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 31

href
href
href
href

1.5 Standards Compliance

unless explicitly
negotiated otherwise

If the
"certificate_authoritieg
extension in the
CertificateRequest
message was present,
at least one of the
certificatesin the
certificate chain
SHOULD be issued
by one of the listed
CAs.

243

The certificates
MUST be signed
using an acceptable
signature algorithm

221

If the
CertificateRequest
message contained
anon-empty

"oid filters'
extension, the end-
entity certificate
MUST match the
extension OIDs that
are recognized by the
client

NC

4.4.2.4. Receiving a
Certificate M essage

Client

22.1

Server

22

4.4.3. Certificate
Verify

Client

221

Server

22

4.4.4. Finished

Client

221

Server

22

4.5. End of Early
Data

Client

233

Server

233

32 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href
href
href
href
href
href

1.5 Standards Compliance

4.6.1. New Session

Ticket M essage Client C 233
early_data
(RFC8446) ¢ 233
Server C 233
early data
(RFCB446) c 233
4.6.2. Post-
Handshake Client NC
Authentication
Server NC
4.6.3. Key and
Initialization Vector | Client C 22.3
Update
Server C 223
5.1. Record L ayer C 22
MUST NOT be
interleaved with C 22
other record types
MUST NOT span c 2o
key changes
MUST NOT
send zero-length C 22
fragments
Alert messages
MUST NOT be C 22
fragmented
5.2. Record
Payload Protection c 22
5.3. Per-Record C 2
Nonce
5.4. Record
Padding PC 22
MAY choosetopad |NC
MUST NOT send NG
Handshake and

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 33

href
href
href
href
href
href
href
href
href
href
href
href
href
href
href

1.5 Standards Compliance

Alert records that
have a zero-length

TL SInnerPlaintext.content

The padding sent

isautomatically C 22
verified
5.5. Limitson Key C 23
Usage
6.1. Closure Alerts 22
close notify C 22
user_cancelled C 22
6.2. Error Alerts PC 22
7.1. Key Schedule C 22
7.2. Updating
Traffic Secrets ¢ 22
7.3. TrafficKey
Calculation c 22
7.5. Exporters PC 26.3
8. 0-RTT and Anti- c 299
Replay
8.1. Single-Use
Tickets c 22:2
8.2. Cll_ent Hello C 299
Recording
8.3. Freshness
Checks C 222
9.1. Mandatory-to-
Implement Cipher C 22.1
Suites
MUST
implement the C 22
TLS AES 128 GCM| SHA256
SHOULD
implement the C 22
TLS_AES 256_GCM| SHA384

34 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href

1.5 Standards Compliance

SHOULD
implement the C 22
TLS CHACHA20 PQLY 1305 SHA?256
Digital signatures |C 221
MUST support
rsa_pkecsl sha256 C 22
(for certificates)
MUST support
rsa pss rsae sha256 C 2
(for CertificateVerify
and certificates)
MUST support
ecdsa_secp256rl sha’ gﬁ 221
Key Exchange C 22
MUST support
key exchange with C 22
secp256r1
SHOULD support
key exchange with C 22
X25519
9.2. Mandatory-
to-lmplement C 23.2
Extensions
Supported Versions | C 22
Cookie C 231
Signature Algorithms| C 22
Signature Algorithms
Certificate c 22
Negotiated Groups | C 22
Key Share C 22
Server Name
Indication c 232
MUST send_and use| ~ 299
these extensions
"supported_versions'
is REQUIRED ¢ 221

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 35

href
href
href

1.5 Standards Compliance

for ClientHello,
ServerHello and
HelloRetryRequest

"signature_algorithms|
is REQUIRED
for certificate

authentication

"supported_groups"
isREQUIRED

for ClientHello
messages using
(EC)DHE key
exchange

"key share" is
REQUIRED for
(EC)DHE key
exchange

"pre_shared key" is
REQUIRED for PSK | C 222
key agreement

"psk_key exchange _modes"
is REQUIRED for C 22.2
PSK key agreement

TLS1.3ClientHello |C 221

If not containing a
"pre_shared key"
extension, it MUST
contain both a
"signature_algorithms
extension and a
"supported_groups"
extension.

,C 221

If containing a
"supported_groups"
extension, it

MUST also contain
a"key share" C 221
extension, and vice
versa. An empty
KeyShare.client_shargs
vector is permitted.

TLS13

ServerHello ¢ 232

36 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.5 Standards Compliance

MUST support
the use of the
"server_name"
extension

232

9.3. Protocol
Invariants

221

MUST correctly
handle extensible
fields

221

A client sending
aClientHello
MUST support
al parameters
advertised in it.
Otherwise, the
server may fail to
interoperate by
selecting one of
those parameters.

22.1

A server receiving a
ClientHello MUST
correctly ignore all
unrecognized cipher
suites, extensions,
and other parameters.
Otherwise, it may
fail to interoperate
with newer clients.
INTLS1.3,a

client receiving a
CertificateRequest or
NewsSessionTicket
MUST also ignore
al unrecognized
extensions.

221

A middlebox
which terminates
aTLS connection
MUST behave as
acompliant TLS
server

NA

A middlebox which
forwards ClientHello
parameters it does
not understand
MUST NOT process

NA

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 37

href
href

1.5 Standards Compliance

any messages
beyond that
ClientHello. It
MUST forward

all subsequent
traffic unmodified.
Otherwise, it may
fail to interoperate
with newer clients

and servers.

B.4. Cipher Suites C 23
TLS AES 128 GCM| GHA256 22
TLS AES 256 GCM| GHA384 22
TLS CHACHA20 POLCY 1305 SHA256 22
TLS AES 128 CCM| GHA256 22
TLS AES 128 CCM| 8 SHA?256 23

C.1. Random

Number Generation C 22

and Seeding

C.2. Certificates

and Authentication c 22

C.3.

I mplementation PC 22

Pitfalls

C.4. Client

Tracking C 22.2

Prevention

C.5.

Unauthenticated C 22

Operation

D.1. Negotiating

with an Older C 22.2

Server

D.2. Negotiating

with an Older C 22

Client

D.3.0-RTT

Backward NC

Compaitibility

38 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href

1.5 Standards Compliance

D.4. Middlebox
Compatibility Mode

D.5. Security
Restrictions Related
to Backward
Compaitibility

Table 5.1: Standards Compliance

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 39

href
href
href
href
href
href

1.5 Standards Compliance

2 Reference Manual

40 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

ssl
Application

The sdl application is an implementation of the SSL, TLSand DTLS protocolsin Erlang.
For current statement of standards compliance see the User's Guide.

DEPENDENCIES

The SSL application uses the publ i ¢_key, asnl and Crypto application to handle public keys and encryption,
hence these applications must be loaded for the SSL application to work. In an embedded environment this means
they must be started with appl i cati on: start/[1, 2] beforethe SSL application is started.

CONFIGURATION

The application environment configuration parameters in this section are defined for the SSL application. For more
information about configuration parameters, see the application(3) manual page in Kernel.

The environment parameters can be set on the command line, for example:
erl -ssl protocol _version "["tlsvl.2", "tlsvl.1']"
prot ocol _version = sd:tls version() | [ssl:tls version()] <opt i onal >

Protocol supported by started clients and servers. If thisoption isnot set, it defaultsto all TLS protocols currently
supported, more might be configurable, by the SSL application. This option can be overridden by the version
optiontossl : connect/[2, 3] andssl:listen/2.

dtls_protocol version = sd:dtls version() | [sdl:dtls version()] <opt i onal >

Protocol supported by started clientsand servers. If thisoptionisnot set, it defaultsto all DTL S protocolscurrently
supported, more might be configurable, by the SSL application. This option can be overridden by the version
optiontossl : connect/[2, 3] andssl:listen/2.

session_lifetine = integer() <optional>

Maximum lifetime of the session data in seconds. Defaults to 24 hours which is the maximum recommended
lifetime by RFC 5246. However sessions may beinvalidated earlier due to the maximum limitation of the session
cache table.

session_cb = atom() <optional >
Deprecated Since OTP-23.3 replaced by cl i ent _sessi on_ch andserver _sessi on_cb
client_session_cb = aton() <optional >

Since OTP-23.3 Name client of the session cache calback module that implements the
ssl _session_cache_api behavior. Defaultstossl _cl i ent _sessi on_cache_db.

server_session_cb = atom() <optional >

Since OTP-23.3 Name of the server session cache calback module that implements the
ssl _sessi on_cache_api behavior. Defaultsto ssl _server _sessi on_cache_db.

session_cb_init_args = proplist:proplist() <optional>

Deprecated Since OTP-23.3 replaced by client_session_cb init_args and
server_session_cb init_args

client_session_cb init_args = proplist:proplist() <optional>
List of extra user-defined argumentsto thei ni t function in the session cache callback module. Defaultsto[] .

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 41

href

ssl

server_session_cb_init_args = proplist:proplist() <optional>
List of extra user-defined argumentsto thei ni t function in the session cache callback module. Defaultsto[] .
session_cache_client _max = integer() <optional >

Limits the growth of the clients session cache, that is how many sessions towards servers that are cached to be
used by new client connections. If the maximum number of sessions is reached, the current cache entries will
be invalidated regardless of their remaining lifetime. Defaults to 1000. Recommended sdl-8.2.1 or later for this
option to work as intended.

session_cache_server_nmax = integer() <optional >

Limits the growth of the servers session cache, that is how many client sessions are cached by the server. If the
maximum number of sessionsisreached, the current cache entrieswill beinvalidated regardless of their remaining
lifetime. Defaults to 1000. Recommended ssl-8.2.1 or later for this option to work as intended.

ssl _pem cache_clean = integer() <optional >
Number of milliseconds between PEM cache validations. Defaults to 2 minutes.
Note: The cache can be reloaded by calling ssl:clear_pem_cache/0.
bypass_pem cache = bool ean() <optional >

Introduced in s51-8.0.2. Disables the PEM-cache. Can be used as a workaround for the PEM-cache bottleneck
before ss1-8.1.1. Defaults to false.

alert_timeout = integer() <optional>

Number of milliseconds between sending of a fatal alert and closing the connection. Waiting a little while
improves the peers chances to properly receiving the aert so it may shutdown gracefully. Defaults to 5000
milliseconds.

internal _active_n = integer() <optional>

For TLS connections this value is used to handle the internal socket. As the implementation was changed from
an active onceto an active N behavior (N = 100), for performance reasons, this option exist for possible tweaking
or restoring of the old behavior (internal_active_n = 1) in unforeseen scenarios. The option will not affect erlang
distribution over TLS that will always run in active N mode. Added in ssl-9.1 (OTP-21.2).

server_session_tickets _amunt = integer() <optional >
Number of session tickets sent by the server. It must be greater than 0. Defaultsto 3.
server_session_ticket_lifetime = integer() <optional>

Lifetime of session tickets sent by the server. Servers must not use any value greater than 604800 seconds (7
days). Expired tickets are automatically removed. Defaults to 7200 seconds (2 hours).

server_session_ticket _store_size = integer() <optional>

Sets the maximum size of the server session ticket store (stateful tickets). Defaultsto 1000. Size limit is enforced
by dropping old tickets.

server_session_ticket _nmax_early data = integer() <optional>

Setsthe maximum size of the early datathat the server acceptsand al so configuresits NewSessionTicket messages
toinclude this same size limit in their early_data indication extension. Defaults to 16384. Size limit is enforced
by both client and server.

client_session_ticket_lifetime = integer() <optional>

Lifetime of session ticketsin the client ticket store. Expired tickets are automatically removed. Defaultsto 7200
seconds (2 hours).

42 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

client_session_ticket_store_size = integer() <optional>

Sets the maximum size of the client session ticket store. Defaults to 1000. Size limit is enforced by dropping
old tickets.

ERROR LOGGER AND EVENT HANDLERS

The SSL application uses OTP logger. TLS/DTLS alerts are logged on notice level. Unexpected errors are logged on
error level. These log entries will by default end up in the default Erlang log. The option | og_| evel may be used
toin run-time to set the log level of a specific TLS connection, which is handy when you want to use level debug to
inspect the TL S handshake setup.

SEE ALSO
application(3)

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 43

ssl

ssli

Erlang module

This module contains interface functions for the TLS/DTLS protocol. For detailed information about the supported
standards see s3l(6).

Data Types

Types used in TLS/DTLS

socket() = gen tcp:socket()
sslsocket() = any()

An opaque reference to the TLS/DTL S connection, may be used for equality matching.

tls option() = tls client option() | tls server option()

tls client option() =
client option() |
common_option() |
socket option() |
transport option()

tls server option() =
server _option() |
common_option() |
socket option() |

transport _option()

socket _option() =
gen_tcp:connect_option() |
gen_tcp:listen option() |
gen _udp:option()

The default socket optionsare[{ node, | i st}, { packet, 0}, {header, 0},{active, true}].

For valid options, seetheinet(3), gen_tcp(3) and gen_udp(3) manual pagesin Kernel. Notethat stream oriented options
such as packet are only relevant for TLSand not DTLS

active msgs() =
{ssl, sslsocket(), Data :: binary() | list()} |
{ss1 closed, sslsocket()} |
{ssl error, sslsocket(), Reason :: any()} |
{ssl passive, sslsocket()}

When aTLS/DTL S socket isin active mode (the default), data from the socket is delivered to the owner of the socket
in the form of messages as described above.

Thessl _passi ve messageis sent only when the socket isin{ acti ve, N} mode and the counter dropped to O.
It indicates that the socket has transitioned to passive ({ act i ve, fal se}) mode.

transport option() =
{cb_info,

{CallbackModule :: atom(),
DataTag :: atom(),
ClosedTag :: atom(),
ErrTag :: atom()}} |

44 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

{cb _info,

{CallbackModule :: atom(),
DataTag :: atom(),
ClosedTag :: atom(),
ErrTag :: atom(),
PassiveTag :: atom()}}

Defaults to { gen_tcp, tcp, tcp_closed, tcp_error, tcp_passive} for TLS (for backward
compatibility a four tuple will be converted to a five tuple with the last element "second_element”_passive) and
{gen_udp, udp, udp_closed, udp_error} for DTLS (might aso be changed to five tuplein the future).
Can be used to customize the transport layer. The tag values should be the values used by the underlying transport
in its active mode messages. For TL S the callback module must implement a reliable transport protocol, behave as
gen_t cp, and have functions corresponding to i net : set opt s/ 2,i net: get opts/ 2,i net: peer nane/ 1,
i net: socknane/ 1,andi net : port/ 1. Thecallback gen_t cp istreated specially and callsi net directly. For
DTLS this feature must be considered experimental .
host() = inet:hostname() | inet:ip address()
protocol version() = tls version() | dtls version()
tls version() = 'tlsvl.2' | 'tlsvl.3' | tls legacy version()
dtls version() = 'dtlsvl.2' | dtls legacy version()
tls legacy version() = tlsvl | 'tlsvl.l'
dtls legacy version() = dtlsvl
prf_random() = client random | server_random
verify type() = verify none | verify peer
ciphers() = [erl cipher suite()] | string()
erl cipher suite() =

#{key exchange := kex algo(),

cipher := cipher(),

mac := hash() | aead,
prf := hash() | default prf}
cipher() =

aes 256 gcm | aes 128 gcm | aes 256 _ccm | aes 128 ccm |
chacha20 polyl305 | aes 256 ccm 8 | aes 128 ccm 8 |
aes 128 cbc | aes 256 cbc |
legacy cipher()
legacy cipher() = '3des ede cbc' | des cbc | rc4 128
cipher filters() =
[{key exchange | cipher | mac | prf, algo filter()}]
hash() = sha2() | legacy hash()
sha2() = sha512 | sha384 | sha256
legacy hash() = sha224 | sha | md5
old cipher suite() =
{kex algo(), cipher(), hash()} |
{kex algo(), cipher(), hash() | aead, hash()}
sign algo() = eddsa | ecdsa | rsa | dsa
sign scheme() =
eddsa ed25519 | eddsa ed448 | ecdsa secp384rl sha384 |

ecdsa secp521rl sha512 | ecdsa secp256rl sha256 |
rsassa pss_scheme() |

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 45

ssl

sign scheme legacy()
rsassa_pss_scheme() =
rsa _pss rsae sha512 | rsa pss rsae sha384 |
rsa _pss rsae sha256 | rsa pss pss _sha512 |
rsa _pss pss sha384 | rsa pss_pss_sha256
sign scheme legacy() =
rsa_pkcsl sha512 | rsa pkcsl sha384 | rsa pkcsl sha256 |
ecdsa shal | rsa pkcsl shal
group() =
x25519 | x448 | secp256rl | secp384rl | secp521rl |
ffdhe2048 | ffdhe3072 | ffdhe4096 | ffdhe6144 | ffdhe8192
kex algo() =
ecdhe ecdsa | ecdh ecdsa | ecdh rsa | rsa | dhe rsa |
dhe dss | srp rsa | srp _dss | dhe psk | rsa psk | psk |
ecdh _anon | dh_anon | srp_anon | any
algo filter() =
fun((kex algo() | cipher() | hash() | aead | default prf)
true | false)

named curve() =
x25519 | x448 | secp521rl | brainpoolP512rl |
brainpoolP384rl | secp384rl | brainpoolP256rl | secp256rl
legacy named curve()

legacy named curve() =

sect571rl | sect571kl | sect409kl | sect409rl | sect283kl
sect283rl | secp256kl | sect239kl | sect233kl | sect233rl
secp224kl | secp224rl | sectl93rl | sectl193r2 | secpl92kl
secpl92rl | sectl63kl | sectl63rl | sectl63r2 | secpl6Okl
secpleOrl | secpl6Or2

psk identity() = string()

srp_identity() = {Username :: string(), Password :: string()}

srp_param type() =
srp 8192 | srp 6144 | srp 4096 | srp 3072 | srp 2048 |
srp 1536 | srp 1024

app_level protocol() = binary()

protocol extensions() =
#{renegotiation info => binary(),
signature algs => signature algs(),
alpn => app_ level protocol(),
srp => binary(),
next protocol => app level protocol(),
max_frag enum => 1. .4,
ec_point formats => [0..2],
elliptic curves => [public key:oid()],
sni => inet:hostname()}
error_alert() =
{tls_alert, {tls alert(), Description :: string()}}

tls alert() =
close notify | unexpected message | bad record mac |
record overflow | handshake failure | bad certificate |

46 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

unsupported certificate | certificate revoked |

certificate expired | certificate_unknown |

illegal parameter | unknown ca | access denied |

decode error | decrypt error | export restriction |
protocol version | insufficient security | internal error |
inappropriate fallback | user canceled | no renegotiation |
unsupported extension | certificate unobtainable |
unrecognized name | bad certificate status response |

bad certificate hash value | unknown psk identity |
no_application protocol

reason() = any()

bloom filter window size() = integer()

bloom filter hash functions() = integer()

bloom filter bits() = integer()

client session_tickets() = disabled | manual | auto

server_session tickets() =
disabled | stateful | stateless | stateful with cert |
stateless with cert

Data Types
TLS/DTLS OPTION DESCRIPTIONS - COMMON for SERVER and CLIENT

common_option() =
{protocol, protocol()} |
{handshake, handshake completion()} |
{cert, cert() | [cert()]} |
{certfile, cert pem()} |
{key, key()} |
{keyfile, key pem()} |
{password, key pem password()} |
{certs_keys, certs keys()} |
{ciphers, cipher suites()} |
{eccs, [named curve()]} |
{signature algs, signature algs()} |
{signature algs cert, sign schemes()} |
{supported groups, supported groups()} |
{secure_renegotiate, secure renegotiation()} |
{keep secrets, keep secrets()} |
{depth, allowed cert chain length()} |
{verify fun, custom verify()} |
{allow_any ca purpose, allow any ca purpose()} |
{crl _check, crl check()} |
{crl _cache, crl cache opts()} |
{max_handshake size, handshake size()} |
{partial chain, root fun()} |
{versions, protocol versions()} |
{user_lookup fun, custom user lookup()} |
{log_level, logging level()} |
{log alert, log alert()} |
{hibernate after, hibernate after()} |

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 47

ssl

{padding check, padding check()} |
{beast mitigation, beast mitigation()} |
{ssl _imp, ssl imp()} |
{session_tickets, session tickets()} |
{key update at, key update at()} |
{receiver spawn opts, spawn opts()} |
{sender_spawn opts, spawn opts()}
protocol() = tls | dtls

Choose TLS or DTLS protocol for the transport layer security. Defaultstot | s. For DTLS other transports than UDP
are not yet supported.

handshake completion() = hello | full

Defaults to ful | . If hello is specified the handshake will pause after the hello message and give the user a
possibility make decisions based on hello extensions before continuing or aborting the handshake by calling
handshake_continue/3 or handshake cancel/1

cert() = public key:der encoded()

The DER-encoded user certificate. Note that the cert option may also be a list of DER-encoded certificates where
the first one is the user certificate, and the rest of the certificates constitutes the certificate chain. For maximum
interoperability the certificatesin the chain should bein the correct order, the chain will be sent asisto the peer. If chain
certificates are not provided, certificates from client_cacerts(), server_cacerts(), or client_cafile(), server_cafile() are
used to construct the chain. If this option is supplied, it overridesoptioncertfi | e.

cert pem() = file:filename()

Path to a file containing the user certificate on PEM format or possible several certificates where the first one is the
user certificate and the rest of the certificates constitutes the certificate chain. For more details see cert(),

key() =
{'RSAPrivateKey' | 'DSAPrivateKey' | 'ECPrivateKey' |
'PrivateKeyInfo',
public key:der encoded()} |
#{algorithm := rsa | dss | ecdsa,
engine := crypto:engine ref(),
key id := crypto:key id(),
password => crypto:password()}

The DER-encoded user's private key or a map referring to a crypto engine and its key reference that optionally can
be password protected, see also crypto:engine_load/3 and Crypto's Users Guide. If thisoption is supplied, it overrides
optionkeyfil e.

key pem() = file:filename()

Path to the file containing the user's private PEM-encoded key. As PEM-files can contain several entries, this option
defaults to the samefile asgiven by optioncertfil e.

key pem password() = iodata() | fun(() -> iodata())

String containing the user's password or a function returning same type. Only used if the private keyfile is password-
protected.

certs keys() = [cert key conf()]

A list of a certificate (or possible a certificate and its chain) and the associated key of the certificate, that may be
used to authenticate the client or the server. The certificate key pair that is considered best and matches negotiated
parameters for the connection will be selected. Different signature algorithms are prioritized in the order eddsa,

ecdsa, rsa_pss_pss, rsa and dsa . If morethan one key is supplied for the same signing agorithm

48 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

(which is probably an unusual use case) they will prioritized by strength unlessit isaso called engi ne key that
will be favoured over other keys. As engine keys cannot be inspected, supplying more than one engine key will make
no sense. This offers flexibility to for instance configure a newer certificate that is expected to be used in most cases
and an older but acceptable certificate that will only be used to communicate with legacy systems. Note that thereis
atrade off between the induced overhead and the flexibility so alternatives should be chosen for good reasons. If the
certs_keys optionisspecified it overrides all single certificate and key options. For examples see the Users Guide

eddsa certificates are only supported by TLS-1.3 that does not support dsa certificates. r sa_pss_pss (RSA
certificates using Probabilistic Signature Scheme) are supported in TLS-1.2 and TLS-1.3, but some TLS-1.2
implementations may not support r sa_pss_pss.

cert key conf() =
#{cert => cert(),
key => key(),
certfile => cert pem(),
keyfile => key pem(),
password => key pem password()}

A certificate (or possibly acertificate and its chain) and its associated key on one of the possible formats. For the PEM
file format there may also be a password associated with the file containg the key.

cipher suites() = ciphers()
A list of cipher suites that should be supported

The function ssl:cipher_suites/2 can be used to find all cipher suites that are supported by default and al cipher suites
that may be configured.

If you compose your own cipher_suites() make sure they are filtered for cryptolib support
sdl:filter_cipher_suites/2 Additionally the functions ssl:append cipher_suites/2 , sd:prepend cipher_suites/2,
sdl:suite to_str/l, sdl:str_to_suite/1, and sdl:suite to_openss_str/1 also exist to help creating customized cipher suite
lists.

Note that TLS-1.3 and TLS-1.2 cipher suites are not overlapping sets of cipher suites so to support both these
versions cipher suites from both versions need to be included. Also if the supplied list does not comply with the
configured versions or cryptolib so that the list becomes empty, this option will fallback on its appropriate default
value for the configured versions.

Non-default cipher suitesincluding anonymous cipher suites (PRE TL S-1.3) are supported for interop/testing purposes
and may be used by adding them to your cipher suite list. Note that they must also be supported/enabled by the peer
to actually be used.

signature _algs() = [{hash(), sign algo()} | sign scheme()]

Explicitly list acceptable signature algorithms for certificates and handshake messages in the preferred order. The
client will send itslist as the client hello si gnat ur e_al gor i t hmextension introduced in TLS-1.2, see Section
7.4.1.4.1in RFC 5246. Previously these algorithms where implicitly chosen and partly derived from the cipher suite.

In TLS-1.2 a somewhat more explicit negotiation is made possible using alist of {hash(), sign_algo()} pairs.

In TLS-1.3 these algorithm pairs are replaced by so called signature schemessign_scheme() and completely decoupled
from the cipher suite.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 49

href
href

ssl

Signature algorithms used for certificates may be overridden by the signature schemes (algorithms) supplied by the
signature_al gs_cert option.

TLS-1.2 default isDefault TLS 12 Alg Pairsinterleaved with rsa_pss_schemes since ssl-11.0 (OTP-25) pss pssis
prefered over pss rsaethat is prefered over rsa

Default TLS 12 Alg _Pairs =

[

%% SHA2

{sha512, ecdsa},
{sha512, rsa},
{sha384, ecdsa},
{sha384, rsa},
{sha256, ecdsa},
{sha256, rsa}

1

Support for {md5, rsa} was removed from the the TLS-1.2 default in ssl-8.0 (OTP-22) and support for SHA1 {sha,
_} and SHA224 { sha224, } wasremoved in s3-11.0 (OTP-26)

rsa_pss_schenes =

[rsa pss pss sha512,
rsa pss pss sha384,
rsa _pss pss sha256,
rsa pss rsae sha512,
rsa pss rsae sha384,
rsa _pss rsae sha256]

TLS 13 lLegacy_Schenes =

[
%% Legacy algorithms only applicable to certificate signatures
rsa_pkcsl sha512, %% Corresponds to {sha512, rsa}
rsa_pkcsl sha384, Corresponds to {sha384, rsa}
rsa_pkcsl sha256, Corresponds to {sha256, rsa}
]

Default TLS 13 Schenes =

0.0
6%
0.0

6%

[

%% EDDSA
eddsa_ed25519,
eddsa_ed448

%% ECDSA

ecdsa_secp521rl sha512,
ecdsa_secp384rl sha384,
ecdsa_secp256rl sha256] ++

%% RSASSA-PSS
rsa_pss_schemes()

EDDSA was made highest priority in ss-10.8 (OTP-25)
TLS-1.3 defaultis

Default TLS 13 Schemes

If both TLS-1.3 and TLS-1.2 are supported the default will be

Default TLS 13 Schemes ++ TLS 13 Legacy Schemes ++ Default TLS 12 Alg Pairs (not represented in TLS 13 Legacy !

50 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

S0 appropriate algorithms can be chosen for the negotiated version.

TLS-1.2 algorithmswill not be negotiated for TLS-1.3, but TLS-1.3 RSASSA-PSSrsassa pss scheme() signature
schemes may be negotiated also for TLS-1.2 from 24.1 (fully working from 24.1.3). However if TLS-1.3 is
negotiated when both TLS-1.3 and TLS-1.2 is supported using defaults, the corresponding TLS-1.2 algorithms to
the TLS-1.3 legacy signature schemes will be considered as the legacy schemes and applied only to certificate
signatures.

sign schemes() = [sign scheme()]

Explicitly list acceptable signature schemes (algorithms) in the preferred order. Overrides the algorithms supplied in
si gnat ur e_al gs option for certificates.

Inadditiontothesi gnat ure_al gori t hns extensionfrom TLS 1.2, TLS 1.3 (RFC 5246 Section 4.2.3) addsthe
si gnature_al gorithms_cert extension which enables having specia requirements on the signatures used in
the certificates that differs from the requirements on digital signatures asawhole. If thisis not required this extension
is not need.

The client will send a “signature_algorithms_cert™ extension (in the client hello message), if TLS version 1.2 (back-
ported to TLS 1.2 in 24.1) or later is used, and the signature_algs cert option is explicitly specified. By default, only
the extension signature_algs is sent with the exception of when signature_algs option is not explicitly specified, in
which case it will append the rsa_pkcsl_shal algorithm to the default value of signature_algs and use it as value for
signature_algs cert to alow certificates to have this signature but still disallow shal use in the TLS protocol, since
OTP-26.25.2

Note that supported signature schemes for TLS-1.2 are sign_scheme_legacy() and rsassa._pss_scheme() |

supported groups() = [group()]

TLS 1.3 introduces the "supported_groups' extension that is used for negotiating the Diffie-Hellman parametersin a
TLS 1.3 handshake. Both client and server can specify alist of parameters that they are willing to use.

If itisnot specifiedit will useadefault list ([x25519, X448, secp256r1, secp384rl]) that isfiltered based ontheinstalled
crypto library version.

secure_renegotiation() = boolean()

Specifiesif to reject renegotiation attempt that does not live up to RFC 5746. By default secur e_r enegot i at e is
settot r ue, that is, securerenegotiation isenforced. If settof al se secure renegotiation will still be used if possible,
but it falls back to insecure renegotiation if the peer does not support RFC 5746.

allowed cert chain length() = integer()

Maximum number of non-self-issued intermediate certificatesthat can follow the peer certificateinavalid certification
path. So, if depth is 0 the PEER must be signed by the trusted ROOT-CA directly; if 1 the path can be PEER, CA,
ROQOT-CA,; if 2 the path can be PEER, CA, CA, ROOT-CA, and so on. The default valueis 10.

custom verify() =
{Verifyfun :: function(), InitialUserState :: any()}

The verification fun is to be defined as follows:

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 51

href
href
href

ssl

fun(0tpCert :: #'0TPCertificate'{},

Event, InitialUserState :: term()) ->
{valid, UserState :: term()} |
{fail, Reason :: term()} | {unknown, UserState :: term()}.

fun(OtpCert :: #'OTPCertificate'{}, DerCert :: public key:der encoded(),
Event, InitialUserState :: term()) ->

{valid, UserState :: term()} |

{fail, Reason :: term()} | {unknown, UserState :: term()}.

Types:
Event = {bad cert, Reason :: atom() |
{revoked, atom()}} |
{extension, #'Extension'{}} |
valid |
valid peer

The verification fun is called during the X509-path validation when an error or an extension unknown to the SSL
application isencountered. It isalso called when acertificate is considered valid by the path validation to allow access
to each certificatein the path to the user application. It differentiates between the peer certificate and the CA certificates
by usingval i d_peer orval i d asEvent argument to the verification fun. See the public_key User's Guide for
definitionof # OTPCertificate' {} and#' Extension'{}.

» |f theverify callback funreturns{fai | , Reason}, the verification processis immediately stopped, an aert
is sent to the peer, and the TLS/DTL S handshake terminates.

« If theverify callback funreturns{ val i d, User St at e}, the verification process continues.

o Iftheverify calback fun alwaysreturns{ val i d, User St at e}, the TLS/DTL S handshake does not terminate
regarding verification failures and the connection is established.

e |f called with an extension unknown to the user application, return value { unknown, User St at e} isto be
used.

Note that if the fun returns unknown for an extension marked as critical, validation will fail.
Default optionveri fy_funinverify_peer node:

{fun(_,{bad cert, } = Reason,) ->
{fail, Reason};
(_,{extension, }, UserState) ->
{unknown, UserState};
(_, valid, UserState) ->
{valid, UserState};
(_, valid peer, UserState) ->
{valid, UserState}
end, [1}

Default optionveri fy funinmodeverify none:

{fun(_,{bad cert, }, UserState) ->
{valid, UserState};
(_,{extension, #'Extension'{critical = true}}, UserState) ->
{valid, UserState};
(_,{extension, }, UserState) ->
{unknown, UserState};
(_, valid, UserState) ->
{valid, UserState};
(_, valid peer, UserState) ->
{valid, UserState}
end, [1}

The possible path validation errors are given on form{ bad_cert, Reason} whereReason is:

52 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

unknown_ca

No trusted CA was found in the trusted store. The trusted CA isnormally a so called ROOT CA, which isaself-
signed certificate. Trust can be claimed for an intermediate CA (trusted anchor does not have to be self-signed
according to X-509) by using option parti al _chai n.

sel f si gned_peer
The chain consisted only of one self-signed certificate.
{invalid_ext_keyusage, [public_key:oid()]}

If the peer certificate specifies the extended keyusage extension and does not include the purpose for either being
aTLSserver (i d- kp- Server Aut h) or TLSclient (i d- kp- C i ent Aut h) depending on the peersrole.

{ca_invalid_ext_keyusage, [public_key:oid()]}

If a CA certificate specifies the extended keyusage extension and does not include the purpose for either
being a TLS server (i d- kp- Ser ver Aut h) or TLS client (i d- kp- C i ent Aut h) depending on the role of
the peer chained with this CA, or the option alow_any ca purpose is set to “true’ but the special any-value
(anyExt endedKeyUsage) isnot included in the CA cert purposes.

PKI X X-509-path validation error
For possible reasons, see public_key:pkix_path validation/3
allow any ca purpose() = boolean()

If aCA certificate has an extended key usage extension but it does not want to restrict the usages of thekey it caninclude
a special "anyExtendedKeyUsage purpose. If thisis option is set to “true” all key usage purposes is automatically
accepted for the CA that includes this purpose, the option default to false.

crl check() = boolean() | peer | best effort

Perform CRL (Certificate Revocation List) verification (public_key:pkix_crls validate/3) on all the certificates during
the path validation (public_key:pkix_path_validation/3) of the certificate chain. Defaultstof al se.

peer
check is only performed on the peer certificate.

best _effort
if certificate revocation status cannot be determined it will be accepted as valid.

The CA certificates specified for the connection will be used to construct the certificate chain validating the CRLs.
The CRLswill be fetched from alocal or external cache. See ssl_crl_cache api(3).

crl cache opts() =
{Module :: atom(),
{DbHandle :: internal | term(), Args :: list()}}

Specify how to perform lookup and caching of certificate revocation lists. Modul e defaults to ss_crl_cache with
DbHandl e beingi nt er nal and an empty argument list.

There are two implementations available:
ssl _crl _cache

Thismodule maintainsacache of CRLs. CRLscan be added to the cacheusing thefunctionsd_crl_cacheiinsert/1,
and optionally automatically fetched through HTTP if the following argument is specified:

{http, timeout()}

Enables fetching of CRLs specified as http URIs inX509 certificate extensions. Requires the OTP inets
application.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 53

ssl

ssl _crl _hash dir
This module makes use of adirectory where CRLs are stored in files named by the hash of the issuer name.

Thefile names consist of eight hexadecimal digitsfollowed by . r N, where Nisaninteger, e.g. 1a2b3c4d. r 0.
For thefirst version of the CRL, Nstartsat zero, and for each new version, Nisincremented by one. The OpenSSL
utility c_r ehash creates symlinks according to this pattern.

For a given hash value, this module finds all consecutive . r * files starting from zero, and those files taken
together make up the revocation list. CRL fileswhose next Updat e fields are in the past, or that are issued by
adifferent CA that happens to have the same name hash, are excluded.

The following argument is required:
{dir, string()}
Specifies the directory in which the CRLs can be found.
root fun() = function()

fun(Chain::[public key:der encoded()]) ->
{trusted ca, DerCert::public key:der encoded()} | unknown ca.

Claim an intermediate CA in the chain as trusted. TLS then performs public_key:pkix_path_validation/3 with the
selected CA as trusted anchor and the rest of the chain.

protocol versions() = [protocol version()]

TLS protocol versions supported by started clients and servers. This option overrides the application environment
optionpr ot ocol _versionanddt|s_protocol versi on. If theenvironment option isnot set, it defaultsto
all versions, supported by the SSL application. See also sd(6).

custom user lookup() =
{Lookupfun :: function(), UserState :: any()}

The lookup funisto defined as follows:

fun(psk, PSKIdentity :: binary(), UserState :: term()) ->
{ok, SharedSecret :: binary()} | error;
fun(srp, Username :: binary(), UserState :: term()) ->
{ok, {SRPParams :: srp param type(), Salt :: binary(),
DerivedKey :: binary()}} | error.

For Pre-Shared Key (PSK) cipher suites, thelookup funiscalled by the client and server to determine the shared secret.
When called by the client, PSKI dent i t y is set to the hint presented by the server or to undefined. When called by
the server, PSKI dent i t y istheidentity presented by the client.

For Secure Remote Password (SRP), the fun is only used by the server to obtain parameters that it uses to generate
its session keys. Der i vedKey isto be derived according to RFC 2945 and RFC 5054: cr ypt o: sha([Sal t,
crypto: sha([Usernane, <<$:>>, Password])])

session id() = binary()
Identifiesa TLS session.
log alert() = boolean()

If settof al se, TLS/DTLS Alert reports are not displayed. Deprecated in OTP 22, use {log_level, logging_level()}
instead.

logging level() = logger:level() | none | all

Specifies the log level for a TLS/DTLS connection. Alerts are logged on not i ce level, which is the default level.
Thelevel debug triggers verbose logging of TLS/DTLS protocol messages. See also ssl(6)

54 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href

ssl

hibernate after() = timeout()

When an integer-value is specified, TLS/ DTLS- connect i on goes into hibernation after the specified number of
milliseconds of inactivity, thus reducing its memory footprint. When undef i ned is specified (this is the default),
the process never goes into hibernation.

handshake size() = integer()

Integer (24 bits unsigned). Used to limit the size of valid TLS handshake packets to avoid DoS attacks. Defaults to
256* 1024,

padding check() = boolean()

Affects TLS-1.0 connectionsonly. If settof al se, it disablesthe block cipher padding check to be ableto interoperate
with legacy software.

Using { paddi ng_check, bool ean()} makes TLS vulnerable to the Poodle attack. |

beast mitigation() = one n minus one | zero n | disabled

Affects TLS-1.0 connectionsonly. Used to changethe BEAST mitigation strategy tointeroperate with legacy software.
Defaultstoone_n_m nus_one.

one_n_m nus_one - Perform 1/n-1 BEAST mitigation.
zer o_n - Perform O/n BEAST mitigation.
di sabl ed - Disable BEAST mitigation.

Using{ beast _m tigation, disabl ed} makesTLS-1.0 vulnerable to the BEAST attack.

ssl imp() = new | old
Deprecated since OTP-17, has no effect.

session tickets() =
client session tickets() | server session tickets()

Configures the session ticket functionality in TLS 1.3 client and server.
key update at() = integer() >=1

Configures the maximum amount of bytes that can be sent on a TLS 1.3 connection before an automatic key update
is performed.

There are cryptographic limits on the amount of plaintext which can be safely encrypted under a given set of keys.
The current default ensures that data integrity will not be breached with probability greater than 1/2°57. For more
information see Limits on Authenticated Encryption Usein TLS.

The default value of this option shall provide the above mentioned security guarantees and it shall be reasonable
for most applications (~353 TB).

middlebox comp mode() = boolean()
Configures the middlebox compatibility mode on a TLS 1.3 connection.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 55

href

ssl

A significant number of middleboxes misbehave when a TLS 1.3 connection is negotiated. Implementations can
increase the chance of making connections through those middleboxes by making the TLS 1.3 handshake more like
aTLS 1.2 handshake.

The middlebox compatibility modeis enabled (t r ue) by default.
spawn_opts() = [erlang:spawn opt option()]
Configures spawn options of TLS sender and receiver processes.

Setting up garbage collection options can be helpful for trade-offs between CPU usage and Memory usage. See
erl ang: spawn_opt/ 2.

For dist connections, default sender optionis[...{priority, max}], thispriority option cannot be changed.
For all connections, . . . | i nk isadded to receiver and cannot be changed

keep secrets() = boolean()
Configuresa TLS 1.3 connection for keylogging

In order to retrieve keylog information on a TLS 1.3 connection, it must be configured in advance to keep the
client_random and various handshake secrets.

The keep_secrets functionality is disabled (f al se) by default.
Added in OTP 23.2

Data Types

TLS/DTLS OPTION DESCRIPTIONS - CLIENT

client option() =
{verify, client verify type()} |
{reuse_session, client reuse session()} |
{reuse sessions, client reuse sessions()} |
{cacerts, client cacerts()} |
{cacertfile, client cafile()} |
{alpn_advertised protocols, client alpn()} |
{client preferred next protocols,
client preferred next protocols()} |
{psk_identity, client psk identity()} |
{srp_identity, client srp identity()} |
{server name indication, sni()} |
{max_fragment length, max fragment length()} |
{customize hostname check, customize hostname check()} |
{fallback, fallback()} |
{middlebox comp mode, middlebox comp mode()} |
{certificate authorities, client certificate authorities()} |
{session tickets, client session tickets()} |
{use ticket, use ticket()} |
{early data, client early data()} |
{use_srtp, use srtp()}
client verify type() = verify type()
Defaultstoveri fy_peer, since OTP-26, which means the option cacerts or cacertfile is also required to perform
the certificate verification unless veri fy_none is explicitly configured. For example an HTTPS client would
normally use the option { cacerts, public_key: cacerts_get ()} (avalable since OTP-25) to access the

CA certificates provided by the OS. Using verify _none means that all x509-certificate path validation errors will be
ignored. See also option verify_fun.

56 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

client reuse session() =
session id() | {session id(), SessionData :: binary()}

Reuses a specific session. The session should be referred by its session id if it is earlier saved with the option
{reuse_sessions, save} since OTP-21.3 or explicitly specified by its session id and associated data since
OTP-22.3. See dlso SSL's Users Guide, Session Reuse pre TLS 1.3.

client reuse sessions() = boolean() | save

When save is specified a new connection will be negotiated and saved for later reuse. The session ID can be fetched
with connection_information/2 and used with the client option reuse_session The boolean value true specifies that if
possible, automated session reuse will be performed. If anew session is created, and is unique in regard to previous
stored sessions, it will be saved for possible later reuse. Since OTP-21.3.

client certificate authorities() = boolean()

If set to true, sends the certificate authorities extension in TLS-1.3 client hello. The default is false. Note that setting
it to true may result in abig overhead if you have many trusted CA certificates. Since OTP-24.3.

client cacerts() =
[public_key:der encoded()] | [public key:combined cert()]

The DER-encoded trusted certificates. If this option is supplied it overridesoption cacertfi |l e.
client cafile() = file:filename()

Path to afile containing PEM-encoded CA certificates. The CA certificates are used during server authentication and
when building the client certificate chain.

When PEM caching is enabled, files provided with this option will be checked for updates at fixed time intervals
specified by the ss_pem_cache clean environment parameter.

Alternatively, CA certificates can be provided as a DER-encoded binary with client_cacerts option. |

client alpn() = [app_level protocol()]

The list of protocols supported by the client to be sent to the server to be used for an Application-Layer Protocol
Negotiation (ALPN). If the server supports ALPN then it will choose a protocol from this list; otherwise it will fail
the connection with a"no_application_protocol" aert. A server that does not support ALPN will ignore this value.

Thelist of protocols must not contain an empty binary.
The negotiated protocol can be retrieved using the negot i at ed_pr ot ocol / 1 function.
client preferred next protocols() =

{Precedence :: server | client,
ClientPrefs :: [app_level protocol()]} |
{Precedence :: server | client,

ClientPrefs :: [app_level protocol()],
Default :: app level protocol()}

Indicates that the client isto try to perform Next Protocol Negotiation.

If precedence is server, the negotiated protocol is the first protocol to be shown on the server advertised list, which
isalso on the client preference list.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 57

ssl

If precedence is client, the negotiated protocol is the first protocol to be shown on the client preference list, which is
also on the server advertised list.

If the client does not support any of the server advertised protocols or the server does not advertise any protocols, the
client falls back to thefirst protocol initslist or to the default protocol (if a default is supplied). If the server does not
support Next Protocol Negotiation, the connection terminates if no default protocol is supplied.

max_fragment length() = undefined | 512 | 1024 | 2048 | 4096

Specifies the maximum fragment length the client is prepared to accept from the server. See RFC 6066
client psk identity() = psk identity()

Specifies the identity the client presents to the server. The matching secret isfound by calling user _| ookup_f un
client srp identity() = srp identity()

Specifies the username and password to use to authenticate to the server.

sni() = inet:hostname() | disable

Specify the hostnameto be used in TLS Server Name Indication extension. If not specified it will default to the Host
argument of connect/[3,4] unlessit is of type inet:ipaddress().

The Host Name will aso be used in the hosthame verification of the peer certificate using
public_key:pkix_verify hostname/2.

The specia valuedi sabl e preventsthe Server Name Indication extension from being sent and di sablesthe hostname
verification check public_key:pkix_verify hostname/2

customize hostname check() = list()

Customizes the hostname verification of the peer certificate, as different protocols that use TLS such as HTTP or
LDAP may want to doit differently. For examplethe get standard HTTPS handling provide the already implememnted
fun from the public_key application for HTTPS. {cust omni ze_host name_check, [{mat ch_fun,
public_key: pki x_verify_ hostname_mat ch_fun(https)}]} For futher description of customize
options see public_key:pkix_verify hostname/3

fallback() = boolean()
Send special cipher suite TLS FALLBACK_SCSV to avoid undesired TLS version downgrade. Defaults to false

Note this option is not needed in normal TLS usage and should not be used to implement new clients. But legacy
clients that retries connections in the following manner

ssl:connect (Host, Port, [...{versions, ['tlsv2', "tlsvl. 1", "tlsvl']}])
ssl:connect (Host, Port, [...{versions, [tlsvl.1', ‘'tlsvl']}, {fallback,
true}])

ssl:connect (Host, Port, [...{versions, ['tlsvl']}, {fallback, true}])

may useit to avoid undesired TL S version downgrade. Notethat TLS FALLBACK _SCSV must also be supported
by the server for the prevention to work.

client session tickets() = disabled | manual | auto

Configuresthe session ticket functionality. Allowed valuesaredi sabl ed, manual andaut o. If itissettomanual
the client will send the ticket information to user processin a 3-tuple:

{ssl, session_ticket, {SNI, TicketData}}

58 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href

ssl

where SNI isthe ServerNamelndication and Ti cket Dat a isthe extended ticket data that can be used in subsequent
session resumptions.

If it is set to aut o, the client automatically handles received tickets and tries to use them when making new TLS
connections (session resumption with pre-shared keys).

Note:

This option is supported by TLS 1.3 and above. See aso SSL's Users Guide, Session Tickets and Session
Resumptionin TLS 1.3

use ticket() = [binary()]

Configures the session tickets to be used for session resumption. It is a mandatory option in nanual mode
(session_tickets = manual).

Note:

Session tickets are only sent to user if option session_ticketsis set to manual

This option is supported by TLS 1.3 and above. See aso SSL's Users Guide, Session Tickets and Session
Resumptionin TLS 1.3

client early data() = binary()
Configures the early data to be sent by the client.

In order to be able to verify that the server has the intention to process the early data, the following 3-tuple is sent
to the user process:

{ssl, Ssl Socket, {early data, Result}}
where Resul t iseither accept ed or r ej ect ed.

War ning:

It isthe responsibility of the user to handle arejected Early Data and to resend when it is appropriate.

use srtp() =
#{protection profiles := [binary()], mki => binary()}

Configurestheuse_srt p DTLS hello extension.

In order to negotiate the use of SRTP data protection, clients include an extension of type "use_srtp" in the DTLS
extended client hello. This extension MUST only be used when the data being transported is RTP or RTCP.

The value is amap with amandatory pr ot ecti on_pr of i | es and an optional nki parameters.

protection_profil es configuresthe list of the client's acceptable SRTP Protection Profiles. Each profileis a
2-byte binary. Example: #{ prot ecti on_profiles => [<<0, 2>>, <<0, 5>>]}

nki configuresthe SRTP Master Key Identifier chosen by the client.

The srtp_mki field contains the value of the SRTP MKI which is associated with the SRTP master keys derived from
this handshake. Each SRTP session MUST have exactly one master key that is used to protect packets at any given
time. The client MUST choose the MK value so that it is distinct from the last MKI value that was used, and it
SHOUL D make these values unique for the duration of the TL S session.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 59

ssl

This extension MUST only be used with DTLS, and not with TLS.

OTP does not handle SRTP, so an external implementations of SRTP encoder/decoder and a packet demultiplexer
are needed to make use of theuse_srt p extension. See aso cb_info option.

Data Types
TLS/DTLS OPTION DESCRIPTIONS - SERVER

server _option() =
{cacerts, server cacerts()} |
{cacertfile, server cafile()} |
{dh, dh der()} |
{dhfile, dh file()} |
{verify, server verify type()} |
{fail if no_peer cert, fail if no peer cert()} |
{certificate authorities, server certificate authorities()} |
{reuse _sessions, server reuse sessions()} |
{reuse_session, server reuse session()} |
{alpn_preferred protocols, server alpn()} |
{next_protocols advertised, server next protocol()} |
{psk_identity, server psk identity()} |
{sni hosts, sni hosts()} |
{sni fun, sni fun()} |
{honor_cipher _order, honor_cipher order()} |
{honor_ecc_order, honor ecc order()} |
{client renegotiation, client renegotiation()} |
{session tickets, server session_ tickets()} |
{stateless tickets seed, stateless tickets seed()} |
{anti replay, anti replay()} |
{cookie, cookie()} |
{early data, server early data()} |
{use_srtp, use srtp()}

server cacerts() =
[public key:der encoded()] | [public key:combined cert()]

The DER-encoded trusted certificates. If this option is supplied it overrides optioncacertfi |l e.
server certificate authorities() = boolean()

Determinesif a TLS-1.3 server should include the authorities extension in its certificate request message that will be
sent if theoptionverifyissettoveri fy_peer.Defaultstot r ue.

If settof al se for older TLS versionsits corresponding certificate authorities definition in its certificate request will
be set to the empty list instead of including the appropriate certificate authorities. This has the same affect as excluding
the TLS-1.3 extension.

A reason to exclude the certificate authorities would be if the server wants to communicate with clients incapable of
sending complete certificate chains that adhere to the certificate authorities, but the server still has the capability to
recreate a chain that it can verify.

60 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

SS

server cafile() = file:filename()

Path to a file containing PEM-encoded CA certificates. The CA certificates are used to build the server certificate
chain and for client authentication. The CAsare also used in the list of acceptable client CAs passed to the client when
a certificate is requested. Can be omitted if there is no need to verify the client and if there are no intermediate CAs
for the server certificate.

Note:

When PEM caching is enabled, files provided with this option will be checked for updates at fixed time intervals
specified by the ss_pem_cache_clean environment parameter.

Note:

Alternatively, CA certificates can be provided as a DER-encoded binary with server_cacerts option.

dh der() = binary()
The DER-encoded Diffie-Hellman parameters. If specified, it overrides option dhf i | e.

Warning:

Thedh_der optionisnot supported by TLS 1.3. Usethe suppor t ed_gr oups option instead.

dh file() = file:filename()

Path to afile containing PEM-encoded Diffie Hellman parametersto be used by the server if acipher suite using Diffie
Hellman key exchangeis negotiated. If not specified, default parameters are used.

Warning:

Thedh_fi | e optionis not supported by TLS 1.3. Use the suppor t ed_gr oups option instead.

server verify type() = verify type()

Client certificates are an optional part of the TLS protocol. A server only does x509-certificate path validation
in mode veri fy_peer. By default the server isin veri fy_none mode an hence will not send an certificate
request to the client. When usingveri fy_peer you may also want to specify the optionsfail_if no_peer cert and
certificate_authorities.

fail if no peer cert() = boolean()

Used together with {veri fy, verify peer} by an TLS/DTLS server. If set tot r ue, the server fails if the
client does not have a certificate to send, that is, sends an empty certificate. If settof al se, it failsonly if the client
sends an invalid certificate (an empty certificate is considered valid). Defaultsto false.

server _reuse sessions() = boolean()

The boolean value true specifies that the server will agree to reuse sessions. Setting it to false will result in an empty
session table, that is no sessions will be reused. See also option reuse_session.

server reuse session() = function()

Enablesthe TLS/DTL S server to have alocal policy for deciding if a session isto be reused or not. Meaningful only
if reuse_sessions issettotrue. Suggest edSessi onl d isabi nary(), Peer Cert isaDER-encoded
certificate, Conpr essi on isan enumeration integer, and Ci pher Sui t e isof typeci phersuite().

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 61

ssl

server_alpn() = [app_level protocol()]
Indicates the server will try to perform Application-Layer Protocol Negotiation (ALPN).

The list of protocols is in order of preference. The protocol negotiated will be the first in the list that matches
one of the protocols advertised by the client. If no protocol matches, the server will fail the connection with a
"no_application_protocol™ aert.

The negotiated protocol can be retrieved using the negot i at ed_pr ot ocol / 1 function.
server next protocol() = [app level protocol()]

List of protocolsto send to the client if the client indicates that it supports the Next Protocol extension. The client can
select a protocol that is not on thislist. Thelist of protocols must not contain an empty binary. If the server negotiates
aNext Protocol, it can be accessed using the negot i at ed_next pr ot ocol / 1 method.

server psk identity() = psk identity()

Specifies the server identity hint, which the server presents to the client.

honor cipher order() = boolean()

If settot r ue, usethe server preference for cipher selection. If set to f al se (the default), use the client preference.

sni hosts() =
[{inet:hostname(), [server option() | common option()]}]

If the server receivesa SNI (Server Name I ndication) from the client matching ahost listedinthesni _host s option,
the specific options for that host will override previously specified options. The optionsni _f un,andsni _host s
are mutually exclusive.

sni fun() = fun((string()) -> [] | undefined)

If the server receives a SNI (Server Name Indication) from the client, the given function will be caled to retrieve
[server_option()] for the indicated server. These options will be merged into predefined [server_option()] list. The
function should be defined as: fun(ServerName :: string()) -> [server_option()] and can be specified as a fun or as
named f un nmodul e: functi on/ 1 Theoptionsni _fun,andsni _host s are mutually exclusive.

client renegotiation() = boolean()

In protocolsthat support client-initiated renegotiation, the cost of resources of such an operation ishigher for the server
than the client. This can act as a vector for denial of service attacks. The SSL application aready takes measures to
counter-act such attempts, but client-initiated renegotiation can be strictly disabled by setting this optionto f al se.
The default valueist r ue. Note that disabling renegotiation can result in long-lived connections becoming unusable
due to limits on the number of messages the underlying cipher suite can encipher.

honor cipher order() = boolean()

If true, use the server's preference for cipher selection. If false (the default), use the client's preference.
honor ecc order() = boolean()

If true, use the server's preference for ECC curve selection. If false (the default), use the client's preference.

server_session tickets() =
disabled | stateful | stateless | stateful with cert |
stateless with cert

Configures the session ticket functionality. Allowed values are di sabl ed, stateful, stateless,
stateful _with cert,stateless with cert.

If itisnot set to di sabl ed, session resumption with pre-shared keys is enabled and the server will send stateful or
statel ess session tickets to the client after successful connections.

62 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

Pre-shared key sessionticket resumption does not include any certificate exchange, hencethe function ssl:peercert/1
will not be able to return the peer certificate as it is only communicated in the initial handshake. The server
optionsstateful _with _cert orstatel ess_with_cert may be used to make a server associate the
client certificate from the original handshake with the tickets it issues.

A stateful sessionticket isadatabasereferencetointernal stateinformation. A statelesssession ticket isaself-encrypted
binary that contains both cryptographic keying material and state data.

War ning:

Ifitissettostat eful _wi th_cert theclient certificateisstored with theinternal stateinformation, increasing
memory consumption. If it is set to st at el ess_wi th_cert the client certificate is encoded in the self-
encrypted binary that is sent to the client, increasing the payload size.

This option is supported by TLS 1.3 and above. See also SSL's Users Guide, Session Tickets and Session
Resumptionin TLS 1.3

stateless tickets seed() = binary()

Configures the seed used for the encryption of statel ess session tickets. Allowed values are any randomly generated
bi nary() . If thisoptionis not configured, an encryption seed will be randomly generated.

Reusing theticket encryption seed between multiple server instances enabl es statel ess sessi on ticketsto work across
multiple server instances, but it breaks anti-replay protection across instances.

I naccuratetime synchronization between server instances can al so affect session ticket freshness checks, potentially
causing false negatives as well as false positives.

This option is supported by TLS 1.3 and above and only with stateless session tickets.

anti replay() =
"10k"' | '100k' |
{bloom filter window size(),
bloom filter hash functions(),
bloom filter bits()}

Configures the server's built-in anti replay feature based on Bloom filters.

Allowed values are the pre-defined ' 10k' , ' 100k’ or a custom 3-tuple that defines the properties of the bloom
filters: { W ndowSi ze, HashFunctions, Bits}.W ndowSi ze isthe number of seconds after the current
Bloom filter is rotated and also the window size used for freshness checks of ClientHello. HashFunct i ons isthe
number hash functions and Bi t s is the number of bits in the bit vector. ' 10k' and ' 100k' are simple defaults
with the following properties:

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 63

ssl

e« '10k': Bloom filters can hold 10000 elements with 3% probability of false positives. W ndowSi ze: 10,
HashFuncti ons:5,Bi ts: 72985 (8.91KiB).

e ' 100k' : Bloom filters can hold 100000 elements with 3% probability of false positives. W ndowSi ze: 10,
HashFunctions: 5, Bi t s: 729845 (89.09 KiB).

Thisoption is supported by TLS 1.3 and above and only with statel ess session tickets. Ticket lifetime, the number
of tickets sent by the server and the maximum number of tickets stored by the server in stateful mode are configured
by application variables. See also SSL's Users Guide, Anti-Replay Protectionin TLS 1.3

cookie() = boolean()
If t r ue (default), the server sends a cookie extension in its HelloRetryRequest messages.

The cookie extension has two main purposes. It allows the server to force the client to demonstrate reachability
at their apparent network address (thus providing a measure of DoS protection). This is primarily useful for non-
connection-oriented transports. It also allows to offload the server's state to the client. The cookie extension is
enabled by default asit is a mandatory extension in RFC8446.

server early data() = disabled | enabled

Configures if the server accepts (enabl ed) or rejects (r ej ect s) early data sent by a client. The default value is
di sabl ed.

This option is a placeholder, early datais not yet implemented on the server side. |

use srtp() =
#{protection profiles := [binary()], mki => binary()}

Configurestheuse_srt p DTLS hello extension.

Servers that receive an extended hello containing a "use_srtp" extension can agree to use SRTP by including an
extension of type "use srtp”, with the chosen protection profile in the extended server hello. This extension MUST
only be used when the data being transported is RTP or RTCP.

The value is amap with amandatory pr ot ect i on_pr of i | es and an optional nki parameters.

* protection_profiles configuresthelist of the server's chosen SRTP Protection Profile asalist of asingle
2-byte binary. Example: #{ pr ot ecti on_profiles => [<<0, 5>>]}
» nki configuresthe server's SRTP Master Key Identifier.

Uponreceipt of a"use_srtp" extension containing a"srtp_mki" field, the server MUST either (assuming it accepts
the extension at all):

* includeamatching"srtp_mki" valueinits"use srtp" extension toindicatethat it will make use of the MK, or
e return an empty "srtp_mki" value to indicate that it cannot make use of the MK (default).

This extension MUST only be used with DTLS, and not with TLS.

64 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

OTP does not handle SRTP, so an external implementations of SRTP encoder/decoder and a packet demultiplexer
are needed to make use of theuse_srt p extension. See aso cb_info option.

connection info() =
[common_info() |
curve _info() |
ssl options _info() |
security info()]
common_info() =
{protocol, protocol version()} |
{session id, session id()} |
{session resumption, boolean()} |
{selected cipher suite, erl cipher suite()} |
{sni hostname, term()} |
{srp username, term()}
curve_info() = {ecc, {named curve, term()}}
ssl options info() = tls option()
security info() =
{client random, binary()
{server_random, binary()
{master secret, binary()
connection info items() = [connection info item()]
connection info item() =
protocol | session id | session resumption |
selected cipher suite | sni hostname | srp username | ecc |
client random | server random | master secret | keylog |
tls options name()
tls options name() = atom()

o
P
}

Exports

append cipher suites(Deferred, Suites) -> ciphers()
Types:
Deferred = ciphers() | cipher_ filters()
Suites = ciphers()
Make Def er r ed suites become the least preferred suites, that is put them at the end of the cipher suite list Sui t es

after removing them from Sui t es if present. Def er r ed may be alist of cipher suites or alist of filtersin which
casethefiltersare use on Sui t es to extract the Deferred cipher list.

cipher suites(Description, Version) -> ciphers()

Types:
Description =

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 65

ssl

default | all | exclusive | anonymous | exclusive anonymous
Version = protocol_version() | ssl_record:ssl_version()

Lists all possible cipher suites corresponding to Descri pti on that are available. The excl usi ve and
excl usi ve_anonynous option will exclusively list cipher suites first supported in Ver si on whereas the other
options are inclusive from the lowest possible version to Ver si on. Theal | options includes all suites except the
anonymous and no anonymous suites are supported by default.

TLS1.3 has no overlapping cipher suites with previous TLS versions, that is the result of
ci pher_suites(all, 'tlsvl.3"). contains a separate set of suites that can be used with TLS-1.3 an
other set that can be used if alower version is negotiated. PRE TLS-1.3 so called PSK and SRP suites need extra
configuration to work see user lookup function. No anonymous suites are supported by TLS-1.3.

Also note that the cipher suites returned by this function are the cipher suites that the OTP sdl application
can support provided that they are supported by the cryptolib linked with the OTP crypto application. Use
sdl:filter_cipher_suites(Suites, []). to filter the list for the current cryptolib. Note that cipher suites may be filtered
out because they are too old or too new depending on the cryptolib

cipher suites(Description, Version, StringType :: rfc | openssl) ->
[string()]
Types:
Description = default | all | exclusive | anonymous
Version = protocol_version() | ssl_record:ssl_version()

Same as cipher_suites/2 but lists RFC or OpenSSL string names instead of erl_cipher_suite()

eccs() -> NamedCurves
Types:
NamedCurves = [named curve()]
Returns alist of all supported elliptic curves, including legacy curves, for all TLS/DTLS versionspre TLS-1.3.

eccs(Version) -> NamedCurves

Types.
Version = 'tlsvl.2' | 'tlsvl.1' | tlsvl | 'dtlsvl.2' | dtlsvl
NamedCurves = [named curve()]

Returns the by default supported elliptic curvesfor Ver si on, which is a subset of what eccs/ O returns.

clear pem cache() -> ok

PEM files, used by sd API-functions, are cached for performance reasons. The cache is automatically checked at
regular intervalsto see if any cache entries should be invalidated.

This function provides away to unconditionally clear the entire cache, thereby forcing a reload of previously cached
PEM files.

connect (TCPSocket, TLSOptions) ->
{ok, sslsocket()} |
{error, reason()} |

66 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

{option not a key value tuple, any()}

connect (TCPSocket, TLSOptions, Timeout) ->
{ok, sslsocket()} | {error, reason()}

Types:
TCPSocket = socket()
TLSOptions = [tls _client option()]
Timeout = timeout()

Upgrades a gen_t cp, or equivalent, connected socket to a TLS socket, that is, performs the client-side TLS
handshake

If theoptionveri fyissettoverify_peer theoptionser ver _nane_i ndi cat i on shall also be specified,
if itisnot no Server Name Indication extension will be sent, and public_key:pkix_verify _hostname/2 will be called
with the IP-address of the connection as Ref er encel D, which is probably not what you want.

If the option { handshake, hel | 0} isused the handshake is paused after receiving the server hello message and
the success responseis{ ok, Ssl| Socket, Ext} instead of { ok, Ssl Socket}. Thereafter the handshakeis
continued or canceled by calling handshake_conti nue/ 3 or handshake cancel /1

If theoptionact i veissettoonce,t r ue or aninteger value, the process owning the sslsocket will receive messages
of type active_ msgs()

connect(Host, Port, TLSOptions) ->
{ok, sslsocket()} |
{ok, sslsocket(), Ext :: protocol extensions()} |
{error, reason()} |
{option_not a key value tuple, any()}
connect(Host, Port, TLSOptions, Timeout) ->
{ok, sslsocket()} |
{ok, sslsocket(), Ext :: protocol extensions()} |
{error, reason()} |
{option_not a key value tuple, any()}
Types.
Host = host()
Port = inet:port number()
TLSOptions = [tls client option()]
Timeout = timeout()
Opensa TLS/DTLS connection to Host , Port .

Whentheoptionveri fyissettoveri fy_peer thecheck public_key:pkix_verify hostname/2 will be performed
in addition to the usual x509-path validation checks. If the check fails the error { bad_cert, hosthame_check_failed}
will be propagated to the path validation fun verify_fun, where it is possible to do customized checks by using the
full possibilities of the public_key:pkix_verify hostname/3 API. When the option ser ver _nane_i ndi cati on
isprovided, its value (the DNS name) will be used as Ref er encel Dto public_key:pkix_verify hostname/2. When
no server _name_i ndi cati on option is given, the Host argument will be used as Server Name Indication
extension. The Host argument will also be used for the public_key:pkix_verify _hostname/2 check and if the Host

argument isani net : i p_addr ess() the Ref er encel D used for the check will be{i p, Host} otherwise
dns_i d will be assumed with afallback toi p if that fails.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 67

ssl

According to good practices certificates should not use | P-addresses as "server names'. It would be very surprising
if this happened outside a closed network.

If the option { handshake, hel | o} isused the handshake is paused after receiving the server hello message and
the success responseis{ ok, Ssl| Socket, Ext} instead of { ok, Ssl Socket}. Thereafter the handshakeis
continued or canceled by calling handshake_cont i nue/ 3 or handshake _cancel /1

If theoptionact i veissettoonce,t r ue or aninteger value, the process owning the sslsocket will receive messages
of type active_ msgs()

close(SslSocket) -> ok | {error, Reason}
Types.

SslSocket = sslsocket()

Reason = any()

Closesa TLS/DTLS connection.

close(SslSocket, How) ->
ok | {ok, port()} | {ok, port(), Data} | {error, Reason}

Types:
SslSocket = sslsocket()
How = timeout() | {NewController :: pid(), timeout()}
Data = binary()
Reason = any()
Closes or downgrades a TLS connection. In the latter case the transport connection will be handed over to the

NewCont r ol | er process after receiving the TLS close alert from the peer. The returned transport socket will have
thefollowing options set: [{ acti ve, fal se}, {packet, 0}, {node, binary}].

In case of downgrade, the close function might return some binary data that should be treated by the user as the first
bytes received on the downgraded connection.

controlling process(SslSocket, NewOwner) -> ok | {error, Reason}
Types.

SslSocket = sslsocket()

NewOwner = pid()

Reason = any/()

Assignsanew controlling processto the SSL socket. A controlling processisthe owner of an SSL socket, and receives
all messages from the socket.

connection information(SslSocket) ->

{ok, Result} | {error, reason()}
Types.

68 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

SslSocket = sslsocket()
Result = connection info()
Returns the most relevant information about the connection, ssl options that are undefined will be filtered out.

Note that values that affect the security of the connection will only be returned if explicitly requested by
connection_information/2.

Thelegacy | tem = ci pher_sui t e was removed in OTP-23. Previoudly it returned the cipher suite on its
(undocumented) legacy format. It isreplaced by sel ect ed_ci pher _sui te.

connection information(SslSocket, Items) ->
{ok, Result} | {error, reason()}

Types:
SslSocket = sslsocket()
Items = connection info items()
Result = connection info()
Returns the requested information items about the connection, if they are defined.

Note that client_random, server_random, master_secret and keylog are values that affect the security of connection.
Meaningful atoms, not specified above, are the sd option names.

In order to retrieve keylog and other secret information from a TLS 1.3 connection, keep_secrets must be configured
inadvanceand settot r ue.

| If only undefined options are requested the resulting list can be empty. |

filter cipher_suites(Suites, Filters) -> Ciphers
Types:

Suites = ciphers()

Filters = cipher filters()

Ciphers = ciphers()
Removes cipher suitesif any of the filter functions returns false for any part of the cipher suite. If no filter functionis
supplied for some part the default behaviour regardsit asif there was afilter function that returned true. For examples
see Customizing cipher suites Additionally, this function aso filters the cipher suites to exclude cipher suites not

supported by the cryptolib used by the OTP crypto application. That is calling sdl:filter_cipher_suites(Suites, []) will
be equivalent to only applying the filters for cryptolib support.

format error(Reason :: Reason | {error, Reason}) -> string()
Types:

Reason = any()
Presents the error returned by an SSL function as a printable string.

getopts(SslSocket, OptionNames) ->

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 69

ssl

{ok, [gen tcp:option()]} | {error, reason()}
Types:
SslSocket = sslsocket()
OptionNames = [gen tcp:option name()]
Gets the values of the specified socket options.

getstat(SslSocket) -> {ok, OptionValues} | {error, inet:posix()}

getstat(SslSocket, Options) ->
{ok, OptionValues} | {error, inet:posix()}

Types.

Ss1lSocket = sslsocket()

Options = [inet:stat option()]

OptionValues = [{inet:stat option(), integer()}]
Gets one or more statistic options for the underlying TCP socket.

See inet:getstat/2 for statistic options description.

handshake(HsSocket) ->
{ok, SslSocket} |
{ok, SslSocket, Ext} |
{error, Reason}

handshake(HsSocket, Timeout) ->
{ok, SslSocket} |
{ok, SslSocket, Ext} |
{error, Reason}

Types:

HsSocket = sslsocket()

Timeout = timeout()

SslSocket = sslsocket()

Ext = protocol extensions()

Reason = closed | timeout | error_alert()
Performs the TLS/DTLS server-side handshake.
Returnsanew TLS/DTLS socket if the handshake is successful.

If theoptionact i veissettoonce,t r ue or aninteger value, the process owning the sslsocket will receive messages
of type active_ msgs()

Not setting the timeout makes the server more vulnerable to DoS attacks.

handshake(Socket, Options) ->
{ok, SslSocket} |
{ok, SslSocket, Ext} |
{error, Reason}
handshake(Socket, Options, Timeout) ->
{ok, SslSocket} |

70 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

{ok, SslSocket, Ext} |
{error, Reason}

Types.
Socket = socket() | sslsocket()
SslSocket = sslsocket()
Options = [server option()]
Timeout = timeout()
Ext = protocol extensions()
Reason = closed | timeout | {options, any()} | error_alert()

If Socket isaordinary socket () : upgradesagen_t cp, or equivalent, socket to an SSL socket, that is, performs
the TLS server-side handshake and returns a TL'S socket.

The ordinary Socket shall bein passive mode ({ active, false}) before calling this function, and before the client
triesto connect with TLS, or else the behavior of thisfunction is undefined. The best way to ensure thisisto create
the ordinary listen socket in passive mode.

If Socket isan sdsocket() : provides extra TLS/DTLS options to those specified in listen/2 and then performs the
TLS/DTLS handshake. Returnsanew TLS/DTLS socket if the handshake is successful.

War ning:

Not setting the timeout makes the server more vulnerable to DoS attacks. |

If option { handshake, hel | o} isspecified the handshake is paused after receiving the client hello message and
the successresponseis{ ok, Ssl| Socket, Ext} instead of { ok, Ssl Socket}. Thereafter the handshakeis
continued or canceled by calling handshake_cont i nue/ 3 or handshake _cancel /1

If theoptionact i veissettoonce,t r ue or aninteger value, the process owning the sslsocket will receive messages
of type active_ msgs()

handshake cancel(Sslsocket :: #sslsocket{}) -> any()
Cancel the handshake with afatal USER_CANCELED alert.

handshake continue(HsSocket, Options) ->
{ok, SslSocket} | {error, Reason}

handshake continue(HsSocket, Options, Timeout) ->
{ok, SslSocket} | {error, Reason}

Types.
HsSocket = sslsocket()
Options = [tls client option() | tls server option()]
Timeout = timeout()
Ss1lSocket = sslsocket()
Reason = closed | timeout | error alert()

Continue the TL S handshake, possibly with new, additional or changed options.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 71

ssl

listen(Port, Options) -> {ok, ListenSocket} | {error, reason()}
Types.

Port = inet:port number()

Options = [tls server option()]

ListenSocket = sslsocket()
Creates an SSL listen socket.

negotiated protocol(SslSocket) -> {ok, Protocol} | {error, Reason}
Types.

Ss1Socket = sslsocket()

Protocol = binary()

Reason = protocol not negotiated | closed

Returns the protocol negotiated through ALPN or NPN extensions.

peercert(SslSocket) -> {ok, Cert} | {error, reason()}
Types:
SslSocket = sslsocket()
Cert = public key:der encoded()
The peer certificate is returned as a DER-encoded binary. The certificate can be decoded with

public_key:pkix_decode cert/2 Suggested further reading about certificatesis public_key User's Guide and sdl User's
Guide

peername(SslSocket) -> {ok, {Address, Port}} | {error, reason()}
Types:

Ss1Socket = sslsocket()

Address = inet:ip address()

Port = inet:port number()

Returns the address and port number of the peer.

prepend cipher suites(Preferred, Suites) -> ciphers()
Types:
Preferred = ciphers() | cipher_filters()
Suites = ciphers()
Make Pr ef er r ed suites become the most preferred suitesthat is put them at the head of the cipher suitelist Sui t es

after removing them from Sui t es if present. Pr ef er r ed may be alist of cipher suitesor alist of filtersin which
case thefiltersare use on Sui t es to extract the preferred cipher list.

prf(SslSocket, Secret, Label, Seed, WantedLength) ->

{ok, binary()} | {error, reason()}
Types.

72 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

SslSocket = sslsocket()

Secret = binary() | master_secret
Label = binary()

Seed = [binary() | prf random()]
WantedLength = integer() >= 0

Usesthe Pseudo-Random Function (PRF) of aTL S session to generate extrakey material. It either takes user-generated
valuesfor Secr et and Seed or atoms directing it to use a specific value from the session security parameters.

This function will be replaced by a new function export_key materials/4 in OTP-27, which is equivaent to
prf (TLSSocket, master_secret, Label, [client_random server_ random Context],
Want edLengt h) pre TLS-1.3 and also will behave correctly for TLS-1.3, although the API is not really logical
in the TLS-1.3 context. Other ways of calling this function was for testing purposes only and has no use case.

recv(SslSocket, Length) -> {ok, Data} | {error, reason()}
recv(SslSocket, Length, Timeout) -> {ok, Data} | {error, reason()}
Types.
Ss1lSocket = sslsocket()
Length = integer() >= 0
Data = binary() | list() | HttpPacket
Timeout = timeout()
HttpPacket = any()
See the description of Ht t pPacket inerl ang: decode_packet/ 3 in ERTS.
Receives a packet from a socket in passive mode. A closed socket isindicated by returnvalue{ err or, cl osed}.

Argument Lengt h is meaningful only when the socket isin mode r aw and denotes the number of bytes to read. If
Lengt h =0, dl available bytesarereturned. If Lengt h >0, exactly Lengt h bytesarereturned, or an error; possibly
discarding less than Lengt h bytes of data when the socket gets closed from the other side.

Optional argument Ti neout specifies atime-out in milliseconds. The default valueisi nfinity.

renegotiate(SslSocket) -> ok | {error, reason()}
Types.
Ss1Socket = sslsocket()

Initiates a new handshake. A notablereturn valueis{error, renegoti ati on_rej ect ed} indicating that the
peer refused to go through with the renegotiation, but the connection is still active using the previously negotiated
session.

TLS-1.3 has removed the renegotiate feature of earlier TLS versions and instead adds a new feature called key update
that replacesthe most important part of renegotiate, that istherefreshing of session keys. Thisistriggered automatically
after reaching a plaintext limit and can be configured by option key update _at.

update keys(SslSocket, Type) -> ok | {error, reason()}
Types.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 73

ssl

SslSocket = sslsocket()
Type = write | read write
There are cryptographic limits on the amount of plaintext which can be safely encrypted under a given set of keys.

If the amount of data surpasses those limits, a key update is triggered and a new set of keys are installed. See also
the option key _update at.

This function can be used to explicitly start a key update on a TLS 1.3 connection. There are two types of the key
update: if Typeis set to write, only the writing key is updated; if Typeis set to read_write, both the reading and
writing keys are updated.

send(SslSocket, Data) -> ok | {error, reason()}
Types:

Ss1Socket = sslsocket()

Data = iodata()
Writes Dat a to Ssl Socket .

A notablereturn valueis{ error, cl osed} indicating that the socket is closed.

setopts(SslSocket, Options) -> ok | {error, reason()}
Types.

Ss1Socket = sslsocket()

Options = [gen tcp:option()]
Sets options according to Opt i ons for socket Ssl Socket .

shutdown (Ss1Socket, How) -> ok | {error, reason()}
Types:
SslSocket = sslsocket()
How = read | write | read write
Immediately closes a socket in one or two directions.
How == wri t e means closing the socket for writing, reading from it is still possible.

To be able to handle that the peer has done a shutdown on the write side, option { exi t _on_cl ose, fal se}
is useful.

signature_algs(Description, Version) -> signature algs()
Types:
Description = default | all | exclusive
Version = protocol version()
Lists all possible signature algorithms corresponding to Descr i pt i on that are available. The excl usi ve option
will exclusively list algorithms/schemes for that protocol version, whereas the def aul t and al | options lists the

combined list to support the range of protocols from (D)TLS-1.2, the first version to support configuration of the
signature algorithms, to Ver si on.

Example:

74 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1> ssl:signature algs(default, 'tlsvl.3').

[eddsa ed25519,eddsa ed448,ecdsa _secp521rl sha512,
ecdsa_secp384rl sha384,ecdsa secp256rl sha256,
rsa_pss_pss_sha512,rsa pss _pss sha384,rsa pss pss sha256,
rsa_pss_rsae _sha512,rsa pss rsae sha384,rsa pss rsae sha256,
rsa_pkcsl sha512,rsa pkcsl sha384,rsa pkcsl sha256,
{sha512,ecdsa},

{sha384,ecdsa},

{sha256,ecdsa}]

2>ssl:signature algs(all, 'tlsvl1l.3').

[eddsa ed25519,eddsa ed448,ecdsa _secp521rl sha512,
ecdsa_secp384rl sha384,ecdsa secp256rl sha256,
rsa_pss_pss_sha512,rsa pss _pss sha384,rsa pss pss sha256,
rsa_pss_rsae _sha512,rsa pss rsae sha384,rsa pss rsae sha256,
rsa_pkcsl sha512,rsa pkcsl sha384,rsa pkcsl sha256,
{sha512,ecdsa},

{sha384,ecdsa},

{sha256,ecdsa},

{sha224,ecdsa},

{sha224, rsa},

{sha, rsa},

{sha,dsa}]

3> ssl:signature algs(exclusive, 'tlsv1l.3').

[eddsa ed25519,eddsa ed448,ecdsa _secp521rl sha512,
ecdsa_secp384rl sha384,ecdsa secp256rl sha256,
rsa_pss_pss_sha512,rsa pss _pss sha384,rsa pss pss sha256,
rsa_pss_rsae _sha512,rsa pss rsae sha384,rsa pss rsae sha256]

Some TL S-1-3 scheme names overlap with TLS-1.2 algorithm-tuple-pair-names and then TLS-1.3 names will be
used, for exampler sa_pkcsl _sha256 instead of { sha256, rsa} these arelegacy algorithmsin TLS-1.3

that apply only to certificate signaturesin this version of the protocol.

sockname (SslSocket) -> {ok, {Address, Port}} | {error, reason()}
Types:

Ss1Socket = sslsocket()

Address = inet:ip address()

Port = inet:port number()

Returns the local address and port number of socket Ssl Socket .

start() -> ok | {error, reason()}

start(Type :: permanent | transient | temporary) ->
ok | {error, reason()}

Starts the SSL application. Default typeist enpor ar y.

stop() -> ok
Stops the SSL application.

str _to suite(CipherSuiteName) ->
erl cipher suite() |

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 75

ssl

{error, {not recognized, CipherSuiteName}}
Types.
CipherSuiteName = string()

Convertsan RFC or OpenSSL name string to an erl_cipher_suite() Returns an error if the cipher suiteis not supported
or the name is not avalid cipher suite name.

suite to openssl str(CipherSuite) -> string()
Types:
CipherSuite = erl cipher suite()
Converts erl_cipher_suite() to OpenSSL name string.
PRE TLS-1.3 these names differ for RFC names

suite to str(CipherSuite) -> string()
Types.
CipherSuite = erl cipher suite()

Converts erl_cipher_suite() to RFC name string.

transport accept(ListenSocket) ->
{ok, SslSocket} | {error, reason()}

transport accept(ListenSocket, Timeout) ->
{ok, SslSocket} | {error, reason()}

Types:
ListenSocket = sslsocket()
Timeout = timeout()
SslSocket = sslsocket()
Accepts an incoming connection request on alisten socket. Li st enSocket must be a socket returned from listen/2.

The socket returned is to be passed to handshake/[2,3] to complete handshaking, that is, establishing the TLS/DTLS
connection.

Most API functions require that the TLS/DTLS connection is established to work as expected.

The accepted socket inherits the options set for Li st enSocket in listen/2.

The default value for Ti meout isi nfinity. If Ti neout is specified and no connection is accepted within the
giventime, {error, tineout} isreturned.

versions() -> [VersionInfo]
Types.
VersionInfo =
{ssl app, string()} |
{supported | available | implemented, [tls version()]} |
{supported dtls | available dtls | implemented dtls,
[dtls version()1}

Listsinformation, mainly concerning TLS/DTL S versions, in runtime for debugging and testing purposes.

76 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

app_vsn
The application version of the SSL application.
supported
TL S versions supported with current application environment and crypto library configuration. Overridden
by aversion option on connect/[2,3,4], listen/2, and handshake/[2,3]. For the negotiated TL S version, see
connection_information/1 .
supported_dtls
DTLS versions supported with current application environment and crypto library configuration. Overridden
by aversion option on connect/[2,3,4], listen/2, and handshake/[2,3]. For the negotiated DTL S version, see
connection_information/1 .
avai | abl e
All TLS versions supported with the linked crypto library.
avail able_dtls
All DTLS versions supported with the linked crypto library.
i mpl emrent ed
All TLS versions supported by the SSL application if linked with a crypto library with the necessary support.
i mpl emented_dtl s
All DTLS versions supported by the SSL application if linked with a crypto library with the necessary support.

SEE ALSO
inet(3) and gen_tcp(3) gen_udp(3)

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 77

ssl_crl_cache

ssl_crl_cache

Erlang module

Implements an internal CRL (Certificate Revocation List) cache. In addition to implementing the ssl_crl_cache api
behaviour the following functions are available.

Data Types

DATA TYPES

crl src() =
{file, file:filename()} | {der, public key:der encoded()}

Exports

delete(Entries) -> ok | {error, Reason}
Delete CRLs from the sl applications local cache.

insert(CRLSrc) -> ok | {error, Reason}
insert(DistPointURI, CRLSrc) -> ok | {error, Reason}

Types:
DistPointURI = uri string:uri string()
CRLSrc = crl_src()
Reason = term()

Insert CRLs into the ssl applications local cache, with or without a distribution point reference URI

78 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl_crl_cache_api

ssl_crl_cache_api

Erlang module

When TL S performs certificate path validation according to RFC 5280 it should also perform CRL validation checks.
To enable the CRL checks the application needs accessto CRLs. A database of CRLs can be set up in many different
ways. This module provides the behavior of the APl needed to integrate an arbitrary CRL cache with the erlang sdl
application. It isaso used by the application itself to provide a simple default implementation of a CRL cache.

Data Types
crl _cache ref() = any()
Reference to the CRL cache.
dist point() = #'DistributionPoint'{}
For description see X509 certificates records
logger _info() =
{logger:level(),

Report :: #{description => string(), reason => term()},
logger:metadata()}

Information for ssl applications use of Logger(3)

Exports

Module:fresh crl(DistributionPoint, CRL) -> FreshCRL
Module:fresh crl(DistributionPoint, CRL) -> FreshCRL | {LoggerInfo, FreshCRL}
Types:

Di stributionPoint = dist_point()

CRL = [public_key:der_encoded()]

FreshCRL = [public_key: der_encoded()]

Loggerinfo = {logger, |ogger_info() }}

fun fresh_crl/2 will beused asinput option updat e_cr | to public_key:pkix_crls validate/3
Itis possible to return logger info that will be used by the TL S connection to produce log events.

Module:lookup(DistributionPoint, Issuer, DbHandle) -> not available | CRLs |
{LoggerInfo, CRLs}

Module:lookup(DistributionPoint, Issuer, DbHandle) -> not available | CRLs
Module:lookup(DistributionPoint, DbHandle) -> not available | CRLs
Types:

Di stributionPoint = dist_point()

| ssuer = public_key:issuer_nane()

DbHandl e = crl _cache_ref ()

CRLs = [public_key: der_encoded()]

Loggerinfo = {logger, logger_info() }}

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 79

href

ssl_crl_cache_api

Lookup the CRLs belonging to the distribution point Di st ri but i onpoi nt . This function may choose to only
look in the cache or to follow distribution point links depending on how the cache is administrated.

Thel ssuer argument contains the issuer name of the certificate to be checked. Normally the returned CRL should
be issued by this issuer, except if the cRLI ssuer field of Di stri buti onPoi nt hasavalue, in which case that
value should be used instead.

In an earlier version of this API, thel ookup function received two arguments, omitting | ssuer . For compatibility,
thisis still supported: if thereisno| ookup/ 3 function in the callback module, | ookup/ 2 iscalled instead.

It is possible to return logger info that will be used by the TL 'S connection to produce log events.

Module:select(Issuer, DbHandle) -> CRLs | {LoggerInfo, CRLs}
Module:select(Issuer, DbHandle) -> CRLs
Types:

| ssuer = public_key:issuer_nane() | list()

DbHandl e = cache_ref ()

Loggerinfo = {l ogger, |ogger_info() }
Select the CRLs in the cache that are issued by | ssuer unless the value is a list of so called general names, see
X509 certificates records, originating form #' Di st ri buti onPoi nt' . cRLi ssuer and representing different

mechanism to obtain the CRLs. The cache callback needs to use the appropriate entry to retrieve the CRLs or return
an empty list if it does not exist.

It is possible to return logger info that will be used by the TL S connection to produce log events.

80 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl_session_cache_api

ssl_session_cache_api

Erlang module

Definesthe API for the TLS session cache (pre TLS-1.3) so that the data storage scheme can be replaced by defining
anew callback module implementing this API.

Data Types

session_cache ref()
session_cache key()

any()
{partial_key(), ssl:session_id()}

A key to an entry in the session cache.

partial key()

The opaque part of the key. Does not need to be handled by the callback.
session()

The session data that is stored for each session.

Exports

Module:delete(Cache, Key) ->
Types:
Cache = session_cache_ref ()
Key = session_cache_key()

Deletes a cache entry. Isonly called from the cache handling process.

Module:foldl(Fun, Acc0®, Cache) -> Acc
Types.
Fun = fun()
AccO = Acc = term)
Cache = session_cache_ref()
CdlsFun(El em Accl n) on successive elements of the cache, starting with Accl n == AccO. Fun/ 2 must

return a new accumulator, which is passed to the next call. The function returns the fina value of the accumulator.
AccO isreturned if the cache is empty.

Since OTP-23.3 this functionsis only used on the client side and does not need to implemented for a server cache.

Module:init(Args) -> Cache
Types:
Cache = session_cache_ref()
Args = proplists:proplist()

Includes property {rol e, client | server}.Currently thisisthe only predefined property, there can also be
user-defined properties. See aso application environment variable session_cb_init_args.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 81

ssl_session_cache_api

Performs possible initiaizations of the cache and returns a reference to it that is used as parameter to the other AP
functions. Is called by the cache handling processesi ni t function, hence putting the same requirements on it as a
normal processi ni t function. This function is called twice when starting the SSL application, once with the role
client and once with the role server, as the SSL application must be prepared to take on both roles.

Module: lookup(Cache, Key) -> Entry
Types:
Cache = session_cache_ref()
Key = session_cache_key()
Session = session() | undefined

Looks up a cache entry. Isto be callable from any process.

Module:select session(Cache, PartialKey) -> [Session]
Types:

Cache = session_cache_ref ()

Partial Key = partial _key()

Session = session()

Selects sessions that can be reused, that is sessions that include Par t i al Key initskey. Isto be callable from any
process.

Since OTP-23.3 Thisfunctionsis only used on the client side and does not need to implemented for a server cache.

Module:size(Cache) -> integer()
Types.
Cache = session_cache_ref()

Returnsthe number of sessionsin the cache. If size exceeds the maximum number of sessions, the current cache entries
will beinvalidated regardless of their remaining lifetime. Isto be callable from any process.

Module:terminate(Cache) ->
Types:
Cache = session_cache _ref()
As returned by init/0

Takes care of possible cleanup that is needed when the cache handling process terminates.

Module:update(Cache, Key, Session) ->
Types.

Cache = session_cache_ref()

Key = session_cache_key()

Sessi on = session()

Caches anew session or updates an already cached one. Is only called from the cache handling process.

82 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

	Secure Socket Layer
	SSL User's Guide
	Introduction
	Purpose
	Prerequisites

	TLS/DTLS and TLS Predecessor, SSL
	Security Overview
	Data Privacy and Integrity
	Digital Certificates
	Peer Authentication
	TLS Sessions - PRE TLS-1.3
	TLS-1.3 session tickets

	Using SSL application API
	Basic Client
	Basic Connection
	Upgrade Example - TLS only
	Customizing cipher suites
	Customizing signature algorithms(TLS-1.2)/schemes(TLS-1.3)
	Using an Engine Stored Key
	NSS keylog
	Session Reuse pre TLS 1.3
	Session Tickets and Session Resumption in TLS 1.3
	Early Data in TLS-1.3
	Anti-Replay Protection in TLS 1.3
	Using DTLS

	Using TLS for Erlang Distribution
	Building Boot Scripts Including the SSL Application
	Specifying Distribution Module for net_kernel
	Specifying TLS Options
	Specifying TLS Options (Legacy)
	Setting up Environment to Always Use TLS (Legacy)
	Using TLS distribution over IPv6

	Standards Compliance
	Purpose
	Common (pre TLS 1.3)
	Common
	SSL 2.0
	SSL 3.0
	TLS 1.0
	TLS 1.1
	TLS 1.2
	DTLS 1.0
	DTLS 1.2
	DTLS 1.3
	TLS 1.3

	Reference Manual
	ssl
	ssl
	append_cipher_suites/2
	cipher_suites/2
	cipher_suites/3
	eccs/0
	eccs/1
	clear_pem_cache/0
	connect/2
	connect/3
	connect/3
	connect/4
	close/1
	close/2
	controlling_process/2
	connection_information/1
	connection_information/2
	filter_cipher_suites/2
	format_error/1
	getopts/2
	getstat/1
	getstat/2
	handshake/1
	handshake/2
	handshake/2
	handshake/3
	handshake_cancel/1
	handshake_continue/2
	handshake_continue/3
	listen/2
	negotiated_protocol/1
	peercert/1
	peername/1
	prepend_cipher_suites/2
	prf/5
	recv/2
	recv/3
	renegotiate/1
	update_keys/2
	send/2
	setopts/2
	shutdown/2
	signature_algs/2
	sockname/1
	start/0
	start/1
	stop/0
	str_to_suite/1
	suite_to_openssl_str/1
	suite_to_str/1
	transport_accept/1
	transport_accept/2
	versions/0

	ssl_crl_cache
	delete/1
	insert/1
	insert/2

	ssl_crl_cache_api
	Module:fresh_crl/2
	Module:fresh_crl/2
	Module:lookup/3
	Module:lookup/3
	Module:lookup/2
	Module:select/2
	Module:select/2

	ssl_session_cache_api
	Module:delete/2
	Module:foldl/3
	Module:init/1
	Module:lookup/2
	Module:select_session/2
	Module:size/1
	Module:terminate/1
	Module:update/3

